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Game tree languages

A game on a tree t : 2∗ → {∃,∀} × C , with condition L ⊆ Cω .
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Eve wins an infinite play (e0, j0), (e1, j1), (e2, j2), . . . (e` ∈ {∃,∀})

iff j0 j1 j2 . . . ∈ L.

Win∃(L) = {t : Eve has a winning strategy }
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Parity game tree languages

Ai,k = {i, . . . , k}
Li,k = {u ∈ Aω

i,k : lim sup
n→∞

un is even}

Wi,k = Win∃(Li,k)

If only Adam plays,

Ti,k = {t ∈ A2∗

i,k : (∀α ∈ 2ω) t � α ∈ Li,k}
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Hierarchy of indices
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Dual indices: (0, k) = (1, k + 1).
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No deterministic parity automaton of index (i, k) can recognize the set L
(i,k)

.

Consequently, the hierarchy of the Rabin-Mostowski indices is strict

(Wagner 1979, Kaminski 1985).

More generally, let R ⊆ Cω . A deterministic R-automaton on infinite words is

〈A, Q, qI , Tr : Q×A→ Q, rank : Q→ C〉.

qI

‖

A run q0
a0 // q1

a1 // q2
a2 // q3

a3 // . . . is accepting

iff rank(q0) rank(q1) rank(q2) rank(q3) . . . ∈ R.

Parity automaton of index (i, k) is an Li,k-automaton.
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No deterministic R-automaton (over alphabet C) may accept R.

Suppose

L(A) = R

Create a word

q0
rank(q0) // q1

rank(q1) // q2
rank(q2) // q3

rank(q3)// . . .

u = rank(q0) rank(q1) rank(q2) rank(q3) . . .

Then

u ∈ R ⇐⇒ u ∈ R,

a contradiction.
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Remark

There is a single non-regular language R, such that any ω-regular language can

be recognized by a deterministic R-automaton (but also some non-regular ones).

For example (M. Skrzypczak), a “universal” parity condition R ⊆ {0, 1}ω

R = {0m0 1 0m1 1 0m2 1 . . . : lim supmn is an even < ω}
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From words to trees

Let R ⊆ Cω . An alternating R-automaton over binary trees t : 2∗ → A is

Q = Q∃
·
∪ Q∀ Tr ⊆ Q×A× {0, 1, ε} ×Q

qI ∈ Q rank : Q→ C

An input tree t is accepted by the automatonA iff Eve has a winning strategy in

the game G(A, t)

Q∃ × 2∗, Eve’s

Q∀ × 2∗, Adam’s

(qI , ε), initial

{((p, v), (q, vd)): v ∈ dom(t), (p, t(v), d, q) ∈ Tr} moves

rank(q, v) = rank(q) ranking

R winning Eve
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Note. If L ⊆ Aω is recognized by a deterministic R-automaton then Win∃(L)

is recognized by an alternating R-automaton.

Example L = R = L0,2.
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No R-automaton (over alphabet {∃,∀} × C) may accept Win∃(R).

We use the concept of a game tree.

Recall thatA accepts t iff Eve wins the game G(A, t) with the set of positions

2∗ ×Q and condition R.

Unravel this game to a tree.

For a position (v, q), retain only the label (own(q), rank(q)), where

own(q) = ∃ iff q ∈ Q∃
own(q) = ∀ iff q ∈ Q∀.

Claim. A accepts t iff the game tree (mutatis mutandis) is in Win∃(R).
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Suppose, for an alternating R-automatonA,

L(A) = Win∃(R).

Create a tree f

(own(qI), rank(qI))
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where

(qI , (own(qI), rank(qI)), d1, q1), (qI , (own(qI), rank(qI)), d2, q2) ∈ Tr .

Then

f ∈Win∃(R) ⇐⇒ f ∈Win∃(R),

a contradiction.
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Recall Wi,k = Win∃(Li,k).

Then W0,k ≈W1,k+1 cannot be accepted by (1, k + 1)-automaton

Hence the hierarchy of alternating tree automata
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is strict, as proved by Bradfield 1998 (credit to Walukiewicz for example),

cf. also another proof by Arnold 1999.

12



Strictness of the Rabin-Mostowski index hierarchy for non-deterministic tree

automata can be witnesses by a a family of simpler languages (N. 1986)

Ti,k = {t : (∀α ∈ 2ω) t � α ∈ Li,k}

Note that these languages can be recognized by deterministic automata.

13



On the complexity of game tree languages Wi,k

photo M.Bojańczyk
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Restrictions on automata
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Easy side of game tree languages

Tree languages of the form Win∃(L), for an ω-regular L, are recognizable by

game automata. So are, in particular, the Wi,k.

This class, say GA, appears more tractable than general non-deterministic

(alternating) automata.

The Rabin-Mostowski index problem, open in general, is decidable for tree

languages in GA, both for non-deterministic and alternating hierarchy (Facchini,

Murlak, Skrzypczak 2013).

Recently, Michalewski and Mio 2015 showed an algorithm to compute

probability of tree languages in GA in the coin-flipping measure.
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In particular the measure of Wi,k is 1 for k even, and 0, for k odd.

In random tree parity game, the highest priority indicates the winner.
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W1,3 = µx3.νx2.µx1.a∀,1(x1, x1) ∪ a∃,1(x1,>) ∪ a∃,1(>, x1)

∪ a∀,2(x2, x2) ∪ a∃,2(x2,>) ∪ a∃,2(>, x2)

∪ a∀,3(x3, x3) ∪ a∃,3(x3,>) ∪ a∃,3(>, x3)

p(W1,3) = µx3.νx2.µx1.
1

6
(x1 · x1 + x1 � x1

x2 · x2 + x2 � x2

x3 · x3 + x3 � x3)

where xi range over [0, 1], and x� y = 1− (1− x)(1− y) = x+ y − xy.
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Difficult side of game tree languages
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Already T0,1 is Π1
1-complete, hence beyond the Borel hierarchy, wrt. the Cantor

topology. Consequently are all Ti,k, for higher indices, as well.

A fortiori W0,1 is Π1
1-complete, and W1,2, Σ1

1-complete.

By Rabin’s Complementation Lemma, all recognizable sets of trees are in ∆1
2.
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Any set of trees recognizable by an alternating automatonA of index (i, k)

reduces to Wi,k by a continuous “transducer” t 7→ G(A, t) (Arnold 1999).

So the Wi,k are Wadge complete on the respective levels of the hierarchy.
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They form a strict hierarchy w.r.t. the Wadge reducibility (Arnold & N, 2008).
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Beyond σ(Σ1
1) (cf. also Finkel & Simonnet 2009, Hummel 2012)

W1,3 is complete in the class of Σ1
1-inductive sets defined by Moschovakis

(Michalewski & N. 2012).

The complexity of

F : TreesΣ × ℘(2∗) −→ ℘(2∗)

is the complexity of the relation

w ∈ F (t,X)

Fixed-point expressions are interpreted by

[[µX.F ]] =def {t : ε ∈ µX.F (t,X)}

The Σ1
1-inductive sets of trees are those definable by [[µX.F ]], with F is Σ1

1.
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Proof via a reduction from another game, considered by Saint Raymond 2006.

A tree t ⊆ ω∗ is cofinal if for every v = (v0, v1, . . .) ∈ ωω there exists a branch

(b0, b1, . . .) in t, such that

(∀i) bi ≥ vi.

In a game Γ(t), Player I plays natural numbers n0, n1, . . . , and Player II answers

with bits c0, c1, . . . , observing the following.

If Player II has selected 0m010m11 . . . 10mk10` and Player I n0, . . . , nk, . . .

then

1. m0m1 . . .mk ∈ t,

2. (∀i) ni ≤ mi.

Player II wins if he plays infinitely many 1.

A tree t ⊆ ω∗ is cofinal if and only if Player II has a winning strategy in Γ(t)

(Saint Raymond 2006).
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Reduction transforms a tree t ⊆ ω∗ onto a game tree in Γ(t) of Player I, so that

Eve wins iff Player I wins.
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More generally, the sets Wi,k are (Wadge) complete in the finite levels of the

hierarchy ofR-sets introduced by A. Kolmogorov in 1928 as a foundation for

measure theory (Gogacz, Michalewski, Mio, Skrzypczak 2014).

This hierarchy is based on generalization of Suslin operation A,

Mikhail Yakovlevich Suslin (1894–1919)

which was the first constructive tool to go beyond the Borel hierarchy (in 1916).

GMMS 2014: It is suggestive to think that the origin of the concept of parity

games could be backdated to the original work of Kolmogorov.
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