Liczby losowe

Marek Biskup
14 czerwca 2002

Spis tresci

1 Wstep 1
2 Generatory pseudolosowe 1
3 Generatory liniowe 2
4 Generatory nieliniowe 3
5 Generatory losowe 4
6 Testowanie generatoréow 5
7 Generatory w kryptografii 6
8 Generatory bezpieczne kryptograficznie 7
9 Rrzeczywiste generatory 7
10 Generator /dev/random w Linuksie 8
1 Wstep

Niniejszy dokument powstal w ramach éwiczenn do przedmiotu Algorytmicze
aspekty kryptografii prowadzonego na Wydziale Matematyki, Informatyki i Me-
chaniki Uniwersytetu Warszawskiego w roku akademickim 2001/2002 i stanowi
podsumowanie referatu wygtoszonego przez autora na tych zajeciach.

2 Generatory pseudolosowe
Liczb losowych nie mozna wygenerowaé za pomoca deterministycznego algo-

rytmu. Wezmy deterministyczng maszyne generujacg ciag liczb losowych. De-
terministyczng, tzn. generowana liczba, jak i kolejny stan maszyny jest funkcja

aktualnego stanu. Oczywiscie taka maszyna ma skoriczong pamieé (bo jak doty-
chczas nikt nie widzial maszyny z nieskoniczona pamiecia), wiec musi przyj-
mowac skoriczong liczbe stanéw. W czasie generowania kolejnych liczb ktory$
ze stanéw musi sie powtoérzyé, a wtedy kolejne generowane liczby takze. Taki
ciag bylby okresowy, czyli nie losowy.

Jak wida¢ programowe generowanie liczb losowych jest trudne (bo co$, co jest
,deterministyczne” nie moze byé¢ losowe”). Poniewaz programowe generatory
nie generuja liczb losowych, to nazywa sie je generatorami pseudolosowymi.
Doktadniejsza definicje podaje za [1]:

Generator pseudolosowy to deterministyczny algorytm, ktéry majac dang
sekwencje binarng dlugosci k, daje w wyniku sekwencje binarng dlugosci | > k,
ktora ,wydaje si¢” by¢ losowa. Ciag wejSciowy jest zwany zarodkiem (ang. seed).

Aby uspokoié czytelnika, ze sytuacja nie jest az tak beznadziejna dodam, ze
do generowania liczb losowych mozna uzyé¢ przyrody, ktéra jest czesto losowa, a
jeszcze czesciej nieprzewidywalna (nieprzewidywalno$é wystarcza, bo z naszego
punktu widzenia ciag, ktérego wartoéci nie mozemy przewidzieé jest losowy).
W dodatku generatory pseudolosowe nie sg zte, bo:

e okres generowanego ciagu mozna dobraé na tyle duzy, ze praktycznie ciag
jest nieokresowy,

e istniejg algorytmy generujace wartosci, ktérych nie da sie przewidzie¢ w
odpowiednio szybkim czasie znajac poprzednie wygenerowane wartosci, a
nie znajac stanu generatora. Taki ciag jest praktycznie losowy

3 Generatory liniowe

Generatory liniowe sg najbardziej popularnymi generatorami. Ich popularno§é
wynika w szybko§ci obliczen i dobrej znajomosci ich wlasnosci. W ogélnosci,
kolejny wyraz generowanego ciggu wyraza sie wzorem:

Xpp1 = (aan +ax Xy 1+---+apXn_k+1 + b) mod m

gdzie ag, ay,...,a,b i m sg ustalonymi liczbami catkowitymi. Aby zainicjowaé
generator podaje sie¢ wartosci Xo, ..., X. Najczesciej stosuje sie k = 1:

Xp+1 = (X, +b) mod m

Takie generatory nazywaja sie czesto generatorami liniowymi, kongruentnymi i
oznacza si¢ je LCG(m,a,b, x¢). Nie wszystkie parametry dla LCG sa dobre, a
sposob ich wyznaczania to do§¢ obszerna teoria (odsytam do [5] i [4]). Idealem
jest, by okres ciggu byl mozliwie duzy; w przypadku m bedacego liczba pierwsza
maksymalny okres to m — 1.

Jak wczeéniej wspomniatem, LCG sg bardzo popularne i szeroko stosowane
(przede wszystkim ze wzgledu na szybko§é dziatania i prostg implementacje).
Np. w ANSI-C jako funkcja rand () stosowany jest LCG (23!, 1103515245, 12345,
12345). Jak wida¢ z wartosci b i xo autorzy nie mieli dobrego pomystu na

dobranie wspotczynnikow, ale ,pierwsze lepsze” okazaly sie dobre. LCG(23! —1,
630360016, 0, 0) jest wykorzystywany w fotranie w funkcji RAN. Inne LCG
(r6zne) byly stosowane w jezykach CUPL, BCPL, Turbo C++, TurboPascalu,
na komputerach Apple, Cray (w bibliotece SPRNG), w pakiecie matematycznym
Mapple. Ich doktadniejsze oméwienie mozna zobaczy¢ w [5].

Warta podkreslenia jest bezuzyteczno$é prostych generatoréw liniowych w
kryptografii. Wezmy dla przyktadu generator z ANSI-C. Przypu$émy, ze mamy
algorytm generujacy klucz dla jakiego$ systemu kryptograficznego, dla ktérego
zrodlem losowosci jest funkcja rand (), a dodatkowo algorytm generowania klu-
cza jest znany (zalozenie o znajomosci algorytmu jest jak najbardziej realne —
tak bedzie, gdy bedzie dostepny kod Zrodtowy programu szyfrujacego lub nawet
plik wykonywalny — wtedy mozna go zdesalemblowaé). Aby wygenerowac
odpowiednio dtugi, losowy klucz (np. 1024 bity) algorytm korzysta wielokrotnie
z funkcji rand (). Niestety wynik kolejnego wywotania rand jest jednoznacznie
wyznaczony przez poprzednie. Mozliwe ciggi losowe uzyte w czasie dziatania al-
gorytmu sg jednoznacznie wyznaczone przez pierwszg wylosowang liczbe. Widaé
wiec, ze réznych kluczy, ktére moga by¢ wygenerowane przez nasz algorytm jest
co najwyzej' 2%1. Ztamanie klucza moze polega¢ na sprawdzeniu jednego z 23!
kluczy, a nie jednego z 21024

W rzeczywistosci jest jeszcze gorzej. Popularng metodg inicjowania genera-
tora (funkcja srand (), czyli ustawianie wartosci Xo) jest wykorzystanie zegara
systemowego (zwykle podajacego czas w sekundach). Przy takim rozwigzaniu,
jesli znamy przyblizony czas (np. dzien), kiedy klucz byl generowany, mozemy
zmniejszy¢ ilo§é kluczy do parudziesieciu tysiecy. Wtedy szyfr moze zostaé zta-
many w ciaggu paru sekund. Inicjowanie generatora jaka$ skomplikowana (ale
deterministyczng) funkcja czasu (czyli dnia, godziny, sekundy, roku) nic nie
pomaga w tym przypadku.

4 Generatory nieliniowe

Duza wada generatoréw liniowych jest to, ze punkty postaci (X;/m, X;11/m)
ukladaja si¢ w regularna siatke w kwadracie [0,1)? (tadne wykresy pokazane sa

w [5])-
Aby omingé ten problem nalezy stosowaé wzory, ktére nie sg liniowe. Gen-
eratorem opartym na takim wzorze jest odwrotny generator kongruencyjny:

Xpq1 = (aX,;t +b) mod m

gdzie m jest liczba pierwsza, a X ! to odwrotno$é modulo m.
Innym wariantem generatora opartego na odwrotnosci jest:

Xpi1 = (a(n +ng)~! +b) mod m

1Korzystajac z dowolnego generatora pseudolosowego, ktorego stan miesci sie w n bitach,
mozna wygenerowaé co najwyzej 2" kluczy.

Ten generator ma te zalete, ze kolejna warto$¢ nie zalezy od poprzednich, co
moze bardzo pomdc w obliczeniach prowadzonych réwnolegle na wielu komput-
erach.

OczywiScie zastosowanie tych generatoréw w kryptografii jest takie jak gen-
eratoréw liniowych, czyli zadne.

5 Generatory losowe

Na szczescie, przy generowaniu liczb losowych nie musimy sie zdawaé tylko na
algorytmy deterministyczne. Niedeterminizm mozna wprowadzié przez kontakt
programu ze Swiatem zewnetrznym. Do generowania liczb losowych wykorzys-
tuje sie losowe i nieprzewidywalne zjawiska fizyczne. Losowych (naprawde lo-
sowych) zdarzen dostarcza mechanika kwantowa. W [2] opisane jest urzadzenie
generujace losowe bity z predkodcia 1Mbit/s wykorzystujace mechanika kwan-
towa.

Dzialanie urzadzenia opiera sie na fakcie, ze foton przechodzi przez péiprze-
puszczalne lustro z prawdopodobieristwem 1/2 i z takim samym prawdopodo-
bienstwem zostaje odbity. W dodatku to, czy przejdzie, czy nie, jest calkowicie
losowe. Innym pomystem jest przepuszczanie fotonu spolaryzowanego po katem
45° przez lustro polaryzacyjne (dla ktorego foton spolaryzowany pod katem 0°
bedzie przepuszczony, a pod katem 90° odbity).

Inne urzadzenia wykorzystuja np. rozpad radioaktywnej substancji (3°Kr
lub °Co.

Zjawiska nieprzewidywalne to np. szum termiczny diody lub tranzystora
(cokolwiek by to nie znaczylo). W praktyce mozna wykorzystaé¢ np. sygnal z
kamery lub z mikrofonu, parametry systemu (obciazenie procesora, statystyki
sieciowe), uzytkownika (np. ruchy myszki, odstepy czasu miedzy uderzeniami
w klawiature).

Naturalne Zrédla losowosci czesto daja bity z nieréwnym prawdopodobierist-
wem (w przykladzie z fotonem, jesli polaryzator nie byl ustawiony dokladnie
pod katem 45°, ale np. 40°, to prawdopodobieristwo przepuszczenia fotonu
przez lustro bedzie wieksze niz odbicia). Najprostsza metoda na pozbycie sie
tej wady jest nastepujaca: ustawiamy wygenerowane bity parami, jesli mamy
pare réznych bitdéw, to bierzemy pierwszy z nich, a jeli bity sa réwne, to oba
odrzucamy. Widaé, ze w wyjSciowym ciggu prawdopodobieristwa obu bitéw sa
réwne. W praktyce, aby nie traci¢ cennych losowych bitéw, stosuje sie funkcje
haszujaca do wylosowanych bitow.

Podane wyzej 7zrodla losowosci nie zawsze sg dobre. Gutmann w [3] po-
daje, ze szum ze zwyklego mikrofonu, podtaczonego do zwyktej, 8-bitowej karty
muzycznej daje tylko jeden zmieniajacy sie bit, w dodatku zmienia si¢ on dosé
przewidywalny sposéb. Ruchy myszki i kody naci$nietych klawiszy nie zawsze sa
wykonywane lokalnie. W czasie transportu przez sie¢ moga by¢ podstuchiwane.
W dodatku docieraja zwykle w partiach i odstepy miedzy naci$nietymi klaw-
iszami nie muszg by¢ losowe. Ruchy myszka przy przesylaniu przez sie¢ bywaja
kompresowane (bo zwykle wazne jest gdzie myszka dotarta, a nie ktoredy) aby

zmniejszy¢ obciazenie sieci, co réwniez zmniejsza losowo§é. Sygnaly z klawiatury
sg obstugiwane przez system operacyjny, m.in. sg buforowane. Wplyw systemu
operacyjnego powoduje zmniejszenie losowoSci odstepéw miedzy naci$§nieciami
klawiszy.

6 Testowanie generatoréw

Nie kazdy generator liczb losowych jest dobry. Niektére moga generowaé mniej
losowe ciagi niz inne (np. generator, ktéry dwa razy czesciej daje zero niz je-
dynke nie moze by¢ zaakceptowany). Dlatego bardzo wazne jest odpowiednie
testowanie generatoréw. Ponizej przedstawiam najbardziej podstawowe testy:

Test czestosci
Rozwazmy ciag losowych bitéw dlugosci n i zmienng losowa:

(no — "1)2
n

X, =

gdzie ng jest liczba zer w tym ciagu, a ny liczba jedynek. Mozna pokazaé, ze X;
w przyblizeniu spetnia rozktad x? z jednym stopniem swobody, o ile n > 10 (w
praktyce stosuje sie o wiele wieksze wartosci n, np. n > 10*). Znajac rozklad
potrafimy obliczy¢ prawdopodobienstwo okreslonego odchylenia zmiennej od jej
wartos§ci oczekiwanej. Jesli dla wylosowanego ciggu dostaniemy bardzo mala
warto§é¢ tego prawdopodobienistwa, to znaczy, ze generator nie przeszedl tego
testu. Prog prawdopodobienistwa dobieramy odpowiednio do zastosowari.

Test dwubitowy

Test jest rozwinieciem poprzedniego testu. Tym razem sprawdzamy czesto$é
wystepowania par bitéw. Niech ng to liczba zer, nq jedynek, ngg, no1, n10, n11
to liczba ciggéw 00, 01, 10, 11, odpowiednio. Zmienna losowa

Xy = (g + iy +ndy) = 2(0) + 1
n—1 n
spetnia w przyblizeniu rozktad x2 z dwoma stopniami swobody, dla n > 21.

Te dwa testy przedstawiaja idee konstruowania wszelkich testéw losowosci.
Powyzsze testy mozna uogélni¢ na sekwencje dowolnej dlugosci. Taki test
nazywa sie testem pokerowym. Innym testem jest test ciagow, ktory spraw-
dza, czy w wylosowanej sekwencji ilos¢ spdjnych ciagdéw zer i spdjnych ciggow
jedynek réznych dlugosci jest taka jak w sekwencji losowej. Test autokorelacji
wykrywa zwiazek miedzy wygenerowang sekwencja, a ta sama sekwencja prze-
sunieta o pare pozycji. Test 7 polega na obliczeniu liczby 7 metoda Monte
Carlo i sprawdzeniu, czy wynik jest odpowiednio bliski prawdziwej wartosci.
Ideg stojaca za uniwersalnym testem Mauera jest fakt, ze losowy ciag nie
powinien daé sie znaczgco skompresowaé (bez utraty informacji). Nieco doktad-
niejsze opisy powyzszych testow mozna znalezé w [1].

Istnieje standand FIPS 140-1 dotyczacy testowania generatoréw. Standand
okredla cztery testy losowo$ci i granice w jakich moge miescié sie wyniki. Jednym
z testow jest test czesto$ci — generator przechodzi ten test jesli ilo§é jedynek
w wygenerowanej 20000 bitowej sekwencji zawiera sie miedzy 9654 a 10346.
Pozostale testy to test pokerowy, test ciagéw oraz test dlugich ciagéw, ktory
generator przechodzi gdy w 20000 bitowej probce losowej nie ma spdjnej sek-
wencji jednakowych bitéw dlugosci wiekszej niz 34.

7 Generatory w kryptografii

Liczby losowe sg potrzebne w prawie kazdym systemie kryptograficznym. Pod-
stawowym zastosowaniem jest generowanie klucza. Czesto okazuje sie, ze gen-
eratory losowe uzywane go generacji kluczy sa o wiele latwiejsze do zlamania
niz same szyfry.

Gutmann [3] podaje przyktady systemow, w ktorych nie zadbano o losowosé
kluczy:

e 1995, Netscape — okazalo sie, ze szyfrowanie przegladarki moze zostaé
tatwo ztamane. Jakkolwiek do szyfrowania uzywano kluczy 128 bitowych,
to naprawde losowych bitéw bylo co najwyzej 47.

o Kerberos V4 — uzywal funkcji rand ().

e MIT-MAGIC-COOKIE — uzywal generatora kluczy (deterministycznego),
ktory byl inicjowany jedna z 256 warto$ci.

Nie kazdy generator pseudolosowy nadaje sie do zastosowan w kryptografii.
Ponizsze definicje podaje za [1]:

Generator pseudolosowy przechodzi wszystkie wielomianowe testy statysty-
czne, jesli nie istnieje wielomianowy algorytm, ktéry potrafi poprawnie odréznié
wygenerowanej sekwencji od prawdziwej, losowej sekwencji tej samej dlugosci,
z prawdopodobienstwem znaczaco wiekszym niz 0,5.

Ta wlasno$¢ wydaje sie by¢ bardzo silna, a jednocze$nie bardzo pozadana w
generatorach stosowanych w kryptografii.

Generator pseudolosowy przechodzi test nastepnego bitu, jesSli nie istnieje
wielomianowy algorytm, ktéry majac dane na wejSciu pewng ilosé bitéw sek-
wencji z generatora potrafitby przewidzieé¢ kolejny bit tej sekwencji z prawdo-
podobieristwem znaczaco wiekszym niz 0,5.

Wtasnoéé wydaje sie nieco stabsza, ale réwniez pozadana. Okazuje sie, ze
oba warunki sg rownowazne (spelnienie jednego z tych warunkoéw przez gener-
ator implikuje spelnienie drugiego). O generatorze, ktéry spelnia te warunki
mowimy, ze jest bezpieczny kryptograficznie

Do stworzenia generatora pseudolosowego mozemy wykorzystaé¢ dowolng funk-
cje jednokierunkowg f. Najpierw ustalamy losowy zarodek s. Wygenerowana
losowa, sekwencja bedzie f(s), f(s+ 1), W zaleznosci od wlasnosci uzytej
funkcji, moze okazaé sie konieczne wykorzystanie jedynie kilku bitéw z kazdej

warto$ci. Jakkolwiek taka metoda wydaje sie dawaé generator bezpieczny kryp-
tograficznie, to formalnie nie zostalo to dowiedzione.

Generator ANSI X9.17 jest generatorem tego typu. Kolejna wartosé jest
generowana przez zaszyfrowanie poprzedniej algorytmem DES z tajnym kluczem
(w rzeczywistosci szyfrowana jest nie poprzednia warto$c, ale jej XOR z inng
liczba, a szyfrowanie jest przeprowadzane dwa razy dla kazdej wartosci; szczegdly
w [1]). Ten algorytm jest standardem, a jest uzywany do generowania kluczy do
DES-a. Generatory FIPS 186 uzywaja SHA-1 i DES jako funkcji jednokierunk-
owych. Stuza do generowania tajnych parametréw dla DSA (klucze prywatne i
jednorazowe, do podpisywania wiadomosci).

8 Generatory bezpieczne kryptograficznie

Bezpieczenistwo tych generatoréw zwykle opiera sie na nieistnieniu algorytmoéw
wielomianowych (w ktore to nieistnienie wszyscy gleboko wierzymy) rozwiazu-
jacych pewne problemy z teorii liczb (rozklad liczb na czynniki pierwsze, loga-
rytm dyskretny). Niestety te algorytmy sg o wiele wolniejsze od prezentowanych
weczesniej, niemniej zdarzaja sie sytuacje, w ktorych moga byé uzyteczne.

Genarator RSA polega na wygenerowaniu sekwencji powstalej przez it-
eracyjne szyfrowanie RSA (z pewnym tajnym kluczem) poczatkowej losowej
wartosci i wziecie najmniej znaczacego bitu z kazdej wygenerowanej w ten
sposob liczby.

Generator Blum-Blum-Shub jest bardzo podobny. Bierzemy dwie duze
liczby pierwsze (tajne), ktore przystaja do 3 modulo 4 i liczymy ich iloczyn
n. Jako poczatkowa warto$¢ bierzemy losows liczbe s wzglednie pierwsza z n.
Generujemy ciag o = s mod n, Tp41 = =2 mod n. Jako wygenerowany ciag
bierzemy najmniej znaczacy bit z kazdego z; (kolejno). Zaleta tego generatora w
poréwnaniu do RSA jest to, ze wystepuje tu jedynie podnoszenie do kwadratu,
co jest znacznie szybsze niz podnoszenie do duzej potegi, jak w RSA.

Mozna pokazaé, ze w obu algorytmach mozna wzigé¢ wiecej niz jeden na-
jnizszych bitow i generator bedzie ciagle bezpieczny kryptograficznie (i bedzie
o wiele szybszy).

9 Rzeczywiste generatory

Gutmann w [3] podaje postulaty, ktére powinien spelnia¢ generator liczb loso-
wych stosowany w praktyce do kryptografii.

e Musi by¢ odporny na analize danych wejsciowych (losowych danych po-
bieranych z otoczenia). Haker, ktéry odkryje czes¢ danych wejsciowych
generatora nie moze na podstawie tych informacji poznaé¢ stanu gener-
atora (majac dany stan generatora wiadomo jaki kolejne liczby bedzie
generowal).

e Musi by¢ odporny na manipulacje danymi wejSciowymi. Haker nie moze,
poprzez podanie generatorowi pewnych specyficznych danych, wplynaé na
stan generatora w jakikolwiek przewidywalny sposéb

e Musi by¢ odporny na analize danych wyjsciowych. Atakujacy, nie moze
poznaé stanu generatora na podstawie generowanych przez niego liczb.

Na tych postulatach oparty jest generator zawarty z jadrze linuksa (urzadze-
nie /dev/random), a takze w GPG (Gnu Privacy Guard — odpowiednik PGP).

10 Generator /dev/random w Linuksie

Generator zbiera dane losowe z otoczenia i gromadzi w ,,pojemniku losowo$ci”
(ang. random pool) o rozmiarze 512 bajtoéw. Danymi zbieranymi przez gener-
ator sa np. kod nacis$nietego klawisza lub odstep czasu miedzy kolejnymi prz-
erwaniami. Generator szacuje w czasie dodawania danych, na ile dane te byty
losowe i na tej podstawie ustala ilosé¢ losowych danych w pojemniku (dalej zwana
entropig). Kodu naciénietego klawisza nie mozna uznaé za losowy (wiec jego
dodanie do pojemnika nie zwieksza entropii). Takze przerwania wystepujace w
regularnych odstepach czasu nie dajg losowych danych. W tym przypadku gen-
erator oblicza réznice poprzedniego odstepu i obecnego i na tej podstawie okresla
ile losowych bitéw zostato dodane (tak naprawde, to tylko odstepy miedzy prz-
erwaniami moga zwiekszy¢ entropie).

Przy dodawaniu do pojemnika 32-bitowego slowa, jest ono obracane cyk-
licznie o okre§long ilosé bitéw i XOR-owane ze slowami na pozycjach i, i + 7,
i+9,i4+31,i+99 (liczby to wspolczynniki pewnego wielomianu CRC; stosuje sie
tez inne wspolezynniki), gdzie i to pozycja w pojemniku ostatnio wstawionego
stowa. Otrzymana warto$¢ jest znowu obracana cyklicznie (tym razem o jeden
bit) i wstawiana na pozycje i — 1. (¢ jest liczone modulo rozmiar pojemnika).

Przy dodawaniu slowa do pojemnika nie mozna wykorzystaé kryptograficz-
nych funkcji haszujacych ze wzgledu na wymagana wydajno$é (stowa sa do-
dawane przy prawie kazdym przerwaniu).

Przy pobieraniu bajtu z pojemnika (o ile entropia jest wieksza od zera),
zwracana, jest zawarto$é pojemnika przeksztatcona funkcja jednokierunkowa (SHA
lub MD5). Nastepnie cala zawarto§¢ pojemnika jest przeksztatcana jeszcze raz
za pomocg SHA lub MD5. Oczywiscie zmniejszana jest takze entropia. Wiecej
o generatorze zawartym w jadrze linuksa jest w [7] oraz w zZrodlach linuksa.

Bibliografia

[1] A. Menzes, P. van Qorschot, S. Vanstone: Handbook of Applied Cryptogra-
phy, CRC Press 1996

[2] T. Jennewein, U. Acheitner, G. Weihs, H. Weinfurter, A. Zeilinger: A Fast
and Compact Quantum Number Generator, 2001

[3] P. Gutmann: Software Generation of Practically Strong Random Numbers

[4] R. Wieczorkowski, R. Zielinski: Komputerowe generatory liczb losowych,
WNT 1997

[5] J. Srzednicki: Przeglad generatoréw liczb losowych, 2001
[6] E. Kwiek, P. Sadowski: Generatory liczb pseudolsowych a kryptografia

[7] Piotr Hoffman: Kryptografia o generator liczb losowych w sys-
temie Linux, http://rainbow.mimuw.edu.pl/SO/LabLinux/WEJSCIE-
WYJSCIE/PODTEMAT _1/crypto.htm

