Valid XML Transformations with Dependent
Types

Marcin Benke*

October 15, 2007

Abstract

Most XML processing languages and libraries ensure only that the
generated XML document will be well-formed. In this paper we propose
a method of defining XML transformations that ensure validity preserva-
tion.

To this end, we use a dependently typed framework as well as a method
of defining universes, originally described in [BDJ03] for generic programs
and proofs.

Introduction

Correctness of XML documents is defined in two steps: well-formed XML doc-
uments are basically those that conform to XML syntax. Validity on the other
hand is a more complex issue. To quote from XML definition:

“The function of the markup in an XML document is to describe
its storage and logical structure and to associate attribute name-
value pairs with its logical structures. XML provides a mechanism,
the document type declaration, to define constraints on the logical
structure and to support the use of predefined storage units. |...]
An XML document is valid if it has an associated document type
declaration and if the document complies with the constraints ex-
pressed in it.”

Most XML processing languages and libraries ensure only that the generated
XML document will be well-formed. In this paper we propose a method of
defining XML transformations that ensure validity preservation.

To this end, we use a dependently typed framework as well as a method
of defining universes, originally described in [BDJ03] for generic programs and
proofs.

*Partially supported by Polish KBN grant 3 T11C 002 27

Plan of the paper First we describe briefly the framework we work in. Then
we recapitulate the method of universe construction which constitutes the foun-
dation for our XML transformation system. Since XML document types can be
related to multi-sorted algebras, we describe the construction of universes for
such algebras, while introducing the concepts on a simpler example of single-
sorted algebras. Finally we define an universe for XML documents

The universes have been implemented and tested in Agda, which is basi-
cally a proof assistant, but also a dependently-typed functional programming
language. To be able to test our universes, and later use them in practice, we
have implemented Alonzo — a compiler for Agda. The final part of the paper
describes briefly the metod of translation used in this compiler.

1 The logical framework for dependent types

Martin-Lof’s logical framework contains inference rules for deriving judgments
of the following four forms: A Type,A = A’,a : A,a = a’ : A. Among these
rules there are rules for dependent function types (x : A) — B, the type Set of
sets, and the types El A of elements for each A : Set.

Here we extend this framework with dependent product types (z : A) x B,
and the finite types 0, 1, and 2. As usual for logical frameworks, we assume
§ and n-equality for dependent function and dependent product. However, we
only have (-rules for the finite types.

The type Set contains sets in Martin-Lof’s sense, that is, inductive data
types defined by their constructors (introduction rules). We follow the usual
convention and just write A for El A (as in universes & la Russell [ML84]).
Set is also closed under dependent functions, dependent products, and contains
(codes for) 0, 1 and 2. El commutes with all these constructions and we will
therefore use the same notation for them on the set level as on the type level.

For a complete description of (essentially) the same logical framework, we
refer to the appendix of Dybjer & Setzer [DS03a].

There are no rules for building sets (inductive datatypes) such as the set of
natural numbers, sets of lists, vectors, trees, etc included in the logical frame-
work. This is instead the purpose of the following sections: to give formal rules
for constructing several different classes of such sets.

Convenient notation. We drop the type in the fourth form of judgment and
abbreviate a = a’ : A by a = a’. Lambda-abstraction is written Az.e as in
lambda calculus a la Curry. Application is mainly written fe but sometimes
arguments are put in index position f.. Pairing is written (d,) with projections
fst and snd. The sum type Ag+ A; is implemented as (i : 2) x A; but injections
are written Inl, Inr. We have a case analysis construct for which we don’t give
explicit syntax; instead we write definition by cases using pattern matching
equations.

We write Finn for the finite type with n elements denoted by 0,...,n — 1.
Formally, Fin0 = 1 and Fin (m+1) = 1 +Finm. In informal code we use n-ary

sum types and we write In; for the i-th injection.

We use angle brackets for pairing of functions: (f,g) is the function which
returns the pair (f z,gx) given the argument x. We also use various common
notational conventions, including superscripts and and argument-hiding, to im-
prove readability.

Although natural numbers, lists and vectors are not part of the logical frame-
work, we already introduce some notational conventions for them which will be
used later. We use Nat for natural numbers. We write [A] for the list type,
with constructors [] and (::) for empty and non-empty lists, respectively. We
write X™ for the type of vectors of length n implemented as X° = 1 and
X"l = X x X™. The informal notation for an element in X" is (x1,...,2y).
As a special case the unique element in 1 is denoted by ().

We can lift a function f: X — Y to operate on vectors:

fm: X" — Yy"
1O 0 = ()
e (wyas) = (fa, f*as)

When motivating the axioms of the different theories in Sections 2-4 we
will draw several category-theoretic diagrams. These diagrams should be un-
derstood informally; the formal axioms are expressed purely type-theoretically.
To aid the reader in seeing the correspondence between the informal diagrams
and the formal axioms, we will sometimes keep redundant parentheses in type
expressions, that is, we will sometimes write A — (B — C) rather than the
usual A - B — C.

2 Inductive definitions

2.1 One-sorted term algebras

The simplest class of inductive types is the class of (carriers of) term algebras
Ty for a one-sorted signature X. This is by no means the first formalization
of one-sorted algebras in dependent type theory. But we include it here for
pedagogical reasons and in order to show some interesting generic proofs in a
setting where they are reasonably easy to grasp.

A one-sorted signature is nothing but a finite list of natural numbers, repre-
senting the arities of the operations of the signature. Examples are the empty
type with ¥o = [], the natural numbers with ¥n,¢ = [0,1], the Booleans
with ¥p,,] = [0,0], and binary trees without information in the nodes with
Ypin = [0,2]. Lists of Booleans has Yystpool = [0, 1, 1], since it is generated by
one constant for the empty list and one Cons for each Boolean:

NilBool : ListBool
ConsTrue : ListBool — ListBool
ConsFalse : ListBool — ListBool

Note however that we cannot code ListNat in this way, because we would then
need infinitely many constructors.

Formally we introduce our first universe as the type of signatures Sig =
[Arity] = [Nat], and the decoding function T : Sig — Set, which maps a signa-
ture to (the carrier of) its term algebra. In this first universe we also include
formation, introduction, (large) elimination, and equality rules for Nat and Sig.

Generic formation, introduction, elimination, and equality rules.

These rules are best understood by recalling initial algebra semantics of term
algebras Ty [GTWT8]. Categorically, if F' is an endofunctor (sometimes called
the “pattern functor”) on a category then an F-algebra with carrier X is an
arrow

f

FX X

Let Fy be the pattern functor associated with a signature ¥. Initial algebra
semantics of the term algebra Ty, states that the Fy-algebra

Int
FyTs ntroy,

Tx
is initial among Fy-algebras, that is, for any other Fy-algebra

Fs C C

d

there is a (unique) arrow iters, C'd which makes the following diagram commute.

Intros
FETE TE
Fx (itery C d) iter, C'd
FxC 7 C

The pattern functor Fy is a functor on a category of types. It has two parts,
an object and an arrow part:

F% : Set — Set
Fy : (X,YV:Set) = (X -Y)— (FE X - FLY)

which are defined by induction on ¥ : Sig. We will often suppress the super-
scripts 0 and 1 and use F both for the object and the arrow part. We will also
often hide Set-arguments (in this case X and Y'). For example, the left verti-
cal arrow Fy(iters C' d) in the commuting diagram above is an abbreviation of
Fy, Ty C (iters C d).

Informally, we define
F[m nm]X = X™M 4 ...4 X"

The formal definition of F% can be found in Fig. 1 and the formal definition of
FlE is the following:

F!':(2:Sig) = (X,Y :Set) = (X - Y) — (FL X — F%Y)
FL XY f(Inlzs) = Inl(f"xs)
FrlL::E XY f (IDI‘ y) = Inr (Fé Xny)

Note that the base case F[l] is vacuous, since F?] X = 0. In general, when we
define a function by pattern matching, if the domain is empty for a certain
combination of arguments, we don’t write out that case.

Now we get generic rules for the set Ty for each ¥ : Sig, by giving for-
mal axioms expressing the existence of weakly initial Fy-algebras. As usual in
Martin-Lof type theory, inductively defined sets only have weak ((-like) rules.
Full initiality would amount to having strong (n-like) rules as well.

The formation, introduction, and (simplified) elimination rule for Ty are
expressed as the following three typings of new constants which are added to
the logical framework from Section 1:

TE : Set
Introy F%Tz — Ty
itery, : (C:Set) = (FXC — C) — (Tx — C)

The generic equality rule is
itery; C'd (Introx, 2) = d (Fy (iters, C d) z)

We call the function argument d to the iterator the step function because it
takes care of one step of the calculation with iter tying the recursive knot.

Note that the simplified elimination rule itery captures iteration, rather
than primitive recursion, and that C' is a set rather than a family of sets, as
in typical type-theoretic rules. The full elimination rule recy, is defined later in
this subsection. Fig. 1 describes in detail the axioms and rules which together
with the logical framework describes the theory of homogeneous algebras. We
can also use large elimination, so that C can be a large type, for example, the
type Set of sets, but we do not write this rule down formally.

Instances for natural numbers. Here we use the more compact notation
Nat = [0, 1] for the code for Nat and we note that Ty, = Nat.

gt X = 1+(Xx1+0)=214+X
IﬁNat : 1+ (Nat x 1+0) — Nat =2 1+ Nat — Nat
itern ¢ : (C:Set) = (1+(Cx140)—C)— (Nat — C)

(C:Set) - (1+C —C)— (Nat = C)
(C:Set) - (C x (C—C)) — (Nat — C)

1111

Arity Type
Zero : Arity
Succ : Arity — Arity

F0 : Arity — Set — Set

ar(_
FaZr%I'O r =1 ar0
FEl .. X = XxFu0x

FoI (2 Arity) — (X : Set) —
(X — Set) — F° X — Set

Fafégo XC) =1
Flucem XC(z,as) = Cuaxx FoH X O s
Farmap . (n : Arity) — (X : Set) —

(

(C: X — Set) —

(z:X) - Cx) —

(zs : F20 X) — FarH X O gs

Fym? X C f () = 0

Fa® X C f(z,zs) = (fx,Famap X C fxs)

Succm

T : Sig — Set

Sig Type
[] : Sig
() : Arity — Sig — Sig

FY : Sig — Set — Set
) X =0
Froe X = FOX+FRX

FIH (3 : Sig) — (X : Set) —
(X — Set) — F% X — Set

FLHZ XC (Inl xs) _ FéTLLrIH X O us
FIL X C(Imy) = FHXCy
Fmap . (¥ : Sig) — (X : Set) —

EC X — Set) —
(z:X)—=Cx) —

(y : FO X) - FHXxCy
F'OXC f(Inlzs) = Fama X C fas
FmapXCf(Inry) = FRXCfy

Intro : (¥:Sig) - F% Ty — Ty

rec : (¥ Sig) —

(C:Tg — Set) —

((y : FL Ty) — FH Ty Cy — C (Introg y)) —

(!,l? : Tz)

recy; C'd (Introg y) = dy (Fn™P T, C (recs C'd) y)

Figure 1: Axioms for the theory of homogeneous term algebras (large elimination

rules can be added)

recayity : (C: Arity — Set) — C Zero —
((m : Arity) - Cm — C (Succm)) —
(n: Arity) - Cn

recarity C 2 s Zero = z

recarity C 2 s (Sucem) = sm (recarity Czsm)

recgjg : (C :Sig — Set) — C[] —
((m : Arity) — (ms : Sig) = C'ms — C (m::ms)) —
(ns : Sig) — C'ns

recSigCnc[] = n

recSigCnc(m::mS) = CmmS(reCSigCncms)

Figure 2: Elimination rules for arities and signatures. (Again, large elimination
rules can be added.)

As the type of the step function is isomorphic to C' x (C' — C) we are in effect
supplying the iterator with one value for the base case and one function to
iterate. The usual natural number constructors Zero and Succ can be expressed
as follows:

Zero = Introng (Inl())

Sucen = Introm (Inr (Inl (n, ())))

Examples of generic functions.

We define a generic size function and a generic equality function. Formally, the
generic definitions should be expressed using the elimination rules for arities
and signatures (see Fig. 2), but in this presentation we use pattern matching
and explicit recursion for readability.

Generic size. This is obtained as a special case of the initial algebra diagram.
Let ¥ = [n1,...,%m].

Introy,
TS+ + Ty 2
sizeg! + - - - + sizeg™ sizex
Nat™ +--- + Nat"™ — Nat
sizestepy,
In our implementation, it becomes
sizes;, = itery sizestepy

1+ sum,, xs

sizestep,,..s; (Inlzs)
sizestep,,..s; (Inry) = sizestepy, y
where
sum : (n : Nat) — Nat™ — Nat

is a function summing the elements of a vector of natural numbers.
For the special case of ¥ = Nat the step function simplifies to

sizestepn,t ¢ 1+ (Nat x 140) — Nat
sizestepNat (Inl()) = 1
sizestepN ¢ (Inr (Inl (subsum, ()))) = 1+ subsum

Note that this means that sizen = n + 1 because the generic size counts the
total number of Intro constructors in n (in this case both Zero and Succ).

Generic equality. A function for testing equality between two values natu-
rally has two arguments, while the initial algebra diagram describes functions of
one argument. Fortunately, the result type can be instantiated freely, so by re-
turning a function we can easily simulate a two-argument function. It helps the
reading of the types below to think about equality as a one-argument function
returning a recognizer — a predicate which yields true only for values matching
its internal value. The step function then receives a value containing recognizers
for the substructures, and returns a recognizer for the top level. We obtain this
diagram:

n n Introx
T21+'..+T2'm ‘TE
_ni ++:gm =5
(Ty — Bool)™ + --- 4+ (Tx — Bool)"™ (T — Bool)
eqsteps

where informally (let ¥ = [nq,...,ny,]):

egstepy, « (Introy) = recog_ally, Ty xy

recog-ally X : (X — Bool)" + .-+ (X — Bool)"" —
X" 4 ... 4+ X" — Bool
reCngaHZ (Ini (p17 s ’pni)) (Ini (yla SR ym)))

Pryr N - N P Yn,

recog-ally, (In; (p1,...,pn,)) (Iny (y1,...,yn;))) = False ifi#j
Formally;
=% : TZ — (TE — BOOI)
=y, = Itery eqgstepy

egstepy, : Fs (T — Bool) — (Ts — Bool)
egstepy, x t = recog_ally, Ty, x (outs t)

where outy, : Ts; — Fx Ty is defined later in this subsection.

recog-ally, : (X : Set) — Fyx (X — Bool) — Fy X — Bool
recog-all,,..s X (Inlfs) (Inlzs) = and.args, X fsus
recog-all, ..x; X (Inr z) (Inry) = recogally Xzy
recog_all, .x X (Inlfs) (Inry) = False

recog-all, .x X (Inrz) (Inlazs) = False

and_args,, : (X : Set) — (X — Bool)” — X" — Bool
and_args, X 0 0 = True
and_args,, | X (p,ps) (z,zs) = pxAand.args,, X pswxs

Generic induction schema.

The elimination rule obtained directly from the initial algebra diagram earlier
in this subsection only captures definition by iteration.

We would like a more general Martin-Lof style generic elimination rule, which
captures proof by induction and definition by primitive (or structural) recursion.
To do this we consider the following instance of the initial algebra diagram.
Similar constructions can be found in Coquand & Paulin [CP90] and Dybjer &
Setzer [DS99, DS03b]. We believe they are essential in practice for doing generic
proofs.

Int
FZTZ ntroy, X TE

Fx(id, recy C'd) 4 (id, recy C d)

Fs((z:Tx)x Cx) = (y:FeTy) x FE' Tx Cy — (x:Tyg) x Cx

where
e(y,z) = (Introgy,dyz)
fy = (y,Fg" Tx C (recs Cd)y)

In order to get the usual shape of the elimination rule, we have introduced the
auxiliary constructions

FI . (X : Set) — (X — Set) — (Fx X — Set)

F[nD,] X C(Ing (21, 2p,)) = Cmy X oo X C iy,
and
FR*: (X :Set) — (C': X — Set) —
(z:X)—>Cx)—
(y:FeX) - FH X Cy)
Fmap

o] XCf(In;(z1,...,20,))=(fx1,...,fTn,)
as in Dybjer & Setzer. Their formal definitions can be found in Fig. 1.

Hence the elimination rule is

recy : (C:Tsg — Set) —
((y:FeTyg) —» FE Ty, Cy — C (Introx y)) —
((x: Tg) — Cux)

The equality rule is
recy; C'd (Intros y) = dy (FR™® Ty, C (recs; C'd) y)

As before we may use a large version of this elimination too, where C' can be
an arbitrary family of types, not just a family of sets.

Iteration is a special case of recursion. The diagram above only commutes
up to extensional equality; we do not expect to derive the rules for recy, from
the rules for itery up to definitional equality, so we add the rules for recy as
primitives. Conversely, we can however define iters; by instantiating recy with
a constant family Az.C' and by ignoring the first argument to the step function.
Thus the full elimination rule simplifies to the rule for iteration:

itery, C'de = recy (Az.C) (\y.d) e

From this we can derive the equality rule for itery, up to definitional equality.

3 Indexed inductive definitions

3.1 Many-sorted term algebras

First we shall consider the special case of many-sorted term algebras, giving rise
to a simple class of mutually inductive definitions. See also Capretta [Cap99]
for some other approaches to defining many-sorted term algebras in dependent
type theory. This is the main class of term algebras considered in algebraic
specification theory, following the work by the ADJ-group [GTW7S].

For simplicity we first consider many-sorted algebras with finitely many
sorts, and no parameters (it is easy to add them).

The type of signatures for n-sorted algebras is now

Finn — Sig,, where Sig, = [Arity,] and Arity,, = [Finn|

That is, a signature consists of n lists of arities, one for each sort. An arity is a
list of numbers < n, denoting the sorts of the arguments of an operation.

As a simple example, consider the following mutual definition of the even
and odd numbers:

SuccEven : Even — Odd
Zero : Even
SuccOdd : Odd — Even

10

The many-sorted signature is

20 = [[1]]
21 =[], [o)]

Another example is the mutual inductive definition of trees and forests. More
generally, abstract syntax trees for context-free grammars are many-sorted al-
gebras.

The diagram for initial n-sorted algebras is

Intro, s
Frx Tpsi mE T,y
Fnyg (iternz d)) itermz di
sz Ci di - Ci

where ¢ : Finn.

We neither display the diagram for the full elimination (induction) rule which
is similar to the one for the non-indexed case 2.1, nor give the definition of
generic size and equality. Instead we move on the the more general case of
inductive families.

3.2 Finitary indexed induction

In this section we consider a bigger class of finitary indexed inductive definitions.
For simplicity, we choose to present the class of restricted indexed inductive
definitions, rather than the class of general indexed inductive definitions, in the
sense of Dybjer & Setzer [DS01]. To explain the difference we consider the
Nat-indexed inductive definition of vectors (with elements of some fixed set A
for simplicity). This is most naturally presented as a general indexed inductive
definition:

NilV : Vect0
ConsV : (n:Nat) — (z: A) — Vectn — Vect (Succn)
We can reformulate this as a restricted indexed inductive definition, by employ-
ing an equality test for natural numbers:
NilV : (m:Nat) — (m =0) — Vectm

ConsV : (m:Nat) — (n:Nat) — (m = Sucen) — (z: A) — Vectn — Vectm
Restricted indexed inductive definitions require that the index in the result type
is a variable.

Restricted indexed inductive definitions have some theoretical and practical
advantages, but the drawback is that they give rise to longer and less natural

formulation of the rules. The reader is referred to Dybjer & Setzer [DS01] for
more discussion.

11

The universe construction. We define the universe I — Sig; for restricted
I-indexed inductive definitions:

Nil : Sig,
NonRec : (A:Set) — (A — Sig;) — Sig;
Rec : I — Sig; — Sig;

Here Nil represents the base case — an inductive definition with no premise;
NonRec represents the non-recursive case — adding a side condition a : A; and
Rec represents the recursive case — adding a recursive premise.

Note that arities and signatures have been fused into one code type: Sig;.
The added power in the NonRec case can be used to build up what corresponds
to the list of arities in simpler universes. A choice between n constructors can
be coded by NonRec (Finn) constrs where constrs : Finn — Sig; gives the arity
for each constructor.

An inductive family is a simultaneous definition of an indexed family of
datatypes. In the special case when the set is finite the family can be coded as
a group of mutually recursive datatypes, that is, as a many-sorted term algebra
(Section 3.1). We get n-sorted algebras if I = Finn, if arities are only built up
by Nil and Rec, and where NonRec is used at the top level for building up lists
of arities.

To define the object part of the pattern functor

Fry : (I — Set)— (I — Set)

for ¥ : I — Sig; on the category of I-indexed families of sets, we introduce an
auxiliary operator

Gry : (I — Set)— Set
for ~ : Sig;. Then
Fr=sXi = Grz: X

and G, is defined by induction on +y : Sig;:

G X = 1
GI,NOnReCAqSX = (x : A) X GI@;CX
GI,ReCiEX = X’L.XGLEX

The initial algebra diagram looks the same as in the many-sorted case. The
type-theoretic rules are (with 3 : I — Sig;):
Trs : I—Set
Intrors;, @ (i:1) = FrxTrxi—Trsi
iteryy : (C:I—Set)— ((i:I)—=FrsCi—Ci)— ((i:I)—Trxi— Ci)
rec;rsy ¢ (C:(i:I)— Trxi— Set)
—((i:1)— (y:FreTrsi) > Fi5 TrsCiy — Ci(Intror s iy))
—((@:I) = (x:Trxi) = Cix)

12

There are also equality rules that we do not display here.

A code for binary search trees. An example of an inductive family is the
family of binary search trees, indexed by pairs of natural numbers (the lower
and upper bound):

BST : Nat x Nat — Set

The introduction rules are

Leafy : (Ib,ub: Nat) — (Ib < ub) — BST (b, ub)
Node; : (Ib,ub:Nat) — (root : Nat) — (Ib < root) — (root < ub) —
— BST (Ib, root) — BST (root,ub) — BST (b, ub)

Written as “arities” they become

arityBST (Ib,ub)0 = NonRec (Ib < ub) (Ap.Nil)
arityBST (Ib,ub)1 = NonRecNat (Aroot.
NonRec (Ib < root) (Aps.
NonRec (root < ub) (Apa.
Rec (Ib, root) (Rec (root, ub) Nil))))

Thus the signature for the family BST becomes the family of codes Xggr:

Yest : Nat x Nat — SigNathat
Ypst = Abounds. NonRec 2 (arityBST bounds)

Indexed generic functions. We can now write a generic size function (or
rather, an indexed family of size functions) over this universe

sizers, : (i:I) — Trxni— Nat
However, to define equality
eqry : (1:1)— Trsi— Trxi— Bool

we need to restrict NonRec by allowing it to range only over sets with decidable
equality (so called datoids):

NonRec : (D :Datoid) — (|D| — Sig;) — Sig;

where |D| is the carrier of the datoid D.

3.3 Infinitary indexed inductive definitions

In each of sections 2.1-3.2 we have presented a universe consisting of a set
(family) of signatures and for each signature a term algebra. Each section defines
a theory (a version of Martin-Lof type theory with a particular collection of

13

inductive definitions) by adding some constants (with their types) and equations
to the logical framework from section 1. The theory for one-sorted term algebras
is given in Figure 1, and each of the other theories can be obtained by changing
the axioms as described in the respective (sub)sections. In each of these theories
we can write generic programs and proofs by induction on the signature. The
idea is to choose a universe of signatures which is appropriate for a particular
application.

However, each time we change universe we also change theory. This is of
course unsatisfactory - we would like to be able to do generic programming
over different universes in one theory. So we would like to have a large theory
which can swallow all the previous theories. For this purpose we could use the
the theory of indexed inductive-recursive definitions ITR®** (with extensional
equality) given by Dybjer and Setzer [DS01]. In this theory we conjecture that
all of our universes can be defined. To actually work out these embeddings in
detail is however a task outside the scope of this paper.

In fact, since induction-recursion does not play a role in this paper, it suffices
with the theory of indexed inductive definitions IID®** (with extensionality).
IID is a natural upper bound of the theories presented in sections 2.1-3.2.

IID is just like the theory of finitary indexed inductive definitions in the
previous subsection, except that we now have infinitary inductive definitions.
Formally, this means that we generalize the case of a recursive premise. It
becomes

Rec : (A:Set) — (A — I)— Sig; — Sig,
where the definition of G for the recursive case becomes
GRecain X = ((z:4) = X (i2)) x G, X

As an example of an infinitary indexed inductive definition we consider the
accessible (or well-founded) part of a relation < on a set I. The formation and
introduction rules are

Acc : I — Set
Acclntro : (i:1)— ((j:I) — (j <) — Accj) — Acci

The signature for Acc is

EAcc : I — Slg[
Yace = Ai.NonRec((j5:171) x (j <)) fstNil

We refer to [DS01, DS03a] for a full explanation of the theory ITR (and thus
implicitly of its subtheory IID).

IID is a suitable general framework for generic programming, since we con-
jecture that the theories in Sections 2.1-3.2 are definable in IID in the following
senses. (We have however not yet given a a rigorous proof of this conjecture.)
Firstly, the set of signatures for one-sorted algebras (possibly with iterated in-
duction) has a code in Sig; in TID®*t. Moreover, each signature for one-sorted

14

algebras can be mapped to a signature in Sig;, and the decoding function can
be obtained by composing the decoding function for Sig; with this map. Fur-
thermore the set of signatures for parameterized term algebras also has a code
in Sig;. Here a code in can be mapped to a function Set — Sig;, and the
decoding can again be obtained by composing the decoding function for Sig,
with this map. We conjecture that similar embeddings can be done also for the
theory of many-sorted term algebras and for the theory of finite indexed induc-
tive definitions. The situation with infinitary induction in section 3.2 is similar
to the situation with one-sorted algebras, except that as it stands the type of
signatures is here a “large” inductive definition, since it has a constructor which
refers to Set. This size problem can be solved if we replace the current large
inductive definitions with an analogous small one.

4 Universes for XML Documents

4.1 Micro-XML

To see how an universe for XML documents can be constructed, let us first
consider a variant of XML (which we’ll call Micro-XML) which is XML subject
to following restrictions:

e There are no tag attributes

e For every element there is a unique sequence of elements that is its valid
content (hence there is no CTYPE content and no entities)

Micro-XML retains enough of XML structure to be interesting, yet is simple
enough for us to present the idea clearly and without unnecessary clutter.

A universe for Micro-XML can be constructed in a manner similar to the
one for many-sorted algebras, presented in Section 3.1:

Tag : Set
Tag = String

Code : Set
Code = List Tag

DTD : Set
DTD = Tag —> Code

F: (d:DID) -> (X : Tag -> Set) -> Tag -> Set
FdXt=Fc (Xt) where

Fc [] = Unit

Fc (t:ts) = Pair (X t) (Fc ts)

data T(d : DID) (t :Tag) : Set where
InFAd(Td t->Tdt

15

It (d : DTD) (C : Tag -> Set) (d : (t : Tag) > Fd Ct ->C t)
> Tdt->Ct

data Elem(dtd : DTD) : Tag -> Set where
Node : (t : Tag) -> T dtd (dtd t) -> Elem dtd t

4.2 Universe for XML documents

Now that the general idea has been laid out in the previous section, we can
construct a universe for full XML. In the contruction below, we omit element
attributes, which does not reduce generality, but makes for a cleaner presenta-
tion.

Tag : Set
Tag = String

data ElemCode : Set where
CString : ElemCode
CE1l : Tag -> ElemCode
CSeq : ElemCode -> ElemCode —> ElemCode
CPlus : ElemCode -> ElemCode
CAlt : ElemCode -> ElemCode -> ElemCode
CBad : ElemCode

DTD : Set
DTD = Tag -> ElemCode

LDTD : Set
LDTD = (List Char) -> ElemCode

1iftDTD : LDTD -> DTD
1iftDTD 1d tag = 1d (tolist tag)

F : DID -> ElemCode -> (X : ElemCode -> Set) -> Set

F dtd CString X = String

F dtd (CELl tag) X = X (dtd tag)

F dtd (CAlt c1 c2) X = Either (X c1)(X c2)
F dtd CBad X = False

F1 : (dtd : DTD) -> (¢ : ElemCode)
-> (X : ElemCode -> Set)
-> (Y : ElemCode -> Set)
-> (f : (d : ElemCode) > X d -> Y d)
-> F dtd ¢ X
-> Fdtd c Y

16

F1 dtd CString X Y f s s

F1 dtd (CE1 t) XY f x = £ (dtd t) x

F1 dtd (CAlt cl c2) X Y f (Left 1) = Left (f cl1 1)
F1 dtd (CAlt cl c2) X Y f (Right r) = Right (f c2 r)

data T(d : DTD)(c : ElemCode) : Set where
In : Fdc (Td) ->Tdc

It : (dtd : DTD) -> (c : ElemCode)
-> (d : (¢’ : ElemCode)

data Elem(dtd : DTD) : Tag -> Set where
Node : (t : Tag) -> T dtd (dtd t) -> Elem dtd t

5 A Compiler for Agda

The universes described above have been implemented and tested in Agda,
which is basically a proof assistant, but also a dependently-typed functional
programming language. To be able to test our universes, and later use them
in practice, we have implemented Alonzo — a compiler for Agda, translating it
into Haskell, which is then compiled using GHC. The remainder of the paper
describes the highlights of Alonzo design and implementation.

5.1 Translating Dependent Types into Haskell

At first glance, translating dependent types to Haskell type system is easy:
just forget all the dependencies. For example, consider the inductive family of
vectors and a function representing their concatenation:

data Vec (A : Set) : Nat -> Set where
nil : Vec A zero
cons : {n : Nat} -> A -> Vec A n -> Vec A (suc n)

append : {A:Set} -> {n,m : Nat} -> Vec A n -> Vec A m -> Vec A (nt+m)

One could translate them into following Haskell definitions:?
data List a where

nil :: List a

cons :: List a -> List a -> List a

append : List a -> List a -> List a

LAlthough we use GHC’s extended syntax here, the definitions below can easily be ex-
pressed in Haskell98 as well.

17

A similar approach was used by Brady in his Epigram compiler [Bra05].
However, things get more complicated when you get to large elimination. To
illustrate the problem, consider the following definitions:

Q : Bool -> Set
Q true = Nat
Q false = Bool

f : (b:Bool) > Qb
f true = pred 3
f false = true

mainS : String
mainS = showBool (f (const false true))

Note that the actual result type of f depends on the value of its arguments.
How can such a function be translated into Haskell?

Assume we had a “magic” function cast :: a -> b. We could then trans-
late £ as follows:

f :: Bool -> b
f (true) = cast (pred (cast (3)))
f (false) = cast true

Luckily, GHC has such a function, albeit with an uglier name: unsafeCoerce#.
Despite the name however, all coercions (typecasts, actually) we insert are safe,
since the program has been already checked by Agda typechecker.

5.2 Translating Types

We need two translations for types:
1. to Haskell types (only data types)
2. to Haskell values

As for the first one, although it could seem that with the casts described
above explicit use of Haskell types is not needed, we still need data types for
pattern matching and of course as containers for data. But we don’t really need
to translate all the types, but only the datatypes, introduced with the data
definitions.

This translation is relatively straightforward. Every Agda datatype is trans-
lated to a Haskell datatype and every constructor is translated to a constructor
of the same arity.

However, in this translation we sacrifice a bit of (potential) efficiency for
safety: GHC could potentially use the (not necessarily correct) knowledge of
the types for optimisations. To prevent this,

18

data List (A:Set) : Set where
nil : List a
cons : A -> List A -> List A
becomes

data List ab=C1 | C2 ab

5.3 Translating Types to Values

In a dependently-typed system, types can be used as values in expressions. In
Haskell no such thing is possible, so we must find a way of translating Agda
types to Haskell values. One could of course argue that types cannot influence
the result of the computation on the value level, and thus could be erased. How-
ever such erasure would alter arity of functions and quite often also strictness
properties of the program. This seems to be a sufficient reason to avoid such
erasure and go the extra mile of translating types to values as well.
How to translate

Q : Bool -> Set
Q true = Nat
Q false = Bool

into Haskell?

We use codes (actually, universes, if one prefers a fancier term); all datatypes
(as well as primitive types) will have a value of this type assigned at compilation
time, e.g.

dQ :: PreludeBool.Bool -> Runtime.Code
dQ (PreludeBool.C1) = cast PreludeNat.dNat
dQ (PreludeBool.C2) = cast PreludeBool.dBool

5.4 Codes

Since there is no pattern-matching on types (only on values), the encoding
doesn’t need to be injective. Hence, if we don’t care for types at runtime, and
want every bit of efficiency, a very simple coding can be used:

dNat = ()
dBool = ()

In this encoding the type of codes is simply the unit type; every type is encoded
as unit value. This has the advantage of avoiding type computation at runtime
entirely, while still preserving arities and strictness properties.

On the other hand, if we want run-time type information, we can introduce a
more refined datatype of codes (e.g. the universe for dependent types described
in [BDJ03]. Then we could have e.g. a (built-in) function

showSet : Set -> String

at very little cost.

19

5.5 Pattern matching
Another obstacle is pattern matching, consider an Agda definition

printf’ : (fmt : List Format) -> Printf’ fmt -> String
printf’ (stringArg :: fmt) < s | args > = s ++ printf’ fmt args

printf’ (badFormat _ :: fmt) ()
printf’ [] unit ="

The patterns are of different types, whereas Haskell demands that in all clauses
of a definition, patterns for a given argument be of the same type. Casts don’t
solve the problem we cannot cast patterns.

We can solve this problem by making every clause into a separate single-
clause definition and then gathering them together as local definitions for the
main clause; for example the definition above would be translated as

d38 = d38_1
where d38_1 (PreludeList.C4 (Printf4.C3) vO0)
(AlonzoPrelude.C43 vl v2)
= cast
(PreludeString.d0 (cast v1l)
(cast (Printf4.d38 (cast v0) (cast v2))))
d38_1 a b = cast d38_2 a b

d38_8 (PreludelList.C3) (Printf4.C1) = cast ("")

References

arcin Benke, Peter Dybjer, and Patrik Jansson. Universes for

BDJ03] Marcin Benke, P Dybj d Patrik J Uni f
generic programs and proofs in dependent type theory. Nordic Jour-
nal of Computing, 10(4):265-289, 2003.

[Bra05] Edwin C. Brady. Practical Implementation of a Dependently Typed
Functional Programming Language. PhD thesis, Durham University,
2005.

[Cap99] V. Capretta. Universal algebra in type theory. In Y. Bertot et al.,
editors, Proc. TPHOLs 99, volume 1690 of LNCS, pages 131-148.
Springer-Verlag, 1999.

[CP90] T. Coquand and C. Paulin. Inductively defined types, preliminary
version. In COLOG ’88, International Conference on Computer
Logic, volume 417 of LNCS. Springer-Verlag, 1990.

[DS99] P. Dybjer and A. Setzer. A finite axiomatization of inductive-
recursive definitions. In J.-Y. Girard, editor, Proc. TLCA’99, volume
1581 of LNCS, pages 129-146. Springer-Verlag, Berlin, 1999.

20

[DSO01]

[DS03a]

[DSO03b)]

[GTWTS]

[ML84]

P. Dybjer and A. Setzer. Indexed induction-recursion. In R. Kahle
et al, editor, Proof Theory in Computer Science, volume 2183 of
LNCS, pages 93-113. Springer Verlag, October 2001.

P. Dybjer and A. Setzer. Indexed induction-recursion.
long version, submitted for publication, available from
http://www.cs.chalmers.se/ peterd/, 2003.

P. Dybjer and A. Setzer. Induction-recursion and initial algebras.
Annals of Pure and Applied Logic, 2003. In press.

J. Goguen, J. Thatcher, and E. Wagner. An initial algebra approach
to the specification, correctness, and implementation of abstract data
types. In R. Yeh, editor, Current Trends in Programming Methodol-
ogy, volume 4, pages 80-149. Prentice-Hall, 1978.

P. Martin-Lof. Intuitionistic Type Theory. Bibliopolis, 1984.

21

