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Abstract

We identify the class of E}finductive sets studied by Moschovakis as a set theoretical gener-
alization of the class (1,3) of the Rabin-Mostowski index hierarchy of alternating automata on
infinite trees. That is, we show that every tree language recognized by an alternating automaton
of index (1, 3) is ¥1-inductive, and exhibit an automaton whose language is complete in this
class w.r.t. continuous reductions.

Classification Automata on infinite trees, Logic in computer science, Infinite games.

1 Introduction

A common feature of computational complexity theory, recursion theory, automata theory, or de-
scriptive set theory, is that they organize their realms into various hierarchies according to their
sense of complexity. The complexity levels are usually understood through some concrete examples,
genuine to a complexity level. For instance, the complexity class NL is understood through the
problem of maze, and the topological class ITi through the set of well-founded (infinite) trees. Of
a special interest are examples which separate complexity levels, or are conjectured to do so. This
often involves some concept of completeness, which is also a common feature of the above theories,
although the actual reductions vary from polynomial-time (or log-space) reductions in complexity
theory to continuous reductions in descriptive set theory.

The introduction of the p-calculus by Kozen [12] (anticipated by the work of Emerson and Clarke,
Pratt, Park, and others, see, e.g., [3| for references) gave rise to investigation of the hierarchy induced
by the alternation of the least (1) and greatest (v) fixed point operators. Bradfield [5] proved that
this hierarchy is strict, giving also [6] a natural family of examples based on parity games [8]. This
model-theoretic result yielded the strictness of another hierarchy, classifying sets of (infinite) trees
recognizable by finite automata, first considered by Rabin [21]. More specifically, Bradfield proved
the strictness of the hierarchy induced by the Rabin-Mostowski index of alternating automatal,
corresponding level by level to the hierarchy of the p-calculus. The witness family consists of the
so-called game tree languages W, 1, ¢ € {0,1}, ¢ < k, obtained as the tree encoding of parity games
(the author [6] credits I.Walukiewicz for this example).

Unfortunately, although the questions about finite automata are usually decidable, no method
is known up to date to decide the exact level of a tree language in the hierarchy, if an automaton

!'For non-deterministic automata, the result was proved earlier [17].



is given?. This challenge seems to be related to the search for a suitable concept of reduction (and
completeness) for tree automata.

On the other hand, infinite trees can be naturally viewed as elements of a Cantor (topological)
space, where the concept of continuous reduction is available and several hierarchies are well un-
derstood. In order to take advantage of this page of mathematics, we need first to accurately place
tree automata into the realm of descriptive set theory.

Finite-state recognizable sets of infinite words were classified already by Landweber [13, Corol-
lary 3.6] as Boolean combinations of F,, sets (see also [26]). Finite automata on trees are more
interesting from this perspective. They recognize some Borel sets on any finite level [23], as well as
some non-Borel sets [19], although by definition cannot go beyond Al. It was observed by Arnold [1]
that the game tree languages W, j are complete on the subsequent levels of the alternating hierarchy
w.r.t. the Wadge (i.e., continuous) reductions; on the other hand they form themselves a Wadge
hierarchy [4].

The low classes of the index hierarchy are comparable to the analytic (X}) and co-analytic
classes in projective hierarchies. Rabin [22]| proved that (in our current terminology) the level (1, 2)
of the index hierarchy, corresponding to the vu level in the p-calculus, is definable in the existential
fragment of S2S, and consequently is included in the class 3i. By symmetry, the level (0,1) is
included in IT}. On the other hand, there are recognizable sets of trees of levels (0,1) and (1,2)
complete in the classes IT} and X1, respectively, w.r.t. the continuous reductions [19]; in particular
Wo,1 and Wi 2 have this property. It is natural to ask if the subsequent levels of the hierarchy do
also enjoy some meaningful topological extensions.

In this paper, we show that the class of Xi-inductive sets forms such an extension for the level
(1,3) of the index hierarchy, corresponding to the level uvpu in the p-calculus. The concept was
analyzed by Moschovakis in [15] (see also [14], which contains historical information about inductive
sets). The X1-inductive sets are those that can be obtained as the least fixed points of X}-definable
operators. We verify that the game tree language W1 3 is ¥1-inductive, and then show that it is
actually complete among all 31-inductive sets, by a reduction from the set of quasi bounded trees
invented by Saint Raymond [24]. By the property of Wj 3, it implies that every tree language
recognized by an alternating automaton of index (1, 3) is £i-inductive. We terminate by providing
a game characterization of the class of £{-inductive sets, in which we explore the aforementioned
completeness of Wi 3.

A similar characterization of all the levels of the p-calculus hierarchy in terms of game quantifiers
has been established by Bradfield [7] for fixed-point definable sets of natural numbers. It possibly
can be adapted to sets of trees, if an appropriate extension of the concept of X1-inductive sets is
made.

2 Index hierarchy

Notation. Throughout the paper, w stands for the set of natural numbers, which we identify with
its ordinal type. We also identify a natural number n < w with the set {0,1,...,n — 1}.

The concept of alternating automaton (see [26]) is best presentable via games. A parity game is
a perfect information game of possibly infinite duration played by two players, say Eve and Adam.

2An algorithm is known only in the case if a given automaton is deterministic [18].
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Figure 1: The Mostowski-Rabin index hierarchy.

We present it as a tuple (V3, V5, Move, po, rank), where V5 and Vi are (disjoint) sets of positions of
Eve and Adam, respectively, Move C V x V is the relation of possible moves, with V = V53U V&,
po € V is a designated initial position, and rank : V — w is the ranking function which admits only
a finite number of values.

The players start a play in the position pg and then move the token according to relation Move
(always to a successor of the current position), thus forming a path in the directed graph (V, Move).
The move is selected by Eve or Adam, depending on who is the owner of the current position. If
a player cannot move, she/he looses. Otherwise, the result of the play is an infinite path in the
graph, vg,v1,ve,... Eve wins the play if limsup,,_, ., rank(v,), is even, otherwise Adam wins. It
is known that parity games are positionally determined: one of the players has a winning strategy
which moreover can be made positional, i.e., represented by a (partial) function o : V' — V' [8, 16].
We say that Eve wins the game if she has a winning strategy, the similar for Adam.

A full binary tree over a finite alphabet ¥ is a mapping ¢ : 2* — X. (Recall that 2 = {0,1}.)
An alternating parity tree automaton running on such trees can be presented by

A - (Zu Qﬂu QV) q0, (57 rank>

where the set of states () is partitioned into existential states ()3 and universal states Qy, § C
Q x X x{0,1,e} x @ is a transition relation, and rank : Q — w a rank function. An input tree ¢ is
accepted by A iff Eve has a winning strategy in the parity game (Q3 x 2*, Qv x 2%, (go, €), Mov, Q),
where Mov = {((p, v), (¢,vd)): v € dom(t), (p,t(v),d,q) € 6} and Q(q,v) = rank(q).

We assume without loss of generality that min rank(Q) is 0 or 1. The Mostowski-Rabin index
is the pair (min rank(Q), max rank(Q)). It is useful to have a partial ordering on indices; it is
represented on Figure 1. The idea is that we let (¢, k) C (¢/, k") if either {¢,...,k} C{/,..., K}, or
t=0,/=1,and {t +2,...,k+2} C{/,...,k'}. We consider the indices (1,x) and (0,x — 1) as
dual, and let (¢, k) denote the index dual to (¢, k).

We recall an example of a witness family used by Bradfield [6] to show that the hierarchy
induced by the indices of alternating parity tree automata is strict. The family consists of languages
W,k ¢ € {0,1}, + < k which are themselves based on parity games. The alphabet of W, is
{3,V x{e,e+1,...,k}. Welet T, , denote the set of all binary trees over this alphabet. With each
tree t in T, ;;, we associate a parity game G(t), with

o V5={ve2 :t) [1=3},
o Vu={ve2 :tl) 1=V}
o Move = {(w,wi) : w € 2%, i € {0,1}},



e po = ¢ (the root of the tree),
o rank(v) = t(v) |o, for v € 2*.

(In the above, a |;, i = 1,2, means the projection on the ith component.) The set W, j consists of
those trees for which Eve wins the game G(t).

3 Basic topological concepts

All topological spaces under consideration are completely metrizable and separable. Let 7x; denote
the set of all k—ary trees over a finite alphabet 3. This set can be equipped with a metric

d(t t)— 0 if t1 =19
L7207 27" with n = min{|w| : ¢1(w) # t2(w)}  otherwise.

It is well known and easy to see that the topological space induced by this metric is homeomorphic
to the Cantor discontinuum {0,1}*. We call a Cantor space any space homeomorphic with {0, 1}*.

The space w® consists of all sequences of natural numbers. The distance between two sequences
u, v is defined

d(u,v) = 0 ifu=wv
P 27" with n = min{m : u(n) # w(n)} otherwise.

For a topological space H, the family of F, sets consists of all countable unions of closed sets in
‘H. Borel sets over ‘H constitute the least family containing open sets and closed under complement
and countable union. The Borel relations are defined similarly, starting with open relations (i.e.,
open subsets of H™, for some n, considered with product topology). The analytic (or £1) sets are
those representable by
L={t: 3)R(1t)}

where R C ‘H x H is a Borel relation. The co-analytic (or II}) sets are the complements of analytic
sets. A continuous mapping f : H — H reduces a set A C H to B C H if f~}(B) = A. Asin
complexity theory, a set L € IC is complete in class K if all sets in this class reduce to it.

4 Yi-inductiveness — classical definition

The original definition of X}-inductiveness (see [15]) refers to the least fixed points of the Xi-
definable operators and however formally identical to the Definition formulated below, instead
of using the constructiveness in the sense of this paper, that is via arbitrary countable unions,
intersections, projections and game—quantifiers, the book [15] assumes, that all the above mentioned
notions are limited by the assumption of recursiveness. In Set Theory this recursive approach is
called Effective Descriptive Set Theory, and leads to so called lightface classes of sets, but since
recursiveness does not seem to offer at the moment any benefits to Automata Theory, we use larger
and more robust classes from Classical Descriptive Set Theory, so called boldface classes. The theory
of lightface and boldface classes essentially coincide when it comes to really important results, but in
this article, in order to avoid any confusion, we will introduce all the boldface concepts from scratch



and will not use any lightface results from [15]. In our work, we have been much inspired by [24],
and our approach to Xi-inductive sets follows the exposition in [24]. Also, in Section 5 we will use
an interesting combinatorial example from [24] of a set complete in the class of Z1-inductive.

In the definitions below C'is a Cantor space and the set I is an arbitrary countable set of indices
with one special element ig € I. We will assume that I is equipped with a discrete topology. We
will be mostly interested in I = 2*, ig = ¢ and C' = Tx;, but for certain applications in the following
sections we will need the more general approach. Let

F:p(I)xC—p(I)

be a mapping monotone on the first argument w.r.t. the inclusion ordering. Keeping our main
example in mind, if ¢ is a tree and I = 2*, we view F'(.,t) as a mapping on the sets of nodes of ¢.
We define the sets F¢(t) by induction on ordinal €.

FOt) = 0

F&(t) = F(Ff(t),t)

FMt) = [ F), for limit A,
<A

Since F' is monotone and I is countable, there is a countable ordinal ¢, such that F<t1(t) = FS(¢),
and consequently F¢(t) = F&(t), for all £ > ¢. We denote this set by F>°(t). Finally, we let

md(F) = {t:ipe F¥(t)} (1)

and for ¢t € Ind(F) we define rk(t) as the minimal ordinal ¢ such that F¢*1(t) = FS(t) and for
t & Ind(F') we define rk(t) = wy.

The complexity of a mapping F' is defined in terms of the relation w € F(Y,t). More specifically,
we represent a set Y by its characteristic function xy : I — {0,1}, which in turn can be viewed as
an element of a Cantor space {0,1}.

Definition 1. A set of trees A C C is X1 -inductive if it can be presented as A = Ind(F), for some
mapping F : p (I) x C — o (I) (monotone on the first argument), such that the relation

{(w,xy,t): w e F(Y,t)}
is 2%.

To show that the set Wy 3 is S1-inductive in the above sense, we have to present it as Ind(F),
for a suitable operator F', where C' = T3 3. For a tree t € 173, a set of nodes Y C 2*, and a node
w € 2%, we consider a game G(t,Y,w) similar to the game G(¢) defined on page 3 but with the
following modifications. The initial position is w (rather than ). Whenever the token arrives in a
node in the set Y, the play stops. Eve wins a play m = (vg, v1,v2,...) (with vg = w) if

e the label 3 can occur only at the initial position, i.e., t(vg) |2€ {1,2,3}, but t(v;) l2€ {1, 2},
for i > 1,

e cither 7 is finite and ends in Y,



e or 7 is infinite and limsup,,_, . t(v,) l2= 2.

We let
F(Y,t) = {w: Eve has a winning strategy in the game G(¢,Y,w)}

Since the winning condition in G(¢,Y,w) is similar as in Wi 5 (i.e., of Biichi type), it is straightfor-
ward to verify that F' satisfies the requirements of Definition 1. And it is not very difficult to verify
that

Ind(F) = WLg.
We will need later the following standard

Lemma 1. If D,C are Cantor spaces, ¢ : D — C is a continuous mapping and A C C s a
Si-inductive set, then the preimage B = ¢~ '[A] is also a B1-inductive set.

Proof. Let
F:p(I)xC—p(I)

be such that A = Ind(F'), where
R={(w,xy,t):we F(Y,t)}
analytic. Define
G:p(I)xC—p()

by the formula G(Y,t) = F(Y,¢(t)). Then clearly B = Ind(G). We have to verify that G is
3 {-definable.
Define
V:Ixp(I)xD—-Ixp(l)xC

by the formula
1/}(w7XY7t) = (w7XYa¢(t))'
Then
{(w,xy,t) :w e GV, 1)} = {(w, xy, 1) s w € F(Y, (1))} = ¢ [R].

Since v is a continuous mapping, the preimage of an analytic set R remains analytic, hence B is
S1-inductive. O

From the Lemma and from a result of Arnold [1] that any tree language of level (¢, k) is contin-
uously reducible to W, 1, it follows

Corollary 1. Tree languages recognized by alternating automata of indez (1,3) are Xi-inductive.



5 Completeness via the quasi—-bounded trees

We will prove that W 3 is complete in the class of 1-inductive sets reducing to it a set of so-called
(unlabeled) quasi-bounded trees, whose completeness has been established by Saint Raymond [24]
directly from the definition. We call a subset of w* an unlabeled tree if it closed with respect to
prefixes. Characteristic function of an unlabeled tree ¢ belongs to the Cantor space 2" and the
topology on the space of unlabeled trees is inherited from the space 2% .

A tree t C w* is cofinal if for every v = (vo, v1,...) € w* there exists a branch b = (bg, b1, ...) € [t]
such that b > v, that is for every n € w holds the inequality b, > v,. We define

@B = {t Cw" :tis a not a cofinal tree}.

Let 1) be a mapping from 2* to w* such that for a given sequence s € 2* if s = 0"010™1...10™ 10"
(I > 0) then

P(s) = (no,ni, ..., nk).
For a given tree ¢t C w* we define a game I'(t) such that Player I plays natural numbers ng, nq, ...,
one number in every round, and Player II answers with co, c1, ..., where ¢, € {0,1}. Moreover,
Player 11 is obliged at every step to preserve the following two conditions

L. if ¥(co,...,cx) has length [ > 1, then

P(cos .-y ck) > (s .- N—1)-

2. Qﬁ(c(),...,ck) €t.

Player II wins if he managed to play infinitely many 1. In [24] one can find the following character-
ization

Theorem 1 (J. Saint Raymond). A tree t C w<¥ is not cofinal if and only if Player I has a winning
strategy in T'(t).

Using a method of proof from |24, Theorem 3|, we will prove the following
Theorem 2. There exists ¢ which continuously reduces QB to Wi 3.

Proof. For a given tree t C w<* we have to construct in a continuous way a tree ¢(¢) € Try 3 such
that 3 has a winning strategy in ¢(t) if and only if ¢ is not cofinal.

We will subsequently add new vertices to ¢(t), starting from a partial tree sy consisting of
50(2,2,...,2) = (3,1), 50(2,2,...,2,1) = (V,2). The essence of the inductive definition of ¢(¢) is
depicted in Figure 2. We start from a tree sg, then add it again in certain vertices marked in the
Figure. There are some restrictions described below on placement of the vertices (V,3). Assume,
that

e we already defined a partial tree s; C ¢(¢) and

e for v such that s;(v) = (V,2), we already defined sequences ng,...,nj, cg,...,cj such that
conditions (1), (2) from the definition of T'(¢) are fulfilled.
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Figure 2: An approximation of the tree ¢(t).

We will extend it to a partial tree sy C ¢(t). For a given leaf v € s1 such that s(v) = (V,2), we
add s to the right, that is sg(v2w) = so(w). In every new leaf v’ € s; such that sy(v') = (V,2),
we define nt =n? (i <k+1), ¢ = (i <k)and nzl_ﬂ is the number of 2 from v to v’ (formally
speaking ”%;2 is defined as [v/| — |v]| — 1) and cZ’H = 0.

To the left we add

1. sp(vl) = (¥,3), but only under the condition, that sequences (ng,...,n} ), (c§,...,c}, 1)
fulfill conditions (1), (2) from the definition of I'(¢). We add s2(v12r) = so(r) and for a new
leaf v’ such that sa(v') = (V,2) we define sequences as above with the exception, that cz/ﬂ =1,

2. otherwise we add sy(vlr) = (3,2) for every r; this choice ensures that Player V will not be
tempted to enter this subtree.

Claim 1. If Player 3 has a winning strateqy in ¢(t), then t € QB.

Proof. Assume 3 has a winning strategy. Player 3 plays ng and later in every place such that V
has a choice of going left or right, 3 answers with a natural number. It means, that strategy for
3 defines a mapping o from 2<“ into w<*. This extends to a continuous & from 2% into w* and
bound of the image is a quasi-bound of the whole tree t. O

Claim 2. If Player ¥V has a winning strategy, then t is a cofinal tree.

Proof. Take any w € w* and play it as 4. Answers of V will lead us to a sequence in ¢t dominating
w. O



This finishes the proof of the Theorem. O

6 Topological games

Now we will consider Wy 3 from a different angle, namely from the point of view of topological
games and game quantifiers. We first recall the concepts of the Gale-Stewart game and the game
quantifier (see, e.g., [11]). Let Y be an arbitrary set and let A C Y“. The game I'(A) is played by
two players, I and II, who consecutively select elements of w.

I % Y2 Ya Yo
11 Y1 Ys Ys
The result of a play is thus an infinite sequence yoy1%2 . ... Player I wins the play if this sequence

belongs to A; otherwise II is the winner. We define IV(A) as the same game with the same winning
conditions, except that the first move belongs to Player II.

I Y1 Ys Ys

II Y Y2 Y4

For a set C and A C C x Y“, we let
O(A) = {z : I has a winning strategy in the game I'(A4,)}
(where A, = {w: (z,w) € A}).

Definition 2. A subset B of a Cantor space C' is game—definable, if it can be presented as O(A),

where
ACC xw”

is an Fy set in the product space of C' x w®.

This concept has been analyzed by Y. N. Moschovakis [15] for the lightface sets and the equiva-
lence of this notion and lightface notion of 31-inductiveness is the content of Exercise 7.C.10 in [15]
(a conjunction of a Theorem of Wolfe and a Theorem of Solovay). The equivalence of these two
notions in the boldface sense follows from [24]. We will not use directly any of this results, however
certainly they inspire the following proofs and in Section 5 we already used completeness of QB
in the class of ¥1-inductive sets proved in [24], which is part of the proof that the two notions
coincide.

Proposition 1. W 3 is game-definable.

Proof. We cannot directly use the parity game from definition of W 3, as the parity condition of
index (1,3) is not F,. Instead, for a tree ¢ € T3 3, we consider the following modification of the
game G(t). The players move as previously except in the case when rank of the actual position is
1. In this case, Eve must exhibit a (finite) strategy to reach a node with a rank greater than 1 in
finite time. (If it is not possible, Eve cannot win in G(t).) Next, Adam chooses one of the nodes
reachable by Eve’s strategy, and the game continues.

To make it precise, we first define a local strategy (for Eve) at a node v of ¢t. It is a finite subset
S of the descendants of v, such that v € S and, whenever w € S, then



e if t(w) = (V,1) then w0, wl € S;
e if t(w) = (3,1) then w has exactly one successor in S;

e if t(w) |2 > 2 then w is a leaf, i.e., has no successor in S.

Now, for a tree t € T} 3, we define a parity game H(t), as follows. The positions of H(t) include all
tree positions v € 2*. We distinguish between (> 2)-positions, for which ¢(v) |2 > 2, and 1-positions,
for which ¢(w) |2 = 1. The (> 2)-positions are assigned to Eve or Adam depending on the value of
t(w) |1; the 1-positions are always assigned to Eve. Additionally, there are strategy positions of the
form (v,S), where v is a 1-position and S is a local strategy from v; they are assigned to Adam.
The moves from the (> 2)-positions are the same as in G(t) (to successors). From a 1-position v,
there is a move to each strategy position (v,.S). From a strategy position (v, S), there is a move to
each tree position w, such that w is a leaf of S (note that w is then a (> 2)-position). The rank of
a tree position with ¢(v) |o= 3 is 1; all other positions have rank 0. It is straightforward to see that
Eve has a winning strategy in G(¢) iff she has a winning strategy in H(t). In order to present Wi 3
in the form required in Definition 2, we have to make sure that the players move in alternation,
(which needs not be the case in G(¢)); this can be easily achieved by inserting some trivial moves.
Then we define the relation A as the set of pairs (¢,7), such that ¢ is a tree in T3 3 encoded as
element of 2, and 7 is a winning path in H () encoded as element of w*. Note that the winning
condition in H(t) requires that the (new) rank 1 is encountered only finitely often. Therefore, we
can present A as the union of sets A,, where A,, consists of those pairs (¢,7), where m encounters
1 at most n times. The last set is closed (provided that we encode the positions of the game by
natural numbers, not by sequences of bits.) Hence A is Fy,, as required. O

Let us notice, that as in the case of Xi-inductive sets holds the following

Lemma 2. If C, D are Cantor spaces and B is a preimage of A under a continuous mapping
¢: D — C and A is game—definable, then B is also game—definable.

Proof. Indeed, if A = O(R) then B = o({(z,v) : (¢(z),y) € R}). The second relation is itself a
continuous inverse image of R, hence its complexity is not higher than that of R. U

From Section 5 we know that Wi 3 is complete in the family of all 3}-inductive sets and from
Corollary 1 we know, that tree languages recognized by alternating automata of index (1,3) are
Si-inductive. Hence we are getting the following known result (see [15, Exercise 7.C.10] and [24]):

Corollary 2. Every Xi-inductive set is game—definable. In particular, tree languages recognized by
alternating automata of index (1,3) are game—definable.

Our next goal is to show that the set W 3 is actually complete in the class of game-definable
sets. To this end, we consider another variant of topological games, where the players select bits
instead of natural numbers at the expense of a more complex winning criterion. The following
concept will be useful.

Definition 3. A parity coloring (or coloring, for short) over a finite set ¥ is a mapping K : ¥* — w,
taking only a finite number of values. This coloring defines a set

[K] ={u € X% : limsup K (u [ n) is even }

n—oo

(where u [ n = u(0)...u(n —1)).

10



Recognition by coloring generalizes recognition by deterministic parity automata on infinite
words. A related concept for finite words has been considered by Séverine Fratani [9] under the
name of automates a oracles. A more general concept of Borel automata appears in [20]. The
formulation in Definition 3 comes from the Master thesis of Michal Skrzypczak [25].

If the underlying set is a product, e.g., ¥ = 2 x 2, we identify a set A C 3“ with the relation

{(z,y) € 2 x 2“ : (x0,Y0), (1,91),... € A}.

Hence, a coloring K : (2 x 2)* — w induces the set O([K]) which, by definition, consists of those z,
for which Player I can ensure that the result y of the play satisfies

limsup K(z [ n,y [ n) is even.
n—oo

Theorem 3. The following conditions are equivalent for A C 2.
1. A is game—definable,
2. A =9([K]) for a coloring K : (2 x 2)* — w, which takes the values in {1,2,3}.

Proof. To show (2) = (1), we prove that any set of the form A = O([K]) of (2) can be continuously
reduced to Wi 3. For € 2¥, we define a labeled tree tX : 2* — {3,V} x {1,2,3}, by

B (3, K(x | |v|,v)) for |v| even
) = { (0. K (x| [v].0)) for |v] odd. 2)

Clearly the mapping  — t£ is continuous and it is straightforward to see that » € A <= t& ¢ Wi3;
indeed the winning strategies can be transferred easily between the two games. Since the class of
game—definable sets is closed under continuous reductions and we know from Proposition 1 that it
contains Wj 3, it follows that it contains A as well.

To prove (1) = (2), suppose A = O(R), for some R C 2* x w* of the class F,. We use a
well-known fact that, generally, a set £ C X% is of the class F, iff for some set of finite words
Z C X* the following characterization holds (see, e.g., Theorem III 3.11 in [20]):

ueFE < {n:u|ne€Z}is finite.

Let Z C (2 x w)* be such a set for R. Before defining the coloring K formally, we describe the
game it should induce. This game simulates the game I'(R,) but, instead of natural numbers, the
players choose now only bits in 2. Suppose a play in T'(R,) was I: mg, II: mq, I: mo, II: m3, and so
on. The choice of the number mg by player I is now simulated by mg consecutive rounds in which I
chooses 0, and II answers by 0 as well. (If I violates this rule, he will be forced to loose by suitable
coloring.) After this phase, I plays 1, to which II answers 0 again. Then the roles exchange: now
Player I plays only 0’s, to which player II answers by 0 for m; times, and decides to put 1 afterward,
and so on. For example, a play

1 3 2
I 0 2
is simulated by
I 0 0 0 1 0 0 0 1 0 0 0
II 0 0 0 0 1 0 0 0 0 0 1



A player who deviates from the above rules, looses. So a “correct” play must be of the form
020 100%™ 010%™ 10 ... (3)

We say that a (finite) word 0270 100%™ 01 ...0%™ 10, represents the sequence momy . ..my if
k is even; similarly, a word 0270 100%™ 01 ...0>™ 01 represents the sequence momy ...my, if k is
odd.

To guarantee that our coloring game simulates the game I'(R,), player I should win the play
(3) exactly in the case when the (pair) sequence

(z, (mg, m1,ma,...))

has only a finite number of prefixes in Z. We now define a coloring K to ensure this property.
Consider (a,3) € (2 x 2)*. We let K(«,3) = 3, whenever 3 contains a prefix which violates the
rules. If § represents a sequence mgmy ... myg, we let K(a,5) =2 if (a | (k+ 1), momq...mg) is
not in Z, and K(a, 3) = 3, otherwise. In all other cases, we let K(«a, ) = 1 when we simulate my,
for even k and K(«,3) = 2 when we simulate my, for odd k. It is then straightforward to see that
x € O(R) iff z € O([K]), which yields the desired presentation of A. O

The equivalence of Theorem 3 along with the fact established in the proof that all sets repre-
sentable as in condition (2) of Theorem 3 reduce to W 3 yield the following.

Corollary 3. The set Wy 3 is complete in the class of game—definable sets.
Finally we are getting:
Corollary 4. The following three concepts of definability coincides for A C 2
1. A is i-inductive,
2. A is game—definable,
3. A =09([K]) for a coloring K : (2 x 2)* — w, which takes the values in {1,2,3}.

Proof. The last two conditions are equivalent according to Theorem 3. If A is {-inductive, then
from Corollary 2 it is game—definable. If A is game—definable, then according to Corollary 3 it is
reducible to Wi 3, hence from Lemma 1 the set A is Si-inductive as a preimage of ¥{-inductive
set W173. O

7 Conclusion and further work

We have provided an evidence that the class of X1-inductive sets is a set-theoretical generalization
of the class of regular tree languages of index (1,3). This extends the previously known relations
between (0,1) vs. ITi and (1,2) vs. Xi. Plausibly, this characterization can go further with an
appropriate extension of the concept of inductiveness (in the spirit of [7]).

A related topic is the separation property, which is one of the central issues in descriptive set
theory. It is known that the class of X1-inductive fails this property ([15, Theorem 6.D.4]); that is,
there exist two disjoint X1-inductive sets A, B C {0,1}* such that there is no set C' which would
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separate A and B and which would simultaneously satisfy the conditions that C' and {0,1}* \ C
are X1-inductive sets.

We established recently in a joint paper with André Arnold [2] the failure of separation property

for all the levels (¢,n) of the alternating index hierarchy, for n odd (for the level (0, 1), the result
was known [10]). We are planning to establish whether the pair of regular languages of index (1, 3)
constructed in [2] could serve as an example of inseparable pair for the class of ¥1-inductive sets.
The question if the separation property holds for the levels (¢,n) with n even remains open (it is
only known to hold for (1,2) [10, 22]). One may hope that the ideas from descriptive set theory
may offer an insight into the problem.
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