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1 Wyklad 7

Wykitad prowadzit dr hab. Igor Walukiewicz
Notatki przygotowat t.ukasz Chmielewski
<|c189379@zodiac.mimuw.edu.pl>

1.1 Gry parzystosci - przypomnienie

G = (Posg, Posa, Moves,rank : Pos — {1,...d})

Ewa wygrywa rozgrywke popips - . . jesli limsup,,_,rank(p,) jest parzyste lub Adam nie
moze wykona¢ ruchu. Oznacza to, ze najwigkszy z rank, ktéry powtarza sie nieskonczenie cze-
sto, jest parzysty. Wazne jest zatozenie, ze funkcja rangi idzie w skohczony zbiér.

1.2 Gry zadane przez Maszyny Turinga
1.2.1 Maszyna Turniga

M={(Q,%,B,q,0:Q xX— P(QxXx(l,r)),F)
Objasnienia:
M - maszyna Turinga;
Q - stany;
Y - alfabet maszyny;
B - blank;
go - Stan poczatkowy;
0 - funkcja przejscia (I - lewo, r - prawo);
F - zbior stanéw kohcowych;
1.2.2 Konfiguracja Maszyny Turinga

wqw' gdzie w,w' € E*

wqaw' - wegiw’ = (g, ¢,7) € 8(g,a)

whgaw' = wqibew' = (q1,¢,1) € 6(q,a)
wq F weqy = (q1,¢,7) € 0(q, B)
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Rysunek 1: Konfiguracja

1.2.3 Graf

G(M) = (E*QE",F)

To moze by¢ graf nieskofczony, np.:

q aq aaq aaaq o
$ |
qa ag'a aag'a |
|
q'aa ag'aa |
|
g'aaa

Rysunek 2: Graf
Dzielimy @ na Qg i Q) 4 oraz bierzemy funkcje €2 : Q@ — N. To zdefiniuje gre.

1.24 Gra

G(M,QEg,Q4,9) = (Posg = E*QrE", Posy = E*QaFE", Moves = F,rank)
gdzie
rank(wquw') = Q(q)

Przyktad:
Zalozmy, ze M nie robi ruchow ze stanow F.



Qe = Q\F

Qs = F
Qq) =1
dlag e Q

Czyli: Adam przegra, gdy Ewa dojdzie do stanu akceptujacego.
W G(M,Qr,Q4,2) Ewa ma strategie wygrywajaca z konfiguracji qow, wtedy i tylko
wtedy, gdy w € L(M).

Fakt:

Problem rozwigzywania gier zadanych przez maszyne Turinga definiujejemy jako: dla danej gry
i konfiguracji stwierdzi¢ czy Ewa ma strategie wygrywajaca.

Poniewaz problem : czy dane stowo nalezy do jezyka rozpoznawanego przez dang maszyne
Turinga jest nierozstrzygalny to problem rozwigzywania gier zadanych przez maszyne Turinga
jest réwniez nierozstrzygalny (jak widac z przyktadu).

Przykiad:

Bierzemy M jak poprzednio. Konstruujemy M’. Dodajemy do M gadzet generujacy dowolne
slowo w (rysunek 3).

wqy F  wbgy dladowolnegob € F

wqgy H* qow

_|
Z| -
V'V

Rysunek 3: w to dowolne wygenerowne stowo

G(M',Qp =Q\ (FU{g}),Qa= (FU{g}), Q)
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Rysunek 4: Przyktad drzewa gry

gdzie

Qq) = 0
Q(¢) = 1dladowolnegogq € @

Jak wida€ z drzewa gry (rysunek 4) Adam musi kiedys wejs¢ do g, (bo ¢, parzyste).

Ewa ma strategie z ¢; wtedy i tylko wtedy, gdy M akceptuje kazde stowo.

Zatem problem rozwigzywania gier zadanych przez maszyne Turinga nierostrzygalny. Wi-
dac, ze ten problem jest trudniejszy niz problem: czy dane stowo nalezy do jezyka rozpoznawa-
nego przez dang maszyne Turinga (a juz ten problem jest nieroztrzygalny).

1.3 Gry zadane przez Automaty ze stosem
1.3.1 Definicje
Automat ze stosem:
P=(QT,6:QxI' - PQuUQ xTI))
Objasnienia:
P - automat;
Q - stany;

[' - alfabet automatu (zawiera alfabet stow i stosu, gdyz nie zajmujemy sig dziataniem auto-
matu);

0 - funkcja przejscia;
Konfiguracja:
qw ,Qdzie w e I™ qgeQ

6



Rysunek 5: Stos automatu

Robimy zatozenie: 1 € T' - litera, kt6rej nie mozna wktadac/zdejmowac ze stosu.
qgzw F qwdlag € d(q, 2)
qgzw F ¢Zzwdla(d,z) € d(q,2)

Przyktad:

ql qal gaa | gaaa|

!

Ol gal _aaal

Rysunek 6: Graf dla automatu ze stosem

Funkcja przescia dla przyktadowego automatu (z rysunku 6):
5((]7 a’) = ((], a)
6(g, L) = (g, a)
d(q,a) =¢
(g, L) =4

Gre definiujemy analogicznie jak dla maszyn Turing’a.

1.3.2 Twierdzenie

Problem rozwigzywania gier to:
Dla danych : P, Qg, Q 4, 2 oraz kofiguracji gw stwierdzi¢, czy Ewa ma strategie wygrywajaca z

qu W G(Pa QEa QA7 Q)
Problem rozwigzywania gier zadanych przez automat ze stosem jest EX PT1M E-zupeiny.
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1.3.3 Warunek P1

Definiujemy gre z warunkiem P1 nastepujaco:
Nie ma przejs¢ ze stanu @ 4, oraz Q(¢) = 1, dla kazdego ¢ € Q.

Twierdzenie:
Gry z warunkiem P1 sg rozwigzywalne w czasie wielomianowym.

Dowdd:

1. Liczymy zbior K trdjek (rysunek 7) (q¢1, 2, ¢2) takich, ze istnieje obliczenie

Q12" gz

qlz qzz

Rysunek 7: przyklad

(@) Wstawiamy (q1, 2, g2) do K (rysunek 8), gdy

qzt @2z F gz

Rysunek 8: przyklad
(b) Wstawiamy (g1, z, ¢2) do K (rysunek 9), gdy
(@1,2,¢)€EKi(d,2q) €K
(c) Wstawiamy (g1, 2, g2) do K (rysunek 10), gdy

(¢1,7,¢5) € K
!

@z b oAz

@z F gz



Rysunek 9: przyklad

a P

Rysunek 10: przyklad

2. Lemat:
Zbidér K to najmniejszy zbidr zamkniety na powyzsze operacje (a) i (b) i (c).

Definiujemy nowa gre G* (rysunek 11):

G* = (Posg = Qr X T, Poss = Qa X ', Moves, rank)

Moves:
G12 — @z jesli g1zqy € K
1z — q22' jeSli guz € (g, 2)
Rank:
rank(q,z) =1
3. Lemat:

Ewa wygrywa z pozycji ¢z W G(P, Qg, Q 4, §2), wtedy i tylko wtedy, gdy Ewa wygrywa z
qz W G*.

.....
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%
9z |

99| “d2.

Rysunek 11: Nowa gra G*

W zwigzku z konstrukcja nowej gry widac, ze gra G* jest rozwigzywalna w czasie wielomia-
nowym od swojego rozmiaru. Zatem gra G jest rowniez rozwigzywalna w czasie wielomiano-
wym w stosunku do wielkosci automatu.

1.3.4 Warunek P2

Warunek P2 jest formutowany analogicznie do P1.

Qe = @
Qq) € {1,2},9dzieg e @

Twierdzenie:
Gry z warunkiem P2 sg rozwigzywalne w czasie wielomianowym.

Dowdd:
Liczymy zbior K czworek (rysunek 12) (qi, 2, g2, b) takich, gdzie b = true, jeSli w obliczeniu
wystapit stan z ranga 2 (w przyciwnym przypadku b = false).

W zwigzku z konstrukcja nowej gry widac, ze gra G* jest rozwigzywalna w czasie wielo-
mianowym w stosunku do swojego rozmiaru. Zatem gra G jest rdwniez rozwigzywalna w czasie

wielomianowym w stosunku do wielkoSci automatu.

qlz qzz

Rysunek 12: przyktad
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Definiujemy G* (analogicznie jak w P1):

az = gz, jesli (g1, 2,¢0,0) € K
Gz =" g7, jeSli g2z’ € 0(g,2) i b= (qn) = 2 lub Q(ge) = 2)

Ewa wygrywa w G* wtedy i tylko wtedy, gdy rozgrywka przechodzi nieskonczenie czgsto
przez krawedz z b = true.

1.3.5 Warunek P3 - alternujaca osiggalnos¢
Warunek P3 jest formutowany analogicznie do P1.
Q) =19€Q

Czyli w grach z tym warunkiem Adam ,,moze si¢ bronic”.

Dla dowolnego G i V' definiujemy odlegtoS¢ atraktorowa zbioru wierzchotkéw w G przez
u € Attrg(V'). OdlegtosSt v od V' to najmniejsza 7 taka, ze u € Attrig (V).

Odlegtos¢t wierzchotkowa = numer warstwy.

Liczone jest (analogicznie jak w P1):

(¢, 2, S) takie, ze S C Q

Kontynuacja na nastepnym wykfadzie.
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2 Wyklad 8

Wyktad prowadzit dr hab. Damian Niwinski
Notatki przygotowat Michat Weknicki
<mw189448@zodiac.mimuw.edu.pl>

2.1 Przypomnienie

2.1.1 Rozwinigcie grafu skohczonego w nieskohczony

2.1.2 Grafy istotnie i nieistotnie nieskonczone

Drzewa nieskohczone majace skofnczenie wiele nieizomorficznych poddrzew sg nieistotnie
nieskohczone.
Drzewo z przyktadu 2.1.1 jest wigc nieistotnie nieskohczone.

2.1.3 Definicja automatu

Automat ze stosem: (Q,T,0: Q x F — P(Q U (Q x I'?)))
Notacja

gz — q'a (jesli ¢'a € §(q, 2))
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qzw F ¢'aw

2.1.4 Przykiad rozwinigcia grafu konfiguracji

qa - qaa

qatp

patp
qa qaa qaaaq qaaaq — > . . .
P pa paa pPaaa <— ...

Rozwinigciem tego grafu konfiguracji jest nastepujace drzewo:
o
2N,
2N,
N,
RERVZRN
Ve

i jest to drzewo istotnie nieskohczone.

2.2 Grana grafie konfiguracji automatu ze stosem
2.2.1 Definicja gry

Gre otrzymujemy wprowadzajac rozbicie Q = Q4 U Qg irank : Q — w
Rozwazamy gry, gdzie rank(Q) = {1} (gry na przetrwanie dla Adama).

2.2.2 Twierdzenie

Istnieje algorytm, ktéry (w czasie wyktadniczym) oblicza zbiory pozycji wygrywajacych w
takich grach.
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2.2.3 Definicjagry G(q, 2, 5)

Pomocniczodlag € @, z € T'i S C @ okreSlamy gre G(q, z,S) z wyrdzniona pozycja
startowa ¢z i ruchach takich jak w grze G, z tym, ze pozycja postaci ¢ jest wygrywajgca dla Ewy
+——q€S

Pokazemy algorytm rozstrzygajacy, czy pozycja gz jest wygrywajaca w grze G(q, z, S).
Zeby stwierdzi¢, czy pozycja gz jest wygrywajgca w oryginalnej grze G wystarczy rozwazy¢
G(CI: Z, QA)

2.2.4 Okreslamy gre skohczong G*
Pozycje:
Pozycje ,,merytoryczne”
Good(q, z, S) — pozycja Adama lub Ewy, w zaleznosci od tego, czyj jest stan ¢

Pozycje pomocnicze:

T (true, wygrywa Ewa)
F (false, wygrywa Adam)

Push(q, z,S,q',2') (pozycja Ewy)

Choose(q, z,S,q', 2, S") (pozycja Adama)
Ruchy:
Good(q,z,S) - Toilegz¢ €S
Good(q,z,S) — Foilegzt+¢ ¢ S
Good(q, z,S) — Push(q,z,S,q¢',2")oileqz - ¢'2'2

Push(q, z,S,q',2") = Choose(q, z, S, ¢, 2, S"), S’ dowolne
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Choose(q, z, S, ¢, 7', S") —= Good(q', 2', S")
Good(q", z, S) qg" €S’
(rozszczepienie pozycji)

Przyktad
Zdefiniujmy gre na grafie konfiguracji z przyktadu 2.1.4, ustalajac Qg = Q.
Wtedy fragment gry G* ma nastepujaca postac:

Good(q, a, D)

|

Push(q,a,0,q,a)

|

Choose(q, a, 0, q,a,{p})

/ \

Good(q, a, {p}) Good(p, a, D)

|

T

2.2.5 Twierdzimy

Ewa wygrywa w G* z pozycji Good(q, z, S) <= Ewa wygrywa G(q, z, S) z pozycji qz.
Uwaga
Poniewaz gra G* jest zwykla gra skohczong, mozna ja rozwigzac w czasie liniowym. Jednak
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liczba pozycji w G* jest wyktadnicza w stosunku do liczby stanéw automatu skohczonego. Stad
wynika wniosek, ze oryginalna gre mozna rozwigza¢ w czasie wyktadniczym.

Dowadd twierdzenia 2.2.5

= Indukcja po ord(Good(q, z, S)) (odlegtosci atraktorowej).

Jesli Good(q, z, S) jest w odlegtosci 1 od T, to sg dwa przypadki

(@) g Ewy Good(q,z,S) = T

(b) ¢ Adama, to kazda strzatka Good(q, z,S) — T

Krok indukcyjny:

Przypustmy ¢ — pozycja Adama:

Good(q, z, S) (Adam)

/ l
P 2 (Ewa)

ush(q, z,S, ¢, ')

l

Choose(q, 2, S,q',2',S")

/ \

Good(q', 7', S") Good(q", z,S)

T

Z zatozenia indukcyjnego Ewa wygrywa G(¢’, 2, S') i G(q¢", z, S)

<= (dowdd nie skohczony)
Dla gry G(q, 2, S) okreSlamy Ord(q, z, S) jako ord(q, z) w grze G(q, z, S)

Lemat o zmniejszaniu ord:

ord(q,?',S") < ord(q, z,S)
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