
Algorytmiczne aspekty teorii gier:
Wykład 7 i 8

Gry parzystości na grafach konfiguracji
(nieskończonych)
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1.3.5 Warunek P3 - alternująca osiągalność . . . . . . . . . . . . . . . . . . . 11

2 Wyklad 8 12
2.1 Przypomnienie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
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1 Wyklad 7

Wykład prowadził dr hab. Igor Walukiewicz
Notatki przygotował Łukasz Chmielewski

<lc189379@zodiac.mimuw.edu.pl>

1.1 Gry parzystości - przypomnienie

G � �������	� � �
���	� ��
 ������� ����������� �
����� � � �	!	!	!#"%$�&

Ewa wygrywa rozgrywkę ')(�'+*,'.- !/!	! jeśli 021�3 �	4 '.57698 �����:� � '.5 � jest parzyste lub Adam nie
może wykonać ruchu. Oznacza to, że największy z rank, który powtarza się nieskończenie czę-
sto, jest parzysty. Ważne jest założenie, że funkcja rangi idzie w skończony zbiór.

1.2 Gry zadane przez Maszyny Turinga

1.2.1 Maszyna Turniga


 � ��; �=< �=> � � ( �=?@� ;BA < � � � ;CA < A � 0 �#� � � �=D�&

Objaśnienia:

M - maszyna Turinga;

Q - stany;
<

- alfabet maszyny;

B - blank;
� ( - stan początkowy;
?

- funkcja przejścia ( 0 - lewo,
�

- prawo);

F - zbiór stanów końcowych;

1.2.2 Konfiguracja Maszyny Turinga

E � E�F gdzie E � E�F)GIH �

E ��� E FKJ EML � * E FON ��� * � L ��� � G ? �����=���
EMP ��� E F J E � * PQL�E F N ��� * � L � 0 � G ?	� � �=���

E � J ERL � * N ��� * � L �#� � G ? �����=> �
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q

w w'

Rysunek 1: Konfiguracja

1.2.3 Graf

� � 
 � � � H ��; H � � J &

To może być graf nieskończony, np.:

q aq aaq aaaq

q'a aq'a

q'aa

aaq'a

aq'aa

q'aaa

Rysunek 2: Graf

Dzielimy
;

na
;
�

i
; �

oraz bierzemy funkcję
� � ; ���

. To zdefiniuje grę.

1.2.4 Gra

G
� 
 � ;
� � ;
� ��� � � ���
���7� � H �=;
� H � � �
���	� � H �=; � H � ��
 ������� � J �������:�.&

gdzie ��� ��� � E � E F � � � ��� �

Przykład:
Załóżmy, że M nie robi ruchów ze stanów F.
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; � � ;�� D
;
� � D
� � � � � �

dla
� G ;

Czyli: Adam przegra, gdy Ewa dojdzie do stanu akceptującego.
W

� � 
 � ; � � ;
� ��� �
Ewa ma strategię wygrywającą z konfiguracji

� ( E , wtedy i tylko
wtedy, gdy E G�� ��
 �

.

Fakt:
Problem rozwiązywania gier zadanych przez maszynę Turinga definiujejemy jako: dla danej gry
i konfiguracji stwierdzić czy Ewa ma strategię wygrywającą.

Ponieważ problem : czy dane słowo należy do języka rozpoznawanego przez daną maszynę
Turinga jest nierozstrzygalny to problem rozwiązywania gier zadanych przez maszynę Turinga
jest również nierozstrzygalny (jak widać z przykładu).

Przykład:
Bierzemy



jak poprzednio. Konstruujemy


 F . Dodajemy do



gadżet generujący dowolne
slowo E (rysunek 3).

E � F( J ERP � F( dla dowolnego P�GIH
E � F( J � � ( E

w
T T

N NM

Rysunek 3: E to dowolne wygenerowne słowo

����
 F � ; � � ;�� � D�� � � F( $ � � ; � � � D�� � � F( $ � ��� �
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q'

q'q'

a

a

b

b

qo

o

oo

Rysunek 4: Przykład drzewa gry

gdzie

� � � F( � � �
� � � � � �

dla dowolnego
� G ;

Jak widać z drzewa gry (rysunek 4) Adam musi kiedyś wejść do
� ( (bo

� F( parzyste).
Ewa ma strategię z

� F( wtedy i tylko wtedy, gdy



akceptuje każde słowo.
Zatem problem rozwiązywania gier zadanych przez maszynę Turinga nierostrzygalny. Wi-

dać, że ten problem jest trudniejszy niż problem: czy dane słowo należy do języka rozpoznawa-
nego przez daną maszynę Turinga (a już ten problem jest nieroztrzygalny).

1.3 Gry zadane przez Automaty ze stosem

1.3.1 Definicje

Automat ze stosem:

� � ��; ���
��? � ;BA � � � � ; � ;CA � � &

Objaśnienia:

P - automat;

Q - stany;

�
- alfabet automatu (zawiera alfabet słów i stosu, gdyż nie zajmujemy się działaniem auto-

matu);

?
- funkcja przejścia;

Konfiguracja:

� E , gdzie E G � �
,
� G ;
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W

q

Rysunek 5: Stos automatu

Robimy załozenie: � G �
- litera, której nie można wkładać/zdejmować ze stosu.

� � E J � F E dla
� F G ? ������� �

� � E J � F � F � E dla
� � F � � F � G ? ������� �

Przykład:

q qa qaa qaaa

q' q'a q'aa

Rysunek 6: Graf dla automatu ze stosem

Funkcja prześcia dla przykładowego automatu (z rysunku 6):
?	� � ��� � � �����=���
? �����

�
� � �����=���

? �����=��� � � F
? ��� F � � � � � F

Grę definiujemy analogicznie jak dla maszyn Turing’a.

1.3.2 Twierdzenie

Problem rozwiązywania gier to:
Dla danych :

� � ;
� � ; � ���
oraz kofiguracji

� E stwierdzić, czy Ewa ma strategię wygrywającą z� E w
� � � � ;
� � ;
� ��� �

.
Problem rozwiązywania gier zadanych przez automat ze stosem jest H�� ����� 
 H -zupełny.
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1.3.3 Warunek P1

Definiujemy grę z warunkiem P1 następująco:
Nie ma przejść ze stanu

;
�
, oraz

� � � � � �
, dla każdego

� G ;
.

Twierdzenie:
Gry z warunkiem P1 są rozwiązywalne w czasie wielomianowym.

Dowód:

1. Liczymy zbiór � trójek (rysunek 7)
��� * ���	� � - � takich, że istnieje obliczenie

� * � J � � - �

q z q z
1 2

Rysunek 7: przyklad

(a) Wstawiamy
� � * � �	� � - � do � (rysunek 8), gdy

� * � J � F* � F � J � - �

q z

q z'z

q z1 2

1'

Rysunek 8: przyklad

(b) Wstawiamy
� � * � �	� � - � do � (rysunek 9), gdy

��� * ���	� � F � G � i
��� F ��� � � - � G �

(c) Wstawiamy
� � * � �	� � - � do � (rysunek 10), gdy

��� F * � � F � � F- � G �� * � J � F* � F �� F- � F � J � - �

8



q z q zq'z1 2

Rysunek 9: przyklad

q'z'z q'z'z
1 2

q z
2

q z1

Rysunek 10: przyklad

2. Lemat:
Zbiór � to najmniejszy zbiór zamknięty na powyższe operacje (a) i (b) i (c).

Definiujemy nową grę
� �

(rysunek 11):

� � � ���
���	� � ; � A �
� �����	� � ; �IA � ��
 ���K��� �������:�.&


 �������
:

� * � � � - � jeśli
� * � � - G �� * � � � - � F jeśli

� - � G ?	� � � � �
� ���:�

:

������� ������� � � �

3. Lemat:
Ewa wygrywa z pozycji

� �
w
��� � � ;
� � ; � ��� �

, wtedy i tylko wtedy, gdy Ewa wygrywa z� �
w
� �

.

Dowód: indukcja po liczbie kroków do wykonania (długości ścieżki).
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q q

q'z

q z

1 2

2

3

Rysunek 11: Nowa gra G*

W związku z konstrukcją nowej gry widać, że gra
���

jest rozwiązywalna w czasie wielomia-
nowym od swojego rozmiaru. Zatem gra G jest również rozwiązywalna w czasie wielomiano-
wym w stosunku do wielkości automatu.

1.3.4 Warunek P2

Warunek P2 jest formułowany analogicznie do P1.

; � � ;
� � � � G � � ����$

, gdzie
� G ;

Twierdzenie:
Gry z warunkiem P2 są rozwiązywalne w czasie wielomianowym.
Dowód:

Liczymy zbiór � czwórek (rysunek 12)
��� * ���	� � - � P � takich, gdzie P ��� � 4 � , jeśli w obliczeniu

wystąpił stan z rangą
�

(w przyciwnym przypadku P ��� � 0 ��� ).
W związku z konstrukcją nowej gry widać, że gra

���
jest rozwiązywalna w czasie wielo-

mianowym w stosunku do swojego rozmiaru. Zatem gra G jest również rozwiązywalna w czasie
wielomianowym w stosunku do wielkości automatu.

q z q z
1 2

Rysunek 12: przykład
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Definiujemy
� �

(analogicznie jak w P1):

� * � ��� � - � , jeśli
��� * ���	� � - � P � G �� * � ��� � - � F , jeśli
� - � F G�� ������� � i P�� � � ��� * � � � lub

� ��� - � � � �

Ewa wygrywa w
� �

wtedy i tylko wtedy, gdy rozgrywka przechodzi nieskończenie często
przez krawędź z P � � � 4 � .

1.3.5 Warunek P3 - alternująca osiągalność

Warunek P3 jest formułowany analogicznie do P1.

� � � � � � � � G ;

Czyli w grach z tym warunkiem Adam „może się bronić”.
Dla dowolnego

�
i
�

definiujemy odległość atraktorową zbioru wierzchołków w
�

przez4 G�� � � � � � � � . Odległość
4

od
�

to najmniejsza � taka, że
4 G	� � � � 0�
� � � � .

Odległość wierzchołkowa = numer warstwy.
Liczone jest (analogicznie jak w P1):

�������	��

�
takie, że



� ;

Kontynuacja na następnym wykładzie.
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2 Wyklad 8
Wykład prowadził dr hab. Damian Niwiński

Notatki przygotował Michał Wełnicki
<mw189448@zodiac.mimuw.edu.pl>

2.1 Przypomnienie

2.1.1 Rozwinięcie grafu skończonego w nieskończony

2

1

2

1

0

1

0 2

0 1

0

1

0 2

1

to-
-samo

2

10

2.1.2 Grafy istotnie i nieistotnie nieskończone

Drzewa nieskończone mające skończenie wiele nieizomorficznych poddrzew są nieistotnie
nieskończone.

Drzewo z przykładu 2.1.1 jest więc nieistotnie nieskończone.

2.1.3 Definicja automatu

Automat ze stosem:
� ; � � �=?�� ;CA D ��� � ; � � ;CA � - � � �

Notacja
� � � � F�� (jeśli

� F�� G ?	� � ��� �
)

12



� � E J � F � E

2.1.4 Przykład rozwinięcia grafu konfiguracji
��� J ��� �
��� J '
' � J '

���

��

//
�����

��

//
��� � �

��

//
��� � � �

��

//
!/!	!

' ' �oo ' � �oo ' � ���oo
!/!	!

oo

Rozwinięciem tego grafu konfiguracji jest następujące drzewo:

�

��~~
~~

~~
~

��
@@

@@
@@

@

� �

��~~
~~

~~
~

!!C
CC

CC
CC

C

�

��~~
~~

~~
~

�

}}{{
{{

{{
{{

!!C
CC

CC
CC

C

� �

��~~
~~

~~
~

�

}}{{
{{

{{
{{

!!C
CC

CC
CC

C

�

��~~
~~

~~
~

!	!	! !	!	!

�

i jest to drzewo istotnie nieskończone.

2.2 Gra na grafie konfiguracji automatu ze stosem

2.2.1 Definicja gry

Grę otrzymujemy wprowadzając rozbicie
; � ; � � ; �

i
�����:� � ; ���

Rozważamy gry, gdzie
�����:� � ; � � � � $

(gry na przetrwanie dla Adama).

2.2.2 Twierdzenie

Istnieje algorytm, który (w czasie wykładniczym) oblicza zbiory pozycji wygrywających w
takich grach.
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2.2.3 Definicja gry
���������	��
 �

Pomocniczo dla
� G ;

,
� G �

i

 � ;

określamy grę
� � � ��� ��

�

z wyróżnioną pozycją
startową

� �
i ruchach takich jak w grze

�
, z tym, że pozycja postaci

�
jest wygrywająca dla Ewy

� � � G 


Pokażemy algorytm rozstrzygający, czy pozycja
� �

jest wygrywająca w grze
���������	��

�

.
Żeby stwierdzić, czy pozycja

� �
jest wygrywająca w oryginalnej grze

�
wystarczy rozważyć���������	� ; � �

2.2.4 Określamy grę skończoną
� �

Pozycje:

Pozycje „merytoryczne”

� � � " �������	��
 �
– pozycja Adama lub Ewy, w zależności od tego, czyj jest stan

�

Pozycje pomocnicze:

�
(true, wygrywa Ewa)

�
(false, wygrywa Adam)

� 4 ��� � � � �	��
 � � F ��� F � (pozycja Ewy)

� �%�����7� �������	��
 � � F � � F ��
 F � (pozycja Adama)

Ruchy:

� ��� " �������	��

� � �
o ile

� � J � F G 


� ��� " �������	��

� � �
o ile

� � J � F��G 


� ��� " �������	��

� � �
4 ��� �������	��
 � � F ��� F � o ile
� � J � F � F �

� 4 ��� � � ��� ��
 � � F ��� F � � � �%�����7� �������	��
 � � F � � F ��
 F � , 
 F dowolne
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S

Z

Z'

Z

S' Z Z Z

q'

q"

q

� �%�����7� �������	��
 � � F � � F ��
 F � //

**TTTTTTTTTTTTTTTT

� ��� " ��� F ��� F ��
 F �

� � � " ��� F F ���	��

� � F F)G 
 F
(rozszczepienie pozycji)

Przykład
Zdefiniujmy grę na grafie konfiguracji z przykładu 2.1.4, ustalając

; � � ;
.

Wtedy fragment gry
� �

ma następującą postać:

� ��� " �����=� ��� �

���
4 ��� �����=� ��� � ���=���

��� �%� ���7� �����=� ��� � ���=� � � ' $ �

ttiiiiiiiiiiiiiiii

**TTTTTTTTTTTTTTT

� � � " � � �=� � � ' $ �

��

� � � " � ' �=� ��� �

�

2.2.5 Twierdzimy

Ewa wygrywa w
� �

z pozycji
� ��� " �������	��

��� N Ewa wygrywa

���������	��

�
z pozycji

� �
.

Uwaga
Ponieważ gra

���
jest zwykłą grą skończoną, można ją rozwiązać w czasie liniowym. Jednak

15



liczba pozycji w
� �

jest wykładnicza w stosunku do liczby stanów automatu skończonego. Stąd
wynika wniosek, że oryginalną grę można rozwiązać w czasie wykładniczym.

Dowód twierdzenia 2.2.5

� N Indukcja po
� ��" ��� � � " � � � �	��

� �

(odległości atraktorowej).

Jeśli
� � � " � � � �	��

�

jest w odległości
�

od
�

, to są dwa przypadki

(a)
�

Ewy
� ��� " �������	��

� � �

(b)
�

Adama, to każda strzałka
� � � " �������	��
 � � �

Krok indukcyjny:

Przypuśćmy
�

– pozycja Adama:

� ��� " �������	��

�

ttjjjjjjjjjjjjjjjjjjjj

��

(Adam)

� �
4 ��� �������	��
 � � F ��� F �

��

(Ewa)

� �%� ���7� �������	��
 � � F ��� F ��
 F �

ttjjjjjjjjjjjjjjjj

**TTTTTTTTTTTTTTTT

� � � " � � F ��� F ��
 F � � � � " ��� F F ���	��

�

Z założenia indukcyjnego Ewa wygrywa
����� F ��� F ��
 F � i

� � � F F ���	��
 �

� � (dowód nie skończony)

Dla gry
���������	��
 �

określamy � ��" �������	��

� jako
� ��" ������� �

w grze
� � � ��� ��

�

Lemat o zmniejszaniu
� ��"

:

� ��" ������� F ��
 F ��� � ��" �������	��
 �
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Z

S' Z Z Z

q'

q"
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