
Information Theory

Part II. Kolmogorov complexity

Damian Niwiński

University of Warsaw

Winter semester 2020/2021

Disclaimer. Credits to many authors. All errors are mine own.

Which sequence is random ?

00

0100111001010011100101001110010100111001

1100100100001111110110010100010001000010

π

Do random sequences exist at all ?
Shannon’s information theory measures

randomness ≈ H(X)

dependence ≈ I (X ;Y)

but in Shannon’s own words:
Seldom do more than a few of nature’s secrets give way at one
time.

Which sequence is random ?

00

0100111001010011100101001110010100111001

1100100100001111110110010100010001000010

π

Do random sequences exist at all ?
Shannon’s information theory measures

randomness ≈ H(X)

dependence ≈ I (X ;Y)

but in Shannon’s own words:
Seldom do more than a few of nature’s secrets give way at one
time.

Turing machines

For a Turing machine M and w ∈ Σ∗ (usually {0, 1}∗),

I M(w) ↓ : machine M halts on input w ,

I M(w) ↑: machine M loops on input w ,

I M(w) = v : machine M halts on input w and the output is v .

Encoding of Turing machines

M 7→ 〈M〉 code of machine M,

v 7→ Mv machine of code v .

Proviso: the encoding is prefix-free.

Turing machines

For a Turing machine M and w ∈ Σ∗ (usually {0, 1}∗),

I M(w) ↓ : machine M halts on input w ,

I M(w) ↑: machine M loops on input w ,

I M(w) = v : machine M halts on input w and the output is v .

Encoding of Turing machines

M 7→ 〈M〉 code of machine M,

v 7→ Mv machine of code v .

Proviso: the encoding is prefix-free.

Universal Turing machine

A machine U is universal if, for any machine M, and v ∈ {0, 1}∗,

I if M(v) ↓ then U(〈M〉 v) ↓ and M(v) = U(〈M〉 v),

I if M(v) ↑ then U(〈M〉 v) ↑,
I for all other inputs w , U(w) ↑.

Turing machine ≈ program,

Universal Turing machine ≈

compiler

Universal Turing machine

A machine U is universal if, for any machine M, and v ∈ {0, 1}∗,

I if M(v) ↓ then U(〈M〉 v) ↓ and M(v) = U(〈M〉 v),

I if M(v) ↑ then U(〈M〉 v) ↑,
I for all other inputs w , U(w) ↑.

Turing machine ≈ program,

Universal Turing machine ≈ compiler

Kolmogorov complexity

The Kolmogorov information complexity of a word x ∈ {0, 1}∗

CU(x) = min{|v | : U(v) = x}.

Lemma. For an arbitrary Turing machine, let

CM(x) = min{|v | : M(v) = x}.

Then there is a constant cUM , such that

CU(x) ≤ CM(x) + cUM .

Proof. If M(v) = x then U(〈M〉v) = x . Hence

CU(x) ≤ min{|〈M〉|+ |v | : M(v) = x} = CM(x) + |〈M〉|︸ ︷︷ ︸
cUM

. 2

Kolmogorov complexity

The Kolmogorov information complexity of a word x ∈ {0, 1}∗

CU(x) = min{|v | : U(v) = x}.

Lemma. For an arbitrary Turing machine, let

CM(x) = min{|v | : M(v) = x}.

Then there is a constant cUM , such that

CU(x) ≤ CM(x) + cUM .

Proof. If M(v) = x then U(〈M〉v) = x . Hence

CU(x) ≤ min{|〈M〉|+ |v | : M(v) = x} = CM(x) + |〈M〉|︸ ︷︷ ︸
cUM

. 2

Kolmogorov complexity

The Kolmogorov information complexity of a word x ∈ {0, 1}∗

CU(x) = min{|v | : U(v) = x}.

Lemma. For an arbitrary Turing machine, let

CM(x) = min{|v | : M(v) = x}.

Then there is a constant cUM , such that

CU(x) ≤ CM(x) + cUM .

Proof. If M(v) = x then U(〈M〉v) = x . Hence

CU(x) ≤ min{|〈M〉|+ |v | : M(v) = x} = CM(x) + |〈M〉|︸ ︷︷ ︸
cUM

. 2

Kolmogorov complexity
Def. CU(x) = min{|v | : U(v) = x}.
Lemma. ∀M ∃cUM CU(x) ≤ CM(x) + cUM .

Corollaries

Invariance. For any two universal Turing machines U,U ′,

|CU(x)− CU′(x)| = O(1).

2

Upper bound.

CU(x) = |x |+O(1).

Proof. Take M computing identity. 2

Kolmogorov complexity
Def. CU(x) = min{|v | : U(v) = x}.
Lemma. ∀M ∃cUM CU(x) ≤ CM(x) + cUM .

Corollaries

Invariance. For any two universal Turing machines U,U ′,

|CU(x)− CU′(x)| = O(1).

2

Upper bound.

CU(x) = |x |+O(1).

Proof. Take M computing identity. 2

Kolmogorov complexity
Def. CU(x) = min{|v | : U(v) = x}.
Lemma. ∀M ∃cUM CU(x) ≤ CM(x) + cUM .

Corollaries

Invariance. For any two universal Turing machines U,U ′,

|CU(x)− CU′(x)| = O(1).

2

Upper bound.

CU(x) = |x |+O(1).

Proof. Take M computing identity. 2

Military ordering

ε

0, 1

00, 01, 10, 11

000, 001, 010, 011, 100, 101, 110, 111

.

First by length, then lexicographically.

〈{0, 1}∗,v〉 ≈ 〈N,≤〉.

Kolmogorov random words

A word x is Kolmogorov random if CU(x) ≥ |x |.

Such words exist. Let

α : x 7→ v , where U(v) = x and |v | = CU(x) (1:1)

xn = min
v
{x : CU(x) ≥ n}.

Then

2|xn| − 1 ≤ |α ({z : z < xn})| ⊆
∣∣{0, 1}<n

∣∣ = 2n − 1.

Hence

|xn| ≤ n ≤ CU(xn).

Kolmogorov random words

A word x is Kolmogorov random if CU(x) ≥ |x |.
Such words exist. Let

α : x 7→ v , where U(v) = x and |v | = CU(x) (1:1)

xn = min
v
{x : CU(x) ≥ n}.

Then

2|xn| − 1 ≤ |α ({z : z < xn})| ⊆
∣∣{0, 1}<n

∣∣ = 2n − 1.

Hence

|xn| ≤ n ≤ CU(xn).

Kolmogorov complexity is uncomputable

Suppose there is an algorithm x 7→ CU(x).

The one could also compute

n 7→ xn = min
v
{x : CU(x) ≥ n}.

Let M be a Turing machine such that M(bin(n)) = xn.

Then

U (〈M〉bin(n)) = xn

CU(xn)︸ ︷︷ ︸
n≤

≤ |〈M〉|+ log n + 1

Impossible for sufficiently large n, contradiction !

Kolmogorov complexity is uncomputable

Suppose there is an algorithm x 7→ CU(x).

The one could also compute

n 7→ xn = min
v
{x : CU(x) ≥ n}.

Let M be a Turing machine such that M(bin(n)) = xn. Then

U (〈M〉bin(n)) = xn

CU(xn)︸ ︷︷ ︸
n≤

≤ |〈M〉|+ log n + 1

Impossible for sufficiently large n, contradiction !

Kolmogorov complexity is uncomputable

Suppose there is an algorithm x 7→ CU(x).

The one could also compute

n 7→ xn = min
v
{x : CU(x) ≥ n}.

Let M be a Turing machine such that M(bin(n)) = xn. Then

U (〈M〉bin(n)) = xn

CU(xn)︸ ︷︷ ︸
n≤

≤ |〈M〉|+ log n + 1

Impossible for sufficiently large n, contradiction !

Prefix-free Kolmogorov complexity

We call Turing machine M prefix-free if so is

L(M) = {x : M(x) ↓}.

The prefix-free Kolmogorov complexity of x ∈ {0, 1}∗

KU(x) = min{|v | : U(v) = x},

for a prefix-free universal machine U.

A machine U is prefix-free universal if it is prefix-free and, for
any prefix-free machine M, and v ∈ {0, 1}∗,
I if M(v) ↓ then U(〈M〉 v) ↓ and M(v) = U(〈M〉 v),

I if M(v) ↑ then U(〈M〉 v) ↑,
I for inputs w not in the form 〈M〉 v , for some M (not

necessarily prefix-free), U(w) ↑.

Do such machines exist ?

Prefix-free Kolmogorov complexity

We call Turing machine M prefix-free if so is

L(M) = {x : M(x) ↓}.

The prefix-free Kolmogorov complexity of x ∈ {0, 1}∗

KU(x) = min{|v | : U(v) = x},

for a prefix-free universal machine U.

A machine U is prefix-free universal if it is prefix-free and, for
any prefix-free machine M, and v ∈ {0, 1}∗,
I if M(v) ↓ then U(〈M〉 v) ↓ and M(v) = U(〈M〉 v),

I if M(v) ↑ then U(〈M〉 v) ↑,
I for inputs w not in the form 〈M〉 v , for some M (not

necessarily prefix-free), U(w) ↑.

Do such machines exist ?

Prefix-free Kolmogorov complexity

We call Turing machine M prefix-free if so is

L(M) = {x : M(x) ↓}.

The prefix-free Kolmogorov complexity of x ∈ {0, 1}∗

KU(x) = min{|v | : U(v) = x},

for a prefix-free universal machine U.

A machine U is prefix-free universal if it is prefix-free and, for
any prefix-free machine M, and v ∈ {0, 1}∗,
I if M(v) ↓ then U(〈M〉 v) ↓ and M(v) = U(〈M〉 v),

I if M(v) ↑ then U(〈M〉 v) ↑,
I for inputs w not in the form 〈M〉 v , for some M (not

necessarily prefix-free), U(w) ↑.

Do such machines exist ?

Prefix-free Kolmogorov complexity

We call Turing machine M prefix-free if so is

L(M) = {x : M(x) ↓}.

The prefix-free Kolmogorov complexity of x ∈ {0, 1}∗

KU(x) = min{|v | : U(v) = x},

for a prefix-free universal machine U.

A machine U is prefix-free universal if it is prefix-free and, for
any prefix-free machine M, and v ∈ {0, 1}∗,
I if M(v) ↓ then U(〈M〉 v) ↓ and M(v) = U(〈M〉 v),

I if M(v) ↑ then U(〈M〉 v) ↑,
I for inputs w not in the form 〈M〉 v , for some M (not

necessarily prefix-free), U(w) ↑.

Do such machines exist ?

Prefix-free Kolmogorov complexity

Lemma. There is an algorithm

arbitrary machine M 7→ prefix-free machine M ′ such that

I L(M ′) ⊆ L(M),

I if M(x) ↓ and, for all y such that y < x or x < y , M(y) ↑,
then

M ′(x) = M(x).

Thus, if M is originally prefix-free then L(M ′) = L(M).

Prefix-free Kolmogorov complexity

Lemma. There is an algorithm

arbitrary machine M 7→ prefix-free machine M ′ such that

I L(M ′) ⊆ L(M),
I if M(x) ↓ and, for all y such that y < x or x < y , M(y) ↑,

then

M ′(x) = M(x).

Thus, if M is originally prefix-free then L(M ′) = L(M).

Proof. M 7→ M ′

1. Input (for M ′): = x = x1 . . . xk .

2. A := ε (* A will run over prefixes of x *).

3. For all words wi = ε, 0, 1, 00, 01, 10, 11, 000, 001, . . . in the
zigzag manner simulate M on Aw .

Specifically: in the i-th phase, make the next step of the
computation of M on Aw0,Aw1, . . . ,Awi−1, and the first step
on Awi .

If M(Awi) ↓, goto 4.

4. if wi = ε then
if A = x then ACCEPT (* Output M(Awi) = M(x) *)
else REJECT

else
if A = x1 . . . x`, ` < k then A := x1 . . . x` x`+1; goto 3
else (* wi > ε ∧ A = x *) REJECT

2

Prefix-free universal Turing machine

Recall: U is prefix-free universal if, for M prefix-free

I if M(v) ↓ then U(〈M〉 v) ↓ and M(v) = U(〈M〉 v),

I if M(v) ↑ then U(〈M〉 v) ↑,
I for all other inputs w , U(w) ↑.

Claim. The machine obtained from an ordinary universal U by the
construction U 7→ U ′ of the Lemma is prefix-free universal.

Indeed, if M(v) ↓ then, for all y such that y < 〈M〉 v or
〈M〉 v < y , it holds U(y) ↑.

Halting problem

Theorem (Turing). The halting problem for the universal Turing
machine is undecidable.

Corollary. The halting problem for the prefix-free universal
Turing machine is undecidable.

Proof. Let

α : w1 w2 . . .wn 7→ w10w20 . . .wn0 01.

Let M 7→ Mα, such that Mα(α(w)) ↓⇐⇒ M(w) ↓.
As Mα is prefix-free, we have

U(w) ↓ ⇐⇒ Uα(α(w)) ↓
⇐⇒ U ′(〈Uα〉α(w)) ↓ .

Thus we reduce the halting problem for U to the halting problem
for U ′. 2

Properties of the prefix-free Kolmogorov complexity

KU(x) = min{|v | : U(v) = x},

for a prefix-free universal machine U.

Invariance. For any two prefix-free universal Turing machines
U,U ′,

|KU(x)− KU′(x)| = O(1).

Uncomputability. The mapping x 7→ KU(x) is uncomputable.

Upper bound (not optimal).

KU(x) = |x |+O(log |x |).

M : a10 a20 . . . ak0 01 x 7→ x ,

where a1a2 . . . ak is the binary representation of the length of x .

Properties of the prefix-free Kolmogorov complexity

KU(x) = min{|v | : U(v) = x},

for a prefix-free universal machine U.

Invariance. For any two prefix-free universal Turing machines
U,U ′,

|KU(x)− KU′(x)| = O(1).

Uncomputability. The mapping x 7→ KU(x) is uncomputable.

Upper bound (not optimal).

KU(x) = |x |+O(log |x |).

M : a10 a20 . . . ak0 01 x 7→ x ,

where a1a2 . . . ak is the binary representation of the length of x .

Properties of the prefix-free Kolmogorov complexity

KU(x) = min{|v | : U(v) = x},

for a prefix-free universal machine U.

Invariance. For any two prefix-free universal Turing machines
U,U ′,

|KU(x)− KU′(x)| = O(1).

Uncomputability. The mapping x 7→ KU(x) is uncomputable.

Upper bound (not optimal).

KU(x) = |x |+O(log |x |).

M : a10 a20 . . . ak0 01 x 7→ x ,

where a1a2 . . . ak is the binary representation of the length of x .

Properties of the prefix-free Kolmogorov complexity

KU(x) = min{|v | : U(v) = x},

for a prefix-free universal machine U.

Invariance. For any two prefix-free universal Turing machines
U,U ′,

|KU(x)− KU′(x)| = O(1).

Uncomputability. The mapping x 7→ KU(x) is uncomputable.

Upper bound (not optimal).

KU(x) = |x |+O(log |x |).

M : a10 a20 . . . ak0 01 x 7→ x ,

where a1a2 . . . ak is the binary representation of the length of x .

Chaitin constant

For a prefix-free universal machine U,

Ω =
∑
U(v)↓

2−|v |.

By Kraft’s inequality, Ω ≤ 1.

Intuitively: probability that U halts.

More specifically,

Ω = p (U(X � n) ↓ for some n)

viewing {0, 1}ω 3 X = X0,X1,X2, . . . as a result of an infinite
Bernoulli process with p(Xi = 0) = p(Xi = 1) = 1

2 .

Chaitin constant

For a prefix-free universal machine U,

Ω =
∑
U(v)↓

2−|v |.

By Kraft’s inequality, Ω ≤ 1.

Intuitively: probability that U halts.

More specifically,

Ω = p (U(X � n) ↓ for some n)

viewing {0, 1}ω 3 X = X0,X1,X2, . . . as a result of an infinite
Bernoulli process with p(Xi = 0) = p(Xi = 1) = 1

2 .

Chaitin constant

Theorem.

I There is a Turing machine T with an extra tape containing

Ω = 0. ω1ω2ω3

which solves the halting problem for U.

I There is a constant c , such that, for n ∈ N,

KU(ω1 . . . ωn) ≥ n − c ,

i.e., Ω is incompressible.

Proof. If Ω may have two representations

Ω = 0.ω1ω2 . . . ωk1000 . . .

= 0.ω1ω2 . . . ωk0111 . . .︸ ︷︷ ︸
choose this one

T simulates U(w) and simultaneously, U(y),
for all words y in zigzag manner, keeping

S = {y : U(y) ↓ so far }.

I If U(w) ↓ then T says YES.

I If 0.ω1ω2 . . . ωn <
∑

y∈S 2−|y |, where n = |w |, and w 6∈ S,
then T says NO.

Consequently, Ω is irrational, hence Ω < 1.

Proof of incompressibility. We define a machine R.

For input x , R simulates U(x). Suppose U(x) = ω1ω2 . . . ωn.

Next, R simulates U(y), for all words y in zigzag manner,
keeping S as before.

At some moment 0. ω1ω2 . . . ωn <
∑

y∈S 2−|y |.

Let v be the first such that v 6= U(y), for all y ∈ S.

Then R stops with R(x) = v .

Note: KU(v) > n.

But KU(v) ≤ KR(v)︸ ︷︷ ︸
≤|x |

+cUR . Hence

n < KU(v) ≤ KR(v) + cUR ≤ |x |+ cUR ,

for any x , such that U(x) = ω1ω2 . . . ωn.

Hence

n ≤ KU(ω1ω2 . . . ωn) + cUR .

2

Proof of incompressibility. We define a machine R.

For input x , R simulates U(x). Suppose U(x) = ω1ω2 . . . ωn.

Next, R simulates U(y), for all words y in zigzag manner,
keeping S as before.

At some moment 0. ω1ω2 . . . ωn <
∑

y∈S 2−|y |.

Let v be the first such that v 6= U(y), for all y ∈ S.

Then R stops with R(x) = v .

Note: KU(v) > n.

But KU(v) ≤ KR(v)︸ ︷︷ ︸
≤|x |

+cUR . Hence

n < KU(v) ≤ KR(v) + cUR ≤ |x |+ cUR ,

for any x , such that U(x) = ω1ω2 . . . ωn.

Hence

n ≤ KU(ω1ω2 . . . ωn) + cUR .

2

Proof of incompressibility. We define a machine R.

For input x , R simulates U(x). Suppose U(x) = ω1ω2 . . . ωn.

Next, R simulates U(y), for all words y in zigzag manner,
keeping S as before.

At some moment 0. ω1ω2 . . . ωn <
∑

y∈S 2−|y |.

Let v be the first such that v 6= U(y), for all y ∈ S.

Then R stops with R(x) = v .

Note: KU(v) >

n.

But KU(v) ≤ KR(v)︸ ︷︷ ︸
≤|x |

+cUR . Hence

n < KU(v) ≤ KR(v) + cUR ≤ |x |+ cUR ,

for any x , such that U(x) = ω1ω2 . . . ωn.

Hence

n ≤ KU(ω1ω2 . . . ωn) + cUR .

2

Proof of incompressibility. We define a machine R.

For input x , R simulates U(x). Suppose U(x) = ω1ω2 . . . ωn.

Next, R simulates U(y), for all words y in zigzag manner,
keeping S as before.

At some moment 0. ω1ω2 . . . ωn <
∑

y∈S 2−|y |.

Let v be the first such that v 6= U(y), for all y ∈ S.

Then R stops with R(x) = v .

Note: KU(v) > n.

But KU(v) ≤ KR(v)︸ ︷︷ ︸
≤|x |

+cUR . Hence

n < KU(v) ≤ KR(v) + cUR ≤ |x |+ cUR ,

for any x , such that U(x) = ω1ω2 . . . ωn.

Hence

n ≤ KU(ω1ω2 . . . ωn) + cUR .

2

Proof of incompressibility. We define a machine R.

For input x , R simulates U(x). Suppose U(x) = ω1ω2 . . . ωn.

Next, R simulates U(y), for all words y in zigzag manner,
keeping S as before.

At some moment 0. ω1ω2 . . . ωn <
∑

y∈S 2−|y |.

Let v be the first such that v 6= U(y), for all y ∈ S.

Then R stops with R(x) = v .

Note: KU(v) > n.

But KU(v) ≤ KR(v)︸ ︷︷ ︸
≤|x |

+cUR . Hence

n < KU(v) ≤ KR(v) + cUR ≤ |x |+ cUR ,

for any x , such that U(x) = ω1ω2 . . . ωn.

Hence

n ≤ KU(ω1ω2 . . . ωn) + cUR .

2

Algorithmic probability

Recall

Ω =
∑
U(v)↓

2−|v |.

How to interpret

pU(y) =
∑

v :U(v)=y

2−|v | ?

Note

1 =

Ω︷ ︸︸ ︷∑
y

pU(y) + p (U diverges).

pU(y) ≈ probability that a random programe generates y .

Example. Compare pU(0n) vs. pU(ω1 . . . ωn).

Algorithmic probability

Recall

Ω =
∑
U(v)↓

2−|v |.

How to interpret

pU(y) =
∑

v :U(v)=y

2−|v | ?

Note

1 =

Ω︷ ︸︸ ︷∑
y

pU(y) + p (U diverges).

pU(y) ≈ probability that a random programe generates y .

Example. Compare pU(0n) vs. pU(ω1 . . . ωn).

Algorithmic probability

Recall that, in an optimal encoding ϕ : S → {0, 1}∗,

|ϕ(s)| ≈ − log p(s).

We will show

KU(y) ≈ − log pU(y).

Theorem. There is a constant c > 0, such that, for all y ∈ {0, 1}∗,

KU(y)− c ≤ − log pU(y) ≤ KU(y).

Algorithmic probability

Recall that, in an optimal encoding ϕ : S → {0, 1}∗,

|ϕ(s)| ≈ − log p(s).

We will show

KU(y) ≈ − log pU(y).

Theorem. There is a constant c > 0, such that, for all y ∈ {0, 1}∗,

KU(y)− c ≤ − log pU(y) ≤ KU(y).

Algorithmic probability pU(y) =
∑

v :U(v)=y 2−|v |.

Theorem. KU(y)− c ≤ − log pU(y) ≤ KU(y).

Proof.

We have U(x) = y , for some x , such that KU(y) = |x |, hence

1

2|x |
≤ pU(y) and − log pU(y) ≤ |x | = KU(y).

For the other inequality, we will define a prefix-free machine T ,
such that, forall y , there is wy , such that T (wy) = y , and

|wy | ≤ − log pU(y) + d ,

which will imply

KU(y) ≤ |〈T 〉| + |wy | ≤ − log pU(y) + |〈T 〉|+ d︸ ︷︷ ︸
c

.

Algorithmic probability pU(y) =
∑

v :U(v)=y 2−|v |.

Theorem. KU(y)− c ≤ − log pU(y) ≤ KU(y).

Proof.

We have U(x) = y , for some x , such that KU(y) = |x |, hence

1

2|x |
≤ pU(y) and − log pU(y) ≤ |x | = KU(y).

For the other inequality, we will define a prefix-free machine T ,
such that, forall y , there is wy , such that T (wy) = y , and

|wy | ≤ − log pU(y) + d ,

which will imply

KU(y) ≤ |〈T 〉| + |wy | ≤ − log pU(y) + |〈T 〉|+ d︸ ︷︷ ︸
c

.

Proof of KU(y)− c ≤ − log pU(y).

A binary interval is of the forma1 ·
1

2
+ a2 ·

1

22
+ . . .+ ak ·

1

2k︸ ︷︷ ︸
L

, L +
1

2k

 ,

where a1, . . . , ak ∈ {0, 1}; ak = 1.

For example,

[
1

2
, 1

)
,

[
3

8
,

1

2

)
,

1

4
+

1

8
+

1

32︸ ︷︷ ︸
13
32

,
7

16

 .

Note: all extensions 0.a1 . . . ak v are in [L, L + 1
2k

).

Proof of KU(y)− c ≤ − log pU(y).

A binary interval is of the forma1 ·
1

2
+ a2 ·

1

22
+ . . .+ ak ·

1

2k︸ ︷︷ ︸
L

, L +
1

2k

 ,

where a1, . . . , ak ∈ {0, 1}; ak = 1.

For example,

[
1

2
, 1

)
,

[
3

8
,

1

2

)
,

1

4
+

1

8
+

1

32︸ ︷︷ ︸
13
32

,
7

16

 .

Note: all extensions 0.a1 . . . ak v are in [L, L + 1
2k

).

Proof of KU(y)− c ≤ − log pU(y).

A binary intervala1 ·
1

2
+ a2 ·

1

22
+ . . .+ ak ·

1

2k︸ ︷︷ ︸
L

, L +
1

2k

 ,

For an interval I = [a, b), let

L(I) = the left end of a maximal binary interval B ⊆ I

(the leftmost one)

• • ◦ ◦

L(I)

OO

L(I) + 1
2k

OO

Proof of KU(y)− c ≤ − log pU(y).

Lemma. If B is a maximal binary interval contained in a half-open
interval I then

8 · |B| ≥ |I |.

Proof of the lemma.

• • ◦ ◦

L(I)

OO

L(I) + 1
2k

OO

Count how many steps of length 1
2k

can we perform from L to the
right, and to the left.

Machine T

For an input x , T simulates U(z) in zigzag manner, keeping, ∀y

Zt,y = {z : U(z) = y and U(z) ↓ in ≤ t steps }

ϕ(t, y) =
∑

z∈Zt,y

1

2|z|
.

For a given t, ϕ(t, y) > 0, only for finitely many y .

For any y ,

lim
t→∞

ϕ(t, y) = pU(y).

Approximation:

ψ(t, y) = max

{
1

2k
:

1

2k
≤ ϕ(t, y)

}
.

Note:

ψ(t, y) >
1

2
ϕ(t, y).

Machine T

For an input x , T simulates U(z) in zigzag manner, keeping, ∀y

Zt,y = {z : U(z) = y and U(z) ↓ in ≤ t steps }

ϕ(t, y) =
∑

z∈Zt,y

1

2|z|
.

For a given t, ϕ(t, y) > 0, only for finitely many y .

For any y ,

lim
t→∞

ϕ(t, y) = pU(y).

Approximation:

ψ(t, y) = max

{
1

2k
:

1

2k
≤ ϕ(t, y)

}
.

Note:

ψ(t, y) >
1

2
ϕ(t, y).

Recall

Zt,y = {z : U(z) = y and U(z) ↓ in ≤ t steps }

ϕ(t, y) =
∑

z∈Zt,y

1

2|z|

ψ(t, y) = max{ 1

2k
:

1

2k
≤ ϕ(t, y)}.

Whenever, for some y , ψ(t, y) incresases, mark a half-open
segment It,y with

|It,y | =
1

2
ψ(t, y).

Note that since ∀a > 0,
∑

1

2k
≤a

1
2k
≤ 2a,

the total length of all segments does not exceed Ω < 1.

Machine T with input x

Find L(It,y).

If L(It,y) = x then T (x) ↓ and T (x) = y .

I T is prefix-free because the left-ends of disjoint binary
intervals are prefix-free.

I ∀y ∃x T (x) = y .

How is |x | related to |It,y | = 1
2ψ(t, y) ?

Proof of KU(y)− c ≤ − log pU(y).

If L(It,y) = x then T (x) = y .

Hence, the length of the largest binary interval B ⊆ It,y is 1
2|x|

.

By the Lemma (8 · |B| ≥ |I |),
Therefore

1

2|x |
≥ 1

8
· |It,y |

Take t, such that ϕ(t, y) ≥ 1
2 · pU(y). Since ψ(t, y) > 1

2 · ϕ(t, y),
we have

1

2|x |
≥ 1

8
|It,y | =

1

16
ψ(t, y) ≥ 1

16
· 1

4
pU(y).

Hence

KT (y) ≤ |x | ≤ − log pU(y) + 6.

2

Effective tests

A test is a mapping δ : {0, 1}∗ → N, such that the set

{〈m, x〉 : δ(x) ≥ m}

is partially computable, and, for all m, n,

]{w ∈ {0, 1}n : δ(w) ≥ m}
2n

≤ 1

2m
.

An infinite sequence u ∈ {0, 1}N is special with respect to δ, if

lim sup
n→∞

δ(u � n) = ∞.

Effective tests

A test is a mapping δ : {0, 1}∗ → N, such that the set

{〈m, x〉 : δ(x) ≥ m}

is partially computable, and, for all m, n,

]{w ∈ {0, 1}n : δ(w) ≥ m}
2n

≤ 1

2m
.

An infinite sequence u ∈ {0, 1}N is special with respect to δ, if

lim sup
n→∞

δ(u � n) = ∞.

Effective tests

Example. Is it special ?

1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 . . .

1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 . . .

Define

δ(x) = max{i : x1 = x3 = . . . = x2i−1 = 1}.

Then

]{w ∈ {0, 1}n : δ(w) ≥ m}
2n

=
2n−m

2n
=

1

2m

• ◦ • ◦ • ◦ • ◦ ◦ . . . ◦ ◦ ◦

2m-1 n

Effective tests

Example. Is it special ?

1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 . . .

1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 . . .

Define

δ(x) = max{i : x1 = x3 = . . . = x2i−1 = 1}.

Then

]{w ∈ {0, 1}n : δ(w) ≥ m}
2n

=
2n−m

2n
=

1

2m

• ◦ • ◦ • ◦ • ◦ ◦ . . . ◦ ◦ ◦

2m-1 n

Effective tests

Example. Is it special ?

1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 . . .

1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 . . .

Define

δ(x) = max{i : x1 = x3 = . . . = x2i−1 = 1}.

Then

]{w ∈ {0, 1}n : δ(w) ≥ m}
2n

=
2n−m

2n
=

1

2m

• ◦ • ◦ • ◦ • ◦ ◦ . . . ◦ ◦ ◦

2m-1 n

Universal test

An infinite sequence u ∈ {0, 1}N is Martin Löf random if it is not
special with respect to any test δ.

One test suffices !

Theorem. There is a test δU , such that, for any test δ, and
x ∈ {0, 1}∗,

δU(x) ≥ δ(x)− cδ,

where cδ is a constant (depending on δ).

Remark. An infinite sequence u ∈ {0, 1}N is Martin Löf random
if and only if it is not special with respect to δU .

Indeed, if lim supn→∞ δ(u � n) =∞, for some δ, then

lim sup
n→∞

δU(u � n) ≥ lim sup
n→∞

δ(u � n)− cδ =∞.

Universal test

An infinite sequence u ∈ {0, 1}N is Martin Löf random if it is not
special with respect to any test δ.

One test suffices !

Theorem. There is a test δU , such that, for any test δ, and
x ∈ {0, 1}∗,

δU(x) ≥ δ(x)− cδ,

where cδ is a constant (depending on δ).

Remark. An infinite sequence u ∈ {0, 1}N is Martin Löf random
if and only if it is not special with respect to δU .

Indeed, if lim supn→∞ δ(u � n) =∞, for some δ, then

lim sup
n→∞

δU(u � n) ≥ lim sup
n→∞

δ(u � n)− cδ =∞.

Universal test δU(x) ≥ δ(x)− cδ

Proof.

Lemma. There exists an effective enumeration of tests δ1, δ2, . . .

δU(x)
def
= max ({δn(x)− n : n ≥ 1} ∪ {0}) .

For |x | < n, δn(x) ≤ |x | < n, hence max is well-defined.

The universality: δU(x) ≥ δn(x)− n, by definition.

The effectiveness condition follows from the lemma.

]{w ∈ {0, 1}n : δU(w) ≥ m} ≤
∞∑
k=1

]{w ∈ {0, 1}n : δk(w) ≥ m + k}︸ ︷︷ ︸
≤2n−m−k

≤ 2n−m ·
∞∑
k=1

1

2k︸ ︷︷ ︸
1

.

2

Kolmogorov complexity vs. Shannon entropy

Let u = y1y2 . . . ym ∈ {0, 1}∗, with |yi | = n.

For w ∈ {0, 1}n, define

p(w) =
]{i : wi = w}

m
.

Note ∑
w∈{0,1}n

p(w) = 1.

Fact. For fixed n,

K (u) ≤ m ·

 ∑
w∈{0,1}n

p(w) · log
1

p(w)

+O(logm).

Kolmogorov complexity vs. Shannon entropy

Let u = y1y2 . . . ym ∈ {0, 1}∗, with |yi | = n.

For w ∈ {0, 1}n, define

p(w) =
]{i : wi = w}

m
.

Note ∑
w∈{0,1}n

p(w) = 1.

Fact. For fixed n,

K (u) ≤ m ·

 ∑
w∈{0,1}n

p(w) · log
1

p(w)

+O(logm).

K (u) ≤ m ·
(∑

w∈{0,1}n p(w) · log 1
p(w)

)
+O(logm)

Proof.
We generate u = y1y2 . . . ym from

I the frequencies p(w), for w ∈ {0, 1}n,

I the position ju of u among all the words in {0, 1}n·m with
these frequencies.

Let {0, 1}n 3 w1,w2, . . . ,w2n , in lexicographic order.

si =]{j : yj = wi} (in binary of length blogmc+ 1)

Xu = s1 s2 . . . s2n

For example (n = 3,m = 7)

u = 001 110 001 001 111 110 000

Xu = 001︸︷︷︸
000

011︸︷︷︸
001

000 000 000 000 010︸︷︷︸
110

001︸︷︷︸
111

.

K (u) ≤ m ·
(∑

w∈{0,1}n p(w) · log 1
p(w)

)
+O(logm)

Proof.
We generate u = y1y2 . . . ym from

I the frequencies p(w), for w ∈ {0, 1}n,

I the position ju of u among all the words in {0, 1}n·m with
these frequencies.

Let {0, 1}n 3 w1,w2, . . . ,w2n , in lexicographic order.

si =]{j : yj = wi} (in binary of length blogmc+ 1)

Xu = s1 s2 . . . s2n

For example (n = 3,m = 7)

u = 001 110 001 001 111 110 000

Xu = 001︸︷︷︸
000

011︸︷︷︸
001

000 000 000 000 010︸︷︷︸
110

001︸︷︷︸
111

.

K (u) ≤ m ·
(∑

w∈{0,1}n p(w) · log 1
p(w)

)
+O(logm)

Proof.
We generate u = y1y2 . . . ym from

I the frequencies p(w), for w ∈ {0, 1}n,

I the position ju of u among all the words in {0, 1}n·m with
these frequencies.

Let {0, 1}n 3 w1,w2, . . . ,w2n , in lexicographic order.

si =]{j : yj = wi} (in binary of length blogmc+ 1)

Xu = s1 s2 . . . s2n

For example (n = 3,m = 7)

u = 001 110 001 001 111 110 000

Xu = 001︸︷︷︸
000

011︸︷︷︸
001

000 000 000 000 010︸︷︷︸
110

001︸︷︷︸
111

.

Proof of K (u) ≤ m ·
(∑

w∈{0,1}n p(w) · log 1
p(w)

)
+O(logm)

Estimation of 1 ≤ ju ≤
(

m!
s1! s2! . . . sN !

)
, with N = 2n.

Recall the Stirling formula

log k! = k log k − k log e +O(log k).

log

(
m!

s1! s2! . . . s2n !

)
= logm!− log s1!− . . .− log sN !

= m︸︷︷︸
s1+...+sN

logm − (m − s1 − . . .− sN) · log e

−s1 log s1 − . . .− sN log sN +O(n · logm)

= −m ·
(s1

m
log

s1

m
+ . . .+

sN
m

log
sN
m

)
+O(n logm)

Proof of K (u) ≤ m ·
(∑

w∈{0,1}n p(w) · log 1
p(w)

)
+O(logm)

We generate u = y1y2 . . . ym from

〈m, n, s1 s2 . . . s2n , ju〉 2

Corollary. For Y = (Y1, . . . ,Ym), where Yi ∈ {0, 1}n,

p(Yi = wj) =
sj
m
, for j = 1, . . . , 2n, Y1, . . . ,Ym independent,

K (u) ≤ H(Y) +O(logm).

On the other hand,

H(Y) ≤ EK (Y).

Proof of K (u) ≤ m ·
(∑

w∈{0,1}n p(w) · log 1
p(w)

)
+O(logm)

We generate u = y1y2 . . . ym from

〈m, n, s1 s2 . . . s2n , ju〉 2

Corollary. For Y = (Y1, . . . ,Ym), where Yi ∈ {0, 1}n,

p(Yi = wj) =
sj
m
, for j = 1, . . . , 2n, Y1, . . . ,Ym independent,

K (u) ≤ H(Y) +O(logm).

On the other hand,

H(Y) ≤ EK (Y).

Proof of K (u) ≤ m ·
(∑

w∈{0,1}n p(w) · log 1
p(w)

)
+O(logm)

We generate u = y1y2 . . . ym from

〈m, n, s1 s2 . . . s2n , ju〉 2

Corollary. For Y = (Y1, . . . ,Ym), where Yi ∈ {0, 1}n,

p(Yi = wj) =
sj
m
, for j = 1, . . . , 2n, Y1, . . . ,Ym independent,

K (u) ≤ H(Y) +O(logm).

On the other hand,

H(Y) ≤ EK (Y).

Applications

The Gödel incompleteness theorem. For any sufficiently reach
and consistent theory T , there is a true property of natural
numbers expressible in T , but not provable in T .

Proof by Chaitin (sketch).

Assume T can express U(x) = y .

C (k , n) ≡ k = min{m : CU(m) ≥ n}

Suppose that, for all numbers kn, such that C (kn, n) is true,
T ` C (kn, n).

Then the following algorithm generates kn from bin(n).

Examine all proofs in T until you find a proof of C (kn, n).

Contradiction ! 2

Applications

The Gödel incompleteness theorem. For any sufficiently reach
and consistent theory T , there is a true property of natural
numbers expressible in T , but not provable in T .

Proof by Chaitin (sketch).

Assume T can express U(x) = y .

C (k , n) ≡ k = min{m : CU(m) ≥ n}

Suppose that, for all numbers kn, such that C (kn, n) is true,
T ` C (kn, n).

Then the following algorithm generates kn from bin(n).

Examine all proofs in T until you find a proof of C (kn, n).

Contradiction ! 2

Gambling

The hors race

m horses

M gambler’s initial wealth

bi the fraction invested in horse i
b1 + . . .+ bm = 1

oi · bi ·M the gain if horse i wins

pi the (estimated) probability that horse i will win

How to play ?

Gambling

M gambler’s initial wealth
bi the fraction invested in horse i
oi · bi ·M the gain if horse i wins

pi the probability that horse i will win
pi = p(X = i), where X ∈ {1, . . . ,m} .

S(X) = oX · bX

E(log S(X)) =
m∑
i=1

pi · log oi · bi

doubling rate

Optimize the gain

Playing n times with the results X1, . . . ,Xn independent ∼ X

Sn = S(X1) · . . . · S(Xn)

Then

1

n
log Sn =

1

n

n∑
i=1

log S(Xi)→ E(log S(X)) in probability

Thus

Sn
.

= 2n·E(log S(X))

= 2
n·

max?︷ ︸︸ ︷∑
pi log oibi

Optimize the gain

Sn
.

= 2n·
∑

pi log oibi

Thus, to optimize the gain Sn, we have to maximize

∑
pi log oibi =

∑
pi log oi +

∑
pi log bi

Since
∑

bi = 1, then by the Golden Lemma à rebours,∑
pi log bi ≤ −H(X)

and is maximal for bi = pi .

So, the best strategy is to invest fraction pi in horse i .

Fairness

∑
pi log oibi =

∑
pi log oi +

∑
pi log bi︸ ︷︷ ︸
≤−H(X)

If the bet is fair, i.e., ∑ 1

oi
= 1,

then
∑

pi log oi ≥ H(X) and is minimal if oi = 1
pi

.

But then, if both gambler and bookie play optimally,∑
pi log oibi = H(X)− H(X) = 76540123. .^

But, for oi = m,∑
pi log oibi = logm − H(X).

Fairness

∑
pi log oibi =

∑
pi log oi +

∑
pi log bi︸ ︷︷ ︸
≤−H(X)

If the bet is fair, i.e., ∑ 1

oi
= 1,

then
∑

pi log oi ≥ H(X) and is minimal if oi = 1
pi

.

But then,

if both gambler and bookie play optimally,∑
pi log oibi = H(X)− H(X) = 76540123. .^

But, for oi = m,∑
pi log oibi = logm − H(X).

Fairness

∑
pi log oibi =

∑
pi log oi +

∑
pi log bi︸ ︷︷ ︸
≤−H(X)

If the bet is fair, i.e., ∑ 1

oi
= 1,

then
∑

pi log oi ≥ H(X) and is minimal if oi = 1
pi

.

But then, if both gambler and bookie play optimally,∑
pi log oibi = H(X)− H(X) = 76540123. .^

But, for oi = m,∑
pi log oibi = logm − H(X).

Fairness

∑
pi log oibi =

∑
pi log oi +

∑
pi log bi︸ ︷︷ ︸
≤−H(X)

If the bet is fair, i.e., ∑ 1

oi
= 1,

then
∑

pi log oi ≥ H(X) and is minimal if oi = 1
pi

.

But then, if both gambler and bookie play optimally,∑
pi log oibi = H(X)− H(X) = 76540123. .^

But, for oi = m,∑
pi log oibi = logm − H(X).

Entropy of English — Shannnon’s experiment

Examples from Shannon’s original paper and Lucky’s book.
Claude Shannon, A Mathematical Theory of Communication, 1948.

The symbols are independent and equiprobable.

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ
FFJEYVKCQSGYD QPAAMKBZAACIBZLHJQD

The symbols are independent. Frequency of letters matches English text.

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI
ALHENHTTPA OOBTTVA NAH BRL

The frequency of pairs of letters matches English text.

ON IE ANTISOUTINYS ARE T INCTORE ST B S DEAMY
ACHIN D ILONASIVE TUCOOWE AT TEASONARE FUSO
TIZIN ANDY TOBE SEACE CTISBE

Entropy of English — Shannon’s experiment

The frequency of triplets of letters matches English text.

IN NO IST LAT WHEY CRATICT FROURE BERS GROCID
PONDENOME OF DEMONSTURES OH THE REPTAGIN IS
REOGACTIONA OF CRE

The frequency of quadruples of letters matches English text.

Each letter depends previous three letters.

THE GENERATED JOB PROVIDUAL BETTER TRAND THE
DISPLAYED CODE, ABOVERY UPONDULTS WELL THE
CODERST IN THESTICAL IT DO HOCK BOTHE MERG.
(INSTATES CONS ERATION. NEVER ANY OF PUBLE AND TO
THEORY. EVENTIAL CALLEGAND TO ELAST BENERATED IN
WITH PIES AS IS WITH THE)

Entropy of English

The goal

For an English text X1X2X3, estimate

H(Xk+1 | XkXk−1 . . .X1) ≈ H(Xk+1 | XkXk−1)

Guessing game

s k i t o u r i n g

Estimate the average number of questions needed to correctly
identify the next letter.

1.3 [1950]

Entropy of English

The goal

For an English text X1X2X3, estimate

H(Xk+1 | XkXk−1 . . .X1) ≈ H(Xk+1 | XkXk−1)

Guessing game

s

k i t o u r i n g

Estimate the average number of questions needed to correctly
identify the next letter.

1.3 [1950]

Entropy of English

The goal

For an English text X1X2X3, estimate

H(Xk+1 | XkXk−1 . . .X1) ≈ H(Xk+1 | XkXk−1)

Guessing game

s k

i t o u r i n g

Estimate the average number of questions needed to correctly
identify the next letter.

1.3 [1950]

Entropy of English

The goal

For an English text X1X2X3, estimate

H(Xk+1 | XkXk−1 . . .X1) ≈ H(Xk+1 | XkXk−1)

Guessing game

s k i

t o u r i n g

Estimate the average number of questions needed to correctly
identify the next letter.

1.3 [1950]

Entropy of English

The goal

For an English text X1X2X3, estimate

H(Xk+1 | XkXk−1 . . .X1) ≈ H(Xk+1 | XkXk−1)

Guessing game

s k i t

o u r i n g

Estimate the average number of questions needed to correctly
identify the next letter.

1.3 [1950]

Entropy of English

The goal

For an English text X1X2X3, estimate

H(Xk+1 | XkXk−1 . . .X1) ≈ H(Xk+1 | XkXk−1)

Guessing game

s k i t o

u r i n g

Estimate the average number of questions needed to correctly
identify the next letter.

1.3 [1950]

Entropy of English

The goal

For an English text X1X2X3, estimate

H(Xk+1 | XkXk−1 . . .X1) ≈ H(Xk+1 | XkXk−1)

Guessing game

s k i t o u

r i n g

Estimate the average number of questions needed to correctly
identify the next letter.

1.3 [1950]

Entropy of English

The goal

For an English text X1X2X3, estimate

H(Xk+1 | XkXk−1 . . .X1) ≈ H(Xk+1 | XkXk−1)

Guessing game

s k i t o u r

i n g

Estimate the average number of questions needed to correctly
identify the next letter.

1.3 [1950]

Entropy of English

The goal

For an English text X1X2X3, estimate

H(Xk+1 | XkXk−1 . . .X1) ≈ H(Xk+1 | XkXk−1)

Guessing game

s k i t o u r i

n g

Estimate the average number of questions needed to correctly
identify the next letter.

1.3 [1950]

Entropy of English

The goal

For an English text X1X2X3, estimate

H(Xk+1 | XkXk−1 . . .X1) ≈ H(Xk+1 | XkXk−1)

Guessing game

s k i t o u r i n

g

Estimate the average number of questions needed to correctly
identify the next letter.

1.3 [1950]

Entropy of English

The goal

For an English text X1X2X3, estimate

H(Xk+1 | XkXk−1 . . .X1) ≈ H(Xk+1 | XkXk−1)

Guessing game

s k i t o u r i n g

Estimate the average number of questions needed to correctly
identify the next letter.

1.3 [1950]

Entropy of English

By gambling. Horses ≈ letters (27 including space).

Let oi = 27, for i = 1, . . . , 27.

Sn = 27n · b(X1, . . . ,Xn)︸ ︷︷ ︸∏n−1
i=0 b(Xi+1|Xi ...X1)

For example

b(t) =
1

4

b(h|t) =
3

4

b(e|th) =
7

8

b(the) =
1

4
· 3

4
· 7

8
=

21

128

Entropy of English

By gambling. Horses ≈ letters (27 including space).

Let oi = 27, for i = 1, . . . , 27.

Sn = 27n · b(X1, . . . ,Xn)︸ ︷︷ ︸∏n−1
i=0 b(Xi+1|Xi ...X1)

For example

b(t) =
1

4

b(h|t) =
3

4

b(e|th) =
7

8

b(the) =
1

4
· 3

4
· 7

8
=

21

128

Entropy of English

1

n
E log Sn(~X) = log 27 +

1

n
E log b(~X)

= log 27 +
1

n

∑
~x

p(~x) · log b(~x)

≤ log 27 +
1

n

∑
~x

p(~x) · log p(~x)

= log 27− 1

n
H(X1, . . .Xn)︸ ︷︷ ︸
H(English)

If the player plays optimally, she approaches the correct value.

1.34 [1978]

