Problem 1

Let X_1, X_2, X_3 be **independent** random variables taking values in the set $\{0, 1\}$ with the same probability distribution $\Pr(X_i = 0) = p$, where $0 . The symbol <math>\oplus$ means addition modulo 2 (XOR). Please compare the following values

$$H(X_1, X_2, X_3)$$
 $H(X_2 \oplus X_3, X_1 \oplus X_3, X_1 \oplus X_2)$

$$I(X_1; X_2|X_3)$$
 $I(X_2 \oplus X_3; X_1 \oplus X_3, |X_1 \oplus X_2).$

Remark. To help intuitions, the operation considered above can be illustrated on a triangle

that is, the value in each node is replaced by the \oplus of its neighbours.

Note. In case of difficulties, please solve the problem for $p = \frac{1}{2}$. For the general case, use the Venn diagram and explore symmetry of the problem while avoiding long calculations.

Solution

We consider general case. As X_1, X_2, X_3 are independent, the entropy $H(X_1, X_2, X_3)$ achieves the maximal value (equal to $3 \cdot H(p)$). To proceed further, let us abbreviate

$$Y_1 = X_2 \oplus X_3, Y_2 = X_1 \oplus X_3, Y_3 = X_1 \oplus X_2.$$

Note that the product variable (Y_1, Y_2, Y_3) is a function of (X_1, X_2, X_3) , but **not** vice versa, because the latter variable assumes **less** values. Indeed, while looking at the triangle, we immediately see that we can obtain only (up to permutation)

Hence

$$H(Y_1, Y_2, Y_3) < H(X_1, X_2, X_3).$$

Now observe that $I(X_1; X_2|X_3) = 0$, because of the independence, while

$$I(Y_1; Y_2 | Y_3) = H(Y_1 | Y_3) - \underbrace{H(Y_1 | Y_2, Y_3)}_{0} > 0,$$
(1)

as Y_1 is not a function of Y_3 . We further explore the equality (1) to show that $I(Y_1; Y_2|Y_3) < H(Y_1, Y_2, Y_3)$. Indeed, we have

$$I(Y_1; Y_2|Y_3) = H(Y_1|Y_3) = H(Y_1, Y_3) - \underbrace{H(Y_3)}_{>0} < H(Y_1, Y_3) \le H(Y_1, Y_2, Y_3)$$

(the last inequality is in fact equality, as $Y_2 = Y_1 \oplus Y_3$). Thus we obtain the **strict** ordering

$$I(X_1; X_2|X_3) < I(X_2 \oplus X_3; X_1 \oplus X_3, |X_1 \oplus X_2) < H(X_2 \oplus X_3, X_1 \oplus X_3, X_1 \oplus X_2) < H(X_1, X_2, X_3).$$

For $p = \frac{1}{2}$, these numbers are

$$0 < 1 < 2 < 3$$
.

Problem 2

We consider two channels whose input and output alphabet is $\{0,1\}^n$. Channel Γ_1 inputs a word w and with probability $\frac{1}{2}$ outputs it correctly, or outputs its mirror 1 image w^R .

Whereas channel Γ_2 inputs a word w and with probability $\frac{1}{2}$ outputs it correctly, or swaps its **first** bit. For example, with n = 7,

Compare the capacities of the two channels.

Note. The argument may depend on the parity of n.

Solution

The capacity of Γ_2 is straightforward to compute. Each row in the matrix channel contains two non-zero values of $\frac{1}{2}$, and similarly each column. Therefore H(B|A)=1 independently of the distribution of A, and B is uniform if so is A. Hence $C(\Gamma_2)=n-1$.

We will show that, in the channel Γ_1 , we can achieve strictly more. Note that the shape of a row now depends on whether the input word w is a palindrome (i.e., $w^R = w$) or not. In the former case, it has only one non-zero value $P(w \to w) = 1$, and the entropy of the row H(B|A = w) = 0, whereas in the latter case it admits twice $\frac{1}{2}$, and H(B|A = w) = 1. As every column sums up to 1, we again see that B is uniform if so is A, hence H(B) = n. On the other hand, H(B|A) < 1, because we always have $H(B|A = w) \le 1$ and H(B|A = w) = 0 holds with probability $\Pr(A \text{ is a palindrom }) > 0$. Hence, without even checking if I(A;B) is maximal in this case, we see

$$C(\Gamma_1) > I(A; B) > n - 1 = C(\Gamma_2).$$

¹For $w = w_1 w_2 \dots w_n$, $w^R = w_n w_{n-1} \dots w_1$.