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Example 1

Is there a path that meets • and • infinitely often, but

• only finitely often ?

• // ◦ //
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Example 2

Is there a strategy for© against 3 to achieve the same condition ?

• // 3 //

��

•

��
◦

OO

◦oo // ◦

��
•

OO

◦

OO

oo •oo
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Example 2

Is there a strategy for© against 3 to achieve the same condition ?

• // 3 +3

��

•

��
◦

OO

◦oo // ◦

��
•
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◦
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oo •oo

76540123· ·
_

5



General method
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Strategies are (possibly infinite) trees.

Construct an automaton accepting the winning strategies, and test it for

non-emptiness.

6



�� ��Infinite computations

• Büchi (1960) and Rabin (1969) considered infinite computations of finite

automata in their proofs of decidability of the theories S1S and S2S.

• D. Muller(1960) used similar concepts to analyse asynchronous digital

circuits.

• Since 1980s, computer scientists study infinite computations in context of

verification of computing systems (reactive, concurrent, open, . . . ).

Non-termination is an expected behaviour.

• Mathematicians have been playing infinite games since the 1930s:

Banach–Mazur, later Gale–Stewart (1953), . . .
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Automata can be classified along several axes

• working on infinite words or trees,

• in deterministic, non-deterministic, or alternating mode,

• with a certain acceptance condition and, specifically, a

Rabin–Mostowski index.

All these features relate to the complexity of the non-emptiness

problem.

Sets of infinite words or trees can be also classified by hierarchies

of set-theoretical topology (Borel, projective, Wadge).

Topological hardness is often behind the hierarchy results.
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�� ��Classical definability theory Σ1
2 Π1

2

1900 Borel, Baire, Lebesgues ∆1
2

@@@@@@@@

~~~~~~~~

1917 Lusin, Suslin Σ1
1

}}}}}}}}
Π1

1

BBBBBBBB

1929 Tarski, Kuratowski Σ0
1 ∆1

1

AAAAAAAA

||||||||
Π0

1

1940 Mostowski, Kleene ∆0
1

AAAAAAAA

||||||||

Σ0
0

}}}}}}}}
Π0

0

BBBBBBBB
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,,Easy can be hard.”

We will see

• regular sets of infinite trees beyond the Borel hierarchy,

• inseparable pair of regular sets.
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For R ⊆ ωk × ({0, 1}ω)`, let ∃0R = {〈m, α〉 : (∃n)R(m, n, α)}
∃1R = {〈m, α〉 : (∃β)R(m, α, β)}�� ��Arithmetical hierarchy

�� ��Analytical hierarchy

Σ0
0 = recursive relations

Π0
n = {R : R ∈ Σ0

n}
Σ0

n+1 = {∃0R : R ∈ Π0
n}

∆0
n = Σ0

n ∩Π0
n

Σ1
0 = arithmetical relations

Π1
n = {R : R ∈ Σ0

n}
Σ1

n+1 = {∃1R : R ∈ Π1
n}

∆1
n = Σ1

n ∩Π1
n
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�� ��Arithmetical hierarchy
�� ��Analytical hierarchy

Σ0
0 = recursive relations

Π0
n = {R : R ∈ Σ0

n}

Σ0
n+1 = {∃0R : R ∈ Π0

n}

∆0
n = Σ0

n ∩Π0
n

Σ1
0 = arithmetical relations

Π1
n = {R : R ∈ Σ0

n}

Σ1
n+1 = {∃1R : R ∈ Π1

n}

∆1
n = Σ1

n ∩Π1
n�� ��Relativized (boldface) hierarchies

For β ∈ {0, 1}ω , let R[β] = {〈m, α〉 : R(m, α, β)}.

Σi
n = {R[β] : R ∈ Σi

n, β ∈ {0, 1}ω} ∆i
n = Σi

n ∩Πi
n

Πi
n = {R[β] : R ∈ Πi

n, β ∈ {0, 1}ω} i ∈ {0, 1}

Σ0
1 = open

Π0
1 = closed

∆1
1 = Borel
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�� ��Büchi automata on infinite words

A = 〈Σ, Q, qI ,Tr ,F 〉

where Tr ⊆ Q× Σ×Q, F⊆ Q.

◦

a

�� b
(( •

b



a

hh ((a+ b)∗b)ω

◦

a,b

�� a // •
a



(a+ b)∗aω

The second one cannot be recognized by a deterministic automaton.

a→ b→ a→ a→ b→ a→ a→ a→ b→ a→ a→ a→ a→ b→ a→ . . . . . .
a→ b→ a→ . . .
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So (a+ b)∗aω cannot be recognized by a deterministic automaton.

But this also follows by a topological argument!

We assume the Cantor topology on Xω , induced by the metric

d(u, v) = 2−min{m : um 6=vm}

• • • • • • •

• • • • • • •

If A is deterministic then the mapping

Σω 3 u 7→ run(u) ∈ Qω

satisfies L(A) 3 u ⇐⇒ run(u) ∈ (Q∗F )ω ,

hence continuously reduces L(A) to (Q∗F )ω .
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If A is deterministic then the mapping

Σω 3 u 7→ run(u) ∈ Qω

continuously reduces L(A) to (Q∗F )ω .

But

• (a+ b)∗aω ∈ Σ0
2 −Π0

2,

• (Q∗F )ω ∈ Π0
2.

Hence (a+ b)∗aω cannot be recognized by a deterministic automaton.
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But

• (a+ b)∗aω ∈ Σ0
2 −Π0

2,

• (Q∗F )ω ∈ Π0
2.

Hence (a+ b)∗aω cannot be recognized by a deterministic automaton.

photo P.Jahr ?
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�� ��Parity automata

A = 〈Σ, Q, qI ,Tr , rank〉

where rank : Q→ {0, 1, . . . , k}.

A run is accepting if lim supi→∞rank(qi) is even.

0

a

�� b
((
1

b��

a

hh (a+ b)∗aω

The Rabin-Mostowski index of a parity automatonA is

(min rank,max rank)

We can assume min rank ∈ {0, 1}.
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�� ��The McNaughton Theorem (1966)

A nondeterministic Büchi automaton can be simulated by a deterministic

parity automaton of some index (i, k).

The minimal index (i, k) may be arbitrarily high (Wagner 1979, Kaminski 1985).

Again, it can be inferred by a topological argument.

Let

Mi,k = {u ∈ {i, . . . , k}ω : lim sup
`→∞

u` is even}
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M1,4
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No continuous reduction down the hierarchy.
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�� ��Wadge game G(A,B)

Spoiler Duplicator

a0 ∈ Σ b0 ∈ Σ

a1 b1 Here A, B ⊆ Σω (Σ finite).

a2 b2

...
... Duplicator wins if a0a1a2 . . . ∈ A⇐⇒ b0b1b2 ∈ B.

a12 b12

a13 wait Fact

a14 wait Duplicator has a winning strategy iff there is a

a15 b13 continuousf : Σω → Σω s.t. A = f−1(B),

...
... in symbols, A ≤w B.
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Spoiler ’s strategy, e.g., in G(M0,5,M1,6)

Spoiler Duplicator

0 4

3 5

4 1
...

... Note

i If a deterministic automaton of index (1, 6) ,

i−1 accepted M0,5 there would be a continuous
...

... reduction of M0,5 to M1,6

wait u 7→ rank ◦ run(u).

0 Contradiction!
...

...
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�� ��Parity tree automata

A = 〈Σ, Q, qI ,Tr , rank〉

where Tr ⊆ Q× Σ×Q×Q, rank : Q→ {0, 1, . . . ,k}.

•σ

}}||
||

||
||

!!B
BB

BB
BB

B

• •
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�� ��Parity tree automata cont’d

A run ofA on a tree t : {l, r}∗ → Σ is a tree ρ : {l, r}∗ → Q, such that,

〈ρ(w), t(w), ρ(wl), ρ(wr)〉 ∈ Tr , for each w ∈ dom (ρ)

ρ(w), t(w)

yyssssssssss

%%KKKKKKKKKK

ρ(wl) ρ(wr)

The run is accepting if, for each path P = p0p1 . . . ∈ {l, r}ω ,

lim sup
k→∞

rank(ρ(p0p1 . . . pk) is even.
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�� ��Example

a/b, a

||yy
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yy

""E
EE

EE
E

a a

a/b, b

}}zz
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!!D
DD

DD
D

b b

rank(a) = 0

rank(b) = 1

recognizes the set of trees where, on each branch, b appears only finitely often.

The complement can be recognized by

a/b, a

||zzz
zz $$I

III

a skip

a/b, b

}}zzz
zz $$H

HHH

b skip

skip, a/b

yyrrr
rr
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LLL

skip skip

a/b, a

zzuuuu
""D

DDD
D

skip a

a/b, b

zzvvvv
!!D

DD
DD

skip b

rank(a) = 1

rank(b) = rank(skip) = 2
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�� ��Example cont’d

a/b, a

||xxxxxx

""F
FFFFF

a a

a/b, b

}}zz
zz

zz
z

!!D
DD

DD
DD

b b

rank(a) = 0

rank(b) = 1

This set cannot be recognized by a Büchi automaton

(i.e., of index ( 1,2)), Rabin 1970.
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�� ��Rabin’s proof

Again, a topological argument could be used instead, as this set is Π1
1

complete, while the Büchi automata can recognize only Σ1
1 sets.
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Rabin’s example generalizes to

Ti,k = {t ∈ {i, . . . , k}{l,r}
∗

: each branch is in Mi,k }

(1, 3)

ttttttt
(0, 2)

JJJJJJJ

(1, 2)

vvvvvv
(0, 1)

HHHHHH

(1, 1)

vvvvvv
(0, 0)

HHHHHH

These sets witness the strictness of the non-deterministic index hierarchy

(N 1986).

A topological argument is not helpful here, as all the sets Ti,k are Π1
1 complete,

hence Wadge–equivalent (except for T0,0, T1,1, T1,2).
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But topology comes back in the proof of the strictness of the
alternating index hierarchy (Bradfield 1996, 1998, another proof by
Arnold 1998).
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�� ��Parity games

V∃ positions of Eve

V∀ positions of Adam (disjoint)

−→ ⊆ V × V possible moves (with V = V∃ ∪ V∀)

p1 ∈ V initial position

rank : Q→ ω the ranking function.

An infinite play v0→v1→v2→ . . . is won by Eve iff lim supn→∞ rank(vn) is

even.

Parity games enjoy positional determinacy

(Emerson and Jutla 1991, Mostowski 1991).
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�� ��Game tree languages

Alphabet : {∃,∀} × {i, . . . , k}.

Eve : ∃, j

~~}}
}}

}}
}}

∃, j

  B
BB

BB
BB

B

Adam : ∀, j

~~}}
}}

}}
}}

∀, j

  B
BB

BB
BB

B

Eve wins an infinite play (x0, i0), (x1, i1), (x2, i2), . . . (x` ∈ {∃,∀})

iff lim sup`→∞ i` is even.

The set
�� ��Wi,k consists of all trees such that Eve has a winning strategy.

30



�� ��Example

∃, 1

!!C
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}}{{
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!!C
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}}{{
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!!C
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}}{{
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∀, 2 ∃, 1
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}}{{
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{{

∀, 0
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�� ��Alternating parity tree automata

A = 〈Σ, Q,Q∃, Q∀, qI ,Tr , rank〉

where Q = Q∃
·
∪ Q∀,

Tr ⊆ Q× Σ× {1, 2, ε} ×Q,

rank : Q→ {0, 1, . . . ,k}.

An input tree t is accepted byA iff Eve has a winning strategy in the parity game

Q∃ × {1, 2}∗,
Q∀ × {1, 2}∗,
(q0, ε),
Mov = {((p, v), (q, vd)): v ∈ dom(t), (p, t(v), d, q) ∈ Tr}
rank(q, v) = rank(q).
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Topological argument: The sets Wi,k form a strict hierarchy w.r.t. the Wadge

reducibility (Arnold & N, 2008).

W1,3

uuuuuuuu
W0,2

IIIIIIII
=⇒ (1, 3)

uuuuuuuu
(0, 2)

IIIIIIII

W1,2

wwwwwwww
W0,1

GGGGGGGG
(1, 2)

xxxxxxxx
(0, 1)

FFFFFFFF

W1,1

wwwwwwww
W0,0

GGGGGGGG
(1, 1)

xxxxxxxx
(0, 0)

FFFFFFFF

This gives an alternative proof of the strictness of the alternating index hierarchy

(Bradfield 1998).
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The importance of the alternating index hierarchy follows from its relation to the
µ-calculus.

(1, 3)

vvvvvvvvv
(0, 2)

HHHHHHHHH
(µνµ)

uuuuuuuuu
(νµν)

IIIIIIIII

(1, 2)

xxxxxxxx
(0, 1)

GGGGGGGG
(νµ)

wwwwwwwww
(µν)

HHHHHHHHH

(1, 1)

xxxxxxxx
(0, 0)

GGGGGGGG
(µ)

wwwwwwwww
(ν)

HHHHHHHHH
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An idea of the proof:

Given an alternating automatonA of index (i, k),

an input tree t induces a full tree of the game G(A, t).

The mapping t 7→ G(A, t) is continuous and satisfies

L(A) 3 t ⇐⇒ G(A, t) ∈Wi,k

hence it reduces L(A) to Wi,k.

Therefore any automaton recognizing Wi,k must have an index at least (i, k).
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Sketch of proof that Wi,k 6≤wWi,k:

Up to renaming,

Wi,k ≈Wi,k

By Banach Fixed-Point Theorem, there is no contracting reduction of L to L

xfix ∈ L ⇐⇒ f(xfix ) ∈ L ⇐⇒ xfix ∈ L

Main Lemma If f reduces Wi,k to some L then there is a mapping

h : {i, . . . , k}{l,r}∗ → {i, . . . , k}{l,r}∗ (padding), such that

• h reduces Wi,k to itself,

• f ◦ h is contracting.

About h: For W0,k, it “stretches” the original tree completing by the nodes

labeled by (∀, 0). For W1,k, by (∃, 1).
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�� ��Separation problem

• •

• •

•
•

•
•

Given disjoint sets A and B, find a simple set C , such that A ⊆ C ⊆B
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We are interested in separation of sets of trees

photo M.Bojańczyk
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Lusin separation theorem.

Any two disjoint Σ1
1 sets are separable by a Borel set.

There exist two disjoint Π1
1 sets not separable by a any Borel set.

We show that these sets can be chosen as regular sets of trees.

Let W ′0,1 be obtained from W0,1 by interchanging ∃ ↔ ∀ and 0↔ 1.

That is, in W ′0,1 Adam has a strategy to force that there is only finitely many 0’s.

Note that W ′0,1 is a copy of W0,1 included in W0,1.

Fact (Hummel, Michalewski, N. 2009)

W0,1 and W ′
0,1 are not separable by any Borel set.
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Consequently, W0,1 and W ′0,1 are not separable by any set definable in

weak monadic second-order logic (WS2S)

m

of index simultaneously (1, 2) and (0, 1) (Büchi and co-Büchi) (Rabin 1970)

m

recognized by weak alternating automaton (Muller, Schupp, Saoudi 1986)

m

definable in the alternation-free µ-calculus (Arnold & N. 1991).

In contrast, any two disjoint sets of trees recognizable by automata of index (1, 2)
(Büchi) are separable by a set from this class (Rabin 1970).
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Lemma For any Borel set B ⊆ {0, 1}ω , there is a continuous reduction

f : {0, 1}ω → T{0,1}×{∃,∀}

such that

u ∈ B ⇒ f(u) ∈W0,1

u 6∈ B ⇒ f(u) ∈W ′0,1

If there were a Borel set C s.t. W0,1 ⊆ C ⊆W ′0,1, we would have

u ∈ B ⇒ f(u) ∈ C
u 6∈ B ⇒ f(u) ∈ C

Hence any Borel set would be a continuous inverse image of C , which is

impossible, since the Borel hierarchy is strict.
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Proof of the lemma. For a clopen set B it is enough to take

B 3 x 7→ t1 ∈W0,1

B 63 x 7→ t2 ∈W ′
0,1

Suppose B =
⋃
Bn and we have suitable reductions FBn .

The case B =
⋂
Bn follows from symmetry.
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What about the next levels of the hierarchy?

∆4

ttttt
JJJJJ

(1, 3)

wwww
(0, 2)

GGGG

∆3

wwww
GGGG

(1, 2)

wwww
(0, 1)

GGGG

∆2

wwww
GGGG

(1, 1)

wwww
(0, 0)

GGGG

Here ∆k = (1, k) ∩ (0, k − 1).
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∆4

ssss
KKKK

(1, 3)

vvvv
(0, 2)

HHHH

∆3

vvvv
HHHH

(1, 2)

vvvv
(0, 1)

HHHH

∆2

vvvv
HHHH

(1, 1)

vvvv
(0, 0)

HHHH

Conjecture Separation property in the class (i, n):

• holds for n even,

• fails for n odd.

45



In terms of the µ-calculus

∆4

rrrr
LLLL

(µνµ)

uuu
(νµν)

III

∆3

uuu
III

(µν)

uuu
(νµ)

III

∆2

uuu
III

(µ)

uuu
(ν)

III

Conjecture Separation property

• holds for ν . . . classes,

• fails for µ . . . classes.
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Evidence

For n odd, one can define a copy W ′i,n ⊆Wi,n by renaming, and this is

impossible for n even.

For example, W ′1,3:

∃ ↔ ∀

1 → 2

2 → 3

3 → 1

Conjecture: Wi,n and W ′i,n (for n odd) are inseparable by a ∆ set.

Result: W ′1,3 is complete in the class of Σ1
1-inductive sets.
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Related work: Santocanale and Arnold 2005 showed that the characterization of

∆2 in terms of the alternation free µ-calculus does not extend to n ≥ 3.

Comp (Σµ3 ∪Πµ
3 )

Σµ3

jjjjjjjjj
Πµ

3

TTTTTTTTT

Σµ3∩Πµ
3

Comp (Σµ2 ∪Πµ
2 )

Σµ2

jjjjjjjjj
Πµ

2

TTTTTTTTT

Comp (Σµ1 ∪Πµ
1 )

TTTTTTTTT
jjjjjjjjj
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�� ��Conclusion

Topological complexity often, but not always, underlines the

automata-theoretic complexity.

Topological arguments appear to work better for deterministic or

alternating, rather than for non-deterministic automata (?).

The concept of inseparability sheds some light on the fine structure

of finite-state recognizable sets of trees.

Parity games seem to be the core concept of the theory.
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