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1 Optymalny kod bezprefiksowy 
 
Definicja 1. Kod nad alfabetem { }0,1 , w którym reprezentacja żadnego znaku nie jest 
prefiksem reprezentacji innego znaku, nazywamy binarnym kodem bezprefiksowym.  
 
Za pomocą kodu bezprefiksowego można uzyskać maksymalny stopień kompresji osiągalny 
za pomocą kodów przypisanych znakom na stałe. 
 
Binarny kod bezprefiksowy można reprezentować jako drzewo binarne, gdzie liście 
odpowiadają elementom , a gałęzie symbolom 0 i 1 (zależnie od potomka, do którego 
prowadzą). Ścieżka od korzenia do liścia reprezentuje słowo kodujące element znajdujący się 
w tym liściu. 

s S∈

 
Przypomnijmy z pierwszego wykładu, iż optymalność kodu jest szacowana przez jego 
długość 

( ) ( ) ( )| |
s S

L p sϕ ϕ
∈

= ⋅ s∑  

interesuje nas oczywiście najkrótszy kod dla danych ,S p  

( ) ( ){ }min : ,kL S L to k arny bezprefiksowy kod na S pϕ ϕ= −  
 
Uwaga 1. Drzewo odpowiadające optymalnemu kodowi musi być pełne. 
Takie drzewo ma dokładnie |  liści i | ||S 1S −  węzłów wewnętrznych. 
 

 
 

Rysunek 1: Struktura drzewa odzwierciedla między innymi optymalność kodu. 
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Dowód. Jeśli w drzewie istnieje węzeł o stopniu 1, to można zastąpić ten węzeł jego 
potomkiem i w ten sposób uzyskać kod mniejszej długości. 
 

2 Kody Huffmana 
Algorytm Huffmana polega na przypisywaniu skończonemu zbiorowi symboli kodów o 
zmiennej liczbie bitów. Idea jest taka, że symbolom o większym prawdopodobieństwie 
występowania przypisujemy krótsze kody. 
 
Algorytm Huffmana dla zbioru ,S p  

• Jeśli | | , 1S = { }S s=  to ( )H
S Sϕ ε=  (dopuszczamy, że kod może przyjąć ε , ale tylko 

gdy | |  - założenie jedynie do dowodu optymalności) 1S =

• Jeśli | | , to niech będzie parą o najmniejszej wartości 2S ≥ 0 1,q q ( ) ( )0 1p q p q+ . 
Następnie łączymy  w jeden element i oznaczamy jako  0 1,q q 0 1q q∨

{ }( ) { }0 1 0 1' ,S S q q q q= − ∪ ∨ , 
którego prawdopodobieństwo wynosi 

( ) ( ) ( )0 1 0 1p q q p q p q∨ = +  
Wreszcie określamy kod 

( ) ( )'
H H
S Ss sϕ ϕ=  dla 0 1,s q q≠  

( ) (' 0 1
H H
S i Sq q qϕ ϕ= ∨ ) i    dla i = 0, 1 (przedłużenie kodu o bit i ) 

 
 
Przykład 1. 

{ }1 2 3 4 5, , , ,S s s s s s= ,     ( ) ( ) ( ) ( ) ( )1 2 3 4 50,3 0,2 0,2 0,2 0,1p s p s p s p s p s= = = = =  
 

{ }1 2 3 4 5' , , ,S s s s s s= ∨ ,     ( ) ( ) ( ) ( )1 2 3 4 50,3 0,2 0,2 0,3p s p s p s p s s= = = ∨ =  
 

{ }1 2 3 4 5'' , ,S s s s s s= ∨ ∨ ,     ( ) ( ) ( )1 2 3 4 50,3 0,4 0,3p s p s s p s s= ∨ = ∨ =  
 

{ }1 4 5 2 3''' ,S s s s s s= ∨ ∨ ∨ ,     ( ) ( )1 4 5 2 30,6 0,4p s s s p s s∨ ∨ = ∨ =  
 

{ }1 2 3 4 5''''S s s s s s= ∨ ∨ ∨ ∨ ,     ( )1 2 3 4 5 1p s s s s s∨ ∨ ∨ ∨ =  
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Rysunek 2: Drzewo odpowiadające kodowi z przykładu 1. Każdy węzeł wewnętrzny jest 
etykietowany sumą prawdopodobieństw swoich synów. 

 
( )'''' 1 2 3 4 5

H
S s s s s sϕ ε∨ ∨ ∨ ∨ =  

 
                              ( )''' 1 4 5 0H

S s s sϕ ∨ ∨ =                                         ( )''' 2 3 1H
S s sϕ ∨ =      

   
( )'' 1 00H

S sϕ =                                         ( )'' 4 5 01H
S s sϕ ∨ = ( )'' 2 3 1H

S s sϕ ∨ =           
   

( )' 1 00H
S sϕ =     ( )' 4 010H

S sϕ = ( )' 5 011H
S sϕ =                   ( )' 2 3 1H

S s sϕ ∨ =           
 

( )1 00H
S sϕ =     ( )4 010H

S sϕ = ( )5 011H
S sϕ =           ( )2 10H

S sϕ =    ( )3 11H
S sϕ =

 
Teraz przedstawimy lemat, który posłuży do udowodnienia następnego twierdzenia. 
  
Lemat 1. Istnieje kod optymalny, w którym pewne dwa najdłuższe słowa mają tę samą 
długość, różnią się tylko ostatnim bitem (są braćmi) i odpowiadają symbolom o najmniejszych 
prawdopodobieństwach występowania (czyli dwóm najmniejszym wartościom ze zbioru ). p
 
Dowód. Niech ( )Sc ϕ= q  będzie najdłuższym słowem dla q S∈ . Istnieje takie, że 

, w przeciwnym przypadku moglibyśmy usunąć ostatni bit z  i dostać kod, który 
jest nadal dekodowalny (nie psujemy warunku o bezprefiksowości), ale przeczyłoby to 
założonej optymalności (nowy kod byłby krótszy). 

( )' Sc ϕ= 'q
| | | ' |c c= c

Jeśli c  nie miałby brata to znów moglibyśmy usunąć jego ostatni bit, zatem  i  muszą być 
braćmi (różnią się tylko ostatnim bitem).  

c 'c

Ostatecznie  i  muszą odpowiadać symbolom o najmniejszych prawdopodobieństwach 
występowania, gdyż tylko wtedy otrzymamy kod o najkrótszej średniej długości. 

c 'c

 
Twierdzenie 1. Kod generowany przez algorytm Huffmana jest optymalnym bezprefiksowym 
kodem binarnym. 

 
Dowód. Udowodnimy optymalność poprzez indukcję ze względu na | | . S
Jeśli | |  to 1S = ( ) 0H

SL ϕ = . 

Przypuśćmy, że mamy , S 0 1 0 1' ( { , }) { }S S q q q q= − ∪ ∪  jak w konstrukcji 
i '

H
Sϕ  optymalny. Popatrzmy na różnicę w długości tych kodów 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( )

' 0 0 1 1 ' 0 1 0 1

1

0 1 0 1 0 11

H H H H H
S S S S S

l l l

L L q p q q p q q q p q p q

l p q l p q l p q p q p q p q

ϕ ϕ ϕ ϕ ϕ
−

− = ⋅ + ⋅ − ∨ ⋅ +

= ⋅ + ⋅ − − ⋅ + = +

=

 
Jak widać długość kodu w kolejnych krokach indukcyjnych różni się o 
pewną określoną wielkość niezależną od samego kodu. 
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Przyjmijmy, że ψ  to jakiś optymalny kod bezprefiksowy dla . Wybieramy dwa najdłuższe 
słowa w kodzie 

S
ψ . Bez utraty ogólności możemy przyjąć, że to są właśnie ( )0qψ  i ( )1qψ  

(  i  dobieraliśmy ze względu na prawdopodobieństwo, zatem im mniejsze 
prawdopodobieństwo tym dłuższy kod). 

0q 1q

Moglibyśmy określić kod dla , w taki sposób, że 'S ( ) ( ){ 1
0 1 0' 0q q q }, 1ψ ψ −∨ =  (skracamy 

kod o jeden bit). 
Wtedy, analogicznie do poprzednich obliczeń, zachodzi 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )0 0 1 1 0 1 0 1 0 1' 'L L q p q q p q q q p q p q p q p qψ ψ ψ ψ ψ
∆

− = ⋅ + ⋅ − ∨ ⋅ + = +

 Przypuśćmy teraz, że H
Sϕ  jest kodem nie optymalnym, czyli zachodzi  

 
( ) ( )H

SL Lψ ϕ<  
 

wtedy nowy kod dla '  S
 

( ) ( ) ( ) ( )'' H H
S SL L L Lψ ψ ϕ= − ∆ < − ∆ = ϕ  

( ) ( )'' H
SL Lψ ϕ<  

 
co jest sprzeczne z założeniem o optymalności '

H
Sϕ . Zatem H

Sϕ  musi być optymalny dla . S

3 Entropia przestrzeni produktowej 
Blokowe kodowanie symboli polega na przypisywaniu słów kodowych o różnej liczbie bitów 
blokom o stałej długości  symboli. Taka metoda umożliwia zmniejszenie średniej długości 
kodu przypadającego na symbol. 

n

 
Przedstawimy jak obliczać entropię przestrzeni produktowej ,nS p  

Ogólniej: 1 1,Z p  2 2,Z p  
Określamy 

( ) ( ) ( )1 2 1 2 1 2, , ,Z Z p p z z p z p z× = ⋅  
intuicyjnie (*) 

( ) ( ) ( )1 2 1 2H Z Z H Z H Z× = +  
wynika to z liniowości wartości oczekiwanej zmiennej losowej. 
Ogólnie 

( )E aX bY aEX bEY+ = +  
 

Przypuśćmy, że mamy zmienne losowe X  na 1Z  i Y  na 2Z . Na 1 2Z Z×  określamy  
 

( )( ) ( ) ( )1 2 1 2,aX bY Z Z aX Z bY Z+ = + . 
Rozważmy 

( ) ( )1 2 1' ,X Z Z X Z=   i  ( ) ( )1 2 2' ,Y Z Z Y Z=  
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wtedy  
'
'

EX EX
EY EY

=
=

 

zatem 
( )' 'E aX bY aEX bEY+ = +  

Zastosujemy to do naszego wzoru intuicyjnego (*) 
( ) ( )( )

( ) ( )( )
( )( ) ( )( )

( ) ( )

1 2 1 2 1 2

1 2 1 2

1 1 2

1 2

log ,

log log

log log

k k

k k

k k

k k

H Z Z E z z p z z

E z z p z p z

E z p z E z p z

H Z H Z

λ

λ

λ λ

× = ⋅ ⋅ − =

= ⋅ ⋅ − − =

2= ⋅ − + ⋅ − =

= +

 

 

4 Kod Shannona-Fano 
 

Przypuśćmy najpierw, że , dla ( ) 0p s ≠ s S∈ . Określamy ( ) ( )
1

rl s log
p s

⎡ ⎤⎛ ⎞
= ⎢ ⎥⎜⎜ ⎟⎟⎢ ⎥⎝ ⎠⎢ ⎥

. Wtedy 

funkcja  spełnia nierówność Krafta: l

( )
1 1

s S r l s∈
≤∑  

Istotnie 
( )

( )

( )1 1
1logr

r

p s
l s

p s

≤ =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

W kodzie bezprefiksowym nie zakodujemy słów o prawdopodobieństwie  (ponieważ nie 
będą one używane). 

0

A zatem istnieje kod ϕ  o funkcji lϕ = , wtedy średnia wartość długości takiego kodu  
wynosi 

( ) ( ) ( ) ( )
( ) 1

1log 1K K

K

s S
r

H s

H S L p s
p s

ϕ
∈

+

⎛ ⎞⎛ ⎞
≤ < ⋅ +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑  

 
Przypadek gdy istnieją , takie że s ( ) 0p s = . 

Jeśli 
( )

( ) 0

1 1
s S
p s

r l s∈
≠

<∑ , to wtedy nie ma problemu – jest miejsce żeby zakodować pozostałe 

słowa (jest  kod nie korzystający ze wszystkich liści w drzewie). 

Jeśli 
( )

( ) 0

1 1
s S
p s

r l s∈
≠

=∑   i  powiedzmy, że ( )1 0p S ≠ . Określmy nową funkcję: 
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( ) ( )1 1' 1l s l s= +  

( ) ( )1 1'l s l s=  dla 1s s≠  

Wtedy „robi się miejsce”, przy czy nierówność ( ) ( )'K KL H Sϕ 1≤ +  (gdzie 'ϕ  kod o ' 'lϕ = ) 

pozostaje zachowana (bo 
( )
1

r l s
 jest ( )p s≤ , sumując 

( )
1

r l s
powiększamy tylko jeden 

obiekt). 
 
 
Twierdzenie 1 (Pierwsze twierdzenie Shannona) 

( ) ( )
n

K
K

L S
H S

n
→ , 

dla , - przestrzeń produktowa n-tki obiektów z  (z sumarycznym 

prawdopodobieństwem) 

n → ∞ nS S

 
Dowód. 
 
Mamy: 

( ) ( ) ( ) 1n n n
K K KH S L S H S≤ ≤ +  

( ) ( ) ( ) 1 :n
K K KnH S L S nH S n≤ ≤ +  

( ) ( ) ( ) 1
n

Kn n
K K

L S
H S H S

n n
≤ ≤ +  

( ) ( )
n

K
K

L S
H S

n
→  

.  
 

 

5 Entropia względna 
 

Mamy kostkę o sześciu, ponumerowanych ścianach { }1,2,3,4,5,6 , dla której 

prawdopodobieństwo wypadnięcia którejkolwiek z nich jest równe ( ) 1
6

p i = . Przypuśćmy, że 

ściany kostki są dodatkowo pokolorowane na trzy kolory, w taki sposób, że przeciwległe 
ściany mają te same kolory. Tak więc mamy zbiór kolorów { }1,2,3  dla którego 

prawdopodobieństwo wystąpienia jednego z kolorów wynosi ( ) 1
3

p j = .  
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Otrzymując dwie funkcje nie możemy „tak po prostu” policzyć całkowitego 
prawdopodobieństwa przez mnożenie ( )p i  z ( )p j  (ponieważ jak wiadomo niektóre z 
sytuacji nie będą mogły zajść – niektóre z kolorów nigdy nie wystąpią z konkretną liczbą). 
 

Mamy dwie zmienne losowe: 

Ściany  { }1,2,3,4,5,6→  oraz 

Ściany  { }1,2,3→  

Skończona przestrzeń probabilistyczna ( ), pΩ ,  ( ) 1p
ω

ω
∈Ω

=∑  

Dla , z ⊆ Ω ( ) ( )
z

p z p
ω

ω
∈

= ∑  

Zmienna losowa   :X ZbiórΩ →

( ) (
( ):X z

p X z p
ω ω

)ω
=

= = ∑  (czasem będziemy zapisywać ( )p z  zamiast ( )p X z=  ) 

Wartość oczekiwana  ( ) ( ) ( )E X p X
ω

ω ω
∈Ω

= ⋅∑  

Uwaga (odnośnie notacji) Dla funkcji X , zbiorem wartości jest X . Jeśli 

{ }1: ,..., mA a aΩ → jest zmienną losową, to  

( ) ( ) ( )( ) ( )( )( ). 1
log . logK K Kdef i

m
i iH A p A a p A a E p A Aλω ω

=
= = − = = ∈ Ω − =∑  

 

Entropia względna „inaczej” to: 

• średnia ilość pytań w grze przy optymalnej strategii 

• minimalna średnia długość kodu 

 

6 Entropia warunkowa 
 

Załóżmy, że { }1: ,..., mA a aΩ →  oraz { }1: ,..., nB bΩ → b to zmienne losowe 

( ) ( ) ( ). 1

1logK

m

j def i
j

i j
iH A b p a b

p a b=

⎛ ⎞
⎜ ⎟⋅ ⎜ ⎟⎜ ⎟
⎝ ⎠

= ∑ K , gdzie jb  jest podpowiedzią. 

Entopią warunkową będzie ( ) ( ) ( )
1

K

n

j j
j

H A B p b H A b
=

= ⋅∑  
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Możemy także utworzyć nową zmienna ( ) ( ): ,AB A Bω ω ω→ , gdzie ω  pochodzi z 
jednego rzutu. Wtedy  

( ) ( ) ( )1 1

1logK K

m n

i j
i j i j

H AB p a b
p a b= =

⎛ ⎞
⎜ ⎟= ∩ ⋅
⎜ ⎟∩⎝ ⎠

∑∑  

Przypomnijmy, że A  i B  są niezależne jeśli ( ) ( ) (i j i )jp A a B b p A a p B b= ∧ = = = ⋅ = , albo 

w skrócie ( ) ( ) ( )i j i jp a b p a p b∩ = ⋅  

Jeśli A  i B  są niezależne, to  

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1

1 1log logK K K

m n

i j
i j

i j
H AB p a p b H A H B

p a p b= =

⎛ ⎞
⎜ ⎟= ⋅ ⋅ ⋅ = +
⎜ ⎟
⎝ ⎠

∑∑ K K  

W ogólnym przypadku (gdy A  i B  mogą być zależne), mamy „tylko”: 

( ) ( ) ( ) ( ) ( )1 1

1 1log logK K

m n

i j
j i i

ij i
H AB p b a p a K p ap b a= =

⎛ ⎞
⎜ ⎟= ⋅ ⋅ ⋅
⎜ ⎟
⎝ ⎠

∑∑  = 

= ( ) ( ) ( )
( )

1 1

1log

K

K

m n

j i i
i j j i

H B A

p b a p a
p b a= =

⋅ ⋅∑ ∑   +  ( ) ( ) ( )

( )
1 dla ustalonego j

1 1

1log K

b j

K

m n

j i
i j

i
i

H A

p b a p a
p a

=
= =

⋅ ⋅∑ ∑ = 

= ( ) ( )K KH B A H A+  

 

Fakt.  ( ) ( ) ( ) ( ) ( )K K K K KH AB H A H B A H B H A B= + = +  

 

( ) ( )K KH A H B+  =  ( ) ( ) ( ) ( )1 1

1 1log logK K

m n

i j
i ji j

p a p b
p a p b= =

⎛ ⎞⎛ ⎞
⎜ ⎟⋅ + ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑ ∑  = 

=  ( ) ( ) ( ) ( )1 1 1 1

1 1log logK K

m n m n

i j i j
i j i ji j

p a b p a b
p a p b= = = =

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟∩ ⋅ + ∩ ⋅⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
∑∑ ∑∑  = 

= ( ) ( ) ( )1 1

1logK

m n

i j
i j i j

p a b
p a p b= =

⎛ ⎞
⎜ ⎟∩ ⋅
⎜ ⎟⋅⎝ ⎠

∑∑  = 

= sytuacja: ZŁOTY LEMAT ( czyli: 1 1log logi i
i i

p p
p q

≤∑ ∑  ) 
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Oczywiście należy wytłumaczyć skąd się wzięły powyższe przekształcenia – otóż 
korzystaliśmy z: 

1. ( ) ( )
1

n

i i
j

jp a p a
=

= ∩∑ b  

2.  ( ) ( )
,

1i j
i j

p a p b⋅ =∑

3. Jeśli ( ) ( ) 0jip a p b⋅ = , to ( ) 0i jp a b∩ =  

 

Z powyższych wynika Fakt. 

( ) ( )K KH A B H A≤  i symetrycznie ( ) ( )K KH B A H B≤ , przy czym równość występuje 

dokładnie wtedy, gdy A  i B  są niezależne.  

Wyjaśnienie faktu – wiemy więcej: wiemy że B i jakieś A, więc entropia jest mniejsza. 

Uwaga.  

( ) ( ) ( ) ( )K K K KH A H A B H B H B A− = − , ponieważ 

powyższe są równe ( ) ( ) ( )K K KH A H B H AB+ −  

Przedstawione powyżej różnice ( ( ) ( ) ( ) ( )K K K KH A H A B H B H B A− = − ) oznacza się 

również jako ( , )I A B  lub ( , )I B A i nazywa wzajemną informacją A o B (lub B o A) 

 

7 Konkluzje dotyczące entropii względnej 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )K K K K K K KH A H B H AB H A B H B H B A H A+ ≥ = + = +  

całkowita równość zachodzi jedynie wtedy, gdy A  i B  są niezależne. 

( ) ( ) ( ) ( ) ( ),K K K KH A H A B H B H B A I A B− = − = , 

gdzie ( , )I A B  to wzajemna informacja między A  i B . 

( ) ( ) ( )
( )

( )

  (przy konwencji, że B=b)

1logK

K

ab

H Ab

H A B p a b p b
p a b

⎛ ⎞⎛ ⎞
⎜ ⎟= ⋅ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑ ⋅
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( ) ( )K KH A B H A≤  

Entropia jest miarą trudności (złożoności) obiektów 

Przykład. 

Załóżmy, że dwie osoby X i Y chcą się spotkać. Mamy dwie zmienne losowe: A, która 

opisuje położenie Xa i B, która opisuje czas (w sensie godziny). 

W średnim przypadku Y ma większe szanse na spotkanie z X jeśli zna czas (w którym może 

znaleźć X w określonym miejscu): 

( ) ( )K KH A B H A≤  

Uwaga 1. Jednak istnieją pewne określone wartości B b=  (takie momenty czy też przedziały 

czasu), w których znalezienie Xa  jest trudniejsze niż średnio: 

( ) ( )K KH A b H A>  

Uwaga 2. Nie należy mylić tego doświadczenia z doświadczeniem, w których występują dwa 

eksperymenty – jeden z dwoma wartościami (kolory oraz liczby na kostce). 
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