
Modal Fixpoint Logics: When Logic
Meets Games, Automata and Topology

A. Facchini & D. Niwinski (U. Warsaw)

ESSLLI 2014, Tübingen, 11-22 August 2014

Lecture III

MSO vs Mu-Calculus

What we have seen yesterday...

Mu-Calculus

Logic of Programs Automata Theory

Topology Game Theory

Model-Checking

Gale-Stewart Games

C
om

pl
ex

ity
 o

f M
od

el
s A

cceptance C
ondition

Adequacy Theorem

mu-A
uto

mata

What we have seen yesterday...

Two automata-theoretic characterizations:

1. modal automata

�(a) = �(b) = (⌃a _ p) ^ (⌃b _ ¬p)
A = ({a, b}, a,�, rank)

rank(a) = 2

rank(b) = 1

' = ⌫x.µy.(⌃x _ p) ^ (⌃y _ ¬p)

What we have seen yesterday...

Two automata-theoretic characterizations:

2. mu-automata

' = ⌫x.µy.(⌃x _ p) ^ (⌃y _ ¬p)

�(a,Q) = �(b,Q) =

(
9x.a(x) if p /2 Q

9x.b(x) if p 2 Q

A = ({a, b},}P, a,�, rank)

rank(a) = 2

rank(b) = 1

Aut(FO+)

What we have seen yesterday...

Nice thing about mu-automata:

Simulation theorem
=

Normal form theorem

What we are going to see today...

Mu-Calculus

Logic of Programs Automata Theory

Topology Game Theory

Model-Checking

Gale-Stewart Games

C
om

pl
ex

ity
 o

f M
od

el
s A

cceptance C
ondition

Adequacy Theorem

mu-A
uto

mata

The nice behavior of the mu-calculus:

(i) translatable into (fragment of) MSO
(ii) tree model property
(iii) small model property
(iv) Janin-Walukiewicz characterization
theorem:

MSO/$ = µML (over all models)

bisimulation invariance

Bisimulation invariance of the mu-Calculus

Theorem: Assume K, sI $ K0, s0I . Then for every

� 2 µML:

K, sI |= � i↵ K0, s0I |= �

mu Calculus

Theorem (Bounded Tree Model Property): Let

� 2 µML. If � is satisfiable, then it is satisfiable at the

root of a tree whose branching degree is bounded by

the size of �.

Proof: Consider the tree unraveling of the model,

then prune it by using the positional winning stra-

tegy for 9 in the accepting game of A� (non-det.) con-

sidering only the existential part of the transition.

The case of the mu-calculus:

(i) translatable into (fragment of) MSO
(ii) tree model property
(iii) small model property
(iv) Janin-Walukiewicz characterization
theorem:

MSO/$ = µML (over all models)

MSO

MSO/$

General view

ML, PDL, CTL, CTL⇤, . . .

MSO

µML

MSO/$
II

ML, PDL, CTL, CTL⇤, . . .

General view

Morality:

Mu-calculus as the right
meta-formal system for

reasoning about assertions
concerning temporal
properties of systems

Once more: why to bother about the
Janin-Walukiewicz Theorem?

Characterization Theorems

Characterization Theorems

L/$ = M (over C)

Once more: why to bother about the
Janin-Walukiewicz Theorem?

instance of a more general problem

FO

MSO

WMSO

L/$ = M (over C)

L

ML

µML

AFMC

L/$ = M (over C)

M

PDL

CTL

L/$ = M (over C)

Structures (C)

T2

K
K4

Kf

GL

MLFO

MSO µML

AFMCT2

K

Structures (C) L M Reference

K4

Kf

L/$ = M (over C)

van Benthem (1977)

Janin, Walukiewicz (1996)

Carreiro, F., Venema, Zanasi (2014)µcML
AFMCWFMSO

WMSO

WMSO

Arnold, Niwinski (1992)

F., Venema, Zanasi (2013)

MLWMSO ten Cate, F. (2011)

Alberucci, F. / Dawar, Otto (2008)MSO

FO ML Rosen (1997)

AFMC

MSO ???
Kamp (1968)FO LTL(N, <)

-

GL MSO ML van Benthem (2006) /
Alberucci, F. (2008)

A purely second-order variant of MSO

� ::= x = y | p(x) | R(x, y) | � _ � | ¬� | 9x.� | 9p.�

with p 2 P and x, y 2 X .

A purely second-order variant of MSO

� ::= # p | p ✓ q | R(p, q) | � _ � | ¬� | 9p.�

� ::= x = y | p(x) | R(x, y) | � _ � | ¬� | 9x.� | 9p.�

with p 2 P and x, y 2 X .

with p 2 P 0.

M
SO

’
M

SO

A purely second-order variant of MSO

Given a Kripke model K, and s 2 S,

• K, s |= # p i↵ ⇢(p) = {s},

• K, s |= p ✓ q i↵ ⇢(p) ✓ ⇢(q),

• K, s |= R(p, q) i↵ 8s 2 ⇢(p), 9t 2 ⇢(q) s.t. (s, t) 2 R ,

• . . .

• K, s |= 9p.� i↵ 9X ✓ Q.K[p 7! X], s |= �.

p-variant

A purely second-order variant of MSO

Proposition:

• for every �(x) 2 MSO0
there is (�)t 2 MSO

such that K |= �(s) i↵ K, s |= (�)t

• for every � 2 MSO there is (�)t(x) 2 MSO
such that K, s |= i↵ K |= (�)t(s)

A purely second-order variant of MSO

Proof (sketch): For the first item, use the fact
that

• Empty(p) = 8q.p ✓ q

• Sing(p) = ¬Empty(p)^
8q(q ✓ p ! (Empty(q) _ p ✓ q)).

For the second item, just write the semantics of
MSO in MSO0.

The Janin-Walukiewicz Theorem

Theorem: There are e↵ective translations
(·)• :MSO ! µML and (·)• : µML ! MSO,
such that

1. � 2 MSO is bisimulation invariant i↵ � ⌘ �•,

2. ⌘ • for every formula 2 µML.

µML µ= -automata
(over K)

Proof idea

= -automata
(over trees)

MSO MSO

µML µ= -automata
(over K)

Proof idea

= -automata
(over trees)

MSO MSO

µML µ= -automata
(over K)

tr
an

sl
at

io
n

Proof idea

-automataMSO

µ -automata

� : (a, c) 7! ' 2 FOE+(A)

� : (a, c) 7! ' 2 FO+(A)

Aut(FOE+)

Aut(FO+)

Proof idea

= -automata
(over trees)

MSO MSO

µML µ= -automata
(over K)

tr
an

sl
at

io
n translation

FOE+

FO+

translation

Proof idea

iff

Translating one-step logics

(·)• : FOE+(A) ! FO+(A)

D! := (D!, V!) |= '

D := (D,V) |= '•

we want to find a translation satisfying:

1 2 3 4 5 6 7 8 9 ...
...
...
...

2

2

2

1

1

1

3

3

3

4

4

4

5

5

5

6

6

6

7

7

7

8

8

8

9

9

9

(D,V) =

(D!, V!) =

Translating one-step logics

(D!, V!) = (D ⇥ !, V!)
where

V!((d, i)) = V (d)

Translating one-step logics

-automataMSO

µ -automata
translation

FOE+

FO+

translation

Translating one-step logics

omega-tree unraveling

sI tK =

omega-tree unraveling

sI tK =

sI

t

sI

t
sI

t

...
KT =

omega-tree unraveling

sI tK =

...

KT
! =

...

...

...

...

sI

t
sI

t

t

sI

t

...

! copies

! copies

! copies

! copies! copies

-automataMSO

µ -automata
translation

FOE+

FO+

translation

Translating one-step logics

iff

(·)• : Aut(FOE+) ! Aut(FO
+
)

K 2 L(A•)

KT
! 2 L(A)

!-tree unraveling of K

Translating one-step logics

= -automata
(over trees)

MSO MSO

µML µ= -automata
(over K)

tr
an

sl
at

io
n translation

FOE+

FO+

translation

The Janin-Walukiewicz theorem as a corollary of this picture

= -automata
(over trees)

MSO MSO

µML µ= -automata
(over K)

tr
an

sl
at

io
n translation

FOE+

FO+

translation

The Janin-Walukiewicz theorem as a corollary of this picture

Theorem: There are e↵ective translations
(·)• :MSO ! µML and (·)• : µML ! MSO,
such that

1. � 2 MSO is bisimulation invariant i↵ � ⌘ �•,

2. ⌘ • for every formula 2 µML.

iff

iff

iff

iff

(bis. inv.)

(MSO=MSO-aut.)

(transl.)

(mu-calculus=mu-automata)

Let � 2 MSO bisimulation invariant:

K |= � KT
! |= �

KT
! 2 L(A�)

K 2 L((A�)•)

K |= (�)•

For item 1 of the theorem we reason as follows:

What we want

= -automata
(over trees)

MSO MSO

µML µ= -automata
(over K)

tr
an

sl
at

io
n

FOE+

FO+

translation

1.

2.

3.

Let’s start with

= -automata
(over trees)

MSO MSO

µML µ= -automata
(over K)

1.

FO+

FOE+

Automata for MSO

9,_,¬, At

◆

system of equation

Aut(FOE+)

LFPMSO

µML

◆

MSO-automata

A = (A,⌃, aI ,�,⌦)

such that

Definition: A MSO-automaton (over ⌃) is a tuple

Aut(FOE+)

• aI 2 A (initial state)

• � : A⇥ ⌃ ! FOE+(A) (transition fct)

• rank : A ! N (parity fct)

Acceptance (parity) game G(A,K)

Let K = (S,R, ⇢ : S ! ⌃) be a tree model over ⌃.

Position Player Admissible moves Parity

(a, s) 2 A⇥ S 9 {V : A ! }(R[s]) | rank(a)
(R[s], V) |= �(a, ⇢(s))}

V : A ! }S 8 {(b, t) | t 2 V (b)} max(rank[A])

Acceptance (parity) game

Definition: A accepts (K, sI) i↵ 9 has a winning
strategy in G(A,K)@(aI , sI)

G(A,K)

(K, sI) 2 L(A)

where sI is the root of K.

Automata for MSO

Let A = (A,}P, aI ,�, rank) be defined as follows.

A := {a0}
aI := a0

�(a0, Q) :=

⇢
8x a0(x) If q 2 Q or p 62 Q

? Otherwise

rank(a0) := 0

Automata for MSO

L(A) = {K | K, sI |= p ✓ q}

Let A = (A,}P, aI ,�, rank) be defined as follows.

A := {a0}
aI := a0

�(a0, Q) :=

⇢
8x a0(x) If q 2 Q or p 62 Q

? Otherwise

rank(a0) := 0

Automata for MSO

Let A = (A,}P, aI ,�, rank) be defined as follows.

A := {a0, a1}
aI := a0

�(a0, Q) :=

⇢
9x (a1(x) ^ 8y (y 6= x ! a0(y))) If p 2 Q

8x (a0(x)) Otherwise

�(a1, Q) :=

8
<

:

? If q 62 Q

9x (a1(x) ^ 8y (y 6= x ! a0(y))) If p 2 Q and q 2 Q

8x (a0(x)) Otherwise

rank(a0) := 0

rank(a1) := 0

Automata for MSO

L(A) = {K | K, sI |= R(p, q)}

Let A = (A,}P, aI ,�, rank) be defined as follows.

A := {a0, a1}
aI := a0

�(a0, Q) :=

⇢
9x (a1(x) ^ 8y (y 6= x ! a0(y))) If p 2 Q

8x (a0(x)) Otherwise

�(a1, Q) :=

8
<

:

? If q 62 Q

9x (a1(x) ^ 8y (y 6= x ! a0(y))) If p 2 Q and q 2 Q

8x (a0(x)) Otherwise

rank(a0) := 0

rank(a1) := 0

Automata for MSO

L(A) = {K | K, sI |= # p}

Automata for MSO

L(A) = {K | K, sI |= # p}

Let A = (A,}P, aI ,�, rank) be defined as follows.

A := {a0, a1}
aI := a0

�(a0, Q) :=

⇢
8x a1(x) If p 2 Q

? Otherwise

�(a1, Q) := 8x a1(x)

rank(a0) := 0

rank(a1) := 0

9,_,¬, At

◆

system of equation

Aut(FOE+)

LFPMSO

µML

◆

Automata for MSO

Theorem: For every � 2 MSO there is an
equivalent MSO-automaton A�.

From MSO to MSO-automata

Proof: By induction on the structure of �.
Atomic cases and disjunction easy.

From MSO to MSO-automata

Proof (cont.): For the negation,

Fact: Given �, (D,V):
(D,V) 6|= � i↵ (D,V) |= �.

· :

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

a(x) 7! a(x)

? 7! >
> 7! ?
x = y 7! x 6= y

x 6= y 7! x = y

� _ 7! � ^
� ^ 7! � _
9x.� 7! 8x.�
8x.� 7! 9x.�

From MSO to MSO-automata

Proof (cont.): For the negation,

(
�(a,Q) = �(a,Q)

rank(a) = rank(a) + 1

A¬� := (A�, aI ,�, rank)

From MSO to MSO-automata

From MSO to MSO-automata

Simulation Theorem: Every MSO-automaton is
equivalent to a non-deterministic one.

Proof (cont.): For quantification, we use the

Formulation of the simulation theorem:

di↵(x1, . . . , xk) :=
^

i 6=j and i,jk

xi 6= xj

A type is a subset of P .

Let Q be a type.

• ⌧Q(x) :=

(
> if Q = ;
V

p2Q p(x) ^
V

p/2Q ¬p(x) else;

• ⌧

+
Q (x) :=

(
> if Q = ;
V

p2Q p(x) else.

Formulation of the simulation theorem:

When each type in Q [⇧ is either empty or a singleton,

we say that it is in special normal form (SBF(A)).

Definition: A formula � 2 FOE(A) is in basic
normal form (BF(A)) if it is of the form

Formulation of the simulation theorem:

rFOE(Q,⇧) := 9x.di↵(x) ^
^

ik

⌧Qi(xi) ^ 8y.di↵(x, y) !
_

T2⇧

⌧T (y)

Definition: A formula � 2 FOE+(A) is in basic
normal form (BF+(A)) if it is of the form

When each type in Q [⇧ is either empty or a singleton,

we say that it is in special normal form (SBF

+
(A)).

Formulation of the simulation theorem:

r+
FOE(Q,⇧) := 9x.di↵(x) ^

^

ik

⌧

+
Qi
(xi) ^ 8y.di↵(x, y) !

_

T2⇧

⌧

+
T (y)

� : A⇥ }P ! SLatt(SBF+(A))

Definition: A MSO-automaton A is non-deterministic if

Formulation of the simulation theorem:

Simulation Theorem: Every MSO-automaton is
equivalent to MSO-automaton whose transition
formulas are only in special normal form.

Formulation of the simulation theorem:

Simulation Theorem: Every MSO-automaton is
equivalent to MSO-automaton whose transition
formulas are only in special normal form.

How to use this theorem in order to prove that
if k�(p)k is recognizable then k9p.�(p)k is also
recognizable?

Formulation of the simulation theorem:

Let K 2 L(A) and A non deterministic

Consider the winning strategy � for 9 in the acceptance game

Functional winning strategies

�(a, s) = (D,V) s.t. (D,V) |= �(a, ⇢(s))

From simulation to closure under existential quantification

Let K 2 L(A) and A non deterministic

Consider the winning strategy � for 9 in the acceptance game

Functional winning strategies

�(a, s) = (D,V) s.t. (D,V) |= �(a, ⇢(s))

(D,V) |= 9x19x2.x1 6= x2^a(x1)^a2(x2)^8y.di↵(y, x1, x2) ! (c1(y)_c2(y))

From simulation to closure under existential quantification

Let K 2 L(A) and A non deterministic

Consider the winning strategy � for 9 in the acceptance game

Functional winning strategies

�(a, s) = (D,V) s.t. (D,V) |= �(a, ⇢(s))

(D,V) |= 9x19x2.x1 6= x2^a(x1)^a2(x2)^8y.di↵(y, x1, x2) ! (c1(y)_c2(y))

D =

From simulation to closure under existential quantification

Let K 2 L(A) and A non deterministic

Consider the winning strategy � for 9 in the acceptance game

Functional winning strategies

�(a, s) = (D,V) s.t. (D,V) |= �(a, ⇢(s))

�(a, s) = (D,V) =
a b

(D,V) |= 9x9y.x 6= y ^ a(x) ^ b(y) ^ 8z.di↵(x, y, z) ! (c(z) _ d(z))

x y z

c,d

From simulation to closure under existential quantification

Let K 2 L(A) and A non deterministic

Consider the winning strategy � for 9 in the acceptance game

Functional winning strategies

�(a, s) = (D,V) s.t. (D,V) |= �(a, ⇢(s))

�(a, s) = (D,V) =
a b

(D,V) |= 9x9y.x 6= y ^ a(x) ^ b(y) ^ 8z.di↵(x, y, z) ! (c(z) _ d(z))

x y z

c

From simulation to closure under existential quantification

Let K 2 L(A) and A non deterministic

Functional winning strategies

it induces a unique relabeling of K where:

• each node is labeled with an element from A [{?}

K = (S,R, ⇢ : S ! C)
7!

K� := (S,R, ⇢� : S ! A [{?})

From simulation to closure under existential quantification

The positional winning strategy � for 9 in the acceptance

game can be assumed to be functional i.e.

How to use this theorem in order to prove that
if k�(p)k is recognizable then k9p.�(p)k is also
recognizable?

we start by ‘re-formulating’ this:
- from the point of view of a tree language
- from the point of view of automata

From simulation to closure under existential quantification

Let K0
= (S,R, ⇢) over P . A p-variant K = (S,R, ⇢0)

is a tree over P [{p} such that ⇢0|P = ⇢.

p-variant

p

From simulation to closure under existential quantification

Given a tree language L over P [{p}:
9p.L = {K over P | 9 p-variant Kp

of K s.t. Kp 2 L}

�9(a, c) := �(a, c) _�(a, c [{p})

Note that if A non det., then A9
non-det. too.

Given A = (A, aI ,�, rank) over P [{p}:
9p.A = (A, aI ,�9, rank) is over P , with

From simulation to closure under existential quantification

L(9p.A) = 9p.L(A)

From simulation to closure under existential quantification

Proposition: Given a letter p and a non-

deterministic A on P [{p},

Proof: The direction from right to left is easy.

Indeed, let Kp
be a p-variant such that 9 has a

winning strategy � in G(A,Kp
)@(aI , sI). Then

� is also winning in G(9p.A,K)@(aI , sI)

From simulation to closure under existential quantification

⇢p(s) = ⇢(s) [X

X =

8
><

>:

{p} if ⇢�(s) = a and

�(�9(a,�(s)) |= �(a,�(s) [{p})
; else.

� induces a w.s. for 9 in G(A,Kp
)@(aI , sI).

L(9p.A) ✓ 9p.L(A)

Proof (cont.): Let K 2 L(9p.A) over P .

Fix a functional winning strategy � for 9
in G(9p.A,K)@(aI , sI). Define Kp

by:

Theorem: For every � 2 MSO there is an
equivalent MSO-automaton A�.

i↵K 2 L(9p.A�)

9X ✓ S and K[p 7! X] 2 L(A�)

9X ✓ S and K[p 7! X], sI |= �

K, sI |= 9p.�

i↵

i↵

From simulation to closure under existential quantification

Finishing the proof: Base cases and booleans are ok.

For quantification, by the Simulation Theorem we can

assume that A is non-deterministic.

The Simulation Theorem

We have to prove the simulation theorem!

Proof strategy:

1. We show that each one step FO formula is
equivalent to a formula in normal form

2. same for the positive fragment

3. we use this normal form results to construct the
equivalent non deterministic parity automaton

Normal forms for one-step logic

In the following we give

• Normal forms for arbitrary formulas of FOE and FOE+,

• Strong forms of syntactic characterizations for the
monotone fragments

• Normal forms for the monotone fragments.

Same can be done for FO and FO+

with a 2 A.

Given a set A of (state) variables, the set of formula FOE(A) is
defined as:

� ::= > | ? | x = y | x 6= y | a(x) | ¬a(x) | � ^ � | � _ � | 9x.� | 8x.�

Normal forms for one-step logic

Given a set A of (state) variables, the set of formula FOE+(A) is
defined as:

with a 2 A.

� ::= > | ? | x = y | x 6= y | a(x) | � ^ � | � _ � | 9x.� | 8x.�

Normal forms for one-step logic

A type is a subset of P .

Let Q be a type.

• ⌧Q(x) :=

(
> if Q = ;
V

p2Q p(x) ^
V

p/2Q ¬p(x) else;

• ⌧

+
Q (x) :=

(
> if Q = ;
V

p2Q p(x) else.

Normal forms for one-step logic

Definition: A formula � 2 FOE(A) is in basic
normal form (BF(A)) if it is of the form

Normal forms for one-step logic

rFOE(Q,⇧) := 9x.di↵(x) ^
^

ik

⌧Qi(xi) ^ 8y.di↵(x, y) !
_

T2⇧

⌧T (y)

Definition: A formula � 2 FOE+(A) is in basic
normal form (BF+(A)) if it is of the form

Normal forms for one-step logic

r+
FOE(Q,⇧) := 9x.di↵(x) ^

^

ik

⌧

+
Qi
(xi) ^ 8y.di↵(x, y) !

_

T2⇧

⌧

+
T (y)

Theorem: Every sentence of FOE(A) is equivalent
to a disjunction of formulas in BF(A).

(a) Normal forms for FOE

Proof: Given D = (D,V) and D

0 = (D0, V 0), define

D ⇠=
k D0 () 8Q ✓ A

�
|Q|D = |Q|D0 < k

or |Q|D, |Q|D0 � k
�

|Q|D := {d 2 D | D |= ⌧Q(d)}

(a) Normal forms for FOE

Proof (cont): It holds that

1. ⇠=
k is an equivalence relation,

2. ⇠=
k has finite index,

3. Every equivalence class E is characterized by a
formula '=

E 2 FOE(A) with qr('=
E) = k.

(a) Normal forms for FOE

Proof (cont): It holds that

1. ⇠=
k is an equivalence relation,

2. ⇠=
k has finite index,

3. Every equivalence class E is characterized by a
formula '=

E 2 FOE(A) with qr('=
E) = k.

(a) Normal forms for FOE

_

E:k'k\E 6=;

'=
E

By the fact that ⇠=
k equals ⌘k, every FOE

sentence ' is equivalent to

D,V =

(a) Normal forms for FOE

Qi

� k< kD,V =

9x1 . . . 9xni

�
di↵(x) ^

^

1`ni

⌧Qi(x`)^

8z.di↵(x, z) ! ¬⌧Qi(z)
�
,

ni < k

(a) Normal forms for FOE

� k< kD,V =

T 2 ⇧ 9x1 . . . 9xk.di↵(x) ^
^

1`k

⌧T (x`)

(a) Normal forms for FOE

� k< kD,V =

'=
E ⌘ rFOE(Q0,⇧)

(a) Normal forms for FOE

The sequence Q
0
contains ni occurrences of

type Qi and k occurrences of each type in ⇧.

Where we are in the proof of the Simulation Theorem

Proof strategy:

1. We show that each one step FO formula is
equivalent to a formula in normal form

2. same for the positive fragment

3. we use this normal form results to construct the
equivalent non deterministic parity automaton

(b) Normal forms for positive FOE

Proof idea

1. we show that the positive fragment of
FOE corresponds to its monotone

fragment

2. we show that the previous normal
form theorem for FOE provides us the
expected normal form theorem for the

positive fragment by using point 1

Definition: Given a one-step logic L(A) and

' 2 L(A), We say that ' is monotone in a 2 A
if for every (D,V) and assignment of first-order

variables � :

If (D,V),� |= ' and V (a) ✓ E then
(D,V [a 7! E]),� |= '.

LCa(A)

(b) Normal forms for positive FOE
- positive as monotone

Theorem: A sentence of FOE(A) is monotone in a 2 A
i↵ it is equivalent to a sentence given by

' ::= | a(x) | 9x.'(x) | 8x.'(x) | ' ^ ' | ' _ '

where 2 FOE(A \ {a})

FOEMa(A)

(b) Normal forms for positive FOE
- positive as monotone

Analgously for set of variables.

FOEMA(A) = FOE+(A)

Proof: It follows by the following two lemmas.

Lemma 1: If ' 2 FOEMa(A) then ' is monotone in a;

Lemma 2: There exists an e↵ective translation
(�)� : FOE(A) ! FOEMa(A) such that
' 2 FOE(A) is monotone in a i↵ ' ⌘ '�.

(b) Normal forms for positive FOE
- positive as monotone

Proof of Lemma 2: Define:

where

9x.di↵(x) ^
^

ik

⌧

a
Qi
(xi) ^ 8y.di↵(x, y) !

_

T2⇧

⌧

a
T (x)

(rFOE(Q,⇧))� := ra
FOE(Q,⇧)

(b) Normal forms for positive FOE
- positive as monotone

⌧

a
Q(x) :=

^

b2Q

b(x) ^
^

b2A\(Q[{a})

¬b(x)

Proof of Lemma 2: Define:

(rFOE(Q,⇧))� := ra
FOE(Q,⇧)

By Lemma 1, we have (.

(b) Normal forms for positive FOE
- positive as monotone

Proof of Lemma 2: Define:

(rFOE(Q,⇧))� := ra
FOE(Q,⇧)

(D,V) |= � i↵ (D,V) |= ��

For) we check that:

(b) Normal forms for positive FOE
- positive as monotone

Proof of Lemma 2 (cont.): The direction)
is trivial.

For (let (D,V) |= ra
FOE(Q,⇧).

(b) Normal forms for positive FOE
- positive as monotone

Proof of Lemma 2 (cont.): The direction)
is trivial.

For (let (D,V) |= ra
FOE(Q,⇧).

D,V = d

witness of a a-positive type T in Q [⇧

d 7! ⌧aTd

(b) Normal forms for positive FOE
- positive as monotone

V 0(b) =

(
V (b) a 6= b

V (b) \ {d 2 D | a /2 Td} a = b

Proof of Lemma 2 (cont.): Consider (D,V 0
) with

(b) Normal forms for positive FOE
- positive as monotone

V 0(b) =

(
V (b) a 6= b

V (b) \ {d 2 D | a /2 Td} a = b

Proof of Lemma 2 (cont.): Consider (D,V 0
) with

It holds that (D,V 0
) |= rFOE(Q,⇧).

Thus (D,V 0
) |= ', and by monotonicity (D,V) |= '.

(b) Normal forms for positive FOE
- positive as monotone

(b) Normal forms for positive FOE

Proof idea

1. we show that the positive fragment of
FOE corresponds to its monotone

fragment

2. we show that the previous normal
form theorem for FOE provides us the
expected normal form theorem for the

positive fragment by using point 1

Corollary:

1. ' is monotone in a 2 A
i↵
it is equivalent to a formula in

W
ra

FOE(Q,⇧).

2. ' is monotone in every a 2 A
(i.e., ' 2 FOE+(A)) i↵
it is equivalent to a formula in the basic formW

r+
FOE(Q,⇧)

(b) Normal forms for positive FOE
- providing a normal form

Where we are in the proof of the Simulation Theorem

Proof strategy:

1. We show that each one step FO formula is
equivalent to a formula in normal form

2. same for the positive fragment

3. we use this normal form results to construct the
equivalent non deterministic parity automaton

In the search of non-determinism

� : A⇥ }P ! SLatt(BF+(A))

Transition in normal form:

� : A⇥ }P ! SLatt(SBF+(A))

Transition for non-deterministic automata

9x1 . . . xk (di↵(x) ^
^

1ik

⌧

}
Qi
(xi) ^ 8z (di↵(x, z) !

_

T2⇧

⌧

}
T (z))).

Definition (change of base): Let ' := r+
FOE(Q,⇧).

For each type T in Q [⇧, we define the formula ⌧

}
T (x)

as follows:

⌧

}
T (x) :=

⇢
T (x) If S 6= ;
> Otherwise

We denote with '

} 2 SBF+(A) the sentence

In the search of non-determinism

a 2 A

� : (a,Q) 7!
_

r+
FOE(Q,⇧)

In the search of non-determinism

a 2 A

9:

D=

� : (a,Q) 7!
_

r+
FOE(Q,⇧)

In the search of non-determinism

a 2 A

9:

V : A ! }D

(D,V) =

� : (a,Q) 7!
_

r+
FOE(Q,⇧)

In the search of non-determinism

9:

V : A ! }D

(D,V) =

� : (a,Q) 7!
_

r+
FOE(Q,⇧)

|= r+
FOE(Q,⇧)

In the search of non-determinism

8:

(D,V) =

� : (a,Q) 7!
_

r+
FOE(Q,⇧)

|= r+
FOE(Q,⇧)

In the search of non-determinism

8:

ai 2 A

(D,V) =

� : (a,Q) 7!
_

r+
FOE(Q,⇧)

|= r+
FOE(Q,⇧)

In the search of non-determinism

a 2 A

9:

V : A ! }D

(D,V) =

� : (a,Q) 7!
_

r+
FOE(Q,⇧)

|= r+
FOE(Q,⇧)

In the search of non-determinism

9:

(D,V) =

V : }A ! }D

a 2 A

In the search of non-determinism

9:

(D,V) =

V : }A ! }D

a 2 A

|= r}
FOE(Q,⇧)

In the search of non-determinism

Definition: Let A = (A, aI ,�,⌦) over C be an
MSO-automaton.
Fix a 2 A and c 2 C. The sentence �?(a, c) is defined as

where �(a, c)[(a, b) \ b | b 2 A] denotes the sentence in
FOE+(A⇥A) obtained by replacing each occurrence of
an unary predicate b 2 A in �(a, c) with the unary
predicate (a, b) 2 A⇥A.

Definition: Let A = (A, aI ,�,⌦) over C be an
MSO-automaton.
Fix a 2 A and c 2 C. The sentence �?(a, c) is defined as

where �(a, c)[(a, b) \ b | b 2 A] denotes the sentence in
FOE+(A⇥A) obtained by replacing each occurrence of
an unary predicate b 2 A in �(a, c) with the unary
predicate (a, b) 2 A⇥A.

�?(a, c) := �(a, c)[(a, b) \ b | b 2 A],

In the search of non-determinism

9:

(D,V) =

V : }A ! }D

a 2 A

|= r}
FOE(Q,⇧)

In the search of non-determinism

Definition: Let A = (A, aI ,�,⌦) over C be an
MSO-automaton.
Let c 2 C and R 2 }(A⇥A).

There is a sentence #
R,c 2 SLatt(BF+(A⇥A)) s.t.

Let R,c 2 SLatt(SBF+(}(A⇥A))) be (#
R,c)

}.

^

a2Ran(R)

�?(a, c) ⌘ #
R,c.

In the search of non-determinism

Definition: Let A = (A, aI ,�, rank) over C be an
MSO-automaton.
The automaton A} = (A}, a}I ,�

},NBTrank) is given by

A}
:= }(A⇥A)

a}I := {aI , aI}
�

}
(R, c) := R,c

NBTrank := {w 2 (}(A⇥A))

! |
every trace in w is good}.

the max parity occurring infinitely often along rank(w) 2 N is even

In the search of non-determinism

Proposition: L(A) = L(A}).

In the search of non-determinism

Shiftz(') := '[(q,�Z(z, q))/q | q 2 A}]

Let Z be the deterministic parity automaton

s.t. L(Z) = NBTrank.

Definition: The non-deterministic MSO-automaton
AN = (A} ⇥ Z, (a}I , zI),�

N , rankN) is given by:

rank(q, z) := rankZ(z),

�((q, z), c) :=

_
{Shiftz(') 2 SBF

+
(A} ⇥ Z) |

' is a disjunct of �

}
(q, c)}.

In the search of non-determinism

Proposition: L(AN) = L(A}).

In the search of non-determinism

Where we are in the proof of the Simulation Theorem

Proof strategy:

1. We show that each one step FO formula is
equivalent to a formula in normal form

2. same for the positive fragment

3. we use this normal form results to construct the
equivalent non deterministic parity automaton

-automata
(over trees)

MSO MSO

µML µ= -automata
(over K)

FOE+

FO+

Where we are

✓

9,_,¬, At

◆

system of equation

Aut(FOE+)

LFPMSO

µML

◆

Automata for MSO

9,_,¬, At

◆

system of equation

Aut(FOE+)

LFPMSO

µML

◆

Automata for MSO

LFP

' ::= q(x) | R(x, y) | x = y | ¬' | ' ^ ' | 9x.' | µp.'(p, x)

where

• p, q 2 P , x, y 2 X;

• moreover p occurs only positively in '(p, x) and

• x is the only free variable in '(p, x).

Definition: The fixed point logic LFP is given by:

F�(X) := {t 2 T | K[p 7! X] |= �(p, t)}.

The semantics of the fixpoint formula µp.�(p, x)

is the expected one: given K and s 2 S,

K |= µp.�(p, s)

i↵

s 2 lfp.F� =
\

{X ✓ S | F�(X) ✓ X}, where

LFP

for every K, s 2 S the following are equivalent:

• (K, s) |= ',

• K |= (')~(s).

From the mu- calculus to LFP

Proposition: There is an e↵ective

translation (�)

~
: µML ! LFP s.t.

• (p)~
x

= p(x),

• (⌃�)~
x

= 9y.R(x, y) ^ (�)~
y

,

• (¬�)~
x

= ¬(�)~
x

,

• (^ �)~
x

= ()~
x

^ (�)~
x

,

• (µp.�)~
x

= µp.(�)~
x

,

Proof: Consider translation

(�)

~
x

: µML ! LFP for x 2 X given by:

From the mu- calculus to LFP

9,_,¬, At

◆

system of equation

Aut(FOE+)

LFPMSO

µML

◆

Automata for MSO

Proposition: For every MSO-automaton there is
an equivalent formula in LFP.

Proof: Proceed like for modal automata and µ-
formulas.

From the MSO-automata to LFP

9,_,¬, At

◆

system of equation

Aut(FOE+)

LFPMSO

µML

◆

Automata for MSO

for every K, and valuation V the following

are equivalent:

• K, V |= ',

• K, V |= (')�.

Proof: (µp.�(p, x))�

=

9X.

�
Xx ^ 8Y.(8y.(�(p, y)� ! Y y) ! 8z.(Xz ! Y z))

�

Proposition: There is a translation
(�)� : LFP ! MSO s.t.

From the LFP to MSO

9,_,¬, At

◆

system of equation

Aut(FOE+)

LFPMSO

µML

◆

Automata for MSO

= -automata
(over trees)

MSO MSO

µML µ= -automata
(over TS)

tr
an

sl
at

io
n

FOE+

FO+

Where we are

Finishing the proof

Proposition: Let (�)• : FOE+(A) ! FO+(A) given by

(r+
FOE(Q,⇧))• = r+

FO(Q,⇧)

r+
FO(Q,⇧) := 9x.

^

ik

⌧

+
Qi
(xi) ^ 8z.

_

T2⇧

⌧

+
T (z)

r+
FOE(Q,⇧) := 9x.di↵(x) ^

^

ik

⌧

+
Qi
(xi) ^ 8z.di↵(x, z) !

_

T2⇧

⌧

+
T (z)

D |= �• i↵ D! |= �

= -automata
(over trees)

MSO MSO

µML µ= -automata
(over K)

tr
an

sl
at

io
n translation

FOE+

FO+

translation

Closing the cycle

= -automata
(over trees)

MSO MSO

µML µ= -automata
(over K)

tr
an

sl
at

io
n translation

FOE+

FO+

translation

Question:
where this picture breaks on finite models ???

MSO

µML

MSO/$
II

Over all models

WMSO

MSO

µML

Over finitely branching trees

WMSO

MSO

µML

Over finitely branching trees

WMSO/$ = AFMC

MSO

µML

WMSO

Over all models

well-founded trees

infinitely branching trees

µx.⇤x

8x¬9X(8y.R(x, y) ! Xy)

MSO

µML

WMSO

Over all models

=
(over trees)

=
(over TS)

tr
an

sl
at

io
n

translation
FO+

translation

µcML

WMSO Autcw(FOE1+)

Autcw(FO
+)

FOE1+

µcFOE1

The same strategy works for WMSO [Carreiro, F., Venema, Zanasi (2014)]

What we have seen today...

Mu-Calculus

Logic of Programs Automata Theory

Topology Game Theory

Model-Checking

Gale-Stewart Games

C
om

pl
ex

ity
 o

f M
od

el
s A

cceptance C
ondition

Adequacy Theorem

mu-A
uto

mata
J.-W. Theorem

