Verifying Haskell Programs Using Constructive Type Theory*

Andreas Abel Marcin Benke

Ana Bove

John Hughes Ulf Norell

Chalmers University of Technology
{abel,marcin,bove,rjmh,ulfn}@cs.chalmers.se

Abstract

Proof assistants based on dependent type theory are closely related

to functional programming languages, and so it is tempting to use
them to prove the correctness of functional programs. In this paper,

we show how Agda, such a proof assistant, can be used to prove. S
dnga specification as a type; for example,

theorems about Haskell programs. Haskell programs are translate
into an Agda model of their semantics, by translating via GHC'’s

Core language into a monadic form specially adapted to represent

Haskell's polymorphism in Agda’s predicative type system. The
translation can support reasoning about either total values only, or
total and partial values, by instantiating the monad appropriately.

type, ensuring that type correctness is preserved at each step, and
o0 the proof constructed is valid. In this paper, we show how Agda
can be used to develop verified Haskell programs.

The traditional approach to developing verified programs using
type theory, is textractthem from proofs. One begins by express-

¥xs :: List Integerdys :: List Integer
isPermutatiofxs, ys) A isOrderedys)

says that sorting is possible. A term of this type contains an em-
bedded sorting algorithm, together with proof fragments. Program

We claim that, although these Agda models are generated by a rel-extraction discards these fragments, generating a verified sorting

atively complex translation process, proofs about them are simple
and natural, and we offer a number of examples to support this
claim.

Categories and Subject DescriptorsD.1.1 [Programming Tech-
nique§: Applicative (Functional) Programming; D.2.&¢ftware
Engineering: Software/Program Verification—Correctness proofs;
F.3.1 Logics and Meanings of PrografsSpecifying and Verify-
ing and Reasoning about Programs—Mechanical verification

General Terms Languages, Theory, Verification
Keywords Haskell, GHC Core, Type Theory, Monadic Transla-
tion, Partiality, Verification

1. Introduction

Constructive type theories (see for example [16, 6]) have long been
touted as a promising approach to writing correct software. These

are type systems with dependent types, in which propositions can

be represented as types via the Curry-Howard isomorphism [11],

and constructive proofs of those propositions can be represented a:

terms of the corresponding types. Several proof editors (Agda [5],
Coq [2], Twelf [17]) have been developed based on such theories;
they interact with users to construct a term (proof) of a given goal

* This work has been funded by the Swedish Foundation for Strategic
Research (SSF) through the projgédVer The first three authors were
additionally supported by the coordination actibiPES(510996) of the
European Union, and the first, second, and fourth author by the EU thematic
networkApplied Semantics {IST-2001-38957).

Permission to make digital or hard copies of all or part of this work for personal or

function as its result. Program extraction has been implemented in
the Coq system, generating programs in OCaml, Caml Light, or
Haskell, and used to construct verified programs of many hundred
lines.

However, this approach does demand an all-or-nothing commit-
ment to a new programming method. One begins by formalising
a specification, devotes much subsequent work to proof, and only
in the final stages obtains a program which can actually be run.
What if the specification proves to be wrong, and the error is only
revealed when the generated program doesn’t behave as the user
(informally) expected? Then much work has been wasted, and this
work is difficult to reuse. While specifications for small functions
like sorting are easy to get right, in more realistic situations they are
likely to be wrong. Our own experience using our random testing
tool QuickCheck [4], which tests Haskell programs against speci-
fications to reveal errors in both, is that errors in specifications are
just as common as errors in programs. In industrial projects, speci-
fications change constantly. We believe, therefore, that the program
extraction approach will be difficult to scale up to realistic applica-

éions.

The alternative approach we propose is to develop programs by
combiningproof with testing. We start by writing programs and
testing them as usual. Then we develop specifications in the form
of propertieswhich are tested against the program by QuickCheck.
At this stage, most inconsistencies between the code and its spec-
ification are revealed cheaply. Only once testing reveals no further
errors, do we go on to prove the most important properties using
Agda. At this stage, the proofs are likely to succeed—which is im-
portant, because attempting a proof is in general a very costly way
to find a mistake. With this approach, we spend the effort of formal
proof only where it is most needed, which should make the method
as a whole more suitable for deployment in practice.

Although our approach may seem less than “purist”, we may
liken this way of working to that of a mathematician who studies

classroom use is granted without fee provided that copies are not made or distributedexamples, hypotheses, and counter-examples, before embarking on

for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Haskell’05 September 30, 2005, Tallinn, Estonia.

Copyright(© 2005 ACM 1-59593-071-X/05/0009. . . $5.00.

the hard work of formulating theorems and finding proofs—which
is, of course, the way mathematicians work in reality!

However, the critical point here is that, unlike with the program
extraction approach, the Haskell code to be verified eXxisfere
we start proving. Thus we mushport existing Haskell code into

the prover, unlike program extraction, which need aportcode
from the prover (a process which is not provided by all proof as- Haskell
sistants, and whose correctness is usually not verified!). Agda is
designed to use a syntax similar to Haskell, but we cannot simply
take the Haskell program and supply it as input to Agda because
the semanticdiffers in important ways. Hitherto Agda users have GHC
translated programs to be verified into the Agda language by hand,)
but on a larger scale such hand modelling is not reliable: translat-
ing thousands of lines of code by hand would certainly introduce
errors, defeating the whole purpose of formal verification. Thus, to
make our approach work, we must develop a translator which au- Core
tomatically converts Haskell programs into a suitable Agda model.
Such a translation is more difficult than it seems. The major

constraint is that the user of the theorem prowerst be able to
prove properties of the translated codehese proofs must be rea- Preprocess)

sonably elegant, not cluttered with detail introduced by the trans-
lation. Moreover, since reading machine generated code is, in gen-
eral, an unpleasant experience, we aim to make it possible to prove
properties of the translated codathout reading it—it should be
sufficient to refer to the Haskell source itself, to understand how Core
proofs should be constructed. These constraints strongly influence
our choice of translation. Of course, we want to exploit the deep

similarities between Haskell and Agda, so that the translation re- -
sembles a “natural” Agda model, but there are fundamental differ- Monadic
ences to be overcome, caused by the differing requirements on a Translation

programming language and a proof language.

In this paper, we present the translation method we have devel-
oped, together with applications to small programs to justify our
claim that proofs about translated code are quite natural. While Agda
many problems remain to be solved, we do support a large subset
of Haskell, and we address the fundamental problem of partiality—
Haskell programs may loop or fail, while Agda programs, by defi-
nition, must not.

Figure 1 gives an overview over our translation: A Haskell pro-
gram is first translated into Haskell Core language via the Glas-
gow Haskell Compiler (GHC). Then a preprocessor classifies types
into monomorphic and polymorphic types. From that, the monadic
translation produces Agda code parametrized by a monad, which
can be instantiated to the identity monad if one wants to prove pro-
gram properties under the assumption that all objects are total, or

Proofs about
Total Objects

to the Maybe monad if one takes also partial objects into consider-
ation. Proofs about
As a simple example, we shall prove properties of the queue Partial Objects

implementation in Figure 2. This implements queues efficiently as
pairs of lists, the “front” and the “back”, with the back held in re-
verse order. The stated properties relate this efficient implementa-
tion to an abstract model where a queue is just a list of elements.
The properties have been tested by QuickCheck: we will show in
Section 5.2 how they can also be proved using Agda.

The rest of the paper is structured as follows. In Section 2
we give an overview of Agda, and explain the key differences and :: Bool -> Bool -> Bool =
between Agda and Haskell. Section 3 presents a naive translation \a -> \b -> case a of (True)-> b
of Haskell into Agda, and shows that it fails even for our simple (False)-> a
queue example. In Section 4 we show how to solve this problem
by introducing a monad of partiality—harder than it sounds in this
setting. We present some sample proofs about translated program
in Section 5, to justify our claim that they are reasonably natural. data Unit = tt
Section 6 surveys related work, and finally Section 7 concludes anddata Bottom =
points out directions for future work.

Figure 1. Translation Outline.

Agda proofs consist of a collection of explicitly typed defini-
tions, such as

New data types can be defined with a Haskell like syntax; for
gxample

define the one-point type and the empty type respectively. Data type
. definitions can be parameterised and recursive, as in the type of
2. An Overview of Agda lists: P yp
Agda is a proof assistant based on dependent type_theory. Usersélata Lst(a::Set) = N1 | Cas (x::a) (xs::Lst a)
construct a dependently typed functional program using an emacs

interface which checks type correctness as the user works, and can Types such as these are first-class values, of theSgrpevhich
also construct parts of the program automatically. is thus the type of the parameteritst. Note that constructor dec-

module Queue where
import Test.QuickCheck

type Queue a = [a]

empty =0

add x q = q ++ [x]

isEmpty q = null q

front (x:q) = x

remove (x:q) = q

type Queuel a = ([al,[al)
emptyl = (1,

addI x (f,b) = flipQ (f,x:b)
isEmptyI (£,b) = null f

frontI (x:f,b) = x

removel (x:f,b) = flipQ (£,Db)
£1lipQ ([1,b) = (reverse b, [])
£1lipQ q =q

retrieve :: Queuel a -> Queue a

retrieve (f,b) = f ++ reverse b

invariant :: Queuel Integer -> Bool
invariant (f,b) = null b || not (null f)

prop_empty =

retrieve emptyl == (empty :: [Integer])
prop_add (x::Integer) q =

retrieve (addIl x q) == add x (retrieve q)

prop_isEmpty q =

invariant q ==>

isEmptyl q == isEmpty (retrieve q)
prop_front q =

invariant q &% not (isEmptyIl q) ==>

frontI q == front (retrieve q)
prop_remove g =

invariant q && not (isEmptyI q) ==>

retrieve (removel q) == remove (retrieve q)
prop_inv_empty = invariant emptyIl
prop_inv_add x q =

invariant q ==> invariant (addI x q)
prop_inv_remove q =

invariant q && not (isEmptyI q) ==>

invariant (removeI q)

Figure 2. The Queue Example in Haskell.

larations include names as well as types for their fields. Recursive
types in Agda are interpretedductively so the typelLst a in-

cludes no partial or infinite lists.

depend on the value of the first argumen(This is a rather trivial
kind of dependent type, equivalent to a polymorphic one, because
a happens to be 8et, but Agda allows similar dependencies on
any type of argument).

Theorems and proofs are represented in Agda via the Curry-
Howard isomorphism: propositions are represented as types, whose
elements represent their proofs. Thus an empty type represents an
unprovable proposition (false), while a non-empty type represents
a provable one. Propositions are proved by constructing an element
of the corresponding type. For example, the polymorphic identity
function\(a::Set) -> \(x::a) -> x proves the trivial propo-
sition A = A, represented in Agda as the tyfe: : Set) ->a->a.

In reasoning about programs, we often need to relate boolean
values in the code to Agda propositions, which are types. For this
reason, we define the type

T :: Bool -> Set = \b -> case b of (True)-> Unit
(False)-> Bottom

which converts from one to the other. Thaisp is a type which is
non-empty if and only ifb is True. We shall illustrate the use of
this with a simple proof that ibind a b is True, then so is.

We prove this by defining a function

leml :: (a,b::Bool) -> T (and a b) -=> T a =
\a b -> \pf -> {!!}

which, for any booleana andb, given a proof thatnd a b is
True, returns a proof thad is True. The{! !} on the right hand
side is ameta-variablevhich the emacs interface helps us to fill in.
One might expect to fill in the meta-variable with the vatie
since this is the only value that can be returned, but this would
be a type errortt has the typ&nit, and the type required here
is T a, which might be eithetnit or Bottom depending on the
value ofa. Instead we perform case analysisaoWe entera into
the meta-variable and issue a certain emacs command, whereupon
Agda inserts a case expression over the right type, with new meta-
variables in each branch:

leml :: (a,b::Bool) -> T (and a b) -=> T a =
\a b -> \pf -> case a of (True)-> {!!}
(False)-> {!!'}

But now note that in each branch of the case know the
value ofa, and we can use this to simplify both the types of other
parameters, and the type needed as the result. For example, in
the False branch therpf has the typel (and False b), which
reduces t@ False and thus t@ottom, and the type of the result
is T False, which also reduces tBottom, SO we can just return
pf in this case. The complete proof is:

leml :: (a,b::Bool) -> T (and a b) -> T a =
\a b -> \pf -> case a of (True)-> tt
(False)-> pf

As demonstrated by this example, it is vital that Agda can use

Agda function definitions may also be recursive. For example, the extra information gained by the case split for type-checking

theappend function is defined as follows:

append :: (a::Set) |-> Lst a -> Lst a -> Lst a

\a |[-> \xs -> \ys ->
case xs of (N1)=> ys

the branches. To ensure this is always possible, Agda restricts case
expressions so that they manly inspect variables (in contrast to
Haskell cases which may inspect any expression); then the guarding
pattern of a branch (e.gFalse) can be substituted for the subject

of the case (e.ga). Moreover, case expressions may only appear

)~ J
(Cns x xs?)-> Cns x (append xs’ ys) at thetop levelof a right-hand-side, i.e., as root expression of a

Polymorphic functions take explicit type arguments, although definition, function body, or case branch. Otherwise, one could
(as in this example) they can be “hidden”, indicated by the vertical enter terms like
bar in | ->. Hidden arguments can be omitted from calls, provided
Agda can infer what they should be, and this is often the case for
type arguments. This example also illustrates Agda’s dependent
types: the types of later argumentss(andys) and of the result which is morally equal to

t = (case a of (True) -> b
(False) -> ¢) d

case a of (True) -> b d 3. A Naive Translation of Haskell to Agda

(False) -> c d Haskell is a much more complex language than Agda, and con-

tains many features that our translation must replace by simpler
however, not w. r. t3-reduction, but by virtue of a so-callgermu- equivalents. Examples include list comprehensido;notation,
tation. To avoid permutations and the additional complications to and nested and overlapping pattern matching. These can be inter-
type-checking which terms like provoke, such terms are forbid- ~ preted as syntactic sugar, but must be desugared by our translator.
den in Agda. The two restrictions arase complicate the transla- More awkwardly, Haskell programs are to a large extent im-
tion of Haskell to Agda somewhat. plicitly typed, while Agda requires explicit typing, as we have
Agda accepts that two types matifithey reduce to the same Sseen. A translator must therefore infer types, and insert them into
term so reduction is of critical importance in formulating Agda the translated code, together with type abstraction and application

proofs. For example, if we tried to prove thistand a b) -> T b to represent polymorphic generalisation and instantiation. At the
instead, by case analysis on the variabjethen type checking same time, overloading must be resolved, and overloaded defini-
would fail. In the partial proof tions must be replaced by definitions parameterised on method dic-
tionaries in the standard way [19]. Since Haskell's class system has
seen many extensions, this is a far from trivial task.
lem2 :: (a,b::Bool) -> T (and ab) > T b = Fortunately, there iglreadya tool which performs just such a
\a b -> \pf -> case b of (True)-> tt translation—namely, the front-end of GHC. Internally, GHC trans-
(False)-> {!!} lates Haskell programs to GHC Core, a simple language which is

close to System F, with explicit typing, simple pattern matching, no
the meta-variableannotbe filled with p£, because this has the overloading, and none of the other complex constructions alluded

type T(and a False), which does noteduceto T False, and to above. A (slightly simplified) syntax of GHC Core appears in
hence toBottom, which is the type expected of the branch. The Figure 3.)))
expressiorand a False is equalto False, but it does noteduce Thus we begin our translation of Haskell to Agda by using GHC
to it, which we can only see by inspecting the definitionaafi, to translate the input to Core. This has the benefit of allowing us to

which is given at the beginning of this section. This behaviour can Work with a reasonably simple language while at the same time
catch novice users by surprise! On the one hand, building reduction supporting full Haskell. However, GHC does change the program
into the Agda type-checker is very powerful—it shortens many Structure in ways one might not expect, which may complicate the
proofs dramatically. On the other hand, it means the user must bereasoning later. For example, the Core translation ot #fenction
very conscious of the difference between expressions which reduce
to the same thing, and those which are merely provably equal (since
proven equality cannot be exploited without an explicit proof step).

The skillful Agda user needs to ensure that equalities needed in;_ . : : . : lati
: . . . ion :
proofs are established, as far as possible, by pure reduction. Thig'> (in mathematical notation, we write the typing relation as *")

++ ys
X:Xs) ++ ys

ys
x : (xs ++ ys)

is important to bear in mind when planning a translation from (++) : Vo: = Lista — List o — List
Haskell. = Ala:=).
Because Agda is intended as a proof editor, it is important that let appl : List a — List @ — List &
all expressions terminate—otherwise we could construct a proof of = A(ds : List). A(ys : List a).
any proposition just by looping infinitely, in the same way we can case ds of
useundefined in Haskell. Recursive definitions must therefore Nil — ys
be total. This is not actually enforced by the Agda type-checker, Cons (z: a) (zs : List a) —
which leaves the user to argue for termination separately. This may Cons @ a z (appl zs ys)
seem odd, but it is a reasonable pragmatic decision because of the in appl

difficulty of constructing good termination checkers which do not
hinder expressivity too much, and because even proving partial Apart from introducing explicit type abstractions and applications,
correctness is valuable in itself. We shall adopt the same principle putting type annotations on the binders, and translating pattern
for our translation from Haskell to Agda. Haskell programs which matching to a simplease GHC has also introduced a local func-
loop infinitely will be translated into meaningless Agda models, tion appl®. The purpose of this function is simply to avoid poly-
and then all bets are off. Since we transfer this responsibility to the morphic recursion (the type variabteis bound outsideipp1)—
programmer, general recursive programs are not a problem for usbut the user of our translator would likely not expect it to appear.
to handle. Although the translation to Core may appear complex and un-
But forbidding infinite recursion is not enough to guaran- predictable, it does translate programa faithful representation of
tee that evaluation always terminates. Agda makes two further their semanticsOur thesis is thus that, provided proofs about pro-
restrictions—whiclhare enforced by the system—namely, that case grams depend only on the semantics of the translated terms, and not
analysis is exhaustive, and that the type system is predicative. Theon their syntax, then the complexities of translation via Core will
latter restriction implies that it isiot true thatSet :: Set— not cause complexity in the proofs themselves. We make the rea-
which if allowed, would lead to Girard’s paradox, and thus non- sonable assumption that Haskell programmers conducting proofs
termination. Rather, the type 8kt is Type, and indeed there are understand the semantics of their code, and will not be surprised by
an infinite number of nested “universeslet, Type, ...) in the the behaviour of the Core which GHC generates.
Agda type system. Predicativity is not the only way to avoid Gi- A few small differences between the syntax of Core and Agda
rard’s paradox, but it is the way adopted in Agda, partly for philo- require further processing. Because of the restrictioncase
sophical reasons. The immediate consequence is that polymorphicexpressions in Agda, we liftases on non-variables, andases
functions parameterised over typesit, cannot be instantiated at which do not appear at the top-level of right-hand-sides, into local
“larger” types such aSet itself. Both these restrictions are prob-
lematic for a translation from Haskell to Agda. We shall see how
we deal with them in the following sections. 1 Actually it is called++1; we have taken the liberty of renaming it.

d = dataD(@:R)=cdi] ... |cdn
| z:0=e¢€

ed == C(@:R)d

e = x| C|ee| AMz:0).e
| eQ7 | Ala:k).e
| letx1:01=e€1;...;0n :0np —=epine
| case e of alty;...;alt,

alt == C(¥:0)—e

o = 7 |Va:iko|o—o

T = al|D |17 | T—>7T

K = x| KoK

Figure 3. A simplified grammar for GHC Core

definitions as follows:
case ¢ of alts

let fx =casexof altsin fe

Moreover, Coreaseexpressions may contain default cases abbre-
viating all remaining constructors—we simply expand these to the

constructor cases they represent. We also translate type abstraction
and application using Agda’s hidden parameters, so that the final

Agda translation of theppend function becomes

(++) (a :: Set)
=\a |—>
let appl :: List a -> List a -> List a
= \ds ys —>
case ds of
(Nil) > ys
(Cons x xs) -> Cons x (appl xs ys)

|-> List a -> List a -> List a

in appil

Clearly, this translation doesn’t take the question of termina-
tion into account; if we translate a Haskell program with an infinite
loop into Agda in this way, we will obtain a meaningless Agda
program. But the problem is actually much more immediate: the
translation fails even for the simplgueue example in Figure 2,
which refers only to structurally recursive functions! The problem
is thatfront andremove are partial functions—not because they

may loop infinitely, but because they do not make sense for empty Po

queues! They are functions with non-trivial pre-conditions, which

are undefined when the pre-condition is unsatisfied. Their Haskell

definitions contain inexhaustive pattern matching, which is trans-
lated into Corecaseexpressions with calls to therror function in
one branch. Therror function is comparable to non-termination,

lated directly into Agda. Functions with non-trivial preconditions

are common, and thus pose a much more immediate translation

problem than do infinite loops.

4. A Monadic Translation of Haskell to Agda

Our solution to this problem is to make definedness explicit in the
Agda translation. We do so using tNeybe monad, so that the
translations of defined expressions will have values of the form
Just v, while undefined expressions, such as calleteor, will

take the valu&lothing. We are thus making partiality explicit in

reverse IS its own inverse—and we may wish to work in a setting
where all values are total, rather than formulate and prove totality
conditions at every turn. Luckily, we can have our cake and eat it
too: we shall parameterize our translation on a manadrhich we
can take to be th#aybe monad when we reason about partiality,
but the identity monad when we reason in a total setting. Thus our
goal will be to develop anonadictranslation of Core into Agda.

Our monad can be represented in Agda by three variables,
which will be instantiated differently depending on the kind of
reasoning we want to perfofm

m : Set— Set
return: (a: Sej > o — ma
(>=):(a:Seh }» (B:Se) |>ma — (a—=mpB) - mp
(Note that we hide the type parameterseaifirnand>>=). We can

now apply the standard call-by-name monadic translation tathe
calculus fragment of Core:

T:

o' =ma
(1 — 7)) =m(r] — 7))
o=z
(Az.e)' = return(Az.e")
(eoer)’ = ef 5>=Af. fel

With this translation, function arguments are translated into monadic
computations, which can thus ething (undefined), correctly
reflecting the lazy nature of Haskell. But there is a problem in
translating type abstraction and application by this means.

A natural approach is to translate type abstractions in the same
way asi-abstractions, so that

(Va.r)! = m((a: Seh — 1)
(Ace)" = return(Aav.e)
(e@7) =el = Af.fr

This was the approach taken by Barthe, Hatcliff, and Thiemann
(BHT) [1], but, for our purposes, it suffers two serious drawbacks.
The first drawback is that this translation does not correspond
“reality”, that is, to the behaviour of Haskell implementations.
lymorphic values are here translateddaeputationswhich may

thus be undefined, but the result of instantiating them is also a com-
putation, and may also be undefined. With this translation, when
proving something about a function of type.a — «, for exam-

ple, we would have tdirst consider the case when the polymorphic
value itself was undefined, and theaparatelyconsider the case

to

Svhen the polymorphic value was defined, but its instantiation at a

particular type was undefined. In implementations of Haskell, these
are the same value, so the distinction makes no sense—it would
simply clutter every proof involving polymorphic values.

The second drawback is even more severe: the BHT translation,
which is designed to translate from System F to itself, produces
Agda terms which violate predicativity! Refer to the type rof
again: it is Set— Set. But in the BHT translationn is applied
to the type(a : Seh — 7T—which cannot be in Set, because it
involves Set itself! Redefiningn with type Type— Type (where
Type is the next universe beyond Set) does not help, because the

the translated definitions, enabling us to state and prove propertiesmonadm will also appear in the types which we instantiateo.

that involve partial values.

However, we do not want to commit ourselves to reasoning
about partial valuealways In many cases, partial values may be
irrelevant, and we may wish to simplify proofs by restricting our

attention to total elements. In other cases, the properties we wish

to prove may simply be false for partial values—for example, that

So if m were of type Type— Type, then we would need to abstract
over Type instead of Set in the translation of polytypes, anthso
would need to take an argument in thextuniverse instead. .. we
would simply have pushed the problem one universe higher up. For

2|n this section we write Agda with a “mathematical” notation.

a predicative translation, we must avoid applyingo polymorphic
types at all.
In fact, we do not need a monad to run into problems with

predicativity. System F, and thus Core, is already impredicative, and

permits terms such gs\«.e)(V3.7), which already instantiates a
type variable to a polytype. Luckily, the Core generated by GHC
rarely contains such exampfes

Since the impredicativity of System F causes problems, it is nat-
ural to try to use a predicative fragment of it. The rank-1 (Hindley-
Milner) fragment is predicative, but too weak for Core, because
the translation of class dictionaries introduces higher-rank poly-
morphism in some castHowever, even in these cases, we only
instantiatetype variables to monomorphic types, and this is enough
to maintain predicativity (in fact, it is level 1 of Leivant’s Stratified
System F [14]). In practice, almost all Haskell programs are trans-
lated into Core within this fragment.

The basic idea behind our translation isafzply the monad only
to monomorphic typeghat is, those whose translations are ele-
ments of Set in Agda. Since the standard translation of function

types introduces an application of the monad on both the argument

and the result, for polymorphic functions, which will be represented

as functions with elements of Set as arguments, we will need a dif-

ferent translation which does not involve the monad. We shall dis-

tinguish between the types of Core functions which are translated

monadically, and those which are not, by writing the latter in the
form o1 — o2. Only the latter may have polytypes as arguments

or results. We use a preprocessor on the Core program to annotat

function types as either or+—, introducing the latter for functions
taking either types or class dictionaries (which may have polymor-

phic types) as parameters. Thus, the types in our annotated dialec

of Core are generated from the following grammar:

Tuo=a|D|rT|T =T monotypes

polytypes

Since the translation of> functions is non-monadic, we can also
think of them as “unlifted” functions, for which we do not dis-
tinguish between non-termination of the function itself, and non-
termination of the calls. This fits well with the way we use them:
when we reason about Haskell programs, we dowasttto distin-
guish between non-termination before or after type instantiation, or
before or after dictionary passing.

Core quantifies not only over types, but type constructors of any
kind x ::= % | Kk — k. These are translated into Agda almost
literally:

cu=7|Va:ko|lo—o

«1 = Set
(k1 — ko) = k] — &l
Note that, for any kindk, we havet ' : Type—its translation
is an Agda Type. Now we can summarize the translation of Core

types:
Va: ko) =(a: &) — o
T T

(01 02)' = o] = o]
T

T =mr

The last clause refers to the star translatidn of monotypes,
which is homomorphic for variables, constants, and applications,

but applies the dagger translation on on domain and codomain of
function types:

*

a"=a
D*=D
(nm)" =17
(m—mn) =7 -7

As expected, the translation of quantifed types andfunction
types is non-monadic.

The translation of Core\-expressions and applications, and
type abstractions and instantiations, follows naturally from the
translation of types. We present the translation rules in Figure
4, in the form of a translation from Core typing rules to valid
Agda typing derivations. Note that the translatiomedibstractions
and applications depends on whether the function is of mono- or
polytype—functions with— types are translated into functions,
while functions of— types are translated into monadic computa-
tions.

These rules also depend on a translation of environments:

=0
C,a: k) =T a: k!
C,z:0) =TT z:0'

Note that the monaeh is only applied to elements of Set in the

Sranslated code!

Data-type definitions pose a special problem. They must be

Elanslated into Agda data-type definitions, but constructors in
askell (and thus in Core) are just functions with a type of the

formva : &1 — -+ — 7, — D &. The translation of such a
type is of the form(@ : &7) — m (r{ — ...m (1} — m (D @)),
and of course, no Agda constructor can have such a type. There-
fore, Haskell constructors cannot be translated directly into Agda
constructors. Instead, we will introduce Agda constructors with
types of the form(@ : &) — 7 — ...7] — D &, whose
componenthiave monadic types, but whose type is not otherwise
monadic, reflecting the fact that the result of a constructor is never
undefined.

This is formalised as follows. The typing rules in both Core and
Agda fordata declarations involve judgements of the forms:

T'kd:A
Iad:’;D:R—x*bed: A

These judgements infer the names and types that will be added
to the context as the result of the declaration—that is, the names
and types of the constructors declared. The translation of these
judgements from Core to Agda is given in Figure 5. The first
rule translateslata declarations in Core to declarations in Agda
of a type with the same name, by translating each constructor
and collecting the results. The second rule specifies the translation
of constructor types. The translation includes fresh field-names,
because Agda syntax demands them.

Luckily, Core permits only full applications of constructdrs
to all of their arguments—partial applications in Haskell gre
converted to-expressions during translation to Core. Thus we
need only translate full applications to Agda:

[T+ CaFeé: DF]Jr =T"+ return (C &) : m(D7")

3This kind of term appears only when the programmer uses an existential Note that the type arguments of a constructor are implicit in Agda.

type, or a datatype with a polymorphic component. Our method cannot
translate such programs into Agda, but fortunately they are fairly rare.

4For example, the dictionary associated with the ubiquittsisad class
has a polymorphic field, the implementation of bind.

5Contrary to Haskell, Core constructors cannot have strict fields—if a
constructor is strict in an argument in Haskell, that argument is evaluated
explicitly before the constructor is applied in Core.

T > = — n
[F,x:al—x:g] T Tha:olFax:ol {I8:R;D:R—*xtedi : A}y f

Pk dataD(@:RK)=cdi|...|cdn =
Fe:mbFe:m t AD R —*}UA U---UA,
CEXz:im).e:m — 2] {rt:a:8" D: R — Setr cd;-r:AlL A
I+ dataD(@: &) =cdl|...| cdl,

Ife:rf ket 7
It return(A(a : 7]).e") : m(r] — 7))

AD:RM —setuAlU---UA]

I'bey:mm—7 Dhe:mn]f {T,@:R,D:K—xbFmi*fi, f
I'keoer: 7 - Iia:RD:Rk—*k =
Cr...tn: {C:V&:Rm — -+ — 1, — Da}
FT'_G(T)Z(Tl—’TQ)Jr FT'_eIZHT {FT,&':R’T,D:F{THSEH—TJ:Sel}?zl
FT|_62)>>:/\(JI:7'1THTQT)~JC€J{:TQT rt;a:rR%D: R — Set+
F2:oibe: " (’l}127‘1T)...(’Un:TJ;):
{ ,x:01Fe:o2 }: {C:(@:’RY) -7 —-... =1l - Da}
T'FXz:01).e:o1—0 .
(1) ! 2 wherev, ..., v, are fresh variables.
I z: UI Fet: U; Figure 5. Translation of data declarations.

It Mz JI).@T : O'I — 0';

I'tey:01—~02 T'kFer:or t
Fl—eoelidz

= I'kFe:mo F}_altSIT02>TT_
I'Fcaseeofalts: T o

Ifel:ol w0l Trel:ol Cfeelrl T alts’ g = 7t
I efel : ol It Hlet f(x:75) : 71 = case z of altsT ine>>=f: 77
{ la:kke:o }T: I,Z:7FCQ7'z: D7 I,&:7ke:7]!
'A(a:k).e:Va: k.o TFCO@:7) —e:DF =1 =
I oa:wxlFel:of rf,z: 71 - Cz: DFT Thz:7 kel 7!
' Xa: kel : (a:xl) =0t I'-Ci—el: DT = 7t
FFe:Va:x.o k7%l Figure 6. Translation of case expressions.
{ PFe@r7:0[/a] } -
It et (a:Sep —of D7 : Set The translation of this definition is
It efr :UT[T*/Q} f:m(a" —b")

f=retunA(z:a').ef

Figure 4. Translation of abstractions and applications. Note thatf itself is assigned a monadic type, and that applications

f e are translated tg >>= \f.f e'. Functions of many arguments
are assigned even more complex types, and become even more
cumbersome to invoke.

This is a problem, because the Agda user writes proofs and
properties which refer to translated definitions. If just invoking a
translated function is cumbersome, then these proofs will be even
more cumbersome. Fortunately, there is a simple solution to this
problem.

Within the scope of the definition above, wreowthat f cannot
be 1, and so assigning it a monadic type and invoking it xia=
is just overkill. Our translator therefore omits the application of the

The translation ofaseexpressions appears in Figure 6. Clauses
alt are typed using a four-ary judgment- alt : 71 = 72, where
71 is the type of the pattern and the type of the branch. We use
monadic>>= to evaluate the expression thaseinspects, so the
actual Agda case analysis of the value appears in the second argu
ment of >>=. As we explained in Section 2, Agdaseexpressions
are syntactically restricted to appear at the top level of a definition,
and so we “lambda-lift” the second argument>sf= to a freshly
named locally defined function to fulfill this restriction.

4.1 An Optimisation monad to the\-expression, generating the optimised translation
If the rules above are applied literally, they generate Agda defini- I at — bt
tions with a very large number of monadic operations. As an exam- F=Aaz: T) ¥
ple, consider a function defined as =Ar-an).e
Fra—b instead. We restrict the applications pfo be full applications-

converting if need be), which can then be translated simply via
f=Mz:a)e (f e)f = f €. In effect, we treat defined functions in the same

way as constructors, and the only complication is that our translator (Cons ma mas)->

must keep track of the arity of such definitions. The benefit is that case ys of

the Agda user can then invoke translated functions from proofs via (Nil)-> Bottom

ordinary Agda function application, as though these functions had (Cons ma’ mas’)-> And (eq ma ma’)
been defined in Agda in a natural way themselves. (Eq eq mas mas’)

. Here, And is the conjunction of sets defined as
5. Case Study: Sample Proofs data And (a,b::Set) = and (x::a) (y::b). If the equal-
In this section we present sample proofs as they were type-checkedty on the set is reflexive, then we can prove that equality of lists
by the Agda proof-assistant. We also present sample results of ouris also reflexive
monadic translation, bu.t.here. we have renamed vgriables and ad- reflEqList :: (a::Set) |-> (eq:: a -> a -> Set) —->
justed layout for readability. Since the user performing proofs nor- (rofl:: (x::a) -> eq x X) —>
mally need only refer to the Haskell source code, and not its trans- T ~

. . . (xs::List a) -> Eq eq xs Xs

lation, then the actual variable names and layout in the translated

code are irrelevant. Let us assume we have a sand a reflexive equality relation over
s
5.1 Case 1: Lists
)] . o EqS 1t s => s > Set
Our first example is the monadic translatiorisfs and theappend reflS :: (x :: s) -> EgS x x
function on lists, as defined in the Haskell prelude. The result of o
translation is as follows: Then the associativity of append can now be proved as follows:
data List (a :: Set) app_assoc :: (xs,ys,zs::List s) ->
= Nil | Cons (mx :: m a) (mxs :: m (List a)) Eq EqS (xs ++ (ys ++ zs))
((xs ++ ys) ++ zs)
(++) :: (a :: Set) |->m (List a)-> m (List a)-> = \xs ys zs >
m (List a) case xs of
=\a |[-> (Nil)-> reflEqList EqgS reflS (ys ++ zs)
let appl :: m (List a)-> m (List a)-> (Cons x xs’)-> and (reflS x)
m (List a) (app_assoc xs’ ys zs)
= \mxs mys -> '] When the first argument of append is empty, the definition of
let app2 (xs :: List a):: m (List a) append simple returns the second argument. Hence, whés
= case xs of empty the property amounts to proving that ++ zs is equal
(Nil)-> mys to itself, which is true by the reflexivity of the equality on lists.
(Cons x xs’)-> On the other hand, is is of the formCons x xs’, by definition
return (Cons x of append we need to prove thatns x (xs’ ++ (ys ++ zs))
] (appl xs’ mys)) is equal to(Cons x (xs’ ++ ys)) ++ zs, or equivalently, to
. in mxs >>= app2 Cons x ((xs’ ++ ys) ++ zs), again by definition of append.
in appl For both lists to be equal we need to provide a proof that the first
(where the list type and constructors are renamed to conform to €lements inboth lists are equal, which is providedby1S x, and
Agda’s syntax). a proof that the rests of the lists are also equal, which is provided
Notice that now, the arguments 0éns are of typem a andm by the inductive hypothesis.))
(List a) instead ofa andList a, respectively. Similarly, the ar- This proof is the same as it would be if no monads were in-

guments of(++) also have monadic types. Hence, in the definition Volved, which is not surprising since we are working with the Id
of the functions we useeturn and (>>=) for returning elements ~ Monad, whose operations reduce away entirely.
or applying functions to arguments, respectively. Despite the type paybe Monad When working in the Maybe monad we instanti-
information, thelet expressions and the expligitse analyses, atem, return and (>>=) as follows:
we believe the translated code is easy to follow.

In this example, we prove the associativity of append bothinthe m :: Set -> Set = \a -> Maybe a

identity (Id) monad and in the Maybe monad. return :: (a::Set) |->a ->ma
))) =\a |-> \x -> Just x
Identity Monad When doing the proofs in the Id monad we (55-) .. (a,b::Set) |[->ma -> (a->mb) ->mb
instantiaten, return and (>>=) as follows: =\a b |-> \ma -> \mf ->
m :: Set -> Set = \a -> a case ma of (Nothing)-> Nothing
return :: (a::Set) |->a ->ma=\a |[->\x -> x (Just x)-> mf x
(>>=) :: (a,b::Set) |->ma ->(a->mb) >unbd As before, we assume a sewith an equality relatiofEqs that
=\a b [-> \ma -> \mf-> nf ma is reflexive ge£1S), and we then define a reflexive equality relation
We can now define an equality relation over lists on the |d ©Over Maybe lists which we again caly. Notice that now the result
monad as follows: of append is a Maybe list, thus we should also define an equality
relation over the Maybe type. If the equality over the argument set
Eq :: (a::Set) [-> (eq:: a -> a —> Set) —> of Maybe is reflexive, then we can prove that the equality over the
List a -> List a -> 3et Maybe type is also reflexive (the type of this statement is presented
=\a |-> \eq -> \xs ys —> below).
case xs of
(Nil)-> case ys of EgM :: (a::Set) |-> (eq::a -> a -> Set) —>
(Nil)-> Unit (m1,m2:: Maybe a) -> Set

(Cons ma’ mas’)-> Bottom = \al-> \eq -> \ml m2->

case ml of The translations of most of the functions in Figure 2 are similar

(Nothing)-> case m2 of (Nothing)-> Unit to the one of(++) discussed in the previous section. For example,
(Just x)-> Bottom theadd operation on queues implemented as lists is defined in type
(Just x)-> case m2 of (Nothing)-> Bottom theory as follows:

) _>)
(Just x’) eq x x add :: (a::Set)|->m a -> m (List a)-> m (List a)

=\a |-> \mx -> \mgs ->

i i -> i:a > a —> ->
reflEqlt (a::Set) | (eq::a @ Set) mgs ++ (return (Cons mx (return Nil)))

(refl :: (x::a) -> eq x x) —>
(ma:: Maybe a) -> EgM eq ma ma One thing we should point out is that, since we take the GHC
Core code as the starting point of our translator and since GHC
The desired property can now be proved as follows: sometimes inlines function applications, the translations of some
functions are, syntactically, not exactly as we expect them to be (al-
app_assoc :: (mxs,mys,mzs::m (List s)) -> though they are semantically equivalent to their expected versions).
EqM (Eq EqS) (mxs ++ (mys ++ mzs)) In addition, GHC replaces type definitions with the defined types.
((mxs ++ mys) ++ mzs) The translation of the functioaddI exemplifies these two points.
= \mxs mys mzs -> Here, GHC has inlined the application to the functitinpQ and
case mxs of replaced the type of queues by the type of pairs of lists.
(Nothing)-> tt
(Just xs)-> addI::(a::Set) |-> m a —>
case xs of m (Pair (List a) (List a)) ->
(Nil)-> reflEqM (Eq EqS) m (Pair (List a) (List a))
(reflEqLst EqS reflS) =\a |-> \ma -> \mp ->
(mys ++ mzs) let addIl (p :: Pair (List a) (List a))
(Cons ma mas)-> :: m (Pair (List a) (List a))
and (reflEgM EqS reflS ma) = case p of
(app_assoc mas mys mzs) (P £ b)—>

let addI2 (xs :: List a)

. _ :: m (Pair (List a) (List a))
Let us once again analyse this property. Remember that we are = case xs of

now working with Maybe lists, so when we do case analysis on the (Nil)->
list mxs we obtain the casé®thing andJust xs. Whenmxs is

Nothing we simply need to prove th@othing is equal to itself reE;rI(II everse

in the equality relation over the Maybe type, which is trivial. If, on (return

the other handnxs is the listxs, we perform case analysis on the (Cons ma b)))
list. The proof now continues in a similar way to the one for the Id (return Nil))

monad, only that now we need a proof on the equality relation over

: - . (Cons mx mxs)->
the Maybe type and not on the equality relation over lists.

return (P (return xs)
(return (Cons ma b)))
in £ >>= addI2
in mp >>= addIl

Other Monads The reader may well wonder why we prove the
same propertywice, for two different monads—why not just prove
it once-and-for-all, foany monad? While this may seem attractive
in principle, it turns out to be much more difficult in practice. However, the translations of the functions returning the first el-
When we instantiate the monad parameters with a specific ement of a non-empty queugriont andfrontI) or the remaining
monad and its operations, and we perform case analyses onpart of a non-empty queue after removing its first elemeat¢ve
monadic terms, then Agda is able to perform reduction steps in andremoveI) do not follow the same schema as the other func-
the type of the property we wish to prove and, in this way, simplify tions. The reason is that these functions are not defined for all
such a type. This simplification allows us to provide concrete terms queues but only for non-empty queues. In Haskell this is done by
that prove the property for each of the cases in the case analysessimply leaving out some cases when defining the functions by pat-
On the other hand, when we attempt proofs about a general monadtern matching. However, in type theory, each function must be to-
the only thing the proof assistant knows is the types of the proper- tal, which means we must also define the functions front and re-
ties to be proved. Since Agda does not know how to compute with move for empty queues. The translations of these functions are thus
a general monad it will not be able to simplify the type of the prop- only defined for the Maybe monad, and we make use of the value
erties by performing reduction steps. Thus, the only thing we can Nothing when attempting an application of any of these functions
do to prove properties is to use the monad laws explicitly. Although to the empty queue. Below we present the translation of the func-
it is possible to prove properties in this way, those proofs are both tion remove. The other functions are translated as expected in the
more difficult to perform and to understand, and much longer than Maybe monad, except for the inlining of the functithipQ.
the ones we presented above.

remove :: (a :: Set)|-> m (List a)-> m (List a)
. = \a |-> \mxs ->
5.2 Case 2: Queues let rem (xs :: List a):: m (List a)
We discuss here the monadic translation of the queue example = case xs of (Nil)-> Nothing
presented in Figure 2. The monadic translation of the datatype of (Cons mx mxs’)-> mxs’
list has already been presented. Below we show the translation of in mxs >>= rem

Boolean values and pairs.
P Maybe Monad Since some of the functions are only defined for

data Bool = False | True the Maybe monad, we have performed all the proofs in the Maybe
data Pair (a,b::Set) =P (ma :: m a) (mb :: m b) monad. Those proofs not involving the partial functions can, of

course, also be performed in the identity monad. For the sake of prop_inv_empty :: invariant (emptyI s s)
readability, let us reintroduce the definition of queues before we = and3 tt tt (inl tt)

continue.

The remaining six properties are also rather simple when we
Queue (a::Set) :: Set = List a work with the invariant we defined above. The structures of the
Queuel (a::Set) :: Set = Pair (List a) (List a) proofs are similar in all the proofs: we perform a few case analyses

and we distinguish the cases where the input is partial and the cases
were the input is total. In this example, the cases of the first type are
easily eliminated by absurdity. For the cases of the second type, we
need to provide concrete proofs of the statement we wish to prove.
Let us study two of the remaining proofs here.

In formulating properties, we chos®ot to use the monadic
translation of the Haskell invariant as the invariant in our proofs.
(Recall that the Haskell invariant was:)

invariant :: Queuel Integer -> Bool

invariant (f,b) = null b || not (null f)

Rather, we reformulated the invariant directly in type-theory. The
reasons for this were as follows.

First, the Haskell invariant was originally defined for testing
the queue properties with QuickCheck. Since QuickCheck cannot
handle polymorphic properties, the invariant was instantiated to
Integer queues. But we want to reason about all queues.

Then, QuickCheck generates only total lists, or pairs of total
lists, when checking the properties—but totality is not represented
in the Haskell invariant. A property that is true for total queues
might not be true for non-total queues. Since boolean disjunction is
not strict in Haskell andrue || undefined evaluates t@rue,
the Haskellinvariant is true for the queu&undefined, [1).
Adding an element to this queue results in the quettdefined
which of course violates the invariant. Consequently, property
prop-inv_add, which states that adding an element preserves the
invariant, fails for partial queues. Hence, we need to make the to-
tality of the lists in a queue an explicit part of the invariant when
we work in a partial setting.

A third reason is that, while in Haskell it is enough to know
whether a property is true or false, in type theory we need more

The first example is the proof of the propeptyop_add.

prop_add :: (ma :: m s) -> (mq :: m (Queuel s)) ->
EqM (Eq EqS) (retrieve (addI ma mq))
(add ma (retrieve mq))
= \ma -> \mq ->
case mq of
(Nothing)-> tt
(Just q)—>
case q of
(P mf mb)->
case mf of
(Nothing)-> tt
(Just £)->
case f of
(Nil)-> app_nil (reverse
(Just (Cons ma mb)))
(Cons mx mxs)->
app_assoc mf (reverse mb)
(Just (Cons ma (Just Nil)))

When the queue iBothing or when its front list iSNothing

information: we need a proof of its truth or falsity. When one of the property is trivial since it amounts to proving thiatthing is
the premises in a property is true for a certain input, we might equal to itself. Otherwise, we need to distinguish whether the front

need to manipulate the concrete evidence of that truth. Hence, iflist is empty or not. Hereapp.nil mxs is a proof thatmxs ++

we define the invariant as a complex boolean expression and we(return Nil) is equal tanxs, formxs ::

simply translate the invariant by lifting therue andFalse values
into the true setnit or the false (empty) s®ottom, respectively,
we might lose information. Instead, we define the type-theoretic
invariant by lifting every single piece of Boolean information, and
then we manipulate the resulting sets in type theory with logical
operators on sets.

Thus, the invariant we define is the following:

invariant :: (a :: Set) |-> m (Queuel a) -> Set
=\a |-> \mp—>
let mf = mfst mp; mb = msnd mp

in And3 (TM (totalLst mf))
(TM (totalLst mb))
(0r (TM (null mb)) (TM (not (null mf))))

Here,mfst andmsnd select the first and second element, respec-
tively, of a Maybe pairAnd3 is defined similarly taind but it per-
forms the conjunction of three sets instead of two, ands the
disjunction of sets defined as

data Or (a,b::Set) = inl (x::a) | inr (y::Db)

Finally, T™ lifts a Maybe Bool into a set. Its definition is similar to
that of T in Section 2, except that it also lifts the valNlething to
the seBottom.

As before, we assume a setvith a reflexive equality relation.
Two of the properties we wish to prove are trivial.

EqM (Eq EqS)
(retrieve (emptyI s s))
(empty s) =
reflEqM (Eq EqS) (reflEqLst EqS reflS) (empty s)

prop_empty ::

m (List s).
Finally we consider a property on the functisemovel.

prop_inv_removel :: (mp :: m (Queuel s)) ->
invariant mp -> TM (not (isEmptyI mp)) ->
invariant (removel mp)
= \(mp::m (Queuel s))->
\(inv::invariant mp)->
\(ne::TM (not (isEmptyI mp)))->
case inv of
(and3 tf tb nl)->
case mp of
(Nothing)-> case tf of { }
(Just p)—>
case p of
(P mf mb)->
case mf of
(Nothing)-> case tf of { }
(Just xs)-—>
case xs of
(Nil)-> case ne of { }
(Cons mx mxs)->
case mxs of
(Nothing)-> case tf of { }
(Just xs’)->
case xs’ of

(Nil)->
and3 (tot2rev_tot mb tb)
tf (inl tt)

(Cons mx’ mxs’)->
and3 tf tb (inr tt)

Since the invariant afip is true,mp cannot belothing, and neither
can it contain a sub-part that#ething. In addition, its front list
cannot be empty, since this would contradict the third hypothesis.

P-logic is especially tuned to the strict and lazy aspects of Haskell
semantics and has a definedness modality '$’. P-logical properties
are mixed with Haskell source and separated out by the syntacti-

Once we have discarded the absurd cases, we need to prove the incal tool Programatica front endHence, P-logic has in principle to

variant of Just (P (Just (Cons mx (Just xs’)))) mb, for
the cases wheres’ is empty and it is not empty. Both cases are
easy. Heretot2rev_tot is a proof that the reverse of a total list is
a total list.

Although there are many case analyses in these proofs, recall

deal withall of Haskell syntax, which we avoid by working with
Haskell core. It seems that advanced features like type classes,
which are translated away by GHC in our case, are not yet covered
by P-logic.

Hallgren [9] has implemented a translation of Haskell into Alfa,

that they are easy to construct: it is only necessary to tell Agda on a graphical front-end to the Agda proof language. He translates

which variable we would like to perform the analysis, and Agda

type classes via dictionaries, but does not address the problems of

then produces all the cases we need for that particular expressionpartiality and non-termination. Haskell code is more or less literally

leaving us with a goal to fill in for each of the cases we need to
consider.

In order to fill-in each of these goals, it was enough to under-
stand how the Haskell definitions work and what the results of the
functions were when we applied them to a partial list or queue (of
the formNothing). We did not need to inspect the translated defi-
nitions. In this sense, it did not really matter that GHC inlined some
of the function applications, or that the indentation or names in the
codes resulting from our translator could be improved. This had no
consequence whatsoever when proving the properties.

The inlining of function applications might have consequences,
though, when we need to relate a property of the inlined function
with a property of the functions that use the inlined function—since
now the later function does not refer explicitly to the former one.
But in this case, we can switch off inlining with the GHC pragma
NOINLINE.®

6. Related Work

The monadic translation of Barthe, Hatcliff, and Thiemann [1] has

mapped to Agda code which jeopardizes the soundness of the type
theory in the presence of partiality. By assuming that all Agda types
are inhabited via a postulatewdefined : (A : Set) — A he can
translate partial functions, but if this fact is used for propositions,
anything is true. In manual proofs, one can avoid usindefined,

but automated proof search using thgda synthesizer Agspuld

not be performed without changes to the system.

Uses of interactive theorem provers for verificationFilli atre
[8] uses the Calculus of Inductive Constructions to verify Hoare-
logical properties of imperative programs.

Kreitz [12] has embedded a significant subset of Ocaml, includ-
ing references and exceptions, into Nuprl in the style of denota-
tional semantics. He uses the syntax extension mechanism of Nuprl
to display the translated code in actual Ocaml syntax, and obtains
derived typing and computation rules for Ocaml programs. As an
application [13], he provides a framework for performing provably
correct optimizations of network protocol stacks in the communi-
cation toolkit ENSEMBLE, which is implemented in Ocaml.

Longley and Pollack [15] use Isabelle/HOL as a framework to

been discussed in Section 4. Uustalu [18] presents a monadic transfepresent the functional core of Standard ML. By Isabelle’s ax-

lation of inductive and coinductive simple types with iteration and

iomatic type classes they define a class of SML types which are all

coiteration schemes. He encodes data types via binary products, biinhabited by the bottom element. Two predicates characterize de-

nary sums, and induction. Using his approach directly would insert

fined (non-bottom) and undefined SML expressions. This way they

too many applications of the monad for our purposes, therefore we can handle partiality and infinite data structures. A serious prob-

have our own translation of data types which is better suited for
practical applications.

Verification for pure functional languages. De Mol, Van Eeke-
len, and Plasmeijer [7], presenPSRKLE, a theorem prover opti-
mized for the functional programming languagee@N. SPARKLE
operates on GRE-CLEAN, a fragment of CEAN comparable to
Haskell-Core. The proof about a.€AN program is performed in-
teractively on the translated program; it is claimed that the trans-

lem is Hilbert’s epsilon operator, which is available in Isabelle’s
classical logic for all types, even the SML types, and enables one
to define non-continuous functions (e.g., the function which swaps
the unit and bottom element).

7. Conclusions

Proving programs correct using an existing prover requires us to
build a model of the program within the prover. We have shown

lation does not obfuscate the code (except for list comprehension).that, surprisingly, the intermediate code generated by GHC can
This did not become entirely clear to us, since the running exam- serve as a suitable base for proofs in a type theoretic theorem
ple in the paper does not use advanced non-core features, such agrover. We have developed a new, and natural, monadic transla-
type classes, which are translated via dictionaries. In comparison totion that lets us reason about partial values, or ignore them, as we
CLEAN proofs, which are tactic scripts, Agda proofs ar¢erms, choose. Proofs about total values are not complicated at all by the
which are understandable independently from the proof tool. While presence of the monad, and proofs about partial values just include
a special purpose theorem prover such BsFEXLE might provide the extra_l-cases one would expect—this because the monadic
some comfort for the user, we rely on an existing prover with a translation is carefully designed to be reduced away by the prover’s
well-understood meta theory whose soundness is backed by a longype-checker. Although Agda’s predicativity limits the programs
theoretical tradition. we can translate, in practice almost all Haskell programs are trans-

The Programatica project aims at certifying properties of latable. Proofs of Haskell programs can be performed just with ref-
Haskell programs, where certificates are not restricted to formal erence to the Haskell source code, not its translation, and are no
proofs, but could also be test certificates or references to litera- more complex than proofs of an Agda model constructed by hand
ture where properties of an algorithm have been proven on a morewould be.
abstract level. Harrison and Kieburtz [10] describe P-logic, a veri- Proofs on a larger scale will require more automation. Current
fication logic for Haskell based on the modakalculus, in which work in this direction includes Agsy, a plug-in for Agda which
recursive invariants of data structures can be concisely expressedsearches for type-theory proofs, and a first-order logic plug-in
which delegates sub-goals to an external prover.

An important future goal is toombinereasoning with and with-
out partiality. At present, a partial function can only be interpreted

6 Desirable would be a flag to GHC which turns off all inlining in the
translation to Core.

in theMaybe monad, and all proofs that involve it must take partial- [13] C. Kreitz. Building reliable, high-performance networks with

ity into account. We would like to be able to refer to such functions the Nuprl proof development systemJournal of Functional

in proofs about total elements, when we know that their precondi- Programming 14(1):21-68, 2004.

tions are satisfied. While it is straightforward to map partial values, [14] D. Leivant. Finitely stratified polymorphismInformation and

and a proof of their totality, back to total values, we have not yet Computation93(1):93-113, July 1991.

found a way to do so that does not clutter proofs unacceptably. [15] J. Longley and R. Pollack. Reasoning about cbv functional programs
Finally, Capretta [3] demonstrates that general recursion can in isabelle/hol. In K. Slind, A. Bunker, and G. Gopalakrishnan,

also be captured in a monad, using a coinductive type. It would be editors,Theorem Proving in Higher Order Logics, 17th International

Conference, TPHOLs 2004, Park City, Utah, USA, September 14-
17, 2004, Proceedingsolume 3223 olLecture Notes in Computer
Sciencepages 201-216. Springer, 2004.
[16] P. Martin-Lof. Intuitionistic Type TheoryBibliopolis, Napoli, 1984.
[17] F. Pfenning and C. Scinmann. System description: Twelf — A meta-
logical framework for deductive systems. In H. Ganzinger, editor,
Proceedings of the 16th International Conference on Automated
ACknOWIedgmentS Deduction (CADE-16)pages 202—-206, Trento, Italy, 1999. Springer-
We thank the members of th@oVer project: Thierry and Cata- Verlag LNAI 1632. o S
rina Coquand for theoretical and practical development of Agda [18] T. Uustalu. Monad translating inductive and coinductive types. In
according to our needs; Gregoire Hamon for the implementation g GeL:jvlerf andt_F. V\{'%S”kl; ehdltork_fry\;()l:e)z;orzgcr)ozof; and Prngr?sth,
of the majority ofCoverTranslatorin which we could plug-in our Ni‘t:r?:rlann dgrrfplr(i)ln;4—2gr 250002p’ Selected Pap e"ujuer;?eeZnG 46a(,)f €
monadic translation; Patrick Jansson and Nils Anders Danielsson Lecture Notés in Comput’er Sciénpeges 299-315. Springer, 2003.
for a preliminary implementation of the naive translation; Fredrik ' '

. . ; [19] P. Wadler and S. Blott. How to make ad-hoc polymorphism less
Lindblad for his development of Agsy; and Koen Classen, Peter ad-hoc. InConference Record of the 16th Annual ACM Symposium

Dybjer, and Mary S_heeran for discussions on proofs about_ partial on Principles of Programming Languaggsges 60~76. ACM, Jan.
programs. We are indepted to the anonymous referees which took 1989.

aside some of their valuable time to carefully read the draft version
of this paper and provided helpful comments to improve it.

interesting to instantiate our translations with this monad too, al-
though this would require extending Agda with co-inductive types.

In summary, we have presented a workable way to prove
Haskell programs correct in type-theory based provers.

References

[1] G. Barthe, J. Hatcliff, and P. Thiemann. Monadic type systems:
Pure type systems for impure settings. In A. Gordon, A. Pitts, and
C. Talcott, editorsHOOTS Il, Second Workshop on Higher-Order
Operational Techniques in Semantigslume 10 ofElectronic Notes
in Theoretical Computer Sciengeages 54-120, 1997.

[2] Y. Bertot and P. Caétan.Interactive Theorem Proving and Program
Development Texts in Theoretical Computer Science. Springer-
Verlag, 2004,.

[3] V. Capretta. General recursion via coinductive typegical Methods
in Computer Scienc005. To appear.

[4] K. Claessen and J. Hughes. Quickcheck: A lightweight tool for
random testing of haskell programs, 2000.

[5] C. Coquand and T. Coquand. Structured type theory.Pric.
Workshop on Logical Frameworks and Meta-languad&99.

[6] T. Coquand and G. Huet. The Calculus of Constructidm@rmation
and Computation76(2/3):95-120, 1988.

[7] M. de Mol, M. C. J. D. van Eekelen, and M. J. Plasmeijer. Theorem
proving for functional programmers. In T. Arts and M. Mohnen,
editors,Implementation of Functional Languages, 13th International
Workshop, IFL 2001, Stockholm, Sweden, September 24-26, 2001
Lecture Notes in Computer Science, pages 55-71. Springer, 2002.

[8] J.-C. Filliatre. \Verification of non-functional programs using
interpretations in type theorylournal of Functional Programming
13(4):709-745, July 2003.

[9] T.Hallgren, J. Hook, M. P. Jones, and R. B. Kieburtz. An overview of
the programatica toolset. Presented at the High Confidence Software
and Systems Conference, HCSS04, 2004.

[10] W. L. Harrison and R. B. Kieburtz. A logic of demand in Haskell.
Journal of Functional Programming005. Under consideration of
publication.

[11] W. A. Howard. The formulae-as-types notion of construction. In
J. P. Seldin and J. R. Hindley, editoi® H.B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formaljgpages 479—
490. Academic Press, London, 1980.

[12] C. Kreitz. Formal reasoning about communication systems I:
Embedding ML into type theory. Technical report, Cornell University,
1997.

