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1 Przypomnienie notacji

Na poczatku przypomnijmy notacje z poprzedniego wyktadu:
e 7, czyli ,delimitowany” x:
T = ag0ar_10...a:0aq¢lx
gdzie agag_1 - ..arag = bin (|z|)

e Pare okreslamy nastepujaco: (z,y) = 00Ty
Zauwazmy, ze [(z,y)| = 2-log (|z]) + O(1) + |z| + |yl

e Zlozono$¢ wzgledna: Cy (w|u) = min {|z|: ¢ ((u,z)) = w}
dla dowolnej funkcji czesciowo obliczalnej ¢

e Zlozonos¢ bezwzgledna: Cy (w) = Cy (wle)

e Maszyna uniwersalna: U ((u, (z,z))) = M, ({u,x))
(M, jest maszyna o kodzie z)

e ¢ (w)=U (w)

Ztozonos¢ Kolmogorowa pozwala nam okresli¢, jak bardzo ,typowy” jest dany
ciag.

Ztozonos¢ Kolmogorowa (C') definiowana jest od razu relatywistycznie (ztozo-
nos$¢ bezwzgledna réwna jest ztozonosci wzglednej wzgledem stowa pustego).
W definicji na funkcje czesciowo obliczalng ¢ mozemy patrze¢ jak na jezyk
programowania; ztozonosé to dtugosé najkrotszego programu, ktéry wygene-
ruje nam stowo w — przy czym przy generowaniu moze by¢ wykorzystywane
dodatkowo u.

Na poprzednim wykladzie udowodnione takze zostalo nastepujace twier-
dzenie o niezmienniczoSci:



Twierdzenie 1 Dla kazdej funkcji czesciowo obliczalnej ¢ istnieje cy ta-
kie, ze

Co (wlu) < Cp (wlu) + ¢y

Twierdzenie o niezmienniczoSci mowi, ze zlozono$¢ wzgledem ¢ (funk-
cji obliczalnej przez maszyne uniwersalng U) jest zlozonoéciag optymalng z
doktadno$cig do stalej. Inaczej mowigc, programy w innych niz ¢ jezykach
programowania nie beda dowolnie krotsze niz w ¢y.

2 Ograniczenia zlozonosci

Zdefiniowanie ztozonosci Kolmogorowa przez funkcje K bylto stosowne, gdy
moglisSmy zalozyé¢, ze jezyki rozpoznawane przez maszyne Turinga sa bez-
prefiksowe (zadne stowo z jezyka nie jest prefiksem innego stowa z jezyka —
poza soba samym). Bez tego zalozenia wystepowalyby bowiem problemy z
odwracaniem konkatenacji. Przy definicji C' nie ma takich probleméw dzieki
zastosowaniu opisanego powyzej kodowania pary — z kodu pary (z,y) potra-
fimy juz efektywnie odkodowywaé z i y.

Korzystajac z definicji ztozonosci Kotmogorowa K nie mozna byto udo-
wodnié, ze zlozonos¢ wzgledna jest mniejsza niz bezwzgledna (co wyraza
intuicje, ze zazwyczaj latwiej — a w kazdym razie na pewno nie trudniej —
jest wygenerowa¢ program majac dodatkowe informacje v niz ich nie majac).
Przy definicji C' natomiast mozemy juz te zalezno$¢ pokazac.

Fakt 1 Zachodzq nastepujgce nieréwnosci:
(a) Cyo < w|+c
(b) Cgy (wlu) < Cyy (w) +c¢

Dowéd:

Ad. (a)
Bedziemy chcieli znalezé ograniczenie na ztozonos¢ Cy dla pewnego ¢, a na-
stepnie skorzysta¢ z twierdzenia o niezmienniczo$ci, by oszacowaé ztozonosé
Coo-
Gdyby$émy chcieli uzyé¢ ¢ generujacego w w jak najprostszy sposoéb, to naj-
lepsza jako funkcja ¢ bytaby funkcja ,identycznosciowa”. (Cudzystowy sygna-
lizuja, ze ze wzgledu na uzyte kodowanie pary nie bedzie to mogta by¢ po



prostu identycznosé.) Z definicji

Cy(w) = Cy(wle) = min {|z] : ((¢, z)) = w}

Chcemy, by z bylo réwne po prostu w, mamy wiec pare (¢, w) = 0001w.
Doktadniej wiec potrzebujemy nie tyle funkcji identycznoSciowej, ile funkcji
dajacej w na parze (€, w), czyli funkcji odcinajacej 4 pierwsze cyfry. Bierzemy

¢ (y)=[0+1)" "y

Dla takiego ¢ mamy oczywiscie Cy (w) < |w|. Korzystajac z tego i z twier-
dzenia o niezmienniczo$ci mamy ostatecznie, ze:

Cpo (w) < fw[+c

gdzie c jest stala, o ktérej istnieniu moéwi twierdzenie o niezmienniczos$ci.

Ad. (b)
Intuicyjnie: chcemy pokazaé, ze dla programu generujacego w przy uzyciu
€ (czyli bez dodatkowych informacji), mozemy uzyska¢ niedluzszy program
generujacy w z wykorzystaniem u (przy czym programy te moga by¢ rownej
dhugosci np. w przypadku, gdy nie bedziemy w ogodle korzysta¢ z dodatkowe]
informacji zawartej w u).

Przypusémy, ze Cy, (w) = |zo|, gdzie ¢y ((¢,20)) = w, tzn. U ({€, zo)) = w.
Mozemy latwo utworzy¢ maszyne M,, taka, ze M, ((u,z)) = ¢o ((¢,x))
dla dowolnych u, z. (Czyli maszyna ta dla kazdego u, z robi to, co robitaby
uniwersalna z wejSciem e, inaczej méwiac u jest ignorowane). Wowczas

U ((u, (21, m0))) = M, ({u, 7)) = ¢o ({€, 20)) = w

Z definicji zlozonosci wzglednej Cy, (wlu) = min {|z| : ¢ ((u,z)) = w},
mamy tez, ze ¢o ((u,(21,20))) = U ({u,(z1,20))) 1 U ((u, (Zlai??o))) = w,
zatem Cy, (wlu) < [(z1,20)]. Uwzglqdnlajqc szacowanie wartosci |(z1,xo)|
dostajemy

Cyy (wlu) < 2-log|z1| + |21] + O(1) + |0
N ~  —~~
¢ Cd)()(w)

C spelnia zatem (z dokladnoscig do statych):

e dhugosé¢ najkrotszego programu generujacego jakis cigg jest nie wieksza
niz dtugos$¢ tego ciggu

e majac dodatkowe informacje mozna co najwyzej skroci¢ program.



3 Polaczenie zlozonosci Kolmogorowa z entro-
p1a

Prosta obserwacja

Przyjmijmy C = Cy,, zachodzi C(w|w) = 0 (z doktadnosdcia do statej: jesli

wybierzemy zo jako kod maszyny liczacej ,identyczno$é” — taka, jak byto to
opisane wczesniej, czyli:

M,,(z) = x bez 4 pierwszych cyfr

to mamy U ({(y, (20, €))) =y, a zatem takze C' (w|w) < [(z0, €)])-
Pozwala to zastanawiaé si¢ nad zwigzkiem miedzy zlozonosciag Kolmogorowa
a entropia, gdyz entropia ,,gdy wszystko jest wiadomo” réwniez wynosi 0.

Twierdzenie 2 Niech u = y1Ys . .. Ym € (0+ 1)*, gdzie |y;| = n.
(Nie kazdy cigg da sie oczywiscie podzielié na bloki réwnej diugosci, ale za-
niedbujemy to.) Okreslmy dla w € (0 + 1)"

p(uw) = FEB =)

m
(czyli czestosé wystgpien stowa w w ciggu u — liczby te sq jak prawdopodo-
bieristwa w przestrzeni losowej ze stowami dtugosci n, 3,41y p(w) =1)
Wowczas

entropia przestrzent probabilistycznej

- ~N

C(u) <m- (Z )np(w) - (—loga p(w)) +e (m) | +c

gdzie c jest statq, a e(m) — 0 przy ustalonym n i m — oo

W istocie mogliby$my oczekiwaé takiego rezultatu. W najbardziej cha-
otycznym przypadku, gdy wszystkie p(w) sa sobie rowne (i przy duzym m),
entropia rowna bedzie logarytmowi z rozmiaru przestrzeni — czyli n; z po-
wyzszego twierdzenia mamy wowczas C' (u) < m-n = |u| (z doktadnoscia do
stalej), czyli jak przy wczesniejszym szacowaniu zlozonodci bezwzglednej.

Dowéd:

Ciag u mozemy odtworzy¢ znajac ciag liczb s(w) = #{i : y; = w} = p(w)-m.
Nie wystarczy jednak tylko ta informacja (gdyz moze byé¢ wiele ciagow o
identycznym rozkladzie czestosci podciagéw), dodatkowo potrzebujemy znaé
numer (w porzadku leksykograficznym np.) ciagu u wéréd wszystkich ciaggow
speliajacych to samo ograniczenie (rozklad czestosci).
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Pozostaje tylko oszacowa¢ rozmiar potrzebnych informacji — jak sie okaze,
sporg wage ma wlasnie 6w numer ciggu, reszta wejdzie w sktadnik sumy opi-
sany jako €(m).

Jako ,program” generujacy u przyjmijmy pare ((n, X,), jn), gdzie j, jest nu-
merem ciagu u, X, = §(w1)§(wy) ... 8wan 1 {0,1}" = {wy, wo, ..., wem}. §(w)
to binarne przedstawienie liczby s(w), ewentualnie dopelnione z przodu ze-
rami, by wszystkie ciagi § byly tej samej dtugosci: |5(w)| = |logs m| + 1.

Dzigki rownej dtugoéci tych liczb mozemy tatwo oszacowac dtugosé ((n, Xy), jn)-
Szacujemy rozmiar pierwszego elementu tej pary (jako ze on sam jest para,
korzystamy ze wczeSniejszych szacowan rozmiaru kodowania pary):

[(n, Xn)| = (llogz n| +1) + 2" - (|logs m| + 1) + 2 - log(|log: n| +1) + O(1)

Kazdy sktadnik powyzszej sumy bedzie jeszcze dodatkowo dzielony przez m,
totez w wyprowadzanym ograniczeniu na C'(u) trafi on do sktadnika e.

By oszacowa¢é j nalezy sie zastanowic, ile ciggéw spelnia podane ograniczenie
na u (rozklad czestosci podciagoéw w u). j jest liczba pomiedzy 1 i (51.7.1.181\1)’
gdZie S(w’b) = Si; 2" = N’(sl.T.r.LsN) = sl!TiN!

Musimy wiec oszacowac log

m!
sil...sny!?

N
k! =~ V2rk - (—)

zrobimy to korzystajac ze wzoru Stirlinga:

(&

skad log k! = $(log 2rk) + k - (log k — log e).
Szacujac j mamy zatem:
0

5-[log 2rm — log 2ms; —...— log 2nsn] — (logz €)fm — s1 —...— sy| +
+ m-logm— s;-logsy —...— sy-log sy = — silog;: — salog?? —...+
zbiega do 0 po podzieleniu przez m

I ~N

1
— snlog®¥ + 3 [log 2rm — log 2ms; — ... — log 2mwsy]|

(gdzie skorzystalismy z faktu, ze m = s; + ...+ sy)
Suma ta dzielona bedzie jeszcze przez m (by wyciagna¢ m przed nawias) i
jako sktadnik w szacowaniu C(u) pojawi sie nam wowczas:

S1 S1 SN SN

e

m'zwe(o.H)n p(w)(—log p(w))
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4 Uniwersalny test Martina-Lofa

Definicja 1 Testem nazywamy funkcje catkowitq 6 : (0 + 1)* — w, nieko-
niecznie obliczalng, ale takq, ze zbior {(m,zx) : 6(x) > m} jest czesciowo
obliczalny. !

Ponadto wymagamy, by dla kazdych m, n

#{we (0+1)": 6(w) >m} < 1

2n - 2m
Intuicyjnie przez ciag typowy rozumiemy taki, ktory nalezy do kazdej roz-
sadnej wiekszosci; ktory ma niewiele ,dziwactw”. Test § wskazuje wlasnie na
poziom ,dziwactwa”. Dodatkowo w podanym warunku n odnosi sie do dtu-
gosci ciggow, zas m jest progiem, pewna miarg ,dziwactwa’. Sam warunek
moéwi, ze liczba ciggéw dtugosci n dziwacznych na poziomie co najmniej m

1

jest nie wigksza niz ;.

Ciekawym faktem jest, ze istnieje taki uniwersalny test ,dziwactwa” ciggu,
tzn. zupelnie niezalezny od wtasnosci, ktorej dziwactwo badamy.

Przyktlad
Niech ciggami dziwacznymi beda takie ciggi, majace same jedynki na pocza-
tkowych nieparzystych pozycjach. Test dla tej wlasnosci ma postac:

d(z)=max {i:x1=23=... =291 =1}

Np. 5(0111) = 0, §(1110100) = 3
To jest test: jesli §(w) > m, to musi byé¢ |w| =n > 2m — 1:

101 1 0
[ ooy @
2m-1

(gdyby ciag w byl krétszy, nie mialby dosé nieparzystych pozycji, by test
mogl zwrécié m).

Nalezy sprawdzi¢, czy spelniony jest warunek proporcji ciggow (czyli ze ,dzi-
wacznych” na poziomie co najmniej m jest nie wiecej niz 2%) W tym celu,
nalezy sie zastanowi¢, ile ciggdéw dlugosci n ma jedynki na pierwszych m

nieparzystych pozycjach. W takim ciggu trzeba jeszcze ustali¢:

1 gdy My(zx) |
0 wpp.

IPrzykladem takiej funkeji jest § = {



e co stoi na pierwszych m — 1 pozycjach o numerach parzystych (miedzy
jedynkami - to nie musza by¢ zera!), co daje 2™~ mozliwosci

e w jaki spos6b uzupelnione sg pozycje za ostatniag jedynka z podciagu,
na pozycji 2m—1. Za ta jedynka pozostaje n—(2m—1) pozycji dajacych
jednak tylko 2"~2™ mozliwosci uzupelnienia (jesli ciag jest dtuzszy niz
2m, a test zwrocil dla niego m, to znaczy ze na pozycji 2m + 1 musi
by¢ zero. Jedynie gdy ciag jest dtugosci 2m do uzupelnienia pozostaje
n —2m+ 1, czyli jedna, ostatnia pozycja; gdy za$ jest dtugosci 2m — 1
nie ma juz w ogole dalszych pozycji do uzupelnienia)

Rozpatrzmy teraz osobno przypadki:

e gdy cigg ma dlugosé¢ 2m — 1:
wowczas ciggow dziwacznych na poziomie co najmniej m jest tyle, co
ciagéw dziwacznych na poziomie m (bo dysponujemy tylko m pozy-
cjami o nieparzystych numerach) i proporcja liczby ciagéw dziwacznych
na poziomie co najmniej m do wszystkich ciggdéw wynosi 2;;1;%0 < %m
(tu zachodzi réwnosé)

e gdy ciagg ma dlugoséé 2m:
wowcezas ciggéw dziwacznych na poziomie co najmniej m jest tyle, co
ciggow dziwacznych na poziomie m (gdyz w takich ciagach jest m po-
zycji nieparzystych) i proporcja ciaggéow dziwacznych na poziomie co
najmniej m do wszystkich wynosi 522" < 2L (tu tez zachodzi row-

nos¢)

e gdy ciag jest dtuzszy niz 2m:
razem ciggoéw, o ktérych wiemy, ze maksymalny podciag jedynek na
nieparzystych pozycjach korczy sie na pozycji 2m — 1 (czyli dziwacz-
nych na poziomie doktadnie m) jest wowczas 2m~! . 2n—2m = gn-m-1
i proporcja ciagéw dziwacznych na poziomie co najmniej m (czyli na
poziomach m, m +1,...,[%]) do wszystkich dtugo$ci n wynosi

on-m—1 + on—m—2 4.+ Qn—[%] - on—m 1
2n -2 2m

zatem rzeczywiscie tak zdefiniowana 0 jest testem.

Mogliby$my sie spodziewaé, ze dla réznych wtasnosci testy beda rozne.
Tymczasem istnieje test uniwersalny.



Lemat 1 Istnieje rekurencyjna numeracja wszystkich testow 61, 0o, ... (ist-
nieje maszyna Turinga, ktora dla kazdego testu potrafi wygenerowaé indeks
zbioru opisanego w tescie).

Dowod powyzszego lematu zamieszczony jest w pracy [1], str. 130 (lemat
2.4.1).

Twierdzenie 3 Niech 01, 0o, ... bedzie numeracjg wszystkich testow.
Wtedy 6Y(z) = maz {6,(x) —n : n > 1} jest testem uniwersalnym w tym
senste, ze

§Y(x) > 8(z) — ¢s
dla pewnej stalej cs.
W powyzszej definicji testu uniwersalnego bierzemy co prawda maksimum

po nieskonczonym zbiorze, bedzie jednak zawsze istniato, bo dla odpowiednio
duzych n liczba 6, () — n bedzie liczba ujemna.

Dowdd:

Dosé tatwo jest pokazaé, ze tak zdefiniowany test uniwersalny spelnia waru-
nek, ze liczba ciggéw dtugosci n ,,dziwacznych” na poziomie m do wszystkich
ciggow dlugosci n jest co najwyzej 2%”

7 definicji liczba ciaggéw dziwacznych na poziomie m:

#{w e (0+1)": Y(w) > m} = #{w € 0+ 1)" : max{sp(w) — &k : k > 1} > m}
a oczywiscie

#{w e (0+1)" :mazx {0 (w)—k:k>1}>m} <

o

> #H{w € O+1): b (w) —k > m} =

/

~"

i#{we(0+1)”:5k(w)2m+k}§

< on—(m+k)

n—m — on—m
2mmL N 5 = 2
k=1
gdzie skorzystaliSmy z tego, ze 0 (dla k = 1,2,...) jest testem, zachodzi wiec
#{w e (0+1)": 0k (w) > m} < 2m™,
A zatem proporcja ciggéw dziwacznych (wedtug 6V) na poziomie m do wszyst-
gn—m 1

kich ciggow dtugosci n wynosi co najwyzej “5— = 5.

O
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