
Unsafe grammars and panic automata

Teodor Knapik

Université de la Nouvelle Calédonie

Damian Niwiński and Paweł Urzyczyn

Warsaw University

Igor Walukiewicz

Université Bordeaux I

ICALP 2005 — GAMES 2005

1

�� ��Recursive program schemes

x+ y

x · y = x+ x+ x+ . . .+ x︸ ︷︷ ︸
y−1

xy = x · x · x · . . . · x︸ ︷︷ ︸
y−1

.

A(n, x, y) = if n = 0 then x+ y else Iter(A(n− 1, x, ?), y, x)

Iter(ϕ,m, z) = if m = 1 then z else ϕ(Iter((ϕ,m− 1, z)))

2

•

~~
~~

~~
~

@@
@@

@@
@

•

~~
~~

~~
~

•

~~
~~

~~
~

@@
@@

@@
@

• • • • •

Initial semantics of recursive schemes is given by infinite terms.

Questions about expressiveness.

Engelfriet, Schmidt, Damm, Arnold, Nivat, . . . 1970–1980.

Revival of interest in context of model checking of infinite-state systems.

Questions about complexity.

Courcelle, Hungar, Caucal, . . . 1990–2000.

3

�� ��M |= ϕ ? Graphs vs trees, µ-calculus vs monadic logic

• The Lµ theories of a graph and its unfolding are the same.

• Lµ captures the bisimulation–invariant fragment of MSO logic.

• Over trees, Lµ is equivalent to MSO in the expressive power, but better

tractable algorithmically.

•

~~
~~

~~
~

@@
@@

@@
@

•

@@
@@

@@
@ •

~~
~~

~~
~

•

•

~~
~~

~~
~

@@
@@

@@
@

• •

• •

4

Trees with decidable (MSO, Lµ) theories

Rabin 1969 : regular trees.

Courcelle 1995 : algebraic trees.

KNU 2001 : trees generated by save grammars of level 2.

KNU 2002 : trees generated by save grammars of level n,

or, equivalently, trees recognized by higher-order pushdown automata of level n.

Aehlig, de Miranda and Ong 2005 : trees generated by all grammars of level 2.

Independently: this paper.

Additionally, the 2-EXPTIME-completeness of the µ-calculus model checking.

5

�� ��Trees as transition systems (Kripke structures)

A tree (term) over signature Σ is t : Dom t → Σ,

with Dom t ⊆ ω∗.

t = 〈Dom t, {ptf : f ∈ Σ} ∪ {succt
i : 1 ≤ i ≤ mΣ}〉

with ptf = {w ∈ Dom t : t(w) = f}, for f ∈ Σ, and

succt
i = {(w,wi) : wi ∈ Dom t}, for 1 ≤ i ≤ mΣ.

Monadic second-order formulas:

pf (x), succi(x, y), x = y, x ∈ X

ϕ ∨ ψ, ¬ϕ,∃xϕ, ∃Xϕ.

Lµ formulas:

pf , X, 〈succi〉α, [succi]α, α ∧ β, α ∨ β, µX.α, νX.α.

6

Tree grammars

Types T τ ::= 0 | τ → τ

Nonterminals N = {Nτ}τ∈T

Variables X = {Xτ}τ∈T

Signature constants f, g, c, . . . : 0k → 0�� ��Grammar G = (Σ, V, S,E)

with Σ a signature, V ⊆
⋃

τ∈T Nτ , V 3 S : 0,

and E a finite set of productions of the form

Fz1 . . . zm ⇒ w

with V 3 F : τ1 → τ2 · · · → τm → 0, zi ∈ Xτi
,

and w an applicative term over Σ ∪ V ∪ {z1 . . . zm} of type 0.

7

�� ��Reductions

We assume that a grammar G is deterministic,

i.e., one production per nonterminal.

Hence there is a unique outermost reduction

S = t0 →G t1 →G t2 →G . . .

producing the tree [[G]] generated by G.�� ��Levels

`(0) = 0, `(τ1 → τ2) = max(1 + `(τ1), `(τ2))

We consider grammars with nonterminals of level at most 2.

8

�� ��Example: Ackermann revisited

A : 03 → 0

Iter : (0 → 0) → 0 → 0 → 0

S : 0

Anxy ⇒ Cond(Zero n)(Plus xy)(Iter (A (Pred n)x)yx)

Iter ϕmz ⇒ Cond (Onem)z(ϕ(Iter ϕ(Pred m)z)

S ⇒ Abcd

9

Model checking

Given a grammar G and a property ϕ. Does
�� ��[[G]] |= ϕ ?

For MSO (even for FSO), the problem is non-elementary already for regular tree

grammars.

For the µ-calculus, it is EXPTIME-complete for algebraic grammars (W. 1996), and

n-EXPTIME-complete for safe grammars of level n (Cachat and W. 2004).

For regular grammars, the complexity is still open!

Here we will remove the safety assumption for level 2.

We use an equivalent formulation via alternating automata and parity games.

10

�� ��Parity games

V∃ positions of Eve

V∀ positions of Adam (disjoint)

−→ ⊆ V × V possible moves (with V = V∃ ∪ V∀)

p1 ∈ V initial position

Ω : Q→ ω the ranking function.

An infinite play v0→v1→v2→ . . . is won by Eve iff lim supn→∞ Ω(vn) is even.

Parity games enjoy positional determinacy

(Emerson and Jutla 1991, Mostowski 1991).

11

�� ��Alternating automata

B = 〈Σ, Q∃, Q∀, q1, δ,Ω〉

where Q∃ ∪Q∀ = Q is a set of states, and δ is a set of transitions of the form

q → f(q1, . . . , qk), with Σ 3 f : 0k → 0.

For a tree t, Eve and Adam play a suitable parity game.

B accepts t iff Eve wins the game.�
�

�
�

Problem 1 . Given a 2nd order grammar G and an alternating parity

tree automaton B. Does B accept [[G]] ?

12

When the grammar is safe (KNU 2001, 2002)

A term of level k > 0 is unsafe if it contains an occurrence of a parameter of level

strictly less than k.

An occurrence of an unsafe term t is unsafe, unless it is in the context . . . (ts) . . .

A grammar is safe if no unsafe occurrence of an unsafe term appears.

Example:

Anxy ⇒ Cond(Zero n)(Plus xy)(Iter (A (Pred n)x)yx)

The method for safe grammars: reduction of G of level n to Gα of
level n− 1.

13

�� ��Why is safety a problem ?

Safe Unsafe

Iterϕ(Pm)z Iter(A(Pn)x)yx

@

~~
~ AA

A

@

yyy
y @@

@ z

Iter @

~~
~ AA

A

ϕ P m

@

~~
~ ??

?

@

yyy
y @@

@ x

Iter y

@

yyy
y EE

EE

@

~~
~ EEE

E x

A @

yyy
y EE

EE

P n

14

�� ��Why is safety a problem ?

Safe Unsafe

Iterϕ(Pm)z Iter(A(Pn)x)yx

@

~~
~ AA

A

@

yyy
y @@

@ z

Iter @

~~
~ AA

A

ϕ P m

@

~~
~ ??

?

@

yyy
y @@

@ x

Iter y

@

yyy
y EE

EE

@

~~
~ EEE

E x

A @

yyy
y EE

EE

P n

15

When the grammar is unsafe. . .

. . . we use panic automata

16

Second-order pushdown stores

A level 1 pushdown store is a non-empty word a1 . . . ak over Γ.

A level 2 pds is a non-empty sequence of 1-pds’ [s1][s2] . . . [sl] .

Operations :

push1〈a〉([s1][s2] . . . [sl][w]) = [s1][s2] . . . [sl][wa]

pop1(α[wξ]) = α[w]

push2(α[w]) = α[w][w]

pop2(α[v][w]) = α[v]

17

Second-order pushdown stores with time stamps

A level 1 pushdown store is a non-empty word a1 . . . ak over Γ× ω.

A level 2 pds is a non-empty sequence of 1-pds’ [s1][s2] . . . [sl] .

Operations (Op2) :

push1〈a〉([s1][s2] . . . [sl][w]) = [s1][s2] . . . [sl][w(a, l)]

pop1(α[wξ]) = α[w]

push2(α[w]) = α[w][w]

pop2(α[v][w]) = α[v]

panic([s1][s2] . . . [sm] . . . [sl][w(a,m)]) = [s1][s2] . . . [sm]

18

⊥ push1〈a〉

⊥ a

⊥ a b push2

⊥ a b ⊥ a b pop1

⊥ a b ⊥ a

⊥ a b ⊥ a a

⊥ a b ⊥ a a ⊥ a a

⊥ a b ⊥ a a ⊥ a a ⊥ a a

⊥ a b ⊥ a a ⊥ a a ⊥ a a b

⊥ a b ⊥ a a ⊥ a a ⊥ a a panic!

⊥ a b

19

(⊥ ,0)

(⊥ ,0) (a,0)

(⊥ ,0) (a,0)

(⊥ ,0) (a,0) (b,0)

(⊥ ,0) (a,0) (b,0) (⊥ ,0) (a,0) (b,0)

(⊥ ,0) (a,0) (b,0) (⊥ ,0) (a,0)

(⊥ ,0) (a,0) (b,0) (⊥ ,0) (a,0) (a,1)

(⊥ ,0) (a,0) (b,0) (⊥ ,0) (a,0) (a,1) (⊥ ,0) (a,0) (a,1)

(⊥ ,0) (a,0) (b,0) (⊥ ,0) (a,0) (a,1) (⊥ ,0) (a,0) (a,1) (⊥ ,0) (a,0) (a,1)

(⊥ ,0) (a,0) (b,0) (⊥ ,0) (a,0) (a,1) (⊥ ,0) (a,0) (a,1) (⊥ ,0) (a,0) (a,1) (b,3)

(⊥ ,0) (a,0) (b,0) (⊥ ,0) (a,0) (a,1) (⊥ ,0) (a,0) (a,1) (⊥ ,0) (a,0) (a,1) !

(⊥ ,0) (a,0) (b,0)

20

Panic automata vs hyperalgebraic grammars

There are polynomial-time translations:

grammar G 7→ automaton AG
automaton A 7→ grammar GA

such that

• AG recognizes the tree generated by G,

• GA generates the tree recognized by A.

21

�� ��Simulation of grammar by automaton

Pushdown symbols: subterms of the grammar.

The top symbol of 2-pds “approximates” an expression in the derivation.

The whole content of 2-pds represents the environment, where this approximation is

evaluated.

.

. A b c Anx⇒ I(An)x push1〈I(An)x〉

. A b c, I (A n) x

.

22

. M (ψ z) Mx⇒ fx

. M (ψ z), f x

. M (ψ z), x

.ψ z

.

. I (A n) x Iϕm⇒ ϕ(Iϕm)

. I (A n) x, ϕ (I ϕ m)

. I (A n) x, ϕ (I ϕ m) I (A n) x, ϕ (I ϕ m)

. I (A n) x, ϕ (I ϕ m) I (A n) x, A n ◦

. I (A n) x, ϕ (I ϕ m) I (A n) x, A n ◦ A n ◦.◦

. I (A n) x, ϕ (I ϕ m) I (A n) x, A n ◦◦ panic!

. I (A n) x, ϕ (I ϕ m)

. I (A n) x, I ϕ m

23

Let’s play a parity game on the configuration graph

of a panic automaton.

24

Second-order pushdown systems with panic

A system C = (P, P∃, P∀,Γ, p1,∆,Ω) consists of

P = P∃
·
∪ P∀ finite set of control locations

p1 ∈ P initial location

∆ ⊆ P × Γ× P ×Op2 transition rules

Ω : P → ω rank function

A configuration is (p, s), where p ∈ P and s a 2-pds.

We define a parity game Game(C), with initial position (p1, [(⊥, 0)]), by

(p, s)−→(p′, I(s))

whenever p, top(s) →∆ p′, I .

25

Problem 1 . Given a 2nd order grammar G, and an alternating parity tree automaton

B, decide if B accepts [[G]].

m

Problem 2 . Given a second-order pushdown systems with panic C, decide if Eve

wins Game(C).

C ≈ G × B

26

�� ��Making pushdown systems rank-aware

(p, [s1] . . . [sm]) // // (q, [s1] . . . [sm] . . . [w(a,m)])

panic

ee

We can force a to “remember” the highest rank on the path, say Rank(a).

27

�� ��Deciding the winner in Game(C).

W transform C to a second-order pushdown systems without panic C′, i.e.,

∆′ ⊆ P ′ × Γ′ × P ′ × (Op2 − {panic}),

such that Eve wins Game(C)⇐⇒ Eve wins Game(C′).

For the latter games, the problem is 2-EXPTIME-complete (Cachat and W. 2004).

Hint : Panic in advance!

28

�� ��Construction of C′

The set of “happy returns” is defined by

Ret = P
·→ {0, 1, . . . , d}

We let

Γ′ = Ret ∪ (Γ× Ret)

If C : q, a →∆ q′, panic, we let

C′ : q, (a,R) →∆′ > if Rank(a) < R(q′)

q, (a,R) →∆′ ⊥ otherwise.

where . . . 5 4 3 4 1 4 0 4 2 4 4 4 . . .

29

�� ��Simulation of C by C′

A pds w1R1 . . . wkRk wk+1R of C′

represents s1 sk sk+1 of C.

For example, w5R5

(a,R1) (b,R2) (c,R2) (b,R3) R5

represents s5

(a, I1) (b, I2) (c, I2) (b, I3)

30

C :

s // sR sI // // sR p (a, 1)

panic

vv

C′ :

w +3

R

wR w I // // wR . . . p (a, R)

wwooooooooo

''OOOOOOOOO

��

⊥ >

31

�� ��Conclusion

The problem [[G]] |= ϕ ?, where [[G]] is a grammar of level 2 (possibly unsafe),

and ϕ a formula of the µ-calculus, is 2-EXPTIME-complete.

�� ��Open problems

Does the result generalize to level n ?

Are there grammars that are intrinsically unsafe ?

In other words, is panic inevitable ?

32

