
Modal Fixpoint Logics: When Logic Meets Games,
Automata and Topology

Alessandro Facchini & Damian Niwiński

University of Warsaw

Lecture V

1. Complexity aspects of the µ-calculus

2. Probabilistic µ-calculus

3. Perspectives and open problems

ESSLLI Tübingen 2014

Disclaimer. Credits to many authors. Errors (if any) are mine. . .

1

Part I

Complexity aspects of the µ-calculus

2

How to evaluate fixed point expressions ?

µx.νy.3(x ∧2(y ∨ µz.3(x ∧2(y ∨ z))))

Primary problem: compute the value

µx2k+1.νx2k. . . . µx1.νx0.F (x0, x1, . . . , x2k, x2k+1)

for a monotonic mapping F : L2k+1 → L over a finite complete

lattice 〈L,≤〉.

Typically Ln = 〈℘{1, . . . , n},⊆〉 ≡ 〈{0, 1}n,≤〉.

Note: Lk × Lm ≡ Lk+m.

3

Example revisited

7•

}}||||||

4• 5•

!!BBBBBB 6•

aaBBBBBB

2◦

aaBBBBBB

==||||||
3•

==||||||

1◦

aaBBBBBB

==||||||

µx.νy.2y ∧ (Happy ∨2x)︸ ︷︷ ︸
F (x,y)

F : 1010001︸ ︷︷ ︸
x

, 0100100︸ ︷︷ ︸
y

7→ ?

4

Example revisited

•x, z

{{wwwwww

•z •y

##GGGGGG •

bbEEEEEE

◦y

aaCCCCCC

=={{{{{{
x•

<<yyyyyyy

◦x

aaDDDDDD

;;wwwwwww

F (x, y) = 2y ∧ (Happy ∨2x)

F : 1010001︸ ︷︷ ︸
x

, 0100100︸ ︷︷ ︸
y

7→ 0001001︸ ︷︷ ︸
z

5

Iteration algorithm

G : L→ L. Compute µx.G(x).

G(⊥) = a1

G(a1) = a2

.

G(am) = am+1

‖
until am

Then am = µx.G(x).

O(n) steps, where n is the height of the lattice L (i.e., the length

of a maximal chain, the height of {0, 1}n is n).

6

Iteration algorithm

Compute µx.νy.F (x, y).

F (⊥,>) F (⊥, F (⊥,>)) νy.F (⊥, y) = a1

F (a1,>) F (a1, F (⊥,>)) νy.F (a1, y) = a2

. .

F (am,>) F (am, F (⊥,>)) νy.F (am, y) = am+1

‖
until am

Then am = µx.νy.F (x, y).

O(n2) steps, where n is the height of the lattice.

7

Black-box algorithms

νxd.µxd−1. . . . νx2.µx1.F (x1, x2, . . . xd)

11 . . . 1

�� ��

11 . . . 1

��

n

00 . . . 0

OO OO

00 . . . 0

OO

xd xd−1 . . . x2 x1

The (naive) iteration algorithm makesO(nd) calls of F .

8

Calculate Fd

νxd.

Fd−1︷ ︸︸ ︷
µxd−1. . . . νx2.

F1︷ ︸︸ ︷
µx1.F (x1, x2, . . . xd)︸ ︷︷ ︸

F2︸ ︷︷ ︸
Fd

CalculateFi(xi+1, . . . , xd) (i > 0)

xi = 00 . . . 0, for odd i / 11 . . . 1, for even i

repeat

xi = CalculateFi−1(xi, xi+1, . . . , xd)

until xi stops changing

return xi

Calculate F0(x1, . . . , xd) return F (x1, . . . , xd)

9

νxd.

Fd−1︷ ︸︸ ︷
µxd−1. . . . νx2.

F1︷ ︸︸ ︷
µx1.F (x1, x2, . . . xd)︸ ︷︷ ︸

F2︸ ︷︷ ︸
Fd

Calculate Fi(xi+1, . . . , xd) (i > 0)

% xi = 00 . . . 0, for odd i / 11 . . . 1, for even i

Initialize xi (closer to the fixpoint)

repeat

xi = CalculateFi−1(xi, xi+1, . . . , xd)

until xi stops changing

return xi

We can reduce the number of calls from nd to n
d
2
+1.

10

We can reduce the number of calls from nd to n
d
2
+1

at the expense of increasing computational space.

Known lower bound in the black box model:

Ω
(

n2

logn

)
iterations; already for νy.µx.F (x, y).

Question. Is there a nc·d lower bound for each

νxd.µxd−1. . . . νx2.µx1.F (x1, x2, . . . xd) ?

11

Solving parity games

Recall s ∈ [[ϕ]]K (in other wordsK, s |= ϕ) iff Eve wins the game G(K, ϕ) from

position (s, ϕ).

Thus the evaluation of [[ϕ]]K boils down to computing the winning regions in

parity games.

•3

��

��

•4oo

�� ""EEEEEE
// •2

◦Eve 2•

<<yyyyyyy
•7

��

//oo �8

OO

2Adam 8�

OO <<zzzzzzz
5�oo

<<zzzzzzz

12

Theorem. (Emerson & Jutla, A.W.Mostowski)
Parity games are positionally determined, i.e., the winner may
always use a strategy, which depends only on the actual position.

•3

��

��

•4ks

�� ""EEEEEE
// •2

2•

8@yyyyyy
yyyyyy
•7

��

//ks �8

OO
O�
O�

8�

OO <<yyyyyy
5�oo

<<<|
<|
<|
<|

•3

��

��

•4ks

�� ""EEEEEE
// •2

2•

8@yyyyyy
yyyyyy
•7

��

//ks �8

OO
O�
O�

8�

OO <<yyyyyy
5�oo

<<<|
<|
<|
<|

13

Parenthesis

Not every game is positionally determined.

2a

��

2b

~~}}}}}}}}}}}}}}}
oo

◦

aaDDDDDDD

}}zzzzzz

2A

FF

2B

``AAAAAAAAAAAAAAA
oo

Eve wins if both a, b or both A,B occur infinitely often.

Eve can make it, but one bit of memory is needed.

14

Winning strategies in parity games

It can be verified in polynomial time whether a positional strategy is winning.

(Check the parity of max rank on strongly connected subgraphs of the strategy.)

•3

��

��

•4ks

�� ""

// •2

2•

8@yyyyyy
yyyyyy
•7

��

//ks �8

OO

8�

OO <<yyyyyy
5�oo

<<

•3

��

��

•4ks

�� ""

// •2

2•

8@yyyyyy
yyyyyy
•7

��

//ks �8

OO

8�

OO <<yyyyyy
5�oo

<<

Thus the problem of determining the winning regions in parity

games is in NP ∩ co-NP.

It is even in UP ∩ co-UP.
UP = unambiguous NP.

15

Survival game

All ranks are 0, so that Eve wins any infinite play.

•

��

��

•oo

�� AAAAAA // •

◦Eve •

>>}}}}}}}
•

��

//oo �

OO

2Adam �

OO ??~~~~~~
�oo

??~~~~~~

The winning region of Eve is the maximal set W ⊆ Pos, such that

W ⊆ (E ∩3W) ∪ (A ∩2W)

Note: W is a fixed point (−→ Knaster-Tarski Theorem, 1st lecture).

Eve’s (positional) strategy: remain in W .

This game can be solved in linear time.

16

Solving parity games deterministically

Recall WinE =

νX8.µX7. . . . µX1.νX0.(E ∩ rank0 ∩3X0) ∪ (E ∩ rank1 ∩3X1) ∪ . . .

. . . ∪ (E ∩ rank7 ∩3X7) ∪ (E ∩ rank8 ∩3X8) ∪

∪(A ∩ rank0 ∩ 2X0) ∪ (A ∩ rank1 ∩ 2X1) ∪ . . . ∪ (A ∩ rank8 ∩ 2X8)

WinA = has a dual formula.

By the naive algorithm, we can compute the winning region in a game with d

ranks and n positions in time nd+O(1) and spaceO(d · n).

By improving the naive algorithm (→ initialization), we can reduce time to

n
d
2+O(1) at the expense of increasing the computation space.

Can we do better ?

17

Solving parity games – another view

◦3

��

��

◦4oo

�� ""EEEEEE
// ◦2

2◦

<<yyyyyy
◦7

��

//oo 28

OO

82

OO <<yyyyyy
52oo

<<yyyyyy

Playing a winning positional strategy, Eve never sees an odd rank
more than |Pos| times, without seeing some higher even rank in
the meantime.

18

Eve never sees an odd rank too many times, without seeing some higher even

rank in the meantime.

Alarm!

•
• •

• • •
• • • •

count 1 count 3 count 5 . . . count 2k + 1

19

Alarm!

◦
◦ •

◦ ◦ •
◦ ◦ ◦ •

count 1 count 3 count 5 . . . count 2k + 1

8

reset

Eve wins the game iff Alarm! is never reached.

20

The game G+.

For a parity game G with |Pos| = n and ranks in {0, 1, . . . , 2k + 1}, create

Pos× {0, 1, . . . , n}k+1 ∪ {Alarm}

The update rank × counters 7→ counters ′ :

up(2i + 1, c1c3 . . . c2k+1) = c1c3 . . .

≤n︷ ︸︸ ︷
(c2i+1 + 1) . . . c2k+1

= > otherwise

up(2i, c1c3 . . . c2k+1) = 00 . . . 0c2i+1 . . . c2k+1

Moves: if v −→ v′ in G then

(v, c1 . . . c2k+1) //

**TTTTTTTTTTTTTTTTT
(v′,

6=>︷ ︸︸ ︷
up(rank(v), c1 . . . c2k+1))

Alarm (Eve looses)

21

The game G+ (continued).

Positions: Pos× {0, 1, . . . , n}k+1 ∪ {Alarm}.

Moves: if v −→ v′ in G then

(v, c1 . . . c2k+1) //

))TTTTTTTTTTTTTTTTT
(v′,

6=>︷ ︸︸ ︷
up(rank(v), c1 . . . c2k+1))

Alarm (Eve looses)

G+ is a survival game.

The following conditions are equivalent.

(i) Eve wins the game G from position p.

(ii) Eve wins the game G+ from position (p,~0).

22

The size of G+

|Pos× {0, 1, . . . , n}k+1 ∪ {Alarm}| = n
d
2+O(1)

(where d = 2k + 2 = the number of ranks in the original game).

It can be solved in linear time, which yields the time

n
d
2
+O(1)

for the original game 76540123· ·^ , but with the computation space of the same order, in

contrast to the spaceO(d · n) used by the naive algorithm 76540123· ·_ .

The space complexity blow-up can be avoided by using a more “patient”

alarming policy.

23

The game G++.

View elements of {0, 1, . . . , n}k+1 as k + 1-digit numbers in base n+ 1,

a0a1 . . . ak = a0 + a1 · (n+ 1) + a2 · (n+ 1)2 + . . .+ ak · (n+ 1)k.

Let Overflow = (n+ 1)k+1.

up(2i + 1,

m︷ ︸︸ ︷
a0 . . . ak) = m+ (n+ 1)i, if < Overflow

= > otherwise

up(2i, a0 . . . akm) = 00 . . . 0ai . . . ak

Positions and moves in G++ are like in G+ (with the new update function).

G++ is a survival game.

24

The following conditions are equivalent.

(i) Eve wins the game G from position p.

(ii) Eve wins the game G++ from position (p, 0).

(iii) max(p) > ⊥, where

max(p) = sup{x : Eve wins the game G++ from (p, x)}

with⊥ = sup ∅.

Thus, to solve the original game G, it is enough to compute max(p), for all

positions p.

25

The algorithm computes F : Pos→ {0, 1, . . . ,Overflow − 1} ∪ {⊥}.

For all p ∈ Pos do F (p) := Overflow − 1.

While (∃p)¬Well(p, F (p), F) do

xxxx Choose such p.

xxxx F (p) := sup{x : Well(p, x, F)}.

Return F.

Where

Well(p, x, F) ⇐⇒ x = ⊥, or p ∈ Pos∃, and

up(rank(p)x) ≤ max{F (q) : q ∈ Succ(p)}

or p ∈ Pos∀, and

up(rank(p)x) ≤ min{F (q) : q ∈ Succ(p)}

F = max. Computation time is n
d
2
+O(1), spaceO(d · poly(n)).

26

Correctness of the algorithm

For all p ∈ Pos do F (p) := Overflow − 1.

While (∃p)¬Well(p, F (p), F) do

xxxx Choose such p.

xxxx F (p) := sup{x : Well(p, x, F)}.

Return F.

F
??
= max.

max ≤ F . This is an invariant of the computation.

F ≤ max. If (∀q) Well(q, F (q), F) and F (p) > ⊥ then Eve wins in G++

from position (p, F (p)). Hence F (p) ≤ max(p).

27

Satisfiability problem for Lµ

Given: ϕ.

Question: does there existK and s, such thatK, s |= ϕ ?

Reduction

ϕ→ Aϕ a µ-automaton (alternating) ofO(|ϕ|) states

recognizing tree models of ϕ

Aϕ → A′ϕ an equivalent non-deterministic automaton of 2O(|ϕ|) states,

but onlyO(ϕ) ranks (Simulation Theorem)

A′ϕ → Gϕ parity game with 2O(|ϕ|) positions andO(ϕ) ranks.

This yields a single exponential-time algorithm for the problem.

28

Part II

Probabilistic µ-calculus

29

Probabilistic model of computation

Instaed of a single transition, e.g., p→ q

◦ ◦q ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦p

nn

◦

we have a probabilistic distribution on all transitions from p

◦ ◦q ◦ ◦ ◦ ◦

◦s ◦ ◦ ◦ ◦ ◦t

◦ ◦ ◦ ◦ ◦p

0.5

mm

Y�
Z�
\�
]�
_�a!
c#e%
f&h(
i)j*k+

l,

0.3
==
=}
=}

0.2

ff

o/o/n.m-m-l,
k+k+j*

i)h(
h(g'

◦

e.g., d(p, q) = 0.5, d(p, s) = 0.2, d(p, t) = 0.3, and d(p, w) = 0, for all

others w’s.

30

Classical Kripke structure K = 〈S,R, ρ〉,
with R ⊆ S × S, and ρ : Prop → ℘S.

Probabilistic Kripke structure K = 〈S,R, ρ〉,
withR ⊆ S ×D(S), and ρ : Prop → [0, 1]S .

whereD(S) = {d ∈ [0, 1]S :
∑
s∈S d(s) = 1}.

From each state, a distribution can be non-deterministically chosen.

◦ ◦

•

0.5 //

�P
�S
�X
�_ &f +k .n

0.5

GG

V�
O�
H�

•
0.1

gg g' g' g' g' g' g' g'
0.9

WW

H�
O�
V�

◦

__@@@@@@

??~~~~~~

31

Classical Kripke structure as a probabilistic one

◦ // ◦ ◦ // • ///o/o/o/o/o/o ◦

•

__
_�
_�
_�

•

??
?�
?�
?�

◦

^^=============

@@�������������
◦

__@@@@@

??~~~~~

32

Classical interpretation [[ϕ]]K ⊆ S, i.e.,

[[ϕ]]K : S → {0, 1}

Probabilistic interpretation [[ϕ]]K : S → [0, 1]

Idea: [[ϕ]]K(s) = probability that ϕ holds true in s
(classically 0 or 1).

More generally, [[ϕ]]Kv : S → [0, 1], where v : Prop → [0, 1]S .

33

Logic pLµ

ModelK = 〈S,R, ρ〉, withR ⊆ S ×D(S), and ρ : Prop → [0, 1]S ,

v : Prop → [0, 1]S .

Note: [0, 1]S is a complete lattice, hence Knaster-Tarski’s Theorem applies.

Syntax and interpretation

[[x]]Kv(s) = v(x)(s)

[[p]]Kv(s) = ρ(p)(s) [[¬p]]Kv(s) = 1− ρ(p)(s)

[[ϕ ∨ ψ]]Kv(s) = max([[ϕ]]Kv(s), [[ψ]]Kv(s)) [[ϕ ∧ ψ]]Kv(s) = min([[ϕ]]Kv(s), [[ψ]]Kv(s))

[[µx.ϕ]]Kv(s) = µX.[[ϕ]]Kv[X/x](s) [[νx.ϕ]]Kv(s) = νX.[[ϕ]]Kv[X/x](s)

[[3ϕ]]Kv(s) =
∨
{[[ϕ]]Kv(d) : R(s, d)} [[2ϕ]]Kv(s) =

∧
{[[ϕ]]Kv(d) : R(s, d)}

where [[ϕ]]Kv(d) =
∑
q∈S d(q) · [[ϕ]]Kv(q) (mean value).

34

The mappings ∨,∧ : {0, 1}2 → {0, 1}

Or 0 1

0 0 1

1 1 1

And 0 1

0 0 0

1 0 1

have several (meaningful) extensions to [0, 1]2 → [0, 1], e.g.

Or And

max(x, y) min(x, y)

x+ y − x · y x · y
min(x+ y, 1) max(0, x+ y − 1)

Which one to choose ?

35

The idea of Matteo Mio (Ackermann Award 2013):

to combine 2 or 3 operations in one logic.

Logic pLµ�

[[ϕ� ψ]]Kv(s) = [[ϕ]]Kv(s) + [[ψ]]Kv(s)− [[ϕ]]Kv(s) · [[ψ]]Kv(s)

[[ϕ · ψ]]Kv(s) = [[ϕ]]Kv(s) · [[ψ]]Kv(s)

Logic pLµ�⊕

[[ϕ⊕ ψ]]Kv(s) = min ([[ϕ]]Kv(s) + [[ψ]]Kv(s), 1)

[[ϕ	 ψ]]Kv(s) = max (0, [[ϕ]]Kv(s) + [[ψ]]Kv(s)− 1)

Łukasiewicz µ-calculus Łµ Mio & Simpson 2013

pL µ⊕ extended by [[¬ϕ]]Kv(s) = 1− [[ϕ]]Kv(s), plus [[λϕ]]K = λ · [[ϕ]]K.

36

Expressive power of pLµ�

P>0ϕ
def
= µx.(ϕ� x) xxxxxx P=1ϕ

def
= νy.(ϕ · y)

where

[[P>0ϕ]]K(s) = 1 if [[ϕ]]K(s) > 0

= 0 otherwise

[[P=1ϕ]]K(s) = 1 if [[ϕ]]K(s) = 1

= 0 otherwise

In particular, pLµ� subsumes the probabilistic version of CTL.

37

Example (Mio)

⊥ C 1
2

> ⊥ C 1
3

>

•

1
2

YY Y�
Y�
Y�
Y�
Y�
Y�
Y�
Y�

1
2

EEE�
E�
E�
E�
E�
E�
E�
E�

•

2
3

YY Y�
Y�
Y�
Y�
Y�
Y�
Y�
Y�

1
3

EEE�
E�
E�
E�
E�
E�
E�
E�

Game C 1
2
∨ C 1

3
Eve selects a game C 1

2
or C 1

3
, and this game is

played.

Game C 1
2
� C 1

3
Both games are played independently, and Eve

wins if she wins in at least one of them.

38

Example continued

⊥ C 1
2

> ⊥ C 1
3

>

•

1
2

YY
Y�
Y�
Y�
Y�
Y�
Y�
Y�

1
2

EE
E�
E�
E�
E�
E�
E�
E�

•

2
3

YY
Y�
Y�
Y�
Y�
Y�
Y�
Y�

1
3

EE
E�
E�
E�
E�
E�
E�
E�

Let P∃(C) = probability that Eve wins the game C .

P∃(C 1
2
∨ C 1

3
) = 1

2 = max
(
P∃(C 1

2
),P∃(C 1

3
)
)

P∃(C 1
2
� C 1

3
) = 1− 1

2 ·
2
3 = 2

3 = P∃(C 1
2
)� P∃(C 1

3
)

39

Example continued

This suggests the game interpretation of the connectives ∨ and�.

⊥ > ⊥ >

•

1
2

XX
X�
X�
X�
X�

1
2

FF
F�
F�
F�
F�

•

2
3

XX
X�
X�
X�
X�

1
3

FF
F�
F�
F�
F�

∨

hhPPPPPPPP

66nnnnnnnn

⊥ > ⊥ >

•

1
2

XX
X�
X�
X�
X�

1
2

FF
F�
F�
F�
F�

•

2
3

XX
X�
X�
X�
X�

1
3

FF
F�
F�
F�
F�

�

hhPPPPPPPP

66nnnnnnnn

40

Game semantics for pLµ�:
stochastic meta-parity games (Mio 2012)

The arena of the outer game comprises Eve’s positions, Adam’s positions,

random positions, and branching positions.

The result of the game is a tree, not a path.

This tree is an arena of an inner game, which is a standard parity game.

The branching nodes (of the outer game) are assigned to Eve or Adam in the

inner game.

Who wins the inner game, wins the whole game.

The original proof by Mio 2012 of determinacy of these games involved Martin’s

Axiom; eliminated in 2014.

41

Future directions and open problems

in the µ calculs.

42

Number of iterations

An ordinal α is a convergence limit of a formula µx.ϕ if, for any modelK,

[[µx.ϕ]]K =
∨
ξ<α

[[ϕ]]ξK(∅),

and, for some model, the number α of iterations is required.

Here we view [[ϕ]]K : ℘S → ℘S, with [[ϕ]]K(Z) = [[ϕ]]K[Z/x].

E.g., µx.3x ∨ p has the convergence limit ω, but µx.2x has no convergence

limit. (It holds in a well founded tree of any height.)

The formula µx.(3x ∧2p ∧ p) ∨ (2x ∧2p ∧ ¬p) ∨2⊥ has convergence

limit ω + 1 (suggested by M.Bojańczyk). M.Czarnecki showed that, for any

α < ω2, there is a formula with convergence limit α.

Conjecture. There are no formulas with convergence limit α≥ ω2. That is, if a

formula requires≥ ω2 in steps in some model then it may require arbitrary many

steps in some model.

43

Algorithms and complexity

The model checking problem for Lµ is

Given K, ϕ.

Question K |= ϕ ?

This problem is polynomially equivalent to solving parity games.

Is there a polynomial algorithm to solve parity games ?

The best known upper bound is nO(
√
n).

The expression complexity is a problem for a fixedK.

Given ϕ.

Question K |= ϕ ?

Is this problem in P ?

Is there a lower bound over Ω(n2) for the black box model ?

44

Algorithms and complexity continued

It is known via reduction to simple stochastic games that the parity game problem

is in the class PPAD. Give a direct proof of this result.

It is known that, for graphs with bounded tree width (J.Obdrzalek), the problem is

polynomial, however no FPT algorithm is known. Is the problem FTP tractable ?

Decidability of the hierarchy

Given an Lµ-formula ϕ, can we compute the minimal alternation depth of a

formula ψ ≡ ϕ ?

An analogous question for the powerset algebra of trees.

Probabilistic µ-calculus

What is the complexity of the model-checking problem ?

Decidability known for Łµ.

What is the expressive power of the probabilistic µ-calculi compared to PCTL* ?

45

Fixpoint logics in the general picture

Does the Janin-Walukiewicz Theorem hold for finite structures ?

Is there an analogous thoerem for probabilistic µ-calculus ?

Can one extend the µ-calculus to non-monotonic operations ?

46

References – Part I

J.Bernet, D.Janin and I.Walukiewicz. Permissive strategies: from parity games to safety

games. RAIRO – ITA 36(3), 2002.

E.A. Emerson and C.S. Jutla. The Complexity of Tree Automata and Logics of Programs.

FOCS, 1988.

E.A. Emerson, C.S. Jutla, and A.P. Sistla. On model-checking for fragments of the

µ-calculus. CAV 1993.

M. Jurdziński. Deciding the Winner in Parity Games is in UP ∩ co-Up. IPL 68(3), 1998.

M. Jurdziński. Small Progress Measures for Solving Parity Games. STACS 2000.

M. Jurdziński, M.Paterson, U.Zwick. A Deterministic Subexponential Algorithm for Solving

Parity Games. SIAM J. Comput. 38(4), 2008.

D.E. Long, A. Browne, E.M. Clarke, S. Jha, and W.R. Marrero. An improved algorithm for

the evaluation of fixpoint expressions. CAV 1994.

P.Parys. Some results on complexity of µ-calculus evaluation in the black-box model .

RAIRO – Theor. Inf. and Applic. 2013.

47

References – Part II

A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic systems.

FSTTCS 1995.

D. Fischer, E. Grädel, Ł. Kaiser. Model Checking Games for the Quantitative -Calculus.

Theory Comput. Syst. 47(3), 2010.

T. Gogacz, H. Michalewski, M. Mio, and M. Skrzypczak. Measure Properties of Game Tree

Languages. MFCS 2014.

M. Huth and M. Kwiatkowska. Quantitative analysis and model checking. LICS, 1997.

M. Mio. Game Semantics for Probabilistic µ-Calculi . PhD thesis, Univ. Edinburgh, 2012.

M. Mio and A. Simpson. Łukasiewicz µ-calculus. FICS 2013.

C. Morgan and A. McIver. A probabilistic temporal calculus based on expectations. In Proc.

Formal Methods, 1997.

48

