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Eugene Onegin vs. Vladimir Lensky
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Duel

1. A shuts.

2. B shuts, provided he has survived.

someone dies
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Election in two-round system

pX = the proportion of votes given for X .

If pX > 0.5 then X wins the first round.

no 2nd round needed
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pA ≤ 0.5 pB ≤ 0.5

2nd round needed
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General scheme

A player can win, loose or survive.

A ↓ ≡ A looses ≡ B wins

A ↑ ≡ A survives

A ↓ ∨B ↓
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B ↑ A ↑

A ↑ ∧B ↑

WW GG

But there are different concepts of winning. . .
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Win the play or the game ?
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Win the play or the game ?

Win the battle or the war ?
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Chess

In 1913, Ernst Zermelo proved that one of the following holds:

1. White has a strategy to win,

2. Black has a strategy to win,

3. Both parties have the strategies to survive, i.e., to achieve at least a draw.
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Chess

In 1913, Ernst Zermelo proved that one of the following holds:

1. White has a
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Chess

In 1913, Ernst Zermelo proved that one of the following holds:

1. White has a strategy to win,

2. Black has a strategy to win,

3. Both parties have the strategies to survive, i.e., to achieve at least a draw.

someone wins

��
��

��
��

��
��

��
��

��
��

��

??
??

??
??

??
??

??
??

??
??

??

�� ��Black wins

??
??

??
??

??
??

??
??

??
??

33

��

�� ��White wins

��
��

��
��

��
��

��
��

��
��

kk

		
Black survives White survives

�� ��draw

]] AA

12



On the logical structure of Zermelo’s Theorem.

We have easily

(∀play)White(play) ∨ Black(play) ∨Draw(play)

For a stategy Sw of White, and a strategy Sb od Black, let Sw ∗ Sb be the

resulting play.

Zermelo says:

(∃Sw∀Sb)White(Sw ∗ Sb) ∨ (∃Sb∀Sw)Black(Sw ∗ Sb)∨

(∃Sw∃Sb ∀S′w∀S′b) (White(Sw ∗ S′b) ∨Draw(Sw ∗ S′b))∧

∧(Black(S′w ∗ Sb) ∨Draw(S′w ∗ Sb))

13



An abstract view of two-player game (like chess).

Players: Eve (∃) and Adam (∀)

Arena:

∃

�� ��>
>>

>>
>>

>>
>>

>>
>>

> ∀ ∃

������
��

��
��

��
��

��
��

ooooooooooooooooooooooooooo

∀

??����������������

77ooooooooooooooooooooooooooo ∃ ∀

ggOOOOOOOOOOOOOOOOOOOOOOOOOOO

__>>>>>>>>>>>>>>>>

14



Example cont’d

∃

�� ""E
EE

EE
EE

EE
EE

EE
EE

EE
E ∀ looses! ∃

��||yy
yy

yy
yy

yy
yy

yy
yy

yy

lllllllllllllllllllllllllllllllll

∀

<<yyyyyyyyyyyyyyyyyy

66lllllllllllllllllllllllllllllllll ∃ looses! ∀

hhRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

bbEEEEEEEEEEEEEEEEEE

15



Example cont’d
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Analysis

Arena:

〈V = VE ∪ VA,Mov ⊆ V × V 〉

Players’ equations:

X = (VE ∩3X) ∪ (VA ∩2X) = Eve(X)

Y = (VA ∩3Y ) ∪ (VE ∩2Y ) = Adam(Y )

where

3Z = {p : (∃q ∈ Z)Mov(p, q)}

2Z = 3Z
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Knaster-Tarski Theorem

f : L → L

L complete lattice

f monotone

Then the fixed points of f form a complete lattice, including

the least fixed point:

µx.f(x) =
∧
{d : f(d) ≤ d}

the greatest fixed point:

νx.f(x) =
∨
{d : d ≤ f(d)}
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De Morgan dualities

Eve (X) = (E ∩3 X) ∪ (A ∩ 2 X)

=
`
E ∩3 X

´
∩

`
A ∩ 2 X

´
=

`
E ∪3 X

´
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A ∪ 2 X

´
=
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A ∪ 2 X

´
∩

`
E ∪3 X

´
=

`
A ∩3 X

´
∪

`
E ∩ 2 X

´
∪

∅z }| {
(A ∩ E) ∪

`
3 X ∩ 2 X

´
= Adam (X)

Hence X = Eve (X) ⇐⇒ X = Adam
(
X

)
,

and consequently

µX.Eve (X) = νY.Adam (Y )

νX.Eve (X) = µY.Adam (Y )
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µX.Eve(X) ∪ µX.Adam(X)
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νX.Eve(X) νX.Adam(X)

νX.Eve(X) ∧ νX.Adam(X)

cc ::

How does this diagram relate to games ?
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Let

WinE = {p : Eve has a strategy to win}
SafeE = {p : Eve has a strategy to survive }

If X ⊆
Eve(X)︷ ︸︸ ︷

(VE ∩3X) ∪ (VA ∩2X)

then X ⊆ SafeE

Moreover SafeE ⊆ Eve (SafeE)

Hence

νx.Eve(x) = SafeE
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On the other hand,

Eve (WinE)︷ ︸︸ ︷
(VE ∩3WinE) ∪ (VA ∩2WinE) ⊆ WinE

Hence

µX.Eve(X) ⊆ WinE
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We have

µX.Eve(X) ⊆ WinE

µX.Eve (X) = νY.Adam (Y )

νY.Adam (Y ) = SafeA

SafeA ∩WinE = ∅.

Hence

µx.Eve(x) = WinE
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Zermelo’s Theorem

WinE ∪ WinA
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µX.Eve(X) ∪ µX.Adam(X)
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Everlasting games
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Everlasting games

An infinite play need not be considered as a draw; it can be meaningful.

For example, we may require that Adam pays to Eve the amount x, while

passing through an edge
x−→.

Each player wants to maximize her income (e.g., asymptotically on average).
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Everlasting games cont’d

In general setting, the nodes (or edges) are coloured in a set of colours Σ.

The winning criteria for Eve and Adam , respectively, are given by disjoint sets

CE , CA ⊆ Σω .

Player X wins a play p0, p1, p2, . . . iff

color(p0), color(p1), color(p2), . . . ∈ CX .
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In general, Zermelo’s Theorem fails for such games.

WinE ∪ WinA
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Idea — strategy stealing

White Mr. Kasparov • •

Black Mr. Niwiński • •

White Mr. Niwiński • •

Black Mr. Karpow • •
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Example of undetermined game

Let CE ∪ CA = {0, 1}ω have the property that two sequences that differ in

exactly one bit are winning for different players.

0011101101101001
1

6 00101100001011 . . . . . .

By Axiom of Choice, there exist (2ℵ0 many) such pairs.

Eve w0 w2 w4

Adam w1 w3 w5

The results of the play is: W = w0w1w2w3w4w5 . . .

Eve wins if W ∈ CE , otherwise Adam wins.
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Suppose Adam wins

Eve 0 w2 w4

Adam w1

��

w3 w5

Eve 1w1 w3 w5

Adam w2 w4
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Suppose Adam wins

Eve 0 w2 w4
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Adam w2 w4
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Suppose Adam wins
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OO
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Suppose Adam wins
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Suppose Eve wins

Eve w0 w1 w3 w5

Adam 0 w2 w4

Eve w0 w2 w4

Adam w01w1 w3 w5
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Suppose Eve wins

Eve w0 w1

��

w3 w5

Adam 0 w2 w4

Eve w0 w2 w4

Adam 1w1 w3 w5
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Suppose Eve wins

Eve w0 w1
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w3

��

w5
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Adam 0 w2 w4

Eve w0 w2

OO

w4

OO

Adam 1w1 w3 w5
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However, most of “natural” games are determined.

By Martin’s Theorem (1975), games with Borel criteria are always

determined.

This includes the parity games. Colors: 0, 1, 2, . . . , n.

Eve wins if the highest color that occurs infinitely often is even.

Adam wins if the highest color that occurs infinitely often is odd.

The winning sets satisfy the game equations.

WE = (VE ∩3WE) ∪ (VA ∩2WE) = Eve(WE)

WA = (VA ∩3WA) ∪ (VE ∩2WA) = Adam(WA)

But they are neither least nor greatest solutions.
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For example, WE in the game with ranks 0, 1, 2, 3, equals

µX3.νX2.µX1.νX0. (VE ∩ rank0 ∩3X0)∪
(VE ∩ rank1 ∩3X1)∪
(VE ∩ rank2 ∩3X2)∪
(VE ∩ rank3 ∩3X3)∪
(VA ∩ rank0 ∩2X0)∪
(VA ∩ rank1 ∩2X1)∪
(VA ∩ rank2 ∩2X2)∪
(VA ∩ rank3 ∩2X3)∪
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Modal µ-calculus

It is an extension of the propositional modal logic by the least (µ)

and greatest (ν) fixed point operators, introduced by Kozen in 1982.

p | ¬p |X |ϕ ∨ ϕ |ϕ ∧ ϕ |3ϕ |2ϕ |µX.ϕ | νX.ϕ

Parity games are for the modal µ-calculus like Hintikka games for

first order logic.
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|= ϕ |= ¬ϕ

(∃M)M |= ϕ (∃M)M |= ¬ϕ

?oo //

To distinguish between the corners is undecidable for FO logic and NP/co-NP

hard for propositional logic.

For infinite games, we may use arguments from descriptive set theory.
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Classical definability theory Σ1
2 Π1

2

1900 Borel, Baire, Lebesgues ∆1
2

AAAAAAAA

||||||||

1917 Lusin, Suslin Σ1
1

}}}}}}}}
Π1

1

BBBBBBBB

1929 Tarski, Kuratowski Σ0
1 ∆1

1

AAAAAAAA

||||||||
Π0

1

1940 Mostowski, Kleene ∆0
1

AAAAAAAA

||||||||

Σ0
0

}}}}}}}}
Π0

0

BBBBBBBB
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For R ⊆ ωk × ({0, 1}ω)`, let ∃0R = {〈m, α〉 : (∃n) R(m, n, α)}
∃1R = {〈m, α〉 : (∃β) R(m, α, β)}�� ��Arithmetical hierarchy

�� ��Analytical hierarchy

Σ0
0 = recursive relations

Π0
n = {R : R ∈ Σ0

n}
Σ0

n+1 = {∃0R : R ∈ Π0
n}

∆0
n = Σ0

n ∩Π0
n

Σ1
0 = arithmetical relations

Π1
n = {R : R ∈ Σ0

n}
Σ1

n+1 = {∃1R : R ∈ Π1
n}

∆1
n = Σ1

n ∩Π1
n
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�� ��Arithmetical hierarchy
�� ��Analytical hierarchy

Σ0
0 = recursive relations

Π0
n = {R : R ∈ Σ0

n}

Σ0
n+1 = {∃0R : R ∈ Π0

n}

∆0
n = Σ0

n ∩Π0
n

Σ1
0 = arithmetical relations

Π1
n = {R : R ∈ Σ0

n}

Σ1
n+1 = {∃1R : R ∈ Π1

n}

∆1
n = Σ1

n ∩Π1
n�� ��Relativized (boldface) hierarchies

For β ∈ {0, 1}ω , let R[β] = {〈m, α〉 : R(m, α, β)}.

Σi
n = {R[β] : R ∈ Σi

n, β ∈ {0, 1}ω} ∆i
n = Σi

n ∩Πi
n

Πi
n = {R[β] : R ∈ Πi

n, β ∈ {0, 1}ω} i ∈ {0, 1}

Σ0
1 = open

Π0
1 = closed

∆1
1 = Borel
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Topological complexity of the game

We consider tree-like arenas which can be identified with elements

of the Cantor discontinuum {0, 1}ω.

Sets of arenas can be therefore classified in the arithmetical and

analytical hierarchy.

For a given winning criterion, we can ask what is the complexity of
the set of those arenas, where Eve has a winning strategy.
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Consider the game with colors 0, 1. Possible outcomes:

1 occurs only finitely often, eventually obligatory 0, in symbols: . . . 0∞.

0 occurs only finitely often, eventually prohibited 0, in symbols: . . . 1∞.

x occurs infinitely often, in symbols: (. . . x . . .)∞, x = 0, 1.
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How far is obligatory from prohibited ?

. . . x∞
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The set of arenas, where Eve has a strategy to ensure . . . 0∞ is

complete in the class Π1
1.

Moreover, this set and the set of trees where Adam has a strategy

to ensure . . . 1∞, cannot be separated by any Borel measurable set

(Hummel, Michalewski, N., 2009).
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Moral: although obligatory and prohibited are seemingly opposite,
the boundary is sometimes hard to delineate.
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B ↑ A ↑

A ↑ ∧B ↑

WW GG

Conclusion

• The winning scenarios in classical games exhibit the pattern of the square, and

determinacy theorem takes the form of the triangle.

• These patterns can be explained by the dualities in the µ-calculus.

• The new realizations give rise to the problem of the complexity of the square.
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A ↑ ∧B ↑
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