Information Theory
Part I. Shannon entropy

Damian Niwinski
University of Warsaw

Winter semester 2020/2021

Disclaimer. Credits to many authors. All errors are mine own.



Je n'ai fait celle-ci plus longue que parce que je n'ai pas eu le loisir
de la faire plus courte.

| have made this [letter] longer, because | have not had the time to
make it shorter.

Blaise Pascal, Lettres provinciales, 1657
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Can any message be made shorter?

Let n be the smallest integer that cannot be described in English
with less than 1000 signs.

() Berry’s paradox).
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Notation, what is it?

Any 1:1 function o : S — ¥*, where ¥ is a finite alphabet, is a
notation for S.

Fact. If & : S — X* is notation for a finite set S, with |S| > 1 and
|~| = r > 2 then, for some s € S,

la(s)| > [log, |S|].
Proof. The number of strings shorter than some n > 1 is

n

rm—1
=1 — <r"

14+r+rP+.. . +r -
r—1

Therefore, if |S| > r” then there must be s € S, such that
a(s)| = n.

Choose r" < |§| < r™+1. 0
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Numbers with long notation

Fact. If o : N — X* is notation for natural numbers with
|X| = r > 2 then, for infinitely many k's,

la(k)| > log, k.

Proof. For n > |a(0)| + 1, let

kn = min{k € N: |a(k)| > n}.
Then k, >0, and for i = 0,1,...,k, — 1, |a(i)] < n.
Hence k, < r", and consequently

log, kn < n
< |a(ka)|



Numbers with long notation

The above estimation is tight, for example, with ¥ = {0,1},

n 0 1 2 3 4 5 6

an) e 0 1 00 01 10 11
i.e., a(n) = {0,1}tbin(n + 1), satisfies
|a(n)| < [logy n,

for each n > 2.

000
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Application

Fact (Euclid). There are infinitely many primes.

Proof. Suppose there are only M primes: p1,...,pp. Define
a: N —{0,1,#}, for n:pl’gl...pf/,M,

a(n) = bin(B1)#bin(B2)# . .. #bin(Bum).

Then
la(n)| < M(2 + log; log, n)

for all n > 0, which clearly contradicts that |«a(n)| > logs n, for
infinitely many n's. O
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Codes

For p: S — X" let §(s1...50) = p(s1)--.¢(se)-

A notation ¢ : S — ¥* for a finite set S is a code if the mapping
@is 1:1.

We call the set {p(s) : s € S} a code as well.

Note. A set C C ¥* is a code if any word in C* is a product of
words in C in a unique way.

Examples. If no word in C is a prefix of another word, C is a
prefix-free code code (sometimes called prefix code).
The set {a, ab, ba} is not a code, e.g. a- ba=ab- a..

The set {aa, baa, ba} is a code (not prefix-free).
(Any word in (aa)™ + (aa)* (ba™)™ can be uniquely decoded.)
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Codes

Property. A code ¢ is prefix iff, for any v,w € §*, $(v) < $(w)
implies v < w.

For this reason, a prefix-free code is also called instantaneous.

For a non-prefix code, e..g, {aa, baa, ba}, we may have

b

a a a
b a a a a

What can we say about the length of words in a code with m
elements 7



Kraft's inequality

Fact. If C C X* is an instantaneous code (|X| = r > 2) then

1
ngl.

weC



Kraft’s inequality

Z 1

Fact. If C C X* is an instantaneous code (|X| = r > 2) then
=
weC r

Proof by example. Take 00, 0100, 0101, 011, 1010, 11.

DA
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Dy <1
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seS
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1
5 <1
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Kraft’'s inequality — characterization

Theorem. Let 2 < |S| < o0, and £: S — N. Then
1
5 <1
E J—
seS r'®
if, and only if, £ = ||, for some instantaneous code ¢ : S — ¥*,
with || =r.
Proof (only if). W.lo.g. S={1,...,m}, and £(1) < ... < /(m).
Fori=0,1,...,m—1, let (i + 1) be the lexicographically first

word in X+1) not extending any of ¢(1), ..., (i)
Can we always do it, i.e.

A —01) 1) -02) | o D) —0) o i+1) 7

Yes, because

s et < 1 0
rl) 2y T ) '



McMillan’s theorem

Theorem. For any code ¢ : S — ¥*, there is an instantaneous
code ¢ with || = |¢/|.
(Thus any code satisfies Kraft's inequality.)



McMillan’s theorem

Theorem. For any code ¢ : S — ¥*, there is an instantaneous
code ¢ with || = |¢/|.

(Thus any code satisfies Kraft's inequality.)

Proof. Suppose K =3 _ ¢ ﬁ > 1.



McMillan’s theorem

Theorem. For any code ¢ : S — ¥*, there is an instantaneous
code ¢ with || = |¢/|.

(Thus any code satisfies Kraft's inequality.)

Proof. Suppose K =3 _ ¢ ﬁ > 1.
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1 ax-n N i
n __ — n,
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McMillan’s theorem

Theorem. For any code ¢ : S — ¥*, there is an instantaneous
code ¢ with || = |¢/|.

(Thus any code satisfies Kraft's inequality.)

Proof. Suppose K =3 _ ¢ ﬁ > 1.
Let Min = min{|p(s)| : s € S}, Max = max{|¢(s)| : s € S}.

Consider ry
1 ax-n N i
n __ — n,
= (Sawm) = >
seS i=Min-n
where N, ; is the number of sequences q1,...,q, € S”, such that

i=[p(q)[+...+|e(qn)| = [&(q1- .. qn)|. But at most one such
sequence can be encoded by a word in X', hence

Ny i
#S]w
r

and
K" < (Max — Min) - n+ 1, impossible!



Average length of a code

Let p: S — [0.1] be a probability distribution over S.

We wish to minimize

N OREO!

seS

for a code ¢.



Average length of a code

Let p: S — [0.1] be a probability distribution over S.
We wish to minimize
> p(s) - le(s)l,
seS
for a code ¢.
Let S ={s1,...,5m}, p(si) = pi.

Task. Among all tuples ¢1,..., ¢y, satisfying Kraft's inequality
find a one with minimal
Z pi - {;.
i
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white ?

A

sweet ?



Relation to 20 question game

For n possibilities, [log, n| question suffices.

S ={1,2,3,4,5,6,7,8}

{1? 27 37 4}7

‘e/’//////////

{1,2}? {6,7}?

SN RN

1? 57 77

/ N\ /N /N Y\

1 2 3 4 5 6 7



Relation to 20 question game

But knowing the probability we can do better.

p (sleeps) = %, p (rests) = 1, p (eats) = p (works) = £.

sleeps 7

Y N
\

rests ?
®/

Average number of questions:

1 1 1 1 7
1.2+2.4+3.(8+8>_<2_Iog24.



Relation to 20 question game

We wish to find an object in S, knowing a probability distribution
p:S—[0.1].

Task. Find a strategy that minimizes the average number of
questions.

Note. Any strategy induces an instantaneous code over {0,1}:

©(s) = the sequence of yes and no answers leading to s.

Conversely, an instantaneous code induces a strategy.



Calculus revisited — convex functions

A function f : [a, b] — R is convex (on [a, b]) if Vx1,x € [a, b],
VA e [0,1],

)\f(Xl) + (1 — )\)f(XQ) > f()\Xl + (1 — )\)Xg).

It is strictly convex if the inequality is strict, except for A € {0,1}
and x; = xo.

DA



Calculus revisited — convex functions

Lemma. If f is continuous on [a, b] and has a second derivative
on (a, b) with 7 >0 (f” > 0) then it is convex (strictly convex).

u}
o)
1
n
it

DA
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Jensen’s inequality

Let X be a random variable over a finite probability space S.
If S ={s1,...,sm}, we let p(s;) = pi, X(s) = x;.

X is constant if there are no x; # x; with p;, p; > 0.

The expected value of X is

EX = Zp(s) ’ X(S) = p1X1 + ...+ PmXm-
seS

Theorem (Jensen’s inequality)

If f:[a, b] — R is a convex function then, for any random variable
X:S —a b,

Ef(X) > f(EX).

If moreover f is strictly convex then the inequality is strict unless
X is constant.



Thm ... Ef(X) > f(EX).

Proof. By induction on |S|. For |S| = 2,
pif(x1) + p2f(x2) > f(pix1 + p2x2), convexity.



Thm ... Ef(X) > f(EX).

Proof. By induction on |S|. For |S| = 2,
pif(x1) + p2f(x2) > f(pix1 + p2x2), convexity.
Let |S| = m, w.lo.g. pm < 1.

Letple_”ﬁ,forizl,...,m—l.



Thm ...... Ef(X) > f(EX).
Proof. By induction on |S|. For |S| = 2,

1f(x1) + p2f(x2) > f(p1x1 + p2x2), convexity.

Let|5|—m w.lo.g. pm <l
Let p! = yfori=1,...,m—1.

m

i=1

= (> pixi).
i—1

m—1
Y pif(xi) = Pmf(xm) + (1 - Pm)z pi F(xi)



If f is strictly convex, but

m—1
Zpif(xi) = pmf(xm) + (1L — pm) prf
i=1

m—1
- pmf( m l_pm P;X:>
i=1

- f(mem+ 1_pm Z Xi)

i=1
= O pixi),
i=1

then x; = C, forall i=1,...,m—1, unless p. = p; = 0.

. 1
Moreover, either pp, = 0 of xm = .71 pix; = C, as well.



The function xlog x

Convention: Olog, 0 = Olog, % =0.

Justified by
1_

limy_0xlog, x = limy_,g —xlog, & = limy,_, —

log,y _
2 —=rZ = (.

y

Fact. For r > 1, the function xlog, x is strictly convex on [0, c0)
(i.e., on any [0, M], M > 0).
Proof.

/

1 1
(xlog, x)" = (Iogrx +x-—-log, e) = —-log,e>0.
X X



Golden lemma

Theorem (Gibbs’ inequality)

Suppose 1 =3"", x; > >, y;, where x; > 0 and y; > 0, for
i=1,...,m, and let r > 1.

Then

m

> in : Iogr l7

1
Vi — Xi

m
5 X+ Iogr
i=1

and the equality holds only if x; = y;, for i =1,..., m.



Golden lemma

Theorem (Gibbs’ inequality)

Suppose 1 =3"", x; > >, y;, where x; > 0 and y; > 0, for

i=1,...,m, and let r > 1.
Then

1
Yi i

m
5 X+ Iogr
i=1

and the equality holds only if x; = y;, for i =1,..., m.

= 1
> in : Iogr ;7
i=1

Corollary. If ¢1,...,{n satisfy ). r% <1 then

E pi-li > E p; - log, ;
. . 1
1 1

Hence, the minimum is achieved if ¢; = log, %, fori=1,...

, m.



......... ST X Iog, >3 X - log, L e
Proof. Let us first assume that Y /"; y; = 1. We have

Left—R/ght—Zx, log, » Zy, < ) |ogrf
i=1 Yi
Iongy, ()—0

\—,_/
1

Here we apply Jensen’s inequality to the function x log, x
(strictly convex on [0,00)) and the random variable which takes

Xi

the value with probability y;.



......... ST X Iog, >3 X - log, L e
Proof. Let us first assume that Y /"; y; = 1. We have

Left—R/ght—Zx, log, » Zy, < ) |ogrf
i=1 Yi
Iongy, ()—0

\—,_/
1

Here we apply Jensen’s inequality to the function x log, x
(strictly convex on [0,00)) and the random variable which takes

Xi

the value with probability y;.

The equality holds if this random variable is constant.
Remembering that y; > 0, and >_/"; x; = > i"; yi, we then have
xi=y,fori=1....m



m i 1 m i 1
......... >oimyxi-log, >3 1, X - log, 5

Proof continued, the case >, y; < 1.



1 1
......... i xi-log, 5 =370 x; - log, &
Proof continued, the case >, y; < 1.

Let Ymy1=1— 27;1 yi, and Xm+1 = 0.



......... > xi - log, }%’ >3 X - log, xl,
Proof continued, the case >, y; < 1.

Let ymi1 =1—>."; v, and xmp1 = 0.
Then, by the previous case we have

m+1 m—+1

Zx, Iog, Vi Zx, Iogr—‘ > Zx, Iog, " Zx, Iog,
I I I



1 1
......... i xi-log, 5 =370 x; - log, &
Proof continued, the case Y ", y; < 1.
Let Ymy1=1— ZIll yi, and Xm+1 = 0.
Then, by the previous case we have

m+1 m—+1

Zx, Iog, Vi Zx, Iogr—‘ > Zx, Iog, " Zx, Iog,
I I I

The equality may not hold in this case, as it would imply x; = y;,
for i =1,...,m+ 1, which contradicts the choice of Y11 # Xm+1-
Od



Shannon’s entropy

The entropy of a finite probabilistic space S (with parameter
r>1)is

HA(S) = 3 p(s)-log, p(l

seS S)
(

= —> p(s)-log, p

seS

s).

Traditionally, H = H>.



Shannon’s entropy

The entropy of a finite probabilistic space S (with parameter
r>1)is

Hi(S) = > p(s)-log, ——

seS S)
= - Z p Iogr (
seS

Traditionally, H = H>.

First occurred in: Claude Shannon, A Mathematical Theory of
Communication, 1948.



Shannon’s entropy
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Property.

0 < H,(S) <log,|S|.
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The equality H,(S) = log, |S| holds iff p(s) = ﬁ for all s € S.



Shannon’s entropy

Hi(S) = Cses P(s) - log, 55
Property.

0 < H,(S) <log,|S|.
The equality 0 = H,(S) holds iff p(s) = 1, for some s € S.

The equality H,(S) = log, |S| holds iff p(s) = ﬁ for all s € S.

Proof. By the Golden Lemma with x; = p(s;) and y; = ﬁ

> " p(s) log, 5 <Zp log, |S| = log, |S|,

seS seS

with the equality for p(s) = ‘—ll



Minimal code length

For a code ¢ : S — X* (with |X| > 2), by the Kraft inequality and
Golden Lemma

H(S) < L(p)
|

> p(s)-1e(s)]
seS
Consequently,
Hi(S) < L«(S)

|
min{L(¢) : ¢ : S — X" is a code }



Minimal code length

For a code ¢ : S — X* (with |X| > 2), by the Kraft inequality and
Golden Lemma

H(S) < L(p)
|

> p(s)-1e(s)]
seS
Consequently,
Hi(S) < L«(S)

|
min{L(¢) : ¢ : S — X" is a code }

That min exists is an exercise; it is realized by the Huffman
coding (— Tutorials).



Example — game revisited

p (sleeps)

1

= 3, p(rests) = 7, p (eats) = p (works) =

sleeps 7

Hence the strategy is optimal !

1

3"



Example — game revisited

p (sleeps) = 3, p (rests) = %, p (eats) = p (works) = £

3
sleeps 7

s >
y rests 7\N*

eats 7
"
1 1 1 1
Hence the strategy is optimal !

The number of questions for an option of probability g is log, %.



Shannon-Fano coding

Theorem.
H.(S) < L,(S) < H.(S)+ 1.

Moreover, the equality H,(S) = L,(S) holds if and only if |[S| > 2
and all probabilities p(s) are integer powers of % and the equality
L,(S) = H.(S) + 1 holds if and only if H.(S) = 0.

Proof. If |S| =1 then 0 = H,(S) < L,(S) =1. Let |S]| > 2.

The inequality H,(S) < L,(S) already proved. The equality holds
iff H.(S) = L(p), for some code ¢. The claim follows from Golden
Lemma.



Proof of L.(S) < H.(S)+ 1 unless H,(S) = 0. Let

«s) = Pog, p(ls)w

provided that p(s) > 0. Then

Z ret) = Z p(s) = ZP(S) =1

s:p(s)>0 p(s)>0 seS

If (Vs € S)p(s) > 0, then ¢ is defined on the whole S, and satisfies
the Kraft inequality, hence there is a code with |¢| = ¢, and

L) = 3 p(s) 45) < 3 p(s) (log, o+ 1) — H(S)+1.

seS seS 5)



Suppose p(s) is 0, for some s. If
1
> o < b
p(s)>0
then we can extend /¢ to all s, preserving the Kraft inequality.

Again, there is a code with |p| = ¢, satisfying

1
= Zp(s Zp (Iog, o(5) + 1> = H,(S)+ 1.

seS seS



Finally, suppose that

D

p(s)>0

1

ré(s)

1.



Finally, suppose that

1
ZW = 1 (%)

p(s)>0
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Finally, suppose that

1
p(s)>0
We choose s’ with p(s’) > 0, and let
Iy = ((s)+1
'(s) = {(s), fors#5s.
Again extend ¢’ so that there is a code with |p| = ¢'.
But (x) implies £(s) = [log, ﬁ} = log, ﬁ. Hence
Le) = > p(s)-(s)
p(s)>0

= p(s)+ 3 pls)-s)
p(s)>0

— p(s) + Hi(S)

< H(5)+1

unless there is no s’ with 0 < p(s’) < 1.
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Towards a better coding

Can we shrink the gap [H/(S), L/(S)] further?

Example. S = {s1,5}, p(s1) = 3, p(s;) = 3.

HQ(S) <1l= L2(5)

Encode 2-blocks
5151 — 0 5152 — 10
sp51 — 110 spsy +— 111

With p(si,sj) = p(si) - p(sj) , the average length of our encoding is

3\ 2 3 1\? 9 15 3 27
) 1422243 ) 3= 42y 2 2
<4> *a (+)+<4> 671616 16

ENI
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Entropy of product space

Fact. Let, for (s.q) € S x Q, p(s,q) = p(s) - p(q). Then
H:(S x Q) = H,(S) + H/(Q).

Proof.
HSx Q) = —Z s,q) - log p(s, q)
= —Zp - (log p(s) + log p(q))
- _Z ) -logp(s) — > p(s) p(q) - log p(q)
SRS
- H(5)+H(Q). s
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Shannon’s coding theorem

Consequently, with p(si,...,s5) = p(s1) ... p(sn),
H/(S™) = n-H/(S).

Theorem. For any finite probabilistic space S and r > 2,

lim L(S") = H,(S).

n—o0 n

Proof. Recall
H.(S") < L,(S") < H/(5")+ 1.

Since H,(S") = n- H,(S), this yields

L.(S")

n

H,(S) <

< Hi(S)+



Example — group testing

The state of a population consisting of N people is described by a
vector of N bits (1 —ill, 0 — healthy).

If the probability of being ill is 0 < p < 1, the entropy for an
individual is
H(p) = —plogp—(1—p)log(l— p),

and the entropy of the population is N - H(p) (assuming
independence of events).

Group testing with 2 possible outcomes:
— someone in the group is infected,

— all people in the group are healthy,
is a binary coding method.

This gives us an estimation on the average number of tests Ty

N-H(p) < Tn.



Random variables — notational conventions

For random variables A: S — A, B: S — B,

S ps) = p(A=2)

s:A(s)=a

p(A=alB=b) = p(alb)
p((A=a) A (B=b)) = p(a A b)

etc.
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Entropy of random variable

For a random variable X : S — T,

def 1
H.(X) = Zp(X =t)-log, —o——-
teT p(X =1t)
Note: H,(X) = E LogPX,, where
1 :
LogPX,(s) = log, P(X=X(3s)) if p(s)>0
, 0 it p(s) =



Entropy of random variable

For a random variable X : S — T,

ZP ) - log, m

teT

Note: H,(X) = E LogPX,, where

1
LogPX,(s) = {';g X=X

Indeed,

> pX = 0)-log s = > Y pls)-log,

teT teT X(s)=t
1

= 2 P(9) o8 ey

seS

1
PX = 1)

t)



Conditional entropy

Let A:S— A, B:S — B. For a € A with p(a) > 0,

1
H/(Bla) = ép(bw)-log,p(ba)-

For p(a) =0, H,(B|a) = 0.
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Conditional entropy

Let A:S— A, B:S — B. For a € A with p(a) > 0,
1

Hi(Bla) = _ p(bla)-log, CED

beB
For p(a) =0, H,(B|a) = 0.

H(BIA) € Y p(a)- H(Bla).
acA

Note: if A and B are independent then p(b|a) = p(b), and hence
Hr(B|A) = Hr(B)'

Similarly, H,(A|B) = H,(A).
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1 _
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Conditional entropy of function

If o : A— B then
Ho(p(A)|A) = 0.
Indeed, if p(A = a) > 0 then p(p(A) = ¢(a)|A = a) =1, hence
1 _
log, StA=r@nA=s) = 0-
Conversely, if
H.(BJA) = 0

then, for all a, p(a) =0, or there is a unique b,
such that p(b|a) = 1.

Hence B = ¢(A), for some ¢ : A — B.



Joint entropy

ForA:S— A B:S— B, let

(A, B)(s) = (Als), B(s))-



Joint entropy

ForA:S— A B:S— B, let
(A,B)(s) =

Note: p((A, B) = (a,b)) = p((A
Then



Joint entropy

ForA:S— A B:S— B, let

(A, B)(s) = (Als), B(s))-

Note: p((A,B) =(a,b)) = p((A=a)A\(B = b)).
Then

1
H.(AB) = p(a A b)-log,
R p(an5)



Joint entropy
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Then

1
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Joint entropy

ForA:S— A B:S— B, let

(A, B)(s) = (Als), B(s))-
Note: p((A,B) =(a,b)) = p((A=a)A\(B = b)).
Then

1
H.(A,B) = p(a A b) - log, .
R o

If A and B are independent (i.e., p(a A b) = p(a) - p(b)),

Hr(Aa B) = Hr(A) + Hr(B)
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and the equality holds if and only if A and B are independent.



Joint entropy

Theorem.
H.(A,B) < H,(A)+ H,(B),

and the equality holds if and only if A and B are independent.
Proof.

1
H(AB) = 3 planb)-log,
acA,beB p(a A b)
H(A)+H(B) = > p(a a)log, 5+ > p(b )log, —5y )
acA beB
= ZZ a/\blogr +ZZ a/\blog,—b
acAbeB beB acA ( )

1
p -
s es p(a)p(b)



Joint entropy

Theorem.
H.(A,B) < H,(A)+ H,(B),

and the equality holds if and only if A and B are independent.
Proof.

1
H(AB) = 3 planb)-log,
acA,beB p(a A b)
HF(A) + HF(B) = Z logr + Z logr )

ac A beB

= ZZ a/\blog, +ZZ a/\blog,—b
acA beB beB ac A ( )

1

— Y p(anb)log, ————

Iy p(a)p(b)

Golden lemma!
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Let
AT ={aec A:p(a) >0}, BF ={bec B:p(b)>0}.

We have



Proof of H,(A, B) < H,(A) + H,(B)..

Let

AT ={aec A:p(a) >0}, BF ={bec B:p(b)>0}.

We have
1
H(A)+ H.(B) = (a,b)e§,4+xzs+ p(a A b)log, p(2)p(b)
1
H/(A,B) = E p(a A b) - log, (A b)’

ac At beB+



Proof of H,(A, B) < H,(A) + H,(B)..

Let

AT ={aec A:p(a) >0}, BF ={bec B:p(b)>0}.

We have
1
H/(A) + H,(B) = p(aAb)log, ———
(a,b)§pr+ " p(a)p(b)
1
H/(A,B) = p(a A b) - log, .
a€A+Z,I;€B+ p(a A b)

Now the inequality follows from the Golden Lemma.



Proof of H,(A, B) < H,(A) + H,(B)..

Let

AT ={aec A:p(a) >0}, BF ={bec B:p(b)>0}.

We have
1
H/(A) + H,(B) = p(aAb)log, ———
(a,b)ez,él;rxls+ " p(a)p(b)
1
H/(A,B) = p(a A b) - log, .
e Ao

Now the inequality follows from the Golden Lemma.

The equality holds if only if
p(anb) = p(a)- p(b),

for all (a, b) € AH) x B, ie. iff Aand B are independent.
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Mutual information

ForA:S— A, B:S— B,
I,(A;B) = H,(A)+ H,(B)— H.(A,B).
is the mutual information of variables A and B.

Note:

1 1
I(A;B) = > planb) (Iogp(a)p(b)—logp(aAb)).

acA,beB

~ “distance from independence”.
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Chain rule

Proof.
H(A, B)

H.(A,B) = H,(A|B)+ H/(B).

1
> p(anb)-log oA )

acA,beB

a;‘bezg; p(alb)p |ogm

2 2 P ®) (1 (1|b)+'°gp(1b)>
gl;p(b) ;4 p(alb) - log ——— (|b)

+ b%; p(b) log ﬁ : gp(a\b)

—
1

Hf(A|B)+Hr(B) O
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Conditional entropy revisited

Joint entropy + chain rule:

Hy(A) + H,(B) > H,(A B)

Corollary

H.(AIB) < H/(A),

and the equality holds if and only if A and B are independent.
Note: It may be H,(A|B = b) > H,(A), for some b.



Chain rule for n > 2

H(Al,...,An) = H(Al‘AQ,...,An)—l-H(AQ,...,A,,)
= H(A1|A2,...,An)—|-H(Az’Ag,...,An)—l—
YH(As, ... A

= > H(AilAif1, ..., An)
i=1

where H(A,|0) = H(A,).



Chain rule for n > 2

H(Al,...,An) = H(Al‘AQ,...,An)—l-H(AQ,...,A,,)
= H(A1|A2,...,An)—|-H(Az’Ag,...,An)—l—
YH(As, ... A

= > H(AilAif1, ..., An)
i=1

where H(A,|0) = H(A,).

Corollary.
H(Al7"'aAn) < H(A1)++H(An)7
and the equality holds if and only if A;,..., A, are independent, i.e.

p(aiA...Nap) = p(a1)-...-p(an).



Conditional chain rule

H(A,B|C) = H(A|B,C)+ H(B|C).

Proof.
Analogous to the unconditional case.
We use the fact that, whenever p(a A b|c) > 0,

plantle) = PELORE) _ PEL2AD PEAC) _ palbncypl).

Simple but tedious calculation.




Conditional joint entropy

Theorem.
H(A,B|C) < H(A|C)+ H(B|C)

and the equality holds if and only if A and B are conditionally
independent given C, i.e,,

p(A=anB=bC=c) = p(A=alC=c) p(B=>b|C=c).

Proof.

Analogous to the unconditional case.



Conditional joint entropy

Theorem.
H(A,B|C) < H(A|C)+ H(B|C)

and the equality holds if and only if A and B are conditionally
independent given C, i.e,,

p(A=anB=bC=c) = p(A=alC=c) p(B=>b|C=c).

Proof.

Analogous to the unconditional case.

Corollary.
H(AIB,C) < H(AC),

and the equality holds iff A and B are conditionally independent
given C.



Conditional information

Mutual information of A and B under condition C:

I(A; B|C) = H(A|C)+ H(B|C)— H(A,B|C)
———
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H(A|B,C)+H(B|C)
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Conditional information

Mutual information of A and B under condition C:

I(A; B|C) = H(A|C)+ H(B|C)— H(A,B|C)
———
H(A|B.C)+H(BC)

= H(A|C) — H(A|B, C).

Mutual information of A, B, and C:
R(A;B;C) = I(A;B)—I(A; B|C).
Note the symmetry:

I(A;C) — I(A;C|B) = H(A) — H(A|C) — (H(A|B) — H(A|B, C))
— H(A) — H(AIB) — (H(A|C) — H(AIB, C)).
1(A;

>

B) I(A;B|C)



Venn diagram
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Mutual information

Note: R(A; B; C) = I(A; B) — I(A; B|C) can be negative!



Mutual information

Note: R(A; B; C) = I(A; B) — I(A; B|C) can be negative!
Example. Let A and B be independent random variables with
values in {0,1}, and let

C=A®B.
Then I(A; B) =0, while

I(A; B|C) = H(A|C) — H(A|B, C)
0

and we can make sure that H(A|C) > 0, e.g.
0OjO0j1|1|1]1]A

0|1|]0|0|1]|1|B
0(1(1|1]|0|0|C=A+B




Application: Perfect secrecy

A cryptosystem is a triple of random variables:
» M with values in M (messages),
» K with values in IC (keys),
» C with values in C (cipher-texts),

where M, IC, C are finite sets.
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M = Dec(C,K)

(unique decodability).



Application: Perfect secrecy

A cryptosystem is a triple of random variables:
» M with values in M (messages),
» K with values in IC (keys),
» C with values in C (cipher-texts),
where M, IC, C are finite sets.
Additionally, a function Dec : C x K — M, such that

M = Dec(C,K)

(unique decodability).
A cryptosystem is perfectly secret if /(C; M) = 0.



One time pad

Example. M =K =C ={0,1}", for some n € N, and
C = MoK

(e.g., 101101 ® 110110 = 011011).



One time pad

Example. M =K =C ={0,1}", for some n € N, and
C = MoK

(e.g., 101101 ® 110110 = 011011).
Dec(v,w) = vdw.

K is uniformly distributed

for v € {0,1}".
K and M are independent.



Perfect secrecy of One time pad

I(M; C) =0 iff M and C are independent, i.e.

p(C=wM=u) £ p(C=w).

p(C=w)= 3 pM=urK=v)=YpM=u) ==~

2n  2n’
ubv=w

p(C=wAM=u)
p(M = u)
p(K=udwAM=u)
p(M = u)
p(K = u w) - p(M = u)
p(M = u)

p(C=wM=u) =

1

2n°



Why one time ?

Because C and K may be dependent!.

Ojoj1|1(1|1 M
0j1]0|0|1]1]|K
0(1(1]1]|0|0|C=M+K




Why one time ?

Because C and K may be dependent!.

ofof1]1]1]1]m™m
oj1]ofo|1][1]K
0[1[1]1]0]0]C=M+K
(

p(K=1|C=0)=p(K=0/C=1)=2, hence K~ 1— C.




Why one time ?

Because C and K may be dependent!.

Ojoj1|1(1|1 M
1/0{01]1]|K
1/1]1(0]|0]|C=M+K

0

0
p(K=1|C=0)=p(K=0/C=1)=2, hence K~ 1— C.
C.f. the American VENONA project (1943-1980).




Shannon’s Pessimistic Theorem

Theorem. Any perfectly secret cryptosystem satisfies
H(K) > H(M).

Consequently

Lr(K) > Hr(K) > Hr(M) > Lr(M)_]-a

i.e., keys must be as long as messages (almost).
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Shannon’s Pessimistic Theorem

Theorem. Any perfectly secret cryptosystem satisfies

HK) > H(M).

Proof.
HM) = HM|C,K)+ IM;C) + I(M;K|C)
~——

~—_——
H(M)—H(M|C)  H(M|C)—H(M|K,C)

But H(M|C; K) =0, since M = Dec(C, K), and I(M; C) =0, by
assumption, hence
H(M) = I(M;K|C).
By symmetry, we have
H(K) = H(KIM,C)+ I(K; C)+ I(K; M|C).
—_——

H(M)



Can functional processing increase information ?

Maybe /(K; C) > 0.



Can functional processing increase information ?

Maybe /(K; C) > 0.

Can we increase this information, e.g., by a computation, i.e.

I(K;f(C)) > I(K;C),

for some f ?
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I(A;C) < (A B).



Can functional processing increase information ?

Lemma. If A and C are conditionally independent given B, then

I(A;C) < (A B).

Proof.
I(A;(B,C)) = I(A; C) + I(A B|C)
~—_—— ~—— ~—
H(A)—H(A|B,C) H(A)—H(A|C)  H(A|C)—H(A|B,C)

I(A;(B,C)) = I(A;B)+I(A;C|B).
0
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Can functional processing increase information ?

Lemma. If A and C are conditionally independent given B, then

I(A;C) < I(A;B).

Corollary. For any function f,

I(A; f(B)) < I(A:B).

Proof. Follows from the Lemma, since

I(A; £(B)|B) = H(f(B)|B) — H(f(B)|A, B) = 0.
0 0




The birth of modern information theory

The fundamental problem of communication is that of reproducing
at one point either exactly or approximately a message selected at
another point. Frequently the messages have meaning; that is they
refer to or are correlated according to some system with certain
physical or conceptual entities. These semantic aspects of
communication are irrelevant to the engineering problem. The
significant aspect is that the actual message is one selected from a
set of possible messages. The system must be designed to operate
for each possible selection, not just the one which will actually be
chosen since this is unknown at the time of design.

Claude Shannon, A Mathematical Theory of Communication,
1948.



v\

Seldom do more than a few of nature’s secrets give way at one
time.

Claude E. Shannon, The Bandwagon, 1956

Photo: Konrad Jacobs. Licensed under under the Creative Commons Attribution-Share Alike 2.0 Germany license.



Information channels

A communication channel [ is given by
> a finite set A of input objects,
> a finite set B of output objects,
» a mapping A x B> (a,b) — P(a— b) €]0,1],
such that, for all a € A,

> Pla—b) = 1

beB



Information channels

A communication channel [ is given by
> a finite set A of input objects,
> a finite set B of output objects,
» a mapping A x B> (a,b) — P(a— b) €]0,1],
such that, for all a € A,

> Pla—b) = 1

beB

Random variables A and B form an input-output pair for the
channel T if, forallae A, b € B,

p(B=blA=a) = P(a—b).



Information channels

A—[T]—B.

Recall: A and B form an input-output pair for [ if Va, b,
p(B=blA=a) = P(a—b).
If it is the case then

p(A=aANB=b) = P(a— b)-p(A=a).



Information channels

A—[T]—B.

Recall: A and B form an input-output pair for [ if Va, b,
p(B=blA=a) = P(a—b).
If it is the case then
p(A=aANB=b) = P(a— b)-p(A=a).

Therefore the distribution of (A, B) is uniquely determined by A
and I, and B satisfies



Information channels

A—[T]—B.

Recall: A and B form an input-output pair for [ if Va, b,
p(B=blA=a) = P(a—b).
If it is the case then
p(A=aANB=b) = P(a— b)-p(A=a).

Therefore the distribution of (A, B) is uniquely determined by A
and I, and B satisfies

p(B=b) = > P(a—b)-p(A=a).
acA



Channel capacity

The capacity of a channel I is

G = mjxxlz(A;B),

where, (A, B) ranges over all input-output pair for I



Channel capacity

The capacity of a channel I is

G = mj)xlz(A;B),

where, (A, B) ranges over all input-output pair for I

The maximum exists because /(A; B) is a continuous mapping
from a compact set

{pe [0,1]4 - Zp(a) = 1} — R,

acA

which is bounded since /(A; B) < H(A) < log |A|.



Matrix representation

P]_]_ .« o Pln
M=
Pmi ... Pmn,
where Pjj = P(a; — bj).



Matrix representation

P]_]_ .« o Pln
M=
Pmi ... Pmn,
where Pjj = P(a; — bj).

Computing distribution of B from distribution of A



Examples

Faithful (noiseless) channel

0




Examples

Faithful (noiseless) channel

0

1

The matrix representation

—_

o



Examples

Faithful (noiseless) channel

0 0

1 1

(o 7)

Cr = max/(A; B) = log, |A| = 1,
A ~——

H(A)

The matrix representation

since A is a function of B.



Inverse faithful channel




Inverse faithful channel

Cr = max/(A; B) =1,
A e —

H(A)



Noisy channel without overlap

A=10,1}, B={0,1,2,3}.

Wi N

wIN

O NI

N
O NI

W O

win O

N———



Noisy channel without overlap

A=10,1}, B={0,1,2,3}.

Wi N

wIN

O NI

N
O NI
wIin ©
~_

W O

Cr=maxI(AB) =1,
A N——

H(A)



Noisy typewriter

A=B={a,b,...,z} (26 letters)
p(a — a) = p(a — next(a)) = 0.5

where next(a) = b, next(b) =c, ..., next(y) = z, next(z) = a.



Noisy typewriter

A=B={a,b,...,z} (26 letters)

p(a — a) = p(a — next(a)) = 0.5

where next(a) = b, next(b) =c, ..., next(y) = z, next(z) = a.
05 0 0 ... 05
05 05 0 ... O
0 05 05 ... O
0 0 05 ... 0

0 0 0 ... 05



Noisy typewriter

A=B={a,b,...,z} (26 letters)

p(a — a) = p(a — next(a)) = 0.5

where next(a) = b, next(b) =c, ..., next(y) = z, next(z) = a.
05 0 0 ... 05
05 05 0 ... O
0 05 05 ... O
0 0 05 ... 0
0 0 0 ... 05

Cr = max/(A; B) = max H(B) — H(B|A) = log26 — 1 = log 13,
A A ——
1

the maximum for A uniform, which causes B uniform as well,
because the columns sum up to 1.



Bad channels

Cr = 0/iff I(A; B) =0, for all input-output pairs, i.e.,

p(B=blA=a) = p(B=0b),
—_—
P(a—b)

forall a€ A, b € B (unless p(A = a) =0).



Bad channels

Cr = 0/iff I(A; B) =0, for all input-output pairs, i.e.,

p(B=blA=a) = p(B=0b),
—_—
P(a—b)

forall a€ A, b € B (unless p(A = a) =0).

That is, the values within a column must be equal.
1

1 1 1 1

: 2 205 3 0 0
0 0

1 1 1 1 1

: 2 205 3 00

=



Binary symmetric channel (BSC)

A=B=1{0,1}.
0 P 0
P
-p
1 1
P

Letting P =1— P,

(5 7)

Fact. Any input-output pair (A, B) satisfies

H(B) = H(A),

with the equality if P € {0,1} or if H(A) = 1.



P P
For ( p p > ) H(B) > H(A). Proof.

I
~

Let p(A=0)=q  p(A=1)
compute p(B=0)=r p(B=1)



-
For ( P P > ’ H(B) = H(A). Proof.
o pA=0=q  pA=1=7
compute p(B=0)=r p(B=1)=T
_ P P GP. gP + g

r r



P P
For ( p p > ) H(B) > H(A). Proof.

I
~

Let p(A=0)=q  p(A=1)
compute p(B=0)=r p(B=1)

~ (P P =5 B4 7
(9,9) | 5 = (gP +gP, gP + gP)
P P ——— ——

Then H(A) = —qlogqg— glogg
H(B) = —rlogr—rFlogF



P P
For ( p p > , H(B) > H(A). Proof.

Let p(A=0)=q  p(A=1)
compute p(B=0)=r p(B=1)

I
~

_ P P 5 5. -
(q,q)~( 5 p > =(gP +3aP, gP + qP)
Then H(A) = —qlogqg— glogg
H(B) = —rlogr—rFlogF

The function x log, x + (1 — x) log,(1 — x) is strictly convex.
Taking x1 = q, x2 = g, r = Px; + Pxy,

P-(qlogq+glogg)+ P-(qlogq+ Glogq)
i.e., H(A)

rlogr+rlogr
H(B),

IN IV

with the equality if P € {0,1} or ¢ = g.



Binary symmetric channel <

e/Eav]

T T

Computing the capacity.
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e/Eav]

Binary symmetric channel <

Computing the capacity.

H(BIA) = (p(A=0)+p(A=1))-

1 1
-(p( 5)+log — 2+ p(5s)- Igp(gs))
= P~Iog%+P-|og%.



e/Eav]

Binary symmetric channel <

)

Computing the capacity.

H(BIA) = (p(A=0)+p(A=1))-

1 1
-(p( 5)+log — 2+ p(5s)- Igp(gs))
= P~Iog%+P-|og%.

Letting H(s) = —slog, s — (1 — s) log,(1 — s),

Cr = mf‘\xH(B) — H(BJA) =1 — H(P),

achieved for A with uniform distribution.
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e/Eav]

Binary symmetric channel <

Computing the capacity.

H(BIA) = (p(A=0)+p(A=1))-

1 1
-(p( 5)+log — 2+ p(5s)- Igp(gs))
= P~Iog%+P-|og%.

Letting H(s) = —slog, s — (1 — s) log,(1 — s),

Cr = mf‘\xH(B) — H(BJA) =1 — H(P),

achieved for A with uniform distribution.
Note: 0 < Cr < 1 (bounds achieved for P € {0, 3,1}).



Shannon’s scheme

INFORMATION
SOURCE ~ TRANSMITTER RECEIVER  DESTINATION
1 |
SIGNAL RECEIVED
SIGNAL
MESSAGE MESSAGE
NOISE
SOURCE

Fig. 1 — Schematic diagram of a general communication system.

a decimal digit is about 3% bits. A digit wheel on a desk computing machine has ten stable positions and
therefore has a storage capacity of one decimal digit. In analytical work where integration and differentiation
are involved the base e is sometimes useful. The resulting units of information will be called natural units.
Change from the base a to base b merely requires multiplication by log; a.

By a communication system we will mean a system of the type;indicated schematically in Fig. 1. It

e b o et T s o o fn s



Decision rules

A mapping A : B — A chosen to maximise p(A = A(b)|B = b).



Decision rules

A mapping A : B — A chosen to maximise p(A = A(b)|B = b).
The quality of the rule is measured by

Pre(A,A) € p(aoB = A



Decision rules

A mapping A : B — A chosen to maximise p(A = A(b)|B = b).
The quality of the rule is measured by

Pre(A,A) € p(aoB = A

= Zp(B:b/\A:A(b))

beB

= > p(B=>b)-p(A=A(b)|B = b)
beB

= > p(A=A(b)) p(B = blA=A(b))
beB

— S p(A=2)-p(A(B) = alA = a).

acA



Decision rules

Dually, the error probability of the rule A is

Pre(A, A)

1— Prc(A,A)
Y p(A=aAB=bnA(b)#a)
acA,beB

S p(A=a)-p(BoB#alA=a)

acA



Ideal observer rule

Dedicated to A,
B> b Ay(b) = a € A, maximising

solty PEAB) _ Pa—b) b

p(b) >aea P(@ = b)-p(a)



Maximal likelihood rule

If we don't know A,
B> b+ Amax(b) = a € A, maximising

p(bla) = P(a— b).



Maximal likelihood rule

If we don't know A,
B> b+ Amax(b) = a € A, maximising

p(bla) = P(a— b).

Note: If A has uniform distribution then

Prc(Amax,A) = Prc(Ao, A)



Maximal likelihood rule

If we don't know A,
B> b+ Amax(b) = a € A, maximising

p(bla) = P(a— b).

Note: If A has uniform distribution then
Prc(Amax,A) = Prc(Ao, A)

(Amax = A, if they agree on multiple choices).



Maximal likelihood rule

If we don't know A,
B> b+ Amax(b) = a € A, maximising

p(bla) = P(a—b).

Note: If A has uniform distribution then
Prc(Amax,A) = Prc(Ao, A)
(Amax = A, if they agree on multiple choices).

Indeed, for b € B, both rules maximise

plalb) - p(b) = p(anB) = P(a = ) T



Maximal likelihood rule

Global optimality. Let



Maximal likelihood rule

Global optimality. Let

p(a) = p(A=a).

Then

| Preamydp = [ ST p(a(e) - PAE) > b)dp
pEP P



Maximal likelihood rule

Global optimality. Let

p(a) = p(A=a).

Then
/pePPrC(A,p)dp - /pepép(A(b))-P(A(be)dp
— A(b b) - A(b)) d
%P( (b) = b) /,,ep"( (b)) dp

Maximal for A = Amax.



Multiple use of channel

Al,Ag,...Ak—>—>Bl,Bz,...Bk



Multiple use of channel
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p(bi,ba,... bk | a1,82...3k) = 7



Multiple use of channel

Al,Ag,...Ak—>—>Bl,Bz,...Bk

p(bi,ba,... bk | a1,82...3k) = 7

? = p(bfa) p(b2|a)-... p(bk|ak)



Multiple use of channel

Al,Ag,...Ak—>—>Bl,Bz,...Bk

p(bi,ba,... bk | a1,82...3k) = 7

? = p(bfa) p(b2|a)-... p(bk|ak)

Is it enough that A1,..., A, are independent?



. 2/3 1/3
Multiple use of channel ( 13 23 )

p(bi,bo | a1,2) = p(by|a1)-p(ba | a2)

1

A1 1 — 0|1 B
01 1

Ao — |01 B,.

A1 and A, are independent, with A;(0) = % Ai(1) = %
B; and B, are identical.



. 2/3 1/3
Multiple use of channel ( 13 23 )

p (b1, b | a1, a2) Z p(b1 | a1) - p(b2 | a2)

1

A1 1 — 0|1 Bl
01 1

A2 — 01 Bg.

Ay and A, are independent, with A;(0) = 3, Ai(1) = 3.
B; and B, are identical.
p(11]00) = p(00[01) = p(00[10) = p(11[11) =1 (*)



. 2/3 1/3
Multiple use of channel ( 13 23 )

p(b1,b2|ai,a2) # p(b1|ar)- p(bz|az)

1

A1 1 — 0|1 B
01 1

Ao — |01 B,.

A1 and A, are independent, with A;(0) = % Ai(1) = %
B; and B, are identical.



. 2/3 1/3
Multiple use of channel ( 13 23 )

p(b1,b2|ai,a2) # p(b1|ar)- p(bz|az)

1

A1 1 — 0|1 Bl
01 1

A2 — 01 Bg.

Ay and A, are independent, with A;(0) = 3, Ai(1) = 3.
B; and B, are identical.
p(11]00) = p(00/01) = p(00|10) = p(11[11) = 1.



Multiple use of channel ( 1/2 1/2 )

1/5 4/5

The independence of By, By, .

A1

Az

p (b1, by | a1, a2)

1

0

= pbi]a)-plbe | a)

.. does not suffice either.

0

1

0

111 B
01

01 B>




. 1/2 1/2
Multiple use of channel ( 175 475 )

p(bi,ba|ar,a2) = p(br|a1)-plb | a)

The independence of By, By, ... does not suffice either.
1|0 0
A1 0|1 — 1|1 Bl
1|0 01
A 01 — | 0|1 B,

Here A; and A are identical, hence obviously p(x" | y")
for any pair of symbols X, y. In particular

p(00]11) = g = 7, whereas

P01 PO = 3T = &

= p(xly),



Multiple use of channel

A1, Ao, .. Ax —>—> Bi1, By, ... Bk
independence of symbols

p(bl,bg,...bk‘31,32...ak) = p(b1|al)‘p(b2|a2)-...~p(bk\ak)



Multiple use of channel

A1,A2,...Ak—>—>Bl,B2,...Bk

independence of symbols

p(bl,bg,...bk‘31,32...ak) = p(b1|al)-p(b2|a2)~.

no memory

p(bk|al ... dk, bl . bk—l) = p(bk|ak)

- p(bk | ak)



Multiple use of channel

A1, Ao, .. Ax —>—> Bi1, By, ... Bk
independence of symbols

p(bl,bg,...bk‘31,32...ak) = p(b1|al)‘p(b2|a2)‘...~p(bk\ak)

no memory

p(bk|al ... dk, bl . bk—l) = p(bk|ak)

no feedback

p(ak]al e dk—1, bl . bkfl) = p(ak\al . ak,l)



Multiple use of channel

A1, Ao, .. Ax —>—> Bi1, By, ... Bk
independence of symbols

p(bl,bg,...bk‘31,32...ak) = p(b1|al)‘p(b2|a2)‘...~p(bk\ak)

no memory

p(bk|al ... dk, bl . bk—l) = p(bk|ak)

no feedback

p(ak]al e dk—1, bl . bkfl) = p(ak\al . ak,l)

Hold if (A1, B1), ..., (Ak, Bk) are independent.



Multiple use of channel

Theorem.

Independence of symbols <= no memory and no feedback.



Multiple use of channel

Theorem.

Independence of symbols <= no memory and no feedback.

Note. The conditions are indeed weaker than the independence of
(A1,B1), ..., (Ax, Bk).



Multiple use of channel

Theorem.

Independence of symbols <= no memory and no feedback.

Note. The conditions are indeed weaker than the independence of
(A1,B1), ..., (Ax, Bk).

For example, they hold for the faithfull channel, for any sequence
A, Ax



Proof

p(bk | 31...ak,b1...bk_1) = p(bk|ak)
—
p(ak | ar...dk—1, bl e bkfl) = p(ak|al . ak,l)
p(ay...ak,b1...by) = p(bilar) - ... p(bklak) - p(ar ... ak),
—_——
>0

For the induction step,

p(ay...ak,b1...b) =




Proof

p(bk | 31...ak,b1...bk_1) = p(bk|ak)
=
p(ak | ar...dk—1, bl e bkfl) = p(ak|al . ak,l)
p(ay...ak,b1...by) = p(bilar) - ... p(bklak) - p(ar ... ak),
—_——
>0
For the induction step,
p(ar...ak,b1...b) = p(belax)-p(ar...ax, by...bxk_1),
~—

no mem. Il

ay...a
p(ar...a-1,b1...be—1)- p(lk)}
p(a1.--3k71) no feed

[lind.



Proof

p(bk | 31...ak,b1...bk_1) = p(bk|ak)
=
p(ak | ar...dk—1, bl e bkfl) = p(ak|al . ak,l)
p(ay...ak,b1...by) = p(bilar) - ... p(bklak) - p(ar ... ak),
—_——
>0
For the induction step,
p(ar...ak,b1...b) = p(belax)-p(ar...ax, by...bxk_1),
~—

no mem. Il

ay...a
p(ar...a-1,b1...be—1)- p(lk)}
p(a1.--3k71) no feed

[lind.

p(bila1) ... p(bk—1lak—1) - p(a1 . .. ak-1),

if p(al...ak,bl...bk_l) > 0.



Remaining case of [p(al e.dk—1,3k, b1 ... bg_1) = 0].

(By assumption, p(a; ...ax) #0.)



Remaining case of [p(al e.dk—1,3k, b1 ... bg_1) = Oj.

(By assumption, p(a; ...ax) #0.)
If p(ay...ak—1,b1...bk—1) =0, we have, by induction hypothesis,

p(a1 e dk—1, b1 ce bkfl) = p(bl\al) el p(bkfl‘akfl) -p(al ce ak,l)

=0 =0




Remaining case of [p(al e.dk—1,3k, b1 ... bg_1) = 0].

(By assumption, p(a; ...ax) #0.)
If p(ay...ak—1,b1...bk—1) =0, we have, by induction hypothesis,

p(a1 e dk—1, b1 ce bkfl) = p(bl\al) el p(bkfl‘akfl) -p(.31 ce ak,l)
=0 =0

I
p(ay...ak,b1...b) = p(bilar) ... p(bglak) - p(a1-..ak).




Remaining case of [p(al e.dk—1,3k, b1 ... bg_1) = 0].

(By assumption, p(a; ...ax) #0.)
If p(ay...ak—1,b1...bk—1) =0, we have, by induction hypothesis,

p(ay...ak—1,b1...bk_1) = p(bilar) ...  p(bx—1|ak—1)-p(ar...ak—1)
-0 =0
I
p(ay...ak,b1...b) = p(bilar) ... p(bglak) - p(a1-..ak).

If p(ay...ak—1,b1...bk—1) > 0, we have

feed.
0= p(ak\al ce.dk—1, b1 . bk—l) no:ee p(ak|al . ak_l),

well defined

which contradicts the assumption that p(a; ...ax) > 0.



Remaining case of [p(al e.dk—1,3k, b1 ... bg_1) = 0].

(By assumption, p(a; ...ax) #0.)
If p(ay...ak—1,b1...bk—1) =0, we have, by induction hypothesis,

p(ay...ak—1,b1...bk_1) = p(bilar) ...  p(bx—1|ak—1)-p(a1 ...
-0 =0
I
p(ay...ak,b1...b) = p(bilar) ... p(bglak) - p(a1-..ak).

If p(ay...ak—1,b1...bk—1) > 0, we have

feed.
0= p(ak\al ce.dk—1, b1 . bk—l) no:ee p(ak|al . ak_l),

well defined
which contradicts the assumption that p(a; ...ax) > 0.

For the proof of “<—" see Lecture notes.

3k71)



Multiple use of channel

Proviso.
If not stated otherwise, we assume that the independence of
symbols property

p(bl,bg,...bk‘31,32...ak) = p(b1|a1)-p(b2|a2)-...~p(bk\ak)

always holds.



BSC revisited

P Q
Q P

Then Anmax(i) =

Let = ( ) with P > Q.



BSC revisited

Let T = (g g), with P> Q.

Then Amax(i) = i, for i = 0,1, and, for any A,

Pre(BmacA) = D P(Amax(b)) - p(Amax(b) = b)
be{0,1}
= p(A=0)-P+p(A=1)-P
= P,

hence
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Let T = (g g), with P> Q.

Then Amax(i) = i, for i = 0,1, and, for any A,

Pre(BmacA) = D P(Amax(b)) - p(Amax(b) = b)
be{0,1}
= p(A=0)-P+p(A=1)-P
= P,
hence



BSC revisited

Let T = (g g), with P> Q.

Then Amax(i) = i, for i = 0,1, and, for any A,

Pre(BmacA) = D P(Amax(b)) - p(Amax(b) = b)
be{0,1}
= p(A=0)-P+p(A=1)-P
= P,
hence
PrE(Amax7A) = Q

shgt. 'DrE(Amax)'



Improving reliability — redundancy
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Improving reliability — redundancy

| LOVE YOU.

!



Improving reliability — redundancy

| LOVE YOU.

!
Il LLLOOOOOOOVVVVEEE YYYYOO00000UUUU.



Improving reliability

For I — (g g), with P> Q.



Improving reliability

For I — (g g), with P> Q.
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Improving reliability

For I = (g
0~ 000
1 111

Q
P

AN

), with P > Q.
r —

%

r —

%

000 001 010 100
011 101 110 111

— 0
— 1



Improving reliability

P

For = ( 0

0 — 000
1 — 111

where

Q
P

AN

— 1

), with P > Q.
r — 000 001 010 100 +~ O
— 011 101 110 111
r —
%

-

P*+3P’Q Q®+3Q°P
Q> +3Q°P P*+3PQ

)



Improving reliability

For I — (g g), with P> Q.

0 — 000 — r — 000 001 010 100 ~ O
1 - 111 — — 011 101 110 111 ~— 1
— r —
— —
where

PP +3P?Q @ +3Q%P
Q> +3@*°P P*+3P%Q

PrE(Amax) - Q3+302P



Improving reliability

r —  majority is 0

— — 0
1 —» 1" — - . 1 — 1




Improving reliability

—  majority is

0



Improving reliability

The probability of error

13]
Pretbme) =3 (1) 7 < S5 1) i i

Since % > P . Q, we have PQ = %, for some § < 1. Hence

5Lzl
22 11]

Pre(Amayx) < 271 (PQ)L2) =2m-1. _ sl

Therefore

[ Pre(Amax) — 0 if n — oo.}




Improving reliability

The probability of error

13) T
PrE(Amax): <7>P"Qn_I§ <7>PL5JQ\‘£J
i=0 i=0
2n—1

Since % > P . Q, we have PQ = %, for some § < 1. Hence

I7 6\'%J n
P n—1 a n—1 n
re(Amax) < 2 (! Q) 2l = : 22 13] = sla!

Therefore

[ Pre(Amax) — 0 if n — oo.}

But can we avoid stretching of the message to oo 7



Hamming distance

For u,v € A",

d(u,v) = [{i:ui# v}



Hamming distance

For u,v € A",

positivity d(u,v
symmetry d(u,v) = ,
triangle inequality d(u,w) < d(u,v)+d(v,w)



Hamming distance

For u,v € A",

positivity d
symmetry d
triangle inequality d
(



Hamming distance

For u,v € A",

positivity d(
symmetry d(u,v) = d( )
cz({u w) < d(u v) +d(v,w)

PupEwi CLiu £ vibU{i:vi £ wl).

triangle inequality
For a BSC T =, ( g g ) and an input-output pair (A, B),

p(b1 Ce bk|al .. ak) = Qd(g‘g) . Pk—d(i,E)'



Transmission error

For a BSCT =, ( g g ) and an input-output pair (A, B), let

E = AoB.



Transmission error

For a BSCT =, ( g g ) and an input-output pair (A, B), let

E = AoB.

Note:
p(bla) = p(E=a®b)

Indeed,
[P a=b (E=a®b=0)
p“"a)_{o atb (E=adb=1)

On the other hand,
P(E=0)=p(A=0)-p(0=0)+p(A=1)-p(1 =>1)=P
and

p(E=1)=p(A=0)-p(0 1)+ p(A=1)-p(1—=q)=Q.



Transmission error in the multiple use of channels

Let E; =A; @ B;, fori=1,..., k.
Assuming the independence of symbols

p(bi,ba,...bc|ar,ax...ak) = p(bi]ar) p(ba|az) ... p(bk| ak),

the variables Ei, ..., Ex are independent.



Transmission error in the multiple use of channels

Let E; =A; @ B;, fori=1,..., k.
Assuming the independence of symbols

p(bi,ba,...bc|ar,ax...ak) = p(bi]ar) p(ba|az) ... p(bk| ak),
the variables Ei, ..., Ex are independent.
pler...e) = p(A=anB =ane)= Y p(ﬁzs)-p(*zg@aﬁzg),

3 p(a)>0

p(B=30dA=3) = pBi=a@elA =a1)...p(B = ak & e A = ax)
= p(Er=e)- ...  p(Ex = e)

for any &, hence

pler...ex) = p(er)- ... pex).



Transmission algorithm — outline

Given: a random X € X, |X|:m,r:(g g),P>Q.
1. Choose n € N, and C C {0,1}" with |C| = m.
2. Choosecp:Xl—:gC. Let K:@oX.

3. Send
a,ay,...ax —| |— by,bo,...b
1,32 K 1, b k
A B
p(by...bolar...a,) = Q4B . pn—d(@h)

4. To decode, given B = by ... b, choose
A(by...by)=a1...a,€C
maximising p(by ... bpla1 ... a,) (minimising d(3, b)).
Goal: minimise the probability of error
Pre(A,A) = p(Ao B # A).

keeping the ratio Iognm as small as possible < .




Worst case distribution

Fact. Let A, U € C C {0,1}", with U uniform and A arbitrary.
Then there is a permutation o : C 1 € such that

Pre(A,o0A) < Pre(A,U).
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Lemma. Let ay,...,am € R, and p1,...,pm € [0, 1] with
p1+- 4+ pm=1



Worst case distribution

Fact. Let A, U € C C {0,1}", with U uniform and A arbitrary.
Then there is a permutation o : C 1 € such that

Pre(A,o0A) < Pre(A,U).

Lemma. Let ay,...,am € R, and p1,...,pm € [0, 1] with
p1+- 4+ pm=1
lfay < - <amand py >+ > pm, then

m 1 m
;Piai < m;ai-



Lemma. o < <am1>p1>-->pn>0,pr++pn=1,
then 7 pioy < 237«

Proof by induction on m.

Pm = # — h, for some h >0, —% 1 > Lai < am. By induction hypo.

-1
p1 Pm—1 1
a1+~--+m—am71§mzlai-
i=

- PR



Lemma. o < <am1>p1>-->pn>0,pr++pn=1,
then 7 pioy < 237«

Proof by induction on m.

Pm = # — h, for some h >0, —% 1 > Lai < am. By induction hypo.

P1 Pm—1
— A gt —L < —Y
P+ -+ Pm-1 Pt A pm mflg ’

m—1

1
pro1+ A Ppm—10m—1+pPmem < (P1 R pm—l) mz &it+Ppmem =
i=1

1—pm

i mz_:l I —1Zm: (LS
m m—1 “im\g am_;.,la’ 'EZO"_O""

i=1 =

<0



Proof of the Fact ... Pre(A, 00 A) < Pre(A, U), for some o.
Recall: p(B = b|A = 3) = p(E = && b) (for any in-out A, B).



Proof of the Fact ... Prg(A

,o00A) < Pre(A, U), for some o.
Recall: p(B = b|A = 3) = p(E = && b) (for any in-out A, B).

Pre(8,A) = S p(A=a)p(AcB # aA=3)
= Y p(A=3)p(A(ES E) # 3)
geC
Pre(A0) = = p(AFe E) £ 3)

Use the Lemma for numbers:

p(A=3), 4deC,
p(A(F®E)#3), &deC.



Transmission rate

For an alphabet with |A| =r > 2,
the transmission rate of a code C C A" is

log, |C
R(C) = n| |

As usual, R = R».



Transmission rate

For an alphabet with |A| =r > 2,
the transmission rate of a code C C A" is

log, |C
R(C) = n| |

As usual, R = R».

Example. If C = {000,111}™ C {0,1}3™ then



No error

—.

Theorem If Prg(A, A) =0 (with A uniform) then
Rr(C) < Iogr2 ' Cr-

In particular,

R(C) < G



No error
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Theorem If Prg(A, A) =0 (with A uniform) then
Rr(C) < Iogr2 ’ Cr-
In particular,

R(C) < (.

Proof. The independence of symbols implies

H(B|A) = H(Bi|A1) + ...+ H(B,|A,).



No error

Theorem If Prg(A, A) = 0 (with A uniform) then
Rr(C) < Iogr2 ' Cr-

In particular,
R(C) < (.
Proof. The independence of symbols implies
H(B|A) = H(Bi|A1) + ...+ H(B,|A,).
Further
I(A,B) = H(§) — H(B|A)
n

IA
=1
el



Proof of R,(C) < log,2 - Cr cont'd.

We got /(A, B) < n- Cr, hence



Proof of R,(C) < log,2 - Cr cont'd.

We got /(A, B) < n- Cr, hence

But

where m = |C|.



Proof of R,(C) < log,2 - Cr cont'd.

We got /(A, B) < n- Cr, hence

But

where m = |C|. Hence

|
Rr(C) = % < |ogr2 : Cr‘



Example: noisy typewriter revisited

A=B={a,b,...,z} (26 letters)
p(a = a) = p(a — next(a)) = 0.5

where next(a) = b, next(b) =c, ..., next(y) = z, next(z) = a.
Cr = maxa I(A; B) = maxa H(B) — H(B|A) = log 26 — 1 = log 13.
1
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If |C| = 26 then

logys | C| _ ﬁ
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Example: noisy typewriter revisited

A=B={a,b,...,z} (26 letters)
p(a = a) = p(a — next(a)) = 0.5

where next(a) = b, next(b) =c, ..., next(y) = z, next(z) = a.
Cr = maxa I(A; B) = maxa H(B) — H(B|A) = log 26 — 1 = log 13.
——

1

If |C| = 26 then
|0g26 ’C’ k |Og2 13
—=— = —<| 2-logy13 = —=———.
m m = 0826271082 log, 13 + 1



Example: noisy typewriter revisited

A=B={a,b,...,z} (26 letters)

p(a — a) = p(a — next(a)) = 0.5

where next(a) = b, next(b) =c, ..., next(y) = z, next(z) = a.

Cr = maxa I(A; B) = maxa H(B) — H(B|A) = log26 — 1 = log 13
1

If |C| = 26 then

|0g26 ’C’ k |Og2 13
—= = — < 2-logy13= —————.
m m = 0826271082 log, 13 + 1

Note: this bound also follows from the inequality 26X < 226—,,:" (a
word of length m can give 2™ results.)



Example: noisy typewriter cont’'d

C:{aa cc ee ... ... ww yy},\C\:26,m:2.
ac ce eg ... ... wy ya
|0g26’C‘ o 1 |0g2 13

2 log, 13+ 1



Example: noisy typewriter cont’'d

C:{aa cc ee ... ... ww yy},\C\:26,m:2.
ac ce eg ... ... wy ya
|0g26’C‘ o 1 |0g2 13

2 " logy 134+ 1°

C:{...,..., Xxyz t ,...,...}, |C| =263, m =4,

where t is on the list a,c,e,...,w,y on the position
(x mod 2) -4+ (y mod 2) -2+ (zmod2)-1.

logos [C| ~ 3 . logy13
m 4 7~ Jog,13+1°



Example: noisy typewriter cont’'d

C={.,cco,(W ..., ..}, |C| = 26,

where w encodes a number 1-26% 4+ a,_1 -26K" 1+ ... 4+ a5 - 26°
using m of the 13 digits a, c,e,...,w,y, where

m = k-+log;32-(k+1)
hence

logoe | C| _ k _ log, 13 - log, 13
m k+logi32-(k+1) 1+4logy13+ 1 logy13+1




Shannon channel coding theorem

Theorem. I = ( oe ) P> Q. ThenVe,6 >0 3ng ¥n> ng
ac c {o,1}"

Cr—E < R(C)

IN

Cr

'DrE(AaC) < 0

We assume A = Apmax and C is uniform.



o



Shannon channel coding theorem

Idea. The expected distance between A and B is Q-n. Try to pack
in {0,1}" as many disjoint balls of radius Q-n as possible.



Shannon channel coding theorem

Idea. The expected distance between A and B is Q-n. Try to pack
in {0,1}" as many disjoint balls of radius Q-n as possible.

The centers of the m balls will be the code words.



Proof of the Shannon channel coding theorem

aecC, €e{0,1}", p>0.
(d(3,5® &) < p) A (vEe C—{5},d(5,5€a€)>p> —



Proof of the Shannon channel coding theorem

aecC, €e{0,1}", p>0.
(d(3,5® &) < p) A (vEe C—{5},d(5,5€a€)>p> —

—

= A(@®é) = a



Proof of the Shannon channel coding theorem

aecC, €e{0,1}", p>0.
(d(z50&) <p) A (Vbe C—{a},d(b,a0&) >p) —




Weak Law of Large Numbers
X1, X2, ..., X, independent with the same distribution, u = E(X;), then,

forp >0,
p(

1 n
;;XI*N

>'r}> — 0 if n— o0.



Weak Law of Large Numbers
X1, X2, ..., X, independent with the same distribution, u = E(X;), then,

forp >0,

1
fE Xi — n| — 0 if n— oo.
p(n. o >r}> 0 if n—= o0

Hence

i=1

1 .
p(nZE,-—Q >n> — 0 if n— oo,

since E(E;))=0-P+-Q = Q.



Weak Law of Large Numbers
X1, X2, ..., X, independent with the same distribution, u = E(X;), then,
forp >0,

1 n
— X,'* 1 if .
p(nz o >r}>%0| n— oo

Hence

1 n

SNE - 0 if ,
p(ng Q >n> — 0 if n—> o0

since E(E;)=0-P+-Q = Q. Therefore, with p=n-(Q + 1),

. 1 <
d(7 5e E <pl=-SF <
p(d(a,a® )>P)P<n ; >Q+n>

1 Z” )
—_ . PR N < —_
p( n i=1 E’ Q >r}> - 2’

for n sufficiently large.



Proof of the Shannon channel coding theorem cont’d

Recall, with 6,7 >0, p=n-(Q +1n),
1

Pre(A, €) = — ) p(A(@® E) # 3)
aeC
1 - . -
-1 - -
< - (p(d(a,a@E)>p)+ > p(d(b7a€BE)<p))
eC beCc—{3}
5§ 1 L -
< §+—Zqz p(d(b,3® E) < p),



The size of a ball

Lemma. For A\ < %
> (1) < 2w,
i<A-n !

where H(x) = —xlogx — (1 — x) - log(1 — x).



The size of a ball

Lemma. For A\ < %
> (1) < 2w,
i<A-n !

where H(x) = —xlogx — (1 — x) - log(1 — x).
Proof. Let Kk =1 — ), then x > A.



The size of a ball

Lemma. For A\ < %
> (1) < 2w,
i<A-n !

where H(x) = —xlogx — (1 — x) - log(1 — x).

Proof. Let Kk =1 — ), then x > \. We first show that, for all
i < An,

)\iﬁn—i > )\)\n . ghn



The size of a ball

Lemma. For A\ < %
> (1) < 2w,
i<A-n !

where H(x) = —xlogx — (1 — x) - log(1 — x).
Proof. Let Kk =1 — ), then x > \. We first show that, for all
i < An,

)\iﬁn—i > )\)\n . ghn

For An integer just replace bigger by smaller, otherwise
An = |[An] + A\ kn = |kn| 4+ Ak, |An]| + |kn] =n—1, and
AN+ Ax =1. For i < An,
)\iﬁn—i > )\LAnJ . HLnnJ—&-l _ )\L)\nj . H\_RI‘IJ HA)HrAH > )\An L
=z 2

SAAN. AR



Proof

> i<an ( 7 > <27, for A< 3.
We have shown N gh=i > \An . ghn,
Note
—logo M-k = —n-(X-logy A + K - logy )
= n-H()\)
Hence



Proof of the Shannon channel coding theorem cont’d

Recall, with 6,7 >0, p=n-(Q + 1),

:DI‘E(A7 C)

IN

IN




Probabilistic argument

Let C be the set of all sequences of different cy,...,c, € {0,1}".
Let N = |C|.

For C = (ciy...,¢cm), let C={c1,....cm}.

If

%Zsomething(C) < 6
c

then there exists a code C, such that

something(C) < ¢



Probabilistic argument




Proof of the Shannon channel coding theorem cont’d

We will estimate

PO DD M CCEEL BN

deC peCc—{a}

= NZ ZZ g,c;@E)SP)

i=1 j#i

= —ZZ Z cJ,c,GBE < p)

i=1 j#i

(*)

We then estimate (*), for a fixed pair of indices i # .



Estimation

Let

S,&) = {be{0.1)": d(B,&) < p}.



Estimation

Let

S,&) = {be{0.1)": d(B,&) < p}.

Clearly d(x,y @ €) = d(X @ y, €), hence

L;P(d(qaq@ E)<p)= ,i,zcjp (c,-@cj € sp(E))
boole

= Y HE=9) Y Geges,®
c

ée{0,1}"

(++)

We now estimate the value of (**), for a fixed €.



Estimation

boole
1 /_/_
NZC,‘EBCJGS;,(@)
c
Clearly, for any &, b € {0,1}" — {0"},
HC:d=caqg}=|{C:b=c@q} = —
Hence

lam——— 1 N ]
N;Ci@qésp(g) = N'ﬁfsp(g)*{o H,




Estimation

boole

1 —_—~
NZC,‘EBCJGS;,(@)
c

Clearly, for any &, b € {0,1}" — {0"},

_— . - N
‘{C:azci@‘:jH:HC:b:q@Cj}‘:ﬁ
Hence
boole
]_ /_/% ]_ N n
Nzci@cjésp@) = N'ﬁfsp(g)*{o H,
c
(++)
S pE=8) (S, - {0} = = [5,(&) — {0}
2n — 177 2n — 17

ee{0,1}n



Proof of the Shannon channel coding theorem cont’d

But
Sp(8) — {0} < 2mH(Qtn)

(recall that p = n(Q + n)).



Proof of the Shannon channel coding theorem cont’d

But
1S,(8) — {07} < 2mH(Q+n)

(recall that p = n(Q + n)).

Hence

- 1 1
EOR) DD WP UCEEL BRI S v o R R

dcCpec—{a} i=1 j#i



Proof of the Shannon channel coding theorem cont’d

But
Sp(8) — {0} < 2mH(Qtn)

(recall that p = n(Q + n)).

Hence
L= 1 " 1 n-H(Q+n)
NZ X Y BB <) < 3N gy e
acC pec— {3} i=1 j#i
1 1
- = -1 on-H(Q+n)
m m-(m ) 2n —1

E

2



Proof of the Shannon channel coding theorem cont’d

Summarize

1
N Z Pre(A, C)
C

A
N >
_l’_
| =
3
2
o
y
S5
My
IN
=

< 04 . on(H(Qn)-1)
- 2

_ 90 4o (B +H(Q+n)-1)
2

Note ('°g"’ FH(Q + 1) — 1) ~ R(C) - Gr.

n



Proof of the Shannon channel coding theorem cont’d

We can choose ng, 7, such that Vn > ng, dm,

|
Cr—e < OngCr
n
log, m €
B2 Q4 —1< =
n 3

Cr



Proof of the Shannon channel coding theorem cont’d

We can choose ng, n, such that Vn > ng, dm,

logy, m

+H(Q+n) -1 < —2.

Hence

1 5 log m
2 < 0 L on(*E2LH(Q+n)-1)
N EE Pre(A,C) < > +2 :

<

n-

N
@l

<

By probabilistic argument, a desired code C exists
(with R(C) = &™),

n




The Shannon channel coding theorem generally

For any channel ', and €, > 0, for sufficiently large n, there exists
a code C C {0,1}", along with some decision rule A, satisfying

Cr—é‘g

log |C]| < CF

n =

Pre(A, C) < 6.

In other words, there is a sequence of codes C;, C {0,1}"¢, ¢ — o0,
along with decision rules Ay such that

log | Cy| LG

and PrE(De/tag, C@) — 0.
ng



Error correcting codes

Trading optimality for efficiency. Let C C {0,1}".
Coay,...ap— [T | = b1,...0y = A(by....,by) € C

C corrects k errors if, for any ¢ C, b € {0,1}",

-, -,

if d(3b)<k then A(b) = 3.



Error correcting codes

Trading optimality for efficiency. Let C C {0,1}".
Coay,...ap— [T | = b1,...0y = A(by....,by) € C

C corrects k errors if, for any ¢ C, b € {0,1}",

-, -,

if d(3b)<k then A(b) = 3.

C detects k errors if, for any 3¢ C, be {0,1}",

-,

if 0<d(3,b)<k thenb¢ C.



corrects detects



corrects detects



corrects detects

T
SRNE



Error correcting codes

Let
d(C) = min{d(v,w):v,weC, v#w}
Fact.

A code C corrects k errors if, and only if, 2k + 1 < d(C).
A code C detects k errors if, and only if, k < d(C).




Error correcting codes

Let
d(C) = min{d(v,w):v,weC, v#w}
Fact.

A code C corrects k errors if, and only if, 2k + 1 < d(C).
A code C detects k errors if, and only if, k < d(C).

Example. {0",1" : n € N} corrects | %51 | errors.
{wiwo ... w, € {0,1}": > . w; = 0 mod 2} detects one error, but
does not correct it.




One error

Problem. Find C C {0,1}" with |C| = 2"
that corrects a single error.
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that corrects a single error.

To detect, k = 1 suffices.



One error

Problem. Find C C {0,1}" with |C| = 2"
that corrects a single error.

To detect, k = 1 suffices. Prolongate w = wy ... wy by

check-bit (w) = Z w; mod 2.
i



One error

Problem. Find C C {0,1}" with |C| = 2"
that corrects a single error.

To detect, k = 1 suffices. Prolongate w = wy ... wy by

check-bit (w) = Z w; mod 2.
i

Heuristics.

n original bits k check bits

An error can appear on n+ k positions, hence

n+k+1 < 2k

It is possible with n + k + 1=2% (for k > 2).



Hamming (2% — 1, k) code

Let a1...a, with n =2 — k — 1.

Add the check bits on the positions 2, for i = 0,1, ...

O 0O a 0O a a3 &
X1 X2 X3 X4 X5 X X7



Hamming (2% — 1, k) code

Let a1 ...a, with n =25 — k — 1.
Add the check bits on the positions 2, for i = 0,1,...,k — 1.

O 0O a 0O a a3 &
X1 X2 X3 X4 X5 X X7

They are computed by solving k equations over Z; (i.e., mod2)

(0) X1+ X3+ x5 + x7
(1) X2+ X3+ Xeg + X7 =
(2) Xs+x5+x+x7 = 0,



Hamming (2% — 1, k) code

Let a;...a, with n = 2% — k — 1.
Add the check bits on the positions 2, for i = 0,1,...,k — 1.

O 0O a 0O a a3 a4

X1 X2 X3 X4 X5 X X7

They are computed by solving k equations over Z; (i.e., mod2)

(0) X1+ x3 + x5 + x7

(1) Xo+x3+ X6 +x7 =

(2) X4 +x5+x6+x7 = 0,
where in the equation (i), we sum up those x;,

t = bo+ b2+ ...+ be1271,

where the bit i is one.



O O a O ap ds da
X1 X2 X3 X4 X5 X X7

(0) x1+x3+x5+x3 = 0

(1) X0+ X3+ X6 +x7 =

(2) X4 +x5+x6+x2 = 0
The unknown are x,i, where i =0,1,... k—1.

r ! /
X1 X2, ... Xnt+k —)—>X1X2,...Xn+k

For example

(0) Xp+x3+x+x =
(1) X+ x3+ x5 +x5 =
(2) xp+ X6 +x6+x = 1

Then an error has occurred on the position



O O a O ap ds da
X1 X2 X3 X4 X5 X X7

(0) x1+x3+x5+x3 = 0

(1) X0+ X3+ X6 +x7 =

(2) X4 +x5+x6+x2 = 0
The unknown are x,i, where i =0,1,... k—1.

r ! /
X1 X2, ... Xnt+k —)—>X1X2,...Xn+k

For example

(0) Xp+x3+x+x =
(1) X+ x3+ x5 +x5 =
(2) xp+ X6 +x6+x = 1

Then an error has occurred on the position

6 —



6

O O al O dp 4d3 aa
X1 X2 X3 X4 X5 X X7
(0) X1+ X3 + X5 + X7 0
(1) Xo+x3+x+x7 = 0
(2) X4 +x5+x6+x2 = 0
The unknown are x,i, where i =0,1,... k—1.
X1 X2, ... Xnt+k —)—)X{Xé,...XI/H_k
For example
0)  xa+x+xs+x = 0
(1) Xh+ X+ x6+x, = 1
(2) xp+ X6 +x6+x = 1
Then an error has occurred on the position
= 0-2°41.2' +1.2%



Hamming (2% — 1, k) code cont’d

(0) Xi+x3+xg+x =
(1) X4+ x3+x5+x5 =
(2) xp+ x5+ x5 +x = 1

A single error (if any) has occurred on the position
t = bo+b12+...+ be_12K7L

where b; is the value of the equation (i) after substitution.



Hamming (7,4) code

The sum in each circle should be even.

N
Yor

Then a “guilty” bit can be easily found.



Hamming’s bound

If C C {0,1}™ corrects t errors then

cy@+m+<g)+m+<



Hamming’s bound

If C C {0,1}™ corrects t errors then

C!-(1+m+<’;)+...+(f;’>) < om

Example. For C = {0?"2 1272} we have

{0,1}>"2 = B (0*"*2,n) UB (1*"*2, n) U{w € {0,1}*""? : fio(w) = t1(w)}.



Hamming’s bound

If C C {0,1}™ corrects t errors then
C]-(1+m+<';>+...+('?>> < 2m

Example. For C = {0?"2 1272} we have
{0,1}2+2 B (0*""2,n) UB (122, n) U{w € {0,1}*""2 : fo(w) = t1(w)}.

But for the Hamming (2" -1, k) code we have

02 ~k-1. 14 (2K —1) 221,
— ——

IC] m

In this sense the Hamming code is optimal.



Hamming code

Recall

Tkl 12k -1 | = 2L
N———

| ball|

Thus

d (Hammmg( -1 k)) =



Hamming code

Recall

Tkl 12k -1 | = 2L
N———

| ball|

Thus

d(Hammmg( -1 k)) = 3.

Indeed, assumption that d(v,w) > 4, for the closest words v, w,
leads to contradiction.




Hadamard code

Hadamard matrices. Values 41, any two distinct rows are
orthogonal.

1 1 1

1 -1 1 -1
1 1 -1 -1
1 -1 -1 1



Hadamard code

Hadamard matrices. Values 41, any two distinct rows are

orthogonal.

1 1
-1 1
1 -1
-1 -1

S G T W N 'y

Note

H-HT
(det H)?
det H

3 S

=]

-,

n

n
2
)

which is maximal over [—1,1] (Hadamard).



Hadamard code

A Hadamard matrix H of order n induces a binary code
C C{0,1}".



Hadamard code

A Hadamard matrix H of order n induces a binary code
C C{0,1}".

For the rows r; of H, form +nr, ..., +r,, and replace —1 by 0.
Then |C| = 2n and
Yw,weC, v£w=d(v,w)=nV d(v.w):g

hence d(C) = n.

1111
1 010
1 1 1 1 1100
1 -1 1—1|_>1001
1 1 -1 -1 0 00O
1 -1 -1 1 0101
0 011
0110



Linear codes

Recall

O O a O a a3 da
X1 X2 X3 X4 X5 X X7

X1+X3—|—X5+X7 =0
Xo+x3+x+x7 = 0
Xa+ X5+ Xe +X7 = 0

Note: the Hamming (2% — 1, k) code is closed under vector @®: if x
and y are in the code, thensoisz=x@ y

X1 X2 X3 X4 X5 X X7

S y1 Y2 y3 Ya Y5 Yo Y7
Z1 2 Z3 Z4 Zvyz Zp Z7




Linear codes

Recall

O O a O a a3 da
X1 X2 X3 X4 X5 X X7

X1+X3—|—X5+X7 =0
Xo+x3+x+x7 = 0
Xa+ X5+ Xe +X7 = 0

Note: the Hamming (2% — 1, k) code is closed under vector @®: if x
and y are in the code, thensoisz=x@ y

X1 X2 X3 X4 X5 X X7

S y1 Y2 y3 Ya Y5 Yo Y7
Z1 2 Z3 Z4 Zvyz Zp Z7

Thus it forms a linear space over the field Z,.



o



Linear codes

Similarly,

{W1W2...Wn€{0,1}nZZW,':OmOd2}

which is the maximal (of size



Linear codes

Similarly,

{W1W2...Wn€{0,1}nZZW,':OmOd2}

which is the maximal (of size 2"~1) code that detects one error,
is a linear code.



Linear codes

Similarly,

{W1W2...Wn€{0,1}nZZW,':OmOd2}

which is the maximal (of size 2"~1) code that detects one error,
is a linear code.

In general, for a finite field Fy (g = |Fq|, g = p, p prime),

C C Fg is a linear code if it is a linear subspace of Fg over the
field Fy.



Linear codes

Let

weight(w) = |{i: w; # 0}
= d(w,0).

Fact. For a linear code C C Fg,

d(C) = min{weight(w):w e C, w # 0}.

because 0 € C.

because Vv, w € C, d(v,w) = weight(v — w).



Linear codes

Let

weight(w) = |{i: w; # 0}
= d(w,0).

Fact. For a linear code C C Fg,

d(C) = min{weight(w):w e C, w # 0}.
because 0 € C.
because Vv, w € C, d(v,w) = weight(v — w).

Example. In any Hamming (2% — 1, k) code there is an element
with exactly three 1's, e.g., from

— [
= O
=
o 0
o o
o o
o o
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