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halewski Damian Niwi«skiDe
ember 1, 2011Abstra
tWe identify the 
lass of Σ1

1
�indu
tive sets studied by Mos
hovakis as a set theoreti
al gener-alization of the 
lass (1, 3) of the Rabin-Mostowski index hierar
hy of alternating automata onin�nite trees. That is, we show that every tree language re
ognized by an alternating automatonof index (1, 3) is Σ

1

1
�indu
tive, and exhibit an automaton whose language is 
omplete in this
lass w.r.t. 
ontinuous redu
tions.Classi�
ation Automata on in�nite trees, Logi
 in 
omputer s
ien
e, In�nite games.1 Introdu
tionA 
ommon feature of 
omputational 
omplexity theory, re
ursion theory, automata theory, or de-s
riptive set theory, is that they organize their realms into various hierar
hies a

ording to theirsense of 
omplexity. The 
omplexity levels are usually understood through some 
on
rete examples,genuine to a 
omplexity level. For instan
e, the 
omplexity 
lass NL is understood through theproblem of maze, and the topologi
al 
lass Π

1
1 through the set of well-founded (in�nite) trees. Ofa spe
ial interest are examples whi
h separate 
omplexity levels, or are 
onje
tured to do so. Thisoften involves some 
on
ept of 
ompleteness, whi
h is also a 
ommon feature of the above theories,although the a
tual redu
tions vary from polynomial-time (or log-spa
e) redu
tions in 
omplexitytheory to 
ontinuous redu
tions in des
riptive set theory.The introdu
tion of the µ-
al
ulus by Kozen [12℄ (anti
ipated by the work of Emerson and Clarke,Pratt, Park, and others, see, e.g., [3℄ for referen
es) gave rise to investigation of the hierar
hy indu
edby the alternation of the least (µ) and greatest (ν) �xed point operators. Brad�eld [5℄ proved thatthis hierar
hy is stri
t, giving also [6℄ a natural family of examples based on parity games [8℄. Thismodel-theoreti
 result yielded the stri
tness of another hierar
hy, 
lassifying sets of (in�nite) treesre
ognizable by �nite automata, �rst 
onsidered by Rabin [21℄. More spe
i�
ally, Brad�eld provedthe stri
tness of the hierar
hy indu
ed by the Rabin-Mostowski index of alternating automata1,
orresponding level by level to the hierar
hy of the µ-
al
ulus. The witness family 
onsists of theso-
alled game tree languages Wι,k, ι ∈ {0, 1}, ι ≤ k, obtained as the tree en
oding of parity games(the author [6℄ 
redits I.Walukiewi
z for this example).Unfortunately, although the questions about �nite automata are usually de
idable, no methodis known up to date to de
ide the exa
t level of a tree language in the hierar
hy, if an automaton1For non-deterministi
 automata, the result was proved earlier [17℄.1



is given2. This 
hallenge seems to be related to the sear
h for a suitable 
on
ept of redu
tion (and
ompleteness) for tree automata.On the other hand, in�nite trees 
an be naturally viewed as elements of a Cantor (topologi
al)spa
e, where the 
on
ept of 
ontinuous redu
tion is available and several hierar
hies are well un-derstood. In order to take advantage of this page of mathemati
s, we need �rst to a

urately pla
etree automata into the realm of des
riptive set theory.Finite-state re
ognizable sets of in�nite words were 
lassi�ed already by Landweber [13, Corol-lary 3.6℄ as Boolean 
ombinations of Fσ sets (see also [26℄). Finite automata on trees are moreinteresting from this perspe
tive. They re
ognize some Borel sets on any �nite level [23℄, as well assome non-Borel sets [19℄, although by de�nition 
annot go beyond ∆
1
2. It was observed by Arnold [1℄that the game tree languages Wι,k are 
omplete on the subsequent levels of the alternating hierar
hyw.r.t. the Wadge (i.e., 
ontinuous) redu
tions; on the other hand they form themselves a Wadgehierar
hy [4℄.The low 
lasses of the index hierar
hy are 
omparable to the analyti
 (Σ1

1) and 
o-analyti

lasses in proje
tive hierar
hies. Rabin [22℄ proved that (in our 
urrent terminology) the level (1, 2)of the index hierar
hy, 
orresponding to the νµ level in the µ-
al
ulus, is de�nable in the existentialfragment of S2S, and 
onsequently is in
luded in the 
lass Σ
1
1. By symmetry, the level (0, 1) isin
luded in Π

1
1. On the other hand, there are re
ognizable sets of trees of levels (0, 1) and (1, 2)
omplete in the 
lasses Π

1
1 and Σ

1
1, respe
tively, w.r.t. the 
ontinuous redu
tions [19℄; in parti
ular

W0,1 and W1,2 have this property. It is natural to ask if the subsequent levels of the hierar
hy doalso enjoy some meaningful topologi
al extensions.In this paper, we show that the 
lass of Σ
1
1�indu
tive sets forms su
h an extension for the level

(1, 3) of the index hierar
hy, 
orresponding to the level µνµ in the µ-
al
ulus. The 
on
ept wasanalyzed by Mos
hovakis in [15℄ (see also [14℄, whi
h 
ontains histori
al information about indu
tivesets). The Σ
1
1�indu
tive sets are those that 
an be obtained as the least �xed points of Σ1

1�de�nableoperators. We verify that the game tree language W1,3 is Σ
1
1�indu
tive, and then show that it isa
tually 
omplete among all Σ

1
1�indu
tive sets, by a redu
tion from the set of quasi bounded treesinvented by Saint Raymond [24℄. By the property of W1,3, it implies that every tree languagere
ognized by an alternating automaton of index (1, 3) is Σ

1
1�indu
tive. We terminate by providinga game 
hara
terization of the 
lass of Σ

1
1�indu
tive sets, in whi
h we explore the aforementioned
ompleteness of W1,3.A similar 
hara
terization of all the levels of the µ-
al
ulus hierar
hy in terms of game quanti�ershas been established by Brad�eld [7℄ for �xed-point de�nable sets of natural numbers. It possibly
an be adapted to sets of trees, if an appropriate extension of the 
on
ept of Σ

1

1
�indu
tive sets ismade.2 Index hierar
hyNotation. Throughout the paper, ω stands for the set of natural numbers, whi
h we identify withits ordinal type. We also identify a natural number n < ω with the set {0, 1, . . . , n− 1}.The 
on
ept of alternating automaton (see [26℄) is best presentable via games. A parity game isa perfe
t information game of possibly in�nite duration played by two players, say Eve and Adam.2An algorithm is known only in the 
ase if a given automaton is deterministi
 [18℄.2
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(0, 1) (0, 2) (0, 3) (0, 4) . . .Figure 1: The Mostowski�Rabin index hierar
hy.We present it as a tuple (V∃, V∀,Move, p0, rank ), where V∃ and V∀ are (disjoint) sets of positions ofEve and Adam, respe
tively, Move ⊆ V × V is the relation of possible moves, with V = V∃ ∪ V∀,
p0 ∈ V is a designated initial position, and rank : V → ω is the ranking fun
tion whi
h admits onlya �nite number of values.The players start a play in the position p0 and then move the token a

ording to relation Move(always to a su

essor of the 
urrent position), thus forming a path in the dire
ted graph (V,Move).The move is sele
ted by Eve or Adam, depending on who is the owner of the 
urrent position. Ifa player 
annot move, she/he looses. Otherwise, the result of the play is an in�nite path in thegraph, v0, v1, v2, . . . Eve wins the play if lim supn→∞ rank (vn), is even, otherwise Adam wins. Itis known that parity games are positionally determined : one of the players has a winning strategywhi
h moreover 
an be made positional , i.e., represented by a (partial) fun
tion σ : V → V [8, 16℄.We say that Eve wins the game if she has a winning strategy, the similar for Adam.A full binary tree over a �nite alphabet Σ is a mapping t : 2∗ → Σ. (Re
all that 2 = {0, 1}.)An alternating parity tree automaton running on su
h trees 
an be presented by

A = 〈Σ, Q∃, Q∀, q0, δ, rank〉where the set of states Q is partitioned into existential states Q∃ and universal states Q∀, δ ⊆
Q× Σ× {0, 1, ε} ×Q is a transition relation, and rank : Q→ ω a rank fun
tion. An input tree t isa

epted by A i� Eve has a winning strategy in the parity game 〈Q∃ × 2∗, Q∀ × 2∗, (q0, ε),Mov,Ω〉,where Mov = {((p, v), (q, vd)) : v ∈ dom(t), (p, t(v), d, q) ∈ δ} and Ω(q, v) = rank(q).We assume without loss of generality that min rank (Q) is 0 or 1. The Mostowski-Rabin indexis the pair (min rank (Q),max rank (Q)). It is useful to have a partial ordering on indi
es; it isrepresented on Figure 1. The idea is that we let (ι, κ) ⊑ (ι′, κ′) if either {ι, . . . , κ} ⊆ {ι′, . . . , κ′}, or
ι = 0, ι′ = 1, and {ι + 2, . . . , κ + 2} ⊆ {ι′, . . . , κ′}. We 
onsider the indi
es (1, κ) and (0, κ − 1) asdual , and let (ι, κ) denote the index dual to (ι, κ).We re
all an example of a witness family used by Brad�eld [6℄ to show that the hierar
hyindu
ed by the indi
es of alternating parity tree automata is stri
t. The family 
onsists of languages
Wι,k, ι ∈ {0, 1}, ι ≤ k whi
h are themselves based on parity games. The alphabet of Wι,k is
{∃,∀}×{ι, ι+1, . . . , k}. We let Tι,k denote the set of all binary trees over this alphabet. With ea
htree t in Tι,k, we asso
iate a parity game G(t), with

• V∃ = {v ∈ 2∗ : t(v) ↓1= ∃},
• V∀ = {v ∈ 2∗ : t(v) ↓1= ∀},
• Move = {(w,wi) : w ∈ 2∗, i ∈ {0, 1}}, 3



• p0 = ε (the root of the tree),
• rank (v) = t(v) ↓2, for v ∈ 2∗.(In the above, α ↓i, i = 1, 2, means the proje
tion on the ith 
omponent.) The set Wι,k 
onsists ofthose trees for whi
h Eve wins the game G(t).3 Basi
 topologi
al 
on
eptsAll topologi
al spa
es under 
onsideration are 
ompletely metrizable and separable. Let TΣ denotethe set of all k�ary trees over a �nite alphabet Σ. This set 
an be equipped with a metri


d(t1, t2) =

{

0 if t1 = t2
2−n with n = min{|w| : t1(w) 6= t2(w)} otherwise.It is well known and easy to see that the topologi
al spa
e indu
ed by this metri
 is homeomorphi
to the Cantor dis
ontinuum {0, 1}ω . We 
all a Cantor spa
e any spa
e homeomorphi
 with {0, 1}ω .The spa
e ωω 
onsists of all sequen
es of natural numbers. The distan
e between two sequen
es

u, v is de�ned
d(u, v) =

{

0 if u = v

2−n with n = min{m : u(n) 6= w(n)} otherwise.For a topologi
al spa
e H, the family of Fσ sets 
onsists of all 
ountable unions of 
losed sets in
H. Borel sets over H 
onstitute the least family 
ontaining open sets and 
losed under 
omplementand 
ountable union. The Borel relations are de�ned similarly, starting with open relations (i.e.,open subsets of Hn, for some n, 
onsidered with produ
t topology). The analyti
 (or Σ

1
1) sets arethose representable by

L = {t : (∃t′)R(t, t′)}where R ⊆ H×H is a Borel relation. The 
o-analyti
 (or Π
1
1) sets are the 
omplements of analyti
sets. A 
ontinuous mapping f : H → H redu
es a set A ⊆ H to B ⊆ H if f−1(B) = A. As in
omplexity theory, a set L ∈ K is 
omplete in 
lass K if all sets in this 
lass redu
e to it.4 Σ

1
1�indu
tiveness � 
lassi
al de�nitionThe original de�nition of Σ

1
1�indu
tiveness (see [15℄) refers to the least �xed points of the Σ

1
1-de�nable operators and however formally identi
al to the De�nition formulated below, insteadof using the 
onstru
tiveness in the sense of this paper, that is via arbitrary 
ountable unions,interse
tions, proje
tions and game�quanti�ers, the book [15℄ assumes, that all the above mentionednotions are limited by the assumption of re
ursiveness. In Set Theory this re
ursive approa
h is
alled E�e
tive Des
riptive Set Theory, and leads to so 
alled lightfa
e 
lasses of sets, but sin
ere
ursiveness does not seem to o�er at the moment any bene�ts to Automata Theory, we use largerand more robust 
lasses from Classi
al Des
riptive Set Theory, so 
alled boldfa
e 
lasses. The theoryof lightfa
e and boldfa
e 
lasses essentially 
oin
ide when it 
omes to really important results, but inthis arti
le, in order to avoid any 
onfusion, we will introdu
e all the boldfa
e 
on
epts from s
rat
h4



and will not use any lightfa
e results from [15℄. In our work, we have been mu
h inspired by [24℄,and our approa
h to Σ
1
1�indu
tive sets follows the exposition in [24℄. Also, in Se
tion 5 we will usean interesting 
ombinatorial example from [24℄ of a set 
omplete in the 
lass of Σ

1
1�indu
tive.In the de�nitions below C is a Cantor spa
e and the set I is an arbitrary 
ountable set of indi
eswith one spe
ial element i0 ∈ I. We will assume that I is equipped with a dis
rete topology. Wewill be mostly interested in I = 2⋆, i0 = ε and C = TΣ, but for 
ertain appli
ations in the followingse
tions we will need the more general approa
h. Let

F : ℘ (I) × C → ℘ (I)be a mapping monotone on the �rst argument w.r.t. the in
lusion ordering. Keeping our mainexample in mind, if t is a tree and I = 2⋆, we view F (., t) as a mapping on the sets of nodes of t.We de�ne the sets F ξ(t) by indu
tion on ordinal ξ.
F 0(t) = ∅

F ξ+1(t) = F
(

F ξ(t), t
)

F λ(t) =
⋃

ξ<λ

F ξ(t), for limit λ.Sin
e F is monotone and I is 
ountable, there is a 
ountable ordinal ζ, su
h that F ζ+1(t) = F ζ(t),and 
onsequently F ζ(t) = F ξ(t), for all ξ > ζ. We denote this set by F∞(t). Finally, we letInd(F ) = {t : i0 ∈ F∞(t)} (1)and for t ∈ Ind(F ) we de�ne rk(t) as the minimal ordinal ζ su
h that F ζ+1(t) = F ζ(t) and for
t 6∈ Ind(F ) we de�ne rk(t) = ω1.The 
omplexity of a mapping F is de�ned in terms of the relation w ∈ F (Y, t). More spe
i�
ally,we represent a set Y by its 
hara
teristi
 fun
tion χY : I → {0, 1}, whi
h in turn 
an be viewed asan element of a Cantor spa
e {0, 1}I .De�nition 1. A set of trees A ⊆ C is Σ

1
1�indu
tive if it 
an be presented as A = Ind(F ), for somemapping F : ℘ (I) × C → ℘ (I) (monotone on the �rst argument), su
h that the relation

{(w,χY , t) : w ∈ F (Y, t)}is Σ
1
1.To show that the set W1,3 is Σ

1
1�indu
tive in the above sense, we have to present it as Ind(F ),for a suitable operator F , where C = T1,3. For a tree t ∈ T1,3, a set of nodes Y ⊆ 2∗, and a node

w ∈ 2∗, we 
onsider a game G(t, Y, w) similar to the game G(t) de�ned on page 3 but with thefollowing modi�
ations. The initial position is w (rather than ε). Whenever the token arrives in anode in the set Y , the play stops. Eve wins a play π = (v0, v1, v2, . . .) (with v0 = w) if
• the label 3 
an o

ur only at the initial position, i.e., t(v0) ↓2∈ {1, 2, 3}, but t(vi) ↓2∈ {1, 2},for i ≥ 1,
• either π is �nite and ends in Y , 5



• or π is in�nite and lim supn→∞ t(vn) ↓2= 2.We let
F (Y, t) = {w : Eve has a winning strategy in the game G(t, Y, w)}Sin
e the winning 
ondition in G(t, Y, w) is similar as in W1,2 (i.e., of Bü
hi type), it is straightfor-ward to verify that F satis�es the requirements of De�nition 1. And it is not very di�
ult to verifythat Ind(F ) = W1,3.We will need later the following standardLemma 1. If D,C are Cantor spa
es, φ : D → C is a 
ontinuous mapping and A ⊆ C is a

Σ
1
1�indu
tive set, then the preimage B = φ−1[A] is also a Σ

1
1�indu
tive set.Proof. Let

F : ℘ (I) × C → ℘ (I)be su
h that A = Ind(F ), where
R = {(w,χY , t) : w ∈ F (Y, t)}analyti
. De�ne

G : ℘ (I) × C → ℘ (I)by the formula G(Y, t) = F (Y, φ(t)). Then 
learly B = Ind(G). We have to verify that G is
Σ

1
1�de�nable.De�ne

ψ : I × ℘ (I) ×D → I × ℘ (I) × Cby the formula
ψ(w,χY , t) = (w,χY , φ(t)).Then

{(w,χY , t) : w ∈ G(Y, t)} = {(w,χY , t) : w ∈ F (Y, φ(t))} = ψ−1[R].Sin
e ψ is a 
ontinuous mapping, the preimage of an analyti
 set R remains analyti
, hen
e B is
Σ

1
1�indu
tive.From the Lemma and from a result of Arnold [1℄ that any tree language of level (ι, k) is 
ontin-uously redu
ible to Wι,k, it followsCorollary 1. Tree languages re
ognized by alternating automata of index (1, 3) are Σ

1
1�indu
tive.

6



5 Completeness via the quasi�bounded treesWe will prove that W1,3 is 
omplete in the 
lass of Σ1
1�indu
tive sets redu
ing to it a set of so-
alled(unlabeled) quasi-bounded trees, whose 
ompleteness has been established by Saint Raymond [24℄dire
tly from the de�nition. We 
all a subset of ω∗ an unlabeled tree if it 
losed with respe
t topre�xes. Chara
teristi
 fun
tion of an unlabeled tree t belongs to the Cantor spa
e 2ω∗ and thetopology on the spa
e of unlabeled trees is inherited from the spa
e 2ω∗ .A tree t ⊂ ω∗ is 
o�nal if for every v = (v0, v1, . . .) ∈ ω

ω there exists a bran
h b = (b0, b1, . . .) ∈ [t]su
h that b ≥ v, that is for every n ∈ ω holds the inequality bn ≥ vn. We de�ne
QB = {t ⊂ ω∗ : t is a not a 
o�nal tree}.Let ψ be a mapping from 2∗ to ω∗ su
h that for a given sequen
e s ∈ 2∗ if s = 0n010n11 . . . 10nk10l(l ≥ 0) then

ψ(s) = (n0, n1, . . . , nk).For a given tree t ⊂ ω∗ we de�ne a game Γ(t) su
h that Player I plays natural numbers n0, n1, . . . ,one number in every round, and Player II answers with c0, c1, . . . , where cn ∈ {0, 1}. Moreover,Player II is obliged at every step to preserve the following two 
onditions1. if ψ(c0, . . . , ck) has length l ≥ 1, then
ψ(c0, . . . , ck) ≥ (n0, . . . , nl−1).2. ψ(c0, . . . , ck) ∈ t.Player II wins if he managed to play in�nitely many 1. In [24℄ one 
an �nd the following 
hara
ter-izationTheorem 1 (J. Saint Raymond). A tree t ⊂ ω<ω is not 
o�nal if and only if Player I has a winningstrategy in Γ(t).Using a method of proof from [24, Theorem 3℄, we will prove the followingTheorem 2. There exists φ whi
h 
ontinuously redu
es QB to W1,3.Proof. For a given tree t ⊂ ω<ω we have to 
onstru
t in a 
ontinuous way a tree φ(t) ∈ Tr1,3 su
hthat ∃ has a winning strategy in φ(t) if and only if t is not 
o�nal.We will subsequently add new verti
es to φ(t), starting from a partial tree s0 
onsisting of

s0(2, 2, . . . , 2) = (∃, 1), s0(2, 2, . . . , 2, 1) = (∀, 2). The essen
e of the indu
tive de�nition of φ(t) isdepi
ted in Figure 2. We start from a tree s0, then add it again in 
ertain verti
es marked in theFigure. There are some restri
tions des
ribed below on pla
ement of the verti
es (∀, 3). Assume,that
• we already de�ned a partial tree s1 ⊂ φ(t) and
• for v su
h that s1(v) = (∀, 2), we already de�ned sequen
es nv

0, . . . , n
v
k+1

, cv0, . . . , cvk su
h that
onditions (1), (2) from the de�nition of Γ(t) are ful�lled.7



∀, 3

∀, 2

∃, 1

∃, 1

∃, 1

s0

s0Figure 2: An approximation of the tree φ(t).We will extend it to a partial tree s2 ⊂ φ(t). For a given leaf v ∈ s1 su
h that s(v) = (∀, 2), weadd s0 to the right, that is s2(v2w) = s0(w). In every new leaf v′ ∈ s1 su
h that s2(v′) = (∀, 2),we de�ne nv′

i = nv
i (i ≤ k + 1), cv′i = cvi (i ≤ k) and nv′

k+2
is the number of 2 from v to v′ (formallyspeaking nv′

k+2
is de�ned as |v′| − |v| − 1) and cv′k+1

= 0.To the left we add1. s2(v1) = (∀, 3), but only under the 
ondition, that sequen
es (nv
0, . . . , n

v
k+1

), (cv0, . . . , c
v
k, 1)ful�ll 
onditions (1), (2) from the de�nition of Γ(t). We add s2(v12r) = s0(r) and for a newleaf v′ su
h that s2(v′) = (∀, 2) we de�ne sequen
es as above with the ex
eption, that cv′k+1
= 1,2. otherwise we add s2(v1r) = (∃, 2) for every r; this 
hoi
e ensures that Player ∀ will not betempted to enter this subtree.Claim 1. If Player ∃ has a winning strategy in φ(t), then t ∈ QB.Proof. Assume ∃ has a winning strategy. Player ∃ plays n0 and later in every pla
e su
h that ∀has a 
hoi
e of going left or right, ∃ answers with a natural number. It means, that strategy for

∃ de�nes a mapping σ from 2<ω into ω<ω. This extends to a 
ontinuous σ from 2ω into ωω andbound of the image is a quasi�bound of the whole tree t.Claim 2. If Player ∀ has a winning strategy, then t is a 
o�nal tree.Proof. Take any w ∈ ωω and play it as ∃. Answers of ∀ will lead us to a sequen
e in t dominating
w. 8



This �nishes the proof of the Theorem.6 Topologi
al gamesNow we will 
onsider W1,3 from a di�erent angle, namely from the point of view of topologi
algames and game quanti�ers. We �rst re
all the 
on
epts of the Gale-Stewart game and the gamequanti�er (see, e.g., [11℄). Let Y be an arbitrary set and let A ⊆ Y ω. The game Γ(A) is played bytwo players, I and II, who 
onse
utively sele
t elements of ω.I y0 y2 y4 y6 . . .II y1 y3 y5 . . .The result of a play is thus an in�nite sequen
e y0y1y2 . . .. Player I wins the play if this sequen
ebelongs to A; otherwise II is the winner. We de�ne Γ′(A) as the same game with the same winning
onditions, ex
ept that the �rst move belongs to Player II.I y1 y3 y5 . . .II y0 y2 y4 . . .For a set C and A ⊆ C × Y ω, we let
a(A) = {x : I has a winning strategy in the game Γ(Ax)}(where Ax = {w : (x,w) ∈ A}).De�nition 2. A subset B of a Cantor spa
e C is game�de�nable, if it 
an be presented as a(A),where

A ⊆ C × ωωis an Fσ set in the produ
t spa
e of C × ωω.This 
on
ept has been analyzed by Y. N. Mos
hovakis [15℄ for the lightfa
e sets and the equiva-len
e of this notion and lightfa
e notion of Σ1
1�indu
tiveness is the 
ontent of Exer
ise 7.C.10 in [15℄(a 
onjun
tion of a Theorem of Wolfe and a Theorem of Solovay). The equivalen
e of these twonotions in the boldfa
e sense follows from [24℄. We will not use dire
tly any of this results, however
ertainly they inspire the following proofs and in Se
tion 5 we already used 
ompleteness of QBin the 
lass of Σ

1
1�indu
tive sets proved in [24℄, whi
h is part of the proof that the two notions
oin
ide.Proposition 1. W1,3 is game�de�nable.Proof. We 
annot dire
tly use the parity game from de�nition of W1,3, as the parity 
ondition ofindex (1, 3) is not Fσ. Instead, for a tree t ∈ T1,3, we 
onsider the following modi�
ation of thegame G(t). The players move as previously ex
ept in the 
ase when rank of the a
tual position is1. In this 
ase, Eve must exhibit a (�nite) strategy to rea
h a node with a rank greater than 1 in�nite time. (If it is not possible, Eve 
annot win in G(t).) Next, Adam 
hooses one of the nodesrea
hable by Eve's strategy, and the game 
ontinues.To make it pre
ise, we �rst de�ne a lo
al strategy (for Eve) at a node v of t. It is a �nite subset

S of the des
endants of v, su
h that v ∈ S and, whenever w ∈ S, then9



• if t(w) = (∀, 1) then w0, w1 ∈ S;
• if t(w) = (∃, 1) then w has exa
tly one su

essor in S;
• if t(w) ↓2 ≥ 2 then w is a leaf , i.e., has no su

essor in S.Now, for a tree t ∈ T1,3, we de�ne a parity game H(t), as follows. The positions of H(t) in
lude alltree positions v ∈ 2∗. We distinguish between (≥ 2)-positions, for whi
h t(v) ↓2 ≥ 2, and 1-positions,for whi
h t(w) ↓2 = 1. The (≥ 2)-positions are assigned to Eve or Adam depending on the value of

t(w) ↓1; the 1-positions are always assigned to Eve. Additionally, there are strategy positions of theform (v, S), where v is a 1-position and S is a lo
al strategy from v; they are assigned to Adam.The moves from the (≥ 2)-positions are the same as in G(t) (to su

essors). From a 1-position v,there is a move to ea
h strategy position (v, S). From a strategy position (v, S), there is a move toea
h tree position w, su
h that w is a leaf of S (note that w is then a (≥ 2)-position). The rank ofa tree position with t(v) ↓2= 3 is 1; all other positions have rank 0. It is straightforward to see thatEve has a winning strategy in G(t) i� she has a winning strategy in H(t). In order to present W1,3in the form required in De�nition 2, we have to make sure that the players move in alternation,(whi
h needs not be the 
ase in G(t)); this 
an be easily a
hieved by inserting some trivial moves.Then we de�ne the relation A as the set of pairs (t, π), su
h that t is a tree in T1,3 en
oded aselement of 2ω, and π is a winning path in H(t) en
oded as element of ωω. Note that the winning
ondition in H(t) requires that the (new) rank 1 is en
ountered only �nitely often. Therefore, we
an present A as the union of sets An, where An 
onsists of those pairs (t, π), where π en
ounters
1 at most n times. The last set is 
losed (provided that we en
ode the positions of the game bynatural numbers, not by sequen
es of bits.) Hen
e A is Fσ , as required.Let us noti
e, that as in the 
ase of Σ

1
1�indu
tive sets holds the followingLemma 2. If C,D are Cantor spa
es and B is a preimage of A under a 
ontinuous mapping

φ : D → C and A is game�de�nable, then B is also game�de�nable.Proof. Indeed, if A = a(R) then B = a({(x, y) : (φ(x), y) ∈ R}). The se
ond relation is itself a
ontinuous inverse image of R, hen
e its 
omplexity is not higher than that of R.From Se
tion 5 we know that W1,3 is 
omplete in the family of all Σ
1
1�indu
tive sets and fromCorollary 1 we know, that tree languages re
ognized by alternating automata of index (1, 3) are

Σ
1
1�indu
tive. Hen
e we are getting the following known result (see [15, Exer
ise 7.C.10℄ and [24℄):Corollary 2. Every Σ

1
1�indu
tive set is game�de�nable. In parti
ular, tree languages re
ognized byalternating automata of index (1, 3) are game�de�nable.Our next goal is to show that the set W1,3 is a
tually 
omplete in the 
lass of game�de�nablesets. To this end, we 
onsider another variant of topologi
al games, where the players sele
t bitsinstead of natural numbers at the expense of a more 
omplex winning 
riterion. The following
on
ept will be useful.De�nition 3. A parity 
oloring (or 
oloring, for short) over a �nite set Σ is a mapping K : Σ∗ → ω,taking only a �nite number of values. This 
oloring de�nes a set

[K] = {u ∈ Σω : lim sup
n→∞

K(u ↾ n) is even }(where u ↾ n = u(0) . . . u(n− 1)). 10



Re
ognition by 
oloring generalizes re
ognition by deterministi
 parity automata on in�nitewords. A related 
on
ept for �nite words has been 
onsidered by Séverine Fratani [9℄ under thename of automates à ora
les. A more general 
on
ept of Borel automata appears in [20℄. Theformulation in De�nition 3 
omes from the Master thesis of Mi
haª Skrzyp
zak [25℄.If the underlying set is a produ
t, e.g., Σ = 2 × 2, we identify a set A ⊆ Σω with the relation
{(x, y) ∈ 2ω × 2ω : (x0, y0), (x1, y1), . . . ∈ A}.Hen
e, a 
oloring K : (2 × 2)∗ → ω indu
es the set a([K]) whi
h, by de�nition, 
onsists of those x,for whi
h Player I 
an ensure that the result y of the play satis�es

lim sup
n→∞

K(x ↾ n, y ↾ n) is even.Theorem 3. The following 
onditions are equivalent for A ⊆ 2ω.1. A is game�de�nable,2. A = a([K]) for a 
oloring K : (2 × 2)∗ → ω, whi
h takes the values in {1, 2, 3}.Proof. To show (2) ⇒ (1), we prove that any set of the form A = a([K]) of (2) 
an be 
ontinuouslyredu
ed to W1,3. For x ∈ 2ω, we de�ne a labeled tree tKx : 2∗ → {∃,∀} × {1, 2, 3}, by
tKx (v) =

{

(∃,K(x ↾ |v|, v)) for |v| even
(∀,K(x ↾ |v|, v)) for |v| odd. (2)Clearly the mapping x 7→ tKx is 
ontinuous and it is straightforward to see that x ∈ A⇐⇒ tKx ∈W1,3;indeed the winning strategies 
an be transferred easily between the two games. Sin
e the 
lass ofgame�de�nable sets is 
losed under 
ontinuous redu
tions and we know from Proposition 1 that it
ontains W1,3, it follows that it 
ontains A as well.To prove (1) ⇒ (2), suppose A = a(R), for some R ⊆ 2ω × ωω of the 
lass Fσ . We use awell-known fa
t that, generally, a set E ⊆ Xω is of the 
lass Fσ i� for some set of �nite words

Z ⊆ X∗ the following 
hara
terization holds (see, e.g., Theorem III 3.11 in [20℄):
u ∈ E ⇔ {n : u ↾ n ∈ Z} is �nite.Let Z ⊆ (2 × ω)∗ be su
h a set for R. Before de�ning the 
oloring K formally, we des
ribe thegame it should indu
e. This game simulates the game Γ(Rx) but, instead of natural numbers, theplayers 
hoose now only bits in 2. Suppose a play in Γ(Rx) was I: m0, II: m1, I: m2, II: m3, and soon. The 
hoi
e of the number m0 by player I is now simulated by m0 
onse
utive rounds in whi
h I
hooses 0, and II answers by 0 as well. (If II violates this rule, he will be for
ed to loose by suitable
oloring.) After this phase, I plays 1, to whi
h II answers 0 again. Then the roles ex
hange: nowPlayer I plays only 0's, to whi
h player II answers by 0 for m1 times, and de
ides to put 1 afterward,and so on. For example, a play I 3 2 . . .II 0 2 . . .is simulated byI 0 0 0 1 0 0 0 1 0 0 0 . . .II 0 0 0 0 1 0 0 0 0 0 1 . . .11



A player who deviates from the above rules, looses. So a �
orre
t� play must be of the form
02m0 10 02m1 01 02m2 10 . . . (3)We say that a (�nite) word 02m0 10 02m1 01 . . . 02mk 10, represents the sequen
e m0m1 . . . mk if

k is even; similarly, a word 02m0 10 02m1 01 . . . 02mk 01 represents the sequen
e m0m1 . . . mk if k isodd.To guarantee that our 
oloring game simulates the game Γ(Rx), player I should win the play(3) exa
tly in the 
ase when the (pair) sequen
e
(x, (m0,m1,m2, . . .))has only a �nite number of pre�xes in Z. We now de�ne a 
oloring K to ensure this property.Consider (α, β) ∈ (2 × 2)∗. We let K(α, β) = 3, whenever β 
ontains a pre�x whi
h violates therules. If β represents a sequen
e m0m1 . . . mk, we let K(α, β) = 2 if (α ↾ (k + 1),m0m1 . . .mk) isnot in Z, and K(α, β) = 3, otherwise. In all other 
ases, we let K(α, β) = 1 when we simulate mkfor even k and K(α, β) = 2 when we simulate mk for odd k. It is then straightforward to see that

x ∈ a(R) i� x ∈ a([K]), whi
h yields the desired presentation of A.The equivalen
e of Theorem 3 along with the fa
t established in the proof that all sets repre-sentable as in 
ondition (2) of Theorem 3 redu
e to W1,3 yield the following.Corollary 3. The set W1,3 is 
omplete in the 
lass of game�de�nable sets.Finally we are getting:Corollary 4. The following three 
on
epts of de�nability 
oin
ides for A ⊆ 2ω:1. A is Σ
1
1�indu
tive,2. A is game�de�nable,3. A = a([K]) for a 
oloring K : (2 × 2)∗ → ω, whi
h takes the values in {1, 2, 3}.Proof. The last two 
onditions are equivalent a

ording to Theorem 3. If A is Σ

1
1�indu
tive, thenfrom Corollary 2 it is game�de�nable. If A is game�de�nable, then a

ording to Corollary 3 it isredu
ible to W1,3, hen
e from Lemma 1 the set A is Σ

1
1�indu
tive as a preimage of Σ

1
1�indu
tiveset W1,3.7 Con
lusion and further workWe have provided an eviden
e that the 
lass of Σ

1
1�indu
tive sets is a set�theoreti
al generalizationof the 
lass of regular tree languages of index (1, 3). This extends the previously known relationsbetween (0, 1) vs. Π

1
1 and (1, 2) vs. Σ

1
1. Plausibly, this 
hara
terization 
an go further with anappropriate extension of the 
on
ept of indu
tiveness (in the spirit of [7℄).A related topi
 is the separation property, whi
h is one of the 
entral issues in des
riptive settheory. It is known that the 
lass of Σ1

1�indu
tive fails this property ([15, Theorem 6.D.4℄); that is,there exist two disjoint Σ
1
1�indu
tive sets A,B ⊆ {0, 1}ω su
h that there is no set C whi
h would12



separate A and B and whi
h would simultaneously satisfy the 
onditions that C and {0, 1}ω \ Care Σ
1
1�indu
tive sets.We established re
ently in a joint paper with André Arnold [2℄ the failure of separation propertyfor all the levels (ι, n) of the alternating index hierar
hy, for n odd (for the level (0, 1), the resultwas known [10℄). We are planning to establish whether the pair of regular languages of index (1, 3)
onstru
ted in [2℄ 
ould serve as an example of inseparable pair for the 
lass of Σ

1
1�indu
tive sets.The question if the separation property holds for the levels (ι, n) with n even remains open (it isonly known to hold for (1, 2) [10, 22℄). One may hope that the ideas from des
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