Trees with decidable theories Damian Niwiński University of Warsaw joint work with Teodor Knapik, Paweł Urzyczyn, and Igor Walukiewicz ASL North American Annual Meeting, Boulder, CO, May 2014

Decidable vs. undecidable

Turing, Church (1936). Arithmetic of natural numbers is undecidable.

All "interesting" mathematical theories are undecidable.

But

- Decidability of mathematical theories is crucial in automatic verification.
- Delimitating decidable fragments of an undecidable theory (e.g., arithmetics) reveals a fine structure of the theory.

Büchi (1960). Monadic second order theory (MSO) of $\langle \omega, succ \rangle$ is decidable.

This subsumes, among others,

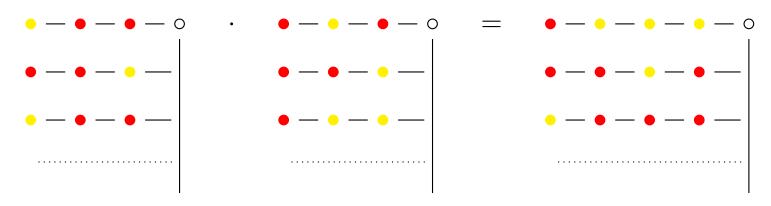
Presburger (1929). First order theory of $\langle \omega, + \rangle$ is decidable.

- $\bigcirc 0$ $\bigcirc 1$ 2 $\bigcirc 3$ 4 $\bigcirc 5$ $\bigcirc 6$ 7 8 9 ...
- 0 1 2 3 4 5 6 7 8 9 ...
- $\bigcirc 0$ 1 $\bigcirc 2$ 3 4 $\bigcirc 5$ 6 $\bigcirc 7$ 8 $\bigcirc 9$...

Rabin (1969). MSO theory of $\mathbb{T}_2 = \langle 2^*, succ_0, succ_1 \rangle$ is decidable.

This subsumes, among others,

Skolem (1930). First order theory of $\langle \omega, \cdot \rangle$ is decidable.



$$2^{3} \cdot 3^{6} \cdot 5^{3}$$

$$2^{3} \cdot 3^{6} \cdot 5^{3} \qquad \cdot \qquad 2^{5} \cdot 3^{6} \cdot 5^{4} \qquad = \qquad 2^{8} \cdot 3^{12} \cdot 5^{7}$$

$$2^{8} \cdot 3^{12} \cdot 5$$

A great number of decidability results follows from Rabin's theorem.

An equivalent formalism of tree automata is used for better complexity bounds.

An interpretation of a structure $\mathcal{A} \hookrightarrow \mathbb{T}_2$ yields decidability of $Th(\mathcal{A})$.

Another construction interprets **all*** **models** of a formula.

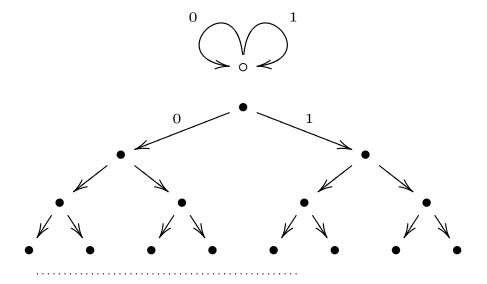
$$\varphi \mapsto \Phi(X)$$

$$\mathcal{A} \models \varphi \Leftrightarrow \mathbb{T}_2 \models \Phi[\mathcal{A}]$$

This yields decidability of the **satisfiability** problem for numerous logics with the **tree model property**.

Grädel & Walukiewicz (1999). Guarded first-order logic with fixed points is decidable.

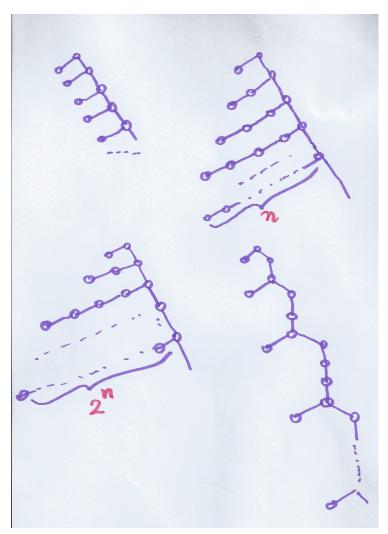
Generalizations of Rabin's Theorem



Courcelle & Walukiewicz (1997). The MSO theory of the unfolding of a graph reduces to the MSO theory of the original graph.

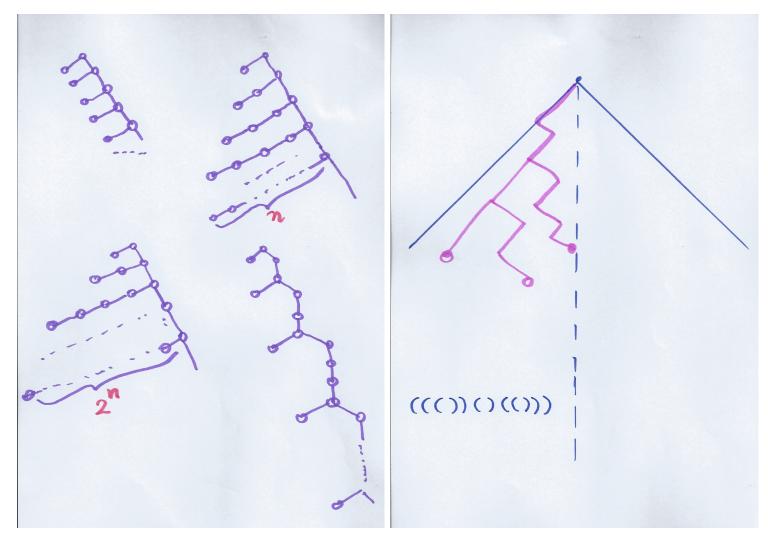
Muchnik (unpublished, ca. 1990), **Walukiewicz 1996.** The MSO theory of a tree-like structure M^{*} over an arbitrary structure M reduces to the MSO theory of M.

What about different shapes of trees?



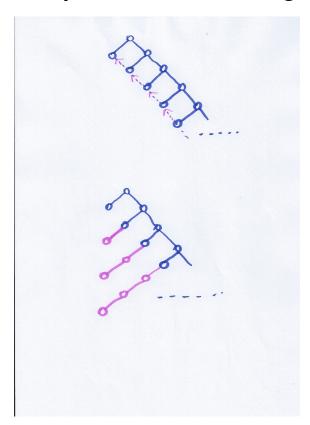
MSO theory of a recursive tree can be Π^1_1 -hard (cf. Thomas 2010).

On positive side



MSO theories of *algebraic* trees are decidable (cf. Courcelle 1995).

Interpretation + unfolding + interpretation + unfolding \dots



Caucal observed (in 1990s) that alternating interpretation and unfolding gives rise to a rich family of trees. This resulted in **Caucal's hierarchy (2002)**.

Generating trees by 1st order grammars (algebraic)

$$S \Rightarrow \forall c$$

$$\forall x \Rightarrow f$$

$$S \Rightarrow c$$

$$S \Rightarrow c$$

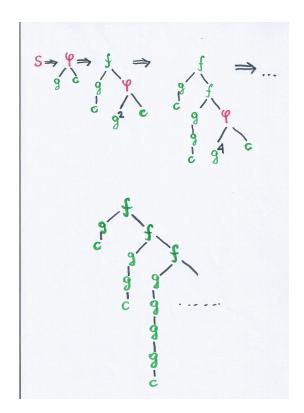
$$C \Rightarrow c$$

Generating trees by 2nd order grammars

$$S \Rightarrow \phi gc$$

$$\phi \xi x \Rightarrow f(\xi x) (\phi (Copy \xi) x)$$

$$Copy \xi z \Rightarrow \xi(\xi z)$$



Higher-order tree grammars — definitions

Types
$$\mathcal{T} \quad au ::= \mathbf{0} \ | \ au o au$$

Nonterminals $N = \{N_{\tau}\}_{\tau \in \mathcal{T}}$

Variables
$$\mathcal{X} = \{\mathcal{X}_{\tau}\}_{\tau \in \mathcal{T}}$$

Signature constants $f, g, c, \ldots : \mathbf{0}^k \to \mathbf{0}$

Grammar
$$\mathcal{G} = (\Sigma, V, S, E)$$

with Σ a signature, $V \subseteq \bigcup_{\tau \in \mathcal{T}} N_{\tau}, \quad V \ni S : \mathbf{0}$,

and E a finite set of *productions* of the form

$$\mathcal{F}z_1 \dots z_m \Rightarrow w$$

with
$$V \ni \mathcal{F}: \tau_1 \to \tau_2 \cdots \to \tau_m \to \mathbf{0}, \quad z_i \in \mathcal{X}_{\tau_i}$$
,

and w an applicative term over $\Sigma \cup V \cup \{z_1 \dots z_m\}$ of type $\mathbf{0}$.

Derivations

We assume that a grammar \mathcal{G} is **deterministic**, i.e., one production per nonterminal.

Hence there is a unique outermost derivation

$$S = t_0 \to_{\mathcal{G}} t_1 \to_{\mathcal{G}} t_2 \to_{\mathcal{G}} \dots$$

producing the tree $\llbracket \mathcal{G} \rrbracket$ generated by \mathcal{G} .

Levels

$$\ell(\mathbf{0}) = 0, \qquad \ell(\tau_1 \to \tau_2) = \max(1 + \ell(\tau_1), \ell(\tau_2))$$

The model checking problem

Given a grammar \mathcal{G} and a formula φ , decide if $[\mathcal{G}] \models \varphi$.

Here, a tree $t:\{1,2,\ldots,M\}^*\supseteq dom\ t\to \{f,g,c,\ldots\}$ is considered as a logical structure

$$\mathbf{t} = \langle dom \, t, f^{\mathbf{t}}, g^{\mathbf{t}}, c^{\mathbf{t}}, \dots, \, succ_{1}^{\mathbf{t}}, \dots, succ_{M}^{\mathbf{t}} \rangle$$

where $f^{\mathbf{t}}(w) \Leftrightarrow t(w) = f$, and $succ_i^{\mathbf{t}}(w,wi)$, whenever $wi \in dom\ t$.

Reduction of a grammar $\mathcal G$ of level n to $\mathcal G^{\boldsymbol{\alpha}}$ of level n-1

For types, $\tau \mapsto \tau^{\alpha}$,

- $\bullet \ \alpha : 0 \mapsto 0$,
- $\bullet \ \alpha : (\mathbf{0}^k \to \mathbf{0}) \mapsto \mathbf{0},$
- $\bullet \ \alpha : (\tau_1 \to \cdots \to \tau_n) \mapsto (\tau_1^{\alpha} \to \cdots \to \tau_n^{\alpha})$

For terms, $t: \tau \mapsto t^{\alpha}: \tau^{\alpha}$,

- $\bullet \alpha : \mathcal{F} \mapsto \mathcal{F}^{\alpha}$
- $\alpha: z \mapsto z$, for any parameter z,
- $\bullet \ \alpha: (ts) \mapsto (t^{\alpha}s^{\alpha}), \text{ whenever } s:\tau \text{ with } \ell(\tau) \geq 1,$
- $\alpha:(ts)\mapsto ((@t^{\alpha})s^{\alpha})$, whenever $s:\mathbf{0}$ (hence $t^{\alpha},s^{\alpha}:\mathbf{0}$).

Reduction of grammars cont'd

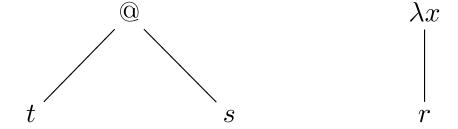
$$\mathcal{G} = (\Sigma, V, S, E) \quad \mapsto \quad \mathcal{G}^{\alpha} = (\Sigma^{\alpha}, V^{\alpha}, S^{\alpha}, E^{\alpha})$$

where

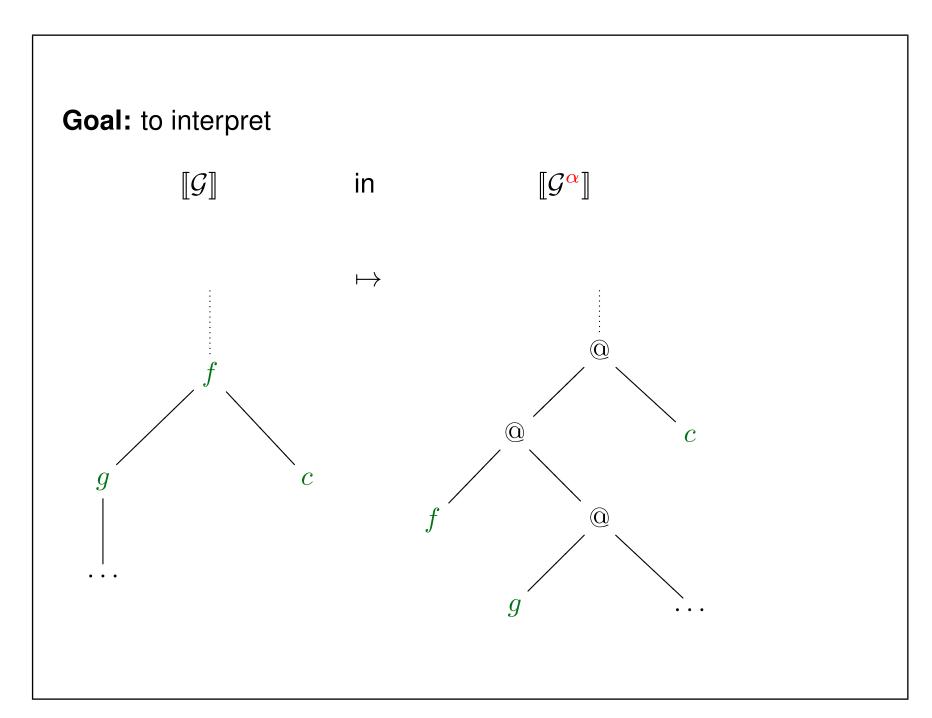
 $E: \mathcal{F}\phi_1 \dots \phi_m y_1 \dots y_n \Rightarrow r$, with $y_1 \dots y_n : \mathbf{0}$ then

$$E^{\alpha}: \mathcal{F}^{\alpha}\phi_1 \dots \phi_m \Rightarrow \lambda y_1 \dots \lambda y_n.r^{\alpha}.$$

Here the λy_i 's and @ are new constants with $\lambda y_i : \mathbf{0} \to \mathbf{0}$ and @ : $\mathbf{0}^2 \to \mathbf{0}$.



The tree is a $\llbracket \mathcal{G}^{\alpha} \rrbracket$ is a λ -definition of $\llbracket \mathcal{G} \rrbracket$.



Reduction level 1 to level 0 – example

$$S \Rightarrow \forall c$$

$$\forall x \Rightarrow f$$

$$S \Rightarrow c$$

$$\forall x \Rightarrow f$$

$$S \Rightarrow c$$

$$\forall x \Rightarrow f$$

$$S \Rightarrow c$$

$$C \Rightarrow$$

Reduction level 2 to level 1 – example

$$S \Rightarrow \phi gc$$

$$\phi \xi x \Rightarrow f(\xi x) (\phi (Copy \xi) x)$$

$$Copy \xi z \Rightarrow \xi(\xi z)$$

$$\downarrow \downarrow$$

$$S \Rightarrow @(\phi g)c$$

$$\phi \xi \Rightarrow \lambda x @ (@f(@\xi x)) (@\phi(Copy\xi)x)$$

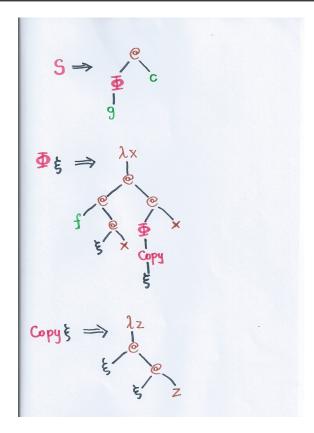
$$Copy\xi \Rightarrow \lambda z @\xi (@\xi z)$$

 $\downarrow \downarrow$

$$S \Rightarrow @(\phi g)c$$

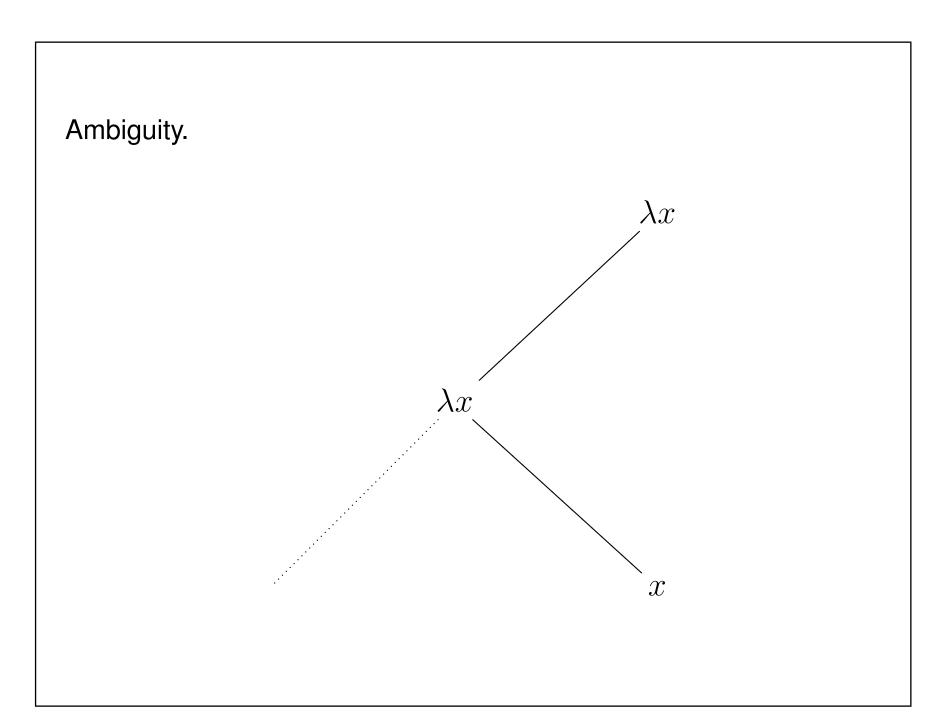
$$\phi \xi \Rightarrow \lambda x @(@f(@\xi x)) (@\phi(Copy\xi)x)$$

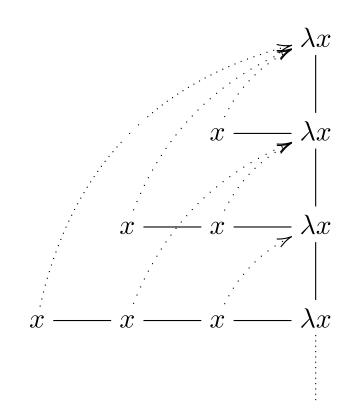
$$Copy\xi \Rightarrow \lambda z @\xi (@\xi z)$$



Reduction level 2 to level 1 – example cont'd

A problem may arise with a conflict of binding.





Explicit definition of binding leads to undecidability.

A term of level k > 0 is *unsafe* if it contains an occurrence of a parameter of level strictly less than k.

An *occurrence* of an unsafe term t is *unsafe*, unless it is in the context $\dots (ts) \dots$

$$\mathcal{F}\varphi xy \Rightarrow f(\mathcal{F}(\mathcal{F}\varphi \otimes y)yy)x$$

A grammar without such occurrences is **safe**.

Note. If a grammar \mathcal{G} is safe, so is \mathcal{G}^{α} .

Lemma. If \mathcal{G} is safe then the MSO theory of the tree $[\![\mathcal{G}]\!]$ is recursively reducible to the MSO theory of the tree $[\![\mathcal{G}]\!]$.

Note. A grammar $\mathcal G$ of level ≤ 1 is always safe and $[\![\mathcal G]\!]$ has decidable MSO theory.

Theorem (KNU 2002). The MSO theory of the tree generated by a safe grammar of any level is decidable.

Theorem (Caucal 2002). The hierarchy of trees generated by safe grammars of level $\,n$ coincides with the hierarchy obtained by interpretation + unfolding

 $(\rightarrow$ Caucal's hierarchy).

But safety is not the frontier of decidability.

Theorem (Ong 2006). The MSO theory of the tree generated by any grammar is decidable.

Preceded by Aehlig, de Miranda and Ong 2005 for level 2, and independently KNUW 2005, *via* panic automata (of level 2).

Further development

Hague, Murawski, Ong and Serre 2008: another proof *via* collapsible automata of any level.

Kobayashi & Ong 2009: another proof via a type system.

Salvati & Walukiewicz 2012: another proof via Krivine machine.

Language-theoretic characterization of trees

By the complexity of sets of words $\{w \in dom \ t : t(w) = f\}$.

Let
$$t = \llbracket \mathcal{G} \rrbracket$$
.

level 0 regular

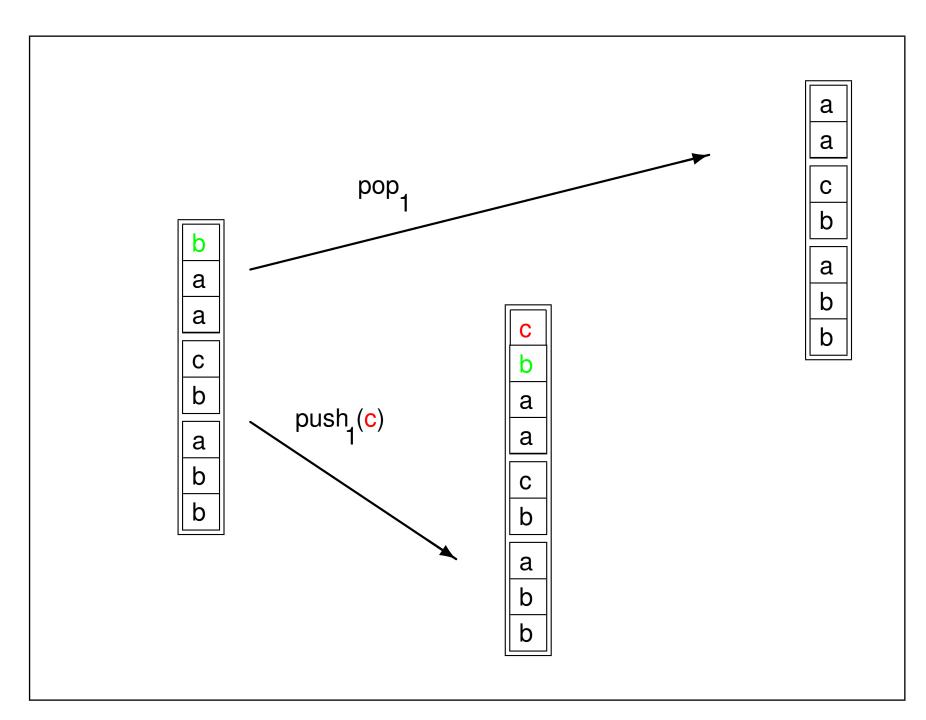
level 1 deterministic pushdown Courcelle

safe level n deterministic pushdown of level n KNU 2002

level 2 panic automata KNUW 2005

level n collapsible automata of level n HMOS 2008

Parys 2012 used these characterizations to separate **safe** from **unsafe** grammars.





Second-order pushdown stores

A level 1 pushdown store is a non-empty word $a_1 \dots a_k$ over Γ .

A *level* 2 *pds* is a non-empty sequence of 1-pds' $[s_1][s_2] \dots [s_l]$.

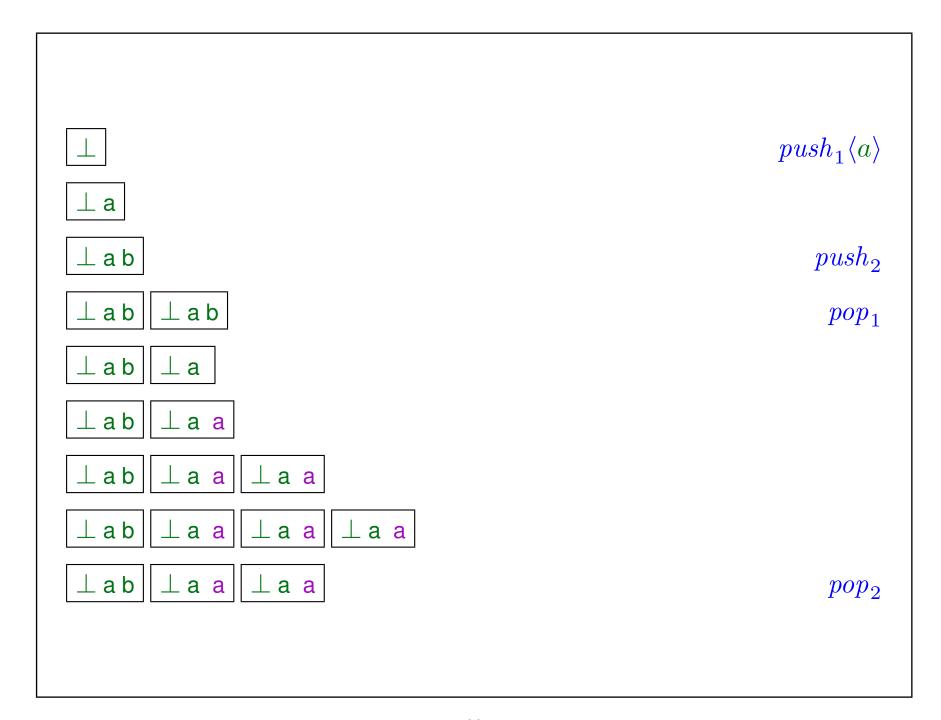
Operations:

$$push_1\langle a\rangle([s_1][s_2]\dots[s_l][w]) = [s_1][s_2]\dots[s_l][wa]$$

$$pop_1(\alpha[w\xi]) = \alpha[w]$$

$$push_2(\alpha[w]) = \alpha[w][w]$$

$$pop_2(\alpha[v][w]) = \alpha[v]$$



Second-order pushdown stores with time stamps

A *level* 1 *pushdown store* is a non-empty word $a_1 \dots a_k$ over $\Gamma \times \omega$.

A *level* 2 *pds* is a non-empty sequence of 1-pds' $[s_1][s_2] \dots [s_l]$.

Operations (Op_2):

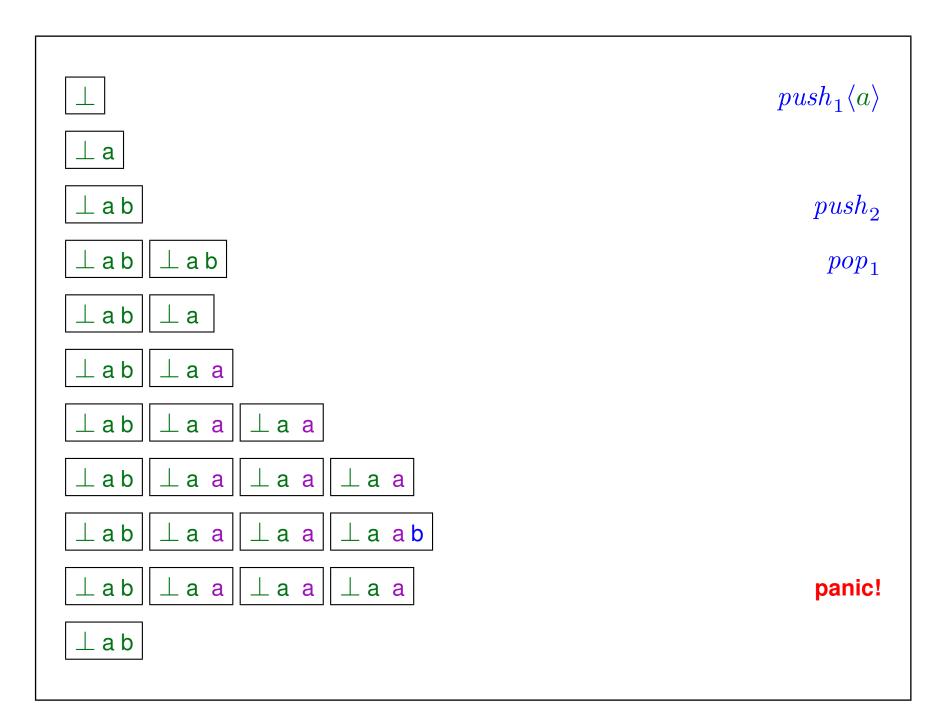
$$push_1\langle a\rangle([s_1][s_2]\dots[s_l][w]) = [s_1][s_2]\dots[s_l][w(a,l)]$$

$$pop_1(\alpha[w\xi]) = \alpha[w]$$

$$push_2(\alpha[w]) = \alpha[w][w]$$

$$pop_2(\alpha[v][w]) = \alpha[v]$$

$$panic([s_1][s_2]\dots[s_m]\dots[s_l][w(a,m)]) = [s_1][s_2]\dots[s_m]$$



The model checking problem for level 2.

Given a grammar \mathcal{G} and a formula φ , decide if $[\mathcal{G}] \models \varphi$.

Reduces to:

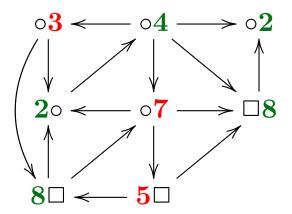
Given a second-order pushdown system with panic C, and a parity tree automaton A, decide if A accepts the tree C.

Reduces to:

Given a second-order pushdown systems with panic C, and a parity tree automaton A, decide if Eve wins a certain **parity game** $Game(C \times A)$.

Parity games

Eve (\circ) and Adam (\square) move a token on a graph.

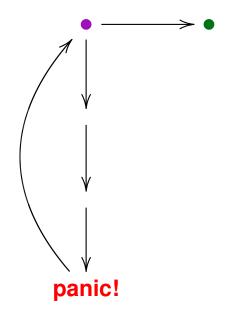


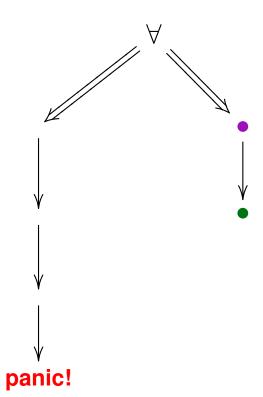
Eve wants to visit **even** priorities infinitely often.

Adam wants to visit odd priorities infinitely often.

Maximal priority wins.

Reduction of types is implemented by the structure of the game.





But is **safety** a true restriction?

Example — panic not needed

Recognize words of the form $w*^{n+1}$, where:

-w is a prefix of a correctly parenthesized expression;

$$-n=|w|$$
.

Words like this one: [[]] [[] ********

Not a context-free language.

Example (Urzyczyn) — panic seems to be needed

Recognize words of the form $uv *^{n+1}$, where:

- -u is a prefix of a correctly parenthesized expression ending with [;
- -v is a correctly parenthesized expression;
- -n=|u|.

Words like this one:

The example is related to the following grammar (Urzyczyn).

$$S \Rightarrow D\varphi ab$$

$$D\varphi xy \Rightarrow (fD(D\varphi x)y\overline{y})(f(\varphi y)x)$$

Parys (2011, 2012) proved that the above language U cannot be recognized by a deterministic automaton without panic of any level.

The level hierarchy of collapsible pushdown automata is strict Parys & Kartzow 2012.

