Symmetry and duality in fixed-point calculus Damian Niwiński **University of Warsaw** Square of Opposition – Corte, Corsica – June 17–20, 2010

Eugene Onegin vs. Vladimir Lensky

- 1. A shuts.
- 2. B shuts, provided he has survived.

Duel

- 1. A shuts.
- 2. B shuts, provided he has survived.

Election in two-round system

 p_X = the proportion of votes given for X.

If $p_X > 0.5$ then X wins the first round.

General scheme

A player can win, loose or survive.

$$A\downarrow \equiv A \operatorname{looses} \equiv B \operatorname{wins}$$

$$A\uparrow \equiv A \text{ survives}$$

But there are different concepts of winning...

Win the play or the game?

Win the battle or the war?

Chess

In 1913, Ernst Zermelo proved that one of the following holds:

- 1. White has a strategy to win,
- 2. Black has a strategy to win,
- 3. Both parties have the strategies to **survive**, i.e., to achieve at least a draw.

Chess

In 1913, Ernst Zermelo proved that one of the following holds:

- 1. White has a strategy to win,
- 2. Black has a strategy to win,
- 3. Both parties have the strategies to survive, i.e., to achieve at least a draw.

Chess

In 1913, Ernst Zermelo proved that one of the following holds:

- 1. White has a strategy to win,
- 2. Black has a strategy to win,
- 3. Both parties have the strategies to **survive**, i.e., to achieve at least a draw.

On the logical structure of Zermelo's Theorem.

We have easily

$$(\forall play) \ White(play) \lor Black(play) \lor Draw(play)$$

For a stategy S_w of White, and a strategy S_b od Black, let $S_w * S_b$ be the resulting play.

Zermelo says:

$$(\exists S_w \forall S_b) \ White(S_w * S_b) \lor (\exists S_b \forall S_w) \ Black(S_w * S_b) \lor (\exists S_w \exists S_b \forall S'_w \forall S'_b) (White(S_w * S'_b) \lor Draw(S_w * S'_b)) \land \\ \land (Black(S'_w * S_b) \lor Draw(S'_w * S_b))$$

An abstract view of two-player game (like chess).

Players: *Eve* (\exists) and *Adam* (\forall)

Arena:

Example cont'd

Example cont'd

Analysis

Arena:

$$\langle V = V_E \cup V_A, Mov \subseteq V \times V \rangle$$

Players' equations:

$$X = (V_E \cap \Diamond X) \cup (V_A \cap \Box X) = Eve(X)$$

$$Y = (V_A \cap \Diamond Y) \cup (V_E \cap \Box Y) = Adam(Y)$$

where

$$\Diamond Z = \{p : (\exists q \in Z) \, Mov(p, q)\}$$

$$\Box Z = \overline{\Diamond \overline{Z}}$$

Knaster-Tarski Theorem

 $f:L \to L$

L complete lattice

f monotone

Then the fixed points of f form a complete lattice, including

the least fixed point:

$$\mu x. f(x) = \bigwedge \{d : f(d) \le d\}$$

the greatest fixed point:

$$\nu x. f(x) = \bigvee \{d : d \le f(d)\}$$

De Morgan dualities

$$Eve(X) = \overline{(E \cap \diamondsuit X)} \cup \overline{(A \cap \Box X)}$$

$$= \overline{(E \cap \diamondsuit X)} \cap \overline{(A \cap \Box X)}$$

$$= \overline{(E \cup \overline{\diamondsuit} X)} \cap \overline{(A \cup \overline{\Box} X)}$$

$$= \overline{(A \cup \Box \overline{X})} \cap \overline{(E \cup \diamondsuit \overline{X})}$$

$$= \overline{(A \cap \diamondsuit \overline{X})} \cup \overline{(E \cap \Box \overline{X})} \cup \overline{(A \cap E)} \cup \overline{(\diamondsuit \overline{X} \cap \Box \overline{X})}$$

$$= Adam(\overline{X})$$

Hence
$$X = Eve(X) \Longleftrightarrow \overline{X} = Adam(\overline{X})$$
,

and consequently

$$\frac{\mu X.Eve(X)}{\nu X.Eve(X)} = \nu Y.Adam(Y)$$

$$\frac{\nu X.Eve(X)}{\nu X.Eve(X)} = \mu Y.Adam(Y)$$

How does this diagram relate to games?

Let

$$Win_E = \{p : \textit{Eve} \text{ has a strategy to win}\}$$

$$Safe_E = \{p : Eve \text{ has a strategy to survive } \}$$

Eve(X)

If
$$X \subseteq (V_E \cap \Diamond X) \cup (V_A \cap \Box X)$$

then $X \subseteq Safe_E$

Moreover $Safe_E \subseteq Eve(Safe_E)$

Hence

$$\nu x.Eve(x) = Safe_E$$

On the other hand,

$$(V_E \cap \diamondsuit Win_E) \cup (V_A \cap \Box Win_E) \subseteq Win_E$$

Hence

$$\mu X.Eve(X) \subseteq Win_E$$

We have

$$\mu X.Eve(X) \subseteq Win_E
\overline{\mu X.Eve(X)} = \nu Y.Adam(Y)
\nu Y.Adam(Y) = Safe_A
Safe_A \cap Win_E = \emptyset.$$

Hence

$$\mu x.Eve(x) = Win_E$$

Zermelo's Theorem

Everlasting games

Everlasting games

An infinite play need not be considered as a draw; it can be meaningful.

For example, we may require that Adam pays to Eve the amount x, while passing through an edge $\stackrel{x}{\longrightarrow}$.

Each player wants to maximize her income (e.g., asymptotically on average).

Everlasting games cont'd

In general setting, the nodes (or edges) are coloured in a set of colours Σ .

The winning criteria for Eve and Adam, respectively, are given by disjoint sets $C_E, C_A \subseteq \Sigma^\omega$.

Player X wins a play p_0, p_1, p_2, \ldots iff

$$color(p_0), color(p_1), color(p_2), \ldots \in C_{\mathbf{X}}.$$

In general, Zermelo's Theorem fails for such games.

Idea — strategy stealing

White Mr. Kasparov •

Black Mr. Niwiński

White Mr. Niwiński

Black Mr. Karpow

Idea — strategy stealing

White Mr. Kasparov •

Black Mr. Niwiński

White Mr. Niwiński

Black Mr. Karpow

Idea — strategy stealing

White Mr. Kasparov •

Black Mr. Niwiński

White Mr. Niwiński

Black Mr. Karpow •

Idea — strategy stealing Mr. Kasparov White Mr. Niwiński Black White Mr. Niwiński Mr. Karpow Black

Example of undetermined game

Let $C_E \cup C_A = \{0,1\}^{\omega}$ have the property that two sequences that differ in exactly one bit are winning for different players.

By Axiom of Choice, there exist (2^{\aleph_0}) many such pairs.

Eve w_0 w_2 w_4

Adam w_1 w_3 w_5

The results of the play is: $W = w_0 w_1 w_2 w_3 w_4 w_5 \dots$

Eve wins if $W \in C_E$, otherwise Adam wins.

Suppose Adam wins Eve 0 Adam w_1 $1w_1$ Eve Adam

Suppose Eve wins Eve w_0 w_1 Adam 0 w_0 Eve Adam

However, most of "natural" games are determined.

By Martin's Theorem (1975), games with Borel criteria are always determined.

This includes the **parity games**. Colors: $0, 1, 2, \ldots, n$.

Eve wins if the *highest* color that occurs infinitely often is **even**.

Adam wins if the highest color that occurs infinitely often is odd.

The winning sets satisfy the game equations.

$$W_E = (V_E \cap \Diamond W_E) \cup (V_A \cap \Box W_E) = Eve(W_E)$$

$$W_A = (V_A \cap \Diamond W_A) \cup (V_E \cap \Box W_A) = Adam(W_A)$$

But they are neither least nor greatest solutions.

For example, W_E in the game with ranks 0, 1, 2, 3, equals

$$\mu X_{3}.\nu X_{2}.\mu X_{1}.\nu X_{0}. \quad (V_{E} \cap rank_{0} \cap \diamondsuit X_{0}) \cup \\ (V_{E} \cap rank_{1} \cap \diamondsuit X_{1}) \cup \\ (V_{E} \cap rank_{2} \cap \diamondsuit X_{2}) \cup \\ (V_{E} \cap rank_{3} \cap \diamondsuit X_{3}) \cup \\ (V_{A} \cap rank_{0} \cap \Box X_{0}) \cup \\ (V_{A} \cap rank_{1} \cap \Box X_{1}) \cup \\ (V_{A} \cap rank_{2} \cap \Box X_{2}) \cup \\ (V_{A} \cap rank_{3} \cap \Box X_{3})$$

Modal μ -calculus

It is an extension of the propositional modal logic by the **least** (μ) and **greatest** (ν) fixed point operators, introduced by Kozen in 1982.

$$p \mid \neg p \mid X \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \Diamond \varphi \mid \Box \varphi \mid \mu X.\varphi \mid \nu X.\varphi$$

Parity games are for the modal μ -calculus like Hintikka games for first order logic.

To distinguish between the corners is **undecidable** for FO logic and **NP/co-NP** hard for propositional logic.

For infinite games, we may use arguments from descriptive set theory.

For
$$R\subseteq\omega^k imes (\{0,1\}^\omega)^\ell$$
, let $\exists^0R=\{\langle\mathbf{m},\alpha\rangle:(\exists n)\,R(\mathbf{m},n,\alpha)\}$ $\exists^1R=\{\langle\mathbf{m},\alpha\rangle:(\exists\beta)\,R(\mathbf{m},\alpha,\beta)\}$
$$\begin{array}{cccc} \mathbf{A} & \text{rithmetical hierarchy} & \mathbf{A} & \text{nalytical hierarchy} \\ \Sigma_0^0 & = & \text{recursive relations} & \Sigma_0^1 & = & \text{arithmetical relations} \\ \Pi_n^0 & = & \{\overline{R}:R\in\Sigma_n^0\} & \Pi_n^1 & = & \{\overline{R}:R\in\Sigma_n^0\} \\ \Sigma_{n+1}^0 & = & \{\exists^0R:R\in\Pi_n^0\} & \Sigma_{n+1}^1 & = & \{\exists^1R:R\in\Pi_n^1\} \\ \Delta_n^0 & = & \Sigma_n^0\cap\Pi_n^0 & \Delta_n^1 & = & \Sigma_n^1\cap\Pi_n^1 \end{array}$$

Arithmetical hierarchy

Analytical hierarchy

Relativized (boldface) hierarchies

For
$$\beta \in \{0,1\}^{\omega}$$
, let $R[\beta] = \{\langle \mathbf{m}, \alpha \rangle : R(\mathbf{m}, \alpha, \beta)\}$.

$$\mathbf{\Sigma}_n^i = \{R[\beta] : R \in \Sigma_n^i, \beta \in \{0,1\}^\omega\} \qquad \mathbf{\Delta}_n^i = \mathbf{\Sigma}_n^i \cap \mathbf{\Pi}_n^i$$

$$\Pi_n^i = \{R[\beta] : R \in \Pi_n^i, \, \beta \in \{0, 1\}^\omega\} \quad i \in \{0, 1\}$$

$$\Sigma_1^0 = open$$

$$\Pi_1^0 = closed$$

$$\Delta_1^1 = Borel$$

Topological complexity of the game

We consider tree-like arenas which can be identified with elements of the Cantor discontinuum $\{0,1\}^{\omega}$.

Sets of arenas can be therefore classified in the arithmetical and analytical hierarchy.

For a given winning criterion, we can ask what is the complexity of the set of those arenas, where Eve has a winning strategy. Consider the game with colors 0, 1. Possible outcomes:

1 occurs only finitely often, eventually obligatory 0, in symbols: ... 0^{∞} .

0 occurs only finitely often, eventually prohibited 0, in symbols: ... 1^{∞} .

x occurs infinitely often, in symbols: $(\ldots x \ldots)^{\infty}$, x = 0, 1.

How far is *obligatory* from *prohibited*?

The set of arenas, where Eve has a strategy to ensure $\dots 0^{\infty}$ is complete in the class Π^1_1 .

Moreover, this set and the set of trees where Adam has a strategy to ensure $\dots 1^{\infty}$, cannot be separated by any Borel measurable set (Hummel, Michalewski, N., 2009).

Merell although obligatory and probibited are ecominally enposite
Moral: although obligatory and prohibited are seemingly opposite,
the boundary is sometimes hard to delineate.
the boundary to cometimes hard to define ato.

Conclusion

- The winning scenarios in classical games exhibit the pattern of the *square*, and determinacy theorem takes the form of the *triangle*.
- ullet These patterns can be explained by the dualities in the μ -calculus.
- The new realizations give rise to the problem of the complexity of the *square*.

