Intuition v.0.3 — User Manual®

Marcin Benke and Jacek Chrzaszcz and Aleksy Schubert and
Maciej Zielenkiewicz
{ben, chrzaszcz,alx,maciekz}@mimuw.edu.pl

Institute of Informatics, University of Warsaw, Poland

December 2015

Abstract

We present here the information on how to use the Intuition typechecker and
proover.

1 Preliminaries

Intuition consists of two independent programs: typechecker and prover. The type-
checker takes a first-order formula in TPTP format with its potential proof written in
own syntax and checks if the proof indeed proves the formula. The prover generates
proofs of first-order formulae. The typechecker is writte in C programming language
while the prover is written in Haskell.

This document is constructed as follows. We present the way the typechecker can
be used in Section[2]and in Section 3

2 How to Use the Typechecker?

The typechecker intuitiontc can be called in two ways
> ./intuitiontc -F <filename>

where <filename> is the name of a file in TPTP format with a FOF formula. In this
case the program just parses the formula and exits. Alternatively the program can be
invoked as

> ./intuitiontc -P <filename>

where <filename> is the name of a file in TPTP format with a FOF formula, and its
proof in natural deduction form. In this case the program checks if the proof contained
in the file is indeed a proof of the formula present there.

For example one can parse the following formula written in the TPTP format

*This work has been supported by the Polish NCN grant NCN 2012/07/B/ST6/01532.

fof (example_07,conjecture, (! [X] : vP(X)) => (? [X] : vP(X))).
that represents the formula
(VX.vP (X)) = (IX.vP(X)).

More examples of the formulas can be found in the .tptp files located in
tests/examples—formulas/ directory of the typechecker source code distribu-
tion file.

One can also check the correctness of a proof. For instance for the extended TPTP
code

fof (example_04, conjecture,
(vA | vB) => (vB | vA),
inference (
lambda (x, fof (vA | vB),
case (var (x),
y, fof (vA),
in2 (var(y), fof(vB | vA)),
z, fof (vB),
inl (var(z), fof (vB | vA))
)))) .

Note that the portion of the expresion enclosed in inference (...) block repre-
sents the proof written in the format presented below in Section 2.1 The code above
represents the assignment to check correctness of the judgement

F Az :vAVvB. case x in

left y'inQ,’UB\/’UA(y)
right z.in1 ypvea(z) :vAV VB = vBVvA

More examples of formulas and their proofs can be fount in
tests/examples—-proofs/ directory of the typechecker source code distribution
file.

2.1 The Grammar of Proofs

The proof terms analysed by intuitiontc should be located in the formula annota-
tions section of the fof TPTP expression. They are enclosed in inference (. ..)
expression there. The grammar of proof terms themselves is as presented in Fig-
ure (Il The grammar uses TPTP productions for first-order formulas (fof_formula)
and atomic words, i.e. words that start with a small letter (atomic_word).

3 How to Use the Prover?

The prover program can be used interactively from the Haskell interactive environment.
One has to construct a formula to generate proof for and then invoke the convertType

proof_term ::=
exfalso (proof_term, term fof_ formula)
| lambda (atomic_word, term_fof_ formula, proof_term)
| app (proof_term, proof_term)
| abstract (atomic_word, term_fof formula,
atomic_word, term_fof_ formula,
proof_term, proof_term)
existIl (proof_term, proof_term, term_fof_ formula)

|
| case (proof_term, case_term , case_term)
| inl (proof_term, term fof_ formula)
| in2 (proof_term, term fof_ formula)
| projl (proof_term)
| proj2 (proof_term)
| tuple (proof_term, proof_term, term_fof_ formula)
| var (atomic_word)
term_fof_formula ::= fof (fof_formula)
case_term ::= atomic_word, term fof_ formula, proof_term

Figure 1: The grammar of proof terms.

function. For example to construct a proof for the formula
Vez.la = b = ¢) = a = c

one can in Haskell build the formula

let
tested = Tall "x" (Tall "_" a (Tall "_" b ¢))
(Tall "_" a c¢)
a = Tvar "a"
b = Tvar "b"
¢ = Tvar "c¢"
in

and then invoke convertType as follows
print $ convertType tested

More examples are available in the directory tests of the prover source code distribution
file.

	Preliminaries
	How to Use the Typechecker?
	The Grammar of Proofs

	How to Use the Prover?

