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1 Introduction

One of the simplest and yet non-trivial results in foundations of mathematics,
which can be presented to high school pupils, is Theorem of Zermelo on the
determinacy of the game of chess [14]: either Black or White has a winning
strategy, or both players have strategies to achieve a draw.

The proof smoothly generalizes the problem to all �nite games with perfect
information1, and reveals an algorithmic aspect of the result. The message
however remains incomplete if we hide from our students that even perfect
information games can be indeterminate if we allow the players to make in�nite
sequences of moves.

In�nite games have a long history started with mathematical puzzles con-
sidered by Stefan Banach and Stanisªaw Mazur in the 1930s; see [10] for concise
introduction and [13] for historical overview. Although such games can hardly
be played in real life, they are vital for multiple areas of mathematics�in par-
ticular descriptive set theory [6, 9], and also for computer science; see [4] for a
survey.

Indeterminacy of perfect information two player in�nite games was observed
in the �rst published work on such games [3]. It means that, even though an
actual choice of players' strategies always determines the result of the game, a
winning strategy may not exist for any of the players, which makes the result
of the game indeterminate. From teaching perspective, we can note a remote
analogy with real life games. Indeed, the result of a chess match is �indeter-
minate� for us because the players presumably ignore the optimal strategies.
But we know from the Zermelo Theorem that such optimal strategies exist. In
contrast, for in�nite games, the winning (or optimal) strategies may not exist
at all.

The existence of indeterminate games can be proved in many ways, which
however usually introduce some bits of mathematics unknown to high school
pupils. Indeterminate games can be constructed by a diagonal argument using

1In a two player perfect information game both players know the current state of the game,
and the future depends uniquely on their moves, see, e.g., [10].
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trans�nite induction (see, e.g., [5]); their existence can be also inferred from a
classical result in general topology, namely the Bernstein partition of a Polish
space into two parts, none of which contains a perfect set2 (see, e.g., [10]). An-
other argument, game-theoretic in �avour, can be used to show indeterminacy of
a certain game based on a Fréchet ultra�lter; the authors learned this example
from the unpublished lecture notes 3 by Jacques Duparc[2]. This argument uses
the strategy stealing technique, which is well known for solving �nite games, in
particular Hex. It is based on the following reasoning:

If player B had a winning strategy, it could be used to construct a
winning strategy for player A.

As �nite games are determined, this implies that player A has winning strategy.
In case of in�nite games however, the same argument implies indeterminacy,
assuming that the dependence above holds in both directions (i.e., A → B, and
B → A).

In the present note, we use a similar argument to show the indeterminacy of
a conceptually simpler game based on an in�nite XOR function, i.e., a function
f : {0, 1}ω → {0, 1}, such that the change of one bit in an argument changes
the value. (From {0, 1}n to {0, 1}, there are clearly only two such functions:
XOR and ¬ XOR.) We took this idea from Michael Sipser [12], who showed that
in�nite XOR functions cannot be computed by countable Boolean circuits. This
unpublished work constitutes an interesting link between set-theoretic topology
and complexity theory. Recall that the celebrated Furst-Saxe-Sipser Theorem
shows that (�nitary) XOR function cannot be computed by polynomial-size
circuits of bounded depth, and according to [12], the solution to the in�nitary
problem �proved to be useful to direct the search for the solution to the �nitary
one�.

Bibliographical note. The proof presented in this paper has been invented
by the �rst author for a course held by the second author at the University of
Warsaw in 2008�2009. The second author used this proof in his talk at the
congress on Square of Opposition [11]. We have been aware that the indetermi-
nacy of the in�nite XOR games is not surprising per se, as the winning criteria
are non-measurable here.

After having submitted the �rst version of this article, we have learned that
in�nite XOR functions are familiar in descriptive set theory under the name of
�ip sets (more precisely, XOR functions are characteristic functions of �ip sets).
More importantly, also the idea of our proof was known to the descriptive set
theory community before. In particular Yurii Khomskii presented an essentially
the same proof (in terms of �ip sets) in his Intensive course on In�nite Games
at So�a University [7]; the origins of the idea can be traced back further, but
are hard to �x at this moment [8]. The idea is so natural that could likely be

2Because the set of plays consistent with any strategy (in particular, a hypothetical winning
strategy) forms a perfect set.

3A similar proof appears in lecture notes by Alessandro Andreta [1].
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found by more people independently, although we are not aware of any published
source except for the Internet publications mentioned above.

In any case, we do not claim priority here, but hope the example can be
useful, in particular in teaching computer science students. Indeed, it uses
only a tiny portion of abstract mathematics, and relies on the XOR function
well familiar to programmers. And we would like to present it to the volume
dedicated to Victor Selivanov, as it touches one of his favorite topics � teaching
of logic.

2 In�nite XOR game

Let B = {0, 1}. For two words v, w ∈ Bm, where m ≤ ω, let hd(v, w) = |{i :
vi 6= wi}| be the Hamming distance between v and w. For v, w ∈ Bω, we let
v ∼ w i� hd(v, w) < ω.

De�nition 2.1 An in�nite XOR function f : Bω → B is a function with
the following property: if hd(w1, w2) = 1 then f(w1) 6= f(w2).

Theorem 2.2 There exist 2c in�nite XOR functions.

Proof We use the Axiom of Choice. Let S be a set which contains exactly one
element from each equivalence class of ∼. For w ∈ Bω, let r(w) be the element
of S such that w ∼ r(w). We de�ne f(w) = hd(w, r(w)) mod 2. One easily
checks that f is an in�nite XOR function.

To produce 2c such functions, observe �rst that |S| = c, as each equivalence
class of ∼ is countable. Then, for each α : S → {0, 1}, we obtain a di�erent
in�nite XOR function given by fα(w) = (f(w) + α(r(w))) mod 2.

De�nition 2.3 Let f be an in�nite XOR function. The in�nite XOR game

Gf is played as follows. Player 0 picks a word w0 ∈ B+. Then, Player 1 picks
a word w1 ∈ B+. Player 0 picks a word w2 ∈ B+, Player 1 picks a word
w3 ∈ B+, and so on. Thus, we obtain a play which is an in�nite sequence of
words: w0w1, w2, w3, . . . Player i wins i� f(w0w1w2w3 . . .) = i.

De�nition 2.4 A strategy for player i in Gf is a function

S :
⋃
k∈ω

(B+)2k+i → B+.

A play w0, w1, w2, . . . is consistent with S i� wk+1 = S(w0, w1, . . . , wk), for
each suitable k (i.e., each move of player i is given by S). S is winning i�
Player i wins each play consistent with S.

Note that in the above we view (B+)m as a product B+ ×B+ × . . .×B+ (m
times) rather than concatenation B+B+ . . . B+ (m times). Such an identi�ca-
tion would restrict the set of strategies, but in fact it would not a�ect our result.
Note that, by de�nition, (B+)0 = {∅}.
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We use the strategy stealing argument to show that no player has a winning
strategy in the in�nite XOR game. Intuitively, whenever our opponent answers
our move v with w, we could have instead changed one bit in v to obtain another
word v′, and play v′w instead of v. This e�ectively exchanges the roles of the
two players, so if our opponent had a winning strategy, we can use it now for
ourselves. The precise argument follows.

Theorem 2.5 No player has a winning strategy in an in�nite XOR game Gf .

Proof Let S be a strategy for Player 1 − i. We construct two strategies for
Player i, T and T ′, such that one of them will win at least one play against S.

Consider �rst i = 0, and let the �rst move of Player 0 (who starts the game)
be T (∅) = 0. Suppose the answer of Player 1 is S(0) = w1. We let T ′(∅) = 1w1.
Now, if S(1w1) = w2 then we let T (0, w1) = w2, and if S(0, w1, w2) = w3, we
let T ′(1w1, w2) = w3, and so on. In symbols, we let

T ′(1w1, w2, . . . , w2k) = S(0, w1, . . . , w2k)
T (0, w1, . . . , w2k+1) = S(1w1, w2, . . . , w2k+1).

In the �gure below, the dashed arrows indicate the �stealing�.
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Note that in the two plays above Player 1 uses his strategy S, but the resulting
sequences di�er exactly in one bit (actually the bit number 0), hence one of the
plays is lost by Player 1.

The argument for i = 1 is similar. Let the starting move of Player 0 be
S(∅) = w0. We let T (w0) = 0. Now suppose S(w0, 0) = w1. We let T ′(w0) =
1w1. If S(w0, 1w1) = w2, we let T (w0, 0, w1) = w2, and so on, as represented
on the �gure below.
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Analogically as above, Player 0 uses her strategy S, but the resulting sequences
di�er exactly in one bit (namely the bit number |w0|), hence this strategy cannot
be winning.

Hence the game Gf is indeed indeterminate.
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