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Perfect information games

Finite duration games (like chess) can be presented as games on

graphs.

Complexity of solving such games relies on the structure of the

graph (→ alternating reachability).

Infinite duration games are usually modelled as games on colored

graphs.

Complexity relies on the structure of both: the graph and the

winning condition.
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Games on (edge colored) graphs

G = 〈Pos∃,Pos∀,Move, C, rank ,W∃,W∀〉,

where Pos = Pos∃
·
∪ Pos∀, Move ⊆ Pos× Pos,

rank : Move → C , W∃,W∀ ⊆ Cω , W∀ ∩W∃ = ∅.
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Player who cannot move, loses — the opponent wins.

An infinite play p0, p1, . . . is won by Q iff rank(p0, p1), rank(p1, p2) . . . ∈WQ.

Otherwise there is a draw.
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Strategies

A strategy (for Eve, say) is a partial mapping Move∗ → Move

defined for paths ending in a position of Eve.

It is winning if any play π consistent with the strategy is won by

Eve.

A game is determined if, for any position, one of the players has a

winning strategy, or both players have strategies to achieve (at least)

a draw.

Reachability game: No colors. Infinite play is always a draw.

Zermelo’s theorem: Reachability games are determined.
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Positional strategies

A positional strategy depends only on the actual position.
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Positional determinacy — all strategies in question are positional.

Reachability games are positionally determined (on all graphs).

What else?
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Parity games

C = {0, 1, . . . n}.
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Eve wants∞ even, Adam wants∞ odd, maximal wins.

W∃ = {u ∈ Cω : lim supn→∞ un is even }
W∀ = {u ∈ Cω : lim supn→∞ un is odd }.
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Parity games are positionally determined on all graphs (Emerson & Jutla 1991,

Mostowski 1991).

Essentially, it is the only condition with this property.

Suppose that W ⊆ Cω is uniform (W = CW ), and any game

〈Pos∃,Pos∀,Move, C, rank ,W,W 〉

is positionally determined. Then W is a parity condition up to renaming the

letters (not necessarily 1:1). That is, there is n and h : C → {0, 1, . . . , n},
such that

u ∈W iff lim sup
i→∞

h(ui) is even

(Colcombet & N. 2006).
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Positional determinacy over finite graphs

There are more conditions that guarantee positional determinacy. For example

W = {x ∈ {0, 1}ω : lim
n→∞

x1 + . . .+ xn
n

= 0}

Clearly, W cannot be renamed to parity condition.

(Besides, it is Π0
3-complete, whereas the parity conditions are in ∆0

3.)

Positional determinacy of games on finite graphs with W∃ =W,W∀ =W

follows from a more general property.
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Mean-payoff optimization games (over finite arenas)
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Adam pays to Eve the amount q, while passing through an edge
q−→.

Each player wants to maximize her/his income asymptotically on average.

For each position p, there is a compromise value val(p), which Eve and Adam

can reach using positional strategies (Ehrenfeucht & Mycielski 1979).
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More specifically, let, for a play π = (p0, p1, . . .) and n ≥ 1,

valn(π) =
rank(p0, p1) + rank(p1, p2) . . .+ rank(pn−1, pn)

n
.

Let play(sE , sA, p) be a unique play determined by strategies sE and sA, and

position p.

Ehrenfeucht & Mycielski 1979 show that, for any p, there are positional

strategies sE, sA, such that

val(p) =def lim
n→∞

valn (play(sE, sA, p)) ,

satisfies

val(p) = inf
sA

sup
sE

lim sup valn (play(sE .sA, p))

= sup
sE

inf
sA

lim inf valn (play(sE .sA), p)

where sE , sA range over all strategies.
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Mean-payoff winning conditions

C ⊆ Z (finite).
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For a fixed threshold d,

W∃ = {x : lim inf
x1 + . . .+ xn

n
≥ d}

W∀ = {x : lim sup
x1 + . . .+ xn

n
< d}.
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Can we characterize positional determinacy on finite arenas by
a class of winning conditions?

(Such a class should somehow subsume parity games.)

Gimbert 2006 gave elegant structural conditions that characterize positional

determinacy (not necessarily uniform) on all finite graphs.

Note. For finite arenas, winning conditions may admit various
presentations.
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Equivalence of winning conditions

For example, the aforementioned condition

W = {x ∈ {0, 1}ω : lim
n→∞

x1 + . . .+ xn
n

= 0}

is over finite arenas equivalent to

W ′ = {x ∈ {0, 1}ω : lim
n→∞

xn = 0}

More generally,

Periodicity lemma. Two winning conditions (W∃,W∀) and
(W ′
∃,W

′
∀) are equivalent over finite arenas iff they contain the

same ultimately periodic words.
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Proof of the lemma.

(only if)

If an ultimately periodic word u separates the two conditions, we can take a game

that essentially consists of this word.

(if)

Let sE be a positional strategy for Eve winning from position p with the condition

(W∃,W∀).

Suppose Adam has a positional strategy s′A from p to achieve at least a draw with

the condition (W ′∃,W
′
∀).

Then the labeling of play(sE , s
′
A, p) separates the two conditions.
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Some consequences of periodicity lemma.

Parity vs. boundedness

If |w|a denotes the number of occurrences of a in w, let

W ′∃ = {u : (∃M ∀a odd ∈ C) |wa| ≤M, where w ranges over

all finite factors of u s.t. the maximal color of w is a}

W ′∀ = {u : (∃M ∀b even ∈ C) |wb| ≤M, where w ranges

as above up to a
 b }

Then Cω − (W ′∃ ∪W ′∀) 6= ∅, but any game on finite arena with the winning

condition (W ′∃,W
′
∀) is equivalent to parity game, cf. Colcombet & Loeding

2009.
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What can we gain by that?

If a winning condition (W ′∃,W
′
∀) is equivalent to (W∃,W∀), for some

W ′∃ ⊆W∃ and W ′∀ ⊆W∀ then it is the same for any separating pair

(W′′
∃,W

′′
∀), i.e.,

W ′∃ ⊆W′′
∃ ⊆W∃

W ′∀ ⊆W′′
∀ ⊆W∀.

This may have impact on complexity if W′′
∃ and W′′

∀ are simpler than the original

condition. Cf. Calude et al. 2017, and Bojańczyk & Czerwiński 2018.

Specifically, for games with < M positions, there is a “simple” separator of

W
(M)
∃ = {u : (∀a odd ) |wa| ≤M}

W
(M)
∀ = {u : (∀b even ) |wb| ≤M}

where w ranges as above.
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Example: intrinsically non-regular mean-payoff condition

W∃ = {x ∈ {−1, 0, 1}ω : lim inf
n→∞

x1 + . . .+ xn
n

> 0}

W∀ = {x ∈ {−1, 0, 1}ω : lim sup
n→∞

x1 + . . .+ xn
n

≤ 0}.

There is no ω-regular language L, such that W∃ and L contain the same

ultimately periodic words.

Note. For an ultimately periodic word x ∈ Zω ,

lim infn→∞
x1+...+xn

n > 0 iff limn→∞ x1 + . . .+ xn = +∞.
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In the search of a characterization

Let, for x ∈ Zω ,

χ(x) =


1 if limn→∞ x1 + . . .+ xn = +∞
−1 if limn→∞ x1 + . . .+ xn = −∞
0 otherwise

For x =
(
x(1), . . . , x(k)

)
∈
(
Zk
)ω

, let

~χ(x) =
(
χ(x(1)), . . . , χ(x(k))

)
The lexicographic energy condition:

~χ(x) >lex
~0.
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Properties

Let WC
∃ be the set of words in

(
Zk
)ω

satisfying the LE condition over the

alphabet C ⊆ Zk.

Let WC
∀ =WC

∃ .

The LE condition guarantees positional determinacy over finite arenas.

It subsumes mean-payoff (k = 1), as well as parity:

rank

0 → (0, 0, 0, 0, 1)

1 → (0, 0, 0, −1, 0)

2 → (0, 0, 1, 0, 0)

3 → (0, −1, 0, 0, 0)

4 → (1, 0, 0, 0, 0)
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Partial characterization

Proposition. Let W ⊆ Cω be prefix independent (W = CW ),

and suppose that all games on finite arenas with the winning

condition (W,W ) are positionally determined.

Assume further that W satisfies the permutation property

(vxyw)ω ∈ W iff (vyxw)ω ∈ W.

Then W coincides with some LE condition on all ultimately periodic

words: consequently, the respective games are equivalent.

It is open if the permutation property is necessary.

20



Further questions

Can we have a similar characterization of finite-memory

determinacy over finite arenas?

Is there an efficient reduction of mean-payoff games to parity

games?

Can we improve upon the complexity of solving mean-payoff games,
e.g., to nO(logn) ?
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