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Chapter 1

Introduction

1.1 Types and programs

In 1935, Alan Turing [Tur35] introduced a formalism for describing com-
putable functions, now called Turing machines, from which imperative pro-
gramming arose. At the same time, Alonzo Church was working on the
design of lambda-calculus with similar intention of describing computable
functions [Chu36]. But while Turing’s approach concentrated on the no-
tion of computation, the lambda-calculus stressed functions as the primary
notion. From this calculus stems the branch of functional languages.

A language can be called functional if functions are first-class values,
i.e. there are expressions in the language to denote them, variables can
be bound to functions in the same way as they are bound to basic values,
and functions can be taken as arguments or obtained as results of other
functions without restrictions. Briefly, functional languages are those that
contain lambda-calculus as a sublanguage.

The ancestor of all functional languages seems to be ISWIM (an acronym
for If you See What I Mean) proposed some thirty years ago by Peter
Landin [Lan66]. ISWIM, which consisted basically of lambda-calculus aug-
mented with conditionals and recursive definitions, constitutes the core of
contemporary functional languages such as Standard ML [Mil84, MTH89],
Haskell [Hud92] or Clean. The main additions since ISWIM have been
polymorphic type systems (ML) as well as inductive data types (Hope and
Standard ML).

Types are an important tool in programming languages and logic which
serves to classify terms according to basic properties such as denoting a
number or a function. For example the integer 2 can be represented by the
term “2” of type integer. The addition function has a type expressing that
it takes two integer arguments and returns an integer as result, which we

1



2 CHAPTER 1. INTRODUCTION

write as follows
+ : (integer × integer)→ integer

Or, often using so called currying

+ : integer → integer → integer

One immediate advantage of types is that nonsensical expressions can be
immediately considered illegal. For example, the expression

2 + "abc"

will not be accepted as correct because "abc" is not an integer, but a string
of characters. Although this example may seem coarse, this kind of errors is
very frequent in the development of programs (of course in most cases with
more complicated expressions and types, but the essence remains the same).

Types can also be used to express information useful for efficient compi-
lation, for example strictness and neededness in static analysis. Expressing
such properties by type systems helps to abstract from implementation de-
tails of a particular analysis algorithm. Moreover, the type-based approach
often leads to much more efficient algorithms than other approaches [Ben92,
Jen92].

In a bit different direction, there are systems in which a type can not only
prevent the formation of nonsensical expressions, but also state properties
of terms. For example in the case of a term corresponding to a sorting
algorithm for lists, the type can express the fact that its result is an ordered
list.

On the other hand probably almost everyone learning a strongly-typed
programming language (functional or imperative), experienced with a mix-
ture of surprise and anger that one cannot say

sqrt(2)

in Pascal (since sqrt is of type real → real and the literal 2 is of type integer)
or

2 + 2.0

in Standard ML for a similar reason. Putting implementation concerns aside,
the initial reaction of surprise and anger is natural: mathematically, every
integer is a real number and we should be able to use an integer wherever we
are allowed to use a real. In the setting of types, this idea can be formalised
by the mechanism called subtyping, which we discuss below.
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1.2 Subtyping

One should not allow oneself to be deceived by the simplicity of the above
examples; there is more to subtyping than “2 + 2.0”, if I may coin a phrase.
Subtyping is a relation that uniformly captures concepts from diverse areas
of computer science. If σ and τ are sets, then σ ≤ τ (σ is a subtype of τ)
means that every element of σ is also an element of τ . If σ and τ are strictness
properties, then every term having the property σ also has the property τ .
If σ and τ are specifications, then elements satisfying σ also satisfy τ . In
object-oriented programming, if σ and τ are object descriptions, then σ ≤ τ
states that where an object of interface τ is expected, it is safe to use an
object with interface σ. If σ and τ are theorems, then a proof of σ is also a
proof of τ .

The idea of subtypes appears quite naturally in programming languages.
Informally, we can say that σ is a subtype of τ if any element of σ can be seen
as an element of τ . We say may be seen as and not is, because this process
can involve some transformation (e.g. in Pascal an integer value has to be
converted to floating point representation before it can be used as real).
Such transformation is called coercion. On the other hand, a record can be
seen (in some contexts) as a record which is its initial fragment without any
transformation; in a similar manner an object can be used as an object of
its superclass; also considering an element of a subrange type like [1..100] as
an integer requires no coercion.

1.3 Type inference, typability and type checking

Typed versions of the lambda calculus were introduced in [Cur34] and
in [Chu40]. These two papers give rise to two different families of sys-
tems. In the Curry version terms are the same as in the type-free theory.
Each term has a set of possible types (which may be empty, in which case
we say that the term is not typable). In the Church systems the terms are
type-annotated.

The Curry and Church approaches to typed lambda calculus correspond
to two paradigms in programming. In the first a program may be written
without typing at all. Then a compiler should check whether a type can
be assigned to the program. This process is called type inference or type
reconstruction if the compiler actually constructs the type. Otherwise (i.e.
if the compiler only checks that some type for the program exists without
actually constructing any) we talk about typability checking. An example
of a language allowing this style of implicit typing is ML [Mil84, MTH89].

The other paradigm in programming is called explicit typing and cor-
responds to Church version of typed lambda calculi. Here every entity in
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a program must be declared with a type before it is used. For these lan-
guages the compiler only has to check whether all uses of declared entities
are compatible with their declared types. This process is called type check-
ing and is often easier than type inference or typability checking. Examples
of languages in this family are Algol 68 and Pascal.

1.4 Background

The formal study of subtyping in programming languages was initiated by
Reynolds [Rey80] and Cardelli [Car84], who used a lambda calculus with
subtyping to model the refinement of interfaces in object-oriented languages,
and also by Mitchell who first analysed subtyping in a database context
[Mit83b] then abstracted out the problem of type inference in a simply-
typed lambda calculus with subtyping [Mit84].

In 1992, Tiuryn coined the term “subtype inequalities” for the underlying
algebraic problem and showed that the nature of ordering between base types
has a critical impact on the computational complexity of the problem: it
was shown that deciding satisfiability of subtype inequalities1 (called SSI) is
PSPACE-hard in general but can be decided in polynomial time for lattices.

The results of Hoang and Mitchell [HM95] as well as Frey [Fre97] have
augmented the work of Tiuryn, showing that type inference in simply typed
lambda calculus with subtyping is PSPACE-complete in general case. But
the knowledge about tractable cases is still far from complete. This work is
an attempt to narrow this gap.

Faced with the fact that the complexity of our problem depends so much
on the properties of underlying ordering, it is natural to turn to the theory
of partial orders and see what we can learn from it. While doing so, even a
quick perusal through the literature of the subject can hardly fail to leave
the reader with two important impressions:

• notions of posets “hard” and “easy” from subtyping point of view
coincide with respective order-theoretic ones;

• despite decades of research and efforts of numerous scientists, the clas-
sification of even the finite partial orders is far from being complete;
on the contrary, many problems have been open for years.

The second, sad constatation notwithstanding, it seems that research
of subtyping can substantially benefit from the partial order theory, as we
show in the following two chapters. However, as it is difficult to describe
the state of research without plunging into technical terms, we defer this
discussion until section 2.4.

1This problem is formally defined in section 2.2.
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1.5 Overview of the work and results

This thesis is divided into two parts. The first one is devoted to subtype
inequalities. Chapter 2 introduces basic definitions and results connected
with subtype inequalities and partial orders in general. Chapter 3 is a
study in application of order-theoretic methods to show that for a particular
class of posets with known “generators”2, SSI can be decided in polynomial
time. The class we analyse includes the class of trees, which seems to be of
importance in the study of subtyping, as trees correspond to the coercion
structure of single-inheritance object systems.

When dealing with a class for which no set of generators is known, order-
theoretic notions are of less use. In Chapter 4 we show how logical methods
can be applied to show similar result for such a class.

The second part discusses problems concerning combining subtyping
with Hindley-Milner (aka ML) type discipline. This discipline, using shallow
polymorphic type schemes3, constitutes the kernel of type systems of almost
all current functional languages, including Standard ML, CAML, Haskell,
Clean and Miranda. Exceptions are of course languages that are not stat-
ically typed (e.g. Lisp family) or those with restricted use of higher order
functions (like Erlang). There are two ways of extending a polymorphic
type discipline with subtyping: the simpler one modifies only the typing
rules while preserving the syntax of types, the other introduces subtyping
constraints into type syntax (thus making instantiation of bound type vari-
ables subject to satisfaction of these constraints). Chapters 6 and 7 discuss
respective approaches, giving an algebraic characterisation of typability in
the first one, and linking the second to subtype inequalities which allows to
infer the following conclusion:

There exists a wide class of posets, which contains many important and
interesting ones, and for which typability in ML with subtyping has the same
complexity as typability without subtyping.

This is the main thesis which we now set out to prove.

2This notion is formalized in section 2.5
3that is with quantification at top level only
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2.1 Motivations

The following chapters discuss various aspects of a single decision problem:
satisfiability of subtype inequalities1 (abbreviated SSI). This problem, by it-
self interesting and presenting numerous challenges, is very closely related to
many type reconstruction problems. Some of the connections are presented
below; others are unveiled in the second part of the thesis.

Assuming we have already defined a subtype ordering, the simplest way
to extend simple-typed lambda-calculus with subtyping is just to add the
subsumption rule to the original system:

E ∪ {x : τ} ` x : τ

E `M : τ → ρ E ` N : τ
E ` (MN) : ρ

E ∪ {x : τ} `M : ρ
A ` (λx.M) : τ → ρ

E `M : τ ` τ ≤ ρ
E `M : ρ

Without the last (subsumption) rule, this system becomes an ordinary
system of simple types. Then we say that ρ is an instance of τ (ρ � τ) if
there exists a substitution S such that Sτ = ρ. But with subsumption rule,
it makes sense to extend the notion of instance to all cases where Sτ ≤ ρ.

In general, we say that a type system enjoys the principal types property,
if for every typable term there exists a type representing all possible types
of this term. Usually this means that for every term there is a type such
that all types of the term are instances of the former type.

To see that the principal types property fails for this system (even with
an extended notion of instance), let us consider the term

2 ≡ λf.λx.f(fx)

In the system without subtyping its principal type is (the type of Church
numerals)

(α→ α)→ (α→ α)

Unless the underlying ordering is trivial (i.e. equality), this is not a principal
type in the system with subsumption. To see this, assume that our type
system includes type constants int and real with subtyping relation int ≤
real. Then

` 2 : (real→ int)→ (real→ int)
1This problem is formally defined in section 2.2.
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But this type is not an instance of (α→ α)→ (α→ α). On the other hand
another candidate for a principal type

(α→ β)→ (α→ β)

also fails, since
6` 2 : (int→ real)→ (int→ real)

John C. Mitchell in his seminal paper [Mit84] proposed as a subtyping
extension of simply-typed λ-calculus a system, where apart from the usual
environment binding types to variables he uses also a set of subtyping as-
sumptions. He goes on to show that typability in this system can be reduced
to SSI and therefore is decidable.

C,E ∪ {x : σ} `M x : σ

C,E `M M : σ → τ C,E `M N : σ
C,E `M (MN) : τ

C,E ∪ {x : σ} `M M : τ
C,E `M (λx.M)σ → τ

C,E `M M : σ C `M σ ≤ τ
C,E `M M : τ

In this system one has to talk about principal typings rather than prin-
cipal types, but we as we shall see later, this idea can be used in other type
systems to fully recover principal types property for closed terms.

To illustrate importance of SSI, let us quote the critique of Mitchell
himself about this system [LM92]:

A simple example that illustrates one of the problems with
type constants is the signature with type constants int and real,
with int ≤ real and term constants 1, 2 : int, mult : int→ int→
int and div : real→ real→ real. [...] consider the expression,

mult(div 1 2) 2

This is not well-typed, given the signature, since the subexpres-
sion (div 1 2) only has type real and not type int. The typing
algorithm in [Mit84, Mit91] [...] would produce a typing state-
ment for this term, namely

real ≤ int `M (mult(div 1 2) 2) : int

Indeed, Hoang and Mitchell [HM95] have shown that typability in this
system is equivalent to SSI. The remainder of this chapter presents the latter
problem as well as notions and problems pertinent to it.
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2.2 Subtype inequalities

Let Q be a finite poset. The elements of Q are constant symbols of the
signature which in addition contains a binary operation symbol →. Let
TQ be the term algebra over this signature. The carrier of TQ is partially
ordered by extending the order from Q to all terms by the rule

r1 ≤ t1 t2 ≤ r2

(t1 → t2) ≤ (r1 → r2)

A system Σ of inequalities is a finite set of formulas of the form

Σ = {τ1 ≤ ρ1, . . . , τn ≤ ρn},

where τ ’s and ρ’s are terms over the above signature with variables from
a set V . Σ is said to be flat if every term in Σ is of size 1, i.e. it is either
a constant symbol or a variable. Σ is said to be satisfiable in TQ if there is
a valuation v : V → TQ such that τi[v] ≤ ρi[v] holds in TQ for all i.

Satisfiability of Subtype Inequalities (SSI) is the following problem: given
a system of inequalities Σ, decide whether it is satisfiable (the poset Q is
considered to be fixed, rather then a part of the problem).

Similarly, FLAT-SSI is the problem of deciding whether given flat system
of inequalities is decidable.

2.3 Shapes and weak satisfiability

The set T? of shapes is the set of terms without variables over the signature
Σ = 〈0,→〉.

We shall use the canonical map (·)? : TQ(V )→ T?(V )

(c)? = 0 for c ∈ Q, (v)? = v for v ∈ V (t→ u)? = (t)? → (u)?

and call (t)? the shape of t if t is a term without variables.

Note that the subtype order on TQ is stratified, i.e. only terms of the
same shape are comparable. In the sequel we shall operate on strata of this
ordering, defined as follows:

Q0 = Q

Qσ→τ = {t→ u : t ∈ Qσ, u ∈ Qτ}

A system of inequalities Σ = {τ1 ≤ ρ1, . . . , τn ≤ ρn} is said to be weakly
satisfiable if Σ? = {(τ1)? = (ρ1)?, . . . , (τn)? = (ρn)?} is satisfiable in T?.
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Weak satisfiability is clearly a necessary condition for satisfiability. It is
decidable in (and in fact complete for) polynomial time since it is an instance
of the unification problem [Tiu92, DKM84].

In the sequel, we shall deal only with weakly satisfiable sytems. In
some places we shall assume (for the sake of proofs, not algorithms) that
all inequalities of the system are annotated with proper shape and use the
notation

t ≤σ u

for an inequality in shape σ.

2.4 Partial orders

A partially ordered set (poset for short) is a set equipped with a reflexive,
transitive and antisymmetric relation ≤. By a poset dual to 〈Q,≤〉 we mean
the poset 〈Q,≤−1〉.

Whenever there are no doubts which ordering relation on Q is meant,
we shall use the notation

Q |= a ≤ b

to express the fact that a ≤ b holds in 〈Q,≤〉.

2.4.1 Retractions and obstacles

Let Q and R be posets. We say that R extends Q if Q is a subposet of R.
We say that R retracts to Q (R � Q) if there exists an order preserving
and idempotent (i.e. such that f ◦ f = f) map f : R→ Q.

The problem of Q-retractability is defined as follows: given R ⊇ Q, does
R retract to Q?

For every finite poset Q, Q-FLAT-SSI is logspace-equivalent to the prob-
lem of Q-retractability. Henceforth we shall identify flat systems of inequal-
ities over Q with corresponding extensions of Q.

V. Pratt and J. Tiuryn [PT96] introduce the notion of an obstacle to re-
tractability — a property of a larger poset which prevents it from retracting
onto another one. An obstacle is called complete for Q if R retracts to Q
whenever R does not satisfy it. In the mentioned paper, they discuss a class
of posets (which they call TC-feasible) for which complete obstacles can be
expressed by formulae of logic with a transitive closure operator. This sub-
ject is explored further in Chapter 4. In Chapter 3 we discuss other kind of
obstacles, which we consider useful in connection with inheritance.

The notion of retraction and the retractability problem can be gener-
alized to the case when R is a preorder in an obvious manner. As a flat
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system of inequalities can be naturally viewed as a preorder (modulo tran-
sitive closure, that is), we find the preorder formulation more convenient for
our application. The obstacles for preorder retraction are the same as for
poset retraction.

2.4.2 Distances and disks in a poset

2.4.1 Definition
By an up-fence of length n (denoted by F+

n ) from x to y we mean a set
{x0, . . . , xn}, such that x0 = x, xn = y, and x2i ≤ x2i+1 ≥ x2i+2 for all
relevant i.

The up-distance from x to y in Q, d+1(x, y) is the smallest number n
such that there exists an up-fence of length n from x to y. If such n does
not exist, we assume d+1(x, y) = +∞.

The notions of a down-fence (F−n ) and down-distance (d−(x, y)) are de-
fined dually.

In the sequel, we shall use distances introduced above in the context

Q |= dε(x, y) ≤ n

(with ε being either−1 or +1) by which we mean that the respective distance
in Q does not exceed n.

2.4.2 Definition
By a disk in Q with the center a and radius (r+1, r−1) we shall mean the set

DQ(a, (r+1, r−1)) = {x ∈ Q : Q |= dε(a, x) ≤ rε ε ∈ {−1, 1}}

2.4.3 Absolute retracts

Nevermann and Rival [NR85] describe a class of posets for which there exists
a simple condition which is necessary and sufficient for retractibility, which
they call absolute retracts.
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2.4.3 Definition
A set

H = {(vt, δ+1
t , δ−1

t ) : t ∈ T}
where T is an index set, vt ∈ Q, δ+1

t , δ−1
t ∈ N , is a hole in Q if⋂

t∈T
DQ(vt, δ+1

t , δ−1
t ) = ∅

and H contains no proper nonempty sub-family which determines a family
of disks with empty intersection.

We say that this hole is separated in P ⊇ Q if⋂
t∈T

DP (vt, δ+1
t , δ−1

t ) = ∅

2.4.4 Definition
A partially ordered set Q is called an absolute retract if it is a retract of any
poset in which all its holes are separated.

2.4.4 Helly posets

2.4.5 Definition
A partially ordered set satisfies the the two disk property (alias Helly prop-
erty) if, for each family D of disks⋂

D 6= ∅

whenever
D1 ∩D2 6= ∅

for each D1, D2 in D.

2.4.6 Example
The following are examples of Helly posets [Qui83, NR85]:

• lattices

• trees

• fences

2.4.7 Proposition ([NR85])
Every Helly poset is an absolute retract. Helly posets are closed under
products, retractions and disjoint unions.

2.4.8 Corollary
If Q is a Helly poset, then so is Qσ for any shape σ.
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2.5 Order varieties and representations

Duffus and Rival [DR81] propose a structure theory for ordered sets basing
on direct product and retract as canonical constructions.

2.5.1 Notation
The class of all retracts of Q is denoted by R(Q).

2.5.2 Definition (Order variety)
An order variety is a class K of ordered sets which is closed under the
formation of all direct products of nonempty families of members of K and
under the formation of all retracts. A weak order variety is a class closed
under finite products and retracts.

2.5.3 Definition (Representation)
A family {Qi}i∈I of ordered sets represents (or: is a representation of ) Q if
Qi ∈ R(Q) for each i ∈ I and Q ∈ R(

∏
i∈I Qi).

2.5.4 Definition (Irreducibility)
An ordered set Q is irreducible if, for each representation {Qi}i∈I of Q,
Q ∈ R(Qi) for some i ∈ I.

To see that (weak) order varieties are a useful tool in the complexity
analysis of the retractability problem (and hence also the SSI problem) let
us recall two facts proved in [PT96]:

2.5.5 Proposition
Let Q be a poset which extends P1×P2. Let a ∈ P1 and b ∈ P2 be arbitrary
elements. Then Q retracts on P1 × P2 iff Q retracts on both: P1 × {b} and
{a} × P2.

Let Q and P1 be extensions of a poset P . We construct a P1-extension
Q+ as follows. Add to Q the new elements in P1 − P , (without loss of
generality we may assume that P1 − P and Q are disjoint). The order
relation ≤+ in Q+ is defined as follows. x ≤+ y iff one of the following
holds.

• x ≤ y holds in Q.

• There exists z ∈ P , such that x ≤ z holds in Q and z ≤ y holds in P1.

• There exists z ∈ P , such that x ≤ z holds in P1 and z ≤ y holds in Q.

• x ≤ y holds in P1.
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Then

2.5.6 Proposition
(i) ≤+ is a partial order in Q+.
(ii) P+ is order-isomorphic to P1.
(iii) If Q retracts to P , then Q+ retracts to P1.
(iv) If P1 retracts to P , then for every poset Q being an extension of P , Q
retracts to P , iff Q+ retracts to P1.

From these two facts it follows that if K is a weak order variety, then to
prove that the retractability problem is decidable in polynomial time for all
members of K, it is sufficient to prove this fact for irreducibles represent-
ing K.

The second argument for importance of order varieties in complexity
analysis of SSI lies in the very definition of the problem: from the definition
of ordering on arrow types it follows that the class of posets for which we
want to prove tractability of SSI must be closed under finite products.

We adopt this approach in Chapter 3, basing on the following fact, proved
in [DR81]:

2.5.7 Proposition
Every finite fence is irreducible. Moreover, the class of finite Helly posets is
an order variety generated by all finite fences.

An attempt to apply the same method to absolute retracts fails: even
though their class is an order variety, no characterisation of irreducibles
in this class is known. However, as observed in [PT96], for every absolute
retract, a necessary and sufficient condition for retractability (or a complete
obstacle) can be expressed by a formula of transitive closure logic, therefore
each absolute retract is TC-feasible. In Chapter 4 we extend the TC logic of
Pratt and Tiuryn to cater for subtype inequalities design an inference system
for this logic and by analysing its properties finally come to conclusion that
SSI can be decided in polynomial time also for TC-feasible posets.

2.6 Intractable posets

An n-crown is a poset with 2n elements 0, 1, . . . , 2n−1 ordered in such a way
that 2i ≤ (2i± 1) mod 2n.

V. Pratt and J. Tiuryn [PT96] show that for n-crowns (n ≥ 2), FLAT-SSI
is NP-complete. Moreover, in [Tiu92] it is shown that for these posets SSI
is PSPACE-hard. In Chapter 5 we show how this result can be generalized.
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Figure 2.2: (a) 2-crown (b) 3-crown

2.7 Complexity classes

In naming complexity classes we generally follow the conventions of [BDG95,
BDG90]. By DTM(s, t) we understand a class of problems decidable by an
s-space bounded and t-time bounded deterministic Turing machine. Ex-
pressions NTM(s, t) and ATM(s, t) denote corresponding nondeterministic
and alternating classes.

Beside obvious complexity classes, we use the following abbreviations
(ATIME and ASPACE denote alternating time and space respectively, cf.
e.g. [BDG95, Pap94]):

NLOGSPACE = NSPACE(log n) (2.1)

ALOGSPACE = ASPACE(log n) (2.2)

AP =
⋃
c>0

ATIME(nc) (2.3)

The correspondence between alternating and deterministic complexity
classes is established by the following

ASPACE(s(n)) =
⋃
c>0

DTIME(cs(n)) (2.4)

ATIME(t(n)) ⊆ DSPACE(t2(n)) (2.5)

in particular, we have

ALOGSPACE = P (2.6)

AP = PSPACE (2.7)
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3.1 Trees, inheritance and Helly posets

Why trees are important The original motivation for studying orders
being trees was that trees correspond to the coercion structure of single-
inheritance object systems. Although traditionally, recursive types are used
for inheritance mechanism, recent works show that it is possible to construct
type systems for inheritance which do not rely on recursive types (cf. e.g.
[PT92, PT93]).

On the other hand trees are present even if we consider simple coercion.
Perhaps the simplest possible example is a numeric or enumeration type and
a couple of its subrange types.

Example One may consider types (like in the language C) signed int =
−215..215−1, unsigned int = 0..216−1, long int = −231..231−1 and coercions
between them based on respective inclusions. Then the poset would look
like

@
@

@
@

�
�
�
�

long int

signed int unsigned int

Figure 3.1: An example subtyping relation involving subrange types

Why trees aren’t trivial The main problem is that since we consider
non-flat inequalities, any result for trees actually has to cover a wider range
of posets, since any algorithm working for a given poset, must obviously work
for the poset formed of terms of a given shape over this poset. Therefore
the problem is in finding a class of posets wide enough to facilitate inductive
proof, and narrow enough to fulfill satisfactory thesis.

Example Consider set of types from previous exmaple

Q = {signed int, unsigned int, long}

and let
Q0→0 = {ρ→ τ : ρ, τ ∈ Q}

then inequalities between elements of Q0→0 form a poset depicted in Fig. 3.2.
This poset seems all but trivial. In fact it bears some resemblance to the
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Figure 3.2: The poset Q0→0

posets for which the type reconstruction is NP-hard [LM92] and the SSI
problem is PSPACE-hard [Tiu92] — crowns (discussed in section 2.6).

In fact, because of this resemblance it had been for some time conjectured
that the SSI problem for trees is NP-hard. However, as we prove in this
chapter, this is not the case and said resemblance turns out to have been
deceiving.

The key to solving SSI problem for trees is the class of Helly posets,
introduced in section 2.4.4. It includes trees and is closed under retractions,
products, duality and disjoint unions. In this chapter we prove that for Helly
posets, SSI is decidable in P and FLAT-SSI in NLOGSPACE.

3.2 Inference systems

In this section we are going to present inference systems which for a given
system of inequalities Σ, allow to infer formulae that must be satisfied by
any solution of Σ (i.e. are sound). In general, they are not complete, since
they have been designed for efficient derivability checking. On the other
hand, some weak (but sufficient for our purposes) completeness results are
proven in the next section.

3.2.1 Ground consistency

Following [Tiu92], we introduce a system which allows to infer judgements
of the form Σ `s t1 ≤ t2, where t1, t2 are subterms of terms occurring in Σ:

Σ `s τ ≤ ρ for τ ≤ ρ ∈ Σ (3.1)

Σ `s τ ≤ ρ Σ `s ρ ≤ σ
Σ `s τ ≤ σ

(3.2)

Σ `s (τ1 → τ2) ≤ (ρ1 → ρ2)
Σ `s ρ1 ≤ τ1, τ2 ≤ ρ2

(3.3)
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3.2.1 Definition
We call Σ ground consistent whenever for each c1, c2 ∈ Q if Σ `s c1 ≤ c2,
then Q |= c1 ≤ c2.

3.2.2 Theorem
Ground consistency is complete for NLOGSPACE with respect to NC1 re-
ductions

Proof: First we are going to prove that the problem of checking ground
consistency is co-NLOGSPACE hard. Since nondeterministic space is closed
under complementation [Imm88], it follows that checking ground consistency
is NLOGSPACE-hard.

The proof goes by reduction of the reachability in directed graph. Given
a graph G = 〈V,E〉, and a pair of vertices a, b ∈ V , take Q = {a, b}, a ≤ b.
All other vertices are treated as constants. For each (x, y) ∈ E put an
inequality x ≤ y in Σ. Thus defined, Σ is ground consistent iff there is no
path from b to a in G.

Note that the reduction described above can be in fact carried out in
NC1. Thus ground consistency is NLOGSPACE-hard with regard to NC1
reductions.

To see that ground consistency is indeed in NLOGSPACE consider the
algorithm which we exhibit in more detail for the flat case:

• nondeterministically choose a pair of constants a, b such that a ≤ b
does not hold in Q

• check that Σ `s a ≤ b by nondeterministically choosing inequalities
from Σ that form a chain from a to b:

a ≤ α1, α1 ≤ α2, . . . , αn ≤ b,

where αi ∈ Q ∪ V for i = 1, . . . , n

Indeed, logarithmic space is sufficient to record consecutive α’s, since we
only need to record the current element, rather than the whole chain.

To extend this algorithm for general case, we should systematically num-
ber subterms of Σ, then guess the pair of constants and nondeterministically
detect the inference that leads to an inconsistency.

3.2.2 Distance consistency

The next system we present (an indeed a central one for this section), allows
to infer judgements about distances. It is easy to prove that the system is
sound; cf. figures 3.4 through 3.7 for intuitions behind the rules.
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[Ax] Σ `d d+1(x, y) ≤ 1 for x ≤ y ∈ Σ

[Symm]
Σ `d dε(x, y) ≤ n

Σ `d d(ε(−1)n)(y, x) ≤ n

[Dual]
Σ `d dε(x, y) ≤ n

Σ `d d(−ε)(x, y) ≤ n+ 1

[Join] Σ `d dε(x, y) ≤ n, dε(−1)n−1
(y, z) ≤ k

Σ `d dε(x, z) ≤ n− 1 + k

[Subterm]
Σ `d dε(x1 → x2, y1 → y2) ≤ n

Σ `d d−ε(x1, y1) ≤ n,Σ `d dε(x2, y2) ≤ n

Figure 3.3: A system for deriving distance judgements.

3.2.3 Definition
A system of inequalities Σ is called distance consistent whenever for each
c1, c2 ∈ Q and n ∈ N if Σ `d dε(c1, c2) ≤ n, then Q |= dε(c1, c2) ≤ n.

Distance consistency is decidable in polynomial time. We can construct
two O(|Σ|)×O(|Σ|) arrays, for d+1 and d−1 respectively in such a way that
in the array for dε, in the cell indexed by τ and ρ there is the least number
n such that Σ `d dε(τ, ρ) ≤ n holds, or (a special symbol for) +∞ if no such
n exists.

In fact, even the following holds:

3.2.4 Theorem
Distance consistency is NLOGSPACE complete.

Proof: Hardness is obvious, since ground consistency is but a special case
of distance consistency. On the other hand, an algorithm to check the latter
can be constructed easily, following the one described in the proof of Theo-
rem 3.2.2. The only difference is that the direction of inequalities may vary
throughout the chain; we must maintain a counter for the number of such
alternations. Only constant space is needed for this counter, since maximum
distance is fixed with the given poset, and we are looking for fences shorter
than given distance.
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Figure 3.4: An example for the [Symm] rule: d+1(y, x) ≤ 5, d−1(x, y) ≤ 5.
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Figure 3.5: An example for the [Dual] rule: d−1(x, y) ≤ 5, but since x ≤ x,
we have d+1(x, y) ≤ 6.
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Figure 3.6: An example for the [Join] rule: d+1(x, y) = 3, d−1(y, z) = 3,
joined they yield d+1(x, z) = 6.
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Figure 3.7: Another example for the [Join] rule: d+1(x, y) ≤ 3, d+1(y, z) ≤ 3,
yield when joined d+1(x, z) ≤ 5.
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3.3 Completeness results

The main result presented in this chapter is that the inference system `d
is weakly complete in the sense that every weakly satisfiable system of in-
equalities over a Helly poset is satisfiable iff it is distance consistent. Thus
satisfiability of such systems is decidable in polynomial time.

3.3.1 Lemma
(a) Σ `s x ≤ y iff Σ `d d+1(x, y) ≤ 1

(b) Σ `s y ≤ x iff Σ `d d−1(x, y) ≤ 1

Proof: In the proof of (a), the “only if” part follows from axiom 3.4. On
the other hand, the “if” part can be proved by simple induction on the
derivation of Σ `d d+1(x, y) ≤ 1. For the proof of (b) we can use the result
of (a) and the rule [Symm]:

Σ `d d+1(y, x)
Σ `d d−1(x, y)

3.3.2 Corollary
If Σ is distance consistent then it is also ground consistent.

3.3.1 Flat systems and retractability

Consider a flat and ground consistent system of inequalities Σ. Let us define
the following equivalence relation ' on var(Σ):

x ' y ⇐⇒ Σ `s x ≤ y ∧ Σ `s y ≤ x

By an extension of Q generated by Σ we shall mean the set

QΣ = Q ∪ var(Σ)/ '

with the order defined as the transitive closure of the sum of the order on
Q and the order on Q ∪ var(Σ)/ ', induced by Σ `s.

3.3.3 Lemma
A flat system Σ of inequalities over Q is satisfiable in TQ iff it is satisfiable
in Q.

Proof: The “if” part is obvious. For the proof of the “only if” part, let
σ : V → TQ be a solution of Σ and c be an arbitrary element of Q. Consider
σ′ : V → Q defined as follows:

σ′(v) =
{
σ(v) if σ(v) ∈ Q
c otherwise
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It is easy to see that σ′ is indeed a solution of Σ.

3.3.4 Lemma
A flat system of inequalities Σ is satisfiable if and only if Σ is ground con-
sistent and QΣ �Q.

Proof: Each retraction f : QΣ → Q determines a solution of Σ:

σ(x) = f([x]')

On the other hand, if σ is a solution of Σ, then

x ' y ⇒ σ(x) = σ(y)

3.3.5 Lemma
Let Σ — ground consistent. Then:

(a) If QΣ |= [x]' ≤ c for some x ∈ var(Σ), c ∈ Q then there exists c′ ∈ Q
such that

Σ `s x ≤ c′ Q |= c′ ≤ c

(b) If QΣ |= c ≤ [x]' for some x ∈ var(Σ), c ∈ Q then there exists c′ ∈ Q
such that

Σ `s c′ ≤ x Q |= c ≤ c′

(c) If QΣ |= [x1]' ≤ [x2]' for some x1, x2 ∈ var(Σ) then either

Σ `s x1 ≤ x2

or there exist c1, c2 ∈ Q such that

Σ `s x1 ≤ c1 Q |= c1 ≤ c2 Σ `s c2 ≤ x2

Proof: (a) Since order on QΣ is the transitive closure of the sum of order on
Q and the one induced by Σ `s, there exist p0, p1, . . . , pn such that p0 = [x],
pn = c and for every 1 ≤ i ≤ n one of the following holds:

(i) Q |= pi−1 ≤ pi, or

(ii) pi−1 = [wi−1], pi = [wi], Σ `s wi−1 ≤ wi, or

(iii) pi−1 = [wi−1], pi ∈ Q, Σ `s wi−1 ≤ pi, or

(iv) pi−1 ∈ Q, pi = [wi], Σ `s pi−1 ≤ wi.
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Let k be the smallest such that pk ∈ Q. From ground consistency of Σ it
follows that pk ≤ c holds in Q. On the other hand for all 0 ≤ i ≤ k − 1,
pi = [wi] for some wi ∈ var(Σ) and thus by the rule 3.2 we have Σ `s x ≤ pk.

The proof of (b) is analogous, and to prove (c) we should use the same
argument twice. It is worth mentioning that we cannot get rid of the second
part of the alternative in (c), i.e. it is not always true that if

QΣ |= [x1] ≤ [x2]

then
Σ `s x1 ≤ x2.

3.3.6 Lemma
If Σ is distance consistent than we have for any c1, c2 ∈ Q

QΣ |= dε(c1, c2) ≤ n ⇐⇒ Q |= dε(c1, c2) ≤ n

Proof: The “if” part is obvious, since QΣ is an extension of Q.
The proof of the “only if” part is by induction on n (simultaneously for

ε = +1 and −1). The basis of induction follows from the lemma 3.3.5.
Now, for the induction step: let c1 = p0, p1, . . . , pn = c2 be a fence in

QΣ, connecting c1 with c2. If pi ∈ Q for some i, 0 < i < n, then we have

QΣ |= dε(c1, pi) ≤ i

QΣ |= dε(−1)i(pi, c2) ≤ n− i

so that we may use the induction hypothesis (since both i and n− i are less
than n) to obtain

Q |= dε(c1, pi) ≤ i

Q |= dε(−1)i(pi, c2) ≤ n− i

from which the thesis follows.
On the other hand, if none of p1, . . . , pn−1 belong toQ, then by definition

of ordering on QΣ and of relation ' we have that

Σ `d dε(c1, c2) ≤ n

and the thesis follows from the distance consistency of Σ.

3.3.7 Theorem
A flat system of inequalities over a poset satisfying the Helly property is
satisfiable if and only if it is distance consistent.
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Proof: It is easy to see that distance consistency is indeed a necessary
condition for satisfiability. In order to prove that it is also sufficient, we
shall show that QΣ � Q and use Lemma 3.3.4. Since Q satisfies the Helly
property and thus is an absolute retract, it is sufficient to prove that all
holes in Q of cardinality 2 are separated in QΣ.

Let us assume the contrary, i.e. that there exists a pair of disks which
is a hole in Q that is not separated in QΣ. This implies that we may chose
a1, a2 ∈ Q, r+1

1 , r−1
1 , r+1

2 , r−1
2 ∈ N, x ∈ QΣ such that

DQ(a1, r
+1
1 , r−1

1 ) ∩DQ(a2, r
+1
2 , r−1

2 ) = ∅

x ∈ DQΣ
(a1, r

+1
1 , r−1

1 ) ∩DQΣ
(a2, r

+1
2 , r−1

2 )

We can further assume that the sum r+1
1 + r−1

1 + r+1
2 + r−1

2 is minimal (i.e.
there is no pair of disks fulfilling above conditions but with lower sum of
radii).

If x ∈ Q, we can use Lemma 3.3.6 to obtain contradiction with distance
consitency of Σ. Otherwise x = [v]' for some v ∈ var(Σ). Now, if

Σ `d dε(a1, v) ≤ rε1

and
Σ `d dθ(a2, v) ≤ rθ2

then by the rules [Join] and [Symm] we can infer that

Σ `d dε(a1, a2) ≤ r

while Q 6|= dε(a1, a2) ≤ r, where r = rε1 + rθ2 − 1 if (−1)r
ε
1 = (−1)r

θ
1 , and

r = rε1 + rθ2 otherwise. That contradicts the distance consistency of Σ.
If the opposite holds (i.e. Σ 6`d dε(a1, v) ≤ rε1 or Σ 6`d dθ(a2, v) ≤ rθ2), we

can assume without loss of generality that

Σ 6`d dε(a1, v) ≤ rε1

Let a1 = x0, x1, . . . , xn = [v] be a fence in QΣ, connecting a1 with [v]', and
i be the largest integer such that

Σ 6`d dε(xi, v) ≤ rε1 − i

(note that i < rε1). In other words we have (for α = ε(−1)i+1)

Σ `d dα(xi+1, v) ≤ rε1 − i− 1

Σ 6` d−α(xi, xi+1) ≤ 1

QΣ |= d−α(xi, xi+1) ≤ 1
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If i = 0, then by Lemma 3.3.5 there exists a′ ∈ Q such that

Q |= dε(a1, a
′) ≤ 1

and
Σ `d dε(a′, x1) ≤ 1

Thus we can consider a′ instead of a1, and i = 1 instead of 0.

Neither xi nor xi+1 can be a constant from Q, since then we could place
the center of disk in xi, thus obtaining a pair of disks, fulfilling assumptions
but with smaller sum of radii, which would contradict the assumption of
minimality. But if xi+1 = [w]' for some v ∈ var(Σ), then by Lemma 3.3.5
there exists constant c such that

Σ `d dα(c, w) ≤ 1

which again leads to a contradiction with minimality.

3.3.8 Corollary
For Helly posets, FLAT-SSI is NLOGSPACE complete.

Proof: By Theorem 3.2.4 distance consistency is NLOGSPACE-complete.
By Theorem 3.3.7 satisfisbility of flat systems of inequalities (i.e. FLAT-SSI)
is equivalent to distance consistency.

3.3.2 From FLAT-SSI to SSI

The thesis of Lemma 3.3.7 can be lifted to arbitrary systems of inequalities
leading us to the following

3.3.9 Theorem
A system of inequalities Σ over a poset satisfying the Helly property is
satisfiable iff it is weakly satisfiable and distance consistent.

Before we go on with the proof of this theorem, let us observe that it
generalizes one contained in [Tiu92], covering a much wider range of posets.
Since the main work has been done while proving the result for the flat case,
now we can follow the proof in [Tiu92] with minor changes only. The most
important difference is that we must prove distance consistency instead of
ground consistency in the induction hypothesis.

It is also worth noting, that another proof of our theorem can be derived
from the proof of Theorem 4.2.16 in the next chapter.
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Proof: The “only if” part is obvious. The opposite implication is proved
by induction on the number of equivalence classes of ∼ defined on var(Σ)
as follows

x ∼ y iff Σ? |= x = y

Suppose first that the quotient set var(Σ)/∼ has only one element. Then
we consider the set

Σ̂ = {ξ ≤ ξ′ : Σ `s ξ ≤ ξ′ and |ξ| = 1 or |ξ′| = 1}

(|ξ| denotes size of the term ξ; thus |ξ| = 1 means that ξ is either a constant
or a variable).

It is easy to prove that Σ is satisfiable iff Σ̂ is satisfiable. In fact above
two systems have the same solutions. It follows that if τ is a term of depth
greater than 1 which occurs in Σ̂ then it must be a term without variables.
Thus Σ̂ can be viewed as a flat system of inequalities. Since Σ is weakly
satisfiable and distance consistent it follows that Σ̂ is too. Hence it has a
solution and so has Σ.

Now let us assume that var(Σ)/∼ has n+ 1 elements and let y ∈ var(Σ)
be such that for no z ∈ var(Σ) there is a term τ with |τ | > 1, z ∈ var(τ)
and σ? |= τ = y. If there is no such y, then one easily finds a term τ such
that |τ | > 1, z ∈ var(τ) and σ? |= τ = z. This would contradict weak
satisfiability of Σ.

Let
[y] = {z ∈ var(Σ)|z ∼ y} = {y1, . . . , yk}

and consider the set

Σ̂ = {ξ ≤ ξ′ : Σ `s ξ ≤ ξ′ and ξ ∈ [y] or ξ′ ∈ [y]}

It follows from the choice of y that if τ is a non variable term which
occurs in Σ̂, then it contains no variables. Moreover all such terms must be
of the same shape, say σ. If there are no such terms then we choose shape
σ arbitrarily.

It follows that Σ̂ can be viewed as a flat system of inequalities over
Tσ which satisfies the Helly property. It is weakly satisfiable and distance
consistent. Let v̂ : [y]→ Tσ be a solution of Σ̂ and let

Σ1 = v̂(Σ) = {v̂(τ) ≤ v̂(ρ) : τ ≤ ρ ∈ Σ}

In the above definition v̂ acts as an identity on variables other than those
in [y]. Let ∼1 be the equivalence relation associated with Σ1. We claim

|var(Σ1)/∼1 | = n

Σ1 is weakly satisfiable
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These are easy to prove since (Σ1)∗ = Σ∗[σ/y1, . . . , σ/yk], and if (Σ1)∗ |=
τ = ρ, then Σ∗ |= τ = ρ.

To complete the proof we need to prove that

Σ1 is distance consistent

Let τ be a term such that it contains no constants, every variable of τ
occurs exactly once, var(τ)∩var(Σ) = ∅, and for some function ṽ : var(τ)→
{∗1, . . . , ∗m}, ṽ(τ) = σ. Let τ1, . . . , τk be terms obtained from τ by renaming
its variables so that they have pairwise disjoint variables and disjoint from
var(Σ). Let Σ2 = Σ[τ1/y1, . . . , τk/yk] and let η :

⋃k
i=1 var(τi) → Q be

a function such that η(τi) = v̂(yi), for i = 1, . . . , k. Such a function is
uniquely determined by the above conditions.

In order to show distance consistency of Σ1 we need one more definition.

3.3.10 Definition
A sequence ξ1, . . . , ξ2` of terms in TC(X) is called an η-chain (of fences) if
the following conditions hold

Σ2 `d dεi(ξi, ξi+1) ≤ ni, for even i < 2` (3.4)

η(ξi) = η(ξi+1), for odd i < 2` (3.5)

` is called the size of the chain, while its length is computed according
to the rule [Join], i.e. adding the lengths of its links and subtracting the
number of joints where no direction alteration occurs (cf. figures 3.6 and 3.7

Equality in (3.5) represents syntactic identity of terms. Again, we assume
that in the above formula η acts as identity on variables other than those
in
⋃k
i=1 var(τi). Now, distance consistency of Σ1 follows immediately from

the following two claims.

For all terms τ, ρ, if Σ1 `d dε(τ, ρ) ≤ n, then there

exists an η-chain of length n from τ to ρ with ε2 = ε (3.6)

For all constants a, b ∈ Q, if there is an η-chain of

length n, with ε2 = ε from a to b, then Q |= dε(a, b) ≤ n (3.7)

The proof of (3.7) is by an obvious induction on the size of η-chain. We
sketch the proof of (3.6). We use induction on the length of derivation of
dε(τ, ρ) ≤ n from Σ1.
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If τ ≤ ρ is in Σ1, then there is an inequality τ ′ ≤ ρ′ in Σ2 such that
η(τ ′) = τ and η(ρ′) = ρ. Thus τ, τ ′, ρ′, ρ is an η-chain with both length and
size of 1.

The η-chain for the rule [Symm] is obtained simply by chasing the chain
from its premise backwards. For the [Dual] rule we simply apply the same
rule to the first chain link in η-chain, obtaining dual η-chain of length greater
by one than the original one:

Σ2 `d dε2(ξ2, ξ3) ≤ n2

then by [Dual]
Σ2 `d d−ε2(ξ2, ξ3) ≤ n2 + 1

If the last rule in the derivation of Σ1 `d dε(τ, ρ) ≤ n was [Join], then we
have Σ1 `d dε(τ, ξ) ≤ n and Σ1 `d dε(−1)n−1

(ξ, ρ) ≤ k We have two η-chains:
one from τ to ξ and another from ξ to ρ. Their concatenation yields an
η-chain from τ to ρ. Its length is as stated in the [Join] rule.

Finally, if the last rule was [Subterm], then Σ1 `d dε(τ, ρ) ≤ n must
have been obtained from, say Σ1 `d dθ(ξ, ξ′) ≤ n. Let ξ1, . . . , ξ2` be an
η-chain of length n from ξ to ξ′ and assume that it is one of minimal size.
If all terms in that chain are of depth greater than 1, then by applying the
rule [Subterm] throughout the chain of fences we get an η-fence from τ to
ρ. Otherwise, let ξj be a term of depth 1. It cannot be a constant nor a
variable in

⋃k
i=1 var(τi) since |ξ| > 1. Hence ξj ∈ var(Σ) − [y]. If j is odd

then since |ξ| > 1 and |ξ′| > 1, it follows that 1 < j < 2`− 1 and

Σ2 `d dεj−1(ξj−1, ξj) ≤ ni, and Σ2 `d dεj+1(ξj+1, ξj+2) ≤ ni

Moreover, η(ξj) = η(ξj+1). Thus ξj and ξj+1 are identical variables and we
obtain a contradiction since the η-chain can be shortened (by removing one
η-link). The case when j is even is argued similarly. This proves that all
terms in the η-chain must be of depth greater than 1, thereby completing
the proof of (3.6) and hence the whole proof.

3.3.11 Corollary
For any Helly poset Q and system Σ of inequalities over Q one can check
whether Σ is satisfiable in time polynomial with respect to |Σ|.

Proof: By Theorem 3.3.9, a system of inequalities Σ over a poset satisfying
the Helly property is satisfiable iff it is weakly satisfiable and distance consis-
tent. Weak satisfiability is an instance of the unification problem and hence
can be checked in polynomial time. On the other hand, from Theorem 3.2.4
it follows that distance consistency can be checked in nondeterministic log-
arithmic space, hence also in polynomial time.
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When dealing with a poset class for which no set of generators is known,
order-theoretic notions such as applied in the previous chapter are of less
use. Therefore in this chapter we extend another tool which proved useful
before — inference systems.

In doing so, we draw upon the work of Pratt and Tiuryn [PT96], who
observed that logic with existential quantification and transitive closure op-
erator is useful for describing retractability condidtions for partial orders.
On the other hand, validity of formulae of this logic can be checked in
NLOGSPACE. In this chapter we show how this idea can be extended to
yield a polynomial time algorithm deciding SSI for posets whose retractabil-
ity conditions can be expressed in the logic mentioned above.

4.1 Annotated TC-formulae

In this section we introduce a variant of logic with transitive closure operator.
Syntactically, the main difference from the logic proposed in [PT96] is that
since the models we work with are stratified according to shapes, in our logic
variables are annotated with shapes.

4.1.1 Syntax

Let Q ba a finite poset, X a set of variables and σ, σ1, σ2 . . . be shapes. First
we define the set of σ-shaped terms over Q with variables from a set X, as
the smallest set T σQ (X) satisfying the following conditions:

• if x ∈ X then xσ ∈ T σQ (X),

• if q ∈ Q then q ∈ T 0
Q(X),

• if t1 ∈ T σ1
Q (X) and t2 ∈ T σ2

Q (X) then t1 → t2 ∈ T σ1→σ2
Q (X).

Usually we will assume that Q and X is fixed and use a shorthand t : σ to
mean that t is a term of shape σ.

The set of annotated TC-formulae over Q (or, short: ATC-formulae) is
the least set ATCQ such that

• Every atomic formula t ≤σ u, where t, u : σ, is in ATCQ.

• If ϕ and ψ are in ATCQ, and every variable x free in ϕ and ψ has
identical annotations in both formulae, then

(ϕ ∨ ψ), (ϕ ∧ ψ)

are in ATCQ.
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• If ϕ is in ATCQ, and every free occurrence of x is annotated by σ then

(∃xσ.ϕ)

is in ATCQ.

• if ϕ is in ATCQ, ~σ = σ1, . . . , σn, then

TC(λ~x~σ, ~y~σ.ϕ)(~t, ~u)

is in ATCQ, where ~x, ~y are n-vectors of individual variables, ~t, ~u are
n-vectors of terms such that ti, ui : σi.

We shall say that a formula is flat if it contains only 0-shaped terms and
all its bound variables are annotated with 0. In such a case the annotations
are of no consequence and we can safely omit them.

A formula will be called balanced if every inequality in it is in the same
shape. From now on, we shall deal only with balanced formulae.

4.1.2 Free Variables

Given an ATC-formula ϕ (or a term t), the set of its free variables, FV (ϕ)
is defined as usual. It should be stressed that λ in the TC operator is also
a binder, so that

FV (TC(λ~x~σ, ~y~σ.ϕ)(~t, ~u) = (FV (ϕ) \ {~x, ~y}) ∪ FV (~t) ∪ FV (~u)

4.1.3 Lonely Variables

An occurrence of a variable shall be called lonely in ϕ, if it is free and not
inside a term. Formally, given an ATC-formula ϕ (or a term t), we define
the set of its lonely variables, LV (ϕ) as follows:

LV (x) = {x}
LV (t→ u) = ∅
LV (t ≤ u) = LV (t) ∪ LV (u)

LV (ϕ ∧ ψ) = LV (ϕ) ∪ LV (ψ)

LV (ϕ ∨ ψ) = LV (ϕ) ∪ LV (ψ)

LV (∃x.ϕ) = LV (ϕ) \ {x}
LV (TC(λ~x~σ, ~y~σ.ϕ)(~t, ~u) = (LV (ϕ) \ {~x, ~y}) ∪ LV (~t) ∪ LV (~u)

For example in the formula (skipping the annotations for brevity)

∃x.x ≤ (y → z) ∧ t ≤ x
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the variable t is lonely, while x, y, z are not (x is bound and y, z occur inside
a term).

Note that for balanced formulae, all free occurrences of a lonely variable
are lonely.

4.1.4 Semantics

First we define a semantics for flat formulae. A Q-model is any poset R of
which Q is a subposet. A valuation v assigns to each variable x an element
v(x) ∈ R. Now we can define when a flat formula is satisfied in R by a
valuation v (R |= ϕ[v]):

• R |= (t1 ≤0 t2)[v] iff v(t1) ≤R v(t2);

• R |= (ϕ ∧ ψ)[v] iff R |= ϕ[v] and R |= ψ[v]

• R |= (ϕ ∨ ψ)[v] iff R |= ϕ[v] or R |= ψ[v]

• R |= (∃x0.ϕ)[v] iff R |= (ϕ[r/x])[v] for some r ∈ R;

• R |= TC(λ~x, ~y.ϕ)(~t, ~u)[v] iff there exists a positive integer k and vectors
of elements of R~t = ~r0, ~r1, . . . ~rk = ~u such that R |= (ϕ[~ri/~x,~ri+1/~y])[v]
for i = 0, 1, . . . , k − 1.

For closed formulae, we shall omit the valuation and write simply R |= ϕ.

Flat formulae can be used to express obstacles for retractibility. For
example, any poset R extending the poset depicted in Fig. 4.1, retracts to
it if and only if

R 6|= TC(λx, y.((x ≤ y ∨ y ≤ x) ∧ x ≤ 1 ∧ x ≤ 3 ∧ y ≤ 1 ∧ y ≤ 3))(0, 2).
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Figure 4.1: A poset which is TC-feasible but not Helly
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4.1.1 Definition
Poset Q is called TC-feasible if there exists a flat TC-formula ϕQ such that
for every R extending Q,

R�Q⇔ R 6|= ϕQ

Such ϕQ is called a complete obstacle for Q.

4.1.2 Theorem
Every absolute retract (and hence every Helly poset) is TC-feasible.

Proof: If Q is an absolute retract then a complete obstacle for it is a
formula saing that some hole in Q is not separated, i.e. a disjunction over
all holes1 in Q of formulae stating that a particular hole is not separated. If

H = {(vt, δ+1
t , δ−1

t ) : t ∈ T}

is a hole in Q, the fact that it is not separated in Q can be expressed as
follows:

∃x.
∧
{dε(vt, x) ≤ δε | t ∈ T, ε = ±1}

Distance judgements are also easy to express in our logic, e.g. we can rewrite

d+1(p, q) ≤ n

as

∃x1 . . .∃xn−1. p ≤ x1 ∧ x1 ≥ x2 ∧ . . . ∧ xn−2 ≤ xn−1 ∧ xn−1 ≥ q

From the above proof it follows that obstacles for absolute retracts can
be expressed by existential formulae, i.e. without transitive closure operator.
The poset depicted in Fig. 4.1 can also serve as an evidence that adding this
operator really increases expressive power and that the class of TC-feasible
posets is wider than Helly posets [PT96].

1Since Q is finite, the set of holes is also finite.
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Before we present the semantics of arbitrary ATC-formulae, let us recall
that variables are annotated with shapes which define how they should be
valuated.

Let R be a poset, v : X → TR. We say that v is compatible with ϕ if for
every variable x free in ϕ, the shape of v(x) corresponds to the annotation
of x in ϕ. In what follows we shall consider only compatible valuations.

• TR |= (t1 ≤σ t2)[v] iff v(t1) ≤Rσ v(t2);

• TR |= (ϕ ∧ ψ)[v] iff TR |= ϕ[v] and TR |= ψ[v]

• TR |= (ϕ ∨ ψ)[v] iff TR |= ϕ[v] or TR |= ψ[v]

• TR |= (∃xσ.ϕ)[v] iff TR |= (ϕ[r/x])[v] for some r ∈ Rσ;

• TR |= TC(λ~x~σ, ~y~σ.ϕ)(~t, ~u)[v] iff there exists a positive integer k and
vectors of elements from TR ~t = ~r 0, ~r 1, . . . ~rk = ~u such that rji ∈ Rσi
for all relevant i, j and TR |= (ϕ[~r j/~x,~r j+1/~y])[v] for j = 0, 1, . . . , k−1.

4.1.3 Proposition
For flat ϕ we have

TR |= ϕ iff R |= ϕ

Proof: For atomic ϕ, by definition we have

TR |= t ≤0 u iff t ≤R u iff R |= t ≤ u

Other cases follow by easy induction, basing on the fact that if v : X → TR
is compatible with a flat formula ϕ then v(x) ∈ R for every x ∈ FV (ϕ)

4.1.4 Definition
Let Q be a finite poset and Σ a system of inequalities over Q. We say that
ϕ is a semantical consequence of Σ (Σ |= ϕ) if for every valuation v being a
solution of Σ, TQ |= ϕ[v].

4.1.5 Projections

First we define projections on shapes:

0 ↓ i = 0, (σ1 → σ2) ↓ i = σi i = 1, 2

Next we define projections on terms:

c↓ i = c xσ ↓ i = xσ↓i, i = 1, 2

(t1 → t2)↓ i = ti, i = 1, 2
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Now we define projections of ATC-formulae: ( · ) ↓ 1, ( ·) ↓ 2 : ATCQ →
ATCQ

(t ≤0 u)↓ i = t ≤0 u

(t ≤σ1→σ2 u) ↓ 1 = (u ↓ 1) ≤σ1 (t ↓ 1)

(t ≤σ1→σ2 u) ↓ 2 = (t ↓ 2) ≤σ2 (u ↓ 2)

(ϕ ∧ ψ)↓ i = (ϕ↓ i) ∧ (ψ↓ i)
(ϕ ∨ ψ)↓ i = (ϕ↓ i) ∨ (ψ↓ i)

(∃xσ.ϕ) ↓ i =
{
∃xσ↓i.ϕ ↓ i if x ∈ LV (ϕ)
∃xσ.ϕ ↓ i otherwise

(TC(λ~x~σ, ~y~σ.ϕ)(t, u)) ↓ i = TC(λx~σ
′
, y~σ

′
.(ϕ ↓ i))(t ↓ i, u ↓ i)

where σ′j =
{
σj ↓ i if xj ∈ LV (ϕ)
σj otherwise

For π = p1p2 . . . pn ∈ {1, 2}∗ we shall write ϕ ↓ π for (. . . ((ϕ ↓ p1) ↓
p2) . . .) ↓ pn.

4.1.5 Lemma
If ϕ is balanced, LV (ϕ) = ∅ and v is compatible with ϕ then TR |= ϕ[v] iff
TR |= (ϕ ↓ i)[v ↓ i] for i = 1, 2.

Proof: by induction on ϕ. The case when ϕ ≡ t ≤σ u is trivial for σ = 0
and follows from definition of subtype order and projections for complex
shapes (since LV (ϕ) = ∅, we have t = t1 → t2 and u = u1 → u2 ). The case
when ϕ ≡ ∃xσ.ϕ1 is again trivial if σ = 0 and follows from the induction
hypothesis if x 6∈ LV (ϕ1). Otherwise, if σ = σ1 → σ2 then TR |= ϕ[v] iff
there exist r1 ∈ Rσ1 , r2 ∈ Rσ2 such that TR |= (ϕ1[r1 → r2/x])[v]. Applying
the induction hypothesis to the latter formula yields the thesis for this case.
Conjunction and disjunction are obvious and TC can be handled similarly
to ∃.

4.1.6 Closures

Let t � u denote the formula TC(λxσ, yσ.x ≤ y)(t, u), The closure of a
formula ϕ (denoted ϕ) is defined as follows:

t ≤ u = t � u
ϕ ∧ ψ = ϕ ∧ ψ
ϕ ∨ ψ = ϕ ∨ ψ
∃xσ.ϕ = ∃xσ.ϕ

TC(λ~x~σ, ~y~σ.ϕ)(~t, ~u) = TC(λx~σ, y~σ.(ϕ)(t, u)
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4.2 A proof system for ATC-formulae

As observed in [PT96], to decide satisfiability of a flat system Σ of inequal-
ities over a poset Q for which we know a complete obstacle ϕQ, it is suf-
ficient to check whether Σ satisfies an obstacle formula. This can be done
in NLOGSPACE. Unfortunately, this result cannot be easily carried over to
general systems, since there is no efficient (i.e. one that can be realized in
polynomial time) method for checking satisfaction of a formula by a general
system (as minimal solutions of such system can have exponential size).

In this section we introduce an inference system for ATC-formulae and
prove its soundness. For the reasons outlined above, it is not complete. In
fact it is designed so that for a fixed formula, we can check in polynomial
time, whether it is derivable from a given system of inequalities. On the
other hand we show the system is strong enough to be useful in deciding
SSI for TC-feasible posets.

4.2.1 Inference rules

Let Σ be a weakly satisfiable system of inequalities over Q with all variables
annotated according to the most general unifier of Σ?. Consider the inference
system depicted in Fig. 4.2

4.2.1 Lemma
For every ATC-formula ϕ, if Σ ` ϕ then Σ |= ϕ

Proof: By induction on the derivation of ϕ. The cases when the last rule
was axiom, alternative or conjunction are obvious. If the last rule used was
(↓), then the thesis follows directly from Lemma 4.1.5.

4.2.2 Corollary
If ϕ is a complete obstacle for Q and Σ ` ϕ then Σ is not satisfiable.

4.2.3 Theorem
For any fixed, flat ATC-formula ϕ, one can check in time polynomial in |Σ|,
whether Σ ` ϕ.

Proof: First, observe that, if we erase annotations, then the only formulae
which may occur in a derivation of Σ ` ϕ are subformulae of ϕ with free
variables instantiated by subterms of terms occurring in Σ. Hence, the num-
ber of such formulae is polynomial in |Σ|. On the other hand, the number of
distinct shapes that may occur in such derivation is bounded by the size of
Σ. Thus the number of formulae that may occur in the derivation is poly-
nomial and we may check systematically for each of them (proceeding from
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Σ ` t ≤ u for t ≤ u ∈ Σ

Σ ` ϕ
Σ ` ϕ ↓ i (↓)

LV (ϕ) = ∅

Σ ` ϕ Σ ` ψ
Σ ` ϕ ∧ ψ (∧)

Σ ` ϕi
Σ ` ϕ1 ∨ ϕ2

(∨)

Σ ` ϕ[t/xτ ]
Σ ` ∃xτ .ϕ (∃) t : τ

Σ ` ϕ[~t/~x~σ, ~u/~y~σ]

Σ ` TC(λ~x~σ, ~y~σ.ϕ)(~t, ~u)
(TC0)

Σ ` TC(λ~x~σ, ~y~σ.ϕ)(~t, ~s) Σ ` TC(λ~x~σ, ~y~σ.ϕ)(~s, ~u)

Σ ` TC(λ~x~σ, ~y~σ.ϕ)(~t, ~u)
(TCS)

Figure 4.2: An inference system for ATC-formulae
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bigger to smaller terms and from simpler to more complicated formulae),
whether it is derivable from Σ.

4.2.2 Simple formulae and restricted derivations

An annotated formula is called simple, if it contains no occurrences of TC
or disjunction. Obviously no derivation of a simple formula can use rules
for such constructs.

4.2.4 Lemma
If Σ ` ∃xσ.ϕ, then there exist: a shape σ̂, a term t : σ̂, a formula ϕ̂ and a
path π ∈ {1, 2}∗ such that

σ = σ̂ ↓ π
ϕ = ϕ̂ ↓ π
Σ ` ϕ̂[t̂/xσ̂]

Proof: This lemma is easily proved by induction on derivations.

4.2.5 Lemma
The following rules are admissible:

Σ ` ∃y.∃x.ϕ
Σ ` ∃x.∃y.ϕ

Σ ` ∃~z.∃y.∃x.ϕ
Σ ` ∃~z.∃x.∃y.ϕ

Σ ` ϕ[t/z] Σ ` ∃~y. ψ[t/z]
Σ ` ∃z.∃~y. (ϕ ∧ ψ)

~y 6∈ FV (ϕ)

Σ ` ∃~x.ϕ[t/z] Σ ` ∃~y. ψ[t/z]
Σ ` ∃z.∃~y∃~x.(ϕ ∧ ψ)

~y 6∈ FV (ϕ)
~x 6∈ FV (ψ)

Proof: This lemma can beproved by induction on derivations, using the
previous lemma.

The simplification set of formula ϕ is the set of simple formulae, defined
as follows:

[t ≤ u] = {t ≤ u}
[ϕ1 ∨ ϕ2] = [ϕ1] ∪ [ϕ2]

[ϕ1 ∧ ϕ2] = {ψ1 ∧ ψ2 : ψ1 ∈ [ϕ1], ψ2 ∈ [ϕ2]}
[∃x.ϕ] = {∃x.ψ : ψ ∈ [ϕ]}
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[TC(λ~x~σ, ~y~σ.ϕ)(~t, ~u)] =
⋃
k∈ω
{∃~z1, . . . , ~zk.ψ[~t/~x, ~z1/~y] ∧ ψ[~z1/~x, ~z2/~y] ∧

. . . ∧ ψ[~zk/~x, ~u/~y] : ψ ∈ [ϕ]}}

4.2.6 Lemma
For every formula ϕ and ψ ∈ [ϕ], we have (i) FV (ψ) ⊆ FV (ϕ) and (ii)
LV (ψ) ⊆ LV (ϕ).

Proof: (i) follows by an easy induction over ϕ; (ii) follows from (i) and
the fact that simplification does not change terms occuring in the formula
(though some may be omitted, but it can only decrease LV ).

4.2.7 Lemma
For every ATC-formula ϕ, Σ ` ϕ iff there exists a simple formula ψ belonging
to the simplification set of ϕ such that Σ ` ψ.

Proof: This lemma is easily proved by structural induction over formulae,
using Lemma 4.2.5.

4.2.3 Canonical form of simple formulae

By canonical form of a simple formula we mean its prenex form. A formula
in this form may be treated as a system of inequalities. Namely, for the
formula ϕ ≡ ∃~x.(t1 ≤ u1 ∧ . . . ∧ tn ≤ un), its corresponding system of
inequalities is ∆(ϕ) = {t1 ≤ u1, . . . , tn ≤ un}

If Γ and ∆ are systems of inequalities, we say that Γ ` ∆ if there is a
formula ϕ such that Γ ` ϕ and ∆ = ∆(ϕ).

4.2.4 Flat systems

Let Σ be a flat system of inequalities over Q. We shall write Q ∪ Σ as a
shorthand for

Σ ∪ {t ≤ u | Q |= t ≤ u, t, u ∈ Q}.

Consider the set QΣ = Q ∪ var(Σ), preordered by the relation � defined as
follows:

t � u iff Q ∪ Σ ` t � u

4.2.8 Lemma
Σ is satisfiable iff 〈QΣ,�〉 retracts to 〈Q,≤〉.

Proof: Let v be a solution of Σ. We will show that v∪ idQ is a retraction.
The idempotence is obvious, so it only remains to prove monotonicity.
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If Q ∪ Σ ` t � u then there exist t = r0, r1, . . . , rk = u ∈ var(Σ) ∪ Q
such that

Q ∪ Σ ` ri ≤ ri+1 i = 0, 1, . . . , k − 1

hence
Q ∪ Σ 3 ri ≤ ri+1 i = 0, 1, . . . , k − 1

Since v is a solution of Σ, we have

v(ri) ≤Q v(ri+1) i = 0, 1, . . . , k − 1

thus
v(t) ≤Q v(u)

It is easy to see that any retraction v : QΣ → Q is a solution of Σ.

For a given, finite Q we shall construct a formula NGC(Q) such that
Σ ` NGC(Q) iff Σ is not ground consistent:

NGC(Q) ≡
∨
{c � d | Q 6|= c ≤ d}

4.2.9 Lemma
Let ϕ be a complete obstacle for Q. If Σ ` NGC(Q) then Σ is not satisfiable.
Otherwise QΣ retracts to Q iff QΣ 6|= ϕ.

Proof: From Lemma 4.2.1 it follows that if Σ ` NGC(Q) then every solu-
tion of Σ must satisfy NGC(Q); this is possible only if Σ has no solutions. If
Σ 6` NGC(Q) then QΣ is an extension of Q and QΣ retracts to Q iff QΣ 6|= ϕ
since ϕ is a complete obstacle for Q.

4.2.10 Lemma
For every ATC-formula ψ,

QΣ |= ψ ⇔ Q ∪ Σ ` ψ̄

(where ψ̄ denotes the closure of ψ defined in section 4.1.6).

Proof: Note that, by definition of ordering on QΣ, for every t, u ∈ QΣ

QΣ |= t ≤ u⇔ Q ∪ Σ ` t � u

Now, the thesis follows by an easy induction on ψ.

4.2.11 Lemma
Let ϕ be a complete obstacle for Q. For every flat system of inequalities Σ,
Σ is satisfiable iff

Q ∪ Σ 6` ϕ̄ ∨NGC(Q)

Proof: This lemma is a simple consequence of previous three lemmas.
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4.2.5 Single-shaped systems and formulae

A system of inequalities is called σ-shaped if all its variables and inequalities
are of the shape σ. Similarly, a formula is called σ-shaped if it is balanced
and all its variables (free and bound) as well as all inequalities are annotated
with σ. A system (formula) is called single-shaped if it is σ-shaped for some
σ.

These notions will serve us as an intermediate level between flat and gen-
eral systems of inequalities and will facilitate the proof of the main theorem.

4.2.12 Definition
Let σ = σ1 → σ2 and let Σ = {t1 ≤ u1, . . . , tn ≤ un} be a σ-shaped system
of inequalities. For i = 1, 2, we define

Σ ⇓ i = {(t1 ≤ u1)↓ i, . . . , (tn ≤ un)↓ i}

4.2.13 Lemma
Let ϕ be a complete obstacle for Q and Σ be single-shaped. Σ is satisfiable
iff

Q ∪ Σ 6` ϕ ∨NGC(Q)

Proof: Before we delve into technicalities, let us explain the intuition
behind this lemma. A σ-shaped system of inequalities over Q may be viewed
as a flat system over Qσ, which is again a TC-feasible poset. Even though
ϕ is not a complete obstacle for Qσ, one can easily construct a formula ϕσ

which is such an obstacle, and having the property that Σ ` ϕ iff Σ ` ϕσ.
But as this line of proof is technically more complicated and needs several
technical lemmas similar to 4.2.5, we shall prove this lemma in a slightly
different way.

If Σ ` ϕ then obviously Σ is not satisfiable (see Corollary 4.2.2). Thus it
remains to prove that if Σ is not satisfiable then Σ ` ϕ. Let Σ be σ-shaped.
We shall proceed by induction on σ. If Σ is flat then the thesis follows from
the Lemma 4.2.11. On the other hand, if σ = σ1 → σ2, Σ is unsatisfiable iff
either Σ ⇓ 1 or Σ ⇓ 2 is.

Let us assume that Q 6|= Σ ⇓ 2 (the other case is handled dually). By
completeness of ϕ, we have that Σ ⇓ 2 ` ϕ. We shall show that this implies
Σ ` ϕ. First we shall prove that for every formula ψ derivable from Σ ⇓ 2
without using (↓), there exists a formula ψ ↑ 2 such that

1. Σ ` ψ ↑ 2

2. (ψ ↑ 2) ↓ 2 = ψ

3. LV (ψ ↑ 2) = ∅ iff LV (ψ) = ∅
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• If ψ ≡ t ≤ u then t ≤ u ∈ Σ ⇓ 2, since the derivation does not
contain (↓). Hence there is t′ ≤ u′ in Σ such that (t′ ≤ u′) ↓ 2 = t ≤ u.

• If ψ ≡ ∃xτ .ψ′ and Σ ⇓ 2 ` ψ′[t/x] then Σ ` (ψ′[t/x]) ↑ 2. Let ψ′′ be
such that

ψ′′[t/x] = (ψ′[t/x]) ↑ 2

and let

ψ ↑ 2 =
{
∃xσ1→σ2 .(ψ′′) if τ = σ2

∃xτ .ψ′′ otherwise

The correctness of the above definition follows from the fact that, since
Σ ⇓ 2 is σ2-shaped, x ∈ LV (ψ′) iff τ = σ2.

• The TC case is handled very similarly (cf. the definition of projection
in section 4.1.5.

• The cases of conjunction and disjunction are trivial.

If the derivation of the obstacle ϕ from Σ ⇓ 2 does not contain (↓), the
thesis follows immediately. Otherwise consider a subderivation ending with
an application of the rule (↓)

...
Σ ⇓ 2 ` ψ

Σ ⇓ 2 ` ψ↓ i

and such that it contains no other application of this rule. We have

1. Σ ` ψ ↑ 2

2. (ψ ↑ 2) ↓ 2 = ψ

3. LV (ψ) = ∅

4. LV (ψ ↑ 2) = ∅

Hence ....
Σ ` ψ ↑ 2

Σ ` ψ
Σ ` ψ↓ i

Thus we have proved the desired thesis.
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4.2.14 Definition
A system Σ̂ is called a σ-view of Σ if the following conditions hold:

1. Σ ` Σ̂

2. Σ̂ is σ-shaped

3. For every σ-shaped ∆, if Σ ` ∆ then Σ̂ ` ∆.

4.2.15 Lemma
For every system Σ and shape σ minimal in Σ there exists a σ-view of Σ.

Proof: Let σ be a shape minimal in Σ, ρ be a shape of some inequality in
Σ and π be a path such that ρ ↓ π = σ. Further, let Σρ denote the set of
ρ-shaped inequalities in Σ and ψΣ

ρ be the formula

ψΣ
ρ = ∃~x.

∧
t≤u∈Σρ

t ≤ u

where the quantification is over all variables occurring in Σρ which have
shape different from σ. Obviously, the formula (ψΣ

ρ ↓ π) is σ-shaped, and
because of minimality of σ it is derivable from Σ.

Now it is easily seen that

∆Σ
σ = ∆(

∧
{(ψΣ

ρ ↓ π) | ρ ↓ π = σ})

is a σ-view of Σ.

4.2.6 General systems

4.2.16 Theorem
Let ϕ be the complete obstacle for Q. For every system of inequalities Σ, Σ
is satisfiable iff it is weakly satisfiable and

Q ∪ Σ 6` ϕ ∨NGC(Q)

Proof: The (⇒) implication is obvious. The opposite implication is proved
by induction on the number of equivalence classes of ∼ defined on var(Σ)
as follows

x ∼ y iff Σ∗ |= x = y

Suppose first that the quotient set var(Σ)/∼ has only one element σ.
Then every inequality in Σ is either σ-shaped, or of the form t1 → t2 ≤ u1 →
u2, or p ≤ q with p, q ∈ Q. Thus it is easy to construct (by decomposition of
complex inequalities and removing inequalites between constants from Q) a
system Σ′ which is σ-shaped and equivalent (in the sense of satisfiability as
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well as derivability of flat formulae) to Σ. Satisfiability of Σ′ (and hence Σ)
follows from Lemma 4.2.13.

Now let us assume that var(Σ)/∼ has n+ 1 elements and let y ∈ var(Σ)
be such that for no z ∈ var(Σ) there is a term τ with |τ | > 1, z ∈ var(τ)
and Σ∗ |= τ = y. If there is no such y, then one easily finds a term τ such
that |τ | > 1, z ∈ var(τ) and Σ∗ |= τ = z. This would contradict weak
satisfiability of Σ.

Let
[y] = {z ∈ var(Σ)|z ∼ y} = {y1, . . . , yk}

Let σ be the shape assigned to y by mgu(Σ?), and let Σ̂ be a σ-view of
Σ.

Again, the satisfiability of Σ̂ follows from the Lemma 4.2.13. Let v̂ :
[y]→ Tσ be a solution of Σ̂ and let

Σ1 = v̂(Σ) = {v̂(τ) ≤ v̂(ρ) : τ ≤ ρ ∈ Σ}

In the above definition v̂ acts as identity on variables other than those in
[y]. Let ∼1 be the equivalence relation associated with Σ1. One can prove
that

|var(Σ1)/∼1 | = n

Σ1 is weakly satisfiable

To complete the proof we need to prove that

Σ1 6` ϕ ∨NGC(Q)

To do this we shall prove that for every flat ∆ derivable from Σ1, Q |= ∆.
On the other hand we have that

Q 6|= ϕ ∨NGC(Q)

For every flat ∆ derivable from Σ1 there exists a σ-shaped ∆′ derivable
from Σ such that ∆ is derivable from v̂(∆′). Since Σ̂ is a σ-view of Σ, we
also have Σ̂ ` ∆′. Thus v̂(Σ̂) ` v̂(∆′). But since v̂ is a solution of Σ̂, we
have Q |= ∆′, which we wanted to prove.

4.2.17 Corollary
For any TC-feasible Q and Σ — a system of inequalities over Q one can
check in time polynomial in |Σ|, whether Σ is satisfiable.

Proof: By Theorem 4.2.16 there is a flat ATC formula ϕQ depending only
on Q and such that Σ is satisfiable iff ϕ is not derivable from Q, which by
Theorem 4.2.3 can be checked in polynomial time.
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5.1 Introduction

The aim of this chapter is to establish further links between SSI and FLAT-
SSI,providing some evidence in favour of the following conjecture:

5.1.1 Conjecture
Given a poset Q such that Q-FLAT-SSI is complete for NTM(s, t), Q-SSI
is complete for ATM(s, t).

In our opinion, the ‘nondeterminism vs alternation’ concept constitutes
a framework within which various complexity phenomena bound with sub-
typing can be explained. Sure enough, there is still a lot of open questions
and gaps to be filled, but we present it with hope that it will encourage
further research in this area. One example would be the apparent ’gap’ in
the poset hierarchy. So far we know no posets for which SSI is NP-complete
or FLAT-SSI — P-complete. Within our framework, the explanation for
this gap is provided by the fact that (unless P=NP or NP=PSPACE) NP is
not an alternating complexity class and (unless P=NL or P=NP), P is not
a nondeterministic complexity class.

5.2 Motivating examples

First let us look at several examples known so far that supporting the thesis
that arrows in the systems of inequalities correspond on the complexity
level exactly to the transition from nondeterministic classes to corresponding
alternating classes. This is at the same time a resume of current knowledge
about the complexity of SSI:

1. If Q is discrete, then

• Q-FLAT-SSI is in NLOGSPACE1;

• Q-SSI is equivalent to the unification, and hence AL-complete.

2. If Q is a disjoint union of lattices (but not discrete), then

• Q-FLAT-SSI is NLOGSPACE-complete [Ben94];

• Q-SSI is ALOGSPACE-complete [Tiu92].

3. If Q is a non-discrete Helly poset, then

• Q-FLAT-SSI is NLOGSPACE-complete [Ben93, Ben94];
1the problem whether it is NLOGSPACE-hard is equivalent to a known open problem

in complexity, whether SYMLOGSPACE=NLOGSPACE
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• Q-SSI is ALOGSPACE-complete [Ben93].

4. If Q is a non-discrete TC-feasible poset, then

• Q-FLAT-SSI is NLOGSPACE-complete [PT96];

• Q-SSI is ALOGSPACE-complete (Corollary 4.2.17).

5. If Q is an n-crown (n > 1), then

• Q-FLAT-SSI is NP-complete [PT96];

• Q-SSI is AP-complete [Tiu92, Fre97].

5.3 Encoding alternation

In this section we show that the result of [Tiu92] (AP-hardness of SSI for
crowns) can be generalized stating that for all posets for which FLAT-SSI is
NP-hard, SSI is AP-hard. To this end, we construct an encoding for QBF
as an SSI, given encoding of SAT as FLAT-SSI.

First let us make some assumptions about encodings of instances of SAT
as systems of inequalities. Later we show how these assumptions can be
either removed or replaced. Intuitively, these assumptions express the re-
quirement that whenever there exists a simulation of NTM, there exists one
which is “regular” enough to be transformed to a simulation of an ATM.
This intuition is formalized in the following

5.3.1 Definition
Let ϕ = ϕ(~x) be a 3-CNF2 propositional formula with variables ~x = x1, . . . xn
(and no other)

We say that a flat system of inequalities Σϕ encodes ϕ if there exist
variables z1, . . . , zn and constants ~c such that for every p1, . . . , pn ∈ {0, 1}

|= ϕ[~p/~x] ⇐⇒ Σϕ[~c/~z] is satisfiable

We say the encoding is symmetric, if there exists an antimonotonic bi-
jection f : Q→ Q that extends to an antimonotonic bijection of (the poset
corresponding to) Σϕ onto itself and such that c1

i = f(c0
i ) for i = 1, . . . , n.

5.3.2 Theorem
Let Q be a poset such that Q-FLAT-SSI is complete for NP under symmetric
reductions. Then Q-SSI is complete for AP.

23-CNF means a conjunctive normal form with 3 disjuncts in each clause.
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Proof: Since [Fre97] presents an AP-algorithm for deciding SSI for an
arbitrary finite poset, we need to prove hardness only. Let

∀xn∃yn . . .∀x1∃y1 ϕ

be an instance of QBF, ϕ contains no quantifiers and is in 3-CNF.
Let Σϕ be a symmetric encoding of ϕ. We show how to construct a

system of inequalities Σk such that

ψk holds ⇐⇒ Σk is satisfiable

where
ψk = ∃xn∃yn . . .∃xk+1∃yk+1∀xk∃yk . . .∀x1∃y1 ϕ

The construction of Σk is by induction on k, the number of quantifier
alternations in ψk.

Let q be the smallest positive integer such that f q = id (such q must
exist since Σ is finite, moreover it cannot be greater than |Σ|).

In what follows we use a with sub- or super-scripts. These are new
variables. We will also use new variables [u]i,jk , where 0 ≤ k ≤ n, i, j ∈ Q
and u is a propositional variable of ϕ. The variable [u]i,jk is a version of [u]i,j ,
lifted to level k. The variable aik, which we use below, represents constant i
lifted to level k.

Let us first define sets ∆k, for 0 ≤ k ≤ n.

∆0 = { ai,j0,0 = aj0 | i, j ∈ P } ∪ { a
i
0 = i | i ∈ P }

For k < n, ∆k+1 is ∆k plus the equations (5.1–5.4) below, with i, j
ranging over Q.

aik+1 = a
f(i)
k → aik (5.1)

For k + 1 < p ≤ n and zp ∈ {xp, yp},

f i(zp,k+1) = f i+1(zp,k)→ f i(zp,k) for i = 0, . . . q − 1 (5.2)

For 1 ≤ p ≤ k,
ai,jp,k+1 = a

f(j),f(i)
p,k → ai,jp,k (5.3)

ai,jk+1,k+1 = ajk+1 (5.4)

For every k ≥ 0, let Σ̂k be the system of inequalities obtained from Σ̂
by replacing every variable [u]i,j of Σ̂ by [u]i,jk , and replacing the constant
i ∈ Q by a (new) variable aik. Hence, there are no constants in Σ̂k.
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Finally we set Σk+1 = ∆k+1 ∪ Σ̂k+1 plus the equation (5.5) with i, j
ranging over Q and 1 ≤ p ≤ k + 1.

zp,k+1 = a
c0p,c

1
p

p,k+1 (5.5)

The thesis follows from the following lemmas:

5.3.3 Lemma
Let Vk = {xk+1, yk+1, . . . , xn, yn}. For all k ≥ 0, and for every function

ξ : Vk → {0, 1}, Σk+1 ∪ { zk = a
c
ξ(v)
k
k | v ∈ Vk+1 } is satisfiable iff for every

i ∈ {0, 1}, Σk ∪ { zk = a
c
ξ(v)
k
k | v ∈ Vk } ∪ {zk+1,k = acik } is satisfiable.

Proof: Take Σk+1. Let u be one of z1, . . . , zn. The inequalities in Σ̂k+1

compare uk+1 with some alk+1, hence by (5.1), the former has to be expanded
introducing two new variables. We use a special naming convention for the
new variables introduced by this expansion, so that it will be easier to follow
the proof. Let us choose the substitution

uk+1 = f(u0
k)→ u1

k (5.6)

First, we shall show that Σ̂k+1 is equivalent to two copies of Σ̂k, one for u0’s
and the other for u1’s. Indeed, Σ̂k+1 is equivalent to

f(Σ̂k[~z0
k/~zk]) ∪ Σ̂k[~z1

k/~zk]

For k + 1 < p ≤ n, by (5.2) and (5.6) we get:

x1
p,k = xp,k (5.7)

and
f(x0

p,k) = f(xp,k) (5.8)

Since f is a bijection, it follows that the variables x0
p and x1

p are equated
for k+ 1 < p ≤ n and we can assume that we are dealing just with one copy
xp. A similar statement holds for yk+2, . . . , yn.

By (5.5) (for p = k + 1), (5.6), (5.4) and (5.1) we obtain

f i(x1
k+1,k) = f i(a

c1p
k ) (5.9)

and
f i+1(x0

k+1,k) = f i(a
f(c0p)

k ) (5.10)

Substituting i = 0, j = 1 in (5.9) yields x1
k,k+1]=a

c1k+1

k . Similarly, sub-

stituting i = 0, j = q − 1 in (5.10) we get x0
k+1,k = ac

0
p . Putting these two

together we obtain for i = 0, 1,

xik,k+1 = a
cik+1

k (5.11)
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By (5.5), (5.3) and (5.6) we can conclude that for l = 0, 1, 1 ≤ p ≤ k
and 0 < i ≤ q,

f i(xlp,k)
=f i(a

c1p
k )

Thus we have shown that Σk+1 is equivalent to (5.11) plus two copies of
Σk, one copy in which for every 1 ≤ p ≤ k, every xp and every yp has been
replaced by x0

p and y0
p, respectively; and the other in which xp and every

yp has been replaced by (xp)1 and (yp)1. This completes the proof of the
lemma.

For 0 ≤ k ≤ n let

ϕk = ∀xk∃yk . . .∀x1∃y1 ϕ

Hence, free variables of ϕk are among Vk = {xk+1, yk+1, . . . , xn, yn}. The
following result shows correctness of the choice of Σk.

5.3.4 Lemma
For every 0 ≤ k ≤ n and for every valuation ξ : Vk → {0, 1}, ξ satisfies ϕk

iff Σk ∪ {zj = a
c
ξ(zj)

j

k | zj ∈ Vk} is satisfiable.

Proof: The proof is by induction on k. For k = 0, it is enough to observe
that ϕ0 is ϕ and the statement follows from the proof of NP-hardness of the
flat case.

Now, in order to complete the proof let us take any truth assignment
ξ : Vk+1 → {0, 1}, and for i, j ∈ {0, 1} let ξi,j : Vk → {0, 1} be an extension
of ξ such that ξi,j(xk+1) = i and ξi,j(yk+1) = j. Then we have

ξ satisfies ϕk+1 (5.12)

iff
∀i ∈ {0, 1}∃j ∈ {0, 1}ξi,j satisfies ϕk (5.13)

iff ∀i ∈ {0, 1}∃j ∈ {0, 1}

Σk ∪ { vk = a
c
ξ(v)
k
k | v ∈ Vk }

∪ {xk+1,k = a
cik+1

k , yk+1,k = a
cjk+1

k }
is satisfiable (5.14)

iff ∀i ∈ {0, 1}

Σk ∪ { vk = a
c
ξ(v)
k
k | v ∈ Vk }

∪ {xk+1,k = a
cik+1

k }
is satisfiable (5.15)
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iff
Σk+1 ∪ { vk = a

c
ξ(v)
k
k | v ∈ Vk+1} is satisfiable (5.16)

Equivalence of (5.13) and (5.14) follows from the induction assumption.
Equivalence of (5.15) and (5.16) follows from Proposition 5.3.3.
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6.1 Introduction

In this part we discuss problems concerning combining subtyping with the ML
(also known as Hindley-Milner) type discipline. This discipline, using shal-
low polymorphic (also called “rank 1”) type schemes1, constitutes the kernel
of type systems of almost all current functional languages, including Stan-
dard ML, CAML, Haskell, Clean and Miranda. Exceptions are of course
languages that are not statically typed (e.g. Lisp family) or those with
restricted use of higher order functions (like Erlang). There are two ways
of extending a polymorphic type discipline with subtyping: the simpler one
modifies only the typing rules while preserving the syntax of types, the other
introduces subtyping constraints into type syntax (thus making instantia-
tion of bound type variables subject to satisfaction of these constraints).
In this chapter, we concentrate on the former, presenting an algebraic char-
acterisation of typability in this system.

6.2 Preliminaries

6.2.1 Terms

We concentrate on a subset of ML terms essential for type analysis:

M ::= c | x | λx.M |M1M2 | let x = M1 in M2

(x stands for variables and c for constants)

6.2.2 Types and type schemes

Given a set of type variables (α, β, γ, . . .) and a (finite) set of type constants
(like char,int,real,. . . ), we define the set of (monomorphic) types

τ ::= κ | α | τ → τ

where κ stands for type constants.
Further, we define the set of (polymorphic) type schemes

σ ::= ∀α1 . . . αn.τ

In the sequel we shall use the abbreviation ∀~α.τ , and a notational convention
that σ (possibly with indices) will stand for type schemes and τ, ρ (possibly
with indices) for (monomorphic) types.

If α 6∈ FV (σ) then ∀α.σ is called an empty binding. A type scheme
containing only empty bindings is called singular.

1that is with quantification at top level only
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6.2.3 Subtype partial orders

We assume there is some predefined partial ordering ≤κ on the type con-
stants.

We introduce a system of subtyping for ML types being a restriction
of the Mitchell’s system [Mit88] to ML types, enriched with the subtyping
between constants. The system derives formulas of the form σ ≤ τ , where
σ and τ are type schemes.

Axioms:

(refl) σ ≤ σ
(inst) ∀~α. σ ≤ ∀~β. σ[~ρ/~α], ρi are types; βi 6∈ FV (∀~α. σ)

Rules:

(const) κ1 ≤κ κ2

κ1 ≤ κ2

(→)
ρ′ ≤ ρ τ ≤ τ ′

ρ→ τ ≤ ρ′ → τ ′
(∀) σ ≤ σ′

∀α. σ ≤ ∀α. σ′

(trans) σ ≤ σ1 σ1 ≤ σ′
σ ≤ σ′

We write ` σ ≤ τ to indicate that σ ≤ τ is derivable in the above system.
We shall also write `σ for derivability without using the axiom (inst) (and
use `σ σ1 ≤ σ2 as a a shorthand for σ1 ≤σ σ2) and `τ for derivability
without mentioning type schemes at all.

We shall use the symbol � to denote the relation generated by the (inst)
axiom.

It is worthwhile to observe that this is not a conservative restriction of
Mitchell’s system, i.e. if we allow substituting polymorphic types in (inst),
we can infer more inequalities between ML types. A simple example here is
the inequality

∀α.((α→ β)→ α) ≤ (α→ β)→ γ

which is derivable in the Mitchell’s system but (as follows from Theorem 6.2.7)
not in ours. On the other hand an important consequence of allowing only
monomorphic instance is the following
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6.2.1 Proposition ([OL96])
The relation ≤ is decidable.

In fact one can even prove that it is decidable in polynopmial time.

6.2.2 Lemma
If ` σ ≤ σ′ and σ is singular then

1. FV (σ) = FV (σ′)

2. the derivation contains only singular type schemes (in particular σ′is
singular).

Proof: By induction on the derivation. The case of (refl) is trivial. If the
derivation consists of an instance of the axiom (inst) then it looks like

∀~α. σ ≤ ∀~β. σ[~ρ/~α] βi 6∈ FV (∀~α. σ)

Since α 6∈ FV (σ) then σ[~ρ/~α] = σ and βi 6∈ FV (σ). Hence FV (∀~α. σ) =
FV (∀~β. σ) and ∀~β. σ is quasi-mono.

The cases when the derivation ends with (→) or (const) are obvious. Let
us then consider a proof ending with an application of the rule (∀):

σ ≤ σ′
∀α. σ ≤ ∀α. σ′

If ∀~α. σ is singular then so is σ. By induction assumption FV (σ) = FV (σ′)
and the derivation of σ ≤ σ′ contains only singular type schemes. Thus
α 6∈ FV (σ′), FV (∀α. σ) = FV (∀α. σ′) and whole derivation contains only
singular type schemes.

Finally, consider the case when the last rule used was (trans):

σ ≤ σ1 σ1 ≤ σ′
σ ≤ σ′

By the induction assumption FV (σ) = FV (σ1) and σ1 is quasi-mono. Thus
we can reapply the induction assumption to the inequality σ1 ≤ σ′, conclud-
ing that FV (σ′) = FV (σ1) and the derivation contains only singular type
schemes. From that the thesis follows.

6.2.3 Lemma
If ` τ ≤ τ ′ (with τ, τ ′ monomorphic) then there is a derivation of this
inequality which contains only monomorphic types.
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Proof: By the Lemma 6.2.2, the derivation of ` τ ≤ τ ′ may contain only
quasi-monotypes. We shall prove that erasing all empty bindings in such a
derivation yields a valid derivation (in this proof erase(σ) will mean σ with
empty bindings erased). As usual, we shall proceed by induction on the
derivation. Here the only interesting cases to be considered are (inst) and
(∀). Consider an instance of the former:

∀~α. σ ≤ ∀~β. σ[~ρ/~α] βi 6∈ FV (∀~α. σ)

Since αi 6∈ FV (σ) for all i, we have βi 6∈ FV (σ) and erasing empty bindings
yields an instance of the axiom (refl).

Now consider an instance of the rule (∀):

σ ≤ σ′
∀α. σ ≤ ∀α. σ′

Since both quantifiers are empty, after erasure this rule becomes the identity
step:

erase(σ) ≤ erase(σ′)
erase(σ) ≤ erase(σ′)

6.2.4 Normalization

6.2.4 Lemma
The relation � is reflexive and transitive.

6.2.5 Lemma
If σ ≤σ σ1 � σ′ then there exists σ2 such that

σ � σ2 ≤σ σ′.

Proof: If σ ≤σ σ1 then there exist monomorphic types τ, τ1 such that

σ ≡ ∀~α.τ (6.1)

σ1 ≡ ∀~α.τ1 (6.2)

τ ≤σ τ1 (6.3)

Thus σ′ ≡ ∀~β. τ [~ρ/~α], βi 6∈ FV (σ1). It is easy to see that σ1 ≡ ∀~β. τ [~ρ/~α]
fulfills conditions of the thesis.

6.2.6 Lemma
If σ0 � σ1 then ∀γ. σ0 � ∀γ. σ1.
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Proof: By the definition of �, we have σ0 ≡ ∀~α. σ and σ1 ≡ σ[~ρ/~α] for
some σ, ρ. We have to consider two cases:

1. γ ∈ FV (∀~α. σ). Then we have

∀γ.∀~α. σ � ∀~α. ∀γ. σ[γ/γ, ~α/~α] ≡ ∀~α. ∀γ. σ � ∀γ.σ[~ρ/~α]

2. γ 6∈ FV (∀~α. σ). Then we have

∀γ.∀~α. σ � ∀~α. σ[γ/γ] ≡ ∀~α. σ � ∀γ. σ[~ρ/~α]

In both cases the thesis follows from the transitivity of �.

6.2.7 Theorem (Normalization for ≤)
If ` σ ≤ σ′ then there exists σ1 such that

σ � σ1 ≤σ σ′

Proof: Again we proceed by induction on the derivation. The basic cases
i.e. axioms, and (const) are trivial. The rule (trans) can be handled by
Lemma 6.2.5.

If the last rule in the derivation was (→) then all components must be
monomorphic, and by Lemma 6.2.3 there is a derivation of the inequality in
`σ.

Having said that, we only have to consider the case when the last rule
was (∀):

σ ≤ σ′
∀α. σ ≤ ∀α. σ′

By the induction assumption, there exists σ1 such that

σ � σ1 ≤σ σ′.

But then, by Lemma 6.2.6 we have that

∀~α. σ � ∀~α. σ1

On the other hand, obviously if σ1 ≤σ σ′ then ∀~α. σ1 ≤σ ∀~α. σ′.

6.2.8 Proposition
In the ≤ ordering, every set of type schemes has a lower bound.

Proof: It is easy to see that for every type scheme σ

∀α.α ≤ σ
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6.3 Type systems

6.3.1 The traditional type system for pure ML

We assume that we have a fixed set of constants Q, and for each c ∈ Q its
type κ(c), built only with type constants and arrows, is known.

The system depicted in Figure 6.1 will serve as a reference type system
for ML [DM82, CDDK86, KTU89, KTU94]. We shall use the symbol `ML

(CON) ` c : κ(c) for c ∈ K

(VAR) E(x : σ) ` x : σ

(ABS)
E(x : τ) `M : ρ
E ` λx.M : τ → ρ

(APP)
E `M : τ → ρ E ` N : τ

E `MN : ρ

(GEN) E `M : τ
E `M : ∀α.τ α 6∈ FV (E)

(INST) E `M : ∀α.τ
E `M : τ [ρ/α]

(LET) E `M : σ E(x : σ) ` N : τ
E ` let x = M in N : τ

Figure 6.1: A reference ML type system, `ML

to denote derivability in this system.

The simplest way to extend this system with subtyping is by adding the
subsumption rule

(SUB)
E `M : τ τ ≤ ρ

E `M : ρ

In the sequel by `ML≤ we shall understand the system `ML with the
subsumption rule.

We shall say that a derivation is normal if subsumption rule is applied
only to variables and constants.

6.3.1 Lemma
If E `ML≤ M : τ then there is a normal derivation ending with this judge-
ment.



6.3. TYPE SYSTEMS 73

6.3.2 An alternative type system for ML

Kfoury et. al, in [KTU89, KTU94] suggest an alternative (equivalent) type
inference system for ML, which is better suited for complexity studies:2

(CON) ` c : κ(c) for c ∈ K

(VAR) (x : σ) ` x : τ for σ � τ

(ABS)
E(x : τ) `M : ρ
E ` λx.M : τ → ρ

(APP )
E `M : τ → ρ E ` N : τ

E `MN : ρ

(LET ) E `M : ρ E(x : ∀~α.ρ) ` N : τ
E ` let x = M in N : τ

α

Figure 6.2: An alternative type system for ML, `ML∗

6.3.2 Proposition
For every term M , it is typable in `ML? iff it is typable in `ML.

For proof, cf. [CDDK86, KTU90].
Subtyping can be added here by replacing the instance relation in the

axiom with the subtyping relation defined in the section 6.2.3. . .

E(x : σ) ` x : τ if ` σ ≤ τ

. . . and modifying an axiom for constants:

(CON) ` c : τ if ` κ(c) ≤ τ

We shall denote derivability in the resulting system by the symbol `ML?≤
.

6.3.3 Theorem
For every environment E term M , and open type τ , if ~α ⊆ FV (τ)−FV (E)
then

E `ML≤ M : ∀~α. τ iff E `ML?≤
M : τ

In other words for every term M , it is typable in `ML?≤
iff it is typable in

`ML≤ .
2This system is called `∗ in [KTU90]
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Proof: The right-to-left implication becomes obvious when we observe that
`ML?≤

can be viewed as a subset of `ML≤ , and that under given assumption
generalization over ~α is allowed in `ML≤ .

The proof of the left-to-right implication may proceed by induction on
derivation; the only difference from the Proposition 6.3.2 lies in the rule
(SUB):

(SUB)
E `M : ∀~α. τ ∀~α. τ ≤ ∀~β. τ ′

E `M : ∀~β. τ ′

Because of the normalization theorem for ≤, it is sufficient to consider the
cases when ∀~α. τ � ∀β. τ ′ and when ∀~α. τ ≤σ ∀β. τ ′.

In the first case it follows that τ ′ ≡ τ [~ρ/~α]. By the induction assumption
we have that

E `ML?≤
M : τ

and want to conclude that

E `ML?≤
M : τ [~ρ/~α].

It is easy to see that
E[~ρ/~α] `ML?≤

M : τ [~ρ/~α]

but since α’s cannot be possibly free in E, we have that E[~ρ/~α] = E.
Now consider the case when

`σ ∀~α. τ ≤ ∀β. τ ′

It is easy to prove that in this case ~α = ~β and `σ τ ≤ τ ′ with τ, τ ′ open . A
routine check that in this case if E `ML?≤

M : τ then E `ML?≤
M : τ ′ is left

to the reader.

6.3.4 Lemma
Let M be an arbitrary term, x a free variable, occurring k times (k ≥ 1)
in M , and let N = λx1 . . . xk.M

′, where M ′ is a term obtained from M by
replacing subsequent occurrences of x with x1, . . . , xk respectively. Then M
is typable iff N is, or, more precisely

1. If E(x : σ) ` M : τ then E ` N : ρ1 → · · · → ρk → τ for some
ρ1, . . . , ρk such that σ ≤ ρi for i = 1, . . . , k.

2. If E ` N : ρ1 → · · · → ρk → τ , then there is σ such that E(x : σ) `
M : τ .

Proof: Ad 1. Consider the derivation of E(x : σ) `M : τ . For ρi we take
the type assigned by an axiom instance to i-th occurrence of x:

E(x : σ) ` x : ρi, ` σ ≤ ρi.
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It is easy to see that

E(x1 : ρ1, . . . , xk : ρk) `M ′ : τ.

From this, the thesis follows.

Ad 2. Let σ be a lower bound of the set {ρ1, . . . , ρk} (cf. Prop. 6.2.8).
If E ` N : ρ1 → · · · → ρk → τ , then also

E(x1 : ρ1, . . . , xk : ρk) `M ′ : τ.

The axiom instance for each xi must look like

E(x1 : ρ1, . . . , xk : ρk) ` xi : ρi

But then also
E(x : σ) ` x : ρi

since σ ≤ ρi for all i. Thus

E(x : σ) `M : τ.

6.3.3 The canonical form of ML terms

Let us say that a term M is in canonicalform if it is of the form:

M ≡ let x1 = N1 in

let x2 = N2 in
...

let xn−1 = Nn−1 in

let xn = Nn in Nn+1

for some n ≥ 0, and where N1, . . . , Nn+1 do not contain let

6.3.5 Lemma ([KTU90])
Let M be an arbitrary term. We can construct a term M ′ in work-space
logarithmic in |M | such that:

1. M ′ is in canonical form,

2. For every environment E and type τ , E `M : τ iff E `M ′ : τ .
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6.3.6 Lemma
Let M be a term in canonical form, τ an open type and E an environment
in which all types are closed. If there is a derivation D whose last assertion
is E ` M : τ , then there is a derivation D′ with last assertion E ` M : τ
and in which every environment type scheme is either closed (i.e. has no
free type variables) or is a type.

Proof: Let M = let x1 = N1 in . . . let xn = Nn in Nn+1, where Ni contain
no let’s. We shall proceed by induction on n.

• If n = 0, then M = N1 and in derivation occur, apart from the type
schemes from E, only types.

• For the induction step, consider a term of the form

M ′ ≡ let x = N in M,

where M is in canonical form and contains at most n let’s, and N
contains none. The last rule in D must have been

E ` N : ρ E(x : ∀~α.ρ) ` N : τ
E ` let x = N in M : τ

Where ~α = FV(τ), since all type schemess in E are closed. By the
induction assumption, M has a derivation where every environment
type scheme either closed or a type, thus so has M ′.

6.3.4 Example

The following example illustrates an important difference between ML and
ML≤:

Assume we have two type constants i, r (one can think of them as repre-
senting for example int and real), with i ≤ r, an atomic constant pi of type r
and a functional constant round of type r → i. Now consider the following
term:

let t = (λf . λx . f (f x )) in t round pi

This term is not typable in ML but is typable in ML≤. In fact all
its normal typings mention only monomorphic types. One of this typings
is presented in Fig. 6.3 Here, the context in which t is used, has ’forced’
inferring a monomorphic type for it, even though its definition allows to
infer an universal type, e.g. ∀α.α→ α.

This example illustrates consequences of the fact that ML≤ has no prin-
cipal types property, and shows that this type system is in a way ’not com-
positional’, whereas for ML, the following holds:
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6.3.7 Proposition
For any terms N1, N2

E `ML let x = N1 in N2 : τ

iff

E(x : σ) `ML N2 : τ

where σ is a principal type for N1.

6.4 Subtyping and Semi-Unification

6.4.1 Semi-unification

The Semi-Unification Problem (SUP) can be formulated as follows: An
instance Γ of SUP is a set of pairs of open types. A substitution S is
a solution of Γ = {(t1, u1), . . . , (tn, un)} iff there are substitutions R1, . . . , Rn
such that

R1(S(t1)) = S(u1), . . . , Rn(S(tn)) = S(un)

The problem is to decide, whether given instance has a solution.

A variation of this problem including subtyping can be formulated by
redefining solution of Γ as follows: S is a sub-solution of Γ iff there are
substitutions R1, . . . , Rn such that

R1(S(t1)) ≤ S(u1), . . . , Rn(S(tn)) ≤ S(un)

The Semi Sub-Unification Problem (SSUP) is to decide whether given in-
stance has a sub-solution.

6.4.1 Proposition ([KTU93])
SUP is undecidable.

6.4.2 Corollary
SSUP is undecidable.

6.4.2 Acyclic semi-unification

An instance Γ of semi-unification is acyclic if for some n ≥ 1, there are
integers r1, . . . , rn and n+ 1 disjoint sets of variables, V0, . . . , Vn, such that
the pairs of Γ can be placed in n columns (possibly of different height;
column i contains ri pairs):
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(t1,1, u1,1) (t2,1, u2,1) · · · (tn,1, un,1)

(t1,2, u1,2) (t2,2, u2,2) · · · (tn,2, un,2)

...
...

. . .
...

(t1,r1 , u1,r1) (t2,r2 , u2,r2) · · · (tn,rn , un,rn)

where:

V0 = FV(t1,1) ∪ · · · ∪ FV(t1,r1)

Vi = FV(ui,1) ∪ · · · ∪ FV(ui,ri) ∪
∪FV(ti+1,1) ∪ · · · ∪ FV(ti+1,ri+1) for 1 ≤ i < n

Vn = FV(un,1) ∪ · · · ∪ FV(un,rn)

The set of terms with variables from Vi is also called zone i.

The Acyclic Semi-Unification Problem (ASUP) is the problem of decid-
ing whether given acyclic instance has a solution.

Here again, subtyping can be introduced to yield an Acyclic Semi-Sub-
Unification problem: whether a sub-solution of given acyclic instance exists.

6.4.3 Proposition ([KTU90])
ASUP is DEXPTIME-complete.

6.5 From ML≤ to ASSUP

First we have to make some assumption about constants in our language.
For purpose of this section we assume there is a finite number of constants
c1, . . . , cp and that the type of the constant ci is τ(ci). In fact, as the next
section points out, one can make some more modest assumptions about
constants.

Given a closed term M in canonical form we will construct an instance
ΓM of ASSUP such that M is typable iff ΓM has a sub-solution. We shall
assume the following notational conventions about the term M :

1. The let-bound variables are taken from the set {x0, x1, . . .}.

2. The λ-bound variables are taken from the set {y0, y1, . . .}.

3. Every variable is bound exactly once
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The instance ΓM of ASSUP will be written with variables all in the set:

V = {βi | i ∈ ω} ∪ {γi | i ∈ ω} ∪ {δi | i ∈ ω} ∪

∪ {β(j)
i | i, j ∈ ω} ∪ {γ

(j)
i | i, j ∈ ω} ∪ {κ

(j)
i | i, j ∈ ω}

We think of V as a set of type meta-variables, which is why we do not include
α’s in V , type expressions being written exclusively using type variables
named by α’s.

Suppose there is a derivation D which assigns a type to M . We think of
βi as standing for the assumed type of xi before it is discharged in D (by an
application of the rule LET), whereas β(j)

i stands for the type assigned to
the j-th occurrence of xi in M ; γi stands for the assumed type of yi before
it is discharged (by an application of rule ABS), while γ(j)

i stands for the
type assigned to the j-th occurrence of yi in M . Finally κ(j)

i stands for the
type of the j-th occurrence of the constant ci. We include the δ’s in V as
auxiliary variables, which will be needed in the construction of ΓM .

Before setting up ΓM we construct an system ∆M of type inequalities.
The definition of ∆M is by induction on M .

Let M be in canonical form, and M1,M2, . . . ,Mn be all the subterms
of M such that, for k = 1, . . . , n, if Mk is not an object variable, then
Mk = (MiMj) or (λy.Mi) or (let x = Mi in Mj) for some i 6= j and
i, j ∈ {1, 2, . . . , k − 1}. The set {M1,M2, . . . ,Mn} mentions all occurrences
of the same subterm, i.e., we may have Mi = Mj for i 6= j. Observe that
M = Mn.

Definition of ∆k for k = 1, . . . , n:

Simultaneously with ∆k we define a type expression tk with variables in V ,
by induction on k = 1, . . . , n:

1. If Mk is the j-th occurrence of xi in M , then set ∆k = ∅ and tk = β
(j)
i .

(We number the occurrences of xi in M with 0, 1, 2, . . . , starting from
the left end of M . The binding occurrence · · · let xi = · · · is not
counted.)

2. If Mk is the j-th occurrence of yi in M , then set ∆k = {γi ≤ γ(j)
i } and

tk = γ
(j)
i

3. If Mk is the j-th occurrence of ci in M , then set ∆k = {τ(ci) ≤ κ
(j)
i }

and tk = κ
(j)
i

4. If Mk = (MiMj) then set ∆k = ∆i ∪∆j ∪ {ti ≤ tj → δ} and tk = δ,
where δ is a fresh auxiliary variable.
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5. If Mk = (λyi Mj) then set ∆k = ∆j and tk = γi → tj .

6. If Mk = (let xi = Mj in M`) then set ∆k = ∆j ∪∆` ∪ {tj ≤ βi} and
tk = t`.

Instead of ∆n and tn, we also write ∆M and tM .
Let T be the set of open types over variables named by α’s and S be

a substitution S : V → T . We say that S satisfies ∆M (S |= ∆M ) if
S(t) ≤τ S(u) for every inequality t ≤ u in ∆M .

If τ ∈ T and FV(τ) = {α1, . . . , αn}, then we write ∀ϕ̄. τ to mean ∀~α.τ .

6.5.1 Lemma
Let M be a closed term in canonical form, and τ a type. The judgement
`M : τ is derivable iff there is a substitution S such that:

1. S |= ∆M ,

2. S(tM ) = τ ,

3. ∀ϕ̄. S(βi) ≤ S(β(j)
i ) for all relevant i and j.

Proof: Consider a derivation of ` M : τ and assume that all subterms
of M are numbered as in the definition of ∆M . This means that for every
1 ≤ k ≤ n there exists a type τk, and an environment Ek such that:

1. Ek `Mk : τk

2. dom(Ek) = FV (Mk) (in particular En = ∅)

3. if Mk = MiMj then Ei = Ej = Ek

4. if Mk = λyi.Mj then Ej = Ek(yi : ρi) for some ρi

5. if Mk = (let xi = Mj in M`) then Ej = Ek and E` = Ek(xi : ∀ϕ̄. τj)

It is easy to check that a substitution S such that S(βi) = τj (where j is
the number of the term at the right side of the defining occurrence of xi),
S(γi) = ρi for all relevant i and such that its value for the superscripted
variables is determined by types in respective axiom instances, fulfills all
conditions of the thesis. The only unobvious case is the let expression, so
let us have a closer look at it:

E `Mj : τj E(xi : ∀ϕ̄. τj) `M` : τ`
E ` let xi = Mj in Ml : τ`

Now, remembering that in this case ∆k = ∆j ∪∆` ∪ {tj ≤ βi} and tk = t`,
observe that S(βi) = S(tj), thus S |= ∆k.

For the converse implication, assume that S fulfills all conditions of the
lemma and define
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1. En = ∅,

2. if Mk = MiMj then Ei = Ej = Ek

3. if Mk = λyi.Mj then Ej = Ek(yi : S(γi)),

4. if Mk = (let xi = Mj in M`) then E` = Ek(xi : ∀ϕ̄. S(βi)) and
Ej = Ek

Now, it is easy to prove by induction on the structure of M that for all
1 ≤ k ≤ n

Ek `ML≤ Mk : S(tk)

Thus, by the Lemma 6.3.33

Ek `Mk : S(tk)

Again, the interesting case is let:

Ek `Mj : S(τj) S(τj) ≤ S(βi)
Ek `Mj : S(βi) Ek(xi : ∀ϕ̄. S(βi)) `M` : S(τ`)

Ek ` let xi = Mj in Ml : S(τ`)

6.5.2 Lemma
The set of inequalities ∆M can be decomposed as follows:

∆M = ∆N1 ∪ {tN1 ≤ β1} ∪
∆N2 ∪ {tN2 ≤ β2} ∪

...

∆Nn ∪ {tNn ≤ βn} ∪
∆Nn+1

where for i = 1, . . . , n+ 1:

1. FV(∆Ni ∪ {tNi}) ∩ {βk | k ∈ ω} = ∅,

2. FV(∆Ni ∪ {tNi}) ∩ {β
(`)
k | k, ` ∈ ω} ⊆ {β

(`)
k | k < i and ` ∈ ω},

and for 1 ≤ i < j ≤ n+ 1:

3. FV(∆Ni ∪ {tNi}) ∩ FV(∆Nj ∪ {tNj}) ⊆ {β
(`)
k | k < i and ` ∈ ω}.

3remember that in this section ` stands for `ML?≤
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Proof: This follows immediately from our conventions for naming variables
and the definition of ∆M .

Definition of ΓM :

Consider the decomposition of ∆M as given in Lemma 6.5.2. For each of
the n + 1 lines in this decomposition we define a single inequality Ti ≤ Ui,
where i = 1, . . . , n+ 1.

For i = 1, . . . , n, if ∆Ni = {t1 = u1, . . . , tp = up} where the t’s and u’s
are type expressions over V , then:

Ti = (δ1 → δ1)→ · · · → (δp → δp)→ (δp+1 → δp+1)

Ui = (t1 → u1)→ · · · → (tp → up)→ (βi → tNi)

where the δ’s are fresh auxiliary variables.
If ∆Nn+1 = {t1 = u1, . . . , tq = uq} where the t’s and u’s are type expres-

sions over V , then:

Tn+1 = (δ1 → δ1)→ · · · → (δq → δq)

Un+1 = (t1 → u1)→ · · · → (tq → uq)

where the δ’s are fresh auxiliary variables.
Define the instance Γ′M (not yet ΓM ) as:

Γ′M = {T1 ≤ U1} ∪

{T2 ≤ U2} ∪ {β1 ≤ β(j)
1 | β(j)

1 ∈ FV(∆M )} ∪
...

{Tn+1 ≤ Un+1} ∪ {βn ≤ β(j)
n | β(j)

n ∈ FV(∆M )}

Γ′M is “almost” acyclic, but not quite, with each line in this decomposition
corresponding to a column. If Γ′M is not acyclic, it can only happen because
there is some i, 1 ≤ i ≤ n, and a variable β(j)

i such that:

β
(j)
i 6∈ FV(Ui+1) and β

(j)
i ∈ FV(Ui+m)

for some m ≥ 2. For each such β
(j)
i , we replace the single inequality

{βi ≤ β(j)
i }

by the following m inequalities:

{βi ≤ δ1, δ1 ≤ δ2, . . . , δm−1 ≤ β(j)
i }

where the δ’s are fresh auxiliary variables. Note that this irregularity may
not happen to γ-variables. The resulting instance of semi-subunification is
the desired ΓM .
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6.5.3 Lemma
Γ′M is an instance of semi-subunification such that:

1. If S : V → T is a solution of Γ′M in the sense of semi-subunification,
then `M : τ where S(tM ) = τ .

2. If `M : τ for some open type τ , then there is S : V → T which is a
solution of Γ′M in the sense of semi-subunification such that S(tM ) = τ .

Proof: If S : V → T is a substitution, it is also easy to check that
S |= ∆Ni ∪ {βi = tNi} iff S is a solution of {Ti ≤ Ui} in the sense of semi-
unification, for i = 1, . . . , n. Likewise, S |= ∆Nn+1 iff S is a solution of
{Tn+1 ≤ Un+1} in the sense of semi-unification. Hence, by Lemma 6.5.1 and
the definition of Γ′M (not ΓM ), we conclude that both parts of the present
lemma are true.

6.5.4 Corollary
ΓM is an acyclic instance such that:

1. If S : V → T is a solution of ΓM in the sense of semi-subunification,
then `M : τ where S(tM ) = τ .

2. If `M : τ for some open type τ , then there is S : V → T which is a
solution of ΓM in the sense of semi-subunification such that S(tM ) = τ .

Proof: It is easily checked that ΓM is acyclic. On the other hand from
the way ΓM is obtained from Γ′M it is obvious that every solution of ΓM is
a solution of Γ′M and that every solution of Γ′M can be naturally extended
to a solution of ΓM .

6.5.5 Theorem
ML≤ typability is log-space reducible to ASSUP.

Proof: This is an immediate consequence of the preceding lemma. It is
not difficult to check that all the intermediary steps in the transformation
from M to ΓM are carried out in constant or logarithmic work-space.

6.6 From ASSUP to ML≤

6.6.1 Constraining terms

For every type variable αi we introduce object variables wi, vi. We assume
that for every type constant κ ∈ Q we there is a constant cκ of this type,
and a constant c(κ→κ) of type κ→ κ. Now, for every monomorphic type τ ,
we define a term Mτ and a context Cτ [ ] with one hole simultaneously by
induction on τ (bear in mind that K = λx.λy.x):
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1. Mκ = cκ
Cκ[ ] = c(κ→κ)[ ]

2. Mαi = viwi
Cαi [ ] = vi[ ]

3. Mτ1→τ2 = λx.KMτ2Cτ1 [x]
Cτ1→τ2 [ ] = Cτ2 [[ ]Mτ1 ]

Intuitively, Mτ can be used wherever enforcing τ as a lower bound is needed.
Dually, the context Cτ [ ] imposes τ as an upper bound for types of the term
placed inside it. These intuitions are formalised in the following

6.6.1 Lemma
Let τ, ρ1, . . . , ρ`, ρ

1
1, . . . , ρ

1
` , ρ

2
1, . . . , ρ

2
` be arbitrary types such that

FV(τ) ⊆ {α1, . . . , α`}.

ρ1
i ≤ ρ2

i for 1 ≤ i ≤ `
Furthermore, let S be a substitution such that ρ1

i ≤ S(αi) ≤ ρ2
i for 1 ≤ i ≤ `.

Then for any term N and environment E such that

E ⊇ {vi : ρ1
i → ρ2

i , wi : ρi | 1 ≤ i ≤ `}

we have for every type τ ′′:

1. If
E `Mτ : τ ′′

then S(τ) ≤ τ ′′

2. If
E ` Cτ [N ] : τ ′′

then4 there exists τ ′ ≤ S(τ) such that

E ` N : τ ′

Proof: By induction on τ :

• If τ = κ then S(τ) = κ, Mτ = cκ and Cτ [ ] = c(κ→κ)[ ]. Obviously
E ` cκ : τ ′′ implies κ ≤ τ ′′.
For the proof of the second part, consider a generic derivation of a
typing for Cκ[N ]:

E ` c(κ→κ) : τ ′ → τ ′′ E ` N : τ ′

E ` c(κ→κ)N : τ ′′

If E ` c(κ→κ) : τ ′ → τ ′′ then (κ→ κ) ≤ τ ′ → τ ′′, i.e. τ ′ ≤ κ ≤ τ ′′.
4An alternative formulation: [. . . ] then E ` N : S(τ)
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• If τ = αi then we have S(τ) = ρi, Mτ = viwi, and Cτ [ ] = vi[ ].
Consider a generic type derivation Mτ :

E ` vi : τ ′ → τ ′′ E ` wi : τ ′

E ` viwi : τ ′′

In every such derivation, ρ1
i → ρ2

i ≤ τ ′ → τ ′′ and ρi ≤ τ ′. From this
in turn it follows that τ ′ ≤ ρ1

i ≤ S(τ) ≤ ρ2
i ≤ τ ′′ and S(τ) ≤ τ ′′.

Now consider a generic type derivation for Cτ [N ]:

E ` vi : τ ′ → τ ′′ E ` N : τ ′

E ` viN : τ ′′

In every such derivation, τ ′ ≤ ρ1
i ≤ S(τ) ≤ ρ2

i ≤ τ ′′, hence τ ′ ≤ S(τ) ≤
τ ′′.

• If τ = τ1 → τ2 then we have S(τ) = S(τ1)→ S(τ2), Cτ [ ] = Cτ2 [[ ]Mτ1 ],
and Mτ = λx.KMτ2Cτ1 [x].

Consider a generic type derivation for Mτ (where Ex stands for E(x :
τx) :

Ex ` K : τ ′′2 → τ ′′1 → τ ′ Ex `Mτ2 : τ ′′2 Ex ` Cτ1 [x] : τ ′′1
Ex ` KMτ2Cτ1 [x] : τ ′

E ` λx.KMτ2Cτ1 [x] : τx → τ ′

For every such derivation, all of the following conditions hold:

1. τ ′′2 ≤ τ ′ (a property of K)

2. S(τ2) ≤ τ ′′2 (by the induction assumption for Mτ2)

3. τx ≤ S(τ1) (since by the induction assumption for Cτ1 [ ], there
exists τ ′1 such that τ ′1 ≤ S(τ1) and E(x : τx) ` x : τ ′1)

It is easy to check that this conditions imply S(τ) ≤ τx → τ ′.

Now consider a generic derivation for NMτ1

E ` N : τ ′1 → τ ′ E `Mτ1 : τ ′1
E ` NMτ1 : τ ′

By the induction assumption for Mτ1 , in every such derivation S(τ1) ≤
τ ′1. Now, by the induction assumption for Cτ2 , If E ` Cτ2 [NMτ1 ] : τ ′′

then there exists τ ′ such that on top of the previous condition, also
τ ′1 ≤ S(τ2). The conjunction of these two conditions implies in turn

τ ′1 → τ ′ ≤ S(τ1 → τ2)
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which completes the proof.

6.6.2 Lemma
Let τ, ρ1, . . . , ρ` be arbitrary types such that

FV(τ) ⊆ {α1, . . . , α`}.

Furthermore, let S be a substitution such that S(αi) = ρi for 1 ≤ i ≤ `.
Then for any term N and environment E such that

E ⊇ {vi : ρi → ρi, wi : ρi | 1 ≤ i ≤ `}

we have

1. E `Mτ : S(τ)

2. If E ` N : S(τ), then there exists τ ′′ such that E ` Cτ [N ] : τ ′′

Proof: By induction on τ :

• If τ = κ then S(τ) = κ, Mτ = cκ and Cτ [ ] = c(κ→κ)[ ]. Obviously
E ` cκ : κ.

For the proof of the second part, note that the following derivation is
correct for all κ′′ ≥ κ:

E ` c(κ→κ) : κ→ κ′′ E ` N : κ

E ` c(κ→κ)N : κ′′

• If τ = αi then we have S(τ) = ρi, Mτ = viwi, and Cτ [ ] = vi[ ]. The
following type derivation shows that in fact E `Mαi : S(αi):

E ` vi : ρi → ρi E ` wi : ρi
E ` viwi : ρi

Now consider the following derivation for Cτ [N ]:

E ` vi : ρi → ρi E ` N : ρi
E ` viN : ρi

• If τ = τ1 → τ2 then we have S(τ) = S(τ1)→ S(τ2), Cτ [ ] = Cτ2 [[ ]Mτ1 ],
and Mτ = λx.KMτ2Cτ1 [x].

Let Ex = E(x : S(τ1)). By the induction assumption for τ1, there
exists τ ′′1 such that E ` Cτ1 [x] : τ ′′1 . It is easy to check that the
following type derivation for Mτ is correct:

Ex ` K : S(τ2)→ τ ′′1 → S(τ2) Ex `Mτ2 : S(τ2) Ex ` Cτ1 [x] : τ ′′1
Ex ` KMτ2Cτ1 [x] : S(τ2)

E ` λx.KMτ2Cτ1 [x] : S(τ1)→ S(τ2)
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By the induction assumption, E ` Mτ1 : S(τ1), hence the following
derivation for NMτ1 is correct:

E ` N : S(τ1)→ S(τ2) E `Mτ1 : S(τ1)
E ` NMτ1 : S(τ2)

Now, by the induction assumption for τ2, there exists τ ′′2 such that
E ` Cτ2 [NMτ1 ] : τ ′′2 . This completes the proof.

6.6.2 The encoding

Consider an instance Γ of ASSUP. Without loss of generality we may assume
that all the columns of Γ have an equal number of inequalities r.

Let type variables in zone i, for i = 0, 1, . . . , n, be:

αi,1, αi,2, . . . , αi,`i

for some `i ≥ 1, corresponding to which we introduce object variables:

vi,1, wi,1, vi,2, wi,2, . . . , vi,`i , wi,`i

The notation Mτ and Cτ [ ] introduced earlier relative to singly sub-
scripted variables, αi and vi, wi, is now extended to doubly subscripted
variables, αi,j and vi,j , wi,j . We can assume that all the zones have an equal
number ` of variables, i.e.,

` = `0 = `1 = · · · = `n

With these assumptions about Γ, let us introduce some building blocks which
shall be used in the construction of the term MΓ:

In the sequel by C`i [ ] we shall mean the context

λwi,1. . . . λwi,`.(λvi,1. . . . λvi,`.[ ]) I . . . I︸ ︷︷ ︸
` times

where I = λx.x.
Define

N ′1 = λz.zMt1,1 . . .Mt1,r

N1 = C`0[N ′1]

Further for 1 ≤ j ≤ r, define

P1,j = λp1 . . . λpl.xip1 . . . pl(λy1 . . . λyr.Cu1,j [yj ])
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and for 2 ≤ i ≤ n and 1 ≤ j ≤ r

Pi,j = λp1 . . . λpl.xip1 . . . pl(λz1 . . . λzrλy1 . . . λyr.Cui,j [yj ])

and

N ′i = λz.zPi−1,1 . . . Pi−1,rMti,1 . . .Mti,r (6.4)

Ni = C`i [N
′
i ] (6.5)

Finally we define the term MΓ as follows:

MΓ ≡ let x1 = N1 in

let x2 = N2 in
...

let xn−1 = Nn−1 in

let xn = Nn in Nn+1

6.6.3 Soundness of the encoding

6.6.3 Lemma
If Γ has a sub-solution then MΓ is typable.

Proof: Suppose Γ has a sub-solution S:

S = [αi,j := ρi,j | i = 0, . . . , n, and j = 1, . . . , ` ]

There are therefore substitutions Ri,j such that: Ri,j(S(ti,j)) ≤ S(ui,j), for
every i = 1, . . . , n and j = 1, . . . , r. We shall show that MΓ is typable. For
i = 1, . . . , n+ 1, define the environment Ei:

Ei = {vi−1,j : ρi−1,j → ρi−1,j , wi−1,j : ρi−1,j | 1 ≤ j ≤ `}

For i = 1, . . . , n and j = 1, . . . , r, by Lemma 6.6.2:

Ei `Mti,j : S(ti,j)

and for every i = 2, . . . , n+1 and j = 1, . . . , r there exists an open type ψi,j ,
such that

Ei(yj : S(ui−1,j)) ` Cui−1,j [yj ] : ψi,j

We shall prove that ` N1 : ξ1, where:

τ1 = ρ0,1 → · · · → ρ0,` → (S(t1,1)→ · · · → S(t1,r)→ β1)→ β1

where β1 is a type variable.
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Let
χ1 = S(t1,1)→ · · · → S(t1,r)→ β1

The desired property of N1 is easily seen from the following derivation:

E1(z : χ1) ` z : χ1 E1(z : χ1) `Mt1,1 : S(t1,1)
...

E1(z : χ1) ` zMt1,1 . . .Mt1,r : β1

E1 ` N ′1 : χ1 → β1

...
` C`1[N ′1] : ξ1

Let the type ξ(j)
1 be defined as follows:

ξ
(j)
1 = R1,j(ξ1)

note that thus defined ξ
(j)
1 is an instance of ∀ϕ̄. ξ1.

Now we shall prove that for every j there exists ψi,j such that

E2(x1 : ξ1) ` Pi,j : R1,j(ρ1,1)→ · · ·R1,j(ρ1,`)→ ψi,j

In the sequel we shall call the type of Pi,j thus inferred θi,j .
Observe that there exists ψ1,j such that

E2 ` λy1 . . . λyr.Cu1,j [yj ] : R1,j(S(t1,1))→ · · · → R1,j(S(t1,j−1))→
S(u1,j)→
R1,j(S(t1,j+1))→ · · · → R1,j(S(t1,r))→ ψ1,j

but, since R1,j(S(t1,j) ≤ S(u1,j), also

E2 ` λy1 . . . λyr.Cu1,j [yj ] : R1,j(S(t1,1))→ · · · → R1,j(S(t1,j−1))→
R(S(t1,j))→
R1,j(S(t1,j+1))→ · · · → R1,j(S(t1,r))→ ψ1,j

thus in fact
E2(x1 : ∀ϕ̄. ξ1) ` P1,j : θ1,j

Basing on this, by an argument similar to the one about N1, it is not
difficult to prove that

x1 : ξ1 ` N2 : ρ1,1 → · · · → ρ1,` →
(θ1,1 → · · · → θ1,r →
S(t2,1)→ · · · → S(t2,r)→ β2)→ β2
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we shall call this type ξ2.
Similarly, for i = 3, . . . , n + 1 and j = 1, . . . , r, using the fact that

Ri−1,j(S(ti−1,j)) ≤ S(ui−1,j), it is not difficult to also check that:

{xi−1 : ∀ϕ̄. ξi−1} ` Ni : ξi

where

ξi = ρi−1,1 → · · · → ρi−1,` →
(θi−1,1 → · · · → θi−1,r → S(ti,1)→ · · · → S(ti,r)→ βi)→ βi

θi,j = Ri,j(ρi,1)→ · · · → Ri,j(ρi,`)→ ψi,j

for some type ψi,j . Indeed, for all relevant i, j there exists ψi,j such that

Ei+1 ` λz1 . . . λzrλy1 . . . λyr. Cu1,j [yj ] :
θi−1,1 → · · · → θi−1,r →
Ri,j(S(ti,1))→ · · · → Ri,j(S(ti,j−1))→
S(ui,j)→
Ri,j(S(ti,j+1))→ · · · → Ri,j(S(ti,r))→
ψi,j

but, since Ri,j(S(ti,j) ≤ S(ui,j), also

Ei+1 ` λz1 . . . λzrλy1 . . . λyr. Cu1,j [yj ] :
θi−1,1 → · · · → θi−1,r →
Ri,j(S(ti,1))→ · · · → Ri,j(S(ti,j−1))→
R(S(ti,j))→
Ri,j(S(ti,j+1))→ · · · → Ri,j(S(ti,r))→
ψi,j

thus in fact
Ei+1(xi : ∀ϕ̄. ξi) ` Pi,j : θi,j

and
{xi−1 : ∀ϕ̄. ξi−1} ` Ni : ξi

6.6.4 Completeness of the encoding

6.6.4 Lemma
If MΓ is typable then Γ has a sub-solution, i.e. there exist substitutions
S,R1,1, . . . , Rn,r such that

Ri,j(S(ti,j)) ≤ S(ui,j) for 1 ≤ i ≤ n, 1 ≤ j ≤ r
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Proof: Suppose that MΓ is typable. This means that, for i = 1, . . . , n+ 1,
Ni is typable in an environment Ei of the form:

Ei = {x1 : σ1, . . . , xi−1 : σi−1}

where σ1, . . . σn are type schemes Although the only free variable in Ni is
xi−1, Ei must include a type assumption for every variable whose binding
includes Ni in its scope. Note that ∅ = E1 ⊂ · · · ⊂ En+1.

Let Vi denote the set of variables in zone i of Γ. Note that

FV (Ni =
{

V0 if i = 1
Vi−1 ∪ {xi−1} otherwise

(6.6)

If Ni = C`i [N
′
i ] is typable in Ei, then there exists an environment Evi and

types ξi, ρ1
i,1, . . . , ρ

1
i,`, ρ

2
i,1, . . . , ρ

2
i,` such that

ρ1
i,j ≤ ρ2

i,j (6.7)

Evi (vi,j) = ρ1
i,j → ρ2

i,j (6.8)

Evi ` Ni : ξi (6.9)

Take any S such that ρ1
i,j ≤ S(αi,j) ≤ ρ1

i,j for 1 ≤ i ≤ n, 1 ≤ j ≤ `. The
existence of such S follows from acyclicity of Γ and (6.6). Note that S and
Evi satisfy assumptions of Lemma 6.6.1.

First let us focus on the term N1. The type ξ1 must be of the form

ξ1 = ρ0,1 → · · · → ρ0,` → (τ1,1 → · · · → τ1,r → ϕ1)→ ψ1

where

S(t1,j) ≤ τ1,j for 1 ≤ j ≤ r (6.10)

ϕ1 ≤ ψ1 (6.11)

Now consider the term P1,j . There exist an environment Ey1,j ⊇ Ev1 and a
type ψ1,j such that

Ey1,j ` Cui,j : ψ1,j

Ey1,j ` y : S(u1,j)

Since P1,j occurs in a context let x1 = N1 in . . . , the occurrence of x1

in it must be assigned a type ξj1 that is an instance of ∀ϕ̄. ξ1. Therefore by
the Lemma 6.2.7, there exists a substitution R1,j such that

R1,j(ξ1) ≤ ξj1. (6.12)

From this, it follows that ξj1 must be of the form

ξj1 = ρj0,1 → · · · → ρj0,` → (τ j1,1 → · · · → τ j1,r → ϕj1)→ ψj1
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since x1 occurs in P1,j in the context x1p1 . . . p`(λy1 . . . λyr.Cu1,j [yj ], by
Lemma 6.6.1 we have

τ j1,j ≤ S(u1,j)

Since τ1,j occurs positively in ξ1, we have R1,j(S(t1,j) ≤ R1,j(τ1,j). In turn
R1,j(τ1,j) ≤ τ j1,j by 6.12. From this inequalities, we conclude that

R1,j(S(t1,j)) ≤ S(u1,j).

By the same token, for 2 ≤ i ≤ n+ 1,5 the type ξi must be of the form

ξi = ρi−1,1 → · · · → ρi−1,` →
(θi−1,1 → · · · → θi−1,r → τi,1 → · · · → τi,r → ϕi)→ ψi

and for all j the occurrence of xi in Pi,j must be assigned a type of the form

ξji = ρji−1,1 → · · · → ρji−1,` →

(θji−1,1 → · · · → θji−1,r → τ ji,1 → · · · → τ ji,r → ϕji )→ ψji

and there must be a substitution Ri,j such that

Ri,j(ξi) ≤ ξji . (6.13)

From this and from the construction of Pi,j we can again conclude that in
fact Ri,j(S(ti,j) ≤ Ri,j(τi,j) ≤ τ ji,j and hence

Ri,j(S(ti,j)) ≤ S(ui,j)

for all i and j.

6.6.5 Lemma
ASSUP is log-space reducible to ML≤ typability.

6.6.6 Theorem
ASSUP is log-space equivalent to ML≤ typability.

Proof: It is easy to see that the constructions shown in the preceding
lemmas can be indeed done using logarithmic workspace.

5Note that there is no xn+1, but there is Nn+1.
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Type systems for ML with subtyping which use standard ML type schemes
(such as one presented in the previous Chapter) suffer from two impor-
tant deficiencies: they don’t have the principal types property, nor the let-
expansion property. The first deficiency all but precludes their practical
use in implementations with separate compilation (though they use in the
systems such as Standard ML could be possible, if a little awkward). The
second one makes the complexity analysis extremely difficult.

Smith [Smi91] proposes a type system with constrained type schemes,
where subtype constraints are a part of both environment and quantifier
binding (presented in Fig 7.1 below ).

C,E(x : σ) ` x : σ

C,E(x : τ) `M : ρ
C,E ` λx.M : τ → ρ

C,E `M : τ → ρ C,E ` N : τ
C,E `MN : ρ

C1 ∪ C2, E `M : τ
C1, E `M : ∀~αwith C2.τ

αi 6∈ FV (E)

C1, E `M : ∀~αwith C.τ C1 ` C[~ρ/~α]
C1, E `M : τ [~ρ/~α]

C,E `M : σ C,E(x : σ) ` N : τ
C,E ` let x = M in N : τ

C(τ ≤ τ ′) ` τ ≤ τ ′ C ` τ ≤ τ

C ` τ ≤ τ ′ C ` τ ′ ≤ τ ′′
C ` τ ≤ τ ′′

τ ′ ≤ τ ρ ≤ ρ′

C ` τ → ρ ≤ τ ′ → ρ′

C,E `M : τ C ` τ ≤ ρ
C,E `M : ρ

Figure 7.1: A type system with bounded quantification for ML

The advantage of using systems with constrained type schemes lies in
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their principal types property, which was lacking from the system presented
in the previous chapter.

However, instead of considering the original system of Smith, in this
chapter we shall show how it can be refined and analyse the complexity of
the resulting system. The reason we do so is that in our opinion the system
of Smith still doesn’t satisfactorily solve the problem of principal types: the
instance relation (which is usually defined on the syntactical level) proposed
in his work is of semantical nature. He doesn’t give any hints as to its syn-
tactical characterisation of this relation, and it would be indeed very difficult
(if at all possible) to construct such characterisation. We define a slightly
different instance relation, which is of syntactical nature. The benefit from
this can be instantly seen in that the proof of the principal types property
is simpler than the one of Smith. Moreover, we prove the let-expansion
property which we then use in the complexity analysis of typability.

7.1 Constrained type schemes

7.1.1 Syntax and conventions

By a constraint set we mean a set of the form

C = {τ1 ≤ ρ1, . . . , τn ≤ ρn}

where τi, ρi are types. We shall use letters B,C,D (possibly with indices)
to denote constraint sets.

A constrained type scheme has the following form:

∀~αwith C.τ

where C is a constraint set and τ is a type. We shall use the letter σ with
sub- or superscripts to denote type schemes. We shall also write ∀~α. τ as an
abbreviation for ` ∀~αwith {}.τ .

7.1.2 Inequalities

In this section we introduce a system of inferring inequalities between type
schemes, being an adaptation of the system from the previous chapter to
constrained type schemes. Then we show an analogon of the Normalization
Theorem (6.2.7) from the previous chapter.

The system derives judgements of the form C ` σ ≤ σ′, where σ and σ′

are constrained type schemes.
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Axioms:

(const) ` κ1 ≤ κ2 for κ1 ≤κ κ2

(id) τ ≤ τ ′ ` τ ≤ τ ′

(refl) ` σ ≤ σ
(inst0) ` ∀~α. τ ≤ ∀~β withD. τ [~ρ/~α] ~β 6∈ FV (∀~α. τ)

Rules:

(inst)
B ∪D ` C[~ρ/~α]

B ` ∀~αwith C.τ ≤ ∀~β withD. τ [~ρ/~α]

{
~β 6∈ FV (∀~αwith C.τ)
~α, ~β 6∈ FV (B)

(→)
C ` ρ′ ≤ ρ C ` τ ≤ τ ′

C ` ρ→ τ ≤ ρ′ → τ ′

(∀) B ∪ C ` τ ≤ τ ′
B ` ∀~αwith C. τ ≤ ∀~αwith C. τ ′

(trans) C ` σ ≤ σ1 C ` σ1 ≤ σ′
C ` σ ≤ σ′

7.1.3 Normalization

In this section we show that the system described above enjoys normalization
properties in a manner similar to the one described in the previous chapter.

We shall use the symbol `σ for structural derivations, i.e. ones that do
not use neither the axiom (inst0) nor the rule (inst).1

7.1.1 Definition (Relation �B)
Let B be a set of constraints. We shall say that

∀~αwith C.τ �B ∀~β withD. τ [~ρ/~α]

if all of the following conditions hold:

1. B ∪D ` C[~ρ/~α]

2. βi 6∈ FV (∀~αwith C.τ)

3. ~α, ~β 6∈ FV (B)
1We intentionally reuse a symbol from the previous chapter as its intuitive meaning

remains unchanged.
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It is easy to see that the relation defined above is reflexive and transitive.

7.1.2 Lemma
For every set of constraints B and type schemes σ, σ1, σ

′, if B `σ σ ≤ σ1

and σ1 �B σ′ then there exists σ2 such that

σ �B σ2

B `σ σ2 ≤ σ′.

Proof: If B `σ σ ≤ σ1 then there exist types τ, τ1 and a set of constraints
C such that

σ ≡ ∀~αwith C. τ

σ1 ≡ ∀~αwith C. τ1

B ∪ C `σ τ ≤ τ1

Thus

σ′ ≡ ∀~β withD. τ1[~ρ/~α]

and

D ` C[~ρ/~α],

hence

` ∀~αwith C.τ �B ∀~β withD. τ [~ρ/~α]

The latter is the desired σ2, since

B `σ ∀~β withD. τ [~ρ/~α] ≤ ∀~β withD. τ1[~ρ/~α]

7.1.3 Theorem (Normalization)
If B ` σ ≤ σ′ then there exists σ1 such that

σ �B σ1

B `σ σ1 ≤ σ′

Proof: The proof carries over, mutatis mutandis, from the analogous the-
orem (6.2.7) in the previous chapter.
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7.1.4 Generalization

7.1.4 Definition
Let E be an environment, C a set of constraints and τ a (monomorphic)
type. The set of generalizations of τ with respect to C and E (in symbols:
Gen(C,E, τ)) is the set of all pairs (C1,∀~αwith C2.τ) such that

(i) ~α = (FV (τ) ∪ FV (C)) \ FV (E)

(ii) C1 ` C2

(iii) C1 ∪ C2 = C

7.1.5 Lemma
For every C,E, τ , if C is satisfiable then

(i) Gen(C,E, τ) 6= ∅

(ii) If (C1, σ) ∈ Gen(C,E, τ) then C1 ` σ ≤ τ

Proof: Let ~α = (FV (τ) ∪ FV (C)) \ FV (E). It is readily verified that

(C,∀~αwith C.τ) ∈ Gen(C,E, τ)

The second part of the lemma follows as a direct application of the rule
(inst) from the previous section:

C1 ` C2

C1 ` ∀~αwith C2.τ ≤ τ

7.2 Type systems

7.2.1 The system BC2

In the sequel, by ` we shall mean `BC2 .

7.2.1 Lemma
(i) if C,E `M : σ and E′ ⊇ E then C,E′ `M : σ

(ii) if C ` σ ≤ σ′ and C ′ ⊇ C then C ′ ` σ ≤ σ′

(iii) if C,E `M : σ and C ′ ⊇ C then C ′, E `M : σ

Proof: Statements (i) and (ii) can be proved by routine induction on the
derivation. Statement (iii) follows from (ii).
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C ` σ ≤ τ
C,E(x : σ) ` x : τ

C,E(x : τ) `M : ρ
C,E ` λx.M : τ → ρ

C,E `M : τ → ρ C,E ` N : τ
C,E `MN : ρ

C,E `M : τ (C ′, σ) ∈ Gen(C,E, τ) C ′, E(x : σ) ` N : ρ
C ′, E ` let x = M in N : ρ

Figure 7.2: Type inference system BC2

7.2.2 Lemma
If

(i) C is a satisfiable constraint set,

(ii) C,E `M : τ ,

(iii) (C1, σ) ∈ Gen(C,E, τ)

(iv) C1 ` σ ≤ ρ

then

C ′, E `M : ρ

Proof: Let σ = ∀~α with C2. τ . By the Normalization Theorem (7.1.3)
there exists σ1 such that

σ �B σ1

B ` σ1 ≤ ρ

From this the thesis follows.

7.3 Inference algorithms

In the algorithm below E stands for usual environment mapping variabloes
to types, C for sets of constraints and A for so called meta-environment
i.e. a partial function from variables to triples (set of constraints, environ-
ment, type).
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The function Refresh systematically renames type variables to fresh
names (to avoid possible name clashes). The symbols ν, nu1, nu2 stand for
fresh type variables.

The function gen checks the satisfiability of the set of constraints passed
to it as the first argument and fails if it is unsatisfiable (causing the whole
algorithm to fail). Otherwise it yields an argument of the appropriate gen-
eralization set (which is non-empty by Lemma 7.1.5).

PCT (x,A) = if A(x) = (C,E, τ) then (C ∪ {τ ≤ ν}, E, ν)

else ({ν1 ≤ ν2}, {x : ν1}, ν2)

PCT (MN,A) = let

(C1, E1, τ1) = PCT (M,A)

(C2, E2, τ2) = Refresh(PCT (N,A))

S = Unify({α = β | x : α ∈ E1 ∧ x : β ∈ E2}
∪{τ1 = τ2 → ν})

in

S(C1 ∪ C2, E1 ∪ E2, ν)

PCT (λx.M,A) = let (C,E, τ) = PCT (M,A)

in if (x : ρ) ∈ E
then (C,E \ {(x : ρ)}, ρ→ τ)

else (C,E, ν → τ)

PCT (let x = M in N,A) = let

(C1, E1, τ1) = PCT (M,A)

A′ = A[x 7→ (C1, E1, τ1)]

(C2, E2, τ2) = Refresh(PCT (N,A′))

S = Unify({α = β | x : α ∈ E1 ∧ x : β ∈ E2})
(C ′, σ1) = gen(S(C1 ∪ C2), S(E1 ∪ E2), S(τ1))

in

(C ′, S(E1 ∪ E2), S(τ2))

7.3.1 Soundness of the algorithm PCT

7.3.1 Definition
Let A be a meta-environment i.e. a (partial) map from variables to triples
(set of constraints, environment, type). We say that A is well-formed if, for
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every x ∈ dom(A), dom(A) ∩ dom(E) = ∅, where (C,E, τ) = A(x).

7.3.2 Definition
Let E be an environment, A a well-formed meta-environment, dom(A) ∩
dom(E) = ∅. We say that an environment EA is an extension of E with A
(in symbols EA ∈ Ext(E,A)) if

1. E ⊆ EA

2. For every x ∈ dom(A) there exists (C ′, σ) ∈ Gen(A(x)) such that x : σ
in EA.

7.3.3 Theorem
If A is a well-formed meta-environment, PCT (M,A) = (C,E, τ) then

1. dom(A) ∩ dom(E) = ∅

2. C,EA `M : τ

for every EA in Ext(E,A).

Proof: By induction on M :

• If M ≡ x, x 6∈ dom(A), then the first part of the lemma follows from
the assumption that A is well-formed. As for the second part, we have:

PCT (x,A) = ({ν1 ≤ ν2}, {x : ν1}, ν2)

{ν1 ≤ ν2}, x : ν1 ` x : ν2

• If M ≡ x, x ∈ dom(A), A(x) = (C,E, τ) then:

PCT (x,A) = (C ∪ {τ ≤ ν}, E, ν)

and for every (C ′, σ) ∈ Gen(C,E, τ)

C, x : σ ` x : τ

thus
C ∪ {τ ≤ ν}, x : σ ` x : τ.

• If M ≡ λy.N , then let (C,E1, τ1) = PCT (N,A). By the induction
assumption, we have

C,EA1 ` N : τ1

Now, if E1 = E(x : ρ) then

C,EA(x : ρ) ` N : τ1

C,EA ` λx.N : ρ→ τ1



7.3. INFERENCE ALGORITHMS 105

On the other hand, if x does not occur in E1 then it occurs neither in
N nor in A, hence

C,EA(x : ν) ` N : τ1

C,EA ` λx.N : ν → τ1

• If M ≡M1M2, then let

(C1, E1, τ1) = PCT (M,A)

(C2, E2, τ2) = Refresh(PCT (N,A))

S = Unify({α = β | x : α ∈ E1 ∧ x : β ∈ E2}
∪{τ1 = τ2 → ν})

By the induction assumption, we have

C1, E1 `M1 : τ1

C2, E2 `M2 : τ2

thus
S(C1 ∪ C2), (S(E1 ∪ E2))A `M1 : S(τ2)→ S(ν)

S(C1 ∪ C2), (S(E1 ∪ E2))A `M2 : S(τ2)

S(C1 ∪ C2), (S(E1 ∪ E2))A `M1M2 : S(ν)

• If M ≡ let x = M1 in M2, then let

(C1, E1, τ1) = PCT (M1, A)

A′ = A[x 7→ (C1, E1, τ1)]

(C2, E2, τ2) = Refresh(PCT (M2, A
′))

S = Unify({α = β | x : α ∈ E1 ∧ x : β ∈ E2})
(C ′1, σ1) = gen(S(C1 ∪ C2), S(E1 ∪ E2), τ1)

By the induction assumption we have that A′ is well-formed and

C1, E
A
1 `M1 : τ1

C2, E
A′
2 `M2 : τ2

Hence
S(C1 ∪ C2), S(E1 ∪ E2)A `M1 : S(τ1)

S(C1 ∪ C2), S(E1 ∪ E2)A
′ `M2 : S(τ2)

Thus by applying the typing rule for let we obtain

C ′,` S(E1 ∪ E2)Alet x = M1 in M2 : S(τ2)

which we wanted to prove.
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7.3.4 Corollary
If M is a closed term, PCT (M,∅) = (C,E, τ) then

C,E `M : τ

Proof: As the empty-meta-environment is obviously well-formed, this fol-
lows immediately from the previous theorem.

7.3.2 Principal types

7.3.5 Lemma
Let

E = {x1 : σ1, x2 : σ2, . . . xn : σn}

C,E `M : τ

with satisfiable C and, for i such that xi ∈ FV (M), (xi : σi) ∈ E, let

(i) Ci, Ei ` Pi : τi,

(ii) Ci satisfiable,

(iii) (C ′i, σi) ∈ Gen(Ci, Ei, τi),

(iv) A(xi) = (Ci, Ei, τi).

Then:
PCT (M,A) = (C0, E0, τ0)

∀(C ′0, σ0) ∈ Gen(C0, E0, τ0). C ′0 ` σ0 ≤ τ

Proof: By induction on M :

• If M ≡ xi then we have:

PCT (xi, A) = (Ci ∪ {τ ≤ ν}, Ei, ν)

Gen(Ci ∪ {τ ≤ ν}, Ei, ν) = {(∅,∀~αwith τ ≤ ν.ν}

and there exist ~π such that

∅ ` (∀~αwith τi ≤ ν.ν) ≤ τi[~π/~α]

σi = ∀~αwith C ′′i .τi

C ` σi ≤ τi[~π/~α]

C ` τi[~π/~α] ≤ ρ

from which the thesis follows.
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• If M ≡ λy.N , then ρ = ρ1 → ρ2 and

C,E(y : ρ1) ` N : ρ2

for some monomorphic types ρ1, ρ2. Let A′ = A[y 7→ (∅, {y : ρ1}, ρ1)].
By the induction assumption, we have:

PCT (N,A′) = (C0, E0, ρ0)

and for all (C ′, σ′) ∈ Gen(C0, E0, ρ0), C ′ ` σ′ ≤ ρ2. It is easy to see
that

PCT (λy.N,A) = (C0, E
y
0 , τ0 → ρ0)

where (y : τ0) ∈ E0 and Ey0 = E0 \ {y : τ0}.
By definition of Gen,

FV (τ0) ∩BV (σ′) = ∅.

Hence, for every (C2, σ2) ∈ Gen(C0, E
y
0 , τ0, ρ0),

C2 ` σ2 ≤ ρ1 → ρ2.

• If M ≡M1M2, then
C,E `M1 : ρ→ τ

C,E `M2 : ρ

for some monomorphic type ρ By the induction assumption, we have:

PCT (M1, A) = (C1, E1, τ1) (7.1)

∀(C ′1, σ1) ∈ Gen(C1, E1, τ1). C ′1 ` σ1 ≤ ρ→ τ (7.2)

PCT (M2, A) = (C2, E2, τ2) (7.3)

∀(C ′2, σ2) ∈ Gen(C2, E2, τ2). C ′2 ` σ2 ≤ ρ (7.4)

It follows that τ1 = τ1
1 → τ2

1 . Let S be the most general unifier of the
set

{α = β | x : α ∈ E1 ∧ x : β ∈ E2} ∪ {τ1 = τ2 → ν}

Further, let
C0 = S(C1 ∪ C2)

E0 = S(E1 ∪ E2)

τ0 = S(ν)

We have
PCT (M1M2, A) = (C0, E0, τ0)

And for all σ = ∀~αwith C ′2.τ0 such that (C ′, σ0) ∈ Gen(C0, E0, τ0):

C ′ ` σ0 ≤ τ
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• If M ≡ let x = M1 in M2, then

C,E `M1 : ρ1

C,E(x : σ) `M2 : ρ2

(C ′, σ) ∈ Gen(C,E, ρ1)

for some monomorphic types ρ1, ρ2.

By the induction assumption and Theorem 7.3.3, we have:

PCT (M1, A) = (C1, E1, τ1) (7.5)

∀(C ′1, σ1) ∈ Gen(C1, E1, τ1). C ′1 ` σ1 ≤ ρ1 (7.6)

C1, E
A
1 ` M1 : τ1 (7.7)

PCT (M2, A[x 7→ (C1, E1, τ1)]) = (C2, E2, τ2) (7.8)

∀(C ′2, σ2) ∈ Gen(C2, E2, τ2). C ′2 ` σ2 ≤ ρ2 (7.9)

Let S be the mgu of the set

{α = β | x : α ∈ E1 ∧ x : β ∈ E2}

Further, let
C0 = S(C1 ∪ C2)

E0 = S(E1 ∪ E2)

τ0 = S(τ2)

We have
PCT (M,A) = (C0, E0, τ0)

And for all σ = ∀~αwith C ′2.τ0 such that (C ′, σ0) ∈ Gen(C0, E0, τ0):

C ′ ` σ0 ≤ τ

7.3.6 Theorem
For every closed term M , if

C,E `M : τ

Q |= C

then
PCT (M,∅) = (C0,∅, τ0)

∀~αwith C0.τ0 ≤ τ

Proof: IF M is closed and C,E `M : τ for some E then also C,∅ `M : τ .
Thus this theorem is just a special case of the previous lemma.



7.4. COMPLEXITY ISSUES 109

7.4 Complexity issues

7.4.1 Lemma (let-expansion)
If C,E ` let x = M in N : ρ then C,E ` N [M/x] : ρ

Proof: The derivation of C,E ` let x = M in N : ρ must end with

C0, E `M : τ (C, σ) ∈ Gen(C0, E, τ) C,E(x : σ) ` N : ρ
C,E ` let x = M in N : ρ

Consider an occurrence x(j) of x in N and an instance of start rule for it in
the derivation of C,E(x : σ) ` N : ρ:

Cj ` σ ≤ τ j

Cj , Ej(x : σ) ` x : τ j

Note that Cj ⊇ C and Ej ⊇ E. Thus, by lemmas 7.2.2 and 7.2.1, we have

Cj , Ej `M : τ j

Hence
C,E ` N [M/x] : ρ

7.4.2 Lemma (let-contraction)
If x occurs in M , C,E ` N [M/x] : ρ and FV (M) ⊆ dom(E) then C,E `
let x = M in N : ρ.

Proof: Assume that x occurs n > 0 times in M and consider all occur-
rences xj of the variable xv in M and corresponding occurrences of typing
judgements for M in the derivation of C,E ` N [M/x] : τ :

Cj , Ej `M : τ j

Let C0 =
⋃n
j=1C

j . Since FV (M) ⊆ FV (E), we have for all j

C0, E `M : τ j

Let (C0
0 , σ0) be an arbitrary element of Gen(C0, E, τ1). By Lemma 7.3.5,

we have
C0

0 ` σ0 ≤ τ j

Hence,
C0

0 , E(x : σ0) ` N : ρ
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In the sequel we shall only consider terms where for every subterm of the
form let x = M in N , the variable x occurs in N . We can do it without
loss of generality, for if x does not occur in N , the let-expression can be
replaced by

(λxy.y)MN

which is equivalent from both typability and semantical point of view. Be-
sides, in a practical setting such ‘degenerated’ let-expressions are likely to
be eliminated even before type analysis (cf. e.g. [PJ87]).

7.4.3 Definition
Let M be an ML-term. By its expansion we mean the pure λ-term [M ]∗

defined as follows:

• [x]∗ = x

• [λx.N ]∗ = λx.[N ]∗

• [NP ]∗ = [N ]∗[P ]∗

• [let x = N in P ]∗ = [P [N/x]]∗

7.4.4 Theorem (let elimination)
Let M be a closed ML-term. It is typable iff [M ]∗ is typable.

Proof: This theorem follows directly from Lemmas 7.4.1 and 7.4.2.

7.4.5 Theorem
If the set of type constants with atomic inequalities between them for a poset
for which SSI is decidable in polynomial time, then for every closed ML-term
M , typability of M can be decided in time bounded by p(|M | ∗ 2d) where d
is the maximum depth of let-nesting in M and p is a fixed polynomial.

Proof: Let M be a closed ML term. By the previous theorem, M is
typable if and only if [M ]∗ is typable. It is easy to see that the size of
[M ]∗ is bounded by |M | ∗2d where d is the maximum depth of let-nesting in
M . Thus we can construct a system of inequalities ΣM of size O(|M | ∗ 2d)
such that M is typable iff ΣM is satisfiable. But satisfiability of ΣM can be
checked in polynomial time, from which the thesis follows.
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Conclusions and future
research

Having concluded the technical part, it is time to look back and summarize
what have been done and what remains for the future.

First, using order-theoretic as well as logical methods we have proven
that although the SSI problem is PSPACE hard in general, there is a wide
class of posets, containing many interesting and important classes (amongst
others: lattices, trees and absolute retracts) for which this problem can be
solved in polynomial time. Moreover, we have gathered substantial evidence
in favour of the conjecture stating that the relation between complexities of
FLAT-SSI and SSI corresponds to the relation between nondeterministic
and alternating complexity classes.

Further, we have analysed two families of type systems for ML with
subtyping, concluding that for partial orders for which SSI can be decided
in polynomial time typability in ML with subtyping has the same complexity
as typability without subtyping.

Yet the subject is far from being exhausted. This work has led to several
questions and problems which we consider important:

• For which posets is SSI tractable? We give a partial answer to this,
but a complete classification is still lacking.

• Can Conjecture 5.1.1 be formally proved?

• What is the exact complexity of ASSUP?

• Is there a more efficient way to check typability in ML with subtyping
than by doing let-expansion, or is the exponential jump in complexity
inherent for ML?

111
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We strongly feel that answer to this questions (possibly except of ASSUP
complexity) are difficult and need much more research.
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notations to work. In Conf. Rec. ACM Symp. Principles of
Programming Languages, pages 54–67, 1996.



BIBLIOGRAPHY 121

[Pal94] Jens Palsberg. Efficient inference of object types. In IEEE
Symp. Logic in Computer Science, 1994.

[Pap94] Christos H. Papadmitriou. Computational complexity.
Addison-Wesley, 1994.

[Pau91] Lawrence C. Paulson. ML for the Working Programmer. Cam-
bridge University Press, 1991.

[PJ87] Simon L. Peyton Jones. The Implementation of Functional
Programming Languages. Prentice-Hall International, 1987.

[PS94] Jens Palsberg and Michael I. Schwartzbach. Object-oriented
Type Systems. Wiley, 1994.

[PT92] Benjamin C. Pierce and David N. Turner. Object-oriented
programming without recursive types. Technical Report ECS-
LFCS-92-225, LFCS, University of Edinburgh, August 1992.

[PT93] Benjamin C. Pierce and David N. Turner. Object-oriented
programming without recursive types. In Proc 20th ACM
Symp. Principles of Programming Languages, pages 299–312,
1993.

[PT94] Benjamin C. Pierce and David N. Turner. Simple type-
theoretic foundations for object-oriented programming. Jour-
nal of Functional Programming, 4(2):207–247, April 1994.

[PT95] Vaughn Pratt and Jerzy Tiuryn. Satisfiability of inequalities
in a poset. Technical Report TR 95-15(215), Institute of In-
formatics, Warsaw University, 1995.

[PT96] Vaughn Pratt and Jerzy Tiuryn. Satisfiability of inequalities
in a poset. Fundamenta Informaticae, 28(1,2):165–182, 1996.

[Qui83] A. Quillot. An application of the Helly property to the par-
tially ordered sets. J. Comb. Theory (A), 35:185–198, 1983.

[Qui85] A. Quillot. On the Helly property working as a compactness
criterion for graphs. J. Comb. Theory (A), 40:186–193, 1985.
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