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Time of logic, logic of time

1980s

Studied in our logic group in Warsaw led by Helena Rasiowa.



Change vs. constancy

Heraclitus, 500 BC

Πα′ ν τ α ρ′ ε ı̂
Everything flows.

Alphonse Karr, 1849
Plus ça change, plus c’est la même chose.

The more it changes, the more it stays the same.



Change vs. constancy

x = f (x) = f (f (x)) = f (f (f (x))) = f (f (f (f (x)))) = . . .

In various mathematical contexts, we search for

I invariants,

I equilibria,

I orbits,

I . . . . . .



Inductive and co-inductive definitions

Knaster-Tarski theorem∧
{d : f (d) ≤ d} =

∨
ξ∈Ord f

ξ(⊥) = µx .f (x)∨
{d : d ≤ f (d)} =

∧
ξ∈Ord f

ξ(>) = νx .f (x)

For example,
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the origins of infinite paths ≡
⋃
{x : x ⊆ 3x} = νx .3x .



When induction meets co-induction

µx .νy .f (x , y)
‖
x = νy .f (x , y)

‖
y = f (x , y)

Note that a = µx .νy .f (x , y) satisfies a = f (a, a), hence

µx .f (x , x) ≤ µx .νy .f (x , y) ≤ νy .f (y , y)

It makes sense!



Early history of the µ-calculi

Jaco W. de Bakker and Willem P. de Roever, A calculus for
recursive program schemes, 1972.

Lawrence Flon and Norihisa Suzuki, Consistent and Complete
Proof Rules for the Total Correctness of Parallel Programs, 1978.

David Park, On the semantics of fair parallelism, 1980.

E. Allen Emerson and Edmund M. Clarke, Characterizing
correctness properties of parallel programs using fixpoints, 1980.

Vaughan R. Pratt, A Decidable mu-Calculus: Preliminary Report,
1981.

Dexter Kozen, Results on the propositional µ-calculus, 1982.



What can we express with ν µ ν . . . ?

D. Park, On the semantics of fair parallelism, 1980.

ω-Regular properties of infinite words, like fair merge: both a
and b occur infinitely often:

νx .µz . (az ∪ bµy .(ax ∪ by)) .

E.A. Emerson and E.M. Clarke, Characterizing correctness
properties. . . 1980

Computation tree properties, like: on each infinite path, b will
ultimately always happen

µx .νy .2 (x ∨ (b ∧ y)) .

In general, ω iterations is not enough, and the last property is
Π1

1-complete (interpreted over N).



Decidability issues

Can we decide the µ-calculus (at least) on the propositional level?

Dexter Kozen and Rohit Parikh, A Decision Procedure for the
Propositional Mu-calculus, 1983.

By a reduction to the MSO theory of the binary tree and the
Rabin Tree Theorem.

Besides, over binary trees the logics are equivalent (N. 1988), and
over all Kripke structures the µ-calculus captures precisely the
bisimulation-invariant fragment (Janin and Walukiewicz 1996).



Complexity issues

The Propos i t i ona l  Mu-Calculus i s  Elementary 
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ABSTRACT: The p ropos i t i ona l  mu-calculus i s  a p ro p o s i t i o n a l  
l o g i c  of programs which incorporates a l eas t  f i x p o i n t  
operator and subsumes the Propos i t i ona l  Dynamic Logic of 
F ischer and Ladner, the i n f i n i t e  looping cons t ruc t  of 
S t r e e t t ,  and the Game Logic of Par ikh.  We g ive  an elementary 
time dec is ion procedure, using a reduc t ion  to  the emptiness 
problem f o r  automata on i n f i n i t e  t rees.  A small model 
theorem i s  obtained as a c o r o l l a r y .  

1. I n t r o d u c t i o n  

F i r s t - o r d e r  l o g i c  i s  inadequate f o r  f o r m a l i z i n g  reasoning 
about programs; concepts such as te rm ina t ion  and t o t a l i t y  
r equ i r e  l o g i c s  s t r i c t l y  more powerful than f i r s t - o r d e r  
(Kfoury and Park, 1975). The use of a leas t  f i x p o i n t  
operator as a remedy f o r  these d e f i c i e n c i e s  has been 
i nves t i ga ted  by Park (1970, 1976), Hitchcock and Park (1973), 
deBakker and deRoever (1973), deRoever (1974), Emerson and 
Clarke (1980), and others.  The r e s u l t i n g  formal systems are 
o f ten  c a l l e d  mu-ca lcu l i  and can express such important 
p rope r t i es  of sequent ia l  and p a r a l l e l  programs as 
t e rm ina t i on ,  l i veness ,  and freedom from deadlock and 
s t a r v a t i o n .  

P ropos i t i ona l  vers ions of the mu-calculus have been proposed 
by P ra t t  (1981} and Kozen (1982). These l o g i c s  use the l eas t  
f i x p o i n t  operator to  increase the expressive power of 
P ropos i t i ona l  Dynamic Logic (PDL) of Fischer and Ladner 
(1979). Kozen's fo rmu la t i on  captures the i n f i n i t e  looping 
cons t ruc t  of S t r e e t t  (1982) and subsumes Pa r i kh ' s  Game Logic 
(1983a, 1983b), whereas P r a t t ' s  l o g i c  i s  designed to  express 
the converse operator of PDL. The f i l t r a t i o n - b a s e d  dec is ion 
procedure and small model theorem obtained f o r  BDL extend to  
P r a t t ' s  mu-calculus,  but the a b i l i t y  to  express i n f i n i t e  
looping renders the f i l t r a t i o n  technique i n a p p l i c a b l e  to  
Kozen's vers ion .  

Kozen (1982) and Vardi and Wolper (1984) have obtained 
exponent ia l  t ime dec is ion  procedures f o r  fragments of Kozen~s 
mu-calculus. Both fragments can expresses a l l  of BDL, but 
are not strong enough to  capture the i n f i n i t e  looping 
cons t ruc t  of S t r e e t t  (1982). Kozen and Parikh (1983) have 
shown t ha t  the s a t i s f i a b i l i t y  problem f o r  the f u l l  



Complexity issues

Robert S. Streett, E. Allen Emerson:
The Propositional Mu-Calculus is Elementary. 1984.

I Reduction to Rabin automata,

I the concept of signature

µx5. νx4. µx3. νx2. µx1. ϕ(x1, . . . , x5).
ξ5 ξ3 ξ1

E. Allen Emerson and Charanjit S. Jutla:
The Complexity of Tree Automata and Logics of Programs 1988.

I EXPTIME-completeness of the satisfiability problem.



The birth of parity games

ALMA observatory



The birth of parity games

E. Allen Emerson, Charanjit S. Jutla:
Tree Automata, Mu-Calculus and Determinacy 1991.

I a new proof of Rabin’s Complementation Lemma,

I an efficient translation from µ-calculus to automata,

I positional determinacy of parity games
(independently shown by A. W. Mostowski 1991).

Established the studies of memory in infinite duration games.



Playing parity games
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The µ-calculus proof of determinacy provides an explicit strategy:
decrease the signature !



Complexity of parity games

NP ∩ co-NP PPAD complete

∈ ∈

parity → mean payoff → Nash

nO(log n) ?

C.S. Calude, S. Jain, B. Khoussainov, W. Li, F. Stephan,
Deciding parity games in quasipolynomial time, 2017



Topological complexity and measures

The set TΣ of (full binary) Σ-labeled trees, i.e., t : 2∗ → Σ
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has the Cantor topology and coin-flipping measure.

For σ ∈ Σ, and L1, L2 ⊆ TΣ, let

σ(L1, L2) = { σ

~~   
t1 t2

: t1 ∈ L1, t2 ∈ L2 }



Topological complexity and measures cont’d

µx .νy .a(x , x) ∪ b(y , y) ≡ on each path, a occurs finitely often
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This set is Π1
1-complete (hence non-Borel).

It encodes all well-founded trees T ⊆ ω∗.
Recall the example in E.A. Emerson and E.M. Clarke,
Characterizing correctness properties. . . 1980.



Topological complexity and measures cont’d

Are all regular sets of infinite trees measurable ?

Yes!
T. Gogacz, H. Michalewski, M. Mio, M. Skrzypczak,
Measure properties of regular sets of trees 2017.

Can the measures be effectively computed ?

Yes! (they are algebraic numbers)

D.N., Pawe l Parys and Micha l Skrzypczak,
The Probabilistic Rabin Tree Theorem, 2023.



Computing measures by fixed points

Input a tree automaton A
Output Pr (t ∈ L(A))

We know

L(A) = µxd−1. νxd−2 . . . νx2. µx1. νx0.F (x0, x1, . . . , xd−1).

The binary random variables (t ∈ L(Aq)), for all states q, are not
independent.

The domain of joint distributions is not even a lattice.
But it nevertheless allows for an interpretation of
νx .νx .µ . . . .F (~x), if suitable reconstructed.



Unary µ-calculus

The constructions µx .f (x , ~y) and νx .f (x , ~y) are replaced by

F 7→ F ↑, F ↓

F ↑ : x 7→ the least fixed point above x

F ↓ : x 7→ the greatest fixed point below x ,
if exist.

Then

µxd−1. νxd−2 . . . νx2. µx1. νx0.F (x0, x1, . . . , xd−1)

can be rewritten using these operations, F , and some “shuffling”
of the arguments.

Then it can be interpreted in the domain of distributions, and the
result is a formula of Tarski’s theory of reals.



Dagstuhl 1992

Seminar organised by Kevin Compton, Jean-Eric Pin, Wolfgang
Thomas. From the programme:

. . . . . . . . .
Nils Klarlund (Aarhus): Progress Measures for Complementation of
ω-Automata

E. Allen Emerson (Austin): Complexity of Logics of Programs and
Automata on Infinite Objects

Andrzej W. Mostowski (Gdańsk): Games with Forbidden Positions

Damian Niwiński (Warsaw): Problems in µ-Calculus

Paul E. Schupp (Urbana): Simulating Alternating Automata by
Nondeterministic Automata

Bruno Courcelle (Bordeaux): Monadic Second-order Definability
Properties of Infinite Graphs

A. L. Semenov and Andrey A. Muchnik (Moscow): Automata on Infinite
Objects, Monadic Theories, and Complexity



Austin 1992

Thank you, Allen


