
On the topological complexity of tree languages
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1 Introduction

Since the discovery of irrational numbers, the issue of impossibility has been
one of the driving forces in mathematics. Computer science brings forward a
related problem, that of difficulty. The mathematical expression of difficulty
is complexity, the concept which affects virtually all subjects in computing
science, taking on various contents in various contexts.

In this paper we focus on infinite computations, and more specifically
on finite-state recognition of infinite trees. It is clearly not a topic of clas-
sical complexity theory which confines itself to computable functions and
relations over integers or words, and measures their complexity by the—
supposedly finite—time and space used in computation. However, infinite
computations are meaningful in computer science, as an abstraction of some
real phenomena as, e.g., interaction between an open system and its envi-
ronment. The finite and infinite computations could be reconciliated in
the framework of descriptive complexity, which measures difficulty by the
amount of logic necessary to describe a given property of objects, were they
finite or infinite. However the automata theory has also developed its own
complexity measures which refer explicitly to the dynamics of infinite com-
putations.

From yet another perspective, infinite words (or trees) are roughly the
real numbers, equipped with their usual metric. Classification of functions
and relations over reals was an issue in mathematics long before the birth
of computer science. The history goes back to Émil Borel and the circle
of semi-intuitionists around 1900, who attempted to restrict the mathe-
matical universe to mentally constructible (définissables) objects, rejecting
set-theoretic pathologies as unnecessary. This program was subsequently
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challenged by a discovery made by Mikhail Suslin in 1917: the projection
of a Borel relation may not be Borel anymore (see [12], but also [1] for a
brief introduction to definability theory). It is an intriguing fact that this
phenomenon is also of interest in automata theory. For example, the set
of trees recognized by a finite automaton may be non-Borel, even though
the criterion for a path being successful is so. One consequence is that the
Büchi acceptance condition is insufficient for tree automata.

Classical theory of definability developed two basic topological hierar-
chies: Borel and projective, along with their recursion-theoretic counter-
parts: arithmetical and analytical. These hierarchies classify the relations
over both finite (integers) and infinite (reals, or ωω) objects. Although the
classical hierarchies are relevant to both finite and infinite computations, it
is not in the same way.

Classical complexity theory borrows its basic concepts from recursion
theory (reduction, completeness), and applies them by analogy, but the
scopes of the two theories are, strictly speaking, different. Indeed, com-
plexity theory studies only a fragment of computable sets and functions,
while recursion theory goes far beyond computable world. Finite-state rec-
ognizability (regularity) forms the very basic level in complexity hierarchies
(although it is of some interest for circuit complexity).

In contrast, finite state automata running over infinite words or trees ex-
hibit remarkable expressive power in terms of the classical hierarchies. Not
surprisingly, such automata can recognize uncomputable sets if computable
means finite time. Actually, the word automata reach the second level of
the Borel hierarchy, while the tree automata can recognize Borel sets on any
finite level, and also — as we have already remarked — some non-Borel sets.
So, in spite of a strong restriction to finite memory, automata can reach the
very level of complexity studied by the classical definability theory. Putting
it the other way around, the classical hierarchies reveal their finite state
hardcore.

In this paper we overview the interplay between automata on infinite
trees and the classical definability hierarchies, along with a subtle refinement
of the Borel hierarchy, known as the hierarchy of Wadge. The emerging pic-
ture is not always as expected. Although, in general, topological complexity
underlines the automata-theoretic one, the yardsticks are not always com-
patible, and at one level automata actually refine the Wadge hierarchy. A
remarkable application exploits the properties of complete metric spaces: in
the proof of the hierarchy theorem for alternating automata, the diagonal
argument follows directly from the Banach fixed-point theorem.
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2 Climbing up the hierarchies

It is sufficiently representative to consider binary trees. A full binary tree
over a finite alphabet Σ is a mapping t : {1, 2}∗ → Σ. As a motivating
example consider two properties of trees over {a, b}.

• L is the set of trees such that, on each path, there are infinitely many
b’s (in symbols: (∀π ∈ {1, 2}ω)(∀m)(∃n ≥ m) t(π � n) = b).

• M is the set of trees such that, on each path, there are only finitely
many a’s (in symbols: (∀π ∈ {1, 2}ω)(∃m)(∀n ≥ m) t(π � n) = b).

(In the above, π � n denotes the prefix of π of length n.) At first sight the
two properties look similar, although the quantifier alternations are slightly
different. The analysis below will exhibit a huge difference in complexity:
one of the sets is definable by a Π0

2 formula of arithmetics, while the other
is not arithmetical, and even not Borel.

We have just mentioned two views of classical mathematics, where the
complexity of sets of trees can be expressed: topology and arithmetics. For
the former, the set TΣ of trees over Σ is equipped with a metric

d(t1, t2) =
{

0 if t1 = t2
2−n with n = min{|w| : t1(w) 6= t2(w)} otherwise

For the latter, trees can be encoded as functions over natural numbers ω.
The two approaches are reconciliated by viewing trees as elements of the
Cantor discontinuum {0, 1}ω. Indeed, by fixing a bijection ι : ω → {1, 2}∗,
and an injection ρ : Σ → {0, 1}` (for sufficiently large `), we continuously
embed

t 7→ ρ ◦ t ◦ ι

TΣ into ({0, 1}ω)`, which in turn is homeomorphic to {0, 1}ω. It is easy to
see that we have a homeomorphism TΣ ≈ {0, 1}ω, whenever 2 ≤ |Σ|.

On the other hand, as far as computability is concerned, the functions
in ωω can be encoded as elements of {0, 1}ω. Assuming that ι above is
computable, we can apply the recursion-theoretic classification to trees.

We now recall classical definitions. Following [10], we present topological
hierarchies as the relativized versions of recursion-theoretic ones. Thus we
somehow inverse the historical order, as the projective hierarchy (over reals)
was the first one studied by Borel, Lusin, Kuratowski, Tarski, and others
(see [1]). However, from computer science perspective, it is natural to start
with Turing machine. Let k, `,m, n, . . . range over natural numbers, and
α, β, γ, . . . over infinite words in {0, 1}ω; boldface versions stand for vectors
thereof. We consider relations of the form R ⊆ ωk × ({0, 1}ω)`, where
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(k, `) is the type of R. The concept of (partially) recursive relation directly
generalizes the familiar one (see, e.g., [10, 23]). In terms of Turing machines,
a tuple 〈m, α〉 forms an entry for a machine, with α spread over infinite
tapes. Note that if a Turing machine gives an answer in finite time, the
assertion R(m, α) depends only on a finite fragment of α. Consequently the
complement R of a recursive relation R is also recursive.

The first-order projection of an arbitrary relation R of type (k + 1, `) is
given by

∃0R = {〈m, α〉 : (∃n)R(m, n, α)}

and the second-order projection of a relation R of type (k, `+ 1) is given by

∃1R = {〈m, α〉 : (∃β)R(m, α, β)}

The arithmetical hierarchy can be presented by

Σ0
0 = the class of recursive relations

Π0
n = {R : R ∈ Σ0

n}
Σ0
n+1 = {∃0R : R ∈ Π0

n}
∆0
n = Σ0

n ∩Π0
n

The relations in the class
⋃
n<ω Σ0

n =
⋃
n<ω Π0

n are called arithmetical .
Note that R is arithmetical if so is R.

The analytical hierarchy can be presented by

Σ1
0 = the class of arithmetical relations

Π1
n = {R : R ∈ Σ1

n}
Σ1
n+1 = {∃1R : R ∈ Π1

n}
∆1
n = Σ1

n ∩Π1
n.

The two hierarchies have their relativized counterparts usually distin-
guished by the boldface notation. For a relation R of type (k, ` + 1) and
β ∈ {0, 1}ω, let

R[β] = {〈m, α〉 : R(m, α, β)}

Then, for i = 0, 1, we define

Σi
n = {R[β] : R ∈ Σin, β ∈ {0, 1}ω}

Πi
n = {R[β] : R ∈ Πi

n, β ∈ {0, 1}ω}
∆i
n = Σ0

n ∩Πi
n
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The crucial observation is that the Σ0
1 relations (of type (0, `)) coincide with

open relations on {0, 1}ω with the Cantor topology. To see this, note that an
open set in {0, 1}ω can be presented by

⋃
v∈B v{0, 1}ω, for some B ⊆ {0, 1}∗,

and hence we can present it by (∃n)R(n, α, β), where the parameter β lists
the elements of B, and the recursive relation verifies, given n = 〈k,m〉 that
the kth prefix of α coincides with the mth element of B. (The other direction
is straightforward.) Next it is easy to see that relations in Σ0

n+1 coincide
with the countable unions of relations in Π0

n (of suitable type). Therefore
the classes Σ0

n, Π0
n form the initial segment of the Borel hierarchy over

{0, 1}ω.
Similarly, the classes Σ1

n, Π1
n, form the so-called projective hierarchy

over {0, 1}ω.
Like in computation/complexity theory, the problems can be compared

via reductions. We say that a continuous mapping of topological spaces,
ϕ : T1 → T2, reduces a set A ⊆ T1 to a set B ⊆ T2, if A = ϕ−1(B); in this
case we say that A is Wadge reducible to B, in symbols A ≤W B. A set B
is complete in a class C ⊆ ℘(T ) if B ∈ C and (∀A ∈ C) A ≤W B.

A remarkable point is that complete sets may have very simple structure.

Example 2.1. The singleton {0ω} is in Π0
1, and it is complete for Π0

1. The
membership in Π0

1 is seen by presentation of the complement by (∃n)α(n) 6=
0. Now let L be any closed subset of ωω. Define f̂ : ω∗ → ω∗ by

f̂(xy) = 0|x|y

where x is the longest prefix of xy being also a prefix of u, for some u ∈ L.
Then it is easy to see that the mapping f : ωω → ωω given by

f(u)(n) = f̂(u � n+ 1)(n)

is a desired reduction (where u = u0u1 . . . and u � n+ 1 = u0u1 . . . un).
It can be seen that, in fact, any singleton {α} is complete in Π0

1, although
in general it need not be in Π0

1.

The reader may be puzzled by triviality of this example compared to the
construction of complete sets of natural numbers in Π0

1 or in Σ0
1. Intuitively,

the second-order objects (trees or words) are “less sensitive” to first-order
quantification.

In a similar vein, one can show

Example 2.2. The set {0, 1}∗0ω is in Σ0
2, and it is complete in Σ0

2.

We now revisit our motivating example from beginning of this section.
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Example 2.3. It is not hard to see that the set L is in class Π0
2. Although

the original definition has used a second-order quantifier (for all paths), a
simpler definition can be given by exploiting arithmetic (like encoding finite
sets of nodes by single numbers):

t ∈ L ⇐⇒ for all v ∈ {1, 2}∗, there is a finite maximal antichain B
below v with (∀w ∈ B) t(w) = b.

On the other hand, the set M , which is by definition in Π1
1, is also complete

in Π1
1 w.r.t. continuous reductions, hence not Borel. The completeness can

be seen by reduction of the set W of the suitably encoded well-founded
(non-labeled) trees T ⊆ ω∗ (see, e.g., [19]), which is well-known to be Π1

1-
complete [11].

3 The power of game languages

The properties of Example 2.3 have a powerful generalization, which is best
understood by viewing sequences in {a, b}ω as outcomes of some infinite
two-player game, where one of the players wants to see b infinitely often,
while the other does not. To make this game more general/symmetric, we
assume that each player has her or his favorite set of letters, and to make
the result definite, we assume a priority order on letters. This gives rise to
parity games (introduced by Emerson and Jutla [8], and independently by
A.W. Mostowski [14]), the concept highly relevant to the µ-calculus-based
model checking and to automata theory (see [26]). We briefly recall it now.

A parity game is a perfect information game of possibly infinite dura-
tion played by two players, say Eve and Adam. We present it as a tuple
(V∃, V∀,Move, p0, rank), where V∃ and V∀ are (disjoint) sets of positions of
Eve and Adam, respectively, Move ⊆ V ×V is the relation of possible moves,
with V = V∃∪V∀, p0 ∈ V is a designated initial position, and rank : V → ω
is the ranking function.

The players start a play in the position p0 and then move the token
according to relation Move (always to a successor of the current position),
thus forming a path in the graph (V,Move). The move is selected by Eve or
Adam, depending on who is the owner of the current position. If a player
cannot move, she/he looses. Otherwise, the result of the play is an infinite
path in the graph, v0, v1, v2, . . . Eve wins the play if lim supn→∞ rank(vn),
is even, otherwise Adam wins. A crucial property of parity games is the
positional determinacy : any position is winning for one of the players, and
moreover a winning strategy of player θ can be chosen positional , i.e., rep-
resented by a (partial) function σ : Vθ → V . We simply say that Eve wins
the game if she has a winning strategy, the similar for Adam. (See [9] for
more detailed introduction to parity games.)

Here we are interested in several groups of tree languages related to the
parity games.
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For ι ∈ {0, 1} and ι ≤ κ < ω, let

Σ(ι,κ) = {ι, ι+ 1, . . . , κ}
M(ι,κ) = {u ∈ Σω(ι,κ) : lim sup

n→∞
un is even }

T(ι,κ) = {t ∈ TΣ(ι,κ) : (∀π ∈ {1, 2}ω)t � π ∈M(ι,κ)},

where t � π stands for the restriction of t to the path π. That is, T(ι,κ) is the
set of trees over Σ(ι,κ) such that, on each path, the highest label occurring
infinitely often is even. The sets L and M of Example 2.3 can be readily
identified with T(1,2) and T(0,1), respectively.

We now present an important game variation of sets T(ι,κ); these will be
tree languages over alphabet {∃,∀} × Σ(ι,κ).

With each tree t in T{∃,∀}×Σ(ι,κ)
, we associate a parity game G(t), as

described in the previous section, with

• V∃ = {v ∈ {1, 2}∗ : t(v) ↓1= ∃},

• V∀ = {v ∈ {1, 2}∗ : t(v) ↓1= ∀},

• Move = {(w,wi) : w ∈ {1, 2}∗, i ∈ {1, 2}},

• p0 = ε (the root of the tree),

• rank(v) = t(v) ↓2, for v ∈ {1, 2}∗.

The set W(ι,κ) consists of those trees for which Eve wins the game G(t).
Note that this means that Eve can force the resulting path π to satisfy
(t � π) ↓2∈M(ι,κ).

Finally, we introduce the weak version of all the concepts above, which is
obtained by replacing everywhere lim sup by sup. We denote by L[ the weak
version of L. So, in particular M [

(ι,κ) = {u ∈ Σω(ι,κ) : supn→∞ un is even }.
Similarly, the weak parity games differ from the games defined above in that
Eve wins a play if the highest rank occurring in the play is even1

It is useful to have a partial ordering on pairs (ι, κ), with ι ∈ {0, 1},
which we call Mostowski-Rabin indices. We let (ι, κ) v (ι′, κ′) if either
ι′ ≤ ι and κ ≤ κ′ (i.e., {ι, . . . , κ} ⊆ {ι′, . . . , κ′}) or ι = 0, ι′ = 1, and
κ + 2 ≤ κ′ (i.e., {ι + 2, . . . , κ + 2} ⊆ {ι′, . . . , κ′}). We consider the indices
(1, κ) and (0, κ − 1) as dual , and let (ι, κ) denote the index dual to (ι, κ).
Note that (ι, κ) = (ι, κ). The ordering is represented on Figure 1.

Clearly, in each of the above-defined families, the ordering on Mostowski-
Rabin indices induces inclusion of corresponding sets.
1 In literature, sometimes a more restricted version is considered, where the ranks are

supposed to (weakly) increase in each move, but this restriction is not necessary in
our considerations.
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(1, 2) (1, 3)

(0, 1) (0, 2)

(1, 4)

(0, 3)
Figure 1. The Mostowski–Rabin index hierarchy.

Now the crucial observation is the following. If T is a complete metric
space then no contracting reduction can reduce a set A ⊆ T to its comple-
ment A. Indeed, otherwise, by the Banach Fixed-Point Theorem, we would
have

a ∈ A ⇐⇒ f(a) ∈ A ⇐⇒ a ∈ A (contradiction), (1.1)

for the fixed point a = f(a).
This follows

Lemma 3.1. No contracting mapping reduces W
(ι,κ)

to W(ι,κ), or W [
(ι,κ)

to W [
(ι,κ).

Proof. Although W
(ι,κ)

and W(ι,κ) are over different alphabets, we have an
isometry of TΣ(ι,κ) and TΣ(ι,κ)

, induced by the re-labeling of symbols which
exchanges quantifiers and alters the ranks by ±1. This isometry reduces
W(ι,κ) to W

(ι,κ)
, so the claim follows from the observation above. The

argument for weak version is similar. q.e.d.

It turns out that we can strengthen the above lemma by removing the
hypothesis of contractivity. This is because, in general, any continuous
reduction of W(ι,κ) to some L can be improved to a contracting one, by
composing it with a “stretching” reduction of W(ι,κ) to itself. The details
can be found in [5]. Thus we obtain the following.

Theorem 3.2. The game languages form a hierarchy w.r.t. the Wadge
reducibility, i.e.,

(ι, κ) v (ι′, κ′) iff W(ι,κ) ≤W W(ι′,κ′)

iff W [
(ι,κ) ≤W W [

(ι′,κ′)

This result has several applications involving automata. Let us first
recall definition of an alternating parity automaton.

An alternating parity tree automaton can be presented byA = 〈Σ, Q∃, Q∀, q0, δ, rank〉,
where the set of states Q is partitioned into existential states Q∃ and uni-
versal states Q∀, δ ⊆ Q×Σ×{1, 2, ε}×Q is a transition relation, and rank :
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Q→ ω a rank function. An input tree t is accepted by A iff Eve has a win-
ning strategy in the parity game 〈Q∃×{1, 2}∗, Q∀×{1, 2}∗, (q0, ε),Mov,Ω〉,
where Mov = {((p, v), (q, vd)) : v ∈ dom(t), (p, t(v), d, q) ∈ δ} and Ω(q, v) =
rank(q).

A weak alternating parity tree automaton is defined similarly, by restric-
tion to weak parity games. The languages recognized by weak alternating
automata are exactly the intersection of the Büchi and co-Büchi languages
[22].

We can assume without loss of generality that min rank(Q) is 0 or 1.
The pair (min rank(Q),max rank(Q)) is the Mostowski-Rabin index of the
automaton.

It is straightforward to see that each W(ι,κ) is recognized by a parity
automaton of index (ι, κ), and each W [

(ι,κ) is recognized by a weak parity
automaton of index (ι, κ).

The next important observation is this.

Lemma 3.3. If a set of trees T is recognized by a (weak) alternating au-
tomaton of index (ι, κ) then T ≤W W(ι,κ) (resp. T ≤W W [

(ι,κ)).

The exact construction is somewhat tedious, but the idea of the reduc-
tion is simple: for a tree t, we construct a full game tree and then forget
anythings but ranks. The details are presented in [2, 4], where the reduction
is even made contracting, but in view of Theorem 3.2, it is not necessary.

Combining Theorem 3.2 with Lemma 3.3, we obtain

Theorem 3.4. The tree languages W(ι,κ) form a strict hierarchy for the
Mostowski-Rabin indices of alternating parity automata.

The tree languages W [
(ι,κ) form a strict hierarchy for Mostowski-Rabin

indices of weak alternating parity automata.

The first claim was established by Bradfield [6]; the proof via the Banach
Theorem was given later by Arnold [2] (see also [4]).

The strictness of the hierarchy of weak automata was first established
by Mostowski [13], who shown that it is equivalent to a hierarchy based on
weak monadic formulas, and then used the strictness of the latter hierarchy,
previously proved by W. Thomas [25].

As Skurczyński showed [24] (by other examples) that there are Π0
n and

Σ0
n-complete tree languages recognized by weak alternating automata of in-

dex (0, n) and (1, n + 1) accordingly, Lemma 3.3 also implies that the sets
W [

(ι,κ) are hard on the corresponding finite levels of the Borel hierarchy. Re-
cently, Duparc and Murlak [7] showed that these sets are actually complete
in these classes.



10 A. Arnold, J. Duparc, F. Murlak, D. Niwiński

Theorem 3.5 ([7]). If a tree language T is recognized by a weak alternating
automaton of index (0, n) (resp. (1, n + 1)) it holds that T ∈ Π0

n (resp.
T ∈ Σ0

n).

Let us complete this recent theorem by what we have known since long
time about strong alternating automata.

Theorem 3.6. If a tree language T is recognized by an alternating au-
tomaton of index (0, 1) (resp. (1, 2)) it holds that T ∈ Π1

1 (resp. T ∈ Σ1
1).

For any recognizable tree language T , T ∈∆1
2.

The first claim was (essentially) established by Rabin [22] in terms of
the formulas of S2S and for nondeterministic automata of index (1, 2), now
called Büchi automata. It was later shown [3] that for Büchi automata alter-
nation does not matter. Note that this implies in particular that the set M
of Example 2.3 cannot be recognized by a Büchi automaton [22]. The second
claim follows from definition and Rabin’s Complementation Lemma [21].

4 How fine is the Wadge hierarchy?

In the previous section we saw that with regular tree languages one can go
much higher in the Borel hierarchy than with regular ω-languages. Now we
would like to concentrate on the fineness of the hierarchy. Let us start with
a simple example.

For n ∈ ω, let Ln denote the set of trees over the alphabet [0, n] =
{0, 1, . . . , n}, whose leftmost path satisfies the weak parity condition, i. e.,
the highest label on this path is even. For example: L0 = T[0,0] consists
of the only tree over the alphabet {0}, and L1, a closed subset of T[0,1],
consists of trees with 0’s on the leftmost path and 0’s or 1’s elsewhere. It is
an easy exercise to show that Ln are regular.

Even everyday intuition of complexity tells us that Lk+1 is more complex
then Lk. This can be formalized by means of continuous reductions intro-
duced in the previous section. Consider an identity function id : T[0,`] →
T[0,k], with ` < k. Clearly, this function reduces L` to Lk: t ∈ L` iff id(t) ∈
Lk. Hence the languages Ln form a hierarchy: L0 ≤W L1 ≤W L2 ≤W . . . .

OK, but this already happened with the weak game languages from the
previous section, so what is the difference? Well, observe that all these
languages can be presented as a finite boolean combination of closed sets,
e. g.

L3 = {t : ∀i t(0i) ∈ [0, 2]} \ {t : ∀i t(0i) ∈ [0, 1]} ∪ {t : ∀i t(0i) ∈ [0, 0]} .

Consequently, our entire hierarchy lies within ∆0
2 !

‘All right,’ the reader might say, ‘but how do I know that, say, L7 cannot
be reduced to L6? How do I know that this “hierarchy” is strict?’ It is,
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but showing that directly would be rather tiresome. Instead, we will use a
handy characterization provided by Wadge games.

Originally, these games were defined for ω-words (see [20]). Here, we
will use a tree version. For any pair of tree languages L ⊆ TΣ,M ⊆ TΓ the
Wadge game GW (L,M) is played by Spoiler and Duplicator. Each player
builds a tree, tS ∈ TΣ and tD ∈ TΓ respectively. In every round, first Spoiler
adds at least one level to tS and then Duplicator can either add some levels
to tD or skip a round. Duplicator must not skip infinitely long, so that tD
is really an infinite tree. Duplicator wins the game if tS ∈ L ⇐⇒ tD ∈M .

Lemma 4.1 (Wadge). Duplicator has a winning strategy in GW (L,M) if
and only if L ≤W M .

Proof. Essentially, a winning strategy for Duplicator can be transformed
into a continuous reduction, and vice versa.

Suppose Duplicator has a winning strategy ρ. For any tree t constructed
by Spoiler, there exist a unique tree tρ which will be constructed by Dupli-
cator if he is using the strategy ρ. The map t 7→ tρ is continuous by the
rules of the Wadge game, and t ∈ L ⇐⇒ tρ ∈M since ρ is winning.

Conversely, suppose there exist a reduction t 7→ ϕ(t). It follows that
there exist a sequence nk (without loss of generality, increasing) such that
the level k of ϕ(t) depends only on the levels 1, . . . , nk of t. Then the
strategy for Duplicator is the following: if the number of the round is nk,
fill in the k-th level of tD according to ϕ(tS); otherwise skip. q.e.d.

Let us now see that the languages L1, L2, . . . form a strict hierarchy,
i. e., L` 6≤W Lk for ` > k. Consider the following strategy for Spoiler
in GW (L`, Lk). Outside of the leftmost path play 1 all the time - it does
not matter anyhow. On the leftmost path always play m + 1, where m
is the last number played by Duplicator on the leftmost path of his tree
(or 0 if he has kept skipping so far). This strategy only uses numbers
[1, k + 1] ⊆ [1, `], so it is legal. Obviously, the highest number we use on
the leftmost path is of different parity then the highest number used by
Duplicator, so tS ∈ L` ⇐⇒ tD /∈ Lk. Hence, the strategy is winning for
Spoiler, and by the lemma above L` 6≤W Lk.

Observe that in the above argument we have shown that Duplicator does
not have a winning strategy by providing a winning strategy for Spoiler. In
general it does not always hold that one of the players must have a winning
strategy in GW (L,M). Luckily, by Martin’s famous determinacy theorem,
it holds for Borel sets.

Theorem 4.2. If L,M are Borel languages, than one of the players has a
winning strategy in GW (L,M).

In fact the power of Wadge games relies on the above result: it lets us
replace a non-existence proof with an existence proof. Without determinacy,
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Wadge games only give a rather trivial correspondence between reductions
and strategies.

The Wadge ordering ≤W induces a natural equivalence relation, L ≡W
M iff L ≤W M and L ≥W M . The order induced on the ≡W equivalence
classes of Borel languages is called the Wadge hierarchy. The determinacy
theorem actually gives a very precise information on the shape of the Wadge
hierarchy.

Theorem 4.3 (Wadge Lemma). For Borel languages L,M it holds that

L ≤W M or L ≥W M .

The proof of this result simply transforms Spoiler’s winning strategy in
GW (L,M), which must exist by determinacy, into Duplicator’s winning
strategy in GW (M,L) (see [11] or [20]). In other words the theorem says
that the width of the Wadge hierarchy is at most two, and if L and M are
incomparable, then L ≡W M . It means that the Wadge ordering is almost
linear. The second fundamental result states that it is also a well-ordering.

Theorem 4.4 (Wadge, Martin, Monk). The Wadge hierarchy is well-founded.

Altogether, the position of a language in the Wadge hierarchy is determined,
up to complementation, by its height.

If L ≡W L then L is called self dual. Otherwise L is not comparable with
L and is called non self dual. Steel and Van Weesp proved that the self dual
and non self dual levels alternate (see [11]). If the alphabet is finite, which is
our case, on limit steps we have non self duals. Furthermore, the self duals
on successor levels can be obtained as disjoint unions of their predecessors.
All this makes it reasonable to ignore self duals when counting the height.
Hence, we choose the following definition of the Wadge degree:

• dW (∅) = dW (∅) = 1,

• dW (L) = sup{dW (M)+1 : M is non self dual, M <W L} for L >W ∅.

We have now all the tools necessary to formalize the question asked in
the title of the present section. For a family of languages F define the
height of the Wadge hierarchy restricted to F as the order type of the set
{dW (L) : L ∈ F} with respect to the usual order on ordinals. What we are
interested in is the height of the hierarchy of regular languages.

We have shown already that the height of the hierarchy of {L0, L1, . . .}
is ω. This of course gives a lower bound for the height of the hierarchy of
all regular languages. We will now see how this result can be improved. We
consider a subclass of regular languages, the languages recognized by weak
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alternating automata. Any lower bound for weak languages will obviously
hold for regular languages as well.

It will be convenient to work with languages of binary trees which are
not necessarily full, i.e., partial functions from {0, 1}∗ to Σ with prefix closed
domain. We call such trees conciliatory. Observe that the definition of weak
automata works for conciliatory trees as well. We will write LC(A) to denote
the set of conciliatory trees accepted by A. For conciliatory languages L,M
one can define a suitable version of Wadge games GC(L,M). Since it is not
a problem if the players construct a conciliatory tree during the play, they
are now both allowed to skip, even infinitely long. Analogously one defines
the conciliatory hierarchy induced by the order ≤C , and the conciliatory
degree dC .

The conciliatory hierarchy embeds naturally into the non self dual part
of the Wadge hierarchy. The embedding is given by the mapping L 7→ LS ,
where L is a language of conciliatory trees over Σ, and Ls is a language of
full trees over Σ∪ {s} which belong to L when we ignore the nodes labeled
with s (together with the subtrees rooted in their right children) in a top
down manner. Proving that L ≤C M ⇐⇒ Ls ≤W Ms for all conciliatory
languages L and M only requires translating strategies form one game to
the other. It can be done easily, since arbitrary skipping in GC(L,M)
gives the same power as the s labels in GW (Ls,Ms). Within the family of
languages of finite Borel rank, the embedding is actually an isomorphism,
and dC(L) = dW (Ls) [7].

Observe that if L is recognized by a weak alternating automaton, so
is Ls. Indeed, by adding to δ a transition p

0,s−→ p for each state p one
transforms an automaton A into As such that L(As) = (LC(A))s. Hence,
the conciliatory subhierarchy of weakly recognizable languages embeds into
the Wadge hierarchy of weakly recognizable languages, and it is enough to
show a lower bound for conciliatory languages.

So far, when constructing hierarchies, we have been defining the whole
family of languages right off. This time we will use a different method.
We will define operations transforming simple languages into more sophisti-
cated ones. These operations will induce, almost accurately, classical ordinal
operations on the degrees of languages: sum, multiplication by ω, and ex-
ponentiation with the base ω1. We will work with automata on trees over
a fixed alphabet {a, b}.

The sum B +A and multiplication A · ω are realized by combining au-
tomata recognizing simpler languages with a carefully designed gadget. The
constructions are shown on Fig. 2. The diamond states are existential and
the box states are universal. The circle states can be treated as existential,
but in fact they give no choice to either player. The transitions leading to
A, A, B and B should be understood as transitions to the initial states of
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Figure 2. The automata B +A and A · ω.

the according automata. The priority functions of these automata might
need shifting up, so that they were not using the value 0.

The automaton expA is a bit more tricky. This time, we have to change
the whole structure of the automaton. Instead of adding one gadget, we
replace each state of A by a different gadget. The gadget for a state p is
shown on Fig. 3. By replacing p with the gadget we mean that all the
transitions ending in p should now end in p′ and all the transitions starting
in p should start in p′′. Note that the state p′′ is the place where the
original transition is chosen, so p′′ should be existential iff p is existential.
The number j is the least even number greater or equal to i = rank p.

Abusing slightly the notation we may formulate the properties of the
three constructions as follows.

Theorem 4.5 ( [7]). For all weak alternating automata A, B it holds that
dC(B + A) = dC(B) + dC(A), dC(A · ω) = dC(A) · ω, and dC(expA) =
ω
dC(A)+ε
1 , where

ε =

 −1 if dC(A) < ω
0 if dC(A) = β + n and cofβ = ω1

+1 if dC(A) = β + n and cofβ = ω
.

As a corollary we obtain the promised bound.

Theorem 4.6 ([7]). The Wadge hierarchy of weakly recognizable tree lan-



On the topological complexity of tree languages 15

Figure 3. The gadget to replace p in the construction of expA.

guages has the height of at least ε0, the least fixed point of the exponenti-
ation with the base ω.

Proof. It is enough to show the bound for conciliatory languages. By it-
erating finitely many times sum and multiplication by ω we obtain multi-
plication by ordinals of the form ωnkn + . . . + ωk1 + k0, i.e., all ordinals
less then ωω. In other words, we can find a weakly recognizable language
of any conciliatory degree from the closure of {1} by ordinal sum, multipli-
cation by ordinals < ωω and pseudo-exponentiation with the base ω1. It
is easy to see that the order type of this set is not changed if we replace
pseudo-exponentiation with ordinary exponentiation α 7→ ωα1 . This in turn
is isomorphic with the closure of {1} by ordinal sum, multiplication by ordi-
nals < ωω, and exponentiation with the base ωω. This last set is obviously
ε0, the least fixpoint of the exponentiation with the base ω. q.e.d.

Recently, the second author of this survey has found a modification of
the pseudo-exponentiation construction which results in ordinary exponen-
tiation α 7→ ωα1 . This result makes it very tempting to conjecture that these
are in fact all Wadge degrees realised by weak automata, and if one replaces
ω1 by ωω, one gets the degree of the language in the Wadge hierarchy re-
stricted to weakly recognizable languages.

Supposing that the conjecture is true, the next step is an effective de-
scription of each degree. Or, in other words, an algorithm to calculate the
position of a given language in the hierarchy. Obtaining such a description
for all regular languages is the ultimate goal of the field we are surveying.
So far this goal is seems far away. The solution might actually rely on
analytical determinacy. On the other hand, it may also be the case that
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determinacy for regular languages is implied by ZFC. The knowledge in this
subject is scarce.

To end up with some good news, the problem has been solved for an im-
portant and natural subclass of regular languages, the languages recognized
by deterministic automata (see below for definition).

Theorem 4.7 ([17]). The hierarchy of deterministically recognizable lan-
guages has the height of ωω·3 + 3. Furthermore, there exist an algorithm
calculating the exact position of a given language in this hierarchy.

5 Topology versus computation

In this concluding section we would like to confront the classical defin-
ability hierarchies with the automata-theoretic hierarchies based on the
Mostowski–Rabin index. To this end, let us first recall the concepts of
non-deterministic and deterministic tree automata. They are special cases
of alternating automata, but it is convenient to use traditional definitions.
A non-deterministic parity tree automaton over trees in TΣ can be pre-
sented as A = 〈Σ, Q, q0, δ, rank〉, where δ ⊆ Q × Σ × Q × Q. A transition
(q, σ, p1, p2) ∈ δ is usually written q

σ→ p1, p2.
A run of A on a tree t ∈ TΣ is itself a tree in TQ such that ρ(ε) = q0,

and, for each w ∈ dom (ρ), ρ(w)
t(w)→ ρ(w1), ρ(w2) is a transition in δ. A

path in ρ is accepting if the highest rank occurring infinitely often along it is
even. A run is accepting if so are all its paths. Again, the Mostowski-Rabin
index of an automaton is the pair (min rank(Q),max rank(Q)), where we
assume that the first component is 0 or 1.

An automaton is deterministic if δ is a partial function from Q × Σ to
Q × Q. It can be observed that languages W(ι,κ) defined in Section 3 can
be recognized by non-deterministic automata of index (ι, κ), respectively,
and that languages T(ι,κ) defined there can be recognized by deterministic
automata of corresponding indices.

In general, the index may decrease if we replace an automaton by an
equivalent one of higher type. For example, it is not hard to see that the
complements of languages T(ι,κ) can all be recognized by non-deterministic
automata of index (1, 2) (Büchi automata), hence these languages them-
selves are of alternating index (0, 1). But it was showed in [18] that these lan-
guages form a hierarchy for the Mostowski-Rabin index of non-deterministic
automata. It can be further observed that all T(ι,κ) with (0, 1) v (ι, κ) are
Π1

1-complete, hence by the general theory [11], they are all equivalent w.r.t.
the Wadge reducibility. (In fact, it is not difficult to find the reductions to
T(0,1) directly.) So in this case the automata-theoretic hierarchy is more fine
than the Wadge hierarchy, which is a bit surprising in view of the fineness
of the latter hierarchy, as seen in the previous section.
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Let us now compare the index hierarchy and the Wadge hierarchy. For
infinite words, this comparison reveals a beautiful correspondence, discov-
ered by Klaus Wagner.

Theorem 5.1 (Wagner [27]).

1. Regular ω-languages have exactly the Wadge degrees of the form
ωk1nk + . . .+ ω1

1n1 + n0 for k < ω and n0, . . . , nk < ω.

2. The languages recognized by deterministic automata using k+1 ranks
(index [0, k] or [1, k + 1]) correspond to degrees ≤ ωk1 .

Hence, for regular ω-languages, the Wadge hierarchy is a refinement of the
index hierarchy. For trees the situation is more complex because we have
four nontrivial hierarchies (alternating, weak-alternating, nondeterministic,
and deterministic).

The correspondence for weak alternating automata is not yet fully un-
derstood. By Theorem 3.5, the raise of topological complexity (in terms
of Borel hierarchy) forces the raise of the index complexity. However, the
converse is an open problem. A priori it is possible that an infinite sequence
of tree languages witnessing the weak index hierarchy can be found inside
a single Borel class, although it would be rather surprising.

What we do know is that a similar pathology cannot happen for de-
terministically recognizable tree languages. Indeed, for this class the two
hierarchies are largely compatible, however their scope is not large: a deter-
ministic language can either be recognized by a weak automaton of index
(at most) (0, 3), and hence, by Theorem 3.5 is in the Borel class Π0

3, or it
is Π1

1-complete [19]. Moreover, the membership in Borel and in weak-index
classes is decidable for deterministic languages [19, 16].

On the other hand, the kind of pathology described above actually does
happen if we regard the deterministic index hierarchy, i.e., for a determinis-
tically recognizable language we look for the lowest index of a deterministic
automaton recognizing it (the case rarely considered in literature). Observe
that the hierarchy of regular ω-languages embeds into the hierarchy of de-
terministic tree languages by a mapping L 7→ {t: the leftmost branch of t
is in L }. Recall that all the regular ω-languages are Boolean combinations
of Σ0

2 languages, denoted Boole(Σ0
2). It follows that there are deterministic

tree languages from each level of the deterministic index hierarchy which
are inside Boole(Σ0

2). At the same time one only needs index (0, 1) to get a
Π1

1-complete set. In other words, for some Π1
1-complete languages (0, 1) is

enough, but there are Σ0
2 languages which need an arbitrarily high index!

This means that the deterministic index hierarchy does not embed into
the Wadge hierarchy. Apparently, it measures an entirely different kind of
complexity.
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One might suspect that alternating index would be a more suitable mea-
sure in this context. Alternation saves us from increasing the index with
complementation. Indeed, the complementation of an alternating automa-
ton is done simply by swapping Q∃ and Q∀, and shifting the ranks by one.
(To make complementation easy was an original motivation behind alter-
nating automata [15].) If a language has index (ι, κ), its complement will
only need (ι, κ), and vice versa. As it was stated in Section 3, the strong
game languages showing the strictness of the alternating hierarchy form also
a strict hierarchy within the Wadge hierarchy. In fact, since each recogniz-
able tree language can be continuously reduced to one of them, they give
a scaffold for further investigation of the hierarchy. Such a scaffold will be
much needed since the non-Borel part of the Wadge hierarchy is a much
dreaded and rarely visited place.
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tomata on infinite trees. J. Inf. Process. Cybern. EIK 26 (1990), 453–
461.
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