Modal Fixpoint Logics:VWhen Logic
Meets Games, Automata and Topology

A. Facchini & D. Niwinski (U.Warsaw)

Lecture I

Automata for Modal Fixpoint Logics

ESSLLI 2014, Tibingen, I 1-22 August 2014

The landscape of the first four days

Logic of Programs —— Automata Theory
S Model-Checking o
o ’ y 3
2 Mu-Calculus B
b 9
O xl' ’~~~ g

’

Gale-Stewart Games

Topdlogy .. Game Theory

What you have seen yesterday.....

Model-Checking

~
~ 4
L4

Logic of Programs .. Automata Theory

2 >
g
2 !
5 3
3 ;
3 Q
& 2
5 . g
U - |
Topology Game Theory

What you have seen yesterday.....

pu=p|p| (@A) | (V)| o |Op| px.p | va.y

where p, z € Prop and x occurs only
positively in nx.p (n = v, 1), that is,
—x is not a subformula of .

What you have seen yesterday.....

Let K = (S, R, p) be a model.

e [IpI* = p(p) and ||-p||* = S\ p(p) for all p € Prop,

o loAylI*=gll* v~

o loAyI*=gll* Ulvl*,

o |Tg||* ={s€S | Vt,if (s,t) € R then t € ||¢]|*)},
o 008 ={se€S | 3t (s,t) € Rand t € [¢]*)}.

What you have seen yesterday.....

Let K = (S, R, p) be a model.

o [lva.g|* =U{N S8 | N Cllgx)|*—N}
o Juz.p|® =N C S | [op(x)|=M € N}

lvz.g(x)|* = GFP(l¢(2)I*) and [lpa.é(2)|* = LEP([|é(2)]*)

—

What you have seen yesterday.....

2

30

What you have seen yesterday.....

305

What you have seen yesterday.....

What you have seen yesterday.....

3055.....

1

56

What you have seen yesterday.....

What you have seen yesterday.....

3055....56...€ {0,...,6}*

—

"

What you have seen yesterday.....

Player 4 wins iff the greatest
priority occurring infinitely often
is even

1

-

What you have seen yesterday.....

Theorem [Emerson & Jutla (’91), Mostowski (’91)]:
Parity games are positional determined

Theorem: Let G = (5, 53, Sy, R, rank) be a parity game,
and let g = (5, R, p) the associated Kripke model.
Then there is a formula 15 such that

s € ||v3]|* iff 3 has a w.s. in GQs.

What you have seen yesterday.

Let L = (S, R, p) be a model, and ¢ be a p-formula,

odd when ¢, = pz.9,
Evaluation (parity) game G(p,) elseeven,

Position Player | Admissible moves P-'a‘.rity

nzr.ap, s) € sub(p) x S {(¥,s)} 'i‘ank(nx@b)‘
x,) € sub(p) x § {(¢z,5)} » rank(og)

{(¢178)7(¢278)} o
{(wl,S),(wg,S)} -
{(¢,t) | t € R[s]} -
{(¢,1) | t € R[s]} -

(

(

(11 V g, s)

(1 A), s)

(0w, s)

(e, s)

(—p,s) and p ¢ p(s)
(—p,s) and p € p(s)
(p,s) and p € p(s)
(p,s) and p & p(s)

W <€ W <€ <€ W <C L

SRR
I

What you have seen yesterday.....

Let L = (S, R, p) be a model, and ¢ be a p-formula,
Evaluation (parity) game G(p, K)

ad(nz.d) if n = p and ad(nz.d) is odd, or
n = v and ad(nz.d) is even;

ad(nz.0) —1 if n = p and ad(nz.d) is even, or
n = v and ad(nz.d) is odd,

e rank(nz.d) =

e rank(z) = rank(p,).

What you have seen yesterday.....

ve.uy.(Ox vV p) A (Qy VvV —p)

le
HY ad(ve.py.(Oz Vp) A (Qy V —p)) =2
ad(uy.(Qz vV p) A (Qy V —p)) =1

|
N
ANVAN

AF N

Y

What you have seen yesterday.....

Theorem [E.A. Emerson, R.S. Street (1989)]
s € ||||*iff 3 has a w.s. in G(p, K)Q(¢p, s)

(IC7 3) ‘: ¥

What we are going to see today...

Starting point

Given a first-order sentence, can we decide if
the sentence is valid?

Hilbert’s Entscheidungsproblem (the decision problem)

Hilbert’s decision problem is unsolvable

Church-Turing theorem

Starting point

Theorem [Trakhtenbrot, Craig 1950]: First-order logic
over finite graphs is undecidable.

Starting point

The decision problem became
a classification problem

- For which sublogic L of FO is the decision

. problem solvable (in a efficient way) ?

The case of modal logic:

The case of modal logic:

(i) translatable into (fragment of) FO

(ii) tree model property

(iii) small model property

(iv) van Benthem-Rosser characterization
theorem:

FO/+< = ML (over C)

c_ all models
finite models

The case of modal logic:

(i) translatable into (fragment of) FO

(i) tree model property

(iii) small model property

(iv) van Benthem-Rosser characterization
theorem:

FO/+< = ML (over C)

c_ all models
finite models

what about the mu-calculus?

The case of the mu-calculus:

(i) translatable into (fragment of) MSO
(ii) tree model property

(iii) small model property

(iv) Janin-Walukiewicz characterization
theorem:

MSO/+< = upML (over all models)

The case of the mu-calculus:

(i) translatable into (fragment of) MSO
(i) tree model property

(iii) small model property

(iv) Janin-Walukiewicz characterization
theorem.

‘corollaries’ of the correspondance
between parity automata and fixpoint logics

...the plan for the next two days...

Mu-Calculus vs MSO

|. Automata characterization of mu-
Calculus over Kripke models
(Janin & Walukiewicz, 1995)

2. Automata characterization of MSO over
arbitrary trees
(Walukiewicz, 1996)

3. Characterization theorem for the mu-

Calculus
(Janin & Walukiewicz, 1996)

‘Formula as automata’

a finite-state automaton is given by

- a finite input alphabet

- finite set of states

- an initial state

- a transition function

- an acceptance condition

‘Formula as automata’

A= ({1,2},{a,b},1, A, Acc)

e A tells how to move in the next position, given
the properties of the actual position

e Acc tells when to accept the input

‘Formula as automata’

A= ({1,2},{a,b},1, A, Acc)

A(l,a) =2

e A(l)=(a— X2)N (b— X1)
A(1,0) =1

o A(2)=(a— X2)N(b— X2)
A(2,%) =2

e Acc={2}
Acc = {2}

‘Formula as automata’

A= ({1,2},{a,b},1, A, Acc)

b-b-b-a-b
A
|

‘Formula as automata’

A= ({1,2},{a,b},1, A, Acc)

b-b-b-a-b

‘Formula as automata’

A= ({1,2},{a,b},1, A, Acc)

b-b-b-a-b

‘Formula as automata’

A= ({1,2},{a,b},1, A, Acc)

b-b-b-a-b

‘Formula as automata’

A= ({1,2},{a,b},1, A, Acc)

b-b-b-a-b
A
2

‘Formula as automata’

A= ({1,2},{a,b},1, A, Acc)

b-b-b-a-b

‘Formula as automata’

ve.uy.(Ox vV p) A (Qy VvV —p)

ij
uly
V/\W
AN
/<> p P <>\y

‘Formula as automata’

l/lx
uly
/\7
ANEWAN
/<> p p <>\y

‘Formula as automata’

‘Formula as automata’

‘Formula as automata’

vx

A

O p o O
J/ \
Y
‘Formula as automata’
ufz:
ny

/\ /\

p o O

‘Formula as automata’

‘Formula as automata’

‘Formula as automata’

‘Formula as automata’

vx

A \/\

O p P O

‘Formula as automata’

‘Formula as automata’

‘Formula as automata’

AN

O p P O

‘Formula as automata’

‘Formula as automata’

vx

<N
A

O p P O

‘Formula as automata’

vx

‘Formula as automata’

vx

HY

p p <O
A \
Y
[1.....1
‘Formula as automata’
v
l
MY
|
/\
O p p O

‘Formula as automata’

‘Formula as automata’

‘Formula as automata’

‘Formula as automata’

I 1202012020

‘Formula as automata’

A

O p o O

‘Formula as automata’

‘Formula as automata’

({a,...,m},a, A, rank)

(input alphabet subsets of propositional variables)

({a,...,m},a, A, rank)

‘Formula as automata’

A(a) =0
A(b) =c
A(c)=dANe
A(d)=fVyg
Ale)=hVi
A(f) =0l
Alg) =p
A(h) =—p
A1) = Om
A(l)=a
A(m) =15

Modal automata

Given a set A of (state) variables, and a set P of propositional variables:
the set MLatt(A; P) is defined as:

pi=T|Llalp|-ploalTal N®|\/®

witha € Aandp e P

Modal automata

Definition: A modal automaton is a tuple
A= (A, ar, A, rank)

such that

e a; € A (initial state)
o A: A— MLatt(A; P) (transition function)

e rank : A — N (parity/rank function)

Acceptance (parity) game G (A, K)

Let K = (S, R, p) be a Kripke model.

Position Player | Admissible moves | Parity
(a,s) € Ax S 3 {(A(a),s)} rank(a)
(¢1V¢27 s) 3 {(¥1,5), (¢2,5)} -
(1 Atpa, s) Voo | {(¥1,5), (¥2,5)} -
(0¢5) S | {eh) [teREY | -
(i,) v | {enlters) | -
(-p,s)andp g p(s) | V|0 -
(-p,s)andp€p(s) | 3 |0 -
(p,s) and p € p(s) Vo0 -
(s andpgpls) | 3 |0 -
(T,s) v 0 —
(L,s) = 0 —

Acceptance (parity) game G(A, K)

Definition: A accepts (K, sy) iff 3 has a winning
strategy in G(A, K)Q(ay, sy)

(K, sr) € L(A)

Modal automata

~

A(a) =0
o = va.uy.(Ox V p) A (Oy V —p) A(b) = ¢
A(c)=dANe
Ald)=fVyg
Ale) =hVi
A= ({a,...,m},a, A, rank) S A(f) =0l
A(g)=p
A(h) =—p
A(i) = Om
A(l) =a
|l A(m) =b

Modal automata

o = va.uy.(Ox VvV p) A (Qy V —p)

A = ({a,b},a, A, rank)

A(a) = A(b) = (Qa Vp) A (ObV —p)

rank(a) = 2
rank(b) = 1

Modal automata

(ICv SI) ‘: ¥
iff

(/C, S[) c L(A)

Modal automata

Theorem:

1. For every p-formula ¢ there is an
equivalent modal automaton A,

2. for every modal automaton A there is an
equivalent p-formula ¢, .

Modal automata

Proof: For item 1, let ¢ be a well-named and
guarded pu-formula.

. unique fixpoint
. back edge

 variable in the
scope of a
modality

Modal automata

Proof: For item 1, let ¢ be a well-named and
guarded p-formula. Let A, given by

d A‘#’:{?ﬁ‘wS()p}v

° ar =,

(500 foryY =000

0d for ¢ = 0,0 = O, [
for ¢ = p,—p, L, T

D for ¢y ==
) for ¢ = nx.0

([
P
:&/ >

|
<

D

\

Modal automata

Proof (cont): and by

ad(nz.0) if n = p and ad(nz.d) is odd, or
n = v and ad(nz.d) is even;

ad(nz.0) —1 if n = p and ad(nz.d) is even, or
n = v and ad(nz.J) is odd,

e rank(nz.0) =

e rank(z) = rank(y,),

e rank(y)) = min({rank(nz.6) | nz.6 < o}, for ¢ # z and ¥ # nz.4.

Then (K, sr) = ¢ iff (IC,s1) € L(A,).

Modal automata

Proof (cont): For item 2, we reason as follows.
Let A = (A,ay, A, rank) over P’ = PU X, and
A:A— MLatt(AU X; P).

Modal automata

Proof (cont): For item 2, we reason as follows.

DA q:':/\ (Qa V Ox)

Modal automata

Proof (cont): For item 2, we reason as follows.
Let A = (A,ay, A, rank) over P = PU X, an
A: A— MLatt(AU X; P).

|

(P,X)-automata

Modal automata

Proof (cont): For item 2, we reason as follows.
Let A = (A,ay, A, rank) over P’ = PU X, and
A:A— MLatt(AU X; P).

Claim: For every (P,X)-automata A, there is an
equivalent p-formula ¢,, where each x € X occurs
positively in @, .

Modal automata

Proof of claim: By induction on

—1 if les in A
index(rank) = { 1I no cycles i A,

max{rank(a) | a is in a cycle } else.

Modal automata

Proof of claim: By induction on the index.

If index = -1, just write down the corresponding
modal formula.

A ={ay,a,b} Aar) = (pVq) ANOa ATb

Modal automata
Proof of claim: By induction on the index.

If index(rank) > 0, let

M = {a € A | rank(a) = index(rank) and a lies in some scc}

Wlog a; ¢ M.

Modal automata

Proof of claim: By induction on the index.

If index(rank) > 0, let

M = {a € A |rank(a) = index(rank) and a lies in some scc}
Ay = (A\ M,ar, Al a\ar, rank| 4\ ar)

This is a (P, X U M)-automaton of lower rank.

Modal automata

Proof of claim: By induction on the index.

If index(rank) > 0, let

M ={ag,...,ax}

Ai =((A\ M) U {ai}, ai,
Alava U {(ai, Alai))}, rank| a\ar U (a7, 0))

All (P, X U M)-automata of lower rank.

Modal automata

Proof of claim (cont.):

AM7A07"°7A1€

[[l
PM, POy -5 Pk

Modal automata
Proof of claim (cont.):
Let © = (@0, .-, Qk)-
Pl : 9(S)* ! — p(S)"
1@l (Xo, - - Xi) == (leol gz - - - ekl o)

1S monotone.

Modal automata

Proof of claim (cont.):
Let © = (w0, - - -, Pk)-

1@l p(S)* ! = p(8)"!

From the first lesson, we know that there are
©hs- -k and @, ..., pY s.t.

(o, - - - llekllic) s the lp of |||k
(gl -- -5 llekllc) is the gfp of [[of|x

Modal automata

Proof of claim (cont.):

Let YA = @M[aO/@goa s 7046/902]{]7 where

{ p if rank(ay) = index(rank) odd
Ne =

v else.

Modal automata

Proof of claim (cont.):

Let YA — SOM[CLO/Spgoa <o ’ak/gpzk]’ where

_Jp if rank(as) = index(rank) odd
"= v else.

One can then check that

(K,s) = pa iff (K,s) € L(A)
|

Modal automata

A = ({a, b}, a, A, rank)

A(a) = A(b) = (Qa Vp) A (ObV —p)

rank(a) = 2
rank(b) = 1

Modal automata

A = ({ar,a,b},ar, A, rank)

Ac) = (Qa VvV p) A (ObV —p)

w rank(a)
rank(b)

irrelevant priority

2
1

Modal automata
M ={a}
A, = ({CL[, b}a ar, A’{a;,b}a rank’{a;,b})

A(c) = (0za Vp) A (ObV —p)

ank(b) =1

irrelevant priority

Modal automata
M' = {a,b}
(Ao)p = ({ar}, ar, Alga,y,rank|q,y)

Alar) = (Ozq Vp) A (Ozp V —p)

©a), = (Oxa V) A (Oxp V —p)

Modal automata

A, = ({CLI;b}aaIaA‘{aI,b}arank’{aI,b})
A(c) = (Ozq Vp) A (ObV —p)

rank(ay) = 2
rank(b) = 1

oa, = 1b.(Oxq V) A (ObV —p)

Modal automata

A = ({a, b}, a, A, rank)

A(a) = A(b) = (Qa Vp) A (ObV —p)

rank(a) = 2
rank(b) = 1

wa = va.ub.(0a Vv p) A (ObV —p)

Guarded modal automata

Given a set A of (state) variables, and a set P of propositional variables:
the set MLatt,(A; P) is defined as:

¢pu=T|Llp|-p|Oa|Da| \A®|\/®

witha € Aandpe P

Guarded modal automata

Theorem: For every modal automaton there is an
equivalent guarded one.

Proof hint: ‘Syntactical massage’.

A general approach

Parity automata: Aut(£)

(A,X,ar, A,rank : Q — N)

A (a,c) — p e L(A)

A general approach

A (a,c) — pe L(A)

a€ A

D —

A general approach

A (a,c)— e L(A)

a€c A

/
® @

A general approach

A (a,c) — pe L(A)

a€ A
=k
(D,V)=(é6 & 6 @ ® |
V.:A— oD
A general approach
A (a,c)— e L(A)
a€ A
s
(D,V)=((@ @& 6 @ ® | o

A general approach

A (a,c) — pe L(A)

ac A
Ve
(D,V)=({@ @6 @ ® | =0
A general approach
A (a,c)— e L(A)
ac A
Ve

(D,V)=(@ & 6 @ ® | o
aiEA

A general approach

Fact: Every ¢ € MLatt,(A; P) if equivalent to disjunction
of formulas of the form

ApA N\ -pry

peQ pEQ

for @ C P and 1) € MLatt,(A;0)

A general approach

AprA N\ -pry

peQ pEQ

A general approach

peQ pZQ

Arr N\ ﬂ}w

A general approach

A general approach

A (a,Q) — ¢ € Mlatt,(A;0)

A general approach

A (a,Q) — ¢ € Mlatt,(A;0)

{Qa — Jdz.a(x)

Oa +— Vz.a(x)

A (a,Q) — ¢ € FOT(A)

A general approach

A (a,Q) — ¢ € FOT(A)

a€ A

A general approach

A:(a,Q) v pcFOT(A)

a€c A

D=6 &6 © @ ®

A general approach

A (a,Q) — ¢ € FOT(A)

a€ A

A general approach

A:(a,Q) v pcFOT(A)

a€c A

A general approach

A (a,Q) — ¢ € FOT(A)

ac A
Ve
(D,V)=({@ @6 @ ® | =0
A general approach
A:(a,Q) v pcFOT(A)
ac A
Ve

(D,V)=(@ & 6 @ ® | o
aiEA

One-step logic

Given a set A of (state) variables, the set of formula FO(A) is
defined as:

¢ =T L|a(x)|-a(z)[oNd|oVe|Tr.g|Vr.g

with a € A.

One-step logic

Given a set A of (state) variables, the set of formula FO™(A) is
defined as:

pu=T|[L]a(z)[¢AN¢[oVe|Tr.g|Va.d

with a € A.

One-step logic

Given a set A of (state) variables, the set of formula FOE(A) is
defined as:

pu=T|Llr=ylzFylal)]|-a@)[oAd|oVe|3d|Vr.

with a € A.

One-step logic

Given a set A of (state) variables, the set of formula FOE™(A) is
defined as:

pu=T|Llz=ylzFyla@)[oNd|oVe|Trd|Vr.g

with a € A.

One-step logic

Models of one-step formulas are pairs
(D, V)

e [is a non-empty set

o V:A— pD

Mu automata

Definition: A p-automaton is a tuple

A= (A pPar, A Q)
such that
e a; € A (initial state)
e A:Ax pP — FO'(A) (transition fct)

e rank : A — N (parity fct)

Acceptance (parity) game G (A, K)

Let K = (S, R, p) be a Kripke model.

Position Player | Admissible moves Parity

(a,s) € Ax S = {V:A— p(R[s]) | rank(a)
(R[s], V) = Ala, p(s))}

V:iA— pS v {(b,t) |t e V(b)} max(rank[A])

Acceptance (parity) game G(A, K)

Definition: A accepts (K, sy) iff 3 has a winning
strategy in G(A, K)Q(ay, sy)

(K, sr) € L(A)

Mu automata

o =vr.uy.(Ox V) A (Oy V —p)

A = ({a,b},a, A, rank)

A(a) = A(b) = (0aV p) A (ObV —p)

rank(a) = 2
rank(b) = 1

Mu automata

¢ =ve.py.(0x V) A (Oy V —p)

A = ({a7 b}, @Pv a, A’ rank)

Jr.a(z) ifpé¢ @

Ala, Q) = A, Q) = {Elx.b(x) ifpe@

rank(a) = 2
rank(b) = 1

Mu automata

Theorem:

1. For every modal automaton there is an
equivalent p-automaton ,

2. for every p-automaton there is an
equivalent modal automaton.

Proof: Point 1 is immediate from what precede.
Point 2 is a corollary of the simulation theorem.

The Simulation Theorem

A type is a subset of P.

Let Q be a type.

,

.« ro(z) =14 | if Q=10
¢ | \/\pEQ p(z) A /\ng —p(x) else;
07’5(37)::<T if Q=10

| Apegp(x) else.

The Simulation Theorem

Definition: A formula ¢ € FO'(A) is in
special basic normal form if it is of the form

dzg ... dzg /\ TC‘Q: (i) A\ Vy. \/ 751, (x)
i<k i<k

where each type @); is either empty or a singleton.
We say that ¢ € SBF(A).

The Simulation Theorem

Definition: A p-automaton A is non-deterministic if

A:Ax pP — SLatt(SBFT(A))

The Simulation Theorem

Simulation Theorem: Every p-automaton is
equivalent to a non-deterministic one.

Proof: ... (tomorrow, for MSO-automata.)

The Simulation Theorem

Theorem: Given a py-automaton A
it is decidable whether L(A) = 0.

The Simulation Theorem

Proof: Let A be a py-automaton. By the Simulation
Theorem, there is a non-deterministic y-automaton
B such that

It is thus enough to check that the emptiness
problem is decidable for B.

The Simulation Theorem

Proof (cont.): Transitions of B are disjunctions
of formulas of the form

dzg ... dzg /\ 7'51, (i) \Vy. \/ 751, (x)

i<k i<k

where each type @); is either empty or a singleton.

The Simulation Theorem

Proof (cont.): We define the following emptiness
game over B, denoted by £(B)

Position Player | Admissible moves Parity

a€B 3 {(6,Q) | Qe pP NTFi <k rank(a)
Ala, Q) = V <y the N by = b}

(I /\igk: Tci (z:) v Uigk: Qi -

AY-Vicr, 76, (2), Q)

The Simulation Theorem

Claim: L(B) # () iff 3 has a winning strategy in
£(B)Qb;.

Proof of claim: From left to right, let X € L(B).

Thus d has a w.s. ¢ in G(B, K)Q(by, s7). Such o
induces a w.s. for 3 in £(B)Qb;.

The Simulation Theorem

Proof of claim (cont.): From right to left, let o
be a w.s. for 3 in £(B)Qb;. By positional deter-
minacy of parity games, we can assume ¢ posi-
tional. Consider T, the tree representing o.

Since o is positional, we can define a model /C,

as follows:
® S(; :BﬂTa and S]:b[,

o (bV)eR,iftt e, Q; and
(EIf /\igkz 7-22—%. (xz)v Q) — U(b)a

* po(b) = @, where o (b) = (¢, Q).

The Simulation Theorem

Proof of claim (cont.): Notice that |IC,| < |B].
Clearly o induces a w.s. for 3 in G(B, K,)@Q(by, s1).

The Simulation Theorem

Corollary (Small Model Property): Let ¢ be a
p-formula. Then if ¢ is satisfiable, it has a model of
size exponential in the size of the formula.

On the usefulness of mu-automata

Mu automata - and the corresponding
simulation theorem - are crucially used in
proving some other important results in the
theory of the modal mu-calculus

On the usefulness of mu-automata

Kozen’s axiom system

(Prop) propositional tautologies,

(Sub) if F ¢ then - ¢[p/],

(K) FO(p — q) = (Hp — Oq),

(Nec) if - ¢ then - O,

(FA) F olz/pz.p] = pz.p,

(FR) if - o[z /9] — ¢ then F px.po — 1,

with x ¢ bound(y) and free(¢)) N bound(yp) = 0.

On the usefulness of mu-automata

Theorem [Walukiewicz (1995)]: Kozen’s
axiomatisation is (weakly) sound and complete

(i.e. AxF piff = ¢).

W!s proof makes crucial use of mu-
automata (and of the simulation
theorem). At the moment is the unique
proof we know for this result.

On the usefulness of mu-automata

p-automata can also be used in order to prove
that:

e the p-calculus enjoys uniform interpolation
and Los-Tarski theorem [D’Agostino,
Hollenberg (2000)],

e it can be decided whether ¢ is continuous
in p [Fontaine (2008)],

e the p-calculus is the bisimulation invariant
fragment of MSO [Janin, Walukiewicz (1996)]

What we have seen today...

Logic of Programs ...

’
’

Complexity of Models

Topdlogy ..

