Intuition v.0.3 — User Manual®

Marcin Benke and Jacek Chrzaszcz and Aleksy Schubert and
Maciej Zielenkiewicz
{ben, chrzaszcz,alx,maciekz}@mimuw.edu.pl

Institute of Informatics, University of Warsaw, Poland

December 2015

Abstract

We present here the information on how to use the Intuition typechecker and
proover.

1 Preliminaries

Intuition consists of two independent programs: typechecker and prover. The type-
checker takes a first-order formula in TPTP format with its potential proof written in
own syntax and checks if the proof indeed proves the formula. The prover generates
proofs of first-order formulae. The typechecker is writte in C programming language
while the prover is written in Haskell.

This document is constructed as follows. We present the way the typechecker can
be used in Section[2]and in Section 3

2 How to Use the Typechecker?

The typechecker intuitiontc can be called in two ways
> ./intuitiontc -F <filename>

where <filename> is the name of a file in TPTP format with a FOF formula. In this
case the program just parses the formula and exits. Alternatively the program can be
invoked as

> ./intuitiontc -P <filename>

where <filename> is the name of a file in TPTP format with a FOF formula, and its
proof in natural deduction form. In this case the program checks if the proof contained
in the file is indeed a proof of the formula present there.

For example one can parse the following formula written in the TPTP format
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fof (example_07,conjecture, (! [X] : vP(X)) => (? [X] : vP(X))).
that represents the formula
(VX.vP (X)) = (IX.vP(X)).

More examples of the formulas can be found in the .tptp files located in
tests/examples—formulas/ directory of the typechecker source code distribu-
tion file.

One can also check the correctness of a proof. For instance for the extended TPTP
code

fof (example_04, conjecture,
(vA | vB) => (vB | vA),
inference (
lambda (x, fof (vA | vB),
case (var (x),
y, fof (vA),
in2 (var(y), fof(vB | vA)),
z, fof (vB),
inl (var(z), fof (vB | vA))
)))) .

Note that the portion of the expresion enclosed in inference (...) block repre-
sents the proof written in the format presented below in Section 2.1 The code above
represents the assignment to check correctness of the judgement

F Az :vAVvB. case x in

left y'inQ,’UB\/’UA(y)
right z.in1 ypvea(z) :vAV VB = vBVvA

More examples of formulas and their proofs can be fount in
tests/examples—-proofs/ directory of the typechecker source code distribution
file.

2.1 The Grammar of Proofs

The proof terms analysed by intuitiontc should be located in the formula annota-
tions section of the fof TPTP expression. They are enclosed in inference (. ..)
expression there. The grammar of proof terms themselves is as presented in Fig-
ure (Il The grammar uses TPTP productions for first-order formulas (fof_formula )
and atomic words, i.e. words that start with a small letter (atomic_word).

3 How to Use the Prover?

The prover program can be used interactively from the Haskell interactive environment.
One has to construct a formula to generate proof for and then invoke the convertType



proof_term ::=
exfalso ( proof_term, term fof_ formula )
| lambda ( atomic_word, term_fof_ formula, proof_term )
| app ( proof_term, proof_term )
| abstract ( atomic_word, term_fof formula,
atomic_word, term_fof_ formula,
proof_term, proof_term )
existIl ( proof_term, proof_term, term_fof_ formula )

|
| case ( proof_term, case_term , case_term )
| inl ( proof_term, term fof_ formula )
| in2 ( proof_term, term fof_ formula )
| projl ( proof_term )
| proj2 ( proof_term )
| tuple ( proof_term, proof_term, term_fof_ formula )
| var ( atomic_word )
term_fof_formula ::= fof ( fof_formula )
case_term ::= atomic_word, term fof_ formula, proof_term

Figure 1: The grammar of proof terms.

function. For example to construct a proof for the formula
Vez.la = b = ¢) = a = c

one can in Haskell build the formula

let
tested = Tall "x" (Tall "_" a (Tall "_" b ¢))
(Tall "_" a c¢)
a = Tvar "a"
b = Tvar "b"
¢ = Tvar "c¢"
in

and then invoke convertType as follows
print $ convertType tested

More examples are available in the directory tests of the prover source code distribution
file.
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