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�� ��Infinite computations

• Büchi (1960) and Rabin (1969) used the concept of infinite computations of

finite automata to establish the decidability results in logic.

• D. Muller(1960) used similar concepts to analyse asynchronous digital

circuits.

• Since 1980s, computer scientists study infinite computations in context of

verification of computing systems (reactive, concurrent, open, . . . ).

Non-termination is an expected behaviour.

• Mathematicians have been playing infinite games since the 1930s

(Banach–Mazur, later Gale–Stewart, . . . )
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�� ��Complexity of finite computations

Finitary decision problem

A ⊆ {0, 1}∗ ≈ ω.

Classical complexity theory studies only decidable problems, in terms of the

computation’s time and space.�� ��Complexity of infinite computations

An infinite computation can recognise an infinite string, or an infinite tree.
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Such an object can be encoded as f ∈ ωω ≈ R.
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Can we ask complexity questions about infinite computations ?

A problem is difficult if it cannot be defined

• by certain computation model,

• by certain logic (→ descriptive complexity).

• Which of the two problems is more difficult than the other ?

• Can we characterise/ recognise difficult problems ?
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Example: M.O.Rabin discovered

Büchi tree automata < Rabin tree automata

Question: Can we decide when a given Rabin automaton is

equivalent to a Büchi automaton ?

BTW, the idea of the Rabin 1970 counter-example can be traced

back to the discoveries of Suslin 1916. . .

→ classical definability theory.

5



�� ��Classical definability theory Σ1
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�� ��Classical hierarchies

of relations r(α;β) ⊆ ωk×(ωω)`, defined by formulas ϕ(x;y)

Arithmetical hierarchy

Σ0
0 = Π0

0 = bounded quantification

Σ0
n+1 = {∃z ϕ(z,x;y) : ϕ ∈ Π0

n}

Π0
n+1 = {∀z ϕ(z,x;y) : ϕ ∈ Σ0

n}

Analytical hierarchy

Σ1
0 = Π1

0 = first order quantification

Σ1
n+1 = {∃f ϕ(x; f ,y) : ϕ ∈ Π1

n}

Π1
n+1 = {∀f ϕ(x; f ,y) : ϕ ∈ Σ1

n}

Boldface hierarchies (Borel/projective) obtained by introducing parameters

from ωω .

7



Remarkable power of finite-state recognisability of infinite objects

Finitary problems beyond Σ1
0 are considered as highly uncomputable.

• The first-order theory of the standard model of arithmetics is in ∆1
1,

but not in Σ0
n, for any n.

In contrast,

• An ω-language

{u ∈ {a, b}ω : there are finitely many b’s }
is in Σ0

2 but not in Π0
2.

• A tree language

{t ∈ {a, b}{l,r}∗ : on each path, there are finitely many b’s }
is in Π1

1 but not in Σ1
1.

Still, finite-state automata can recognise these sets !
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Remarkable (?) power of finite-state recognisability of infinite objects

It would be misleading to compare the properties of integers and the

properties of reals with the same complexity measure !

But still. . .

• Regular sets of finite words/trees constitute the simplest level of ∆0
1

(O(1)/O(log n) space).

• Finite-state automata on infinite trees can recognise Π1
1 and Σ1

1

complete sets.

9



�� ��Does the infinite case give an insight into the finite one ?

One of the strongest separation results in complexity theory is

Furst, Saxe, Sipser 1983

PARITY 6 ∈ AC 0

The idea is based on a previous observation by

Sipser 1983 that ω-PARITY cannot be recognised by a countable circuit.

(Countable circuits recognise only Borel sets, while ω-PARITY is

non-measurable.)
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Infinite complexity ≈ descriptive (data) complexity of a logic

infinite expressive complexity of

complexity power satisfiability

{t : t |= ϕ} ϕ ?

|= ϕ

OO OO OO
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To measure the complexity of infinite computations, we have

• classical definability hierarchies,

• automata index hierarchies,

• the µ-calculus alternation hierarchy.

In this talk we compare various measures/hierarchies with emphasis
on the decidability questions.
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�� ��Büchi automata on infinite words

A = 〈Σ, Q, qI ,Tr ,F 〉

where Tr ⊆ Q× Σ×Q, F⊆ Q.

◦

a

�� b
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a

hh ((a + b)∗b)ω

◦

a,b

�� a // •
a



(a + b)∗aω

The second one cannot be recognised by a deterministic automaton.

a→ b→ a→ a→ b→ a→ a→ a→ b→ a→ a→ a→ a→ b→ a→ . . . . . .
a→ b→ a→ . . .
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�� ��Parity automata

A = 〈Σ, Q, qI ,Tr , rank〉

where rank : Q → {0, 1, . . . ,k}.

lim supi→∞rank(qi) is even

0

a

�� b
((
1

b��

a

hh (a + b)∗aω

The index of a parity automaton A is

(min rank(Q), max rank(Q))

We can assume min rank(Q) ∈ {0, 1}.
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�� ��The McNaughton Theorem (1966)

A nondeterministic Büchi automaton can be simulated by a deterministic

parity automaton of some index (i, k).

The minimal index (i, k) may be arbitrarily high (Wagner 1979), but can be

effectively computed

(in polynomial time, if the input automaton is deterministic N & Walukiewicz 1998,

Carton & Maceiras 1999).
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�� ��Parity tree automata

A = 〈Σ, Q, qI ,Tr , rank〉

where Tr ⊆ Q× Σ×Q×Q, rank : Q → {0, 1, . . . ,k}.
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�� ��Parity tree automata ctd.

A run of A on a tree t : {l, r}∗ → Σ is a tree ρ : {l, r}∗ → Q, such that,

for each w ∈ dom (ρ), 〈ρ(w), t(w), ρ(wl), ρ(wr)〉 ∈ Tr

ρ(w), t(w)

yyssssssssss

%%KKKKKKKKKK

ρ(wl) ρ(wr)

The run is accepting if, for each path P = p0p1 . . . ∈ {l, r}ω ,

lim sup
k→∞

rank(ρ(p0p1 . . . pk) is even.
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�� ��Example

q/p, a
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C

p p

rank(q) = 0 rank(p) = 1

recognizes the set of trees where, on each branch, b appears only finitely often.
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�� ��Nondeterminism

For trivial reasons, tree automata cannot be, in general, determinized.
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�� ��Rabin’s counter–example

In contrast to the automata on words, the Büchi condition alone is not sufficient,

even in the presence of nondeterminism ( Rabin 1970).
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�� ��The Mostowski index hierarchy

(1, 4)

uuuuuuuu
(0, 3)

IIIIIIII

(1, 3)

wwwwwwww
(0, 2)

GGGGGGGG

(1, 2)

wwwwwwww
(0, 1)

GGGGGGGG

(1, 1)

wwwwwwww
(0, 0)

GGGGGGGG

Strict for tree automata : deterministic (essentially Wagner 1979), non-deterministic (N

1986), alternating (Bradfield, Arnold 1999).
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�� ��The Mostowski index hierarchy ctd.

Languages which witness the strictness of the hierarchy.

For deterministic automata on words :

Mι,κ = {u ∈ {ι, . . . , κ}ω : lim sup`→∞ u` is even}

For deterministic/non-deterministic automata on trees :

Tι,κ = {t ∈ {ι, . . . , κ}{l,r}∗ : each branch is in Mι,κ }

For alternating tree automata :

Wι,κ = the “game version” of the above.
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�� ��Game tree languages

Alphabet : {∃,∀} × {ι, . . . , κ}.

Eve : ∃, i

~~}}
}}

}}
}}

∃, i

  A
AA

AA
AA

A

Adam : ∀, i

~~}}
}}

}}
}}

∀, i

  A
AA

AA
AA

A

Eve wins an infinite play (x0, i0), (x1, i1), (x2, i2), . . . (x` ∈ {∃,∀})

iff lim sup`→∞ i` is even.

The set Wι,κ consists of all trees such that Eve has a winning strategy.
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Can we decide the level of a recognizable (1, 4)

tttttttt
(0, 3)

JJJJJJJJ

tree language in the Mostowski hierarchy ? (1, 3)

wwwwwww
(0, 2)

GGGGGGG

(1, 2)

wwwwwww
(0, 1)

GGGGGGG

(1, 1)

wwwwwww
(0, 0)

GGGGGGG

We know the answer only if an input automaton is deterministic.
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�� ��The problem

Given : a deterministic parity tree automaton

Compute : the minimal Mostowski index of a non-deterministic automaton

recognising the same language.

T.Urbański 2000 solved the question ≡ (non-deterministic) Büchi ?

N & Walukiewicz 2004 settled the whole non-deterministic hierarchy.
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�� ��From trees to words : path automata

A deterministic tree automaton A over alphabet Σ can be identified with a

deterministic word automaton A′ over alphabet Σ× {l, r} ,
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•

A recognizes a tree t iff A′ recognizes all paths of t.
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�� ��Example

Deterministic tree automaton :

q, b
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p, a
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BB
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B

p p

rank(q) = 0 rank(p) = 1

Corresponding path automaton :

q

b,l

�� b,r // p

a,l

--

a,r

qq
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�� ��Determinization, whenever possible, is effective

The concept of path automaton allows us to decide (in EXPTIME), if a given

non-deterministic tree automaton is equivalent to a deterministic one.

It suffices to verify if

L(A) = Trees(Paths(L(A)))

28



Index class Forbidden pattern

(1,2) ◦
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�� ��The (0, n ) case, n ≥ 3 ◦

2

--

3
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�� ��The (1,n) case, n ≥ 4 ◦
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Theorem. Let A be a deterministic tree automaton.

Then L(A) can be recognised by a non-deterministic tree

automaton of index (ι, n) if and only if the corresponding path

automaton does not contain any productive (ι, n) pattern.

An idea of the proof.

(⇐) Unravel a forbidden pattern into a tree and refine Rabin’s argument.

(⇒) Decompose A into strongly connected components, and apply inductive

arguments to the sub-automata induced this way.

Corollary. Consequently, the index of a deterministic tree language

can be computed within the complexity of computing productive

states (i.e., NP ∩ co-NP ).
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�� ��Rabin’s counter–example revisited

Descriptive complexity argument :

The Büchi recognisable sets of trees are always in Σ1
1,

while the Rabin counter–example is Π1
1-complete.

The idea can be traced back to the Suslin 1916 discovery that Borel’s sets are not

closed under projections.

The set

{〈T, u〉 : u is a branch of T with infinitely many b’s }

is Borel (Π0
2), but its projection is Σ1

1-complete .
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Can we decide the level of a Σ1
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2

recognisable tree language in the ∆1
2

AAAAAAAA

||||||||

Borel/projective hierarchies ? Σ1
1

}}}}}}}}
Π1

1

BBBBBBBB

Σ0
1 ∆1

1

AAAAAAAA

||||||||
Π0

1

∆0
1

AAAAAAAA

||||||||

Σ0
0

}}}}}}}}
Π0

0

BBBBBBBB

33



For the case of infinite words, the question was settled already by

Wagner 1979.

For trees, we can determine the exact level of T (A), provided that

A is a deterministic automaton

(N & Walukiewicz 2003, Murlak 2005).

Non-deterministic case is completely open.
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�� ��Criterion : forbidden patterns

If a path automaton A′ contains a (productive) pattern

◦

l����
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◦

0
11 11

◦

1
nnnn

then T (A) is Π1
1-complete, hence non-Borel.

Otherwise it is in Π0
3 (N & Walukiewicz 2003).

Dichotomy!

The algorithm of detecting patterns runs in time of solving the non-emptiness

problem of parity tree automata (NP ∩ co-NP).
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F. Murlak 2005 settles the remaining cases :

Class Forbidden pattern

Π0
1 ◦

1

-- // ◦

2

qq “folklore”

Σ0
1 ◦

0

-- // ◦

1

qq . . . . . . . . .

Π0
2 ◦

0

--

1

qq

Σ0
2 ◦

0

��
◦

l
oo

r
// ◦

1

qq ◦

0
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1
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∆0
3 ◦

0

��
◦

l
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r
// ◦

2

--

1

qq
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�� ��Relating the hierarchies
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(0, 0)
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Relating the hierarchies cont’d.

Do the topological hardness and the

automata-theoretic hardness always coincide ?

Skurczyński 1993 showed that there are recognisable tree languages on every

finite level of the Borel hierarchy, and we now that there are also some Σ1
1 and

Π1
1-complete ones.

For non-deterministic languages we only know that if a tree language is Π1
1 hard

then it is above the (0,1) level.
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The finest topological hierarchy is given by the Wadge reducibility

Let T1, T2 be topological spaces.

A ⊆ T1 is Wadge reducible to B ⊆ T2, in symbols A ≤w B,

if there is a continuous reduction ϕ : T1 → T2,

(∀τ ∈ T1) τ ∈ A ⇐⇒ ϕ(τ) ∈ B.

K.Wagner 1979 completely described the Wadge hierarchy of ω-languages of

words (height ωω).

F.Murlak 2006 completely described the Wadge hierarchy of deterministic

languages of trees (height ωω·3 + 2).
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�� ��Wadge hierarchy for deterministic tree languages (Murlak 2006)

Bool( )1Σ 2∆ Bool( )2Σ 3∆ 3Π 1Π10 00 0 0
2Π0

2Σ 0
3Σ0

Bool( )1Σ -automataω0 (1,2)
(0,1)

(1,2)
(0,1)

(1,2)
(0,1)

ω

ω

ω

ω2 ω3 ωω

ω ωω2 ωω3 ωω3+1 ωω3
+2

• The height is ωω·3 + 2 (vs ωω for word languages).

• Complete sets exist in Π1
1, Π0

3, and surprisingly, in ∆0
3.
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�� ��Wadge reducibility—decidability issues

Fact (Büchi & Landweber 1969). For Büchi automata on infinite words:

(1) If L(A) ≤w L(B) then there exists a finite–state transducer

reducing L(A) to L(B).

(2) It is decidable if L(A) ≤w L(B).

For trees, (1) does not hold. Nevertheless, Murlak 2006 shows

Fact. It is decidable if T (A) ≤w T (B), for deterministic tree automata A , B .

The non-deterministic case remains open.
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�� ��Beyond the deterministic case—game languages revisited

Recall the hierarchy witness languages Tι,κ,Wι,κ. We have

(1) Tι,κ ≤w T0,1, for any ι, κ;

(2) Wι,κ ≤w Wι′,κ′ ⇔ (ι, κ) v ((ι′, κ′).

◦

sssssss
◦

KKKKKKK

◦

uuuuuuu
◦

IIIIIII

◦

vvvvvvv
T0,1

HHHHHH

T1,1

xxxxx
T0,0

FFFFFF

W1,4

tttttt
W0,3

JJJJJJ

W1,3

vvvvvv
W0,2

HHHHHH

W1,2

vvvvvv
W0,1

HHHHHH

W1,1

vvvvvv
W0,0

HHHHHH
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�� ��A complete set for all deterministic tree languages

Any deterministically recognisable set of trees is reducible by a transducer to

T0,1.

We first show a generic reduction of T (A) to T0,2.

Let r be a unique run of an automaton A on a tree t. For each odd i ≤ n , let

ri(w) =


0 if rank r(w) < i

1 if rank r(w) = i

2 if rank r(w) > i

t 7→ (r1, 0(r3, 0(r5, . . . 0(r2·dn
2 e−3, r2·dn

2 e−1) . . .)))
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�� ��Reduction of T0,2 to T0,1.

2

��
��

�
??

??
?

t1 t2

7→ 0

uuuuuuuu

IIIIIIII

0

uuuuuuu

HHHHHHH 0

global(t1) local(t1)

where local(ti) is ti reproduced till first 2,

global(0(t′1, t
′
2)) = global(1(t′1, t

′
2)) = 0(global(t′1), global(t′2)),

global(2(t′1, t
′
2)) as above.
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�� ��Wι,κ form a strict hierarchy—sketch of proof

We identify TΣ ≈ Σω , and view it as a metric space.

f : Σω → Σω is contracting if

d(f(t1), f(t2)) ≤ c · d(t1, t2), for some constant 0 < c < 1.

Note that by the Banach Fixed-Point Theorem, no L = Σω − L

is reducible to L via a contracting reduction.

In particular W ι,κ ≈ Wι,κ does not reduce to Wι,κ via a contracting reduction.

Neither does Wι′,κ′ with (ι′, κ′) w (ι, κ).
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Main Lemma If f reduces Wι,κ to some L then there is a mapping

h : Σω → Σω (padding), such that

• h reduces Wι,κ to itself,

• f ◦ h is contracting.

Recall For any continuous f : Σω → Σω , there is f∗ : Σ∗ → Σ∗, such that,

f(u) = limn→∞ f∗(u � n).

Waiting time For any continuous f : Σω → Σω ,

wait(f, n) = min{k : (∀v) |v| ≥ k =⇒ |f∗(v)| ≥ n}.

Sub-lemma Let f, g : Σω → Σω be continuous functions satisfying

|g∗(v)| ≥ wait(f, |v|+ 1),

for all v ∈ Σ∗. Then f ◦ g is contracting with the constant c = 1
2 .
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�� ��Yet another link between automata and topology

A.Arnold 1998 showed that

T (A) ≤w Wι,κ,

for any alternating automaton of index (ι, κ).

Corollary If W ι,κ≤wT (A) then T (A) cannot be recognised by an

alternating automaton of index (ι, κ).

Question: iff ?
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�� ��Related questions and results

General goal: find a simplest description of an object.

Given : a formula of some logic L .

Question : is it equivalent to a formula of some sub-logic L′ ⊆ L ?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Given : a formula of the µ-calculus.

Question : Determine its level in the µν-hierarchy.

M. Otto 1999 showed how to decide if µ and ν can be completely eliminated in a

formula.

Walukiewicz 2002 settled the µ and ν levels.

What about the next levels ?
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Conclusion. In contrast to the finitary case, finite state automata

running over infinite words or trees can recognise highly complex

properties of infinite computations (e.g., Π1
1-complete).

Automata also provide fine hierarchies, complementary to the

classical Borel/projective hierarchies.

For deterministic automata, we can decide its exact level in the

complexity hierarchies.

The non-deterministic case needs new ideas.
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Appendix�� ��The Mostowski hierarchy — relation to the µ-calculus

The set of trees over alphabet {a, b} where, on each branch, b appears only

finitely often can be presented by

µz.νy. a(y, y) ∪ b(z, z)

where

• µx.t is the least fixed point of x = t(x),

• νx.t is the greatest fixed point of x = t(x),

• f(L1, L2) = { f

����
��

��
�

��>
>>

>>
>>

t1 t2

: t1 ∈ L1, t2 ∈ L2}.
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�� ��The Mostowski hierarchy — relation to the µ-calculus ctd.

Tn = ϑxn . . . µx2. . . . νx1.µx0.
⋃
i

i(xi, xi)

Wn = ϑxn . . . µx2. . . . νx1.µx0.
⋃
i

(di(xi, tt) ∪ di(tt, xi) ∪ ci(xi, xi))

The index hierarchy of automata coincides with the µ-calculus hierarchy of

nesting alternately the least (µ) and the greatest (ν) fixed points.
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�� ��The two hierarchies
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�� ��The two hierarchies in two versions

Non-deterministic hierarchy :

x | f(t1, . . . , tk) | t1 ∨ t2 |µx.t | νx.t ≡ non-deterministic automata

Alternating hierarchy :

x | f(t1, . . . , tk) | t1 ∨ t2 | t1∧t2 |µx.t | νx.t ≡ alternating automata

We have ⋃
Non-deterministic hierarchy =

⋃
Alternating hierarchy

but neither of the hierarchies refines the other :

• All Tn’s are in the level µν ≡ (0, 1) of the alternating hierarchy.

• Tn and Wn are on the same level in non-deterministic hierarchy, but not in

the alternating hierarchy.
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�� ��The Mostowski hierarchy — relation to complexity

The non-emptiness problem for non-deterministic parity tree automata is

in NP ∩ co-NP (even UP ∩ co-UP ).

It is polynomial–time equivalent to the model–checking problem for the

µ-calculus.

Restricted to the automata A of index n, the problem can be solved in time

|A|O(n).
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