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Note. This is a revised version of the slides accompanying the presentation to the

Games workshop. Thanks go to Filip Murlak and Michał Skrzypczak for correcting

some erroneous claims and answering some questions stated in the talk.
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Why hierarchies ?
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Do all intervals have rational length ?

Pythagoras: plausibly yes

Anonymous: no !

�
�

�
��
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Are all definable subsets of a real line

Borel measurable ?

Lebesgue: plausibly yes

Suslin: no !

Borel sets are those generated from open intervals by countable union and

complement.

B0 ⊆ B1 ⊆ . . . Bω ⊆ Bω+1 . . . . . . Bω2 . . .
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Behind this question. . .

Cantor: is every subset of a real line either

countable or equinumerable with the

whole line ? (Continuum hypothesis)

Alexandrov & Hausdorff: true for Borel sets

Suslin: but projection of a Borel (even closed)

relation may be non-Borel !

70 years later. Interesting sets of trees recognized by automata are usually

non-Borel.
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MSO definable sets of infinite words can be recognized by finite automata

with the Büchi acceptance criterion.

◦• ◦ ◦•• ◦ • ◦ ◦ ◦ • ◦ •••• ◦ ◦ ◦ •• ◦ • ◦ ◦•• ◦ ◦ ◦ •• . . . . . . . . .

Is this criterion sufficient for MSO definable

sets of trees ?

Rabin: no !

◦••• ◦ •••••• ◦ ◦••••• ◦ • . . . . . . . . .

more colors needed
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Plan.

• Why the index hierarchies are strict

– deterministic automata on words

– game languages

– alternating automata on trees

• Separation and reduction properties

• Relation to other hierarchies and decidability issues
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More colors are needed.

To understand why, we first look at deterministic automata on infinite words.

◦

a

�� b
(( •

b



a

hh ((a+ b)∗b)ω

The complement ((a+ b)∗b)ω = (a+ b)∗aω

cannot be recognized by deterministic Büchi automaton.

a→ b→ a→ a→ b→ a→ a→ a→ b→ a→ a→ a→ a→ b→ a→ . . . . . .
a→ b→ a→ . . .
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(a + b)∗aω

Nondeterminism or dual criterion helps

◦

a,b

�� a // •
a



◦

a

�� b
(( •

b



a

hh

◦• ◦ ◦•• ◦ • ◦ ◦ ◦ • ◦ •••• ◦ ◦ ◦ •• ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ . . . . . . . . .
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Is there any pattern sufficient for all deterministic automata ?

••••••••••••••••••••••••••••••• . . . . . .

Note: the Büchi pattern ((◦+ •)∗•)ω is sufficient for non-deterministic

automata.

11



More precisely, let R ⊆ Cω .

A deterministic R-automaton is 〈A,Q, qI ,Tr , rank〉,
where qI ∈ Q, Tr : Q×A→ Q, rank : Q→ C .

qI

‖

A run q0
a0 // q1

a1 // q2
a2 // q3

a3 // . . . is accepting

iff rank(q0) rank(q1) rank(q2) rank(q3) . . . ∈ R.

Is there an R ⊆ Cω , such that deterministic R-automata recognize all ω-regular

languages ?
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No deterministic R-automaton (over alphabet C) may accept R.

Suppose

L(A) = R

Create a word

q0
rank(q0) // q1

rank(q1) // q2
rank(q2) // q3

rank(q3)// . . .

u = rank(q0) rank(q1) rank(q2) rank(q3) . . .

Then

u ∈ R ⇐⇒ u ∈ R,

a contradiction.
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Remark

q0
rank(q0) // q1

rank(q1) // q2
rank(q2) // q3

rank(q3)// . . .

u = rank(q0) rank(q1) rank(q2) rank(q3) . . .

This word u is a fixed point of the mapping

w 7→ rank ◦ run(w)

By the Banach Fixed Point Theorem, it is a unique fixed point.

Other analogies — strategy stealing ?
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Remark

The R-automata recognize the complements of languages recognized by

R-automata, for any R.

Maybe, R-automata plus R-automata will suffice, for some R ?

No. Then R×R-automata would suffice, which is not the case.

Hence, each R gives rise to a strict hierarchy

R

NNNNNNNNN R×R

ppppppppp

OOOOOOOOO
. . .

ooooooooo

R R×R . . .
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Digression

There is a non-regular language R, such that R-automata recognize all

ω-regular languages —but also some non-regular ones.

For example, a “universal” parity condition R ⊆ {0, 1}ω (M. Skrzypczak)

R = {0m0 1 0m1 1 0m2 1 . . . : lim supmn is an even natural number }
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A parity automaton of Rabin-Mostowski index (i, k) is an R-automaton with

C = {i, i + 1, . . . , k},

R = Li,k = {u : lim sup
i→∞

uiis even}.

Parity automata exhaust all ω-regular languages, which is the celebrated

McNaughton Theorem (1966).

The indices induce a hierarchy

(1, 4)

rrrrr
(0, 3)

LLLLL

(1, 3)

uuuu
(0, 2)

JJJJ

(1, 2)

uuuu
(0, 1)

JJJJ

(1, 1)

uuuu
(0, 0)

JJJJ
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(1, 4)

sssssss
(0, 3)

KKKKKKK

(1, 3)

vvvvvv
(0, 2)

HHHHHH

(1, 2)

vvvvvv
(0, 1)

HHHHHH

(1, 1)

vvvvvv
(0, 0)

HHHHHH

◦• ◦ •

qqqqqqqqq
• ◦ •◦

MMMMMMMMM

◦•◦

rrrrrrrr
• ◦ •

LLLLLLLL

◦•

rrrrrrrr
•◦

LLLLLLLL

◦

rrrrrrrrr •

LLLLLLLLL

If we identify an (i, k) with a structure 〈{i, i+ 1, . . . , k},≤,Even〉 then

inclusions in the hierarchy correspond to embeddings of such structures.

18



Note that L0,k ≈ L1,k+1 cannot be accepted by (1, k + 1)-automaton.

Hence the hierarchy

∆4

rrrr
LLLL

(1, 3)

uuu
(0, 2)

III

∆3

uuu
III

(1, 2)

uuu
(0, 1)

III

∆2

uuu
III

(1, 1)

uuu
(0, 0)

III

is strict, as noted by Wagner 1979, Kaminski 1985.
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Note. Constructing parity condition from the Büchi condition.

Let L ≈M , whenever L can be recognized by an M -automaton, and M by an

L-automaton. Then

(1, 3) ≈ (0, 1)× (1, 2)

via transformation

(1, 1) 7→ 3 (1, 2) 7→ 1

(0, 2) 7→ 2 (0, 1) 7→ 1

Clearly

(0, 2) = (1, 3)

We have further dependencies for i ≤ 2n (F. Murlak)

(i, 2n+ 1) ≈ (i, 2n)× (0, 1)

(i, 2n+ 2) ≈ (i, 2n)× (0, 2)
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From words to trees.

A game on a (colored) graph.

V∃ positions of Eve

V∀ positions of Adam (disjoint)

p1 ∈ V initial position

−→ ⊆ V × V possible moves (with V = V∃ ∪ V∀)

rank : V → C the ranking function

R ⊆ Cω winning condition for Eve

An infinite play v0→v1→v2→ . . . is won by Eve iff

rank(v0) rank(v1) rank(v2) . . . ∈ R.

A parity game of index (i, k) is a game with R = Li,k.
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Let R ⊆ Cω . An alternating R-automaton over binary trees t : 2∗ → A is

〈A,Q, qI ,Tr , rank〉

Q = Q∃
·
∪ Q∀ Tr ⊆ Q×A× {0, 1, ε} ×Q

qI ∈ Q rank : Q→ C

An input tree t is accepted by the automaton iff Eve has a winning strategy in the

game

Q∃ × 2∗, Eve’s

Q∀ × 2∗, Adam’s

(qI , ε), initial

{((p, v), (q, vd)): v ∈ dom(t), (p, t(v), d, q) ∈ Tr} moves

rank(q, v) = rank(q) ranking

R winning Eve
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In non-deterministic automata there are transitions

q∃
ε→ q∀

and, for each universal state q∀, and a ∈ A, there at most two transitions

q∀
a,0→ p0 q∀

a,1→ p1

•σ

}}||||||||

!!BBBBBBBB

• •

In deterministic automaton: only universal states.
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Game tree languages.

A game on a tree t : 2∗ → {∃,∀} × C , with condition L ⊆ Cω .

Eve : ∃, c

~~}}}}}}}}
∃, c

  AAAAAAAA

Adam : ∀, c

~~}}}}}}}}
∀, c

  AAAAAAAA

Eve wins an infinite play (x0, j0), (x1, j1), (x2, j2), . . . (x` ∈ {∃,∀})

iff j0 j1 j2 . . . ∈ L.

Win∃(L) = {t : Eve wins }
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Example. L = L0,2.

∃, 1

!!CCCCCCCC

}}{{{{{{{{

∀, 0 ∃, 1

!!CCCCCCCC

}}{{{{{{{{

∀, 0 ∃, 1

!!CCCCCCCC

}}{{{{{{{{

∀, 2 ∃, 1

��>>>>>>>>

}}{{{{{{{{

∀, 0
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Easy lemma.

If L ⊆ Aω is recognized by a deterministic R-automaton then Win∃(L) is

recognized by an alternating R-automaton.

Is there an R ⊆ Cω , such that alternating R-automata recognize all

recognizable tree languages ?

A set of trees is recognizable if it can be recognized by an alternating (or non-deterministic)

parity automaton.

26



No R-automaton (over alphabet {∃,∀} × C) may accept Win∃(R).

We use the concept of a game tree.

Recall thatA accepts t iff Eve wins the game G(A, t) with the set of positions

2∗ ×Q and condition R.

Unravel this game to a tree.

For a position (v, q), retain only the label (own(q), rank(q)), where

own(q) = ∃ iff q ∈ Q∃
own(q) = ∀ iff q ∈ Q∀.

Claim. A accepts t iff the game tree (mutatis mutandis) is in Win∃(R).
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Suppose, for an alternating R-automatonA,

L(A) = Win∃(R).

Create a tree f

(own(qI), rank(qI))

ssggggggg
++WWWWWWW

(own(q1), rank(q1))

vvmmmmmm
((RRRRR (own(q2), rank(q2))

vvmmmmmm
((RRRRR

where

(qI , (own(qI), rank(qI)), d1, q1), (qI , (own(qI), rank(qI)), d2, q2) ∈ Tr .

Then

f ∈Win∃(R) ⇐⇒ f ∈Win∃(R),

a contradiction.
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Abbreviate Wi,k = Win∃(Li,k).

Then W0,k ≈W1,k+1 cannot be accepted by (1, k + 1)-automaton

Hence the hierarchy of alternating tree automata

∆4

rrrr
LLLL

(1, 3)

uuu
(0, 2)

III

∆3

uuu
III

(1, 2)

uuu
(0, 1)

III

∆2

uuu
III

(1, 1)

uuu
(0, 0)

III

is strict, as proved by Bradfield 1998.
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Following mathematical logic, should we name the classes Π and Σ ?

(1, 4)

uuuuuuuu
(0, 3)

IIIIIIII

(1, 3)

wwwwwwww
(0, 2)

GGGGGGGG

(1, 2)

wwwwwwww
(0, 1)

GGGGGGGG

(1, 1)

wwwwwwww
(0, 0)

GGGGGGGG

(1, 4)

uuuuuuuu
(0, 3)

IIIIIIII

(1, 3)

wwwwwwww
(0, 2)

GGGGGGGG

(1, 2)

wwwwwwww
(0, 1)

GGGGGGGG

(1, 1)

wwwwwwww
(0, 0)

GGGGGGGG

xxxx xxxx

Σ4

uuuuuuuu
Π4

IIIIIIII

Σ3

wwwwwwww
Π3

GGGGGGGG

Σ2

wwwwwwww
Π2

GGGGGGGG

Σ1

wwwwwwww
Π1

GGGGGGGG
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Following mathematical logic, should we name the classes Π and Σ ?

(1, 4)

uuuuuuuu
(0, 3)

IIIIIIII

(1, 3)

wwwwwwww
(0, 2)

GGGGGGGG

(1, 2)

wwwwwwww
(0, 1)

GGGGGGGG

(1, 1)

wwwwwwww
(0, 0)

GGGGGGGG

xxxx xxxx

Π4

uuuuuuuu
Σ4

IIIIIIII

Σ3

wwwwwwww
Π3

GGGGGGGG

Π2

wwwwwwww
Σ2

GGGGGGGG

Σ1

wwwwwwww
Π1

GGGGGGGG

xxxx xxxx

Σ4

uuuuuuuu
Π4

IIIIIIII

Σ3

wwwwwwww
Π3

GGGGGGGG

Σ2

wwwwwwww
Π2

GGGGGGGG

Σ1

wwwwwwww
Π1

GGGGGGGG

Why not like this ?
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In descriptive set theory, the orientation of the hierarchy stems from the

separation property.

A set C separates a disjoint pair of sets A,B, if

A ⊆ C

B ∩ C = ∅

or vice versa.

• •

• •
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A class of sets Γ has separation property if any disjoint pair of sets A,B ∈ Γ
is separated by some C ∈ ∆ = Γ ∩ co−Γ (where co−Γ = {X : X ∈ Γ}).

Γ

???????? co−Γ

xxxxxxxxx

∆
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Examples.

Any two disjoint co-recursively enumerable sets are separable by a recursive set.

Not so with r.e.-sets, in general.

Any two closed subsets of the Cantor discontinuum are separable by a clopen set.

Not so with open sets, in general.

Lusin theorem. Any two disjoint analytic sets are separable by a Borel set.

Not so with co-analytic sets, in general.
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Separation property for classical (e.g., topological) hierarchies is well understood.

no Σ1
2 Π1

2
yes

∆1
2

BBBB {{{{

yes Σ1
1

||||
Π1

1

CCCC
no

no Σ0
2 ∆1

1

BBBB {{{{
Π0

2
yes

no Σ0
1 ∆0

2

BBBB {{{{
Π0

1
yes

∆0
1

BBBB {{{{
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State–of–the–art for automata.

no (0, 3)

qqqqqqqqqq
(1, 4) yes

NNNNNNNNNN

no (1, 3)

rrrrrrrrr
(0, 2) yes

LLLLLLLLL

no (0, 1)

rrrrrrrrr
(1, 2) yes

LLLLLLLLL

no (1, 1)

rrrrrrrrr
(0, 0) yes

LLLLLLLLL

no (0, 3)

qqqqqqqqqq
(1, 4) ?

NNNNNNNNNN

no (1, 3)

rrrrrrrrr
(0, 2) ?

LLLLLLLLL

no (0, 1)

rrrrrrrrr
(1, 2) yes

LLLLLLLLL

no (1, 1)

rrrrrrrrr
(0, 0) yes

LLLLLLLLL

deterministic words alternating trees

Rabin 1970, Selivanov 1998, Santocanale, Arnold 2005, Hummel, Michalewski, N. 2009,

Arnold, Michalewski, N. 2012.
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Convention

• ◦ •◦ Σ4 (0, 3) (1, 4) Π4 ◦• ◦ •

∆4

wwww
GGGG

◦•◦ Σ3 (1, 3)

wwww
(0, 2)

GGGG
Π3 • ◦ •

∆3

wwww
GGGG

Σ2 (0, 1)

wwww
(1, 2)

GGGG
Π2

∆2

wwww
GGGG

Σ1 (1, 1)

wwww
(0, 0)

GGGG
Π1
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State–of–the–art for automata (in Σ/Π notation).

no Σ4

sssssssss
Π4 yes

KKKKKKKKK

no Σ3

uuuuuuuu
Π3 yes

IIIIIIII

no Σ2

uuuuuuuu
Π2 yes

IIIIIIII

no Σ1

uuuuuuuu
Π0 yes

IIIIIIII

no Σ4

sssssssss
Π4 ?

KKKKKKKKK

no Σ3

uuuuuuuu
Π3 ?

IIIIIIII

no Σ2

uuuuuuuu
Π2 yes

IIIIIIII

no Σ1

uuuuuuuu
Π1 yes

IIIIIIII

deterministic words alternating trees

Rabin 1970, Selivanov 1998, Santocanale, Arnold 2005, Hummel, Michalewski, N. 2009,

Arnold, Michalewski, N. 2012.
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Non-separation

For the class Σ2, a non-separable pair W0,1 and W ′0,1, where W ′0,1 is obtained

from W0,1 by interchanging ∃ ↔ ∀ and 0↔ 1.

W0,1 and W ′0,1 are inseparable by any Borel set, hence a fortiori by any set in

∆1. (Hummel, Michalewski, N. 2009)

Remark. The argument fails for the higher levels analogues W ′i,k (for odd k).

For example., in W ′1,3 Adam has a strategy to force that there are infinitely many

3’s, but only finitely many 1’s.

But W1,3 and W ′1,3 are separable by the ∆3 set:

Eve has a strategy to force that 3 occurs only finitely often.
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Remedy comes again via deterministic automata on words (Arnold, M., N. 2012).

Lemma. Li,k × Li,k and Li,k × Li,k are inseparable by a set in ∆.

SupposeA,A′ are deterministic automata of index (i, k) such that

L× L ⊆ L(A) L(A) ∩ L(A′) = ∅

L× L ⊆ L(A′) L(A) ∪ L(A′) = >.

Create a word u

q0, q
′
0

rank(q0),rank(q′0)// q1, q
′
1

rank(q1),rank(q′1)// q2, q
′
2

rank(q2),rank(q′2)// . . .

rank(q0)rank(q′0) rank(q1)rank(q′1) rank(q2)rank(q′2) . . .

Then

u ∈ L(A) ⇒ u ∈ L× L ⊆ L(A′)

u ∈ L(A′) ⇒ u ∈ L× L ⊆ L(A)

a contradiction.
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Remark

q0, q
′
0

rank(q0),rank(q′0)// q1, q′1
rank(q1),rank(q′1)// q2, q′2

rank(q2),rank(q′2)// . . .

rank(q0)rank(q′0) rank(q1)rank(q′1) rank(q2)rank(q′2) . . .

This word is a unique fixed point of the mapping(
{i, . . . , k}2

)ω 3 w 7→
(
rank ◦ runA, rank ◦ runB

)
(w).

41



Lemma. Li,k × Li,k and Li,k × Li,k are inseparable by a set in ∆.

Key Lemma. For m ≥ 2, there exist disjoint Um1 , U
m
2 in Σm, such that, for

L = Li,k in Πm,

L× L ⊆ Um1

L× L ⊆ Um2

By previous Lemma, Um1 , U
m
2 form an inseparable pair.

We infer

Theorem. The tree languages Win∃(Um1 ) and Win∀(Um2 ) are inseparable by

a set in ∆k.

Thus the separation property fails for the classes Σm.
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More specifically,

Win∃(L× L) ⊆ Win∃(Um1 )

Win∀(L× L) ⊆ Win∀(Um2 )

and the latter cannot be separated by fixed-point argument.

Note: to simulate the (rank ◦ runA, rank ◦ runB) construction, we need a

product of game trees.
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Lemma. For any L0, L1,

Win∃(L0)⊗Win∃(L1) ⊆ Win∃(L0 ⊗ L1)

Win∀(L0)⊗Win∀(L1) ⊆ Win∀(L0 ⊗ L1)

∃, a

����� ��999 ⊗ ∀, b

�����
!!DDD = ∃, a, b

uukkkkkkk
))SSSSSSS

t0 t1 t′0 t′1 ∀, a, b

{{www
##GGG ∀, a, b

{{www
##GGG

t0 ⊗ t′0 t0 ⊗ t′1 t1 ⊗ t′0 t1 ⊗ t′1
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Further properties of U1, U2. (Recall they are in Σm.)

If L is in Πm then

L× L ⊆ U1

L× L ⊆ U2

L× L ⊆ U1 ∪ U2

Hence, if L(A) and L(B) are disjoint languages in Πm, they are separated by

{u : (rank ◦ runA(u), rank ◦ runB(u)) ∈ U1}

{u : (rank ◦ runA(u), rank ◦ runB(u)) ∈ U2}

Thus the separation property holds in classes Πm (for words).
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Problem. Does the separation property hold for classes Πm,
m ≥ 3, for alternating automata on trees ?

Rabin 1970 proved the result for k = 2 by combinatorial argument yielding a

stronger result, which does not (provably) extend to the higher levels.

Santocanale and Arnold 2005 showed that separation of L(A), L(B) by a set in

∆ is possible, whenever the automata are non-deterministic.

The proof uses pathfinder–automaton game.

In descriptive set theory, the separation property is often showed via the reduction

property of the dual class.
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Reduction property.

A pair of sets A′, B′ reduces pair A,B, if

A′ ∪B′ = A ∪B

A′ ⊆ A, B′ ⊆ B, and A′ ∩B′ = ∅.

A class of sets Γ has reduction property if any pair of sets in Γ is reduced by a

pair in the same class.

The reduction property for a class Γ implies the separation property for co-Γ, and

in descriptive set theory it is the usual way to establish the latter.

It holds as expected for the index hierarchy of deterministic automata on words

(Selivanov). But. . .
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Proposition. The reduction property fails for all alternating classes (i, k).

Lemma. Any recognizable set of trees can be presented as a finite union⋃
d

⋃
i

d(Ai, Bi),

where Ai, Bi are in the same class as the original set.

Lemma. Let> be any set and W ⊆ >. Assume that

(>×W ) ∪ (W ×>) = X ∪ Y,

where X ⊆ >×W , Y ⊆W ×>, and X ∩ Y = ∅. Suppose further that

X =
m⋃
i=1

ai × bi, Y =
n⋃
i=1

ci × di

for some sets ai, bi, ci, di ⊆ >. Then the set W can be generated from the

sets a1, . . . , am, d1, . . . , dn, by (finite) union and intersection.

To prove Proposition, choose d(>,W ), d(W,>), whereW is hard for the class.
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Relation to other hierarchies.

The µ-calculus expresses properties as solutions of equations.

Example — winning regions in game arenas

〈V = V∃ ∪ V∀, −→ ⊆ V × V 〉

Players’ equations:

X = (V∃ ∩3X) ∪ (V∀ ∩2X) = Eve(X)

Y = (V∀ ∩3Y ) ∪ (V∃ ∩2Y ) = Adam(Y )

where 3Z = {p : (∃q) p−→q}, 2Z = 3Z .
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Players’ equations:

X = (V∃ ∩3X) ∪ (V∀ ∩ 2X) = Eve(X)

Y = (V∀ ∩3Y ) ∪ (V∃ ∩ 2Y ) = Adam(Y )

Then the set W∃ of Eve’s winning positions is

in finite reachability games: µX.Eve(X)

in safety games: νX.Eve(X)

in any game with a prefix-independent

winning condition C ⊆ V ω : some fixed point of Eve(X)

50



In parity games:

νX0.µX1.νX2. . . . .ϑXn. (V∃ ∩ rank0 ∩3X0)∪
(V∃ ∩ rank1 ∩3X1)∪

. . . . . . . . .∪
(V∃ ∩ rankn ∩3Xn)∪

(V∀ ∩ rank0 ∩2X0)∪
(V∀ ∩ rank1 ∩2X1)∪

. . . . . . . . .∪
(V∀ ∩ rankn ∩2Xn)∪
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There is an exact correspondence of the levels of the two hierarchies.

(1, 3)

uuuuuuuuu
(0, 2)

IIIIIIIII
(µνµ)

ttttttttt
(νµν)

JJJJJJJJJ

(0, 1)

xxxxxxxx
(1, 2)

FFFFFFFF
(νµ)

wwwwwwwww
(µν)

GGGGGGGGG

(1, 1)

xxxxxxxx
(0, 0)

FFFFFFFF
(µ)

wwwwwwwww
(ν)

GGGGGGGGG

We link a µ-calculus formula with an automaton recognizing its tree models.
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Relation to classical hierarchies – topology and logic.

Σ1
2 Π1

2

1900 Borel, Baire, Lebesgue ∆1
2

BBBBB
|||||

1917 Lusin, Suslin Σ1
1

|||||
Π1

1

BBBBB

1929 Tarski, Kuratowski Σ0
1 ∆1

1

BBBBB
|||||

Π0
1

1940 Mostowski, Kleene ∆0
1

BBBBB
|||||

Σ0
0

|||||
Π0

0

BBBBB
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Topological complexity of tree languages

recognizable ∆1
2

Büchi recognizable Σ1
1

deterministic Π1
1

weakly recognizable
⋃
n<ω Σ0

n (Borel of finite rank)

word languages Boole(Σ0
2)

Problem. Are there recognizable tree languages which are Borel but not weakly

recognizable ?

Warning. There are recognizable tree languages, which are Σ1
1, but not Büchi.
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Example.

H! = binary trees over {a, b} where b appears

infinitely often on exactly one branch.

By Lusin Theorem H! is Π1
1 (complete).

Hence H! is Σ1
1.

But it is not Büchi recognizable!
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Decidability. Given a tree automatonA, decide whether L(A) is

in alternating class (i, k) ?

in non-deterministic class (i, k) ?

Büchi recognizable ?

non-ambiguous ?

deterministic easy

weakly recognizable ?

in weak (alternating) class (i, k) ?

Borel, Σ1
1, Π1

1, etc. ?

in the Borel class Σ0
n ?

Boole(closed) Bojańczyk, Place 2012

closed folklore
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Decidability is known ifA,B are deterministic

non-deterministic class (i, k) N., Walukiewicz 2004

Büchi recognizable Urbański 2000

weakly recognizable N., Walukiewicz 2003

in weak (alternating) class (i, k) Murlak 2008

Borel or Π1
1 N., Walukiewicz 2003

Borel class Π0
n/Σ0

n (n ≤ 3) Murlak 2005

Wadge level Murlak 2006

L(A) ≤w L(B) Murlak 2006
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Further development.

Colcombet and Loeding 2008 reduced decidability of the index in

non-deterministic hierarchy to boundedness problems for distance automata.

Duparc, Facchini, and Murlak 2011 gave a decision procedure for weak

alternating index, Borel index, and Wadge level of weak game automata

(covering Wi,k).

This survey is not complete !
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Index class Forbidden pattern

(1,2) ◦

l��~~~~~
r ��@@@@@

◦

0 ..

◦

1pp

(0,1) ◦

1

--

2

qq
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2

--

l��~~~~~
r ��@@@@@

◦
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◦

1pp

(1,3) ◦

1
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◦
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◦

2
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◦

3
qq
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�� ��The (0, n ) case, n ≥ 3 ◦
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2

FF
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nn
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Conclusion.

The study of hierarchies helps us to understand positive aspects of

difficulty .

I insist on this: any complicated thing, being illuminated by

definitions, being laid out in them, being broken up into pieces, will

be separated into pieces completely transparent even to a child. . .

Nicolai Lusin

Quoted from: L.Graham, J.-M.Kantor, Naming Infinity
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