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Abstract Logic, game theory and computer science share many themes. E.g., methods for 
solving games are a form of ‘procedural rationality’ �that invites logical analysis. Our case 
study � is Backward Induction for extensive games, replacing the static epistemic �foundations 
of game theory by dynamic ones. We will analyze some recent views of game solution, viz. 
iterated announce �ments of players' rationality, and belief revision by plausibility upgrade� 
with 'rationality-in-beliefs'. These views turn out equivalent, �pointing at underlying invariant 
structure. We explore how standard � fixed-point logics on finite trees fit such game-theoretic 
equilibria. � We end with questions interfacing computational logic and game theory. ��  
 
References J. van Benthem, 2002, Logic in Games, lecture notes, Institute for Logic, Language & 

Computation ILLC, Amsterdam. JvB 2010, Logical Dynamics of Information and Interaction, �  
Cambridge University Press. A. Gheerbrant, 2010, Logics of Finite Trees, �Ph. D. thesis, ILLC, UvA. 
 
1  Logic and rational agency 

To be rational is to reason intelligently. All available sources of information.  Logic as 

the study of explicit informational processes (inference, observation, communication) 
 
    Zhi: Wen, Shuo, Qin   知 问 说 亲    (Fenrong Liu & J. Zhang, A Note on Mohist Logic) 

To be rational is to act intelligently. Add goals, preferences, decisions, actions.  

To be rational is to interact intelligently. Argumentation, communication, games.  

                                                            
 
2 Where it all comes together: logic and games  
Games are a microcosm for logics of rational agency. Here is a minimal social scenario 
– but many things involved logically in explaining or predicting such behaviour: 
 
    A         

   1, 0   E           
 
   0, 100       99, 99     
 
Many contacts today: logics for analyzing games, games for performing logical tasks. 

Key result (Aumann 1995): characterization of BI by common knowledge of rationality. 

This lecture shifts the focus to analyzing game solution methods as rational procedures. 
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3 Running example: Backward Induction  

The BI procedure for ‘distinguished’ extensive games: 
 
  “At end nodes, players already have their values marked. At further nodes, once all  

 daughters are marked, the player to move gets her maximal value that occurs on a  

 daughter, while the other, non-active player gets his value on that maximal node.”          
 
A strategy for a player is a map selecting one move at each turn for that player. The BI 

procedure can create delicate cases, and its conceptual justification is still under debate. 
 
4 Statics: defining the BI outcome in modal preference logic 

Modal preference language <prefi>φ: i prefers some node with φ  to the current one.  
 
Theorem  The BI strategy is as the unique relation σ  satisfying the following  

 axiom for all propositions P – seen as sets of nodes –, for all  players i:   

 (turni & <σ*>(end & P)) → [move-i]<σ*>(end & <prefi>P). 
 
5 Dynamics I: the BI procedure in logic of public announcement 

Dynamic logics of public announcement: Information update as model change. 

Learning that P eliminates the worlds where P is false (hard information). Picture: 

 
 
              from M s    to M|P s 

 
      P              ¬P 

Static epistemic logic Formulas p |¬φ | φ∨ψ | Kiφ | CGφ, models M = (W, {~i | i∈G}, V), 

worlds W, accessibility relations ~i, valuation V. Truth: M, s |= Kiφ  iff for all t with s ~i 

t: M, t |= φ,  M, s |= CGφ  iff for all t reachable from s by finite sequence of ~ steps: M, t 

|= φ.   Dynamic logic of public announcement PAL: action expressions: !P for all 

formulas P, and modal operators describing their effects (one simultaneous recursion): 
 
 M, s |= [!P] φ  iff if M, s |=P, then M|P, s |= φ   
 
Theorem PAL axiomatized completely by epistemic logic plus recursion axioms: 

 [!P]q  ↔  P →  q   for atomic facts  q 
 [!P]¬φ  ↔  P → ¬[!P]φ  
 [!P]φ∧ψ  ↔  [!P]φ ∧ [!P]ψ 
 [!P]Kiφ  ↔   P → Ki(P → [!P]φ) 
 
Backward Induction as repeated public announcement (cf. Muddy Children!): 
 
Theorem   The Backward Induction solution for extensive games is fixed-point of    

       repeated announcement of "No player plays a strictly dominated move". 
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6 Dynamics II: the BI procedure as iterated belief revision  

Conditional logic of relative plausibility: base logic for ‘soft information’: 

           M, s |= Biφ    iff    M, t |=φ  for all worlds t minimal in the ordering λxy. ≤i, s xy. 

Soft information just changes the plausibility ordering of the existing worlds. E.g.,  
 
 Lexicographic upgrade  ⇑P changes the current model M to M⇑P:  

 P-worlds now better than all ¬P-worlds; within zones, old order remains.  
 
Complete dynamic logics of belief revision exist – but we will not need these here.  
 
BI as a limit of belief change BI creates expectations among branches. Start: empty 

relation. At a turn for i, x ‘strictly dominates’ sibling y ‘in beliefs’ if all currently most 

plausible end nodes after x are worse for i than all most plausible end nodes after y. 
 
Theorem    The BI procedure is the limit of iterated soft updates with the assertion  

 that “No player plays a move strictly dominated in beliefs at her turns”. 
 
7 Logical analysis: from functional to relational strategies 

Generalized strategy: any subrelation of the move relation. Generalizations of BI: say, 

take minimum for passive player on maximal nodes for the active player. Such solution 

algorithms all make assumptions about players’ preference. One minimal version:  
 
 First, mark all moves as ‘active’. Call a move a dominated if it has a sibling move  

 all of whose reachable endpoints via active nodes are preferred by the current player  

 to all reachable endpoints via a itself. Now, at each stage, mark dominated moves in   

 this sense of set preference as ‘passive’, leaving all others active. In the preference  

 comparison, the ‘reachable endpoints’ by an active move are all those that can be  

 reached via a sequence of further moves that are still active at this stage.                       
 
8 Defining BI as a unique static relation: the background 

Fact  A game model makes (turni ∧ <σ*>(end ∧ p)) → [move-i]<σ*>(end  

 ∧ <prefi>p) true for all i at all nodes iff it has this property for all i:  

    x 
   σ 
        y         z 
 
 
 
     
      via σ        via σ 
       u         v 
    ≥  
The modal axiom is equivalent to a confluence property for action and preference: 
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 CF1   &i ∀x (Turni(x) → ∀y ( x σ y → (x move y ∧ ∀u ((end(u) ∧ y σ * u))  
                 → ∀z (x move z →  ∃v (end(v) ∧ z σ * v ∧ v ≤i u)))) 
 
Capturing BI But now look at our relational version of BI. Consider the∀∀∃∃ form 
 
 CF2       &i ∀x ∀y ((Turni(x) ∧ x σ y) → (x move y ∧ ∀z (x move z  
          →  ∃u ∃v (end(u) ∧ end(v) ∧ y σ * v ∧ z σ * u ∧ u ≤i v)))     
 
Theorem     BI is the largest subrelation of the move relation in a finite game tree  

 satisfying (a) the relation has a successor at each intermediate node, (b) CF2.  
 
Inspecting the syntax of CF2, we can use the first-order fixed-point logic LFP(FO):  
 
Theorem  The BI relation is definable in LFP(FO). 

 BI (x, y) =    νS, xy• x move y ∧ &i (Turni(x) → ∀z (x move z →  

            ∃u ∃v (end(u) ∧ end(v) ∧ y S * v ∧ z S * u ∧ u ≤i v)))            
 
The decreasing approximation stages Sk are exactly the ‘active move stages’ of the 

above algorithm. Fixed-point logics analyze both statics and dynamics of game solution.  
 
9 A dynamic-epistemic scenario: iterated announcement of rationality 

Sharpening up the earlier story. At a turn for player i, move a is dominated by sibling b 

(a move available at the same node) if every history through a ends worse, in terms of 

i’s preference, than every history through b. Now rat says that “at the current node, no 

player has chosen a strictly dominated move in the past coming here”. As with Muddy 

Children, iterated announcement of rat must reach a limit, where no node is dominated: 
 
Example Solving games through iterated assertions of Rationality. 
    A   

   x    E       
                      1, 0 
        y     A  
                 0, 5 
          z     u   
        6, 4               5, 5     and the next stages… 
 
Definition (Announcement limit). For each epistemic model M and each proposition ϕ, 

the announcement limit (ϕ, M)# is the first model reached by successive announcements 

!ϕ that no longer changes after the last announcement is made. Either this model is non-

empty, in which case rat holds in all nodes, so it has become common knowledge (self-

fulfilling), or it is empty, and the negation ¬rat is common knowledge (self-refuting). 
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Both occur in concrete puzzles, though rationality assertions like rat tend to be self-

fulfilling, while the ignorance statement driving the Muddy Children is self-refuting.                 
 
Theorem   In any game tree M, (!rat, M)# is the actual subtree computed by BI.  
 
Explanation: sets of nodes as relations Each subrelation R of the move relation induces 

a set of nodes reach(R): the range of R plus the root. And each set X of nodes has a 

matching relation consisting of all moves in the tree that end in X.  
 
Fact For each k, in each game M, BIk = rel((!rat)k, M), reach(BIk) = ((!rat)k, M).  
 
Open problem Logics for defining the fixed-point limits of announcement procedures. 

In general, inflationary epistemic fixed-point logic fits, but sometimes µ-calculus works. 
 
10 Once again, beliefs and iterated plausibility upgrade 

Definition (Rationality in beliefs). Move x dominates sibling move y in beliefs if the 

most plausible end nodes reachable after x along any path in the game are all better for 

the active player than all most plausible end nodes reachable after y. Rationality* (rat*) 

says that no player plays a move that is dominated in beliefs.           
 
Theorem   On finite trees, the Backward Induction strategy is encoded in the plausibility  

 order for end nodes created by iterated radical upgrade with rationality-in-belief. 
 
And at the end of this procedure, players have acquired common belief in rationality.  
 
Strategies as special plausibility relations We first observe that each subrelation R of 

the total move relation induces a total plausibility order ord(R) on leaves x, y of the tree:  
 
 We put x ord(R) y iff, looking upward at the first node z where the histories  

 of x, y diverged, if x was reached via an R move from z, then so is y.     
 
Fact The relation ord(R) is a total re-order on leaves. 
 
Ord(R) is tree-compatible in an obvious sense. Any tree-compatible total order ≤ on 

leaves induces a subrelation rel(≤) of the move relation, selecting just those moves at a 

node z whose histories lead only to ≤-maximal leaves in the total set of reachable leaves.              
 
Fact For any game tree M and any k,  rel((⇑rat*)k, M)) = BIk. 
 
11 Midway conclusion: the stability of Backward Induction 

All analyses are the same: extensional equivalence, intensional difference. In particular, 

we find an underpinning for dynamic instead of static foundations for game theory. 

Common knowledge or belief of rationality is not assumed, but produced by the logic.  
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12 Test case: variants of Backward Induction 

This analysis also works for other variants of BI (Gheerbrant 2010) Natural definitions 

use a first-order inflationary fixed-point logic IFP(FO) with simultaneous fixed-points. 
 
13 Alternative fixed-point analyses  

Fixed-point recursion on well-founded tree order This exploits the tree structure: 
 
Example  Consider the definition p ↔ ¬☐p. On a 3-node linear order 
 
  1   2  3 
 
starting from any set as a value for p, this will stabilize to the fixed-point p = {2}. There 

is no definition for this in the modal µ–calculus, and not even in its inflationary variant.  
 
Fixed-point logic on games in strategic form Take BI output as set of strategy profiles. 
 
14 Hiding the machinery: modal fragments of fixed-point logics for games 

Which fragments are needed for game solution, and which fixed-point operators for 

describing its mechanics? One drastic way to go is modal, hiding the procedure again: 
 
Open problem  Can we axiomatize the modal logic of finite game trees with a move  

 relation and its transitive closure, turns and preference relations for players,  

 and a new relation best as computed by Backward Induction? 
 
Fact The following modal axiom corresponds to CF2 by standard techniques: 
 
 (turni ∧ <best>[best*](end → p)) → [move-i]<best*>(end ∧ <prefi>p) 
 
Potential problem: the complexity of rationality In logics of action and knowledge, 

apparently harmless assumptions such as Perfect Recall make the logic undecidable, and 

sometimes Π1
1-complete. PR generates commuting diagrams for move and uncertainty ~ 

 
 ∀x ∀y((x move y ∧ y ~ z) → ∃u (x ~ u ∧ u move z)) 
 
that drive encodings of Tiling Problems. But Rationality assumptions also create grids: 
 
 ∀x ∀y ((Turni(x) ∧ x σ y) → ∀z (x move z →  ∀u ((end(u) ∧ y σ * u)  

              → ∃v (end(v) ∧ z σ * v ∧ v ≤i u))))    
 
Does Rationality, meant to make behaviour predictable, really make its logic complex?  
 
15 Further issues and extended game logics 

Language design and game equivalence, Infinite games, Imperfect information. 
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16 Coda: Paradox of Backward Induction and more belief dynamics 

Our mathematics may be elegant. But does it also make sense? Consider the so-called 

Paradox of Backward Induction, as discussed by philosophers: 
    A   

   x    E       
                      1, 0 
        y     A  
                 0, 5 
          z     u   
        6, 4               5, 5 
 
Backward Induction tells us that A will go left at the start, on the basis of logical 

reasoning that is available to both players. But then, if A plays right (as marked by the 

black line) what should E conclude? Does not this mean that A is not following the BI 

reasoning, and hence that all bets are off as to what he will do later on in the game?   
 
Agent types Responses to this difficulty vary. The characterization result of Aumann 

1995 assumes that players know that rationality prevails throughout, a stubborn belief 

that players will act rationally later on, even if they have not done so up until now.  
 
Belief revision A richer analysis should add an account of the types of agent that play a 

game. We must represent the belief revision policies by the players, that determine what 

they will do when making an observation contradicting their beliefs in the course of a 

game. There are many different options for such policies in the above example, such as  
 
 ‘It was just an error, and A will go back to being rational’,  

 ‘A is telling me that he wants me to go right, and I will be rewarded for that’,  

 ‘A is an automaton with a general rightward tendency’, and so on.  
 
Open problem How to merge our fixed-point analysis with belief revision structure? 
 
17  Conclusion 

Games a rich mixture of computational logic and philosophical logic. The future; 
 
 Logic + Game Theory = Theory of Play 
 

                                          


