
Intuition v.0.3 — User Manual∗

Marcin Benke and Jacek Chrząszcz and Aleksy Schubert and
Maciej Zielenkiewicz

{ben,chrzaszcz,alx,maciekz}@mimuw.edu.pl

Institute of Informatics, University of Warsaw, Poland

December 2015

Abstract
We present here the information on how to use the Intuition typechecker and

proover.

1 Preliminaries
Intuition consists of two independent programs: typechecker and prover. The type-
checker takes a first-order formula in TPTP format with its potential proof written in
own syntax and checks if the proof indeed proves the formula. The prover generates
proofs of first-order formulae. The typechecker is writte in C programming language
while the prover is written in Haskell.

This document is constructed as follows. We present the way the typechecker can
be used in Section 2 and in Section 3.

2 How to Use the Typechecker?
The typechecker intuitiontc can be called in two ways

> ./intuitiontc -F <filename>

where <filename> is the name of a file in TPTP format with a FOF formula. In this
case the program just parses the formula and exits. Alternatively the program can be
invoked as

> ./intuitiontc -P <filename>

where <filename> is the name of a file in TPTP format with a FOF formula, and its
proof in natural deduction form. In this case the program checks if the proof contained
in the file is indeed a proof of the formula present there.

For example one can parse the following formula written in the TPTP format
∗This work has been supported by the Polish NCN grant NCN 2012/07/B/ST6/01532.

1



fof(example_07,conjecture, (! [X] : vP(X)) => (? [X] : vP(X))).

that represents the formula

(∀X.vP(X)) =⇒ (∃X.vP(X)).

More examples of the formulas can be found in the .tptp files located in
tests/examples-formulas/ directory of the typechecker source code distribu-
tion file.

One can also check the correctness of a proof. For instance for the extended TPTP
code

fof(example_04,conjecture,
(vA | vB) => (vB | vA),

inference(
lambda(x,fof(vA | vB),

case(var(x),
y,fof(vA),

in2(var(y),fof(vB | vA)),
z,fof(vB),

in1(var(z),fof(vB | vA))
)))).

Note that the portion of the expresion enclosed in inference(...) block repre-
sents the proof written in the format presented below in Section 2.1. The code above
represents the assignment to check correctness of the judgement

` λx : vA ∨ vB . case x in

left y.in2,vB∨vA(y)

right z.in1,vB∨vA(z) : vA ∨ vB =⇒ vB ∨ vA

More examples of formulas and their proofs can be fount in
tests/examples-proofs/ directory of the typechecker source code distribution
file.

2.1 The Grammar of Proofs
The proof terms analysed by intuitiontc should be located in the formula annota-
tions section of the fof TPTP expression. They are enclosed in inference(...)
expression there. The grammar of proof terms themselves is as presented in Fig-
ure 1. The grammar uses TPTP productions for first-order formulas (fof_formula )
and atomic words, i.e. words that start with a small letter (atomic_word).

3 How to Use the Prover?
The prover program can be used interactively from the Haskell interactive environment.
One has to construct a formula to generate proof for and then invoke the convertType

2



proof_term ::=
exfalso ( proof_term, term_fof_formula )

| lambda ( atomic_word, term_fof_formula, proof_term )
| app ( proof_term, proof_term )
| abstract ( atomic_word, term_fof_formula,

atomic_word, term_fof_formula,
proof_term, proof_term )

| existI ( proof_term, proof_term, term_fof_formula )
| case ( proof_term, case_term , case_term )
| in1 ( proof_term, term_fof_formula )
| in2 ( proof_term, term_fof_formula )
| proj1 ( proof_term )
| proj2 ( proof_term )
| tuple ( proof_term, proof_term, term_fof_formula )
| var ( atomic_word )

term_fof_formula ::= fof ( fof_formula )
case_term ::= atomic_word, term_fof_formula, proof_term

Figure 1: The grammar of proof terms.

function. For example to construct a proof for the formula

∀x.(a =⇒ b =⇒ c) =⇒ a =⇒ c

one can in Haskell build the formula

l e t
t e s t e d = T a l l " x " ( T a l l " _ " a ( T a l l " _ " b c ) )

( T a l l " _ " a c )
a = Tvar " a "
b = Tvar " b "
c = Tvar " c "

in

and then invoke convertType as follows

p r i n t $ c o n v e r t T y p e t e s t e d

More examples are available in the directory tests of the prover source code distribution
file.

3


	Preliminaries
	How to Use the Typechecker?
	The Grammar of Proofs

	How to Use the Prover?

