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A precious bit of information

Consider the following puzzle1. 100 prisoners wear hats: red or blue. The process of getting these hats was
completely random. No one knows his own hat, although everybody sees the hats of others. In order to save
their life, all prisoners should correctly guess the color of their hats. No communication is possible, and all
answers should be given at once.

Sure winning is clearly impossible but, perhaps surprisingly, the prisoners have 1
2 chance to survive. Note

that one bit of information is enough to save their life: for example, the parity of the number of blue hats.
By assumption, this can be 0 or 1 with the same probability. If the prisoners adopt a common strategy let's
assume it is even (say) then they have 1

2 chance to win.

Exercise Show that this is also a lower bound , i.e., no strategy can give a guarantee better than 1
2 .

Notation, what is it?

An experiment: guess a word which somebody has thought of. Should it work as well with a number?

Note that integers written in a positional system are �densely packed�, unlike words of natural language.
That is, all strings over {0, 1, . . . , 9} denote some numbers (up to leading 0's), while only few strings over
{a, b, . . . , z} are (meaningful) words. One explanation of this dissimilarity is that we dispose of e�cient
algorithms to operate on (short) encoding of numbers, while our �algorithms� to communicate with words
require more redundancy.

Everyday life examples: writing the amount on cheque both by digits and by words, or spelling a �ight
number by phone.

Information theory tries to reconcile two antagonistic objectives:

• to make the message as short as possible,

• to prevent errors while the message is sent by an uncertain channel.

Is there any message that we could not make shorter? We are warned by Berry's paradox:

Let n be the smallest integer that cannot be described in English with less than 1000 signs.

(Thus we have described it.) The concept of notation should be understood properly. Notation is not a part
of an object, but it is given �from outside� to a set of objects, in order to distinguish between them.

De�nition 1. Any 1:1 function α : S → Σ∗, where Σ is a �nite alphabet, is notation for S.

Fact 1. If |S| = m > 0 and |Σ| = r ≥ 2 then, for some s ∈ S,

|α(s)| ≥ blogrmc.
1It is inspired by Mathematical Puzzles by Peter Winkler [4], although the author of these notes has not checked if this

problem is in the book.
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Proof. The number of string shorter than k is

1 + r + r2 + . . .+ rk−1 =
rk − 1
r − 1

< rk.

Letting k = blogrmc, we see that there is not enough words shorter than k to denote all elements of S.

Corollary 1. If α : N→ Σ∗ is notation for natural numbers then, for in�nitely many n's, α(n) ≥ blogr nc.

Proof. Choose m such that blogrmc > |α(0)|. By Fact above, some i0 ∈ {0, 1, . . . ,m − 1} must satisfy
|α(i0)| ≥ blogrmc > blogr i0c. (By assumption, i0 > 0.)

Now choose m′ such that blogrm′c > |α(i0)|. Again, some i1 ∈ {0, 1, . . . ,m′ − 1} satis�es |α(i1)| ≥
blogrm′c ≥ blogr i1c, and, by assumption, i1 > i0. And so on.

As an application, we can see an �information-theoretical� proof of

Proposition 1 (Euclid). There are in�nitely many prime numbers.

Proof. Suppose to the contrary, that there are only p1, . . . , pM . This would induce a notation α : N →
{0, 1,#}, for n = pβ1

1 . . . pβM

M ,

α(n) = bin(β1)#bin(β2)# . . .#bin(βM ),

where bin(β) is the usual binary notation for β (|bin(β)| ≤ 1 + log2 β). Since 2βi ≤ pβi

i ≤ n, we have
βi ≤ log2 n, for all i. Consequently

|α(n)| ≤M(2 + log2 log2 n)

for all n > 0, which clearly contradicts that |α(n)| ≥ log3 n, for in�nitely many n's.

Codes

Any mapping ϕ : S → Σ∗ can be naturally extended to the morphism ϕ̂ : S∗ → Σ∗,

ϕ̂(s1 . . . s`) = ϕ(s1) . . . ϕ(s`)

De�nition 2. A notation ϕ : S → Σ∗ for a �nite non-empty set S is a code if ϕ̂ is 1:1. A code is
instantaneous (pre�x�free) if moreover ¬ϕ̂(s) ≤ ϕ̂(s′), for s 6= s′.

Note that the property of being an (instantaneous) code depends only on the set ϕ̂(S). Notice that
ε 6∈ ϕ̂(S) (why ?). Any pre�x-free set is a code, the set {aa, baa, ba} is example of a non-instantaneous code,
while {a, ab, ba} is not a code at all.

In the sequel we will usually omit �hat� and identify ϕ̂ with ϕ.

Clearly, in order to encode a set S of m elements with an alphabet Σ of r letters (with m, r ≥ 2, say), it is
enough to use strings of length dlogrme, so that |ϕ(w)| ≤ |w| · dlogrme, for w ∈ S∗. However, in order to
make the coding more e�cient, i.e., to keep |ϕ(w)| as short as possible, it is useful to use shorter strings for
those elements of S which occur more frequently.

There is an analogy between e�cient codes and strategies in a so-called 20 question game. In this game one
person invents an object o (presumably, from some large set S), and the remaining players try to guess it
by asking questions (normally, up to 20), the answers to which can be only yes or no. So the questions are
generally of the form o ∈ S′ ? , where S′ ⊆ S.
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Clearly, dlog2 |S|e questions su�ce to identify any object in S. Can we do better?

In general of course not, since a tree with 2k leaves must have depth at least k. However, if some objects are
more probable than others, we can improve the expected number of questions. (Besides, this feature makes
the real game interesting.)

Suppose the elements of a set S = {s1, s2, s3, s4} are given with probabilities p(s1) = 1
2 , p(s2) = 1

4 , p(s3) =
p(s4) = 1

8 . Then the strategy
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guarantees the expected number of questions

1 · 1
2

+ 2 · 1
4

+ 3 ·
(

1
8

+
1
8

)
=

7
4

which is less than dlog2 4e = 2.
In general, any binary tree with leaves labeled by elements of a �nite set S represents some strategy for the
game over S (if we neglect the 20 threshold). All questions can be reconstructed bottom-up from the leaves,
so we need not bother about them. Identifying directions left and right with 0 and 1, respectively, we have
a mapping S → {0, 1}∗, which sends each s to the corresponding leaf. In the example above, this would be

s1 7→ 0, s2 7→ 10, s3 7→ 110, s4 7→ 111.

Clearly, this mapping is an instantaneous code, in which the maximal (expected) length of a code word
equals the maximal (expected) number of questions.

The situation can be extended to the case of |Σ| = r ≥ 2. We do not develop a corresponding game, but will
often explore the correspondence between instantaneous codes and r-ary trees.

Generally, a tree over a set X (or X-tree, for short) is any non-empty set T ⊆ X∗ closed under pre�x
relation (denoted ≤). In this context, an element w of T is a node of level |w|, ε is the root , ≤-maximal
nodes are leaves, a node wv (with w, v ∈ X∗) is below w, and wx (with x ∈ X) is an immediate successor
(or child) of w. A subtree of T induced by w ∈ T is Tw = {v : wv ∈ T}.
Now, any instantaneous code ϕ : S → Σ∗ induces a tree over Σ, Tϕ = {w : for some s, w ≤ ϕ(s)}. Conversely,
any tree T ⊆ Σ∗ with |S| leaves induces an instantaneous code; in fact many (|S|!) codes, depending on
permutation of S.

As mentioned above, our goal is to optimize the code length, keeping the resistance for transmission errors.
The following is the �rst step toward the �rst objective.

Given a code ϕ : S → Σ∗, let |ϕ| : S → N denote the length function, given by |ϕ|(s) = |ϕ(s)|.
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Theorem 1 (Kraft inequality). Let 2 ≤ |S| <∞ and |Σ| = r. A function ` : S → N is the length function,
i.e., ` = |ϕ|, for some instantaneous code ϕ : S → Σ∗, if and only if∑

s∈S

1
r`(s)

≤ 1. (1)

Proof. (⇒) If all words ϕ(s) have the same length k then, considering that ϕ is 1:1, we clearly have∑
s∈S

1
r|ϕ(s)| ≤

rk

rk
= 1. (∗)

More generally, let k be the maximal length of all ϕ(s)'s. For any s with |ϕ(s)| = i, let

Ps = {ϕ(s)v : v ∈ Σk−i}

(in other words, this is the set of nodes of level k below ϕ(s) in the full Σ-tree). Clearly∑
w∈Ps

1
r|w|

=
rk−i

rk
=

1
ri

and the sets Ps, Ps′ are disjoint for s 6= s′. Hence again∑
s∈S

1
r|ϕ(s)| =

∑
s∈S

∑
w∈Ps

1
r|w|
≤ rk

rk
= 1.

(⇐) Let us enumerate S = {s1, . . . , sm} in such a way that `(s1) ≤ . . . ≤ `(sm). For i = 0, 1, . . . ,m− 1,
we inductively de�ne ϕ(si+1) to be the �rst lexicographically element w of Σ`(i+1) which is not comparable
to any of ϕ(s1), . . . , ϕ(si) w.r.t. the pre�x ordering ≤. It remains to show that there is always such w. Like
in the previous case, let Psj

be the set of nodes of level `(si+1) below ϕ(sj), we have |Psj
| = r`(i+1)−`(j). We

need to verify that
r`(i+1)−`(1) + r`(i+1)−`(2) + . . .+ r`(i+1)−`(i) < r`(i+1)

which amounts to
1

r`(1)
+

1
r`(2)

+ . . .+
1
r`(i)

< 1.

This follows directly from the hypothesis; we may assume that the inequality is strict since i < m.

8.10.2009.

If a code is not instantaneous, the Kraft inequality still holds, but the argument is more subtle.

Theorem 2 (McMillan). For any code ϕ : S → Σ∗, there is an instantaneous code ϕ′ with |ϕ| = |ϕ′|.
Proof. The case of |S| = 1 is trivial, and if |S| ≥ 2 then r = |Σ| ≥ 2 as well. It is then enough to show
that ϕ satis�es the Kraft inequality. Let K =

∑
s∈S

1
r|ϕ(s)| . Suppose to the contrary that K > 1. Let

Min = min{|ϕ(s)| : s ∈ S}, Max = max{|ϕ(s)| : s ∈ S}. Consider

Kn =

(∑
s∈S

1
r|ϕ(s)|

)n
=

Max ·n∑
i=Min·n

Nn,i
ri

,

where Nn,i is the number of sequences q1, . . . , qn ∈ Sn, such that i = |ϕ(q1)|+ . . .+ |ϕ(qn)| = |ϕ(q1 . . . qn)|.
Since ϕ is a code, at most one such sequence can be encoded by a word in Σi, hence

Nn,i
ri
≤ 1.

This follows
Kn ≤ (Max −Min) · n+ 1

which clearly fails for su�ciently large n. The contradiction proves that K ≤ 1.
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Properties of convex functions

Before proceeding with further investigation of codes, we need to recall some concepts from the calculus.

De�nition 3. A function f : [a, b]→ R is convex (on [a, b]) if ∀x1, x2 ∈ [a, b], ∀λ ∈ [0, 1],

λf(x1) + (1− λ)f(x2) ≥ f(λx1 + (1− λ)x2). (2)

It is strictly convex if the inequality is strict, except for λ ∈ {0, 1} and x1 = x2.

Geometrically, it means that any chord linking two points of the function graph lies (strictly) above the
graph.

Lemma 1. If f is continuous on [a, b] and has a second derivative on (a, b) with f ′′ ≥ 0 (f ′′ > 0) then it is
convex (strictly convex).

Proof. Assume f ′′ ≥ 0. Then by the Mean value theorem, f ′ is weakly increasing on (a, b) (for a < t1 <
t2 < b, f ′(t2)− f ′(t1) = f ′′(t̃)(t2 − t1) ≥ 0).

Let xλ = λx1 + (1− λ)x2. Rearranging our formula a bit, we have to show

λ(f(xλ)− f(x1))
?
≤ (1− λ)(f(x2)− f(xλ)).

Using the Mean value theorem, this time for f , it reduces to

λf ′(x̃1)(xλ − x1)
?
≤ (1− λ)f ′(x̃2)(x2 − xλ)

λ(1− λ)f ′(x̃1)(x2 − x1)
?
≤ λ(1− λ)f ′(x̃2)(x2 − x1),

which holds since f ′ is weakly increasing. If f ′′ > 0 the argument is similar.

In this course, unless stated otherwise, we consider only �nite probabilistic spaces. If we say that X is
a random variable on S, we tacitly assume that S is given with probability mapping p : S → [0, 1] (i.e.,∑
s∈S p(s) = 1), and X : S → R. Recall that the expected value of X is

EX =
∑
s∈S

p(s) ·X(s).

If S = {s1, . . . , sm}, we adopt the notation p(si) = pi, X(s) = xi. In this writing EX = p1x1 + . . .+ pmxm.

Note that EX does not depend on those xi's for which pi = 0. We say that X is constant if there are no
xi 6= xj with pi, pj > 0.

Theorem 3 (Jensen's inequality). If f : [a, b] → R is a convex function then, for any random variable
X : S → [a, b],

Ef(X) ≥ f(EX). (3)

If moreover f is strictly convex then the inequality is strict unless X is constant.

Proof. By induction on |S|. The case of |S| = 1 is trivial, and if |S| = 2, the inequality amounts to

p1f(x1) + p2f(x2) ≥ (>) f(p1x1 + p2x2)

which is just the de�nition of (strict) convexity. (Note that X is constant i� p1 ∈ {0, 1} or x1 = x2.)
Let S = {s1, . . . , sm}, and suppose the claim holds for any random variables over S′, |S′| ≤ m− 1.
Without loss of generality we may assume that pm < 1. Let p′i = pi

1−pm
, for i = 1, . . . ,m− 1. We have
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m∑
i=1

pi f(xi) = pmf(xm) + (1− pm)
m−1∑
i=1

p′i f(xi)

≥ pmf(xm) + (1− pm)f

(
m−1∑
i=1

p′i xi

)

≥ f

(
pmxm + (1− pm)

m−1∑
i=1

p′i xi

)

= f

(
m∑
i=1

pixi

)
.

Note that we have used the induction hypothesis twice: for the random variable given by probabilities
p′1, . . . , p

′
m−1 and values x1, . . . , xm−1, and for the random variable given by probabilities pm, 1 − pm, and

values xm and
∑m−1
i=1 p′ixi, respectively.

Now suppose f is strictly convex and in the above the equalities hold. Then the �rst auxiliary random
variable is constant, i.e., xi = C, for all i = 1, . . . ,m − 1, unless p′i = pi = 0. Since the second auxiliary

random variable must also be constant, we have, whenever pm > 0, xm =
∑m−1
i=1 p′ixi = C, as well.

Convention We let

0 logr 0 = 0 logr
1
0

= 0. (4)

This is justi�ed by the fact that limx→0 x logr x = limx→0−x logr
1
x = lim|y|→∞− logr y

y = 0.

From the above lemma, we deduce that, if r > 1 then the function x logr x is strictly convex on [0,∞) (i.e.,
on any [0,M ], M > 0). Indeed,

(x logr x)′′ =
(

logr x+ x · 1
x
· logr e

)′
=

1
x
· logr e > 0.

Lemma 2 (Golden Lemma). Suppose 1 =
∑q
i=1 xi ≥

∑q
i=1 yi, where xi ≥ 0 and yi > 0, for i = 1, . . . , q,

and let r > 1. Then
q∑
i=1

xi · logr
1
yi
≥

q∑
i=1

xi · logr
1
xi
,

and the equality holds only if xi = yi, for i = 1, . . . , q.

Proof. Let us �rst assume that
∑q
i=1 yi = 1. We have

Left − Right =
q∑
i=1

xi · logr
xi
yi

=
q∑
i=1

yi ·
(
xi
yi

)
· logr

xi
yi

Applying Jensen's inequality to function x logr x (on [0,∞)), we get

q∑
i=1

yi ·
(
xi
yi

)
· logr

xi
yi
≥ logr

q∑
i=1

yi ·
(
xi
yi

)
= 0.

Here we consider the random variable which takes the value
(
xi

yi

)
with probability yi. As the function x logr x

is even strictly convex on [0,∞) (c.f. page 6), the equality implies that this random variable is constant.
Remembering that yi > 0, and

∑q
i=1 xi =

∑q
i=1 yi, we then have xi = yi, for i = 1, . . . , q.
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Now suppose
∑q
i=1 yi < 1. Let yq+1 = 1−

∑q
i=1 yi, and xq+1 = 0. Then, by the previous case we have

q∑
i=1

xi · logr
1
yi

=
q+1∑
i=1

xi · logr
1
yi
≥

q+1∑
i=1

xi · logr
1
xi

=
q∑
i=1

xi · logr
1
xi
.

Note that the equality may not hold in this case, as it would imply xi = yi, for i = 1, . . . , q + 1, which
contradicts the choice of yq+1 6= xq+1.

Entropy

We come back to the strategy presented on page 3. The number of questions it needs to identify an object
si is precisely log2

1
p(si)

. It is possibly since probabilities in that game are powers of 1
2 .

So, the expected number of questions is
∑m
i=1 p(si) · log2

1
p(si)

. Using the Golden Lemma, we can see that

this number of questions is optimal. For, consider any strategy, with the number of questions to identify si
equal `(si). By the Kraft inequality

∑m
i=1

1
2`(si)

≤ 1.
Taking in the Golden Lemma xi = p(si) and yi = 1

2`(si)
, we obtain

m∑
i=1

p(si) · `(si) ≥
m∑
i=1

p(si) · log2

1
p(si)

. (5)

Clearly, a similar inequality holds whenever the probabilities are powers of 1
2 . Note that in this case we

can precisely �translate� probabilities on the number of questions needed to guess an object. Namely, if

p(s) > p(s′) then in order to guess s′ we need log2
p(s)
p(s′) questions more than to guess s.

The right-hand side of the inequality (5) makes sense also if the probabilities are not powers of 1
2 . We

thus arrive to the central concept of Information Theory.

De�nition 4 (Shannon entropy). The entropy of a (�nite) probabilistic space S (with parameter r > 1) is

Hr(S) =
∑
s∈S

p(s) · logr
1
p(s)

(6)

= −
∑
s∈S

p(s) · logr p(s). (7)

In other words, Hr(S) is the expected value of a random variable de�ned on S by s 7→ logr
1
p(s) .

Traditionally, we abbreviate H = H2.

Remark The use of the function log in the de�nition of entropy can be seen in a more general context of
the so-called Weber-Fechner law of cognitive science, stating that the human perception (P ) of the growth
of a physical stimuli (S), is proportional to the relative growth of the stimuli rather than to its absolute
growth,

∂P ≈ ∂S

S

which, after integration, gives us

P ≈ logS.

This has been observed in perception of weight, brightness, sound (both intensity and height), and even
one's economic status. If we view probability as the measure of frequency, and hence its inverse 1

p(s) as the
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measure of seldomness � or maybe strangeness � then the function log 1
p(s) occurring in the equation (6) can

be read as our �perception of strangeness�.

What values entropy can take, depending on the function p ? From de�nition we readily have Hr(S) ≥ 0,
and this value is indeed attained if the whole probability is concentrated in one point. On the other hand,
we have

Fact 2.

Hr(S) ≤ logr |S| (8)

and the equality holds if and only if p(s) = 1
|S| , for all s ∈ S.

Proof. Indeed, taking in the Golden Lemma xi = p(si) and yi = 1
|S| , we obtain∑

s∈S
p(s) · logr

1
p(s)

≤
∑
s∈S

p(s) · logr |S| = logr |S|,

with the equality for p(s) = 1
|S| , as desired.

As we have seen, if all probabilities are powers of 1
2 then the entropy equals to the (average) length of an

optimal code. We will see that it is always a lower bound.

De�nition 5 (Minimal code length). For a code ϕ, let

L(ϕ) =
∑
s∈S

p(s) · |ϕ(s)|.

Given S and integer r ≥ 2, let Lr(S) be the minimum of all L(ϕ)'s, where ϕ ranges over all codes ϕ : S → Σ∗,
with |Σ| = r.

Note that, because of the McMillan Theorem (page 4), the value of Lr(S) would not change if ϕ have ranged
over instantaneous codes.

Theorem 4. For any �nite probabilistic space S

Hr(S) ≤ Lr(S) (9)

and the equality holds if and only if all probabilities p(s) are powers of 1
r .

Proof. For the �rst half of the claim, it is enough to show that

Hr(S) ≤ L(ϕ)

holds for any code ϕ : S → Σ∗, with |Σ| = r. We obtain this readily taking in the Golden Lemma xi = p(si)
and yi = 1

r|ϕ(s)| .
Now, if the equality Hr(S) = Lr(S) holds then we have also Hr(S) = L(ϕ), for some code ϕ. Again from

Golden Lemma, we obtain p(s) = 1
r|ϕ(s)| , for all s ∈ S.

On the other hand, if each probability p(s) is of the form 1
r`(s) , then by the Kraft inequality, there exists

a code ϕ with |ϕ(s)| = `(s), and for this code L(ϕ) = Hr(S). Hence Lr(S) ≤ Hr(S), but by the previous
inequality, the equality must hold.

The second part of the above theorem may appear pessimistic, as it infers that in most cases our coding is
�imperfect� (Hr(S) < Lr(S)). Note that probabilities usually are not chosen by us, but rather come from
Nature.

However, it turns out that, even with a �xed S and p we can, in a sense, bring the average code length
closer and closer to Hr(S). This is achieved by some relaxation of the concept of a code.
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Example Let S = {s1, s2} with p(s1) = 3
4 , p(s2) = 1

4 . Then clearly L2(S) = 1. However, H2(S) < 1, since
the probabilities are not the powers of 1

2 .

This means that we are unable to make the encoding of a message α ∈ S∗ shorter than α itself, even on
average. Now, consider the following mapping:

s1s1 7→ 0 s1s2 7→ 10
s2s1 7→ 110 s2s2 7→ 111

Of course, this is not a code of S, but apparently we could use this mapping to encode sequences over S of
even length. Indeed, it is a code for the set S2. Consider S2 = S × S as the product (probabilistic) space
with

p (si, sj) = p(si) · p(sj).

Then the average length of our encoding of the two-symbols blocks is(
3
4

)2

· 1 +
3
4
· 1

4
· (2 + 3) +

(
1
4

)2

· 3 =
9
16

+
15
16

+
3
16

=
27
16

< 2.

As the reader may expect, if we proceed in this vein for n = 2, 3, . . ., we can obtain more and more e�cient
encoding. But can we overcome the entropy bound, i.e., to get

Lr(Sn)
n

?
< Hr(S)

for some n ?

We will see that this is not the case, but the Shannon First Theorem (next lecture) will tell us that the
entropy bound can be approached arbitrarily close, as n→∞.

15. 10. 2009

Shannon's coding theorem

We �rst compute the entropy H(Sn) of Sn viewed as the product space. This could be done by a tedious
elementary calculation, but we prefer to deduce the formula from general properties of random variables.

Recall that the expected value of a random variable X : S → R (over a �nite probabilistic space S) can be
presented in two ways, readily equivalent to each other:

EX =
∑
s∈S

p(s) ·X(s) (10)

=
∑
t∈R

t · p(X = t). (11)

In the last equation we assume that the sum of arbitrarily many 0's is 0, and

p(X = t) =
∑

s:X(s)=t

p(s). (12)

The last notation is a particular case of p(ψ(X)), for some formula ψ, which denotes the probability that
ψ(X) holds, i.e., the sum of p(s)'s, for those s, for which ψ(X(s)) holds.
We recall a basic fact from Probability Theory, which follows immediately from the �rst presentation of the
expected value (10).
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Linearity of expectation If X and Y are arbitrary random variables (de�ned on the same probabilistic
space) then, for any α, β ∈ R,

E(αX + βY ) = αEX + βEY. (13)

Now consider two probabilistic spaces S and Q. (According to the tradition, if confusion does not arise, we
use the same letter p for the probability functions on all spaces.)

Let S ×Q be the product space with the probability given by

p(s, q) = p(s) · p(q).

Given random variables X : S → R and Y : Q→ R, we de�ne the random variables X̂, Ŷ , over S ×Q, by

X̂(s, q) = X(s)
Ŷ (s, q) = Y (q).

Note2 that

p(X̂ = t) =
∑

X̂(s,q)=t

p(s, q) =
∑

X(s)=t

∑
q∈Q

p(s) · p(q) =
∑

X(s)=t

p(s) = P (X = t).

Similarly, p(Ŷ = t) = p(Y = t).
Therefore, EX̂ = EX and EŶ = EY . By linearity of expectation,

E(X̂ + Ŷ ) = EX̂ + EŶ = EX + EY.

Let in the above X : s 7→ logr
1
p(s) , and Y : q 7→ logr

1
p(q) . Then

(X̂ + Ŷ )(s, q) = logr
1
p(s)

+ logr
1
p(q)

= logr
1
p(s)

· 1
p(q)

= logr
1

p(s, q)
.

But, by De�nition 4, this is precisely the random variable whose expected value amounts to the entropy of
the space S ×Q, i.e.,

Hr(S ×Q) = E(X̂ + Ŷ ).

Hence, the equation above gives us

Hr(S ×Q) = HrS +HrQ. (14)

Consequently,

HrS
n = n ·HrS. (15)

In order to estimate Lr(Sn)
n −Hr(S), we �rst complete the inequality of Theorem 4 by the upper bound.

Theorem 5 (Shannon-Fano coding). For any �nite probabilistic space S and r ≥ 2, there is a code ϕ : S →
Σ∗ (with |Σ| = r), satisfying

L(ϕ) ≤ Hr(S) + 1.

Consequently
Hr(S) ≤ Lr(S) ≤ Hr(S) + 1.

Moreover, the strict inequality Lr(S) < Hr(S) + 1 holds unless p(s) = 1, for some s ∈ S (hence Hr(S) = 0).
2Throughout these notes, we generally use notation

P
ψ(a1,...,ak) t(a1, . . . , ak), for the sum of terms t(a1, . . . , ak), where

(a1, . . . , ak) ranges over all tuples satisfying ψ(a1, . . . , ak).
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Proof. For |S| = 1, we have trivially Hr(S) = 0 and Lr(S) = 1. Assume |S| ≥ 2. We only construct an
appropriate length function `; the existence of a desired code will follow from Kraft's inequality (Theorem 1).
We let

`(s) =
⌈

logr
1
p(s)

⌉
for those s ∈ S for which p(s) > 0. Then∑

s:p(s)>0

1
r`(s)

≤
∑
p(s)>0

p(s) =
∑
s∈S

p(s) = 1.

We consider several cases. If (∀s ∈ S) p(s) > 0, then ` is de�ned on the whole S, and the above coincides
with the Kraft inequality. But as `(s) < logr

1
p(s) + 1, we obtain

∑
s∈S

p(s) · `(s) <
∑
s∈S

p(s) ·
(

logr
1
p(s)

+ 1
)

= Hr(S) + 1.

Now suppose that p(s) may be 0, for some s. If∑
p(s)>0

1
r`(s)

< 1,

then we can readily extend the de�nition of ` to all s, such that the Kraft inequality
∑
s∈S

1
r`(s) ≤ 1 is

satis�ed. Again, there is a code with length `, satisfying `(s) < logr
1
p(s) + 1, whenever p(s) > 0, and hence

∑
s∈S

p(s) · `(s) <
∑
s∈S

p(s) ·
(

logr
1
p(s)

+ 1
)

= Hr(S) + 1.

(Remember our convention that 0 · log 1
0 = 0.)

Finally, suppose that ∑
p(s)>0

1
r`(s)

= 1.

We choose s′ with p(s′) > 0, and let

`′(s′) = `(s′) + 1
`′(s) = `(s), for s 6= s′.

Now again we can extend `′ to all s in such a way that the Kraft inequality holds. In order to evaluate the
average length of this code, let us �rst observe that our assumptions yield that `(s) = logr

1
p(s) , whenever

p(s) > 0. (Indeed, we have 1
r`(s) ≤ p(s) by de�nition of `, and 1 =

∑
p(s)>0

1
r`(s) =

∑
p(s)>0 p(s), hence

p(s) = 1
r`(s) , whenever p(s) > 0.) Then the code with length `′ satis�es∑

s∈S
p(s) · `′(s) =

∑
p(s)>0

p(s) · `′(s) = p(s′) +
∑
p(s)>0

p(s) · `(s) = p(s′) +Hr(S).

Hence we get Lr(S) ≤ Hr(S) + 1 and the inequality is strict unless we cannot �nd s′ with 0 < p(s′) < 1.

We are ready to state Shannon's coding theorem, sometimes also called Shannon's First Theorem.

11



Theorem 6 (Shannon's coding theorem). For any �nite probabilistic space S and r ≥ 2,

lim
n→∞

Lr(Sn)
n

= Hr(S).

Proof. We have from the previous theorem

Hr(Sn) ≤ Lr(Sn) ≤ Hr(Sn) + 1,

but since Hr(Sn) = n ·Hr(S),

Hr(S) ≤ Lr(Sn)
n

≤ Hr(S) +
1
n
,

which yields the claim.

Conditional entropy and mutual information

Entropy of random variable We often consider a random variable (over a �nite domain) that takes
values in some abstract set X , e.g., a set of words, rather than in real numbers.

We de�ne the entropy of a random variable X : S → X , by

Hr(X) =
∑
t∈X

p(X = t) · logr
1

p(X = t)
(16)

Note that Hr(X) amounts to the expected value

Hr(X) = E

(
logr

1
p(X)

)
, (17)

where p(X) is the random variable on S, given by p(X) : s 7→ p(X = X(s)). Indeed,∑
t∈X

p(X = t) · logr
1

p(X = t)
=

∑
t∈X

∑
X(s)=t

p(s) · logr
1

p(X = t)

=
∑
s∈S

p(s) · logr
1

p(X = X(s))
,

which yields (17) by the equation (10).

22. 10. 2009

Notational conventions: If the actual random variables are known from the context, we often abbreviate
the event X = a by just a; so we may write, e.g., p(x|y) instead of p(X = x|Y = y), p(x ∧ y) instead of
p ((X = x) ∧ (Y = y)), etc.

Conditional entropy Let A : S → A, B : S → B, be two random variables. For b ∈ B with p(b) > 0, let

Hr(A|b) =
∑
a∈A

p(a|b) · logr
1

p(a|b)
.

If p(b) = 0, we let, by convention, Hr(A|b) = 0. Now let

Hr(A|B) =
∑
b∈B

p(b)Hr(A|b).

12



Note that if A and B are independent then in the above formula p(a|b) = p(a), and hence Hr(A|B) = Hr(A).
On the other hand, Hr(A|A) = 0; more generally, if ϕ : A → B is any function then

Hr(ϕ(A)|A) = 0. (18)

Indeed, if p(A = a) > 0 then p(ϕ(A) = ϕ(a)|A = a) = 1, and hence logr
1

p(ϕ(A)=ϕ(a)|A=a) = 0.

We will see more properties of the the conditional entropy in the sequel.

Joint entropy We also consider the couple (A,B) as a random variable (A,B) : S → A×B,

(A,B)(s) = (A(s), B(s)) .

Note that the probability that this variable takes value (a, b) is p ((A,B) = (a, b)) = p ((A = a) ∧ (B = b)),
which we abbreviate by p(a ∧ b). This probability is, in general, di�erent from p(a) · p(b). In the case if, for
all a ∈ A, b ∈ B ,

p(a ∧ b) = p(a) · p(b),

(i.e., the events A = a and B = b are independent), the variables A and B are called independent .

Now Hr(A,B) is well de�ned by

Hr(A,B) =
∑

a∈A,b∈B

p(a ∧ b) · logr
1

p(a ∧ b)
.

Note that if A and B are independent then

logr
1

p(A,B)
= logr

1
p(A)

+ logr
1

p(B)
,

Remembering the characterization (17) Hr(X) = E
(

logr
1

p(X)

)
, we have, by linearity of expectation (13),

Hr(A,B) = Hr(A) +Hr(B).

In general case we have the following.

Theorem 7.

Hr(A,B) ≤ Hr(A) +Hr(B). (19)

Moreover, the equality holds if and only if A and B are independent.

Proof. We rewrite the right-hand side a bit, in order to apply Golden Lemma. We use the obvious equalities
p(a) =

∑
b∈B p(a ∧ b), and p(b) =

∑
a∈A p(a ∧ b).

Hr(A) +Hr(B) =
∑
a∈A

p(a) logr
1

p(a)
+
∑
b∈B

p(b) logr
1
p(b)

=
∑
a∈A

∑
b∈B

p(a ∧ b) logr
1

p(a)
+
∑
b∈B

∑
a∈A

p(a ∧ b) logr
1
p(b)

=
∑

a∈A,b∈B

p(a ∧ b) logr
1

p(a)p(b)

13



Note that the last expression is well de�ned, because if p(a) = 0 or p(b) = 0 then p(a ∧ b) = 0, as well.
Let us momentarily denote

(A× B)+ = {(a, b) : p(a) > 0 and p(b) > 0}.

Clearly, equation (20) will not change if we restrict the sum to (A× B)+, i.e.,

Hr(A) +Hr(B) =
∑

(a,b)∈(A×B)+

p(a ∧ b) logr
1

p(a)p(b)

Then, applying the Golden Lemma (Lemma 2) to x = p(a ∧ b), y = p(a) · p(b), where (a, b) ranges over
(A× B)+, we obtain

Hr(A,B) =
∑

(a,b)∈(A×B)+

p(a ∧ b) logr
1

p(a ∧ b)

≤
∑

(a,b)∈(A×B)+

p(a ∧ b) logr
1

p(a)p(b)

= Hr(A) +Hr(B).

Moreover, the equality holds only if p(a ∧ b) = p(a) · p(b), for all (a, b) ∈ (A × B)+, and consequently, for
all a ∈ A, b ∈ B. On the other hand, we have already seen that independence of A and B implies this
equality.

De�nition 6 (information). The value

Ir(A;B) = Hr(A) +Hr(B)−Hr(A,B). (20)

is called mutual information of variables A and B.

Remark The above concepts and properties have some interpretation in terms of 20 questions game
(page 2). Suppose an object to be identi�ed is actually a couple (a, b), where a and b are values of random
variables A and B, respectively. Now, if A and B are independent, we can do nothing better than identify a
and b separately. Thus our series of questions splits into �questions about a� and �questions about b�, which
is re�ected by the equality Hr(A,B) = Hr(A) + Hr(B). However, if A and B are dependent, we can take
advantage of mutual information and decrease the number of questions.

To increase readability, since now on we will omit subscript r, writing H, I, . . . , instead of Hr, Ir,
. . . Unless stated otherwise, all our results apply to any r > 1. Without loss of generality, the reader may
assume r = 2.

Remark From the transformations used in the proof of the theorem above, we easily deduce

I(A;B) =
∑

a∈A,b∈B

p(a ∧ b)
(

log
1

p(a)p(b)
− log

1
p(a ∧ b)

)
. (21)

Hence I(A;B) can be viewed as a measure of the distance between the actual distribution of the joint variable
(A;B) and its distribution if A and B were independent.

Note that the above sum is non-negative, although some summands
(

log 1
p(a)p(b) − log 1

p(a∧b)

)
can be nega-

tive.

The following property generalizes the equality H(A,B) = H(A) +H(B) to the case of arbitrary (possibly
dependent) variables.
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Fact 3 (Chain rule).

H(A,B) = H(A|B) +H(B). (22)

Proof. Let B+ = {b : p(b) > 0}. We calculate:

H(A,B) =
∑

a∈A,b∈B

p(a ∧ b) · log
1

p(a ∧ b)

=
∑
a∈A

∑
b∈B+

p(a|b)p(b) · log
1

p(a|b)p(b)

=
∑
a∈A

∑
b∈B+

p(a|b)p(b) ·
(

log
1

p(a|b)
+ log

1
p(b)

)
=

∑
b∈B+

p(b) ·
∑
a∈A

p(a|b) · log
1

p(a|b)
+
∑
b∈B+

p(b) log
1
p(b)

·
∑
a∈A

p(a|b)︸ ︷︷ ︸
1

= H(A|B) +H(B).

From equation (22) and Theorem 7, we immediately get the following.

Corollary 2. For random variables A and B,

H(A|B) ≤ H(A). (23)

Moreover, the equality holds i� A and B are independent.

The above can be interpreted that the entropy of A may only decrease if we additionally know B. Note
however, that this inequality holds on average, and may not be true for a particular value of B.

Exercise Show an example where H(A|b) > H(A).

Applying the chain rule, we get alternative formulas for information:

I(A;B) = H(A)−H(A|B) (24)

= H(B)−H(B|A). (25)

This also implies that I(A;B) ≤ min{H(A), H(B)}.
The Chain rule generalizes easily to the case of n ≥ 2 variables A1, A2, . . . , An.

H(A1, . . . , An) = H(A1|A2, . . . , An) +H(A2, . . . , An)
= H(A1|A2, . . . , An) +H(A2|A3, . . . , An) +H(A3, . . . , An)

=
n∑
i=1

H(Ai|Ai+1, . . . , An) (26)

if we adopt convention H(A|∅) = A.

A more subtle generalization follows from relativization.

Fact 4 (Conditional chain rule).

H(A,B|C) = H(A|B,C) +H(B|C). (27)
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Proof. We use the fact that, whenever p(a ∧ b|c) > 0,

p(a ∧ b|c) =
p(a ∧ b ∧ c)

p(c)
=
p(a ∧ b ∧ c)
p(b ∧ c)

· p(b ∧ c)
p(c)

= p(a|b ∧ c) · p(b|c).

Then we have

H(A,B|c) =
∑

a∈A,b∈B

p(a ∧ b|c) · log
1

p(a ∧ b|c)

=
∑
a,b

p(a|b ∧ c) · p(b|c) ·
(

log
1

p(a|b ∧ c)
+ log

1
p(b|c)

)
=

∑
b

p(b|c) ·
∑
a

p(a|b ∧ c) · log
1

p(a|b ∧ c)
+
∑
b

p(b|c) · log
1

p(b|c)
·
∑
a

p(a|b ∧ c)︸ ︷︷ ︸
1

.

To make sure that the respective conditional probabilities are de�ned, we may assume that b ranges over
those values for which p(b ∧ c) > 0. (The equations still hold, since the other summands disappear.)

By taking the average over p(c), we further have

H(A,B|C) =
∑
c∈C

p(c) ·H(A,B|c)

=
∑
c

p(c) ·
∑
b

p(b|c) ·
∑
a

p(a|b ∧ c) · log
1

p(a|b ∧ c)
+
∑
c

p(c) ·
∑
b

p(b|c) · log
1

p(b|c)

=
∑
b,c

p(b ∧ c) ·
∑
a

p(a|b ∧ c) · log
1

p(a|b ∧ c)︸ ︷︷ ︸
H(A|B,C)

+
∑
c

p(c) ·
∑
b

p(b|c) · log
1

p(b|c)︸ ︷︷ ︸
H(B|C)

,

as required.

We leave to the reader to show that

H(A,B|C) ≤ H(A|C) +H(B|C) (28)

and the equality holds if and only if A and B are conditionally independent given C, i.e.,

p(A = a ∧B = b|C = c) = p(A = a|C = c) · p(B = b|C = c).

The proof can go along the same lines as on the page 13.

Conditional information We let the mutual information of A and B given C be de�ned by

I(A;B|C) = H(A|C) +H(B|C)− H(A,B|C)︸ ︷︷ ︸
H(A|B,C)+H(B|C)

(29)

= H(A|C)−H(A|B,C). (30)

Finally, let mutual information of A, B, and C be de�ned by

R(A;B;C) = I(A;B)− I(A;B|C). (31)

Let us see that this de�nition is indeed symmetric, i.e., does not depend on the particular ordering of A,B,C:

I(A;C)− I(A;C|B) = H(A)−H(A|C)− (H(A|B)−H(A|B,C))
= H(A)−H(A|B)︸ ︷︷ ︸

I(A;B)

−H(A|C)−H(A|B,C)︸ ︷︷ ︸
I(A;B|C)

.

Note however, that in contrast to I(A;B) and I(A;B|C), R(A;B;C) can be negative.
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Example Let A and B be independent random variables with values in {0, 1}, and let

C = A⊕B.

Then I(A;B) = 0, while
I(A;B|C) = H(A|C)−H(A|B,C)︸ ︷︷ ︸

0

and we can easily make sure that H(A|C) > 0.
The set of equations relating the quantities H(X), H(Y ), H(Z), H(X,Y ), H(X,Y |Z), I(X;Y ), I(X;Y |Z),
R((X;Y ;Z), . . . , can be pictorially represented by the so-called Venn diagram. (See the Internet; note
however that this is only a helpful representation without extra meaning.)

29. 10. 2009

Application: Perfect secrecy

A cryptosystem is a triple of random variables:

• M with values in a �nite setM (messages),

• K with values in a �nite set K (keys),

• C with values in a �nite set C (cipher-texts).

Moreover, there must be a function Dec : C × K →M, such that

M = Dec(C,K)

(unique decodability).

Note that we do not require that C be a function of M and K, since the encoding need not, in general,
be functional. It can, for example, use random bits (like in the Elgamal cryptosystem, see, e.g., [3]).

A cryptosystem is perfectly secret if I(C;M) = 0.

Example: One time pad HereM = K = C = {0, 1}n, for some n ∈ N, and

C = M ⊕K

where ⊕ is the component-wise xor (e.g., 101101 ⊕ 110110 = 011011). Hence Dec(v, w) = v ⊕ w, as well.
Moreover we assume that K has uniform distribution over {0, 1}n, i.e., p(K = v) = 1

2n , for v ∈ {0, 1}n, and
that K and M are independent.

In order to show perfect secrecy, it is enough to prove that M and C are independent (see Theorem 7 and
De�nition 6), and to this end, it is enough to show

p(C = w|M = u) = p(C = w). (32)

We have

p(C = w) =
∑

u⊕v=w

p(M = u ∧K = v)

=
∑
u

p(M = u) · 1
2n

=
1
2n
.
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On the other hand, we have

p(C = w|M = u) =
p(C = w ∧M = u)

p(M = u)
(33)

=
p(K = u⊕ w ∧M = u)

p(M = u)
(34)

=
p(K = u⊕ w) · p(M = u)

p(M = u)
(35)

=
1
2n
. (36)

To infer (34) from (33), we used the fact that, in One time pad, the values of M and C determine the value
of K; hence we have the equivalences

C = w ∧M = u ⇐⇒ K = u⊕ w ∧ C = w ∧M = u ⇐⇒ K = u⊕ w ∧M = u.

This proves (32).

Exercise Show that the independence ofM and K is really necessary to achieve perfect secrecy of one-time
pad.

Theorem 8 (Shannon's Pessimistic Theorem). Any perfectly secret cryptosystem satis�es

H(K) ≥ H(M).

Consequently (c.f. Theorem 5)

Lr(K) ≥ Hr(K) ≥ Hr(M) ≥ Lr(M)− 1.

Roughly speaking, to guarantee perfect secrecy, the keys must be (almost) as long as messages, which is
highly impractical.

Proof. We have

H(M) = H(M |C,K) + I(M ;C)︸ ︷︷ ︸
H(M)−H(M |C)

+ I(M ;K|C)︸ ︷︷ ︸
H(M |C)−H(M |K,C)

.

But H(M |C;K) = 0, since M = Dec(C,K) is a function of (C,K), and I(M ;C) = 0, by assumption, hence

H(M) = I(M ;K|C).

By symmetry, we have

H(K) = H(K|M,C) + I(K;C) + I(K;M |C)︸ ︷︷ ︸
H(M)

,

which gives the desired inequality.

As another application of the quantitative concept of information, we observe a property which at �rst
sight may appear a bit surprising. Let A and B be random variables; we may think that A represents
some experimental data, and B our knowledge about them. Can we increase the information about A by
processing B (say, by analysis, computation, etc.)? It turns out that we cannot.
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Lemma 3. Suppose A and C are conditionally independent, given B (see page 16). Then

I(A;C) ≤ I(A;B).

Proof. First note the following chain rule for information:

I(A; (B,C))︸ ︷︷ ︸
H(A)−H(A|B,C)

= I(A;C)︸ ︷︷ ︸
H(A)−H(A|C)

+ I(A;B|C)︸ ︷︷ ︸
H(A|C)−H(A|B,C)

.

By symmetry, and from the conditional independence of A and C

I(A; (B,C)) = I(A;B) + I(A;C|B)︸ ︷︷ ︸
0

,

which yields the desired inequality.

Note that the equality holds i�, additionally, A and B are conditionally independent given C.

Corollary 3. If f is a function then

I(A; f(B)) ≤ I(A;B). (37)

Proof. Follows from the Lemma, since

I(A; f(B)|B) = H(f(B)|B)︸ ︷︷ ︸
0

−H(f(B)|A,B)︸ ︷︷ ︸
0

= 0.

Channels

De�nition 7 (channel). A communication channel Γ is given by

• a �nite set A of input objects,

• a �nite set B of output objects,

• a mapping A× B → [0, 1], sending (a, b) to P (a→ b), such that, for all a ∈ A,∑
b∈B

P (a→ b) = 1.

Random variables A and B with values in A and B, respectively, form an input-output pair for the channel
Γ if, for all a ∈ A, b ∈ B,

p(B = b|A = a) = P (a→ b).

We visualize it by

A→ Γ → B.

Note that if A and B form an input-output pair then

p(A = a ∧ B = b) = P (a→ b) · p(A = a).
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Hence, the distribution of (A,B) forming an input-output pair is uniquely determined by A (for �xed Γ). In
particular, a suitable B exists and its distribution is determined by

p(B = b) =
∑
a∈A

P (a→ b) · p(A = a). (38)

Knowing this, the reader may easily calculate H(A,B), H(B|A), I(A;B), etc. (depending on Γ and A).

We de�ne the capacity of the channel Γ by

CΓ = max
A

I(A;B), (39)

where, for concreteness, I = I2. Here A ranges over all random variables with values in A, and (A,B) forms
an input-output pair for Γ. The maximum exists because I(A;B) is a continuous mapping from the compact
set {p ∈ [0, 1]A :

∑
a∈A p(a) = 1} to R, which moreover is bounded since I(A;B) ≤ H(A) ≤ log |A|.

5.11.2009

If A = {a1, . . . , am}, B = {b1, . . . , bn}, then the channel can be represented by a matrix P11 . . . P1n

. . . . . . . . .
Pm1 . . . Pmn,


where Pij = P (ai → bj).
The formula for distribution of B in matrix notation is

(p(a1), . . . , p(am)) ·

 P11 . . . P1n

. . . . . . . . .
Pm1 . . . Pmn,

 = (p(b1), . . . , p(bn)) . (40)

Examples

We can present a channel as a bipartite graph from A to B, with an arrow a → b labeled by P (a → b) (if
P (a→ b) = 0, the arrow is not represented).

Faithful (noiseless) channel Let A = B = {0, 1}.

0 // 0

1 // 1

The matrix representation of this channel is (
1 0
0 1

)
Since A is always a function of B, we have I(A;B) = H(A), and hence the capacity is

CΓ = max
A

I(A;B) = max
A

H(A) = log2 |A| = 1.
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Inverse faithful channel

0

))SSSSSSSSSSSSSSSSS 0

1

55kkkkkkkkkkkkkkkkk 1

matrix representation:

(
0 1
1 0

)
, capacity: CΓ = 1.

Noisy channel without overlap Here A = {0, 1}, B = {0, 1, 2, 3}.

0

0

1
2

55kkkkkkkkkkkkkkkkk
1
2

// 1

1
1
3 //

2
3 ))SSSSSSSSSSSSSSSSS 2

3

The matrix representation is (
1
2

1
2 0 0

0 0 1
3

2
3

)
Here again A is a function of B, hence I(A;B) = H(A)−H(A|B) = H(A), and therefore CΓ = 1.

Noisy typewriter Here3 we assume A = B = {a, b, . . . , z} (26 letters, say), and

p(α→ α) = p(α→ next(α)) =
1
2

where next(a) = b, next(b) = c, . . . , next(y) = z, next(z) = a.

We leave to the reader to draw graphical and matrix representation.

To compute the capacity, �rst observe that, for any α,

H(B|α) = p(α|α) · log
1

p(α|α)
+ p(next(α)|α) · log

1
p(next(α)|α)

= (
1
2

+
1
2

) · log2 2 = 1.

Hence
CΓ = max

A
I(A;B) = max

A
H(B)−H(B|A)︸ ︷︷ ︸

1

= log 26− 1 = log 13

(the maximum is achieved for A with uniform distribution).

The reader may have already grasped that capacity is a desired value, like information, and unlike entropy.
What are the channels with the minimal possible capacity, i.e., CΓ = 0?

Bad channels Clearly CΓ = 0 whenever I(A;B) = 0 for all input-output pairs, i.e., all such pairs are
independent. This requires that p(B = b|A = a) = p(B = b), for all a ∈ A, b ∈ B (unless p(A = a) = 0),
hence for a �xed b, all values p(B = b|A = a) (i.e., all values in a column in the matrix representation) must
be equal.

For example, the following channels have this property:

3Typewriter had been a manual device for typing, before a computer-served printers were invented (see, e.g., old or historical
movies).
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(
1
2

1
2

1
2

1
2

) (
1
2 0 1

6
1
3

1
2 0 1

6
1
3

)  0 0 1
0 0 1
0 0 1


The last example is a particularly dull channel, which always outputs the same value. Note that in this

case H(B) is always 0, which means that the entropy may sometimes decrease while sending a message
through a channel. However, in most interesting cases it actually increases.

The following example is most important in our further studies.

Binary symmetric channel (BSC)

Here again A = B = {0, 1}.

0
P //

1−P
))SSSSSSSSSSSSSSSSS 0

1

1−P
55kkkkkkkkkkkkkkkkk

P
// 1

Letting P̄ = 1− P , the matrix representation is(
P P̄
P̄ P

)
Prior to calculating CΓ, we note the important property.

Fact 5. If (A,B) forms an input-output pair for a BSC then

H(B) ≥ H(A).

Moreover, the equality holds only if P ∈ {0, 1} (i.e., the channel is faithful or inverse-faithful), or if H(A) = 1
(i.e., the entropy of A achieves the maximal value).

Proof. Let q = p(A = 0). Then p(A = 1) = q̄, and we calculate the distribution of B by the formula

(q, q̄) ·
(
P P̄
P̄ P

)
= (qP + q̄P̄︸ ︷︷ ︸

p(B=0)

, qP̄ + q̄P︸ ︷︷ ︸
p(B=1)

)

Let r = p(B = 0). Then

H(A) = −q log q − q̄ log q̄
H(B) = −r log r − r̄ log r̄

Recall our convention (4) that 0 logr 0 = 0 logr
1
0 = 0, and let h denote the mapping

h(x) = x lnx+ (1− x) ln(1− x),

de�ned for 0 ≤ x ≤ 1. We easily calculate (for 0 < x < 1)

h′(x) = 1 + lnx− 1− ln(1− x)

h′′(x) =
1
x

+
1

1− x
> 0.

Hence by Lemma 1 (page 5), the function h(x) is strictly convex on [0, 1], and it readily implies that so is
the function

log2 e · h(x) = x log2 x+ (1− x) log2(1− x).
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Taking in the de�nition of convexity (2) x1 = q, x2 = q̄, and λ = P (hence λx1 + (1− λ)x2 = r), and noting
that h(q) = h(q̄), we obtain that

q log q + q̄ log q̄ ≥ r log r + r̄ log r̄
i.e., H(A) ≤ H(B)

and, moreover, the equality holds only if P ∈ {0, 1} or if q = q̄, which holds i� H(A) = log2 |{0, 1}| = 1.

We are going to calculate CΓ. It is convenient to use notation

H(s) = −s log2 s− (1− s) log2(1− s) (41)

(justi�ed by the fact that H(s) = H(X), whenever p(X = 0) = s, p(X = 1) = s̄). Note that H(0) = H(1) =
0, and the maximum of H in [0, 1] is H( 1

2 ) = 1.
By the de�nition of conditional entropy, we have

H(B|A) = p(A = 0) ·
(
p(B = 0|A = 0) · log

1
p(B = 0|A = 0)

+ p(B = 1|A = 0) · log
1

p(B = 1|A = 0)

)
+ p(A = 1) ·

(
p(B = 0|A = 1) · log

1
p(B = 0|A = 1)

+ p(B = 1|A = 1) · log
1

p(B = 1|A = 1)

)
= p(A = 0) ·

(
P · log

1
P

+ P̄ · log
1
P̄

)
+ p(A = 1) ·

(
P̄ · log

1
P̄

+ P · log
1
P

)
= P · log

1
P

+ P̄ · log
1
P̄

= H(P ).

Hence, H(B|A) does not depend on A.
Now, by the calculation of the distribution of B above, we have

H(B) = H(qP + q̄P̄ )

which achieves the maximal value 1 = H( 1
2 ), for q = 1

2 . Hence

CΓ = max
A

H(B)−H(B|A) = 1−H(P ). (42)

Decision rules

Suppose we receive a sequence of letters bi1 , . . . , bik , transmitted through a channel Γ. Knowing the matrix
(P (a→ b)a∈A,b∈B), can we decode the message?

In some cases the answer is simple. For example, in the inverse faithful channel (page 21), we should just
interchange 0 and 1. However, for the noisy typewriter (page 21), no �sure� decoding exists. For instance, an
output word afu, can result from input zet , but also from aft , and many others4 (but not, e.g., from input
abc).

In general, the objective of the receiver is, given an output letter b, to guess (or �decide�) what input
symbol a has been sent. This is captured by the concept of a decision rule, which can be any mapping
∆ : B → A. Clearly the receiver wants to maximize p(A = ∆(b)|B = b).
The quality of the rule is measured by

PrC(∆, A) =def p(∆ ◦B = A), (43)

4The reader is encouraged to �nd some �meaningful� examples.
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where (A,B) forms an input�output pair5. We have from de�nition

p(∆ ◦B = A) =
∑

a∈A,b∈B

p(A = a ∧B = b ∧∆(b) = a)

=
∑
b∈B

p(B = b ∧A = ∆(b)).

The last term can be decomposed in two ways using conditional probabilities.

p(B = b ∧A = ∆(b)) = p(A = ∆(b)) · p(B = b|A = ∆(b))︸ ︷︷ ︸
P (∆(b)→b)

= p(B = b) · p(A = ∆(b)|B = b).

This gives us two formulas to compute PrC(∆, A)

PrC(∆, A) =
∑
b∈B

p(A = ∆(b)) · P (∆(b)→ b) (44)

=
∑
b∈B

p(B = b) · p(A = ∆(b)|B = b), (45)

both useful.

Dually, the error probability of the rule ∆ is

PrE(∆, A) = 1− PrC(∆, A)

=
∑

a∈A,b∈B

p(A = a ∧B = b ∧∆(b) 6= a).

We can compute it, e.g., by

PrE(∆, A) =
∑
a∈A

p(A = a) · p(∆ ◦B 6= a|A = a) (46)

We are generally interested in rules maximizing PrC(∆, A), and thus minimizing PrE(∆, A).
If the distribution of A is known, the above objective is realized by the following.

Ideal observer rule This rule sends b ∈ B to ∆o(b) = a, such that p(a|b) is maximal, where p(a|b) can
be calculated (knowing A) by

p(a|b) =
p(a ∧ b)
p(b)

=
P (a→ b) · p(a)∑

a′∈A P (a′ → b) · p(a′)
.

(Formally, this de�nition requires that p(B = b) > 0; but if p(B = b) = 0, we can de�ne ∆(b) arbitrarily,
and it will not a�ect (43).) Clearly, this choice maximizes the right-hand side of (45). Hence, we have

PrC(∆o, A) ≥ PrC(∆, A),

for any rule ∆. Note however, that PrC(∆o, A) can be smaller than 1 (hence PrE(∆o, A) > 0) if, for some
b, the maximal value of p(a|b) is achieved with two di�erent a's.

Exercise Calculate PrC(∆o, A) for the �bad� channels on page 21.

A disadvantage of the ideal observer rule is that it requires some a priori knowledge about the message to
be sent. If the distribution of A is unknown, a reasonable choice is the following.

5In this case, the distribution of B is determined by the distribution of A by the equation (38), hence the de�nition is correct.
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Maximal likelihood rule This rule sends b ∈ B to ∆max(b) = a, such that P (a→ b) = p(b|a) is maximal.
If A has uniform distribution (i.e., p(a) = 1

|A| ) then this rule acts as ∆o, i.e.
6,

PrC(∆max, A) = PrC(∆o, A).

Indeed, maximizing p(a|b) given b amounts to maximizing p(a∧ b) = p(a|b) · p(b), which in the uniform case
is p(a ∧ b) = P (a→ b) · 1

|A| .

If A is not uniform, the maximal likelihood rule need not be optimal (the reader may easily �nd an
example). However, it is in some sense globally optimal . We only sketch the argument informally.

Let A = {a1, . . . , am}, and let P be the set of all possible probability distributions over A,

P = {p :
∑
a∈A

p(a) = 1}.

We identify a random variable A taking values in A with its probability distribution p in P; hence p(a) =
p(A = a). Now, using (44), the global value of a rule ∆ can be calculated by∫

p∈P
PrC(∆,p) dp =

∫
p∈P

∑
b∈B

p(∆(b)) · P (∆(b)→ b) dp

=
∑
b∈B

P (∆(b)→ b) ·
∫
p∈P

p(∆(b)) dp

But it should be intuitively clear that the value of
∫
p∈P p(a) dp does not depend on a particular choice of

a ∈ A. (A formal argument refers to the concept of Lebesgue integral. Note however that p(a) is just a
projection of p on one of its components, and no component is a priori privileged.) Thus

∫
p∈P p(∆(b)) dp is

always the same. Hence, maximization of
∫
p∈P PrC(∆,p) dp amounts to maximization of

∑
b∈B P (∆(b)→

b), and this is achieved with the maximal likelihood rule.

Next lecture:

• Multiple use of channel.

• Improving reliability.
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