Homework, the 4th series

Deadline: 29 May, 23:59.

Idea. Given a hypothetical algorithm deciding whether two labeled graphs are isomorphic, construct an algorithm, which actually *finds* such an isomorphism (if any), in a not much worse time.

Exact statement. A directed graph of n vertices is given by a relation $E \subseteq \{1, \ldots, n\} \times \{1, \ldots, n\}$. We encode it by a binary word w_E of length n^2 , where the position (i-1)n+j is 1 iff E(i,j) holds.

A labeled graph is additionally equipped with a mapping $\ell:\{1,\ldots,n\}\to\mathbb{N}$. We encode it by

$$w_{E,\ell} = w_E \# \ell(1) \# \ell(2) \# \dots \# \ell(n)$$

where the numbers $\ell(i)$ are given in binary.

Two labeled graphs with the same number of vertices n given by (E_1, ℓ_1) and (E_2, ℓ_2) , respectively, are *isomorphic* if there exists a permutation $\sigma : \{1, \ldots, n\} \to \{1, \ldots, n\}$, such that

$$\ell_1(i) = \ell_2(\sigma(i)) \tag{1}$$

$$E_1(i,j) \iff E_2(\sigma(i),\sigma(j)).$$
 (2)

We call such σ isomorphism and encode by $\sigma(1) \# \sigma(2) \# \ldots \# \sigma(n)$.

Assume that an algorithm A solves the decision problem, whether two labeled graphs are isomorphic in time T(n). Construct an algorithm A', which in positive case finds an isomorphism σ . The algorithm A' should work in time p(T(q(n))), for some polynomials p(n), p(n).

Bonus. An analogical question for non-labeled graphs. (Then isomorphism is just a permutation satisfying (2).)

Remark. For a completely correct solution of *Bonus*, you may obtain an additional 0.5 point (in the target scale), and thus double the score of this exercise.

¹Consideration of undirected graphs does not affect the difficulty of the problem.

²In particular, if A works in polynomial time, so does A'.