These mysterious game tree languages

G.Doré

Damian Niwiński University of Warsaw

Automata seminar in LIAFA, Paris, October 2015

Disclaimer. Credits to many authors. Errors (if any) are mine...

Game tree languages

A game on a tree $t:2^* \to \{\exists,\forall\} \times C$, with condition $L \subseteq C^{\omega}$.

Eve:

 \exists, c

Adam:

 \forall, c

Eve wins an infinite play $(e_0,j_0),~(e_1,j_1),~(e_2,j_2),\ldots~(e_\ell\in\{\exists,\forall\})$ iff $j_0\,j_1\,j_2\,\ldots\in L$.

 $\operatorname{Win}^{\exists}(L) = \{t : \text{ Eve has a winning strategy } \}$

Parity game tree languages

$$A_{i,k} = \{i, \dots, k\}$$

$$L_{i,k} = \{u \in A_{i,k}^{\omega} : \limsup_{n \to \infty} u_n \text{ is even}\}$$

$$W_{i,k} = \operatorname{Win}^{\exists}(L_{i,k})$$

If only Adam plays,

$$T_{i,k} = \{t \in A_{i,k}^{2^*} : (\forall \alpha \in 2^\omega) \ t \upharpoonright \alpha \in L_{i,k} \}$$

Hierarchy of indices

Dual indices: $\overline{(0,k)} = (1,k+1)$.

No deterministic parity automaton of index (i,k) can recognize the set $L_{\overline{(i,k)}}$.

Consequently, the hierarchy of the Rabin-Mostowski indices is **strict** (Wagner 1979, Kaminski 1985).

More generally, let $R\subseteq C^\omega$. A deterministic R-automaton on infinite words is $\langle A,\ Q,q_I,\ Tr:Q\times A\to Q,\ rank:Q\to C\rangle$.

$$q_I$$

$$\parallel$$

$$q_0 \xrightarrow{a_0} q_1 \xrightarrow{a_1} q_2 \xrightarrow{a_2} q_3 \xrightarrow{a_3} \dots \text{ is } \mathbf{accepting}$$
 iff
$$rank(q_0) \quad rank(q_1) \quad rank(q_2) \quad rank(q_3) \quad \dots \quad \in \quad R.$$

Parity automaton of index (i, k) is an $L_{i,k}$ -automaton.

No deterministic R-automaton (over alphabet C) may accept \overline{R} .

Suppose

$$L(\mathcal{A}) = \overline{R}$$

Create a word

$$q_0 \xrightarrow{rank(q_0)} q_1 \xrightarrow{rank(q_1)} q_2 \xrightarrow{rank(q_2)} q_3 \xrightarrow{rank(q_3)} \dots$$

$$u = rank(q_0) \quad rank(q_1) \quad rank(q_2) \quad rank(q_3) \quad \dots$$

Then

$$u \in \overline{R} \iff u \in R,$$

a contradiction.

Remark

There is a **single** *non-regular* language R, such that **any** ω -regular language can be recognized by a deterministic R-automaton (but also some non-regular ones).

For example (M. Skrzypczak), a "universal" parity condition $R \subseteq \{0,1\}^\omega$

$$R = \{0^{m_0} \, 1 \, 0^{m_1} \, 1 \, 0^{m_2} \, 1 \, \dots : \limsup m_n \text{ is an even } < \omega\}$$

From words to trees

Let $R \subseteq C^{\omega}$. An alternating R-automaton over binary trees $t: 2^* \to A$ is

$$Q = Q_{\exists} \stackrel{\cdot}{\cup} Q_{\forall} \quad Tr \subseteq Q \times A \times \{0, 1, \varepsilon\} \times Q$$

$$q_I \in Q$$
 $rank: Q \to C$

An input tree t is accepted by the automaton $\mathcal A$ iff Eve has a winning strategy in the game $G(\mathcal A,t)$

$$Q_{\exists} \times 2^*,$$
 Eve's

$$Q_{orall} imes 2^*,$$
 Adam's

$$(q_I, \varepsilon),$$
 initial

$$\{((p, v), (q, vd)): v \in dom(t), (p, t(v), d, q) \in Tr\}$$
 moves

$$rank(q, v) = rank(q)$$
 ranking

$${\it R}$$
 winning Eve

Note. If $L \subseteq A^{\omega}$ is recognized by a deterministic R-automaton then $\operatorname{Win}^{\exists}(L)$ is recognized by an alternating R-automaton.

Example $L = R = L_{0,2}$.

No R-automaton (over alphabet $\{\exists, \forall\} \times C$) may accept $\operatorname{Win}^{\exists}(R)$.

We use the concept of a game tree.

Recall that $\mathcal A$ accepts t iff Eve wins the game $G(\mathcal A,t)$ with the set of positions $2^*\times Q$ and condition R.

Unravel this game to a tree.

For a position (v,q), retain only the label (own(q), rank(q)), where

$$own(q) = \exists \quad \text{iff} \quad q \in Q_\exists$$

$$own(q) = \forall \quad \text{iff} \quad q \in Q_{\forall}.$$

Claim. \mathcal{A} accepts t iff the game tree (*mutatis mutandis*) is in $\mathrm{Win}^{\exists}(R)$.

Suppose, for an alternating R-automaton A,

$$L(\mathcal{A}) = \overline{\operatorname{Win}^{\exists}(R)}.$$

Create a tree f

where

$$(q_I, (own(q_I), rank(q_I)), d_1, q_1), (q_I, (own(q_I), rank(q_I)), d_2, q_2) \in Tr.$$

Then

$$f \in \overline{\operatorname{Win}^{\exists}(R)} \iff f \in \operatorname{Win}^{\exists}(R),$$

a contradiction.

Recall $W_{i,k} = \operatorname{Win}^{\exists}(L_{i,k}).$

Then $W_{0,k} pprox \overline{W_{1,k+1}}$ cannot be accepted by (1,k+1)-automaton

Hence the hierarchy of alternating tree automata

is **strict**, as proved by **Bradfield 1998** (credit to Walukiewicz for example), cf. also another proof by **Arnold 1999**.

Strictness of the Rabin-Mostowski index hierarchy for **non-deterministic** tree automata can be witnesses by a a family of simpler languages (**N. 1986**)

$$T_{i,k} = \{t : (\forall \alpha \in 2^{\omega}) \ t \upharpoonright \alpha \in L_{i,k} \}$$

Note that these languages can be recognized by **deterministic** automata.

On the complexity of game tree languages ${\cal W}_{i,k}$

photo M.Bojańczyk

Restrictions on automata

Deterministic

Nondeterministic

$$q^{\exists}, a \xrightarrow{\varepsilon} p$$

Game automata

Easy side of game tree languages

Tree languages of the form $\mathrm{Win}^\exists(L)$, for an ω -regular L, are recognizable by game automata. So are, in particular, the $W_{i,k}$.

This class, say $\mathbb{G}\mathbb{A}$, appears more tractable than general non-deterministic (alternating) automata.

The Rabin-Mostowski index problem, open in general, is decidable for tree languages in $\mathbb{G}\mathbb{A}$, both for non-deterministic and alternating hierarchy (**Facchini**, **Murlak**, **Skrzypczak 2013**).

Recently, Michalewski and Mio 2015 showed an algorithm to compute probability of tree languages in $\mathbb{G}\mathbb{A}$ in the coin-flipping measure.

In particular the measure of $W_{i,k}$ is ${\bf 1}$ for k even, and ${\bf 0}$, for k odd.

In random tree parity game, the highest priority indicates the winner.

$$W_{1,3} = \mu x_3.\nu x_2.\mu x_1.a_{\forall,1}(x_1,x_1) \cup a_{\exists,1}(x_1,\top) \cup a_{\exists,1}(\top,x_1)$$

$$\cup a_{\forall,2}(x_2,x_2) \cup a_{\exists,2}(x_2,\top) \cup a_{\exists,2}(\top,x_2)$$

$$\cup a_{\forall,3}(x_3,x_3) \cup a_{\exists,3}(x_3,\top) \cup a_{\exists,3}(\top,x_3)$$

$$p(W_{1,3}) = \mu x_3 \cdot \nu x_2 \cdot \mu x_1 \cdot \frac{1}{6} (x_1 \cdot x_1 + x_1 \odot x_1$$

$$x_2 \cdot x_2 + x_2 \odot x_2$$

$$x_3 \cdot x_3 + x_3 \odot x_3)$$

where x_i range over [0,1], and $x\odot y=1-(1-x)(1-y)=x+y-xy$.

Difficult side of game tree languages Σ_2^1 Π_2^1 $oldsymbol{\Delta}_2^1$ $W_{i,k}$ Π_1^1 Σ_1^1 $T_{0,1}, W_{0,1}$ **Projective hierarchy** Σ_1^0 Δ_1^1 Π_1^0 Δ_1^0 **Borel hierarchy** Π_0^0 Σ_0^0

Already $T_{0,1}$ is Π^1_1 -complete, hence beyond the Borel hierarchy, wrt. the Cantor topology. Consequently are all $T_{i,k}$, for higher indices, as well.

A fortiori $W_{0,1}$ is ${\bf \Pi^1_1}$ -complete, and $W_{1,2}$, ${\bf \Sigma^1_1}$ -complete.

By Rabin's Complementation Lemma, all recognizable sets of trees are in Δ^1_2 .

Any set of trees recognizable by an alternating automaton \mathcal{A} of index (i,k) reduces to $W_{i,k}$ by a continuous "transducer" $t \mapsto G(\mathcal{A},t)$ (Arnold 1999).

So the $W_{i,k}$ are **Wadge complete** on the respective levels of the hierarchy.

They form a **strict hierarchy** w.r.t. the Wadge reducibility (**Arnold & N, 2008**).

Beyond $\sigma(\Sigma_1^1)$ (cf. also Finkel & Simonnet 2009, Hummel 2012)

 $W_{1,3}$ is complete in the class of Σ_1^1 -inductive sets defined by Moschovakis (Michalewski & N. 2012).

The complexity of

$$F: Trees_{\Sigma} \times \wp(2^*) \longrightarrow \wp(2^*)$$

is the complexity of the relation

$$w \in F(t, X)$$

Fixed-point expressions are interpreted by

$$\llbracket \mu X.F \rrbracket =_{def} \{t : \varepsilon \in \mu X.F(t,X)\}$$

The Σ^1_1 -inductive sets of trees are those definable by $[\![\mu X.F]\!]$, with F is Σ^1_1 .

Proof *via* a reduction from another game, considered by **Saint Raymond 2006**.

A tree $t \subseteq \omega^*$ is *cofinal* if for every $v = (v_0, v_1, \ldots) \in \omega^{\omega}$ there exists a branch (b_0, b_1, \ldots) in t, such that

$$(\forall i) \ b_i \geq v_i.$$

In a game $\Gamma(t)$, Player I plays natural numbers n_0, n_1, \ldots , and Player II answers with bits c_0, c_1, \ldots , observing the following.

If Player II has selected $0^{m_0}10^{m_1}1\dots10^{m_k}10^\ell$ and Player I n_0,\dots,n_k,\dots then

- 1. $m_0 m_1 \dots m_k \in t$,
- $2. \ (\forall i) \ n_i \leq m_i.$

Player II wins if he plays infinitely many 1.

A tree $t\subseteq\omega^*$ is cofinal if and only if Player II has a winning strategy in $\Gamma(t)$ (Saint Raymond 2006).

Reduction transforms a tree $t\subseteq\omega^*$ onto a **game tree** in $\Gamma(t)$ of Player I, so that *Eve* wins iff Player I wins.

More generally, the sets $W_{i,k}$ are (Wadge) complete in the finite levels of the hierarchy of \mathcal{R} -sets introduced by A. Kolmogorov in 1928 as a foundation for measure theory (Gogacz, Michalewski, Mio, Skrzypczak 2014).

This hierarchy is based on generalization of **Suslin operation A**,

Mikhail Yakovlevich Suslin (1894–1919)

which was the first constructive tool to go beyond the Borel hierarchy (in 1916).

GMMS 2014: It is suggestive to think that the origin of the concept of parity games could be backdated to the original work of Kolmogorov.