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Abstract. We present a tool for automated theorem proving in Agda,
an implementation of Martin-Lof’s intuitionistic type theory. The tool
is intended to facilitate interactive proving by relieving the user from
filling in simple but tedious parts of a proof. The proof search is con-
ducted directly in type theory and produces proof terms. Any proof term
is verified by the Agda type-checker, which ensures soundness of the tool.
Some effort has been spent on trying to produce human readable results,
which allows the user to examine the generated proofs. We have tested
the tool on examples mainly in the area of (functional) program verifi-
cation. Most examples we have considered contain induction, and some
contain generalisation. The contribution of this work outside the Agda
community is to extend the experience of automated proof for intuition-
istic type theory.

1 Introduction

Automated proving in first-order logic is well explored and developed. Systems
based on higher-order logic have in general limited automation. This is in par-
ticular true for proof-assistants based on intuitionistic type theory. There is
strong motivation for working with these formalisms and the tools based on them
have a large user community. As a result, a lot of interactive proving is carried
out to construct proofs or parts of proofs which could conceivably be solved
automatically.

We have developed a tool for automated proving in the Agda system [3]. It is
not a complete proof search algorithm. The aim is to automate the construction
of the parts of a proof which are more or less straightforward. Often such parts
can be tedious to fill in by hand, however significant time could be saved, allowing
the user to spend her effort on the key parts of the proof.

Agda is an implementation of Martin-Lo6f’s intuitionistic type theory [10],
which, following the paradigm of propositions-as-types and proof-as-objects, can
be used as a logical framework for higher-order constructive logic. Agda is a
type-checker and an assistant for constructing proof terms interactively. The
assistant is not based on tactics. Instead, the user sees a partially completed
proof term during the process. The incomplete parts of the term are represented
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by place-holders, called meta variables. Each step consists of refining one of the
remaining meta variables, which instantiates it to a term that may contain new
meta variables. Refining one meta variable may also instantiate others, as a
result of unification.

The tool does not rely on an external solver. During the proof search, the
problem and the partial solution are represented as Agda terms. The tool is
integrated with the Agda proof assistant, which runs under emacs. When stand-
ing on a meta variable, the user can invoke the tool, which either inserts a valid
proof term or reports failure of finding a solution. Failure is reported if the search
space is exhausted or if a certain amount of steps has been executed without
finding a solution. There is also a stand-alone version of the tool, intended for
development and debugging, where a proof search can be monitored step by step.

Before inserting a proof term, it is always verified by the Agda type-checker.
Therefore, the importance of soundness is limited, and we will not further discuss
this issue. Still, we believe that the basic steps of the proof search are consistent
with the Agda typing rules and moreover that the algorithm is sound.

Since the area of application is within an interactive proof assistant, producing
human readable proof terms is important and has received some attention in our
work.

The tool handles hidden arguments, which is a new feature of Agda. It has
however so far no support for inductive families [7], except for when they are
used for representing equalities.

The fundamental restriction of the tool is that it does not do higher order uni-
fication. Instead, a decidable extension of first-order unification is used. In e.g.
Dowek’s algorithm for term synthesis in pure type systems [5], applying an elim-
ination rule produces a constraint, which is successively solved by higher-order
unification. Our tool instead only applies an elimination rule if the unification
procedure returns a unifier.

In Agda, termination is not verified by the type-checker. There is a sepa-
rate termination-check. In our tool, inductive proofs are restricted to structural
recursion. Determining termination is in general undecidable and defining ad-
vanced criteria is an issue in itself. An alternative approach would be to ignore
termination and let an external verification accept or reject a proof term. How-
ever, the tool is currently designed to produce only one solution, which makes
it inappropriate for that approach. Although the flexibility of induction schemes
is limited, the tool can do nested induction on several variables and also nested
case split on one variable.

Elimination rules are generally only applied when there is a suitable variable in
the context to apply it on. The exception to this is that the tool identifies a couple
of cases of generalisation. In some cases this leads to a necessary strengthening
of the induction hypothesis. The generalisation mechanism is however restricted
to what can be syntactically deduced from the current goal type, like replacing
a repeated subexpression by a fresh variable. There is also no synthesis of new
hypotheses, i.e. the tool is unable to do lemma speculation.



156 F. Lindblad and M. Benke

In addition, there are a number of other restrictions, e.g. that new data types
and recursive functions are not synthesised. This means that, when searching for
a proof of a proposition which is existentially quantified over Set or a function
space, a new data type or a new recursive function will not be synthesised.

Section [2] contains a small survey of related work. Section Bl describes the tool
and contains a few subsections, which are devoted to special features. In section
@ we present a few examples and discuss the limitations of the tool. Section
gives conclusions and ideas for how the tool could be improved in the future.

2 Related Work

Although the type inhabitation problem is undecidable for a system like Agda,
it is semi-decidable simply by term enumeration (plus decidability of type-
checking). A complete proof synthesis algorithm for the pure type systems has
been presented by Dowek [5]. Cornes has extended this to a complete algorithm
for the Calculus of Inductive Constructions [4]. Although these algorithms are
of theoretical interest, complete algorithms so far seem too time-consuming to
be of practical use. In her thesis, Cornes elaborates on various enhancements,
but, to our knowledge, there is no implementation available.

We now turn to a quick survey of related implementations, beginning with
a piece of related research in the context of Agda, and then working our way
outwards in wider circles. Smith and Tammet [I2] have investigated using a
FOL-solver to mechanically find proofs in Alf [9], the predecessor of Agda.
The goal type together with the typing rules of Alf are encoded in first-order
logic and a solver, Gandalf, is invoked. If a solution is encountered, a proof
term is constructed using the information produced by Gandalf. The authors
managed to generate some inductive proofs, but the approach seems rather
inefficient.

The proof-assistant Coq is based on a language closely related to that of
Agda. Coq has many sophisticated tactics, but the auto tactic, which is the
nearest counterpart of our tool, does not produce any inductive proofs.

Also related to Agda is the Logical Framework, implemented in the system
Twelf. Schirmann and Pfenning [I1] have developed a proof search tool and
supporting theory for a metalogic in Twelf, an implementation of the logical
framework LF.

Andrews has successfully explored the area of mechanical proofs in classical
type theory [2]. His work has resulted in TPS, a fully automatic proof system
based on higher-order unification.

ACL2, PVS and Isabelle are other major proof assistants. ACL2 and PVS do
have automation for induction, but none of the systems produces proof objects.

3 Tool Description

Agda has dependently-typed records and algebraic data types. The algebraic
data types can be recursively defined. Function arguments are analyzed by
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case-expressions rather than pattern matching. Functions can be recursively de-
fined freely using self-reference. There is no fixpoint construction. Type-checking
does not include termination check. Although there is a separate termination
checker, the restrictions are not clearly defined in the semantics. Hence, a tool
for automated proving must either ignore termination issues or define its own
criteria for this. With a proof search algorithm capable of producing multiple
solutions, the first approach could be used. For each solution an independent
termination check is consulted. If it rejects the proof term, the search is con-
tinued. Our tool is however designed to come up with only one solution, so it
adheres to the second approach. Proof terms are currently restricted to structural
recursion.

Agda is monomorphic but polymorphism is in recent versions simulated by
argument hiding. Properties and proof terms below are presented with some
type arguments omitted. This is done to improve readability, but the hiding
mechanism is not further discussed.

Just like the Agda proof assistant, the tool uses place holders to denote incom-
plete parts of a proof. Place holders are called meta variables and are denoted
by ‘?’. They can be seen as existentially quantified variables.

The most significant characteristics of the tool are the following:

— Unification is first-order and is not an interleaved part of the proof search.
The search state does not have constraints. Unification is decided immedi-
ately when applying elimination is considered.

— The order in which the meta variables are refined is dictated by depth-
first traversal. After refining a meta variable, its subproofs are recursively
addressed one by one.

— Meta variables are classified as either parameter meta variables or proof meta
variables. Parameter meta variables are those which appear in the type of
some other meta variable, whereas the rest are proof meta variables. The pa-
rameters are the term-like meta variables. Only proof meta variables are sub-
ject to resolution. Parameter meta variables are supposed to be instantiated
when unifying one of the types where they appear. In [5] Dowek pointed out
that variables should be instantiated from right to left. The parameter/proof
distinction is an alternative to this rule and it postpones the instantiation
of term-like variables in a more flexible way. The distinction is also made for
local variables, although not that explicitly.

— A meta variable is refined by an elimination only when there is a suitable ob-
ject in the context. This means that for each meta variable, all possible ways
to eliminate any object in scope are considered. It can be any combination of
function application, record projection and also case split for algebraic data
types. The fact that this applies to disjoint unions makes it necessary to tag
solutions with conditions for which it is valid. As an example, if we have
[h: A+ B] F?: A, then a solution is [h — inl a] F a, which means a is a
valid term provided that h is of the form inl a. The idea is that conditional
solutions at some point should pair off to form an unconditional proof of the
full problem.
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The program consists of an algorithm which explores the search space and
the implementations of a set of refinement rules. The proof search algorithm
is presented in subsection B.Jl The refinement rules define the atomic steps of
refining a problem and how to construct the corresponding proof term. The
implementations of the refinement rules will be referred to as tactics. We will
not present a formal description of the rules, since they are closely related to the
typing rules of Agda. There are refinement rules for constructing A-abstractions,
record objects and algebraic data type objects. There is a rule for elimination,
which combines several eliminations of different kind in the same refinement, as
described above. There is also a special elimination rule for equalities, which uses
transitivity, symmetry and substitutivity in a controlled manner. Then there is
one rule for case analysis and induction and one for generalisation. They are
presented by example in subsections and [3.4] respectively. Finally, there is a
rule for case on expression, which combines case analysis and generalisation. It
is presented in section 3.3

In the tactics which perform elimination and at some other places in the
search algorithm, first-order unification is used to compare types in the presence
of meta variables. Unification is always performed on normalised terms. The tool
uses an extension of normal first-order unification. This enables it to deal with
more problems without resorting to higher-order unification. The extension is
still decidable. However, while a first-order unification problem has either one
or no unifier, a problem of the extended unification can have any number of
unifiers. The extension is presented in subsection When doing first-order
unification in the presence of binders, attention must be paid to scope. We
have chosen to solve this by having globally unique identifiers for variables.
Whenever a meta variable is about to be instantiated, its context is checked
against the free variables of the term. If not all variables are in scope, the unifier
is rejected.

When a proof term has been found, the tool does a few things to make it
more readable. This includes using short and relevant names for local variables
and removing redundant locally defined recursive functions.

3.1 Proof Search Algorithm

The search space is explored using iterated deepening. This is necessary since a
problem may in general be refined to infinite depth. It is also desirable since less
complex solutions are encountered first.

We will describe the proof search algorithm by presenting a pseudo program
for the main recursion. The style is a mixture of functional and imperative pro-
gramming, but we hope that the meaning of the program is clear. It refers to
a few subfunctions which are only described informally. To make the presenta-
tion cleaner, unification is assumed to produce only one unifier, i.e. it does not
incorporate the extension described in subsection

First we define a few types which describe the basic objects of the algo-
rithm. The elementary entities are denoted by single letters. The same letters are
used both to denote the types and the corresponding objects, hopefully without
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confusion. The general form of a problem of finding an inhabitant of type T in
the variable context I' is the following:

Apar,o, I, pET (Prb)

The corresponding type is called Prb. Here, Apqr = [I; F?; : T;] is the collection
of parameter meta variables. For each meta variable, its context and type is
given. The next component, o = [?; := M;], is the set of current parameter meta
variable instantiations, which should be taken into account when reducing terms.
After the context of the current problem, I', we have p = [M; — ¢; yi1 - Yinil-
This is the sequence of conditions which have emerged so far. The conditions
for proof variables should be taken into account in order to avoid clashes when
eliminating disjoint unions. The conditions for parameter variables should be
respected when normalising types.
A solution, Sol, to a problem has the following form:

o, p' =M (Sol)

The term M inhabits the target type provided that the meta variable instanti-
ations and conditions of the problem are extended by ¢’ and p’.
We will also use the notion of refinement, Ref, which specifies how a problem
can be refined to a new set of problems:
A/

par’

Aprg,o’ o' B M (Ref)

Just as for a solution, the proof term, M, is an inhabitant assuming the extra
instantiations and conditions, ¢’ and p’. In general, M contains new meta vari-
ables. The new meta variables are divided into parameters, A;M, and proofs,
Aprp = [Ii, pi F? : T3], according to the classification described above. For proof
meta variables the information supplied is different from that of parameter meta
variables. Instead of the full context, only the extra local variables are given.
Moreover, not only the context and type are given but also a set of extra con-
ditions which should be enforced in the corresponding branch of the proof. This
is needed since parameter variables are treated differently from proof variables.
The distinction is the same as for meta variables — parameters are variables
which appear in some type. While proof variables are eliminated on demand, as
described above, case splits for parameter variables must precede the proof of
its branches as a separate refinement.

Finally, we need to talk about collections of problems, PrbColl, and collec-
tions of solutions, Sol1Coll.

Apar,o, I, pE Ay (PrbColl)
o',p'Fo* (SolColl)

A problem collection is a set of common instantiations and a set of common
conditions followed by a list of proof meta variables. A corresponding solution
collection contains the extra sets of common instantiations and conditions as well
as a set of instantiations, o*, which gives a term for every proof meta variable
in the problem collection.
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The following functions describe the proof search algorithm:

search : Prb — [Sol]
search (Apgr, 0, pHET) =
refs := createRefs (Aper,0, I, pFT)
sols := ||
for each (A,,, Aprp,01,p1 = M) in refs
prbcoll := ((Apart+ Apyy), (044 01), (04 p1) F Apry)
solcolls := searchColl prbcoll
for each (04, p4 - 0*) in solcolls
case (compose ((0]++ 03), (p]++p5), M,0*)) of
none — sols := sols
some sol — sols := addSol (sol,sols)
end case
end for
end for
return sols

searchColl : PrbColl — [SolColl]
soxrchColL (Aot ) = (1. - )
searchColl (Apep,0,p b (I, pi F75 2 T;) - prbs)) =
prb := (Apar, 0, (I I3), (pt+ pi) = T5)
sols := search prb
solcolls := searchColl (A, o, p - prbs)
solcolls’ := ]
for each (o,pi F M) in sols
for each (0}, ph F 0*) in solcolls
case (combine (01, 0%, pl, ph)) of
none — solcolls’ := solcolls’
some o.p, — solcolls’ := (o, p. - ((?; :=M):0c*
end case
end for
end for
return solcolls’

~—

) : solcolls’

The types of the auxiliary functions are the following:

createRefs : Prb — [Ref|
addSol : Sol, [Sol] — [Sol]
combine : 0,0, p,p — 0, p option
compose : 0, p, M, 0prf — Sol option

The function search first invokes createRefs, which generates the list of
refinements which are valid according to the set of refinement rules. Then, for
each refinement it compiles a problem collection consisting of its proof meta
variables. The collection is passed to searchColl which returns a list of solution
collections.
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For each collection, compose is called. This function lifts the parameter in-
stantiations and conditions above the scope of the current refinement. For the
instantiations, this means removing the entries which bind a meta variable in-
troduced by the refinement. When removing such an instantiation, the meta
variable is substituted for its value in M. For the conditions, it means check-
ing whether any of the conditioned variables was introduced by the refinement.
In that case, the solution would not be valid and the function returns nothing.
Otherwise, the values in ¢* are substituted into M and a solution is returned.

If compose returns a solution, then a call to addSol adds it to the list of
solutions. However, if there is already a better solution present, the new one
is discarded. Conversely, if the new solution is better than some old one, that
one is discarded. A solution A is said to be better then a solution B if A would
combine with a solution C' whenever B combines with C. In other words, A is
better when B when its parameter instantiations and conditions are subsets of
those of B.

Moreover, when adding a solution to the list, its conditions are checked against
the conditions of the already present solutions. If there is a collection of solutions
which can be combined with respect to instantiations and conditions, and which
together discharge one condition, the solutions are merged to a single one. The
proof term of this new solution is a case-expression where the case branches
correspond to the proof terms of the constituting solutions. As an example,
assume that there are two solutions,

[h —inla]F M and [h— inr ] N.
Then they are merged into the single solution
t case h of {inl a —» M;inr b — N}.

The function searchColl first calls search to generate the solutions for the
first problem in the collection. It then does a recursive call to produce the solu-
tion collections for the rest of the problems. For each solution and each solution
collection it then invokes combine. This function takes a pair of parameter in-
stantiations and a pair of conditions. It merges the instantiations and conditions
while checking that no inconsistency appears. Checking this involves comparing
terms. A term in an instantiation or in a condition may contain meta variables.
Thus, unification is performed rather than comparing and new instantiations
may need to be added. If a combination is possible, the combined sets of in-
stantiations and conditions are returned and the result is used to construct a
collection which includes a solution for the current problem.

3.2 Induction

The tactic which does case split on a variable also adds a locally defined function
around the case expression. The function can in a later refinement be invoked
as an induction hypothesis. Special information is stored to limit the calls to
structural recursion.



162 F. Lindblad and M. Benke

Any variable which is of algebraic data type and is a parameter, i.e. appears
in a type, is a candidate for the tactic.

We will now give an example. The proof steps are presented as refinements.
Unlike the definitions in section [3.I] the meta variable is made explicit in prob-
lems and refinements, in order to clarify the structure of the proof search. Types
are displayed in their normal form, just as they appear at unification. In applica-
tions, some type arguments are omitted to increase readability. Also, in function
definitions, the type of some arguments is omitted for the same reason. Variable
names essentially correspond to what the tool produces.

The problem is commutativity of addition for natural numbers.

[a,b: Nafl-?7 : a+b==b+a

Addition is defined by recursion on the first argument. The proof search calls the
case split tactic, which explores analysis on a. This gives the following refinement:

lo— 0] K2 :b==b40, [a—sa]F?:s (@ +b)==b+sd]r
2 . let rab : (a+b:: b+a) = Caseaof{o H?b’ s a/ 4)?5}
7 \in rab

The local function is given as arguments all parameters which appear in the
target type and all hypotheses whose types contain the parameters, in this case
parameters a and b. The two new proof meta variables have a condition corre-
sponding to each branch.

The base case is solved by induction on b and appealing to reflexivity, refl,
and substitutivity for equality, cong.

refl (X : Set) : (x:X)— (z==1x)
cong (X, Y : Set) : (f: X =Y)—=(r1,22: X)—(v1 == 22) = (f 21 == [ x2)

The proof for the base case is constructed by the following refinements:

[[b—=0]F?7p:0==0, [b—sb]Fs:sb ==s (' +0)]F

7y := case b of {0 —=7y; s b —7s}
}_?bb = reﬂ 0
F?7p: 0 ==V +0]F?%s = cong (Ax = s x)b (b'+0)7?,
F?p =10V

The first refinement is again generated by the case split tactic. The second
and third are generated by the equalities tactics and the last by the normal
elimination tactic.

In the step case, the induction hypothesis corresponding to structural recur-
sion on «a is used to rewrite the equality by referring to transitivity, tran.

tran (X : Set) : (z,y,2: X) > (z==y) = (y==2) — (x ==2)
The refinement is:
F?:s(b+a)==b+sd|F
tran (s (o’ +0)) (s (b+4d)) (b+s d)
7 = (cong Az — s z) (o' +b) (b+4d') (rd' b))

2
°q
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The equalities tactic combines the use of transitivity with the use of substitu-
tivity and symmetry.
For 7,, case analysis on b will lead to a solution.

[b—0]F’gp:sa ==sd, [b—osb]|Fly:is(s W +d)==s b +sd)|t
let " ba : (s(b+a)==b+sda) =

?q = case b of {0 =74; sV =74}
in v ba

The following refinements complete the proof term:

F?s = refl (s a’)
F?2.:s (b +a)==0b+sd]t
?ss = cong Az —sx) (s (V' +d)) (¥ +(sd))?

The equalities tactic generates the first two refinements, while the elimination
tactic generates the third by using the induction hypothesis (s (b’ + o) ==
b +sd).

3.3 Case on Expression

There is also a tactic for case-on-expression. This tactic looks at the subex-
pressions of the target type and of the variables in the context. Any data type
subexpression which is an application with undefined head position is subject to
the tactic. All occurrences of the subexpression are replaced by a fresh variable.
Then, case analysis on the new variable is added. This is a special and very
useful case of generalisation. Although the occurrences of the subexpression are
replaced, new instances may appear at a later stage. Therefore, a proof that the
new variable equals the subexpression is supplied.

The following example illustrates the use of case-on-expression. It is about
lists and the functions map, which is defined recursively in the normal way, and
filter. In order to allow filter reducing in two steps it is defined in terms of if.

iftruexzy ==z
iffalsexy=y

filter f [1 =0
filter f (x::ad) = if (f x) (z:: filter f xs') (filter f xs)

The reason for defining filter this way is that Agda, when normalising a term,
only unfolds an application when the definition of the function reduces to some-
thing which is not a case expression. This, combined with the fact the first-order
unification is used, makes it necessary to define filter to reduce in two steps. First
it reduces to an if-statement when the list is known to be of the form z:: zs.
Then it reduces again when the boolean value of (f x) is known.

The problem is the following:

[X,Y : Set,f : X - Y,p:Y — Bool,zs: List X| F
?: filter p (map f xs) == map f (filter Mz — p (f x)) xs)
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The proof begins with induction on zs. In the step case, the goal type reduces
to:

if (p (f ) (f x:: filter p (map f xs)) (filter p (map f xd')) ==
map f (if (p (f 2)) (z:: filter Az —p (f z)) z) (filter Az —p (f x)) 25))

The tactic identifies p (f x) for generalisation and case analysis. The occurrences
are replaced by the variable pfr. We will not give all refinements, but simply
present the final generated proof term:

let r zs : filter p (map [ xs) == map [ (filter Az — p (f x)) zs)
0 — refl [
xixsd —
let g pfz (peq: pfr==1p (f x)) :
if pfr (f a:: filter p (map f z¢')) (filter p (map f z5')) ==
map f (if pfu(ws: filter (\x—p (f @) 29) (filter (e —p (f 2)) 25)
= case pfr of
true — cong (A\y — f z:y) (filter p (map f z5))
(map f (filter Az — p (f x) 25))) (r a5

false — r zs

in g (p (fx)) (refld (p (f x)))

in r xzs

The case-on-expression tactic generates a refinement where the local function g
is defined to case pfr of {true —7;; false —?;}. Each branch is then solved
by the equalities tactic.

3.4 Generalisation

The generalisation tactic recognises two cases; generalise subexpression and gen-
eralise apart. Generalise apart means replacing multiple occurrences of a single
variable with two different variables. Generalising subexpression means pick-
ing a subexpression and replacing it with a new variable. It is only applied for
subexpressions which occur at least twice, as opposed to the more restricted
generalisation introduced by the case-on-expression tactic.

Generalise subexpression seems to be the more useful of the two. We have only

made use of generalise apart for simple problems like 2 - (s n) == s (s (2 n)),
where multiplication is defined in terms of addition by recursion on the first
argument.

We give an example to illustrate the strengthening of the induction hypothesis
using generalise subexpression; reversing a list twice.

[X : Set,xs: List X|F 7 1 rev (rev xs) == x5

Reversing a list is defined in terms of concatenating two lists.

[1++ys = ys
(z:: @s)++ys =z (s ys)
rev [] =1

rev (x:: xs) = rev zs++ (z:: [1)
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The proof begins by induction on zs. In the step case, where s — x:: 25, the
goal is rewritten using the induction hypothesis and transitivity, yielding the
type:

rev (rev o8 ++ (z:: [1)) == z:: rev (rev xs)

Here, (rev z¢') is generalised to a new variable, zs”. The proof then follows by
induction on zs”. The final proof term is:

let r zs : (rev (rev xs) == zs) = case s of
(1 — refl [1
X

zs — tran (rev (rev zs'++ (x:: [1))) (z:: rev (rev zs')) (z:: ad)
(letg 2z’ : rev (zs"++ (z:: [1))==z:: rev z’ = casexs’ of
[0 — refl (z:: [1)
x' sy — cong (Ax—x++ (2':: [1)) (rev (wso++ (z:: [1)))
(x:: rev xso) (g z50)
in g (revzs))
(cong (A\y — z::y) (rev (rev zs')) zs (r xs))
in ruzs

3.5 Extension of First-Order Unification

The tool is based on first-order unification. Restricted to this, when unification
is invoked, the tool simply normalises the terms and first-order unification is
applied. The strength of this is obviously limited in a higher-order setting. To
improve this without making the tool too inefficient, we have added an extension
which, in a sense, does first-order unification for function meta variables. Before
the first-order mechanism is called, the terms are examined. Any occurrence of
a function application where the head is a meta variable is replaced by a fresh
meta variable. Then the usual first-order unification is called. If it was successful,
all syntactically possible ways to construct a A-abstraction and arguments are
generated. The restrictions are that the resulting application should S-reduce to
the correct term and that the arguments should be type correct.

We illustrate this by a simple example. Consider substitutivity for natural
numbers:

[P : Nat — Set, x1,29: Nall]F-?7 : &1 == a9 — P 21 — P 22

The tool will generate a proof which starts with induction on x; followed by
induction on xy:

let r (P : Nat — Set) (x1,22: Nat) (p:x1 ==z2) (¢: P x1) : Py

? = = case z; of {0 —=7; s 2} —7,}
in » P X1 To
?7s = case g of {0 —=74; s z) =75}

For 7,4 the problem is:

[..,p:(sal==sa%),q: P(s2})],[v1 = s 2l 20 > s ah| F?ss: P (s )
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Applying r will be considered by the elimination tactic. The application (r ?p ?,,
725 7p ?q) has the type (?p ?7,) where ?p : (Nat — Set) and ?,, : Nat. The
unification problem to consider is thus:

P (szh) =7p ?u,

The application on the right hand side is replaced by a fresh meta variable, ?’.
The standard first-order unification returns the unifier [?" := P (s z%)]. Now the
extended unification produces a unifier for each possible way to partition the
expression (P (s z4)) onto the function, ?p, and its argument, ?,,. These are
the possibilities:

{70 = Ao — P (s ab)}

{"p=X—Pux, 7,, =s ab}

{"p=Xx— P (sx), 7 =ab}

The third unifier leads to a terminating proof term.

4 Results

We have used the number of generated refinements as a hardware independent
measure for the tool’s effort when solving a problem. On a normal desktop com-
puter, the number of generated refinements per second is around 500. The prob-
lems presented in sections [3.2] and [3.4] take between 50 and 100 refinements
to solve.

We will now present some more difficult examples which demonstrate the
limits of the tool. A larger collection of problems with proofs generated by the
tool can be downloaded from [§].

The first three examples are problems in the context of list sorting. The
propositions are about a list being sorted, Sort, a list being a permutation of
another list, Perm, and an element being a member of a list, Member. The
functions are defined as follows:

Sorted [] =T
Sorted (x:: [1) =T
Sorted (x::y: xs) = x < y A Sorted (y:: xs)

Perm zs ys = Vx.count x xs == count x ys

Member y [] =1

Member y (x:: xs) = x ==y V Member y xs

count y [1] =0

count y (z::xs) = if (eq x y) (s (count y xs)) (count y xs)

List concatenation and the filter function will also appear. They are defined
in the normal way. The relations ‘<’ and ‘>’ will be used both to denote the
boolean functions and the correspond propositions.
The first proposition claims commutativity of list concatenation with respect
to permutation:
Perm (zs++ ys) (ys++ xs)
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The tool can be set to either look for lemmas among all the global definitions or
to just use the local variables. The former mode is often too inefficient. When not
including the globals, the user can give a list of lemmas as hints. The problem
above is solved by giving (a,b : Nat) — a+ s b == s (a + b) as a hint and
it takes 4653 refinements. The proof consists of induction on zs and ys, a few
case-on-expressions and some equality manipulation.

The tool has no rewriting system for equalities. The equalities tactic modifies
equalities in a quite undirected way. Due to this, a lot of effort is often spent on
finding relatively small proofs for problems involving equalities.

Another property of the equality reasoning is that simple lemmas are often
needed, like the one for the problem above. Although the tool can easily solve
such lemmas separately, it cannot always invent them as part of another proof.
This is because transitivity is only applied for an equality when there is already
a known fact which can be used to rewrite either the left or the right hand side.
The tool never invents an intermediate value.

The next two examples are lemmas for a correctness proof for a quicksort
algorithm.

Perm zs (filter (x >) zs++ filter (x <) xs)

Sorted xs — Sorted ys — ((x : X) — Member x s — |z < al)
— ((x : X) = Member z ys — |a < x|) — Sorted (zs++ (a:: ys))

The first of these is solved in 1173 refinements with two hints, namely the same
as in the previous examples as well as the proposition count x (zs++ys) ==
count x xs+ count x ys. The second example is solved in 359 refinements with
no hints. The proof includes double case analysis on zs.

Next example is the problem to show associativity for addition of integers
defined in the following way:

Int = data Zer | Pos (n : Nat) | Neg (n : Nat)

The proposition is

(p+q) +r==p+(q+r).

The proof takes 11285 refinements and no hint is needed.
Finally, consider the problem

(n: Nat) — 3 Nat (A\(m: Nat) - (n==2-m)V (n==s (2-m))).

To solve this the tool needs 2-s n ==s (s (2-n)) as a hint. The problem is a
very simple example of a program carrying proof, namely division by two.

The tool has a few settings, one of which should be mentioned. There is a
value defining the maximum number of nested case-splits applied to a variable.
In our examples, this is set to two, which is enough for all problems we have
tested.
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5 Conclusion and Future Work

In our opinion, the efficiency of the tool is good enough for it to be useful in a
proof assistant. It can definitely save the user time. If one would consider using
the tool for larger problems and allowing it more time, we think that it would
perform poorly. More advanced techniques to reduce the search space would be
needed. Also, since the tool in written in Haskell, it would probably suffer from
the automatic memory management.

One should also ask whether the tool is versatile enough to be of practical
use. We think this is the case. The tool has some fundamental restrictions, such
as first-order unification. But, apart from this, our goal has been to construct a
general proof search algorithm.

Instead of writing a tool which performs a proof search directly, another ap-
proach is to translate the problem and solve it with a separate first-order solver.
This is currently investigated by e.g. Abel, Coquand and Norell with promis-
ing results [I]. In this approach, the problems are restricted to first-order logic
and no proof term is recovered. On the other hand, it allows making use of the
many highly optimized existing first-order solvers. We believe that this could
be combined with our work to create a more powerful tool. Different parts of a
proof could be addressed by the two components, e.g. induction by the internal
proof-search and equality reasoning by the external prover. Equality reasoning
has turned out to be a major bottleneck for our tool.

One feature of the tool which may not have been such a good idea is the on-
demand elimination of data type objects. This adds the necessity of annotating
solutions with conditions and all administration that it brings along. Another
thing is the parameter/proof classification which seems a bit to rigid.

One way to continue the work could be to restart with a term synthesis
algorithm based on higher-order unification, such as the one presented by Dowek
[6]. This would then be enriched by first-order unification, which would serve as
a short-cut in the proof search. We believe that also in a system for higher-order
logic, most subterms can be resolved by first-order unification, and that it would
be beneficial to have a proof search that is biased in that direction.

Another interesting issue is to deal with a dense presence false subproblems.
A false subproblem may occur already when applying ordinary modus ponens,
but if we would add abilities for lemma speculation and stronger generalisation,
most subproblems would be false. Maybe one could then improve efficiency by
trying to prove the negation of a possibly false subproblem in parallel. If a proof
of the negation is found, the corresponding branch can be pruned.
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