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Abstract
Proof assistants based on dependent type theory are closely related
to functional programming languages, and so it is tempting to use
them to prove the correctness of functional programs. In this paper,
we show how Agda, such a proof assistant, can be used to prove
theorems about Haskell programs. Haskell programs are translated
into an Agda model of their semantics, by translating via GHC’s
Core language into a monadic form specially adapted to represent
Haskell’s polymorphism in Agda’s predicative type system. The
translation can support reasoning about either total values only, or
total and partial values, by instantiating the monad appropriately.
We claim that, although these Agda models are generated by a rel-
atively complex translation process, proofs about them are simple
and natural, and we offer a number of examples to support this
claim.

Categories and Subject DescriptorsD.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.2.4 [Software
Engineering]: Software/Program Verification—Correctness proofs;
F.3.1 [Logics and Meanings of Programs]: Specifying and Verify-
ing and Reasoning about Programs—Mechanical verification

General Terms Languages, Theory, Verification

Keywords Haskell, GHC Core, Type Theory, Monadic Transla-
tion, Partiality, Verification

1. Introduction
Constructive type theories (see for example [16, 6]) have long been
touted as a promising approach to writing correct software. These
are type systems with dependent types, in which propositions can
be represented as types via the Curry-Howard isomorphism [11],
and constructive proofs of those propositions can be represented as
terms of the corresponding types. Several proof editors (Agda [5],
Coq [2], Twelf [17]) have been developed based on such theories;
they interact with users to construct a term (proof) of a given goal
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type, ensuring that type correctness is preserved at each step, and
so the proof constructed is valid. In this paper, we show how Agda
can be used to develop verified Haskell programs.

The traditional approach to developing verified programs using
type theory, is toextractthem from proofs. One begins by express-
ing a specification as a type; for example,

∀xs :: List Integer.∃ys :: List Integer.
isPermutation(xs, ys) ∧ isOrdered(ys)

says that sorting is possible. A term of this type contains an em-
bedded sorting algorithm, together with proof fragments. Program
extraction discards these fragments, generating a verified sorting
function as its result. Program extraction has been implemented in
the Coq system, generating programs in OCaml, Caml Light, or
Haskell, and used to construct verified programs of many hundred
lines.

However, this approach does demand an all-or-nothing commit-
ment to a new programming method. One begins by formalising
a specification, devotes much subsequent work to proof, and only
in the final stages obtains a program which can actually be run.
What if the specification proves to be wrong, and the error is only
revealed when the generated program doesn’t behave as the user
(informally) expected? Then much work has been wasted, and this
work is difficult to reuse. While specifications for small functions
like sorting are easy to get right, in more realistic situations they are
likely to be wrong. Our own experience using our random testing
tool QuickCheck [4], which tests Haskell programs against speci-
fications to reveal errors in both, is that errors in specifications are
just as common as errors in programs. In industrial projects, speci-
fications change constantly. We believe, therefore, that the program
extraction approach will be difficult to scale up to realistic applica-
tions.

The alternative approach we propose is to develop programs by
combiningproof with testing. We start by writing programs and
testing them as usual. Then we develop specifications in the form
of propertieswhich are tested against the program by QuickCheck.
At this stage, most inconsistencies between the code and its spec-
ification are revealed cheaply. Only once testing reveals no further
errors, do we go on to prove the most important properties using
Agda. At this stage, the proofs are likely to succeed—which is im-
portant, because attempting a proof is in general a very costly way
to find a mistake. With this approach, we spend the effort of formal
proof only where it is most needed, which should make the method
as a whole more suitable for deployment in practice.

Although our approach may seem less than “purist”, we may
liken this way of working to that of a mathematician who studies
examples, hypotheses, and counter-examples, before embarking on
the hard work of formulating theorems and finding proofs—which
is, of course, the way mathematicians work in reality!

However, the critical point here is that, unlike with the program
extraction approach, the Haskell code to be verified existsbefore
we start proving. Thus we mustimport existing Haskell code into



the prover, unlike program extraction, which need onlyexportcode
from the prover (a process which is not provided by all proof as-
sistants, and whose correctness is usually not verified!). Agda is
designed to use a syntax similar to Haskell, but we cannot simply
take the Haskell program and supply it as input to Agda because
thesemanticsdiffers in important ways. Hitherto Agda users have
translated programs to be verified into the Agda language by hand,
but on a larger scale such hand modelling is not reliable: translat-
ing thousands of lines of code by hand would certainly introduce
errors, defeating the whole purpose of formal verification. Thus, to
make our approach work, we must develop a translator which au-
tomatically converts Haskell programs into a suitable Agda model.

Such a translation is more difficult than it seems. The major
constraint is that the user of the theorem provermust be able to
prove properties of the translated code. These proofs must be rea-
sonably elegant, not cluttered with detail introduced by the trans-
lation. Moreover, since reading machine generated code is, in gen-
eral, an unpleasant experience, we aim to make it possible to prove
properties of the translated codewithout reading it—it should be
sufficient to refer to the Haskell source itself, to understand how
proofs should be constructed. These constraints strongly influence
our choice of translation. Of course, we want to exploit the deep
similarities between Haskell and Agda, so that the translation re-
sembles a “natural” Agda model, but there are fundamental differ-
ences to be overcome, caused by the differing requirements on a
programming language and a proof language.

In this paper, we present the translation method we have devel-
oped, together with applications to small programs to justify our
claim that proofs about translated code are quite natural. While
many problems remain to be solved, we do support a large subset
of Haskell, and we address the fundamental problem of partiality—
Haskell programs may loop or fail, while Agda programs, by defi-
nition, must not.

Figure 1 gives an overview over our translation: A Haskell pro-
gram is first translated into Haskell Core language via the Glas-
gow Haskell Compiler (GHC). Then a preprocessor classifies types
into monomorphic and polymorphic types. From that, the monadic
translation produces Agda code parametrized by a monad, which
can be instantiated to the identity monad if one wants to prove pro-
gram properties under the assumption that all objects are total, or
to the Maybe monad if one takes also partial objects into consider-
ation.

As a simple example, we shall prove properties of the queue
implementation in Figure 2. This implements queues efficiently as
pairs of lists, the “front” and the “back”, with the back held in re-
verse order. The stated properties relate this efficient implementa-
tion to an abstract model where a queue is just a list of elements.
The properties have been tested by QuickCheck: we will show in
Section 5.2 how they can also be proved using Agda.

The rest of the paper is structured as follows. In Section 2
we give an overview of Agda, and explain the key differences
between Agda and Haskell. Section 3 presents a naive translation
of Haskell into Agda, and shows that it fails even for our simple
queue example. In Section 4 we show how to solve this problem
by introducing a monad of partiality—harder than it sounds in this
setting. We present some sample proofs about translated programs
in Section 5, to justify our claim that they are reasonably natural.
Section 6 surveys related work, and finally Section 7 concludes and
points out directions for future work.

2. An Overview of Agda
Agda is a proof assistant based on dependent type theory. Users
construct a dependently typed functional program using an emacs
interface which checks type correctness as the user works, and can
also construct parts of the program automatically.
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Figure 1. Translation Outline.

Agda proofs consist of a collection of explicitly typed defini-
tions, such as

and :: Bool -> Bool -> Bool =
\a -> \b -> case a of (True )-> b

(False)-> a

New data types can be defined with a Haskell like syntax; for
example

data Unit = tt
data Bottom =

define the one-point type and the empty type respectively. Data type
definitions can be parameterised and recursive, as in the type of
lists:

data Lst(a::Set) = Nl | Cns (x::a) (xs::Lst a)

Types such as these are first-class values, of the typeSet, which
is thus the type of the parameter toLst. Note that constructor dec-



module Queue where

import Test.QuickCheck

type Queue a = [a]
empty = []
add x q = q ++ [x]
isEmpty q = null q
front (x:q) = x
remove (x:q) = q

type QueueI a = ([a],[a])
emptyI = ([],[])
addI x (f,b) = flipQ (f,x:b)
isEmptyI (f,b) = null f
frontI (x:f,b) = x
removeI (x:f,b) = flipQ (f,b)
flipQ ([],b) = (reverse b,[])
flipQ q = q

retrieve :: QueueI a -> Queue a
retrieve (f,b) = f ++ reverse b

invariant :: QueueI Integer -> Bool
invariant (f,b) = null b || not (null f)

prop_empty =
retrieve emptyI == (empty :: [Integer])

prop_add (x::Integer) q =
retrieve (addI x q) == add x (retrieve q)

prop_isEmpty q =
invariant q ==>
isEmptyI q == isEmpty (retrieve q)

prop_front q =
invariant q && not (isEmptyI q) ==>
frontI q == front (retrieve q)

prop_remove q =
invariant q && not (isEmptyI q) ==>
retrieve (removeI q) == remove (retrieve q)

prop_inv_empty = invariant emptyI
prop_inv_add x q =

invariant q ==> invariant (addI x q)
prop_inv_remove q =

invariant q && not (isEmptyI q) ==>
invariant (removeI q)

Figure 2. The Queue Example in Haskell.

larations include names as well as types for their fields. Recursive
types in Agda are interpretedinductively, so the typeLst a in-
cludes no partial or infinite lists.

Agda function definitions may also be recursive. For example,
theappend function is defined as follows:

append :: (a::Set) |-> Lst a -> Lst a -> Lst a =
\a |-> \xs -> \ys ->
case xs of (Nl )-> ys

(Cns x xs’)-> Cns x (append xs’ ys)

Polymorphic functions take explicit type arguments, although
(as in this example) they can be “hidden”, indicated by the vertical
bar in|->. Hidden arguments can be omitted from calls, provided
Agda can infer what they should be, and this is often the case for
type arguments. This example also illustrates Agda’s dependent
types: the types of later arguments (xs andys) and of the result

depend on the value of the first argumenta. (This is a rather trivial
kind of dependent type, equivalent to a polymorphic one, because
a happens to be aSet, but Agda allows similar dependencies on
any type of argument).

Theorems and proofs are represented in Agda via the Curry-
Howard isomorphism: propositions are represented as types, whose
elements represent their proofs. Thus an empty type represents an
unprovable proposition (false), while a non-empty type represents
a provable one. Propositions are proved by constructing an element
of the corresponding type. For example, the polymorphic identity
function\(a::Set) -> \(x::a) -> x proves the trivial propo-
sitionA ⇒ A, represented in Agda as the type(a::Set)->a->a.

In reasoning about programs, we often need to relate boolean
values in the code to Agda propositions, which are types. For this
reason, we define the type

T :: Bool -> Set = \b -> case b of (True )-> Unit
(False)-> Bottom

which converts from one to the other. Thus,T b is a type which is
non-empty if and only ifb is True. We shall illustrate the use of
this with a simple proof that ifand a b is True, then so isa.

We prove this by defining a function

lem1 :: (a,b::Bool) -> T (and a b) -> T a =
\a b -> \pf -> {!!}

which, for any booleansa andb, given a proof thatand a b is
True, returns a proof thata is True. The{!!} on the right hand
side is ameta-variablewhich the emacs interface helps us to fill in.

One might expect to fill in the meta-variable with the valuett,
since this is the only value that can be returned, but this would
be a type error:tt has the typeUnit, and the type required here
is T a, which might be eitherUnit or Bottom depending on the
value ofa. Instead we perform case analysis ona. We entera into
the meta-variable and issue a certain emacs command, whereupon
Agda inserts a case expression over the right type, with new meta-
variables in each branch:

lem1 :: (a,b::Bool) -> T (and a b) -> T a =
\a b -> \pf -> case a of (True )-> {!!}

(False)-> {!!}

But now note that in each branch of the case,we know the
value ofa, and we can use this to simplify both the types of other
parameters, and the type needed as the result. For example, in
the False branch thenpf has the typeT(and False b), which
reduces toT False and thus toBottom, and the type of the result
is T False, which also reduces toBottom, so we can just return
pf in this case. The complete proof is:

lem1 :: (a,b::Bool) -> T (and a b) -> T a =
\a b -> \pf -> case a of (True )-> tt

(False)-> pf

As demonstrated by this example, it is vital that Agda can use
the extra information gained by the case split for type-checking
the branches. To ensure this is always possible, Agda restricts case
expressions so that they mayonly inspect variables (in contrast to
Haskell cases which may inspect any expression); then the guarding
pattern of a branch (e.g.,False) can be substituted for the subject
of the case (e.g.,a). Moreover, case expressions may only appear
at the top levelof a right-hand-side, i.e., as root expression of a
definition, function body, or case branch. Otherwise, one could
enter terms like

t = (case a of (True ) -> b
(False) -> c) d

which is morally equal to



case a of (True ) -> b d
(False) -> c d

however, not w. r. t.β-reduction, but by virtue of a so-calledpermu-
tation. To avoid permutations and the additional complications to
type-checking which terms liket provoke, such terms are forbid-
den in Agda. The two restrictions oncase complicate the transla-
tion of Haskell to Agda somewhat.

Agda accepts that two types matchif they reduce to the same
term, so reduction is of critical importance in formulating Agda
proofs. For example, if we tried to prove thatT(and a b) -> T b
instead, by case analysis on the variableb, then type checking
would fail. In the partial proof

lem2 :: (a,b::Bool) -> T (and a b) -> T b =
\a b -> \pf -> case b of (True )-> tt

(False)-> {!!}

the meta-variablecannotbe filled with pf, because this has the
type T(and a False), which does notreduceto T False, and
hence toBottom, which is the type expected of the branch. The
expressionand a False is equalto False, but it does notreduce
to it, which we can only see by inspecting the definition ofand,
which is given at the beginning of this section. This behaviour can
catch novice users by surprise! On the one hand, building reduction
into the Agda type-checker is very powerful—it shortens many
proofs dramatically. On the other hand, it means the user must be
very conscious of the difference between expressions which reduce
to the same thing, and those which are merely provably equal (since
proven equality cannot be exploited without an explicit proof step).
The skillful Agda user needs to ensure that equalities needed in
proofs are established, as far as possible, by pure reduction. This
is important to bear in mind when planning a translation from
Haskell.

Because Agda is intended as a proof editor, it is important that
all expressions terminate—otherwise we could construct a proof of
anyproposition just by looping infinitely, in the same way we can
useundefined in Haskell. Recursive definitions must therefore
be total. This is not actually enforced by the Agda type-checker,
which leaves the user to argue for termination separately. This may
seem odd, but it is a reasonable pragmatic decision because of the
difficulty of constructing good termination checkers which do not
hinder expressivity too much, and because even proving partial
correctness is valuable in itself. We shall adopt the same principle
for our translation from Haskell to Agda. Haskell programs which
loop infinitely will be translated into meaningless Agda models,
and then all bets are off. Since we transfer this responsibility to the
programmer, general recursive programs are not a problem for us
to handle.

But forbidding infinite recursion is not enough to guaran-
tee that evaluation always terminates. Agda makes two further
restrictions—whichareenforced by the system—namely, that case
analysis is exhaustive, and that the type system is predicative. The
latter restriction implies that it isnot true thatSet :: Set—
which if allowed, would lead to Girard’s paradox, and thus non-
termination. Rather, the type ofSet is Type, and indeed there are
an infinite number of nested “universes” (Set, Type, . . . ) in the
Agda type system. Predicativity is not the only way to avoid Gi-
rard’s paradox, but it is the way adopted in Agda, partly for philo-
sophical reasons. The immediate consequence is that polymorphic
functions parameterised over types inSet, cannot be instantiated at
“larger” types such asSet itself. Both these restrictions are prob-
lematic for a translation from Haskell to Agda. We shall see how
we deal with them in the following sections.

3. A Naive Translation of Haskell to Agda
Haskell is a much more complex language than Agda, and con-
tains many features that our translation must replace by simpler
equivalents. Examples include list comprehension,do-notation,
and nested and overlapping pattern matching. These can be inter-
preted as syntactic sugar, but must be desugared by our translator.

More awkwardly, Haskell programs are to a large extent im-
plicitly typed, while Agda requires explicit typing, as we have
seen. A translator must therefore infer types, and insert them into
the translated code, together with type abstraction and application
to represent polymorphic generalisation and instantiation. At the
same time, overloading must be resolved, and overloaded defini-
tions must be replaced by definitions parameterised on method dic-
tionaries in the standard way [19]. Since Haskell’s class system has
seen many extensions, this is a far from trivial task.

Fortunately, there isalreadya tool which performs just such a
translation—namely, the front-end of GHC. Internally, GHC trans-
lates Haskell programs to GHC Core, a simple language which is
close to System F, with explicit typing, simple pattern matching, no
overloading, and none of the other complex constructions alluded
to above. A (slightly simplified) syntax of GHC Core appears in
Figure 3.

Thus we begin our translation of Haskell to Agda by using GHC
to translate the input to Core. This has the benefit of allowing us to
work with a reasonably simple language while at the same time
supporting full Haskell. However, GHC does change the program
structure in ways one might not expect, which may complicate the
reasoning later. For example, the Core translation of the++ function

[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

is (in mathematical notation, we write the typing relation as “:”)

(++) : ∀α : ∗. List α → List α → List α
= Λ(α : ∗).

let app1 : List α → List α → List α
= λ(ds : List α). λ(ys : List α).

case ds of
Nil → ys
Cons (x : α) (xs : List α) →

Cons @ α x (app1 xs ys)
in app1

Apart from introducing explicit type abstractions and applications,
putting type annotations on the binders, and translating pattern
matching to a simplecase, GHC has also introduced a local func-
tion app11. The purpose of this function is simply to avoid poly-
morphic recursion (the type variableα is bound outsideapp1)—
but the user of our translator would likely not expect it to appear.

Although the translation to Core may appear complex and un-
predictable, it does translate programs toa faithful representation of
their semantics. Our thesis is thus that, provided proofs about pro-
grams depend only on the semantics of the translated terms, and not
on their syntax, then the complexities of translation via Core will
not cause complexity in the proofs themselves. We make the rea-
sonable assumption that Haskell programmers conducting proofs
understand the semantics of their code, and will not be surprised by
the behaviour of the Core which GHC generates.

A few small differences between the syntax of Core and Agda
require further processing. Because of the restrictions oncase-
expressions in Agda, we liftcases on non-variables, andcases
which do not appear at the top-level of right-hand-sides, into local

1 Actually it is called++1; we have taken the liberty of renaming it.



d ::= data D (~α : ~κ) = cd1 | . . . | cdn

| x : σ = e
cd ::= C (~α : ~κ) ~σ
e ::= x | C | e e | λ(x : σ). e

| e @ τ | Λ(α : κ). e
| let x1 : σ1 = e1; . . . ; xn : σn = en in e
| case e of alt1; . . . ; altn

alt ::= C (~x : ~σ) → e
σ ::= τ | ∀α : κ. σ | σ 7→ σ
τ ::= α | D | τ τ | τ → τ
κ ::= ∗ | κ → κ

Figure 3. A simplified grammar for GHC Core

definitions as follows:

case e of alts
⇓

let f x = case x of alts in f e

Moreover, Corecase-expressions may contain default cases abbre-
viating all remaining constructors—we simply expand these to the
constructor cases they represent. We also translate type abstraction
and application using Agda’s hidden parameters, so that the final
Agda translation of theappend function becomes

(++) :: (a :: Set) |-> List a -> List a -> List a
= \a |->
let app1 :: List a -> List a -> List a

= \ds ys ->
case ds of

(Nil ) -> ys
(Cons x xs) -> Cons x (app1 xs ys)

in app1

Clearly, this translation doesn’t take the question of termina-
tion into account; if we translate a Haskell program with an infinite
loop into Agda in this way, we will obtain a meaningless Agda
program. But the problem is actually much more immediate: the
translation fails even for the simpleQueue example in Figure 2,
which refers only to structurally recursive functions! The problem
is thatfront andremove are partial functions—not because they
may loop infinitely, but because they do not make sense for empty
queues! They are functions with non-trivial pre-conditions, which
are undefined when the pre-condition is unsatisfied. Their Haskell
definitions contain inexhaustive pattern matching, which is trans-
lated into Corecaseexpressions with calls to theerror function in
one branch. Theerror function is comparable to non-termination,
in the sense that it does not produce a result, and so cannot be trans-
lated directly into Agda. Functions with non-trivial preconditions
are common, and thus pose a much more immediate translation
problem than do infinite loops.

4. A Monadic Translation of Haskell to Agda
Our solution to this problem is to make definedness explicit in the
Agda translation. We do so using theMaybe monad, so that the
translations of defined expressions will have values of the form
Just v, while undefined expressions, such as calls toerror, will
take the valueNothing. We are thus making partiality explicit in
the translated definitions, enabling us to state and prove properties
that involve partial values.

However, we do not want to commit ourselves to reasoning
about partial valuesalways. In many cases, partial values may be
irrelevant, and we may wish to simplify proofs by restricting our
attention to total elements. In other cases, the properties we wish
to prove may simply be false for partial values—for example, that

reverse is its own inverse—and we may wish to work in a setting
where all values are total, rather than formulate and prove totality
conditions at every turn. Luckily, we can have our cake and eat it
too: we shall parameterize our translation on a monadm, which we
can take to be theMaybe monad when we reason about partiality,
but the identity monad when we reason in a total setting. Thus our
goal will be to develop amonadictranslation of Core into Agda.

Our monad can be represented in Agda by three variables,
which will be instantiated differently depending on the kind of
reasoning we want to perform2:

m : Set→ Set

return : (α : Set) |→ α → m α

(>>=) : (α : Set) |→ (β : Set) |→ m α → (α → m β) → m β

(Note that we hide the type parameters ofreturnand>>=). We can
now apply the standard call-by-name monadic translation to theλ-
calculus fragment of Core:

α† = m α

(τ1 → τ2)
† = m(τ †

1 → τ †
2 )

x† = x

(λx.e)† = return(λx.e†)

(e0e1)
† = e†0 >>= λf.fe†1

With this translation, function arguments are translated into monadic
computations, which can thus beNothing (undefined), correctly
reflecting the lazy nature of Haskell. But there is a problem in
translating type abstraction and application by this means.

A natural approach is to translate type abstractions in the same
way asλ-abstractions, so that

(∀α.τ)† = m((α : Set) → τ †)

(Λα.e)† = return(λα.e†)

(e @ τ)† = e† >>= λf.fτ †

This was the approach taken by Barthe, Hatcliff, and Thiemann
(BHT) [1], but, for our purposes, it suffers two serious drawbacks.

The first drawback is that this translation does not correspond
to “reality”, that is, to the behaviour of Haskell implementations.
Polymorphic values are here translated tocomputations, which may
thus be undefined, but the result of instantiating them is also a com-
putation, and may also be undefined. With this translation, when
proving something about a function of type∀α.α → α, for exam-
ple, we would have tofirst consider the case when the polymorphic
value itself was undefined, and thenseparatelyconsider the case
when the polymorphic value was defined, but its instantiation at a
particular type was undefined. In implementations of Haskell, these
are the same value, so the distinction makes no sense—it would
simply clutter every proof involving polymorphic values.

The second drawback is even more severe: the BHT translation,
which is designed to translate from System F to itself, produces
Agda terms which violate predicativity! Refer to the type ofm
again: it is Set→ Set. But in the BHT translation,m is applied
to the type(α : Set) → τ †—which cannot be in Set, because it
involves Set itself! Redefiningm with type Type→ Type (where
Type is the next universe beyond Set) does not help, because the
monadm will also appear in the types which we instantiateα to.
So if m were of type Type→ Type, then we would need to abstract
over Type instead of Set in the translation of polytypes, and som
would need to take an argument in thenextuniverse instead. . . we
would simply have pushed the problem one universe higher up. For

2 In this section we write Agda with a “mathematical” notation.



a predicative translation, we must avoid applyingm to polymorphic
types at all.

In fact, we do not need a monad to run into problems with
predicativity. System F, and thus Core, is already impredicative, and
permits terms such as(Λα.e)(∀β.τ), which already instantiates a
type variable to a polytype. Luckily, the Core generated by GHC
rarely contains such examples3.

Since the impredicativity of System F causes problems, it is nat-
ural to try to use a predicative fragment of it. The rank-1 (Hindley-
Milner) fragment is predicative, but too weak for Core, because
the translation of class dictionaries introduces higher-rank poly-
morphism in some cases4. However, even in these cases, we only
instantiatetype variables to monomorphic types, and this is enough
to maintain predicativity (in fact, it is level 1 of Leivant’s Stratified
System F [14]). In practice, almost all Haskell programs are trans-
lated into Core within this fragment.

The basic idea behind our translation is toapply the monad only
to monomorphic types, that is, those whose translations are ele-
ments of Set in Agda. Since the standard translation of function
types introduces an application of the monad on both the argument
and the result, for polymorphic functions, which will be represented
as functions with elements of Set as arguments, we will need a dif-
ferent translation which does not involve the monad. We shall dis-
tinguish between the types of Core functions which are translated
monadically, and those which are not, by writing the latter in the
form σ1 7→ σ2. Only the latter may have polytypes as arguments
or results. We use a preprocessor on the Core program to annotate
function types as either→ or 7→, introducing the latter for functions
taking either types or class dictionaries (which may have polymor-
phic types) as parameters. Thus, the types in our annotated dialect
of Core are generated from the following grammar:

τ ::= α | D | ττ | τ → τ monotypes

σ ::= τ | ∀α : κ. σ | σ 7→ σ polytypes

Since the translation of7→ functions is non-monadic, we can also
think of them as “unlifted” functions, for which we do not dis-
tinguish between non-termination of the function itself, and non-
termination of the calls. This fits well with the way we use them:
when we reason about Haskell programs, we do notwantto distin-
guish between non-termination before or after type instantiation, or
before or after dictionary passing.

Core quantifies not only over types, but type constructors of any
kind κ ::= ∗ | κ → κ. These are translated into Agda almost
literally:

∗† = Set

(κ1 → κ2)
† = κ†

1 → κ†
2

Note that, for any kindκ, we have` κ† : Type—its translation
is an Agda Type. Now we can summarize the translation of Core
types:

(∀α : κ. σ)† = (α : κ†) → σ†

(σ1 7→ σ2)
† = σ†

1 → σ†
2

τ † = m τ∗

The last clause refers to the star translationτ∗ of monotypes,
which is homomorphic for variables, constants, and applications,

3 This kind of term appears only when the programmer uses an existential
type, or a datatype with a polymorphic component. Our method cannot
translate such programs into Agda, but fortunately they are fairly rare.
4 For example, the dictionary associated with the ubiquitousMonad class
has a polymorphic field, the implementation of bind.

but applies the dagger translation on on domain and codomain of
function types:

α∗ = α

D∗ = D

(τ1τ2)
∗ = τ∗

1 τ∗
2

(τ1 → τ2)
∗ = τ †

1 → τ †
2

As expected, the translation of quantifed types and7→ function
types is non-monadic.

The translation of Coreλ-expressions and applications, and
type abstractions and instantiations, follows naturally from the
translation of types. We present the translation rules in Figure
4, in the form of a translation from Core typing rules to valid
Agda typing derivations. Note that the translation ofλ-abstractions
and applications depends on whether the function is of mono- or
polytype—functions with7→ types are translated into functions,
while functions of→ types are translated into monadic computa-
tions.

These rules also depend on a translation of environments:

{}† = {}
(Γ, α : κ)† = Γ†, α : κ†

(Γ, x : σ)† = Γ†, x : σ†

Note that the monadm is only applied to elements of Set in the
translated code!

Data-type definitions pose a special problem. They must be
translated into Agda data-type definitions, but constructors in
Haskell (and thus in Core) are just functions with a type of the
form ∀~α : ~κ.τ1 → · · · → τk → D ~α. The translation of such a
type is of the form(~α : ~κ†) → m (τ †

1 → . . . m (τ †
k → m (D ~α)),

and of course, no Agda constructor can have such a type. There-
fore, Haskell constructors cannot be translated directly into Agda
constructors. Instead, we will introduce Agda constructors with
types of the form(~α : ~κ†) → τ †

1 → . . . τ †
k → D ~α, whose

componentshave monadic types, but whose type is not otherwise
monadic, reflecting the fact that the result of a constructor is never
undefined.

This is formalised as follows. The typing rules in both Core and
Agda fordata declarations involve judgements of the forms:

Γ ` d : ∆

Γ; ~α : ~κ; D : ~κ → ∗ ` cd : ∆

These judgements infer the names and types that will be added
to the context as the result of the declaration—that is, the names
and types of the constructors declared. The translation of these
judgements from Core to Agda is given in Figure 5. The first
rule translatesdata declarations in Core to declarations in Agda
of a type with the same name, by translating each constructor
and collecting the results. The second rule specifies the translation
of constructor types. The translation includes fresh field-names,
because Agda syntax demands them.

Luckily, Core permits only full applications of constructors5

to all of their arguments—partial applications in Haskell areη-
converted toλ-expressions during translation to Core. Thus we
need only translate full applications to Agda:[

Γ ` C@~τ ~e : D~τ
]†

= Γ† ` return (C ~e†) : m(D~τ †)

Note that the type arguments of a constructor are implicit in Agda.

5 Contrary to Haskell, Core constructors cannot have strict fields—if a
constructor is strict in an argument in Haskell, that argument is evaluated
explicitly before the constructor is applied in Core.



[
Γ, x : σ ` x : σ

]†
=

Γ†, x : σ† ` x : σ†

[
Γ, x : τ1 ` e : τ2

Γ ` λ(x : τ1). e : τ1 → τ2

]†

=

Γ†, x : τ †
1 ` e† : τ †

2

Γ† ` return(λ(x : τ †
1 ).e†) : m(τ †

1 → τ †
2 )[

Γ ` e0 : τ1 → τ2 Γ ` e1 : τ1

Γ ` e0e1 : τ2

]†

=

Γ† ` e†0 : (τ1 → τ2)
† Γ† ` e†1 : τ †

1

Γ† ` e†0 >>= λ(f : τ †
1 → τ †

2 ).fe†1 : τ †
2[

Γ, x : σ1 ` e : σ2

Γ ` λ(x : σ1). e : σ1 7→ σ2

]†

=

Γ†, x : σ†
1 ` e† : σ†

2

Γ† ` λ(x : σ†
1).e

† : σ†
1 → σ†

2[
Γ ` e0 : σ1 7→ σ2 Γ ` e1 : σ1

Γ ` e0e1 : σ2

]†

=

Γ† ` e†0 : σ†
1 → σ†

2 Γ ` e†1 : σ†
1

Γ† ` e†0e
†
1 : σ†

2[
Γ, α : κ ` e : σ

Γ ` Λ(α : κ). e : ∀α : κ. σ

]†

=

Γ†, α : κ† ` e† : σ†

Γ† ` λ(α : κ†).e† : (α : κ†) → σ†

[
Γ ` e : ∀α : ∗. σ Γ ` τ : ∗

Γ ` e @ τ : σ[τ/α]

]†

=

Γ† ` e† : (α : Set) → σ† Γ† ` τ∗ : Set

Γ† ` e†τ∗ : σ†[τ
∗
/α]

Figure 4. Translation of abstractions and applications.

The translation ofcaseexpressions appears in Figure 6. Clauses
alt are typed using a four-ary judgmentΓ ` alt : τ1 ⇒ τ2, where
τ1 is the type of the pattern andτ2 the type of the branch. We use
monadic>>= to evaluate the expression thecaseinspects, so the
actual Agda case analysis of the value appears in the second argu-
ment of>>=. As we explained in Section 2, Agdacaseexpressions
are syntactically restricted to appear at the top level of a definition,
and so we “lambda-lift” the second argument of>>= to a freshly
named locally defined function to fulfill this restriction.

4.1 An Optimisation

If the rules above are applied literally, they generate Agda defini-
tions with a very large number of monadic operations. As an exam-
ple, consider a function defined as

f : a → b

f = λ(x : a).e

 {Γ; ~α : ~κ; D : ~κ → ∗ ` cd i : ∆i}n
i=1

Γ ` data D(~α : ~κ) = cd1 | . . . | cdn

: {D : ~κ → ∗} ∪∆1 ∪ · · · ∪∆n

†

=

{Γ†; ~α : ~κ†; D : ~κ† → Set` cd†
i : ∆†

i}
n
i=1

Γ† ` data D(~α : ~κ†) = cd†
1 | . . . | cd†

n

: {D : ~κ† → Set} ∪∆†
1 ∪ · · · ∪∆†

n

 {Γ, ~α : ~κ, D : ~κ → ∗ ` τi : ∗}n
i=1

Γ; ~α : ~κ; D : ~κ → ∗ `
Cτ1 . . . τn : {C : ∀~α : ~κ.τ1 → · · · → τn → D~α}

†

=

{Γ†, ~α : ~κ†, D : ~κ† → Set` τ †
i : Set}n

i=1

Γ†; ~α : ~κ†; D : ~κ† → Set`
C(v1 : τ †

1 ) . . . (vn : τ †
n) :

{C : (~α : ~κ†) → τ †
1 → · · · → τ †

n → D~α}
wherev1, . . . , vn are fresh variables.

Figure 5. Translation of data declarations.

[
Γ ` e : τ0 Γ ` alts : τ0 ⇒ τ

Γ ` case e of alts : τ

]†

=

Γ† ` e† : τ †
0 Γ† ` alts† : τ∗

0 ⇒ τ †

Γ† ` let f(x : τ∗
0 ) : τ † = case x of alts† in e >>= f : τ †

[
Γ, ~x : ~τ ` C@~τ ′~x : D~τ ′ Γ, ~x : ~τ ` e : τ

Γ ` C(~x : ~τ) → e : D~τ ′ ⇒ τ

]†

=

Γ†, ~x : ~τ† ` C~x : D~τ ′† Γ†, ~x : ~τ† ` e† : τ †

Γ† ` C~x → e† : D~τ ′† ⇒ τ †

Figure 6. Translation of case expressions.

The translation of this definition is

f : m(a† → b†)

f = return λ(x : a†).e†

Note thatf itself is assigned a monadic type, and that applications
f e are translated tof >>= λf.f e†. Functions of many arguments
are assigned even more complex types, and become even more
cumbersome to invoke.

This is a problem, because the Agda user writes proofs and
properties which refer to translated definitions. If just invoking a
translated function is cumbersome, then these proofs will be even
more cumbersome. Fortunately, there is a simple solution to this
problem.

Within the scope of the definition above, weknowthatf cannot
be⊥, and so assigning it a monadic type and invoking it via>>=
is just overkill. Our translator therefore omits the application of the
monad to theλ-expression, generating the optimised translation

f : a† → b†

f = λ(x : a†).e†

instead. We restrict the applications off to be full applications (η-
converting if need be), which can then be translated simply via
(f e)† = f e†. In effect, we treat defined functions in the same



way as constructors, and the only complication is that our translator
must keep track of the arity of such definitions. The benefit is that
the Agda user can then invoke translated functions from proofs via
ordinary Agda function application, as though these functions had
been defined in Agda in a natural way themselves.

5. Case Study: Sample Proofs
In this section we present sample proofs as they were type-checked
by the Agda proof-assistant. We also present sample results of our
monadic translation, but here we have renamed variables and ad-
justed layout for readability. Since the user performing proofs nor-
mally need only refer to the Haskell source code, and not its trans-
lation, then the actual variable names and layout in the translated
code are irrelevant.

5.1 Case 1: Lists

Our first example is the monadic translation oflistsand theappend
function on lists, as defined in the Haskell prelude. The result of
translation is as follows:

data List (a :: Set)
= Nil | Cons (mx :: m a) (mxs :: m (List a))

(++) :: (a :: Set) |-> m (List a)-> m (List a)->
m (List a)

= \a |->
let app1 :: m (List a)-> m (List a)->

m (List a)
= \mxs mys ->

let app2 (xs :: List a):: m (List a)
= case xs of

(Nil)-> mys
(Cons x xs’)->

return (Cons x
(app1 xs’ mys))

in mxs >>= app2
in app1

(where the list type and constructors are renamed to conform to
Agda’s syntax).

Notice that now, the arguments ofCons are of typem a andm
(List a) instead ofa andList a, respectively. Similarly, the ar-
guments of(++) also have monadic types. Hence, in the definition
of the functions we usereturn and(>>=) for returning elements
or applying functions to arguments, respectively. Despite the type
information, thelet expressions and the explicitcase analyses,
we believe the translated code is easy to follow.

In this example, we prove the associativity of append both in the
identity (Id) monad and in the Maybe monad.

Identity Monad When doing the proofs in the Id monad we
instantiatem, return and(>>=) as follows:

m :: Set -> Set = \a -> a
return :: (a::Set) |-> a -> m a = \a |-> \x -> x
(>>=) :: (a,b::Set) |-> m a -> (a -> m b) -> m b

= \a b |-> \ma -> \mf-> mf ma

We can now define an equality relation over lists on the Id
monad as follows:

Eq :: (a::Set) |-> (eq:: a -> a -> Set) ->
List a -> List a -> Set

= \a |-> \eq -> \xs ys ->
case xs of

(Nil)-> case ys of
(Nil)-> Unit
(Cons ma’ mas’)-> Bottom

(Cons ma mas)->
case ys of

(Nil)-> Bottom
(Cons ma’ mas’)-> And (eq ma ma’)

(Eq eq mas mas’)

Here, And is the conjunction of sets defined as
data And (a,b::Set) = and (x::a) (y::b). If the equal-
ity on the seta is reflexive, then we can prove that equality of lists
is also reflexive

reflEqList :: (a::Set) |-> (eq:: a -> a -> Set) ->
(refl:: (x::a) -> eq x x) ->
(xs::List a) -> Eq eq xs xs

Let us assume we have a sets and a reflexive equality relation over
s:

EqS :: s -> s -> Set
reflS :: (x :: s) -> EqS x x

Then the associativity of append can now be proved as follows:

app_assoc :: (xs,ys,zs::List s) ->
Eq EqS (xs ++ (ys ++ zs))

((xs ++ ys) ++ zs)
= \xs ys zs ->

case xs of
(Nil)-> reflEqList EqS reflS (ys ++ zs)
(Cons x xs’)-> and (reflS x)

(app_assoc xs’ ys zs)

When the first argument of append is empty, the definition of
append simple returns the second argument. Hence, whenxs is
empty the property amounts to proving thatys ++ zs is equal
to itself, which is true by the reflexivity of the equality on lists.
On the other hand, ifxs is of the formCons x xs’, by definition
of append we need to prove thatCons x (xs’ ++ (ys ++ zs))
is equal to(Cons x (xs’ ++ ys)) ++ zs, or equivalently, to
Cons x ((xs’ ++ ys) ++ zs), again by definition of append.
For both lists to be equal we need to provide a proof that the first
elements in both lists are equal, which is provided byreflS x, and
a proof that the rests of the lists are also equal, which is provided
by the inductive hypothesis.

This proof is the same as it would be if no monads were in-
volved, which is not surprising since we are working with the Id
monad, whose operations reduce away entirely.

Maybe Monad When working in the Maybe monad we instanti-
atem, return and(>>=) as follows:

m :: Set -> Set = \a -> Maybe a
return :: (a::Set) |-> a -> m a

= \a |-> \x -> Just x
(>>=) :: (a,b::Set) |-> m a -> (a -> m b) -> m b

= \a b |-> \ma -> \mf ->
case ma of (Nothing)-> Nothing

(Just x )-> mf x

As before, we assume a sets with an equality relationEqS that
is reflexive (reflS), and we then define a reflexive equality relation
over Maybe lists which we again callEq. Notice that now the result
of append is a Maybe list, thus we should also define an equality
relation over the Maybe type. If the equality over the argument set
of Maybe is reflexive, then we can prove that the equality over the
Maybe type is also reflexive (the type of this statement is presented
below).

EqM :: (a::Set) |-> (eq::a -> a -> Set) ->
(m1,m2:: Maybe a) -> Set

= \a|-> \eq -> \m1 m2->



case m1 of
(Nothing)-> case m2 of (Nothing)-> Unit

(Just x )-> Bottom
(Just x)-> case m2 of (Nothing)-> Bottom

(Just x’)-> eq x x’

reflEqM :: (a::Set) |-> (eq::a -> a -> Set) ->
(refl :: (x::a) -> eq x x) ->
(ma:: Maybe a) -> EqM eq ma ma

The desired property can now be proved as follows:

app_assoc :: (mxs,mys,mzs::m (List s)) ->
EqM (Eq EqS) (mxs ++ (mys ++ mzs))

((mxs ++ mys) ++ mzs)
= \mxs mys mzs ->

case mxs of
(Nothing)-> tt
(Just xs)->

case xs of
(Nil)-> reflEqM (Eq EqS)

(reflEqLst EqS reflS)
(mys ++ mzs)

(Cons ma mas)->
and (reflEqM EqS reflS ma)

(app_assoc mas mys mzs)

Let us once again analyse this property. Remember that we are
now working with Maybe lists, so when we do case analysis on the
list mxs we obtain the casesNothing andJust xs. Whenmxs is
Nothing we simply need to prove thatNothing is equal to itself
in the equality relation over the Maybe type, which is trivial. If, on
the other hand,mxs is the listxs, we perform case analysis on the
list. The proof now continues in a similar way to the one for the Id
monad, only that now we need a proof on the equality relation over
the Maybe type and not on the equality relation over lists.

Other Monads The reader may well wonder why we prove the
same propertytwice, for two different monads—why not just prove
it once-and-for-all, foranymonad? While this may seem attractive
in principle, it turns out to be much more difficult in practice.

When we instantiate the monad parameters with a specific
monad and its operations, and we perform case analyses on
monadic terms, then Agda is able to perform reduction steps in
the type of the property we wish to prove and, in this way, simplify
such a type. This simplification allows us to provide concrete terms
that prove the property for each of the cases in the case analyses.
On the other hand, when we attempt proofs about a general monad,
the only thing the proof assistant knows is the types of the proper-
ties to be proved. Since Agda does not know how to compute with
a general monad it will not be able to simplify the type of the prop-
erties by performing reduction steps. Thus, the only thing we can
do to prove properties is to use the monad laws explicitly. Although
it is possible to prove properties in this way, those proofs are both
more difficult to perform and to understand, and much longer than
the ones we presented above.

5.2 Case 2: Queues

We discuss here the monadic translation of the queue example
presented in Figure 2. The monadic translation of the datatype of
list has already been presented. Below we show the translation of
Boolean values and pairs.

data Bool = False | True
data Pair (a,b::Set) = P (ma :: m a) (mb :: m b)

The translations of most of the functions in Figure 2 are similar
to the one of(++) discussed in the previous section. For example,
theadd operation on queues implemented as lists is defined in type
theory as follows:

add :: (a::Set)|-> m a -> m (List a)-> m (List a)
= \a |-> \mx -> \mqs ->

mqs ++ (return (Cons mx (return Nil)))

One thing we should point out is that, since we take the GHC
Core code as the starting point of our translator and since GHC
sometimes inlines function applications, the translations of some
functions are, syntactically, not exactly as we expect them to be (al-
though they are semantically equivalent to their expected versions).
In addition, GHC replaces type definitions with the defined types.
The translation of the functionaddI exemplifies these two points.
Here, GHC has inlined the application to the functionflipQ and
replaced the type of queues by the type of pairs of lists.

addI::(a::Set) |-> m a ->
m (Pair (List a) (List a)) ->
m (Pair (List a) (List a))

= \a |-> \ma -> \mp ->
let addI1 (p :: Pair (List a) (List a))

:: m (Pair (List a) (List a))
= case p of

(P f b)->
let addI2 (xs :: List a)

:: m (Pair (List a) (List a))
= case xs of

(Nil)->
return

(P (reverse
(return

(Cons ma b)))
(return Nil))

(Cons mx mxs)->
return (P (return xs)

(return (Cons ma b)))
in f >>= addI2

in mp >>= addI1

However, the translations of the functions returning the first el-
ement of a non-empty queue (front andfrontI) or the remaining
part of a non-empty queue after removing its first element (remove
andremoveI) do not follow the same schema as the other func-
tions. The reason is that these functions are not defined for all
queues but only for non-empty queues. In Haskell this is done by
simply leaving out some cases when defining the functions by pat-
tern matching. However, in type theory, each function must be to-
tal, which means we must also define the functions front and re-
move for empty queues. The translations of these functions are thus
only defined for the Maybe monad, and we make use of the value
Nothing when attempting an application of any of these functions
to the empty queue. Below we present the translation of the func-
tion remove. The other functions are translated as expected in the
Maybe monad, except for the inlining of the functionflipQ.

remove :: (a :: Set)|-> m (List a)-> m (List a)
= \a |-> \mxs ->

let rem (xs :: List a):: m (List a)
= case xs of (Nil)-> Nothing

(Cons mx mxs’)-> mxs’
in mxs >>= rem

Maybe Monad Since some of the functions are only defined for
the Maybe monad, we have performed all the proofs in the Maybe
monad. Those proofs not involving the partial functions can, of



course, also be performed in the identity monad. For the sake of
readability, let us reintroduce the definition of queues before we
continue.

Queue (a::Set) :: Set = List a
QueueI (a::Set) :: Set = Pair (List a) (List a)

In formulating properties, we chosenot to use the monadic
translation of the Haskell invariant as the invariant in our proofs.
(Recall that the Haskell invariant was:)

invariant :: QueueI Integer -> Bool
invariant (f,b) = null b || not (null f)

Rather, we reformulated the invariant directly in type-theory. The
reasons for this were as follows.

First, the Haskell invariant was originally defined for testing
the queue properties with QuickCheck. Since QuickCheck cannot
handle polymorphic properties, the invariant was instantiated to
Integer queues. But we want to reason about all queues.

Then, QuickCheck generates only total lists, or pairs of total
lists, when checking the properties—but totality is not represented
in the Haskell invariant. A property that is true for total queues
might not be true for non-total queues. Since boolean disjunction is
not strict in Haskell andTrue || undefined evaluates toTrue,
the Haskellinvariant is true for the queue(undefined,[]).
Adding an element to this queue results in the queueundefined
which of course violates the invariant. Consequently, property
prop inv add, which states that adding an element preserves the
invariant, fails for partial queues. Hence, we need to make the to-
tality of the lists in a queue an explicit part of the invariant when
we work in a partial setting.

A third reason is that, while in Haskell it is enough to know
whether a property is true or false, in type theory we need more
information: we need a proof of its truth or falsity. When one of
the premises in a property is true for a certain input, we might
need to manipulate the concrete evidence of that truth. Hence, if
we define the invariant as a complex boolean expression and we
simply translate the invariant by lifting theTrue andFalse values
into the true setUnit or the false (empty) setBottom, respectively,
we might lose information. Instead, we define the type-theoretic
invariant by lifting every single piece of Boolean information, and
then we manipulate the resulting sets in type theory with logical
operators on sets.

Thus, the invariant we define is the following:

invariant :: (a :: Set) |-> m (QueueI a) -> Set
= \a |-> \mp->

let mf = mfst mp; mb = msnd mp
in And3 (TM (totalLst mf))

(TM (totalLst mb))
(Or (TM (null mb)) (TM (not (null mf))))

Here,mfst andmsnd select the first and second element, respec-
tively, of a Maybe pair,And3 is defined similarly toAnd but it per-
forms the conjunction of three sets instead of two, andOr is the
disjunction of sets defined as

data Or (a,b::Set) = inl (x::a) | inr (y::b)

Finally, TM lifts a Maybe Bool into a set. Its definition is similar to
that ofT in Section 2, except that it also lifts the valueNothing to
the setBottom.

As before, we assume a sets with a reflexive equality relation.
Two of the properties we wish to prove are trivial.

prop_empty :: EqM (Eq EqS)
(retrieve (emptyI s s))
(empty s) =

reflEqM (Eq EqS) (reflEqLst EqS reflS) (empty s)

prop_inv_empty :: invariant (emptyI s s)
= and3 tt tt (inl tt)

The remaining six properties are also rather simple when we
work with the invariant we defined above. The structures of the
proofs are similar in all the proofs: we perform a few case analyses
and we distinguish the cases where the input is partial and the cases
were the input is total. In this example, the cases of the first type are
easily eliminated by absurdity. For the cases of the second type, we
need to provide concrete proofs of the statement we wish to prove.
Let us study two of the remaining proofs here.

The first example is the proof of the propertyprop add.

prop_add :: (ma :: m s) -> (mq :: m (QueueI s)) ->
EqM (Eq EqS) (retrieve (addI ma mq))

(add ma (retrieve mq))
= \ma -> \mq ->

case mq of
(Nothing)-> tt
(Just q )->

case q of
(P mf mb)->

case mf of
(Nothing)-> tt
(Just f )->

case f of
(Nil)-> app_nil (reverse

(Just (Cons ma mb)))
(Cons mx mxs)->

app_assoc mf (reverse mb)
(Just (Cons ma (Just Nil)))

When the queue isNothing or when its front list isNothing
the property is trivial since it amounts to proving thatNothing is
equal to itself. Otherwise, we need to distinguish whether the front
list is empty or not. Here,app nil mxs is a proof thatmxs ++
(return Nil) is equal tomxs, for mxs :: m (List s).

Finally we consider a property on the functionremoveI.

prop_inv_removeI :: (mp :: m (QueueI s)) ->
invariant mp -> TM (not (isEmptyI mp)) ->
invariant (removeI mp)

= \(mp::m (QueueI s))->
\(inv::invariant mp)->
\(ne::TM (not (isEmptyI mp)))->

case inv of
(and3 tf tb nl)->

case mp of
(Nothing)-> case tf of { }
(Just p )->

case p of
(P mf mb)->

case mf of
(Nothing)-> case tf of { }
(Just xs)->

case xs of
(Nil)-> case ne of { }
(Cons mx mxs)->

case mxs of
(Nothing)-> case tf of { }
(Just xs’)->

case xs’ of
(Nil)->
and3 (tot2rev_tot mb tb)

tf (inl tt)
(Cons mx’ mxs’)->

and3 tf tb (inr tt)



Since the invariant ofmp is true,mp cannot beNothing, and neither
can it contain a sub-part that isNothing. In addition, its front list
cannot be empty, since this would contradict the third hypothesis.
Once we have discarded the absurd cases, we need to prove the in-
variant of Just (P (Just (Cons mx (Just xs’)))) mb, for
the cases wherexs’ is empty and it is not empty. Both cases are
easy. Here,tot2rev tot is a proof that the reverse of a total list is
a total list.

Although there are many case analyses in these proofs, recall
that they are easy to construct: it is only necessary to tell Agda on
which variable we would like to perform the analysis, and Agda
then produces all the cases we need for that particular expression,
leaving us with a goal to fill in for each of the cases we need to
consider.

In order to fill-in each of these goals, it was enough to under-
stand how the Haskell definitions work and what the results of the
functions were when we applied them to a partial list or queue (of
the formNothing). We did not need to inspect the translated defi-
nitions. In this sense, it did not really matter that GHC inlined some
of the function applications, or that the indentation or names in the
codes resulting from our translator could be improved. This had no
consequence whatsoever when proving the properties.

The inlining of function applications might have consequences,
though, when we need to relate a property of the inlined function
with a property of the functions that use the inlined function—since
now the later function does not refer explicitly to the former one.
But in this case, we can switch off inlining with the GHC pragma
NOINLINE.6

6. Related Work
The monadic translation of Barthe, Hatcliff, and Thiemann [1] has
been discussed in Section 4. Uustalu [18] presents a monadic trans-
lation of inductive and coinductive simple types with iteration and
coiteration schemes. He encodes data types via binary products, bi-
nary sums, and induction. Using his approach directly would insert
too many applications of the monad for our purposes, therefore we
have our own translation of data types which is better suited for
practical applications.

Verification for pure functional languages. De Mol, Van Eeke-
len, and Plasmeijer [7], present SPARKLE, a theorem prover opti-
mized for the functional programming language CLEAN. SPARKLE
operates on CORE-CLEAN, a fragment of CLEAN comparable to
Haskell-Core. The proof about a CLEAN program is performed in-
teractively on the translated program; it is claimed that the trans-
lation does not obfuscate the code (except for list comprehension).
This did not become entirely clear to us, since the running exam-
ple in the paper does not use advanced non-core features, such as
type classes, which are translated via dictionaries. In comparison to
CLEAN proofs, which are tactic scripts, Agda proofs areλ-terms,
which are understandable independently from the proof tool. While
a special purpose theorem prover such as SPARKLE might provide
some comfort for the user, we rely on an existing prover with a
well-understood meta theory whose soundness is backed by a long
theoretical tradition.

The Programatica project aims at certifying properties of
Haskell programs, where certificates are not restricted to formal
proofs, but could also be test certificates or references to litera-
ture where properties of an algorithm have been proven on a more
abstract level. Harrison and Kieburtz [10] describe P-logic, a veri-
fication logic for Haskell based on the modalµ-calculus, in which
recursive invariants of data structures can be concisely expressed.

6 Desirable would be a flag to GHC which turns off all inlining in the
translation to Core.

P-logic is especially tuned to the strict and lazy aspects of Haskell
semantics and has a definedness modality ’$’. P-logical properties
are mixed with Haskell source and separated out by the syntacti-
cal toolProgramatica front end. Hence, P-logic has in principle to
deal withall of Haskell syntax, which we avoid by working with
Haskell core. It seems that advanced features like type classes,
which are translated away by GHC in our case, are not yet covered
by P-logic.

Hallgren [9] has implemented a translation of Haskell into Alfa,
a graphical front-end to the Agda proof language. He translates
type classes via dictionaries, but does not address the problems of
partiality and non-termination. Haskell code is more or less literally
mapped to Agda code which jeopardizes the soundness of the type
theory in the presence of partiality. By assuming that all Agda types
are inhabited via a postulateundefined : (A : Set) → A he can
translate partial functions, but if this fact is used for propositions,
anything is true. In manual proofs, one can avoid usingundefined ,
but automated proof search using theAgda synthesizer Agsycould
not be performed without changes to the system.

Uses of interactive theorem provers for verification.Filli âtre
[8] uses the Calculus of Inductive Constructions to verify Hoare-
logical properties of imperative programs.

Kreitz [12] has embedded a significant subset of Ocaml, includ-
ing references and exceptions, into Nuprl in the style of denota-
tional semantics. He uses the syntax extension mechanism of Nuprl
to display the translated code in actual Ocaml syntax, and obtains
derived typing and computation rules for Ocaml programs. As an
application [13], he provides a framework for performing provably
correct optimizations of network protocol stacks in the communi-
cation toolkit ENSEMBLE, which is implemented in Ocaml.

Longley and Pollack [15] use Isabelle/HOL as a framework to
represent the functional core of Standard ML. By Isabelle’s ax-
iomatic type classes they define a class of SML types which are all
inhabited by the bottom element. Two predicates characterize de-
fined (non-bottom) and undefined SML expressions. This way they
can handle partiality and infinite data structures. A serious prob-
lem is Hilbert’s epsilon operator, which is available in Isabelle’s
classical logic for all types, even the SML types, and enables one
to define non-continuous functions (e.g., the function which swaps
the unit and bottom element).

7. Conclusions
Proving programs correct using an existing prover requires us to
build a model of the program within the prover. We have shown
that, surprisingly, the intermediate code generated by GHC can
serve as a suitable base for proofs in a type theoretic theorem
prover. We have developed a new, and natural, monadic transla-
tion that lets us reason about partial values, or ignore them, as we
choose. Proofs about total values are not complicated at all by the
presence of the monad, and proofs about partial values just include
the extra⊥-cases one would expect—this because the monadic
translation is carefully designed to be reduced away by the prover’s
type-checker. Although Agda’s predicativity limits the programs
we can translate, in practice almost all Haskell programs are trans-
latable. Proofs of Haskell programs can be performed just with ref-
erence to the Haskell source code, not its translation, and are no
more complex than proofs of an Agda model constructed by hand
would be.

Proofs on a larger scale will require more automation. Current
work in this direction includes Agsy, a plug-in for Agda which
searches for type-theory proofs, and a first-order logic plug-in
which delegates sub-goals to an external prover.

An important future goal is tocombinereasoning with and with-
out partiality. At present, a partial function can only be interpreted



in theMaybe monad, and all proofs that involve it must take partial-
ity into account. We would like to be able to refer to such functions
in proofs about total elements, when we know that their precondi-
tions are satisfied. While it is straightforward to map partial values,
and a proof of their totality, back to total values, we have not yet
found a way to do so that does not clutter proofs unacceptably.

Finally, Capretta [3] demonstrates that general recursion can
also be captured in a monad, using a coinductive type. It would be
interesting to instantiate our translations with this monad too, al-
though this would require extending Agda with co-inductive types.

In summary, we have presented a workable way to prove
Haskell programs correct in type-theory based provers.
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