Modal Fixpoint Logics: When Logic Meets Games, Automata and Topology

Alessandro Facchini & Damian Niwiński

University of Warsaw

Lecture I

Rudiments of fixpoint logics

ESSLLI Tübingen 2014

Disclaimer. Credits to many authors. Errors (if any) are mine...

How to define a big object shortly?
How to define an infinite object at all?

Recursion

Perpetuum mobile

Complex concepts in mathematics are often defined in recursive way.

This may involve risky steps like

The correctness relies on the existence of *fixed points*.

Example

Let u be a sequence of bits, such that the rewriting

 $0 \rightarrow 01$

 $1 \rightarrow 10$

produces the same sequence.

Does it exist ??

Example Thue-Morse sequence

```
0 \rightarrow 01
```

$$1 \rightarrow 10$$

 $\lim u_n$ is a fixed point u = u[01/0, 10/1].

Fixed point of a function

$$x = f(x) = f(f(x)) = f(f(f(x))) = f(f(f(f(x)))) = \dots$$

Plus ça change, plus c'est la même chose. Alphonse Karr, 1849

Fixed point theorems

Brouwer A continuous mapping of a closed ball into itself has a fixed point.

Banach A contracting mapping of a complete metric space into itself has a (unique) fixed point.

Knaster-Tarski A monotonic mapping of a complete lattice into itself has a (least) fixed point.

.

Example von Neumann definition of $\mathbb N$

The least set X, such that $\emptyset \in X$ and $x \in X \Longrightarrow x \cup \{x\} \in X$.

$$\underbrace{\{\emptyset\} \cup \{x \cup \{x\} : x \in X\}}_{Z} \quad \subseteq \quad X$$

$$\{\emptyset\} \cup \{z \cup \{z\} : z \in Z\} \quad \stackrel{?}{\subseteq} \quad Z$$

$$z = x \cup \{x\} \land x \in X \Longrightarrow z \in X \Longrightarrow z \cup \{z\} \in Z.$$

Yes! Hence,

$$\{\emptyset\} \cup \{x \cup \{x\} : x \in \mathbb{N}\} = \mathbb{N}$$

Example – reachability

Is there a path from s to t ?

There a path from s to t iff t belongs to the **least** set of nodes X, s.t.

$$\{s\} \cup succ(X) \subseteq X$$

where $succ(X) = \{y : (\exists x \in X) \ x \to y\}.$

Note: this X is a **fixed point**, because $Z = \{s\} \cup succ(X)$ also satisfies $\{s\} \cup succ(Z) \subseteq Z$.

Why do we care about fixed points?

Knowing that the least X s.t. $\{s\} \cup succ(X) \subseteq X$ satisfies

$$X = \{s\} \cup succ(X)$$

we can compute it by iteration

$$\{s\}$$

$$\{s\} \cup succ(\{s\})$$

$$\{s\} \cup succ(\{s\}) \cup succ(succ(\{s\}))$$

until it stops changes

$$X = \emptyset \cup F(\emptyset) \cup F^2(\emptyset) \cup F^3(\emptyset) \cup \dots$$

Example – infinite path

Does this graph admit an infinite path? An exhaustive search is costly...

Try to characterize the **nodes**, which **originate** infinite paths.

Example – infinite path

The nodes, which originate infinite paths ($Origin-\infty$) could say:

I am lucky there, because after some move I can be lucky again.

If a set ${\cal Z}$ satisfies the "luckiness property"

$$x \in Z \implies (\exists z \in Z) x \to z$$

shorter notation:

$$Z \subseteq \Diamond(Z)$$

then any $z \in Z$ originates an infinite path, i.e., $Z \subseteq \text{Origin-}\infty$. But

Origin-
$$\infty \subseteq \Diamond(\text{Origin-}\infty)$$

hence, Origin-∞ is a maximal set with luckiness property.

A maximal set satisfying the inequality $Z \subseteq \Diamond(Z)$ is a fixed point

$$Z = \Diamond(Z)$$

(otherwise $Z \subset \Diamond(Z) \subseteq \Diamond(\Diamond(Z))$).

Hence, it can be **computed** by iteration

$$\begin{array}{ccc} \operatorname{Origin-}\infty & = & \bigcap_{\xi} \diamondsuit^{\xi}(\mathbb{T}) \end{array}$$

On finite graphs, this yields a polynomial time algorithm.

General setting: Knaster-Tarski Theorem

A monote mapping $f:L\to L$ of a complete lattice L has a least fixed point

$$\mu x. f(x) = \bigwedge \{d : f(d) \le d\}$$

and a greatest fixed point

$$\mathbf{v}x.f(x) = \bigvee \{d : d \le f(d)\}\$$

Proof for ν .

Let
$$a = \bigvee \underbrace{\{z : z \le f(z)\}}_A$$
.

$$a \ge A \ni z \le f(z) \le f(a)$$
. Thus $A \le f(a)$, hence $a \le f(a)$.

By monotonicity, $f(a) \leq f(f(a))$, hence $f(a) \in A$, hence $f(a) \leq a$.

Alternative presentation of fixed points.

$$\mu x. f(x) = \bigvee_{\xi \in Ord} f^{\xi}(\bot)$$

where

$$f^{\xi+1}(\bot) = f\left(f^{\xi}(\bot)\right)$$

$$f^{\eta}(\bot) = \bigvee_{\xi < \eta} f^{\xi}(\bot), \text{ for limit } \eta.$$

Similarly

$$\nu x. f(x) = \bigwedge_{\xi \in Ord} f^{\xi}(\top)$$

A great number of concepts can be defined by μ or ν .

But the **fixpoint logics** start from an observation that

$$\mu x.\nu y.f(x,y),$$

is meaningful as well.

Note that $a = \mu x \cdot \nu y \cdot f(x, y)$ satisfies a = f(a, a), hence

$$\mu x. f(x,x) \leq \mu x. \nu y. f(x,y) \leq \nu y. f(y,y)$$

Example – words

Languages of finite and infinite words over alphabet Σ .

$$\varepsilon \not\in A \subseteq \Sigma^*, B \subseteq \Sigma^* \cup \Sigma^{\omega}, X, Y \text{ range over } \wp(\Sigma^* \cup \Sigma^{\omega}),$$
$$A^* = \bigcup_n A^n \text{ (with } A^0 = \{\varepsilon\}), A^{\omega} = \{w_0 w_1 w_2 \dots : w_i \in A, i < \omega\}.$$

$$X \stackrel{?}{=} AX \cup B$$
 least solution
$$X = A^*B$$
 greatest solution
$$X = A^*B \cup A^\omega$$
 i.e.,
$$\mu X.AX \cup B = A^*B$$

$$\nu X.AX \cup B = A^*B \cup A^\omega.$$

Note
$$\mu X.AX = \emptyset$$

$$\nu X.AX = A^{\omega}$$

Further

$$\mu X.AX \cup BY = A^*BY$$

$$Y \stackrel{?}{=} A^*BY$$
 greatest solution
$$Y = (A^*B)^\omega$$
 i.e.,
$$\nu Y.\mu X.AX \cup BY = (A^*B)^\omega$$

$$\nu Y.AX \cup BY = B^*AX \cup B^{\omega}$$

$$X \stackrel{?}{=} B^*AX \cup B^{\omega}$$

$$\mu X.\nu Y.AX \cup BY = (B^*A)^*B^{\omega}$$

Note

$$\mu X.\nu Y.AX \cup BY \subseteq \nu Y.\mu X.AX \cup BY$$

Example – trees

A (full binary) Σ -labeled tree is a mapping $t: 2^* \to \Sigma$.

Each $\sigma \in \Sigma$ induces an operation on trees

$$\frac{\sigma(t_1, t_2) = \sigma}{t_1} \qquad t_2$$

and consequently on tree languages $L_1, L_2 \subseteq T_{\Sigma}$

$$\sigma(L_1, L_2) = \{ \sigma(t_1, t_2) : t_1 \in L_1, \ t_2 \in L_2 \}$$

Example – trees continued

Let
$$\Sigma = \{a, b\}$$
.

 $\nu y.\mu x.a(x,x) \cup b(y,y)$ = on each path there are

infinitely many b's

i.e., all paths are in $\nu y.\mu x.ax \cup by$,

 $\mu x.\nu y.a(x,x) \cup b(y,y)$ = on each path there are

only finitely many a's

i.e., all paths are in $\mu x.\nu y.ax \cup by$.

Again $\mu x.\nu y... \subseteq \nu y.\mu x...$

Parenthesis.

 $\mu x.\nu y.a(x,x) \cup b(y,y)$ = on each path there are only finitely many a's

This set encodes the set of well founded trees $T\subseteq\omega^*$, and can be proved Π^1_1 -complete, as a subset of the Cantor space $\{0,1\}^\omega$.

Example – trees continued

The pattern can be generalized.

$$\mu x_1.\nu x_0. \quad a_0(x_0, x_0) \cup a_1(x_1, x_1)$$

$$\nu x_2.\mu x_1.\nu x_0. \quad a_0(x_0, x_0) \cup a_1(x_1, x_1) \cup a_2(x_2, x_2)$$

$$\mu x_3.\nu x_2.\mu x_1.\nu x_0. \quad a_0(x_0, x_0) \cup a_1(x_1, x_1) \cup a_2(x_2, x_2) \cup a_3(x_3, x_3)$$

$$\dots \dots$$

On each path, if some a_i with i odd occurs infinitely often then there is some a_j with j even, which also occurs infinitely often, and j > i.

In short: the **highest k**, such that a_k occurs infinitely often on a path, is **even**.

Basic laws of fixed points

$$\mu x.\mu y.f(x,y) = \mu x.f(x.x)$$

$$\nu x.\nu y.f(x,y) = \nu x.f(x.x)$$

$$\mu x.\nu y.f(x,y) \leq \nu y.\mu x.f(x,y)$$

If
$$a = \theta x.\theta' y.f(x,y)$$
 then

$$a = \theta' y. f(a, y)$$
$$= \theta x. f(x, a)$$

Example – quasi-equational proof

$$\underbrace{\mu x.\nu y.f(x,y)}_{a} \leq \nu y.\mu x.f(x.y)$$

a=f(a,a) implies $\mu x.f(x,a)\leq a.$ By monotonicity of $\nu y.f(z,y)$ (in z)

$$\nu y. f(\underline{\mu x. f(x, a)}, y) \le \nu y. f(\underline{a}, y) = a$$

By monotonicity of f

$$f(\mu x. f(x, a), \nu y. f(\mu x. f(x, a), y)) \le f(\mu x. f(x, a), \underline{a})$$

By reducing both sides $(F(\theta x.F(x)) \rightarrow \theta x.F(x))$

$$\nu y. f(\underline{\mu x. f(x, a)}, y) \le \underline{\mu x. f(x, a)}$$

By Knaster-Tarski Theorem this implies ($\underline{a} = \mu x. \nu y. f(x, y) \leq \mu x. f(x, \underline{a})$.

Again by Knaster-Tarski, $a \leq \nu y. \mu x. f(x,y)$.

Vectorial fixed points – Bekič Principle

Let (L, \leq_L) , (K, \leq_K) be two complete lattices and

$$F: L \times K \to L \times K$$

be monotonic in two arguments. Let $F=(F_1,F_2)$. Then

$$\mu \begin{pmatrix} x \\ y \end{pmatrix} .F(x,y) = \begin{pmatrix} \mu x.F_1(x,\mu y.F_2(x,y)) \\ \mu y.F_2(\mu x.F_1(x,y),y) \end{pmatrix}$$

Thus vectors can be eliminated at the expense of increasing the length.

Fixed point clones

A family $\mathcal C$ of monotonic mappings of a finite arity over a complete lattice L is a clone if it is closed under composition and contains all projections $\pi_k^i:L^k\to L$,

$$\pi_k^i:(a_1,\ldots,a_k)\mapsto a_i$$

It is a μ -clone if moreover is closed under μ , i.e.,

$$\mathcal{C} \ni f(x_1, \dots, x_k) \Longrightarrow \mu x_i.f(x_1, \dots, x_k) \in \mathcal{C}.$$

A ν -clone is defined similarly.

 $\mathsf{Comp}(\mathcal{F})$ the least clone

 $\mu(\mathcal{F})$ the least μ -clone

 $\mathbf{\nu}(\mathcal{F})$ the least $\mathbf{\nu}$ -clone containing \mathcal{F}

Fixed point hierarchy

$$\Sigma_0^{\mu}(\mathcal{F}) = \Pi_0^{\mu}(\mathcal{F}) = \operatorname{Comp}(\mathcal{F})$$

$$\Sigma_{n+1}^{\mu}(\mathcal{F}) = \mu \left(\Pi_n^{\mu}(\mathcal{F})\right)$$

$$\Pi_{n+1}^{\mu}(\mathcal{F}) = \mu \left(\Sigma_n^{\mu}(\mathcal{F})\right)$$

$$fp(\mathcal{F}) = \bigcup_n \Sigma_n^{\mu}(\mathcal{F}) = \bigcup_n \Pi_n^{\mu}(\mathcal{F})$$

The hierarchy is in general strict.

Scalar vs. vectorial fixed points

Operations in $\Sigma_n^{\mu}(\mathcal{F})$ can be characterized as components of vectorial fixed points

$$\mu \begin{pmatrix} x_{1,1} \\ x_{1,2} \\ \dots \\ x_{1,k} \end{pmatrix} \cdot \nu \begin{pmatrix} x_{2,1} \\ x_{2,2} \\ \dots \\ x_{2,k} \end{pmatrix} \cdot \dots \theta \begin{pmatrix} x_{k,1} \\ x_{k,2} \\ \dots \\ x_{n,k} \end{pmatrix} \cdot F(\vec{x}, \vec{z})$$

with the components of F in \mathcal{F} (or projections).

De Morgan laws for fixed points

If a complete lattice L is a Boolean algebra (with $\overline{x} = \top - x$) then

$$x = f(x) \implies \overline{x} = \overline{f(x)}$$
 $= \overline{f(\overline{x})}$

Thus a complement of a fixed point of f is a fixed point of the $\operatorname{\mathbf{dual}}$ function

$$\widetilde{f}: x \mapsto \overline{f(\overline{x})}$$
.

Hence

$$\frac{\mu x.f(x)}{\nu x.f(x)} = \nu x.\widetilde{f}(x)$$

$$\frac{\nu x.\widetilde{f}(x)}{\nu x.\widetilde{f}(x)} = \mu x.\widetilde{f}(x)$$

Formal syntax: μ -terms

Sig is a finite set of function symbols of finite arity.

$$x$$
 $f(t_1,\ldots,t_k)$ $\widetilde{f}(t_1,\ldots,t_k)$ for $f\in Sig$ of arity k $\nu x.t$

Interpretation: powerset algebras

This framework generalizes the modal μ -calculus and previous examples.

A semi-algebra $\mathbb{B}=\langle B,f^{\mathbb{B}},g^{\mathbb{B}},c^{\mathbb{B}},\ldots \rangle$ over signature $Sig=\{f,g,c,\ldots\}$

$$f^{\mathbb{B}}(d_1,\ldots,d_k) \doteq b$$
 means $(d_1,\ldots,d_k,b) \in f^{\mathbb{B}} \subseteq B^{k+1}$ for $f \in Sig$ of arity k

Powerset algebra

$$\wp\mathbb{B} = \left\langle \langle \wp B, \subseteq \rangle \{ f^{\wp\mathbb{B}} : f \in Sig \} \cup \{ \widetilde{f}^{\wp\mathbb{B}} : f \in Sig \} \right\rangle$$

$$f^{\wp\mathbb{B}}(L_1, \dots, L_k) = \{ b : (\exists a_1 \in L_1 \dots \exists a_k \in L_k) \ f^{\mathbb{B}}(a_1, \dots, a_k) \doteq b \},$$

$$\widetilde{f}^{\wp\mathbb{B}}(L_1, \dots, L_k) = \overline{f^{\wp\mathbb{B}}(\overline{L_1}, \dots, \overline{L_k})}$$

$$= \{ b : (\forall \overrightarrow{a}) \ f^{\mathbb{B}}(a_1, \dots, a_k) \doteq b \Longrightarrow (\exists i) \ a_i \in L_i \}.$$

Recall

$$f^{\wp \mathbb{B}}(L_1, \dots, L_k) = \{b : (\exists a_1 \in L_1 \dots \exists a_k \in L_k) \ f^{\mathbb{B}}(a_1, \dots, a_k) \doteq b\},$$

$$\tilde{f}^{\wp \mathbb{B}}(L_1, \dots, L_k) = \overline{f^{\wp \mathbb{B}}(\overline{L_1}, \dots, \overline{L_k})}$$

The set-theoretic operations

We assume that ${\mathbb B}$ has a partial operation eq

$$eq^{\mathbb{B}}(a,b) \doteq c \iff a=b=c$$

Then \cap , \cup can be retrieved by

$$\begin{array}{rcl}
eq^{\wp \mathbb{B}}(L_1, L_2) & = & \{c : (\exists a \in L_1, \exists b \in L_2) \ a = b = c\} \\
& = & L_1 \cap L_2 \\
\tilde{eq}^{\wp \mathbb{B}}(L_1, L_2) & = & L_1 \cup L_2
\end{array}$$

Powerset algebra of words

universe operations

$$\Sigma^* \cup \Sigma^\omega$$
 or $\sigma \in \Sigma$, w in universe

Powerset algebra of trees

universe operations

$$T_{Sig}$$
 $f(t_1,\ldots,t_k)$ for $f\in Sig$, t_1,\ldots,t_k in universe

Powerset algebra of a single tree $t \in T_{Sig}$

$$t:\omega^*\supseteq dom\,t\to Sig$$

universe operations

$$dom t$$
 $f(v1, \dots, vk) \doteq v$ f, v

whenever t(v) = f

The modal μ -calculus of Kozen

Syntax

$$x$$

$$p \qquad \neg p$$

$$\varphi \lor \psi \qquad \varphi \land \psi$$

$$\diamondsuit \varphi \qquad \Box \varphi$$

$$\mu x. \varphi(x) \qquad \nu x. \varphi(x)$$

Interpretation in Kripke structures

$$\mathcal{K} = \langle S, R, \rho \rangle, \text{ with } R \subseteq S \times S, \text{ and } \rho : \text{Prop } \to \wp S.$$

$$\llbracket \varphi \rrbracket_{\mathcal{K}}(v) \subseteq S, \text{ for } v : Var \to \wp S$$

$$\llbracket \diamond \varphi \rrbracket_{\mathcal{K}}(v) = \{s : (\exists s') \, R(s,s') \land s' \in \llbracket \varphi \rrbracket_{\mathcal{K}}(v) \}$$

$$\llbracket \mu x. \varphi \rrbracket_{\mathcal{K}}(v) = \mu X. \llbracket \varphi \rrbracket_{\mathcal{K}}(v[X/x]).$$

E.g.,

$$\mu x.\nu y.\Box y \wedge (Happy \vee \Box x)$$

On each path, I will be happy from some moment on.

Kripke structure as semi-algebra

 $\mathcal{K}=\langle S,R,
ho
angle$, with $R\subseteq S imes S$, and $ho:\operatorname{Prop}\to\wp S$ can be identified with a semi-algebra $\mathbb{K}.$

signature universe operations $Prop \cup \{act_R\} \quad S \qquad \qquad \rho(p) \subseteq S, \qquad \text{for } p \in \mathsf{Prop}; \\ act_R = R^{-1} \quad \text{i.e., } act_R(z) \doteq y \text{ iff } R(y,z) \\ act_R(Z) \approx \Diamond Z$

Example

This induces a **translation** $\alpha:\varphi\mapsto t_{\varphi}$ of the formulas of $L\mu$ into μ -terms.

$$\alpha: \quad x \mapsto x$$

$$p \mapsto p \qquad \qquad \neg p \mapsto \widetilde{p}$$

$$(\varphi \land \psi) \mapsto eq(\alpha(\varphi), \alpha(\psi)) \qquad (\varphi \lor \psi) \mapsto \widetilde{eq}(\alpha(\varphi), \alpha(\psi))$$

$$\Diamond \varphi \mapsto act_R(\alpha(\varphi)) \qquad \qquad \Box \varphi \mapsto \widetilde{act_R}(\alpha(\varphi))$$

$$\mu x. \varphi \mapsto \mu x. \alpha(\varphi) \qquad \qquad \nu x. \varphi \mapsto \nu x. \alpha(\varphi)$$

For a sentence φ ,

$$s \in [\![\varphi]\!]_{\mathcal{K}} \quad \text{iff} \quad s \in \alpha(\varphi)^{\wp \mathbb{K}}.$$

How to understand fixed point formulas ?

$$\mu x.\nu y. \diamondsuit (x \land \Box (y \lor \mu z. \diamondsuit (x \land \Box (y \lor z))))$$

How to understand fixed point formulas?

$$\mu x.\nu y. \diamondsuit (x \land \Box (y \lor \mu z. \diamondsuit (x \land \Box (y \lor z))))$$

A useful tool is games.

ICALP 2014. Courtesy of Henryk Michalewski

Games on graphs

$$G = \langle Pos_{\exists}, Pos_{\forall}, Move, C, rank, W_{\exists}, W_{\forall} \rangle,$$

where $Pos = Pos_{\exists} \cup Pos_{\forall}$, $Move \subseteq Pos \times Pos$,

 $rank: Pos \rightarrow C$,

 $W_\exists, W_orall \subseteq C^\omega$, typically $W_orall = \overline{W_\exists}$.

 $\circ Eve$

 $\Box Adam$

Game equations

If the winning criterion W_{\exists} is independent on finite prefixes then the set of winning positions of Eve satisfies

$$X = (E \cap \Diamond X) \cup (A \cap \Box X) =_{def} Eve(X)$$

and the set of winning positions of Adam

$$Y = (A \cap \Diamond Y) \cup (E \cap \Box Y) =_{def} Adam(Y)$$

where E, A are interpreted as $Pos_{\exists}, Pos_{\forall}$, respectively.

Note
$$X = Eve(X)$$
 iff $\overline{X} = Adam\left(\overline{X}\right)$, implying
$$\overline{\mu.Eve(X)} = \nu Y.Adam(Y).$$

Question. For which game is the winning set a **least** (resp. **greatest**) solution on the game equation?

Parity games

 $C\subseteq\omega$ (finite).

Eve wants to visit **even** priorities infinitely often.

Adam wants to visit odd priorities infinitely often.

Maximal priority wins.

$$W_{\exists} = \{ u \in C^{\omega} : \limsup_{n \to \infty} u_n \text{ is even } \}$$

$$W_{\forall} = \{ u \in C^{\omega} : \limsup_{n \to \infty} u_n \text{ is odd } \}.$$

Parity games are intimately linked to the μ -calculus. Eve's winning set (for $C = \{0, 1, 2, 3\}$) is

$$\nu X_4.\mu X_3.\nu X_2.\mu X_1.\nu X_0. \quad (E \cap rank_0 \cap \diamondsuit X_0) \cup \\
(E \cap rank_1 \cap \diamondsuit X_1) \cup \\
(E \cap rank_2 \cap \diamondsuit X_2) \cup \\
(E \cap rank_3 \cap \diamondsuit X_3) \cup \\
(A \cap rank_0 \cap \Box X_0) \cup \\
(A \cap rank_1 \cap \Box X_1) \cup \\
(A \cap rank_$$

Note: its is a fixed point of $X=(E\cap \diamondsuit X)\,\cup\,(A\cap \Box\, X).$

 $(A \cap rank_2 \cap \Box X_2) \cup$

 $(A \cap rank_3 \cap \Box X_3)$

Game semantics for the μ -calculus

We define a parity game $\mathcal{G}(\mathbb{B},t)$, such that, for $b\in B$

 $b \in t^{\wp \mathbb{B}}$ iff Eve wins the game $\mathcal{G}(\mathbb{B},t)$ from position (b,t).

First, the variables should be indexed properly

$$\mu x . \nu y . f(x , y , \mu z . \nu w . f(x , z , w))$$

 $\mu x_3 . \nu x_2 . f(x_3, x_2, \mu x_1 . \nu x_0 . f(x_3, x_1, x_0))$

Better

$$\mu x_{11}.\nu x_{01}.f(x_{11},x_{01},\mu x_{12}.\nu_{02}.f(x_{11},x_{12},x_{02}))$$

 ν -variables $x_{\mathbf{2m},j}$,

 μ -variables $x_{2m+1,j}$.

If a variable $x_{\mathbf{k},\ell}$ appears in the scope of $\theta x_{\mathbf{i},j}$, then $k \geq i$.

Games for the powerset algebras

A game $\mathcal{G}(\mathbb{B},t)$, for a semi-algebra \mathbb{B} and a (closed) μ -term t.

Idea of moves (f^* stands for f or \widetilde{f}):

Proponent
$$(b, f^*(t_1, \dots t_k), head)$$

Opponent $(\langle a_1 \dots a_k \rangle, f^*(t_1, \dots t_k), tail)$
 $(a_1, t_1, head)$
 $(a_k, t_k, head)$

where $f(a_1,\ldots,a_k) \doteq b$.

Proponent is Eve for f and Adam for f.

Positions of the game $\mathcal{G}(\mathbb{B},t)$

Head positions
$$= B \times Sub(t) \times \{head\}$$

Tail positions $\subseteq B^* \times Sub(t) \times \{tail\}$

of the form $(\langle a_1, \ldots, a_k \rangle, f^*(t_1, \ldots t_k), tail)$

or, more generally $(\langle a_1, \ldots, a_k \rangle, s \{tail\})$
 \downarrow
 $f^*(t_1, \ldots t_k)$

whenever $s \xrightarrow{red} f^*(t_1, \dots t_k)$.

Additionally, $(b, \bot, head)$ – Adam wins, or $(b, \top, head)$ – Eve wins.

Reduction *red* to guarded subterms $f^*(t_1,t_2)$ or \bot, \top .

$$\begin{array}{l} \operatorname{red}(z) = \operatorname{red}(\mu z.\widetilde{f}(x,f(y,z))) = \widetilde{f}(x,f(y,z)) \\ \operatorname{red}(w) = \operatorname{red}(\nu w.\mu v.w) = \top, \, \text{etc.} \end{array}$$

Ownership of positions

Eve

$$(b,s,head)$$
 if $red(s)=f(t_1,\ldots,t_k)$, $(b,s,head)$ if $red(s)=ota$, $(\langle a_1\ldots a_k\rangle,s,tail)$ if $red(s)=\widetilde{f}(t_1,\ldots,t_k)$.

Adam

$$(b,s,head)$$
 if $red(s)=\widetilde{f}(t_1,\ldots,t_k),$ $(b,s,head)$ if $red(s)=\top,$ $(\langle a_1\ldots a_k\rangle,s,tail)$ if $red(s)=f(t_1,\ldots,t_k).$

Size:
$$|Pos| = \mathcal{O}(|\mathbb{B}| \cdot |t|)$$
.

Moves

whenever $red(s) = f^*(t_1, \dots, t_k)$, and $f(a_1, \dots, a_k) \doteq b$.

No move out from (b, s, head) if $red(s) = \bot, \top$.

Ranking

$$rank(any, x_{\mathbf{i},j}, any) = \mathbf{i},$$

for all other positions, rank = 0.

Index of the game: $(\min rank, \max rank)$.

terms
$$\Sigma_0$$
 Σ_1 Σ_2 Σ_3 \ldots Π_0 Π_1 Π_2 Σ_3 \ldots Σ_3 \ldots Σ_3 \ldots Σ_4 Σ_3 \ldots Σ_4 Σ_5 Σ_5 Σ_5 Σ_6 Σ_7 Σ_8 Σ_8 \ldots Σ_8 Σ_8 Σ_8 Σ_8 Σ_8 Σ_8 Σ_9 Σ_9

games
$$(1,1) \xrightarrow{\qquad \qquad } (0,1) \xrightarrow{\qquad \qquad } (1,3) \xrightarrow{\qquad \qquad } \dots$$

$$(0,0) \xrightarrow{\qquad \qquad } (1,2) \xrightarrow{\qquad \qquad } (0,2) \xrightarrow{\qquad \qquad } \dots$$

Parity game semantics of the μ -calculus.

Theorem. Eve wins the game $\mathcal{G}(\mathbb{B},t)$ from a position (b,t,head) iff $b\in t^{\wp\mathbb{B}}$.

We prove a more general claim for a term $t(z_1, \ldots, z_k)$, and the game $\mathcal{G}(\mathbb{B}, t, val)$, where Eve wins at the position $(b, z_i, head)$ iff $b \in val(z_i)$.

Induction on the structure of t. The case of $\mu x.t(x, \vec{z})$.

Let A be the set of positions from which Eve wins the game $\mathcal{G}(\mathbb{B}, \mu x.t, val)$.

To show $A=(\mu x.t(x,\vec{z}))^{\wp \mathbb{B}}\ val$, by Knaster-Tarski's Theorem, it is enough to prove

(i)
$$t^{\wp \mathbb{B}} val[\mathbf{A}/x] \subseteq \mathbf{A}$$

(ii)
$$(\forall X)$$
 $t^{\wp \mathbb{B}} val[X/x] \subseteq X \Longrightarrow \mathbf{A} \subseteq X$.

(i) $t^{\wp \mathbb{B}} val[\mathbf{A}/x] \subseteq \mathbf{A}$

(ii)
$$(\forall X)$$
 $t^{\wp \mathbb{B}} val[X/x] \subseteq X \Longrightarrow \mathbf{A} \subseteq X$.

By induction hypothesis, Eve has a strategy at $t^{\wp \mathbb{B}} val[\mathbf{A}/x]$.

Ad (i). Combine the two strategies.

Ad (ii). For $b \in A$, Eve has a strategy with the highest rank odd (well founded).

Example

 $\mu x_1.\nu x_0.a(x_1,x_1) \cup b(x_0,x_0)$ = the set of trees, such that on each path there are only finitely many a's.

Adam selects a path in the tree and wins if a occurs infinitely often, otherwise Eve wins.

Games for the modal μ -calculus

$$Eve \qquad \qquad \mathcal{K},s\models \Diamond \varphi \\ \downarrow \\ \text{with } R(s,s') \qquad \qquad \mathcal{K},s'\models \varphi$$

$$Adam \qquad \qquad \mathcal{K}, s \models \Box \varphi$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{K}, s' \models \varphi$$

$$\mathcal{K}, s \models p$$
 Eve wins iff true

$$\mathcal{K}, s \models X \longrightarrow \mathcal{K}, s \models \theta X.\psi \longrightarrow \mathcal{K}, s \models \psi$$

Example

 $\mu x. \nu y. \Box y \wedge (Happy \vee \Box x)$

Example – parity games

$$Win_E =$$

$$\nu X_8.\mu X_7.\dots\mu X_1.\nu X_0.(E\cap rank_0\cap \diamondsuit X_0)\cup (E\cap rank_1\cap \diamondsuit X_1)\cup\dots$$
$$\dots\cup (E\cap rank_7\cap \diamondsuit X_7)\cup (E\cap rank_8\cap \diamondsuit X_8)\cup$$
$$\cup (A\cap rank_0\cap \Box X_0)\cup (A\cap rank_1\cap \Box X_1)\cup\dots\cup (A\cap rank_8\cap \Box X_8)$$

The game induced by this formula is essentially the original game.

$$Win_{E} =$$

$$\nu X_{8}.\mu X_{7}...\mu X_{1}.\nu X_{0}.(E \cap rank_{0} \cap \diamondsuit X_{0}) \cup (E \cap rank_{1} \cap \diamondsuit X_{1}) \cup ...$$

$$...\cup (E \cap rank_{7} \cap \diamondsuit X_{7}) \cup (E \cap rank_{8} \cap \diamondsuit X_{8}) \cup$$

$$\cup (A \cap rank_{0} \cap \Box X_{0}) \cup (A \cap rank_{1} \cap \Box X_{1}) \cup ...\cup (A \cap rank_{8} \cap \Box X_{8})$$

By duality

$$Win_A =$$

$$\mu X_8.\nu X_7....\nu X_1.\mu X_0.(E \cap rank_0 \cap \diamondsuit X_0) \cup (E \cap rank_1 \cap \diamondsuit X_1) \cup ...$$
$$... \cup (E \cap rank_7 \cap \diamondsuit X_7) \cup (E \cap rank_8 \cap \diamondsuit X_8) \cup \cup (A \cap rank_0 \cap \Box X_0) \cup (A \cap rank_1 \cap \Box X_1) \cup ... \cup (A \cap rank_8 \cap \Box X_8)$$

But the formulas complement each others, hence $\overline{Win_E} = Win_A$.

Thus, the game semantics result yields determinacy of parity games.

Note: infinite games are **not** always determined. But by Martin's Theorem, all games with **Borel** winning criteria are determined.

References

- A. Arnold and D. Niwiński. *Rudiments of \mu-Calculus*. Elsevier Science, 2001.
- J. Bradfield and C. Stirling. *Modal logics and mu-calculi: an introduction*. In *Handbook of Process Algebra*, Elsevier, 2001.
- E. A. Emerson and C. S. Jutla. *Tree automata, mu-calculus and determinacy*. In Proc. FOCS 1991.
- E. A. Emerson, C. S. Jutla, and A. P. Sistla. *On model-checking for fragments of the* μ -calculus. In Proc. CAV, 1993.
- D. Kozen. Results on the propositional μ -calculus. Theor. Comput. Sci., 1983.
- D.A. Martin. *Borel determinacy.* Ann. Mathematics, 1975.
- A. W. Mostowski. Games with forbidden positions. Tech. Rep. 78, Univ. Gdańsk, 1991.
- D. Park. On the semantics of fair parallelism. In Abstract Software Specification, 1980.
- M.O.Rabin. *Weakly definable relations and special automata*. In Math. Logic and Foundations of Set Theory, North Holland, 1970.

- usefulness of fixed point definitions
- basic laws of μ and ν
- logic for fixed points: μ -terms and modal μ -calculus
- parity game semantics

Plan of the course

Monday DN Basic laws and games

Tuesday AF Automata for the μ -calculus

Wednesday AF μ -calculus vs. second-order logic

Thursday AF Fixpoint hierarchies and topology

Friday DN Complexity and probabilistic extension