Alonzo — a Compiler for Agda

Marcin Benke

Institute of Informatics, Warsaw University,
ben@mimuw.edu.pl

1 Introduction

Agda [Norell, 2007] is an interactive system for developing constructive proofs
in a variant of Per Martin-Lof’s Type Theory. It can also be seen as a functional
programming language with dependent types. To be used as a programming lan-
guage, it has so far lacked a compiler (or at the very least, a decent interpereter).
Alonzo (named in honour of Alonzo Church, as Haskell is named after Haskell
B. Curry)! is an attempt to fill this gap.

1.1 Goals
Here are the goals we have set up for the project:

1. A compiler for Agda with performance of generated code matching this of
GHC.

2. A real dependently typed language with solid type system and typechecker.

3. An environment to try out dependently-typed programming, especially with
universes, in practice.

Achieving these goals is far from trivial; A large number of man-years went into
development of GHC and to create a compiler producing code with performance
matching this of GHC would require similar effort. However, rather than trying
to compete with GHC, we can build on it by first translating Agda to Haskell
and then compiling the resulting code with GHC.

It seems that the first two goals have been achieved. The performance of
compiled programs seems to be quite satisfactory (although still somewhat worse
than that of corresponding Haskell programs compiled with GHC).

We cannot honestly claim to have achieved the third goal yet, but it seems
that the main hinder here is lack of a reasonably complete Agda library — such
library is still under development. Initial results are, however, quite promising:
programming with dependent types with Agda/Alonzo turns out to be pleas-
ant (even if sometimes challenging) as well as very different from functional
programming without dependent types.

! Haskell programs are close to Curry style lambda-calculus. On the other hand, Agda
programs are closer to Church style

1.2 Related work

— Cayenne [Augustsson, 1998] — probably the first of the kind, translating a
Haskell-like dependently-typed language to untyped LML; sadly: undecid-
able typechecking, not maintained anymore.

— Epigram — a very interesting functional programming language with depen-
dent types [McBride and McKinna, 2004]. An experimental compiler for an
earlier version of Epigram has been written by Edwin Brady [Brady, 2005].

— Agate — also a backend for Agda, embedding untyped lambda calculus in
Haskell [Ozaki et al., 2006].

1.3 Example: well-typed printf

One of the standard examples for dependently-typed programming is “well-typed
printf” — a function corresponding to printf from C, but checking if its argument
conform to the specified format string.

As we will be using it in the sequel to illustrate some mechanisms, here is its
signature and example use. The inquisitive reader can find the complete code in
the Appendix.

Printf : String -> Set
printf : (fmt : String) -> Printf fmt -> String

mainS : String
mainS = printf "pi = %f %% %s"
< 3.14159 | < "Alonzo" | unit > >

where the syntax < a | b > denotes pairs.

2 Translating Dependent Types into Haskell

At first glance, translating dependent types to Haskell type system is easy: just
forget all the dependencies. For example, consider the inductive family of vectors
and a function representing their concatenation:

data Vec (A : Set) : Nat -> Set where
nil : Vec A zero
cons : {n : Nat} -> A -> Vec A n -> Vec A (suc n)

append : {A:Set} -> {n,m : Nat} -> Vec A n -> Vec A m -> Vec A (n+m)

One could translate them into following Haskell definitions:?

2 Although we use GHC’s extended syntax here, the definitions below can easily be
expressed in Haskell98 as well.

data List a where
nil :: List a
cons :: List a -> List a -> List a

append : List a -> List a -> List a

A similar approach was used by Brady in his Epigram compiler [Brady, 2005].
However, things get more complicated when you get to large elimination. To
illustrate the problem, consider the following definitions:

Q : Bool -> Set
Q true = Nat
Q false = Bool

f : (b:Bool) > Q b
f true = pred 3
f false = true

mainS : String
mainS = showBool (f (const false true))

Note that the actuial result type of f depends on the value of its arguments.
How can such a function be translated into Haskell?

Assume we had a “magic” function cast :: a -> b. We could then translate
f as follows:

f :: Bool -=> b
f (true) = cast (pred (cast (3)))
f (false) = cast true

Luckily, GHC has such a function, albeit with an uglier name: unsafeCoerce#.
Despite the name however, all coercions (typecasts, actually) we insert are safe,
since the program has been already checked by Agda typechecker.

2.1 Translating Types
We need two translations for types:

1. to Haskell types (only data types)
2. to Haskell values

As for the first one, although it could seem that with the casts described
above explicit use of Haskell types is not needed, we still need data types for
pattern matching and of course as containers for data. But we don’t really need
to translate all the types, but only the datatypes, introduced with the data
definitions.

This translation is relatively straightforward. Every Agda datatype is trans-
lated to a Haskell datatype and every constructor is translated to a constructor
of the same arity.

However, in this translation we sacrifice a bit of (potential) efficiency for
safety: GHC could potentially use the (not necessarily correct) knowledge of the
types for optimisations. To prevent this,

data List (A:Set) : Set where
nil : List a
cons : A -> List A -> List A

becomes

data List ab=Cl | C2 ab

2.2 Translating Types to Values

In a dependently-typed system, types can be used as values in expressions. In
Haskell no such thing is possible, so we must find a way of translating Agda types
to Haskell values. One could of course argue that types cannot influence the result
of the computation on the value level, and thus could be erased. However such
erasure would alter arity of functions and quite often also strictness properties
of the program. This seems to be a sufficient reason to avoid such erasure and
go the extra mile of translating types to values as well.
How to translate

Q : Bool -> Set
Q true = Nat
Q false = Bool

into Haskell?

We use codes (actually, universes, if one prefers a fancier term); all datatypes
(as well as primitive types) will have a value of this type assigned at compilation
time, e.g.

dQ :: PreludeBool.Bool -> Runtime.Code
dQ (PreludeBool.Cl) = cast PreludeNat.dNat
dQ (PreludeBool.C2) = cast PreludeBool.dBool

2.3 Codes

Since there is no pattern-matching on types (only on values), the encoding
doesn’t need to be injective. Hence, if we don’t care for types at runtime, and
want every bit of efficiency, a very simple coding can be used:

dNat = ()
dBool = ()

In this encoding the type of codes is simply the unit type; every type is encoded
as unit value. This has the advantage of avoiding type computation at runtime
entirely, while still preserving arities and strictness properties.

On the other hand, if we want run-time type information, we can introduce a
more refined datatype of codes (e.g. the universe for dependent types described
in [Benke et al., 2003]. Then we could have e.g. a (built-in) function

showSet : Set -> String

at very little cost.

2.4 Pattern matching
Another obstacle is pattern matching, consider an Agda definition

printf’ : (fmt : List Format) -> Printf’ fmt -> String
printf’ (stringArg :: fmt) < s | args > = s ++ printf’ fmt args

printf’ (badFormat _ :: fmt) ()
printf’ [] unit = "

The patterns are of different types, whereas Haskell demands that in all clauses
of a definition, patterns for a given argument be of the same type. Casts don’t
solve the problem we cannot cast patterns.

We can solve this problem by making every clause into a separate single-
clause definition and then gathering them together as local definitions for the
main clause; for example the definition above would be translated as

d38 = d38_1
where d38_1 (PreludelList.C4 (Printf4.C3) vO0)
(AlonzoPrelude.C43 vl v2)
= cast
(PreludeString.d0 (cast v1)
(cast (Printf4.d38 (cast v0) (cast v2))))
d38_1 a b = cast d38_2 a b

d38_8 (PreludelList.C3) (Printf4.C1) = cast ("")

3 Conclusions and future work

We have built a compiler for Agda, generating efficient code. Initial experiences
with the compiler are quite promising: programming with dependent types with
Agda/Alonzo turns out to be pleasant (even if sometimes challenging) as well as
very different from functional programming without dependent types.

What is still lacking to make it into an environment for “real” dependently-
typed programming, is a proper library. It would not be a rewrite of Haskell
library, as it turns out that dependently-typed programming begs for different

style, constructs and idioms. One particularly interesting area is managing in-
put/output — several approaches have been proposed, although there is, as yet,
no general consensus how this issue should be treated.

Another planned area of research fdor the near future is usiong partial eval-
uation on types to get most of GHC optimizations, thus improving efficiency of
generated code.

A more distant, yet seemingly worthwhile plan would be to rewrite Agda in
Agda, and prove properties of the code.

Acknowledgments

The author would like to thank the Agda team, especially Ulf Norell, Patrik
Jansson, Nils Anders Danielsson, Catarina Coquand and Makoto Takeyama, for
many fruitful discussions and help with testing and debugging the system (as
well as for having created Agda in the first place).

References

[Augustsson, 1998] Augustsson, L. (1998). Cayenne — a language with dependent
types. In ICFP, pages 239-250.

[Benke et al., 2003] Benke, M., Dybjer, P., and Jansson, P. (2003). Universes for
generic programs and proofs in dependent type theory. Nordic Journal of Computing,
10(4):265-289.

[Brady, 2005] Brady, E. C. (2005). Practical Implementation of a Dependently Typed
Functional Programming Language. PhD thesis, Durham University.

[McBride and McKinna, 2004] McBride, C. and McKinna, J. (2004). The view from
the left. Journal of Functional Programing, 14(1).

[Norell, 2007] Norell, U. (2007). Towards a practical programming language based on
dependent type theory. PhD thesis, Department of Computer Science and Engineer-
ing, Chalmers University of Technology, SE-412 96 Goteborg, Sweden.

[Ozaki et al., 2006] Ozaki, H., Takeyama, M., and Kinoshita, Y. (2006). Agate —
an Agda to Haskell compiler. Technical Report JP: 21129158, Research Center for
Verification and Semantics, National Institute of Advanced Industrial Science and
Technology.

A Complete printf code

data Format : Set where
stringArg : Format

natArg : Format
intArg : Format
floatArg : Format
charArg : Format
litChar : Char -> Format

badFormat : Char -> Format
data BadFormat (c : Char) : Set where

format : String -> List Format
format s = format’ (tolList s)

where

format’ : List Char -> List Format

format’ (°%’ :: ’s’ :: fmt) = stringArg :: format’ fmt
format’ (°%’ :: ’n’ :: fmt) = natArg :: format’ fmt
format’ (°%’ :: °d’ :: fmt) = intArg :: format’ fmt
format’ (°%’ :: ’f’ :: fmt) = floatArg :: format’ fmt
format’ (°%’ :: ’c’ :: fmt) = charArg :: format’ fmt
format’ (°%’ :: °%’ :: fmt) = litChar ’%’ :: format’ fmt
format’ (°%’ :: ¢ :: fmt) = badFormat c :: format’ fmt
format’ (c :: fmt) = litChar ¢ :: format’ fmt

format’ [] = []

Printf’ : List Format -> Set

Printf’ (stringArg :: fmt) = String * Printf’ fmt
Printf’ (natArg :: fmt) = Nat * Printf’ fmt
Printf’ (intArg :: fmt) = Int * Printf’ fmt
Printf’ (floatArg :: fmt) = Float * Printf’ fmt
Printf’ (charArg :: fmt) = Char * Printf’ fmt

Printf’ (badFormat c :: fmt) = BadFormat c
Printf’ (1litChar _ :: fmt) = Printf’ fmt
Printf’ [] = Unit

Printf : String -> Set
Printf fmt = Printf’ (format fmt)

printf : (fmt : String) -> Printf fmt -> String
printf fmt = printf’ (format fmt)

where
printf’ : (fmt : List Format) -> Printf’ fmt -> String
printf’ (stringArg :: fmt) < s , args > = s ++ printf’ fmt args

printf’ (natArg :: fmt) < n , args > = showNat n ++ printf’ fmt args

printf’ (intArg :: fmt) < n , args > showInt n ++ printf’ fmt args

printf’ (floatArg :: fmt) < x , args > = showFloat x ++ printf’ fmt args
printf’ (charArg :: fmt) < ¢ , args > = showChar ¢ ++ printf’ fmt args
printf’ (litChar c :: fmt) args = fromList (c :: []) ++ printf’ fmt args

printf’ (badFormat _ :: fmt) QO
printf’ [l wunit = n"n

mainS : String
mainS = printf "Answer is %n, pi = %f %% %s"
< 42 , < 3.14159 , < "Alonzo" , unit > > >

