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[Infinite computations ]

e Blchi (1960) and Rabin (1969) used the concept of infinite computations of
finite automata to establish the decidability results in logic.

e D. Muller(1960) used similar concepts to analyse asynchronous digital

circuits.

e Since 1980s, computer scientists study infinite computations in context of

verification of computing systems (reactive, concurrent, open, ...).

Non-termination is an expected behaviour.

e Mathematicians have been playing infinite games since the 1930s
(Banach—Mazur, later Gale—Stewart, ...)




[Complexity of finite computations]

Finitary decision problem

ACH{0,1}" =~ w.

Classical complexity theory studies only decidable problems, in terms of the

computation’s time and space.

[Complexity of infinite computations]

An infinite computation can recognise an infinite string, or an infinite tree.

Such an object can be encoded as f € w” ~ K.




Can we ask complexity questions about infinite computations ?

A problem is difficult if it cannot be defined
® by certain computation model,

e by certain logic (— descriptive complexity).

e Which of the two problems is more difficult than the other ?

e Can we characterise/ recognise difficult problems ?




Example: M.O.Rabin discovered
Blchi tree automata < Rabin tree automata
Question: Can we decide when a given Rabin automaton is

equivalent to a Buchi automaton ?

BTW, the idea of the Rabin 1970 counter-example can be traced
back to the discoveries of Suslin 1916. ..

— classical definability theory.




[Classical definability theory]

1900 Borel, Baire, Lebesgues

1917 Lusin, Suslin

1929 Tarski, Kuratowski

1940 Mostowski, Kleene




[Classical hierarchies]

of relations r(a;3) C w” x (w*)*, defined by formulas ¢ (x; y)

Arithmetical hierarchy

»9 =TI = bounded quantification
Y1 = 132 0(2,x5y) 1 p € I}
Iy = {Vzp(z,x5y) 1 p € T}
Analytical hierarchy

»5 = I} = first order quantification
Y1 = {3f0(xfy) s p e TIL}
M, = {Vfolxfy):pecXi}

Boldface hierarchies (Borel/projective) obtained by introducing parameters

from w®.




Remarkable power of finite-state recognisability of infinite objects

Finitary problems beyond E% are considered as highly uncomputable.

e The first-order theory of the standard model of arithmetics is in AN
but not in 39, for any n.

In contrast,

e An w-language
{u € {a,b}* : there are finitely many b's }
is in 39 but not in TT9.
e A tree language
{t € {a,b}{57" - on each path, there are finitely many b's }

is in TIT but not in X1

Still, finite-state automata can recognise these sets !




Remarkable (?) power of finite-state recognisability of infinite objects

It would be misleading to compare the properties of integers and the

properties of reals with the same complexity measure !

But still. . .

e Regular sets of finite words/trees constitute the simplest level of A‘f

(O(1)/O(log n) space).

e Finite-state automata on infinite trees can recognise I1; and X7

complete sets.




[Does the infinite case give an insight into the finite one ?]

One of the strongest separation results in complexity theory is
Furst, Saxe, Sipser 1983

PARITY £ AC,

The idea is based on a previous observation by

Sipser 1983 that w-PARITY cannot be recognised by a countable circuit.

(Countable circuits recognise only Borel sets, while w-PARITY is
non-measurable.)
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Infinite complexity ~ descriptive (data) complexity of a logic

infinite expressive complexity of

complexity power satisfiability

{t:tF=p; 4 _
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To measure the complexity of infinite computations, we have
e classical definability hierarchies,
e automata index hierarchies,

e the 1i-calculus alternation hierarchy.

In this talk we compare various measures/hierarchies with emphasis
on the decidability questions.
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[BUchi automata on infinite words]

A = <27Q7QI7 TT7F>

where Tr C () X X X ), FC Q.

Qaé@ ((a + b)*b)”
Q—a>@ (a+b)*a®

The second one cannot be recognised by a deterministic automaton.

a b a a b a a a b a a a a b a
e L S e S S S
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[Parity automata]

A = (X,Q,qr, Tr, rank)

where rank : () — {0,1,... k}.
lim sup;_ oo rank(q;) is even

Q)él@ (a+b)*a®

The index of a parity automaton A is
(min rank(Q)), max rank(Q))

We can assume min rank((Q) € {0, 1}.
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[The McNaughton Theorem (1966)]

A nondeterministic Blchi automaton can be simulated by a deterministic

parity automaton of some index (¢, k).

The minimal index (7, k) may be arbitrarily high (Wagner 1979), but can be
effectively computed

(in polynomial time, if the input automaton is deterministic N & Walukiewicz 1998,
Carton & Maceiras 1999).
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[Parity tree automataj

A = (3,Q,qr, Tr, rank)

where Tr C Q X X X Q x Q, rank: Q — {0,1,....k}.

N

16




[Parity tree automata ctd. ]

Arunof Aonatreet: {l,r}" — Xisatree p: {l,7}* — @, such that,
for each w € dom (p), (p(w), t(w), p(wl), p(wr)) € Tr

p(w), t(w)

PN

p(wl) p(wr)
The run is accepting if, for each path P = popy ... € {I,r}*,

lim sup rank(p(pop1 - - - P ) is even.

k— oo
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[Example ]

q/p,a q/p,b
q/ \q p/ \p

rank(q) = 0 rank(p) = 1

recognizes the set of trees where, on each branch, b appears only finitely often.
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[Nondeterminism]

For trivial reasons, tree automata cannot be, in general, determinized.

N N
SN\ SN

-------------- A D B i Bt Lo A
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[Rabin’s counter—example]

In contrast to the automata on words, the Blchi condition alone is not sufficient,

even in the presence of nondeterminism ( Rabin 1970).
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[The Mostowski index hierarchyj

(1,4) (0, 3)

(1,3 (0, 2)

(1,2 (0, 1)

XXX

(1, 1) (0,0)

Strict for tree automata : deterministic (essentially Wagner 1979), non-deterministic (N

1986), alternating (Bradfield, Arnold 1999).




[The Mostowski index hierarchy ctd.]

Languages which witnhess the strictness of the hierarchy.
For deterministic automata on words :
M, ,.={uve{...,r}*¥ limsup, ., usiseven}
For deterministic/non-deterministic automata on trees :
T,,.={te{,...,x}tt"" : eachbranchisin M, , }
For alternating tree automata :

W, .. = the “game version” of the above.
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[Game tree Ianguagesj

Alphabet : {3, V} x {¢,...,k}.

Eve : 3,14 4,17
Adam : A V.1
Eve wins an infinite play (g, ), (v1,71), (x2,72),... (x¢ € {3,V})

iff lim sup,_, . ¢ is even.

The set IV, ,. consists of all trees such that Eve has a winning strategy.
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Can we decide the level of a recognizable

R
(1,4) (0,3)

tree language in the Mostowski hierarchy ? (1,3) (0,2)

We know the answer only if an input automaton is deterministic.
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[The problemj

Given :

Compute :

a deterministic parity tree automaton

the minimal Mostowski index of a non-deterministic automaton

recognising the same language.

T.Urbanski 2000 solved the question = (non-deterministic) Biichi ?

N & Walukiewicz 2004 settled the whole non-deterministic hierarchy.
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[From trees to words : path automataj

A deterministic tree automaton A over alphabet > can be identified with a
deterministic word automaton A’ over alphabet > x {l,r} ,

A recognizes a tree t iff A’ recognizes all paths of ¢.
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[Example]

Deterministic tree automaton :

SN N

rank(q) = 0 rank(p) = 1

Corresponding path automaton :

b,l a,l a,r

Qy—er QYD
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[Determinization, whenever possible, is effectivej

The concept of path automaton allows us to decide (in EXPTIME), if a given
non-deterministic tree automaton is equivalent to a deterministic one.

It suffices to verify if

L(A) = Trees(Paths(L(A)))
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Index class

(1,2)

(0,1)

(0,2)

(1,3)
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[The (0, n ) case, n > 3] F 1
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[The (1,n) case, n > 4]
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Theorem. Let A be a deterministic tree automaton.

Then L(.A) can be recognised by a non-deterministic tree
automaton of index (1,, n) if and only if the corresponding path

automaton does not contain any productive (L, n) pattern.

An idea of the proof.
(<=) Unravel a forbidden pattern into a tree and refine Rabin’s argument.
(=) Decompose A into strongly connected components, and apply inductive

arguments to the sub-automata induced this way.

Corollary. Consequently, the index of a deterministic tree language
can be computed within the complexity of computing productive
states (i.e., NP 1 co-NP ).
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[Rabin’s counter—example revisited]

Descriptive complexity argument :

The Bichi recognisable sets of trees are always in >
while the Rabin counter—example is H}—Complete.

The idea can be traced back to the Suslin 1916 discovery that Borel’s sets are not

closed under projections.

The set

{{(T,u) : uis abranch of T" with infinitely many b’s }

is Borel (I19), but its projection is 31-complete .
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Can we decide the level of a

recognisable tree language in the

Borel/projective hierarchies ?




For the case of infinite words, the question was settled already by
Wagner 1979.

For trees, we can determine the exact level of 7 (.A4), provided that

A is a deterministic automaton
(N & Walukiewicz 2003, Murlak 2005).

Non-deterministic case is completely open.
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[Criterion . forbidden patterns]

If a path automaton A’ contains a (productive) pattern

then 7 (A) is II{-complete, hence non-Borel.
Otherwise it is in TI3 (N & Walukiewicz 2003).

Dichotomy!

The algorithm of detecting patterns runs in time of solving the non-emptiness
problem of parity tree automata (NP (1 co-NP).
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F. Murlak 2005 settles the remaining cases :

Class

Forbidden pattern

1 2
Q — o/) “folklore”

0 1 0 1
Lo QYD
O O O O
l T
0 2 1
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[Relating the hierarchiesj

%, I,

A deterministic

>
(1,4) (0, 3)

tree language is

NS
N
> I1; ’
~ X
2(1) Al H(l) (1,3) (0,2) non-Borel iff it is
NS >
AY (1,2) (0,1) non-Biichi (3= (0,1))
/N >
50 m o (LY (0,0
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Relating the hierarchies contd.
Do the topological hardness and the

automata-theoretic hardness always coincide ?

Skurczynski 1993 showed that there are recognisable tree languages on every
finite level of the Borel hierarchy, and we now that there are also some Ei and

I17-complete ones.

For non-deterministic languages we only know that if a tree language is H% hard

then it is above the (0,1) level.
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The finest topological hierarchy is given by the Wadge reducibility

Let 71, 75 be topological spaces.
A C 74 is Wadge reducible to B C 75, in symbols A <,, B,

if there is a continuous reduction ¢ : 7; — 7o,

VreT)) 1€ A< ¢(r) €B.

K.Wagner 1979 completely described the Wadge hierarchy of w-languages of
words (height w®).

F.Murlak 2006 completely described the Wadge hierarchy of deterministic
languages of trees (height w3 + 2).
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[Wadge hierarchy for deterministic tree languages (Murlak 2006)]

0
Bool(Zg) Ay TI4 H{

.......... D N T | |

(0,1)

(0,1)
(1,2)

(0,1)
(1,2)

o3 03 3
0)0)2 Q) 0+ O 2

e The heightis w* > + 2 (vs w* for word languages).

e Complete sets exist in I17, IT3, and surprisingly, in A%.
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[Wadge reducibility—decidability issues]

Fact (Buchi & Landweber 1969). For Blchi automata on infinite words:

(1) If L(A) <., L(B) then there exists a finite—state transducer
reducing L(.A) to L(B).

(2) It is decidable if L(A) <., L(B).
For trees, (1) does not hold. Nevertheless, Murlak 2006 shows

Fact. It is decidable if 7 (A) <,, 7 (B), for deterministic tree automata A , 5 .

The non-deterministic case remains open.
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[Beyond the deterministic case—game languages revisited]

Recall the hierarchy witness languages 7, ., Wm. We have
(1)1, <w 10,1, forany ¢, x;

(2) WL,I{ Sw WL/,K,/ g (La 5) E ((Lla HZ/)-

°© °© Wi 4 Wo,3

(@)

>
| < >
| ><] <
Pet e

T To,0
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[A complete set for all deterministic tree Ianguages]

Any deterministically recognisable set of trees is reducible by a transducer to
T() 1-

Y

We first show a generic reduction of 7 (A) to 1§ 2.

Let  be a unique run of an automaton A on a tree t. For each odd 1 < n , let

(0 if rankr(w) < 1

ri(w) =< 1 ifrankr(w) =i

| 2 ifrankr(w) > i

t — (7“1,0(7“3,0(7“5, cee 0(7“2-(%1—377“2-{%—1) . )))
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[Reduction of Ty 2 to To,1-]

2 — 0
N RN
/ \
global(ty) local(ty)

where [ocal(t;) is t; reproduced till first 2,
global (0(t7,t5)) = global(1(t],t5)) = 0(global(t}), global(ts)),

global(2(t7,t5)) as above.
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[WL,,{ form a strict hierarchy—sketch of proof]

We identify 1. =~ X%, and view it as a metric space.
f 2% — 3% is contracting if
d(f(t1), f(t2)) < c-d(t1,t2), for some constant 0 < ¢ < 1.

Note that by the Banach Fixed-Point Theorem, no L = X% — L

is reducible to L via a contracting reduction.

In particular W, ., = Wi does not reduce to W, ,. via a contracting reduction.

Neither does W,/ .. with (¢/, k") 3 (¢, k).
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Main Lemma If f reduces IV, ,; to some L then there is a mapping
h : X% — > (padding), such that

e /1reduces W, . to itself,

e f o his contracting.

Recall For any continuous f : X% — X%, thereis f, : 22 — ™, such that,

f(u) =lim, .o fu(u [ n).

Waiting time For any continuous f : 2% — X%,

wait(f,n) = min{k : (Vo) |v| > k = |f.(v)| > n}.

Sub-lemma Let f, g : 2* — X“ be continuous functions satisfying

9+(v)| = wait (f,[v] + 1),

forallv € X*. Then f o g is contracting with the constant ¢ =

DN —
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[Yet another link between automata and topologyj

A.Arnold 1998 showed that
T(A) <, W,

for any alternating automaton of index (¢, k).

Corollary 1f W, .<,, 7 (A) then 7 (A) cannot be recognised by an

alternating automaton of index (¢, k).

Question: iff ?
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[Related questions and results]

General goal: find a simplest description of an object.

Given : a formula of some logic L .
Question : s it equivalent to a formula of some sub-logic L' C L ?
Given : a formula of the p-calculus.

Question :  Determine its level in the p-hierarchy.

M. Otto 1999 showed how to decide if 1+ and ¥ can be completely eliminated in a

formula.
Walukiewicz 2002 settled the 1« and v levels.

What about the next levels ?
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Conclusion. In contrast to the finitary case, finite state automata
running over infinite words or trees can recognise highly complex
properties of infinite computations (e.g., I1}-complete).

Automata also provide fine hierarchies, complementary to the
classical Borel/projective hierarchies.

For deterministic automata, we can decide its exact level in the
complexity hierarchies.

The non-deterministic case needs new ideas.
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Appendix

[The Mostowski hierarchy — relation to the ,u-calculus]

The set of trees over alphabet {a, b} where, on each branch, b appears only

finitely often can be presented by

pz.vy.a(y,y) Ub(z, 2)
where
e i.x.tis the least fixed point of x = t(x),

e vx.tis the greatest fixed point of x = t(x),

° f(Ll,LQ):{ f ZtleLl,tQELQ}.

RN
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[The Mostowski hierarchy — relation to the pi-calculus ctd.]

T, = ﬁxn...,uxg....yxl.,uajg.Ui(:ci,:m)

W, = Vxn,...uxs....v11.020. U(di(xia YU d;(tt, @) Uci(xg, 7))

The index hierarchy of automata coincides with the ji-calculus hierarchy of

nesting alternately the least (11) and the greatest () fixed points.
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[The two hierarchies }

(1,4)

(1,3

(1,2

(1, 1)

X XX

(0, 1)

(0,0)

(vpvp) (nvpv)

(e

(nv)
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[The two hierarchies in two versions }

Non-deterministic hierarchy :

x| f(ty,...,tg) |t1 Vo |px.t|ve.t = non-deterministic automata

Alternating hierarchy :

x| f(ty,...,te) |t1 Vo |tiAts | px.t|ve.t = alternating automata
We have
U Non-deterministic hierarchy = U Alternating hierarchy
but neither of the hierarchies refines the other :
e All'T,’s are in the level v = (0, 1) of the alternating hierarchy.

e T, and I¥,, are on the same level in non-deterministic hierarchy, but not in

the alternating hierarchy.
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[The Mostowski hierarchy — relation to complexity]

The non-emptiness problem for non-deterministic parity tree automata is
in NP M co-NP (even UP M co-UP ).

It is polynomial-time equivalent to the model-checking problem for the

p-calculus.

Restricted to the automata A of index 7, the problem can be solved in time

|A‘O(n>_
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