Strategies for interactive proof and program
development in Martin-Lof Type Theory
(extended abstract)

Marcin Benke

Department of Computing Science
Chalmers University of Technology
413 96 Goteborg, Sweden

Abstract. We propose some strategies for automatic tools facilitating
interactive proof and program development in the proof editor Alfa based
on Martin-Lof Type Theory.

1 Introduction

1.1 Context: proof editors and type theory

Alfa [HROO] is a graphical, syntax-directed editor for the proof system
Agda [Coq98], is an implementation of structured type theory (STT)
[CC99], which is based on Martin-Lof’s type theory [ML84]. Like its pre-
decessors in the ALF family of proof editors [Mag94], Alfa allows one
to, interactively and incrementally, define theories (axioms and inference
rules), formulate theorems and construct proofs of the theorems. All steps
in the proof construction are immediately checked by the system and no
erroneous proofs can be constructed.

Alfa is a term-based proof editor. This means that the proof is pre-
sented and recorded as a term, rather than as a tactic expression as in
tactic-based proof editors such as Coq [BBCT97,pro99]. Of course this
does not preclude usage of tactics.

Alternatively, you can view Alfa as a syntax-directed editor for a small
purely functional programming language with a type system that provides
dependent types, thus allowing specification and verification of program
properties within its type system. In fact, the language is very similar to
the functional language Cayenne [Aug98| by Lennart Augustsson (which
in turn is based on Haskell).



As such, Alfa supports algebraic datatypes' , pattern matching and
general recursive definitions. To preserve logical consistency, all proofs are
subject to termination check as well as typechecking.

Since checking termination is undecidable, the checker approximates,
keeping on the safe side, hence some definitions may be unduly rejected.
It is however more liberal than for example restricting to primitive or
well-founded recursion [Wah00].

1.2 Assumptions

— We consider interactive proof developments in a system based on
Monomorphic Martin-Loéf Type Theory.

Proof development proceeds interactively in small steps (definitions/lemmas)?.
— User states a lemma and (optionally) hints as to which previous lem-

mas he thinks might be useful in proving the current one.

System tries to prove the lemma using hints.

The task of constructing an automated tool within this framework
faces us with several challenges:

Given the interactive nature of the system, response time is an impor-
tant consideration. The user should expect an answer within reasonable
time.

Since Type Theory is an intuitionistic, higher-order logic, applicability
of “classical”® theorem proving methods is rather limited, even though
possible for some fragments of the theory [TS98].

Every term may have many equivalent types; some of them give better
clues as to possible proofs than others. Moreover the reduction relation is
more complicated than in pure lambda calculus since one has to expand
definitions and case expressions, too.

2 Strategies

Given the assumptions above, a typical situation would look like

envbk f(xeT)="€qG

! By an algebraic type we mean a type being a sum of products, defined by listing its
constructors, eg
data Tree = Empty | Leaf Int | Node Tree Tree
2 In Martin-L6f Type Theory there is no clear distinction between definitions and
theorems
3 By “classical”, we mean methods that use tertium non datur, for example to prove
a theorem by refuting its negation.



where env contains existing definitions/lemmas (which will be further
referred to as globals), f is the current definition and x represents a lists
of parameters along with their types. Our aim is to find a proof term of
type G (goal) to replace “?” (hole). Moreover the term must be such that
the definition would pass the termination check.

2.1 Directives

The main directives of our strategy are:*

(DG) Use of globals: since most proof developments make use of numerous
library modules, this leads to a very large search space; therefore usage
of globals is limited to

(DG1) globals specified in hints,

(DG2) constructors ,

(DG3) cheap globals (i.e. ones that do not increase the search space sub-
stantially)

(DG4) “local” globals (i.e. ones defined in the current module)

(DR) Recursive calls: discouraged, especially where they might lead to non-
termination (we shall call this subdirective DR1) (with a notable ex-
ception of the “recursive vs recursive” strategy described in (DA)
below)

(DP) Use of parameters: encouraged; solutions using all parameters are
preferred. Notice that within the scope of case, parameter lists are
updated accordingly.

(DA) Algebraic types: if the initial proof search fails to produce satisfac-
tory result and one or more parameters is of an algebraic type, use
pattern-matching; if a type is recursive, try “recursive vs recursive”
strategy: using recursive calls on the recursive constructor arguments
(this subdirective is closely related to (DR) hence we call it DR2).

(DO) Ordering candidates: during the proof search, candidates for resolving
particular subgoals are ordered according to anticipated “cost” of their
use. However, we propose to use type ordering rather than an integer-
based ranking.

It is worth noting that the directive (DP) may have negative impact
on the efficiency of our strategy, so disabling it is desirable in many cases.
However, it does have some merits, one of which is illustrated in the ex-
ample in the following section. It should also be noted that it has global,

4 The parenthesised directive abbreviations are used as a shorthand in the example
in Section 3



rather than local character (but may be also implemented in a composi-
tional way).

3 DMotivating example: map

As an illustration of how the directives described above work, it will be
shown how they allow deducing the right-hand side of a function definition
from its type and left hand side. Even though the example seems to belong
more to functional programming rather than proof development, but it is
short and illustrates almost all directives. Besides, one should remember
that in type theory all proofs are programs and are subject to similar
phenomena. The choice of example is also motivated by our interest in
program verification and deriving programs from specifications.
Assume we have

[A] =data []|: (x € A,zs € [4])
and we want the system to fill the hole in
map (f € A— B)(zs € [A]) € [B] =70
pursuant to the directives stated above.
Initial proof search yields two type-correct results:

— [] — unsatisfactory due to (DP);
— map f xs — rejected due to (DR1): fails termination check.’

Since the proof search failed to produce satisfactory results and the pa-
rameter zs is of an algebraic type, the system proceeds to case analysis
(DA), replacing ?y by

case zs of
[] ="
(z:2s") — 79

Proof search for 7; yields two candidates:

=[]

— map f[] — not considered; we are in a “non-recursive” branch.
Proof search for 7; yields five candidates (we are in a “recursive”
branch, so use of recursion is allowed):

® In fact no candidates using map would be even considered; recursive candidates are
considered only in specific situations, such as specified in (DR2)



— []

— map fxs’

— map f[]

- (fz):[]

— (fz): (map fas)

All considered candidates pass both type- and termination-check. How-
ever the only one satisfying (DP) is

case zs of

[1 =[]

(z:as") — (fz):(mapf zs’)

which is the “usual” definition of map!

Similar results are obtained for other functions on lists, e.g. list con-
catenation. Interestingly enough, when provided with a hint to use foldr
(provided an usual definition of foldr is visible), our strategy yields an
alternative definition of list concat using foldr rather than pattern match-
ing:

concat :: [[a]] — [a]
concat xss = foldr (++) [ | zss

As a side note, let us remark that our tool also succeeded to generate
a similar definition of ordinary list concatenation:

(++) = [a] — [a] — [d]
zs ++ ys = foldr (:) ys xs

But we have to admit that This is however due to a bit of luck, since
(without additional restrictions) there are two solutions satisfying our
criteria. To distinguish between them, one should provide a more precise
specification of list concatenation.

4 Type orderings

For the purposes of ordering candidates we propose using quasi-orders on
types. One interesting ordering we are currently experimenting with is
based on the following system:

0<A

A<



By <A Ay < B
A1—>A2§B1—>B2

A; <A+ Ay fori=1,2
A1><A2§Aif0ri:1,2

where 0 represents empty types, 1 represents one-element types and A, B
(possibly with indices) represent arbitrary types.

The ordering is intended to represent how easy (or difficult) it is to
find an element of given type, with “greater” meaning “greater ranking”
i.e. “easier”. The intuitions behind the rules are thus:

— It is difficult to provide an element of an empty type.5

— It is trivial to provide an element of a unit type.

— The stronger the assumptions and the weaker the thesis, the easier
it is to prove the implication. On the extreme we have ex falso quod
libet.

— Constructing an element of a sum type amounts to constructing an
element of any of its components.

— Constructing an element of a product type amounts to constructing
elements of all its components.

5 Implementation

A tool based on the strategies described in this paper has been imple-
mented as a plugin for the Alfa proof editor. The plugin (as well as Alfa
itself) is written in Haskell. Initial experiences with using it seem quite
promising, however a corpus of test cases (see below) is needed for a
performance evaluation.

6 Future work

— Basing on user feedback build a corpus of test cases and test the
strategies more extensively.

— Compare relative merits of various type orderings against each other
and against integer scores.

— Improve efficiency of the implementation.

— Extend the range of tactics used; better tactics for equational reason-
ing seem to be a priority.

5 In most cases it is just impossible, but we must relativize with regard to context.



Equality proofs are important for verification of functional programs.
Unfortunately, current type theory style equational proofs are tedious
and not easily readable. We plan to develop methods and tools that would
improve this situation, basing partially on preliminary results on deriving
equality for algebraic types [Ben00].

References

[Aug9g]

Lennart Augustsson. Cayenne — a language with dependent types. In Proc.
of the International Conference on Functional Programming (ICFP’98).
ACM Press, September 1998.

[BBCT97] B. Barras, S. Boutin, C. Cornes, J. Courant, J.C. Filliatre, E. Giménez,

[Ben00]

[CC99]
[Coq98]

[HR00]

[Mag94]

[ML84]
[pro99]
[TS98]

[Wah0o]

H. Herbelin, G. Huet, C. Mu noz, C. Murthy, C. Parent, C. Paulin, A. Saibi,
and B. Werner. The Coq Proof Assistant Reference Manual — Version V6.1.
Technical Report 0203, INRIA, August 1997.

Marcin Benke. Automatic deriving of properties of algebraic datatypes in
Martin-Lof type theory. Presentation at Annual ESPRIT BRA TYPES
Meeting, Durham. Submitted for publication, December 2000.

C. Coquand and T. Coquand. Structured type theory. In Workshop on
Logical Frameworks and Meta-languages, Paris, France, Sep 1999.
Catharina Coquand. The AGDA Proof System Homepage.
http://www.cs.chalmers.se/ catarina/agda/, 1998.

Thomas Hallgren and Aarne Ranta. An extensible proof text editor. In
Logic for Programming and Automated Reasoning, volume 1955 of LNCS,
pages 70-84. Springer, 2000.

L. Magnusson. The Implementation of ALF - a Proof Editor based on
Martin-Léf’s Monomorphic Type Theory with Ezplicit Substitution. PhD
thesis, Department of Computing Science, Chalmers University of Technol-
ogy and University of Goteborg, 1994.

P. Martin-Lof. Intuitionistic Type Theory. Bibliopolis, Napoli, 1984.

The LogiCal project. Coq Homepage. http://coq.inria.fr/, 1999.
Tannel Tammet and Jan Smith. Optimized encodings of fragments of type
theory in first-order logic. JLC: Journal of Logic and Computation, 8, 1998.
David Wahlstedt. Detecting termination using size-change in parameter
values. Masters Thesis, Department of Computing Science, Chalmers Uni-
versity of Technology and University of Goéteborg, 2000.



