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�� ��Mathematical ideas

rational irrational

fundamental theorem of algebra no formula for solutions of order≥ 5

continuity Dirichlet function,

Peano curve

Lebesgue measure Banach–Tarski paradox

© = ©+©

universal Turing machine undecidability,

Rice Theorem
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�� ��Definability theory

rational irrational

Borel hierarchy Suslin counter-example (1916):

continuous image of a Borel set

need not be so

•; •

There is a crack in everything. That’s how the light gets in.

Leonard Cohen, Anthem
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Finite automata appear to be on the “rational side”.

They are extremely robust — admit generalization to trees, infinite

words, infinite trees. . .

Generalizations usually preserve

• elementary decidability of the emptiness problem

• closure properties (in particular, on Boolean operations),

consequently: logical characterizations (MSO, µ-calculus)

−→ decidability of the logics. (Büchi 1960, Rabin 1969, . . . )

But. . .
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Finite automata on infinite trees go beyond the Borel hierarchy.

They cannot, in general, be made deterministic, non even

non-ambiguous.

Topology (art of counter-examples ?) can shed some light there.

5



�� ��Topics of the talk

• Automata on infinite words and trees, the index hierarchies,

and they relation to classical hierarchies.

• Topological arguments in the strictness proofs.

• Where the two complexities diverge. . .

• Decidability issues – testing for forbidden patterns.
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�� ��Classical definability theory Σ1
2 Π1

2

1900 Borel, Baire, Lebesgues ∆1
2

@@@@@@@@

~~~~~~~~

1917 Lusin, Suslin Σ1
1

}}}}}}}}
Π1

1

BBBBBBBB

1929 Tarski, Kuratowski Σ0
1 ∆1

1

AAAAAAAA

||||||||
Π0

1

1940 Mostowski, Kleene ∆0
1

AAAAAAAA

||||||||

Σ0
0

}}}}}}}}
Π0

0

BBBBBBBB
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For R ⊆ ωk × ({0, 1}ω)`
, let ∃0R = {〈m, α〉 : (∃n)R(m, n, α)}

∃1R = {〈m, α〉 : (∃β)R(m, α, β)}�� ��Arithmetical hierarchy
�� ��Analytical hierarchy

Σ0
0 = recursive relations

Π0
n = {R : R ∈ Σ0

n}
Σ0

n+1 = {∃0R : R ∈ Π0
n}

∆0
n = Σ0

n ∩Π0
n

Σ1
0 = arithmetical relations

Π1
n = {R : R ∈ Σ0

n}
Σ1

n+1 = {∃1R : R ∈ Π1
n}

∆1
n = Σ1

n ∩Π1
n
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�� ��Arithmetical hierarchy
�� ��Analytical hierarchy

Σ0
0 = recursive relations

Π0
n = {R : R ∈ Σ0

n}

Σ0
n+1 = {∃0R : R ∈ Π0

n}

∆0
n = Σ0

n ∩Π0
n

Σ1
0 = arithmetical relations

Π1
n = {R : R ∈ Σ0

n}

Σ1
n+1 = {∃1R : R ∈ Π1

n}

∆1
n = Σ1

n ∩Π1
n�� ��Relativized (boldface) hierarchies

For β ∈ {0, 1}ω , let R[β] = {〈m, α〉 : R(m, α, β)}.

Σi
n = {R[β] : R ∈ Σi

n, β ∈ {0, 1}ω} ∆i
n = Σi

n ∩Πi
n

Πi
n = {R[β] : R ∈ Πi

n, β ∈ {0, 1}ω} i ∈ {0, 1}

Σ0
1 = open

Π0
1 = closed

∆1
1 = Borel
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�� ��Büchi automata on infinite words

A = 〈Σ, Q, qI ,Tr ,F 〉

where Tr ⊆ Q× Σ×Q, F⊆ Q.

◦

a

�� b
(( •

b



a

hh ((a + b)∗b)ω

◦

a,b

�� a // •
a



(a + b)∗aω

The second one cannot be recognized by a deterministic automaton.

a→ b→ a→ a→ b→ a→ a→ a→ b→ a→ a→ a→ a→ b→ a→ . . . . . .
a→ b→ a→ . . .
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So (a + b)∗aω cannot be recognized by a deterministic automaton.

But this also follows by a topological argument!

We assume the Cantor topology on Xω , induced by the metric

d(u, v) = 2−min{m : um 6=vm}

(or 0, if u = v ).

If A is deterministic then the mapping

Σω 3 u 7→ run(u) ∈ Qω

continuously reduces L(A) to (Q∗F )ω .

But

• (Q∗F )ω is Π0
2 (Gδ) ,

• (a + b)∗aω is complete in Σ0
2 (Fσ).
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�� ��Parity automata

A = 〈Σ, Q, qI ,Tr , rank〉

where rank : Q → {0, 1, . . . , k}.

lim supi→∞rank(qi) is even

0

a

�� b
((
1

b��

a

hh (a + b)∗aω

The Rabin-Mostowski index of a parity automatonA is

(min rank(Q), max rank(Q))

We can assume min rank(Q) ∈ {0, 1}.
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�� ��The McNaughton Theorem (1966)

A nondeterministic Büchi automaton can be simulated by a deterministic

parity automaton of some index (i, k).

The minimal index (i, k) may be arbitrarily high (Wagner 1979, Kaminski 1985).

Again, it can be inferred by a topological argument.

Let

Mi,k = {u ∈ {i, . . . , k}ω : lim sup
`→∞

u` is even}
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M1,4

uuuuuuuu
M0,3

IIIIIIII

M1,3

wwwwwww
M0,2

GGGGGGG

M1,2

wwwwwww
M0,1

GGGGGGG

M1,1

wwwwwww
M0,0

GGGGGGG

No continuous reduction down the hierarchy.
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�� ��Wadge game G(A,B)

Spoiler Duplicator

a0 ∈ Σ b0 ∈ Σ

a1 b1 Here A, B ⊆ Σω (Σ finite).

a2 b2

...
... Duplicator wins if a0a1a2 . . . ∈ A ⇐⇒ b0b1b2 ∈ B.

a12 b12

a13 wait Fact

a14 wait Duplicator has a winning strategy iff there is a

a15 b13 continuousf : Σω → Σω s.t. A = f−1(B),

...
... in symbols, A ≤w B.
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Spoiler ’s strategy, e.g., in G(M0,5,M1,6)

Spoiler Duplicator

0 4

3 5

4 1

...
... Note

i If a deterministic automaton of index (1, 6) ,

i−1 accepted M0,5 there would be a continuous

...
... reduction of M0,5 to M1,6

wait u 7→ rank ◦ run(u).

0 Contradiction!

...
...
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Personal recollection

A∗B = µx.Ax ∪B A,B ⊆ Σ∗, A 6= ∅
Aω = νY.AY A ⊆ Σ∗, ε 6∈ A

(a + b)∗aω = µX.νY.aX ∪ bY

(a∗b)ω = νY.µX.aX ∪ bY Park, 1979

6= µX.νY. . . .

The µνµν . . . hierarchy collapses, and any ω-regular language can be

represented by a νµ (vectorial) expression.

Is this hierarchy infinite in any other context ?

Yes, for infinite trees (N. 1986).
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�� ��Parity tree automata

A = 〈Σ, Q, qI ,Tr , rank〉

where Tr ⊆ Q× Σ×Q×Q, rank : Q → {0, 1, . . . ,k}.

•σ

}}||
||

||
||

!!B
BB

BB
BB

B

• •
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�� ��Parity tree automata cont’d

A run of A on a tree t : {l, r}∗ → Σ is a tree ρ : {l, r}∗ → Q, such that,

〈ρ(w), t(w), ρ(wl), ρ(wr)〉 ∈ Tr , for each w ∈ dom (ρ)

ρ(w), t(w)

yyssssssssss

%%KKKKKKKKKK

ρ(wl) ρ(wr)

The run is accepting if, for each path P = p0p1 . . . ∈ {l, r}ω ,

lim sup
k→∞

rank(ρ(p0p1 . . . pk) is even.
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�� ��Example

a/b, a

||yy
yy

yy

""E
EE

EE
E

a a

a/b, b

}}zz
zz

zz

!!D
DD

DD
D

b b

rank(a) = 0

rank(b) = 1

recognizes the set of trees where, on each branch, b appears only finitely often.

The complement can be recognized by

a/b, a

||zzz
zz $$I

III

a skip

a/b, b

}}zzz
zz $$H

HHH

b skip

skip, a/b

yyrrr
rr

%%LL
LLL

skip skip

a/b, a

zzuuuu
""D

DDD
D

skip a

a/b, b

zzvvvv
!!D

DD
DD

skip b

rank(a) = 1

rank(b) = rank(skip) = 2
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Fixed-point definitions carry over to trees.

νY.µX.aX ∪ bY = (a∗b)ω

µX.νY.aX ∪ bY = (a + b)∗aω

νy.µz. a(y, y) ∪ b(z, z) = binary trees over {a, b} where, on each

branch, b appears infinitely often.

µz.νy. a(y, y) ∪ b(z, z) = binary trees over {a, b} where, on each

branch, b appears only finitely often.

Rabin 1970 proved that the last set cannot be recognized by a Büchi

(i.e., index (1, 2) ) automaton.
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�� ��Rabin’s proof

Again, a topological argument could be used instead, as this set is Π1
1

complete, while the Büchi automata can recognize only Σ1
1 sets.
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The following witness the strictness of the non-deterministic index hierarchy.

Ti,k = {t ∈ {i, . . . , k}{l,r}
∗

: each branch is in Mi,k } (N 1986)

(1, 3)

vvvvvvvvv
(0, 2)

HHHHHHHHH
(µνµ)

uuuuuuuuu
(νµν)

IIIIIIIII

(1, 2)

xxxxxxxx
(0, 1)

GGGGGGGG
(νµ)

wwwwwwwww
(µν)

HHHHHHHHH

(1, 1)

xxxxxxxx
(0, 0)

GGGGGGGG
(µ)

wwwwwwwww
(ν)

HHHHHHHHH

Here, a topological argument cannot be used, as all the sets Ti,k are Π1
1

complete, hence Wadge–equivalent (except for T0,0, T1,1, T1,2).
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But topology comes back in the proof of the strictness of the alternating index

hierarchy (Bradfield, Arnold 1998).�� ��Game tree languages

Alphabet : {∃,∀} × {i, . . . , k}.

Eve : ∃, j

~~}}
}}

}}
}}

∃, j

  B
BB

BB
BB

B

Adam : ∀, j

~~}}
}}

}}
}}

∀, j

  B
BB

BB
BB

B

Eve wins an infinite play (x0, i0), (x1, i1), (x2, i2), . . . (x` ∈ {∃,∀})

iff lim sup`→∞ i` is even.

The set
�� ��Wi,k consists of all trees such that Eve has a winning strategy.
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The sets Wi,k (like Mi,k, and unlike Ti,k) form the strict hierarchy w.r.t. the

Wadge reducibility (Arnold & N, 2008).

W1,3

uuuuuuuu
W0,2

IIIIIIII

W1,2

wwwwwwww
W0,1

GGGGGGGG

W1,1

wwwwwwww
W0,0

GGGGGGGG
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�� ��Alternating parity tree automata

qσ

yyrrrrrrrrrr

&&LLLLLLLLLLL

q1 ∧ . . . ∧ qk p1 ∧ . . . ∧ pm

An input tree t ∈ Σ{l,r}∗ induces a computation tree over states, comp(t).

Composing with the function rank : Q → {i, . . . , k}, we have

t ∈ T (A) ⇐⇒ rank ◦ comp(t) ∈ Wi,k

Hence,

T (A) ≤w Wi,k

In particular, if an alternating automaton A of index (i, k) accepted Wi,k, we

would have Wi,k ≤w Wi,k, a contradiction.
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�� ��Sketch of proof that Wi,k 6≤wWi,k

Up to renaming,

Wi,k ≈ Wi,k

By Banach Fixed-Point Theorem, there is no contracting reduction of L to L

xfix ∈ L ⇐⇒ f(xfix ) ∈ L ⇐⇒ xfix ∈ L

Main Lemma If f reduces Wi,k to some L then there is a mapping

h : {i, . . . , k}{l,r}∗ → {i, . . . , k}{l,r}∗ (padding), such that

• h reduces Wi,k to itself,

• f ◦ h is contracting.

About h: For W0,k, it “stretches” the original tree completing by the nodes

labeled by (∀, 0). For W1,k, by (∃, 1).
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Witnesses of the index hierarchies

M1,4

uuuuuuuu
M0,3

IIIIIIII

M1,3

wwwwwww
M0,2

GGGGGGG

M1,2

wwwwwww
M0,1

GGGGGGG

M1,1

wwwwwww
M0,0

GGGGGGG

T1,4

vvvvvvvv
T0,3

HHHHHHHH

T1,3

xxxxxxx
T0,2

FFFFFFF

T1,2

xxxxxxx
T0,1

FFFFFFF

T1,1

xxxxxxx
T0,0

FFFFFFF

W1,4

uuuuuuuu
W0,3

IIIIIIII

W1,3

wwwwwwww
W0,2

GGGGGGGG

W1,2

wwwwwwww
W0,1

GGGGGGGG

W1,1

wwwwwwww
W0,0

GGGGGGGG

deterministic non-deterministic alternating
Wadge hierarchy Wadge equivalent Wadge hierarchy
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When the two complexities diverge. . .

If a recognizable set of trees is Büchi recognizable (equivalently νµ, ∃ S2S )

then it is Σ1
1.

The converse does not hold.

Let

H! = binary trees over {a, b} where b appears

infinitely often on exactly one branch.

By Lusin Theorem ([Kechris, Thm. 18.11]), H! is Π1
1 (complete).

Hence H! is Σ1
1.

But it is not Büchi recognizable!
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Rabin’s proof works. . .
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Note

H! is non-ambiguous, i.e., can be recognized by a non-ambiguous parity tree

automaton (exactly one accepting run).

Questions

• Are all non-ambiguous languages Π1
1 ?

(It is so for deterministic languages.)

• Is it decidable, if a given tree language is non-ambiguous ?

(It is so for determinism.)

• What is the expressive power of non-ambiguous automata ?
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Fact

No non-ambiguous automaton can recognize the set of binary trees over {a, b}
such that b appears at least once (elementary proof: Carayol & Löding 2007).

⇐⇒ (N. & Walukiewicz 1996) The S2S formula

X = ∅ ∨ y ∈ X

cannot be made functional (X 7→ y).

Consequently, S2S is not uniformizable (Gurevich & Shelah 1983).

In contrast to S1S. . .

Büchi & Landweber 1968 (?), Rabinovich 2007.
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�� ��Wadge hierarchy for deterministic tree languages (Murlak 2006)

Bool( )1Σ 2∆ Bool( )2Σ 3∆ 3Π 1Π10 00 0 0
2Π0

2Σ 0
3Σ0

Bool( )1Σ -automataω0 (1,2)
(0,1)

(1,2)
(0,1)

(1,2)
(0,1)

ω

ω

ω

ω2 ω3 ωω

ω ωω2 ωω3 ωω3+1 ωω3
+2

• The height is ωω·3 + 3 (vs. ωω for word languages, Wagner 1979).

• Complete sets exist in Π1
1, Π0

3, and surprisingly, in ∆0
3.
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�� ��Results on Wadge hierarchies

Words Finite automata ωω Wagner 1979

Deterministic pushdown aut. ωω2
Duparc 2003

Deterministic Turing machines
(
ωCK

)ω
Selivanov 2003

Non-deterministic pushdown aut. > ε0 Finkel 2001

Trees Deterministic finite automata ωω·3 + 3 Murlak 2006

Weak alternating automata ≥ ε0 Duparc & Murlak 2007
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�� ��Decidability issues

Can we decide the level of a recognizable (1, 4)

tttttttt
(0, 3)

JJJJJJJJ

tree language in the index hierarchy ? (1, 3)

wwwwwww
(0, 2)

GGGGGGG

(1, 2)

wwwwwww
(0, 1)

GGGGGGG

(1, 1)

wwwwwww
(0, 0)

GGGGGGG

We know the answer only if an input automaton is deterministic.
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�� ��The problem

Given : a deterministic parity tree automaton

Compute : the minimal index of a non-deterministic automaton

recognizing the same language.

Urbański 2000 solved the question≡ (non-deterministic) Büchi ?

N. & Walukiewicz 2004 settled the whole non-deterministic hierarchy.
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�� ��From trees to words : path automata

A deterministic tree automatonA over alphabet Σ can be identified with a

deterministic word automatonA′ over alphabet Σ× {l, r} ,

•σ

}}||
||

||
||

!!B
BB

BB
BB

B

• •

= •, σ, l

||zz
zz

zz
zz

•

+ •, σ, r

""F
FFFFFFF

•

A recognizes a tree t iff A′ recognizes all paths of t.
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�� ��Example

Deterministic tree automaton :

q, b

~~~~
~~

~~
~~

  @
@@

@@
@@

@

q p

p, a

~~||
||

||
||

  B
BB

BB
BB

B

p p

rank(q) = 0 rank(p) = 1

Corresponding path automaton :

q

b,l

�� b,r // p

a,l

--

a,r

qq
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�� ��Determinization, whenever possible, is effective

The concept of path automaton allows us to decide (in EXPTIME), if a given

non-deterministic tree automaton is equivalent to a deterministic one.

It suffices to verify if

L(A) = Trees(Paths(L(A)))
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Index class Forbidden pattern

(1,2) ◦

l��~~
~~

~
r ��@

@@
@@

◦

0 ..

◦

1pp

(0,1) ◦

1

--

2

qq

(0,2) ◦

2

--

l��~~
~~

~
r ��@

@@
@@

◦

0 ..

◦

1pp

(1,3) ◦

1

--

��@
@@

@@

◦

l��~~
~~

~
r ��@

@@
@@

◦

2

CC

◦

3
qq
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�� ��The (0, n ) case, n ≥ 3 ◦

2

--

3

qq

l����
��

��
�

r
��@

@@
@@

@@

◦

0
11

◦

1
nn

�� ��The (1,n) case, n ≥ 4 ◦

1

--

4

qq

��@
@@

@@
@@

◦

l����
��

��
�

r
��@

@@
@@

@@

◦

2

FF

◦

3

nn
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Theorem . LetA be a deterministic tree automaton.

Then L(A) can be recognized by a non-deterministic tree

automaton of index (ι, n) if and only if the corresponding path

automaton does not contain any productive (ι, n) pattern.

An idea of the proof.

(⇐) Unravel a forbidden pattern into a tree and refine Rabin’s argument.

(⇒) DecomposeA into strongly connected components, and apply inductive

arguments to the sub-automata induced this way.

Corollary . Consequently, the index of a deterministic tree language
can be computed within the complexity of computing productive
states (i.e., NP ∩ co-NP ), N. & Walukiewicz 2004.
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Can we decide the level of a Σ1
2 Π1

2

recognizable tree language in the ∆1
2

AAAAAAAA

||||||||

Borel/projective hierarchies ? Σ1
1

}}}}}}}}
Π1

1

BBBBBBBB

Σ0
1 ∆1

1

AAAAAAAA

||||||||
Π0

1

∆0
1

AAAAAAAA

||||||||

Σ0
0

}}}}}}}}
Π0

0

BBBBBBBB
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For the case of infinite words, the question was settled already by

Büchi & Landweber 1969.

For trees, we can determine the exact level of T (A), provided that

A is a deterministic automaton

(N. & Walukiewicz 2003, Murlak 2005).

Non-deterministic case is completely open.
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�� ��Criterion : forbidden patterns

If a path automatonA′ contains a (productive) pattern

◦

l����
��

��
�

r
��@

@@
@@

@@

◦

0
11 11

◦

1
nnnn

then T (A) is Π1
1-complete, hence non-Borel.

Otherwise it is in Π0
3 (N & Walukiewicz 2003). Dichotomy!

(In contrast, Skurczyński 1993 showed that there are non-deterministically

recognizable tree languages on every finite level of the Borel hierarchy.)

The algorithm of detecting patterns runs in time of solving the non-emptiness

problem of parity tree automata (NP ∩ co-NP).
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Murlak 2005 settles the remaining cases :

Class Forbidden pattern

Π0
1 ◦

1

-- // ◦

2

qq “folklore”

Σ0
1 ◦

0

-- // ◦

1

qq . . . . . . . . .

Π0
2 ◦

0

--

1

qq

Σ0
2 ◦

0

��
◦

l
oo

r
// ◦

1

qq ◦

0

--

1

qq

∆0
3 ◦

0

��
◦

l
oo

r
// ◦

2

--

1

qq
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�� ��Wadge reducibility—decidability issues

Fact (Büchi & Landweber 1969). For Büchi automata on infinite words:

(1) If L(A) ≤w L(B) then there exists a finite–state transducer

reducing L(A) to L(B).

(2) It is decidable if L(A) ≤w L(B).

For trees, (1) does not hold. Nevertheless, Murlak 2006 shows

Fact . It is decidable if T (A) ≤w T (B), for deterministic tree automataA , B .

Rather than comparing two automata “from scratch”, one computes, for each

deterministic automatonA, its place in the hierarchy, i.e., an ordinal and a

canonical automaton equivalent toA.

Construction of canonical automata is the core of the proof.

Again, the non-deterministic case remains open.
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�� ��Instead of conclusion

rational irrational

closure properties, non-uniformization of S2S

S2S characterization ambiguity

parity condition complexity of the non-emptiness problem ?

topological characterizations discrepancies

effective hierarchies non-deterministic case ?

. . . . . . . . . . . .
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