
Computational complexity exam � problem part. 6.6.2011

1. We say that two functions are friendly if they assume the same value for some argument. Two Boolean
circuits (with the same number of input gates) are friendly if so are the functions they compute. Show
that deciding whether two circuits are friendly is NP -complete.

2. Construct a deterministic Turing machine working in logarithmic space, which takes as an input a
deterministic �nite automaton over one letter alphabet and outputs a regular expression generating
the language recognized by the automaton.

Note that the output will be produced on a special output tape, whereas the logarithmic bound concerns
only the working tapes.

You may use any encoding of an automaton whose size is polynomial in the number of states.

3. Let f and g be functions computed in polynomial and logarithmic space, respectively. Show that the
functions f ◦ g and g ◦ f can be computed in polynomial space.

Could we claim this if we only knew that both functions were computed in polynomial space?

4. Theoretical problem. Show that if P = NP then factorization could be solved in polynomial time.

Factorization is a functional problem, which takes as an input a natural number (in binary) and outputs
its decomposition into prime factors.
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Computational complexity exam � theory part. 6.6.2011

Please show and explain the errors in the following reasoning. The answer should �t on the backward of this
sheet. You may also mark the passages you claim erroneous directly in the text.

1. To verify if a number m divides n, it is enough to successively add m to itself and check whether we
eventually reach n or go above it. For this, O(log n) space is enough. Hence, by testing the successive m < n,
we can test if n is prime using (only) logarithmic space, but we know that L ⊆ P . So why so much ado
about the AKS polynomial primality test (from 2002) ?

2. Let ϕ = α1 ∧ . . . ∧ αk, where each αi is a clause with two literals. Consider

ϕ′ = (α1 ∨ ¬x1) ∧ . . . ∧ (αk ∨ ¬xk) ∧
(x1 ∨ x1 ∨ x1) ∧ . . . ∧ (xk ∨ xk ∨ xk)

It is easy to see that ϕ is satis�able i� so is ϕ′, but ϕ′ has already 3 literals in each clause, and we know
that the problem 3-CNF SAT is NP -complete. But we have just described a reduction ϕ 7→ ϕ′, hence the
problem 2-CNF SAT is NP -complete as well. However, we learned at the tutorials that the last problem is
in P . Therefore we have proved P = NP .

3. At the lecture, they showed an algorithm which, for a Turing machine M and a number n, constructs
a Boolean circuit with n input gates, recognizing precisely the words of length n accepted by M . But any
Boolean function {0, 1}n → {0, 1} can be computed by a circuit with O(2n) gates. The evaluation of a
Boolean circuit is possible in time polynomial w.r.t. the size of the circuit. Hence, any Turing machine
(provided it always halts) can be simulated by a machine working in exponential time. So what is this
cheating with the Time hierarchy theorem?

4. Suppose a probabilistic algorithm recognizes a language L with the probability of error p ≤ 1
4 , by giving

answers yes or no. Thus if, for an input x, we get an answer yes then with probability 1 − p it holds that
x ∈ L, and if we get an answer no then with probability 1− p it holds that x 6∈ L.
(Suppose, for example, that algorithm decides if 1 = 1, tossing a coin 5 times. If head occurs all the time,
it says no, otherwise says yes. Suppose the answer is: no. Shall we start to doubt if 1 = 1 ?)

5. On the lecture, they showed a polynomial interactive proof, in which Mathematician convinces Algo-
rithm1 that two graphs are not isomorphic. We now adapt this protocol to verify that two Turing machines
M1 and M2 are non-equivalent.

More precisely, Mathematician convinces Algorithm that L(M1) 6= L(M2). To this end, Algorithm randomly
chooses i ∈ {1, 2} and next, using few further random choices, it modi�es Mi, so that the machine computes
the same, but �looks� quite di�erent than Mi. Algorithm then presents the so-obtained machine N to
Mathematician, asking: what is it ? (i.e., M1, or M2).

If M1 and M2 are non-equivalent, Mathematician gives the unique correct answer. However, if they are
equivalent then Mathematician (who doesn't know the random bits of the Algorithm) can only guess the
expected i with probability 1

2 .

Hence, we have obtained an interactive proof deciding in polynomial time if two Turing machines are non-
equivalent, which, as we know, is an undecidable problem. Still, they claimed at the lecture (giving even a
suitably obscured �proof�) that languages recognized by interactive proofs are not only decidable, but even
PSPACE !

1In the English language literature, these �gures are usually called Prover and Veri�er .
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