Signatures I

Algebraic signature:

Y = (5,9, arity, sort)

with sort names S, operation names €2, and arity and result sort functions
arity: 2 — S* and sort: 0 — S.
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Signatures I

> = (S,0)

Algebraic signature:

e sort names: S
e operation names, classified by arities and result sorts: Q = (Qy s)wes* ses

Alternatively:

Y = (5,9, arity, sort)

with sort names S, operation names €2, and arity and result sort functions
arity: 2 — S* and sort: 0 — S.

® f:51 X...X8, — sstands for s1,...,5,,5s €S and f € Qg,. s s
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Signatures I

> = (S,0)

Algebraic signature:

e sort names: S
e operation names, classified by arities and result sorts: Q = (Qy s)wes* ses

Alternatively:

Y = (5,9, arity, sort)

with sort names S, operation names €2, and arity and result sort functions
arity: 2 — S* and sort: 0 — S.

® f:51 X...X8, — sstands for s1,...,5,,5s €S and f € Qg,. s s

Compare the two notions
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Signatures I

> = (S,0)

Algebraic signature:

e sort names: S
e operation names, classified by arities and result sorts: Q = (Qy s)wes* ses

Alternatively:

Y = (5,9, arity, sort)

with sort names S, operation names €2, and arity and result sort functions
arity: 2 — S* and sort: 0 — S.

® f:51 X...X8, — sstands for s1,...,5,,5s €S and f € Qg,. s s

e fis1X...Xx8, —>sand f:8] x...xs — s — overloading allowed

Compare the two notions
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Signatures I

Y = (S,0Q)

Algebraic signature:

e sort names: S
e operation names, classified by arities and result sorts: = (Qy s)wes* ses

Alternatively:

Y = (S, 9, arity, sort)

with sort names S, operation names €2, and arity and result sort functions
arity: €0 — S* and sort: Q@ — S.

o f:r51 X...xX 58, — sstands for s1,...,5,,s € S and f € Qg, 5 s
e fis1X...X8, —>sand f:s] x...xs — s — overloading allowed

e n =0yields f: — s, often written f: s — constants allowed

Andrzej Tarlecki: Category Theory, 2025



Fix a signature X = (S, 2) for a while.
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Fix a signature X = (S, 2) for a while.

Algebras I

A= (|4], (fa) req)

e Y.-algebra:

e carrier sets: |A|l = (|Als)ses

e operations: fa: |Als, X ... X |Als, — |Als, for f: 51 X ... X8, = s
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Fix a signature X = (S, 2) for a while.

Algebras I

A= (|A],{fa)rea)

e >.-algebra:

e carrier sets: |A| = (|Als)ses
e operations: fa: |Als, X ... X |Als, — |Als, for f: 51 X ... X8, = s
BTW: constants: fa: {(})} = |A|s, i.e. fa €|A|s, for f: s
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Fix a signature X = (S, 2) for a while.

Algebras I

A= (|A],{fa)ren)

e ) -algebra:

o carrier sets: |A| = (|Als)ses

e operations: fa: |Als, X ... x |Als, — |Als, for f:s1 X ... X8, = s

e the class of all X-algebras:

Alg(X)
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Fix a signature X = (S, 2) for a while.

Algebras I

A= (|A],{fa)ren)

e ) -algebra:

o carrier sets: |A| = (|Als)ses

e operations: fa: |Als, X ... x |Als, — |Als, for f:s1 X ... X8, = s

e the class of all X-algebras:

Alg(X)

Can Alg(>) be empty? Finite?
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Fix a signature X = (S, 2) for a while.

Algebras I

A= (|A],{fa)ren)

e ) -algebra:

o carrier sets: |A| = (|Als)ses

e operations: fa: |Als, X ... x |Als, — |Als, for f:s1 X ... X8, = s

e the class of all X-algebras:

Alg(X)

Can Alg(>) be empty? Finite?

Can A € Alg(>) have empty carriers?

Andrzej Tarlecki: Category Theory, 2025



Intermezzo: many-sorted sets'

Given a set (of sort names) S,
S-sorted set X = (X;)scg is a family of sets X, s € S.
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Intermezzo: many-sorted sets'

Given a set (of sort names) S,
S-sorted set X = (X;)scg is a family of sets X, s € S.

The usual set-theoretic concepts and notations apply component-wise.

Andrzej Tarlecki: Category Theory, 2025



Intermezzo: many-sorted sets'

Given a set (of sort names) S,
S-sorted set X = (Xs)ses is a family of sets X, s € S.

The usual set-theoretic concepts and notations apply component-wise.
For instance, given X = (Xs)ses, Y = (Ys)ses, Z = (Zs)ses:

e XNY =(XsNYs)ses, X XY = (X, X Ys)seg, etc

e XCYiff X, CY,, forse S

e RC X xY means R=(Rs C X5 X Ys)ses

o f: X =Y means f=(fs: Xs = Ys)ses
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Intermezzo: many-sorted sets'

Given a set (of sort names) S,
S-sorted set X = (X;)scs is a family of sets X, s € S.

The usual set-theoretic concepts and notations apply component-wise.
For instance, given X = (Xs)ses, Y = (Ys)ses, Z = (Zs)ses:
e XNY =(X;NY5)ses, X XY = (X, X Yy)seg, etc
o X CY Iiff X, CY,, forse S
e RC X xY means R=(Rs; C X X Ys)ses
o f:X =Y means f = (f: Xy = YVy)ses
o for f: X =Y, g:Y = Z, fig=(fs;9s: Xs = Zs)ses: X = Z
BTW: (f;9)(x) = g(f(x)), where by abuse of notation for x € X, f(x) = fs(x)

Andrzej Tarlecki: Category Theory, 2025 -6 -



Subalgebras I

Definition: For A, Asup € Alg(X), Asup is a X-subalgebra of A, written Agy, C A,
if

— |Agw| C |A], and

— for f1 81 X ... X 8, = 8, and a1 € |Aguplsyy---ran € |Asubls,,,

fAsub(a’17"' 7an) — fA(Cll,...,an)
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Subalgebras I

o for A € Alg(X), a X-subalgebra Agyu, C A is given by subset |Ag,,| C |A| closed
under the operations:

— for fis1 X ... X8, = sand a1 € |Asuplsyy--->0n € |Asubls, .
fA(ala---aan) S |Asub|s
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Subalgebras I

o for A € Alg(X), a X-subalgebra Agy, C A is given by subset |Ag,,| C |A| closed
under the operations.

o for A € Alg(X) and X C |A|, the subalgebra of A generated by X, (A)x, is the
least subalgebra of A that contains X.

e Ac Alg(X) is reachable if (A)y coincides with A.
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Subalgebras I

o for A € Alg(X), a X-subalgebra Agy, C A is given by subset |Ag,,| C |A| closed
under the operations.

o for A € Alg(X) and X C |A|, the subalgebra of A generated by X, (A)x, is the
least subalgebra of A that contains X.

e Ac Alg(X) is reachable if (A)y coincides with A.
Theorem: For any A € Alg(X) and X C |A|, (A)x exists.
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Subalgebras I

o for A € Alg(X), a X-subalgebra Agyu, C A is given by subset |Ag,,| C |A| closed
under the operations.

o for A € Alg(X) and X C |A|, the subalgebra of A generated by X, (A)x, is the
least subalgebra of A that contains X.

o Ac Alg(X) is reachable if (A)y coincides with A.
Theorem: For any A € Alg(X) and X C |A|, (A)x exists.

Proof: Let Xg = X, and for z > 0,
Xq;_|_1 :XiU{fA(Zlﬁl,...,ZE‘n) ‘ f: S1 X ...X 8, —8,T1 € (X,L')Sl,...,.flfn c (X’L)Sn}
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Subalgebras I

o for A € Alg(X), a X-subalgebra Agyu, C A is given by subset |Ag,,| C |A| closed
under the operations.

o for A € Alg(X) and X C |A|, the subalgebra of A generated by X, (A)x, is the
least subalgebra of A that contains X.

o Ac Alg(X) is reachable if (A)y coincides with A.
Theorem: For any A € Alg(X) and X C |A|, (A)x exists.

Proof: Let Xg = X, and for z > 0,

Xizv1 =X U{fa(xy,...;xn) | frs1 X ... X sy = 5,21 € (Xi)sys--yTn € (Xy)s, }-
Then [(A) x| = ;¢ Xi contains X (clearly) and is closed under the operations.
Moreover, if a subset of |A| contains X and is closed under the operations then it
contains each X;, ¢ > 0, and hence so defined |{A) x| as well.
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Subalgebras I

o for A € Alg(X), a X-subalgebra Agyu, C A is given by subset |Ag,,| C |A| closed
under the operations.

o for A € Alg(X) and X C |A|, the subalgebra of A generated by X, (A)x, is the
least subalgebra of A that contains X.

o Ac Alg(X) is reachable if (A)y coincides with A.
Theorem: For any A € Alg(X) and X C |A|, (A)x exists.
Proof:

Lemma: The intersection of any family of subsets of |A| closed under the
operations is closed under the operations as well.
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Subalgebras I

o for A € Alg(X), a X-subalgebra Agyu, C A is given by subset |Ag,,| C |A| closed
under the operations.

o for A € Alg(X) and X C |A|, the subalgebra of A generated by X, (A)x, is the
least subalgebra of A that contains X.

o Ac Alg(X) is reachable if (A)y coincides with A.
Theorem: For any A € Alg(X) and X C |A|, (A)x exists.
Proof:

Lemma: The intersection of any family of subsets of |A| closed under the
operations is closed under the operations as well.

Then [(A) x| = ({|Asus| | X C |Asup|, Asup € A} is closed under the operations and
contains X. Moreover, it is contained in every subalgebra of A that contains X.
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Subalgebras I

o for A € Alg(X), a X-subalgebra Agyu, C A is given by subset |Ag,,| C |A] closed
under the operations.

o for A € Alg(X) and X C |A|, the subalgebra of A generated by X, (A)x, is the
least subalgebra of A that contains X.

e A c Alg(X) is reachable if (A)y coincides with A.
Theorem: For any A € Alg(X) and X C |A|, (A)x exists.
Proof (idea):
e generate the generated subalgebra from X by closing it under operations in A; or

e the intersection of any family of subalgebras of A is a subalgebra of A.
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Homomorphisms I

e for A, B € Alg(X), a X-homomorphism h: A — B is a function h: |A| — | B|
that preserves the operations:

— for f:s1 X ...x 8, > sanday € |Als,...,an €|A]s,
hs(fa(ay, ... an)) = fB(hs,(a1),..., hs, (an))

Als, X ... % |Als, fa_ Al
hsy X ... X hg_ s
|Bls, X ...x|Bls, - > |B|s
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Homomorphisms I

e for A, B € Alg(3), a ¥-homomorphism h: A — B is a function h: |A| — |B|
that preserves the operations:

— for f:s1 X ...x 8, > sanday € |Als,...,an €|A]s,
hs(fA(ala SR 7an)) — fB(hsl (al)a .- -;hsn(an))

Theorem: Given a homomorphism h: A — B and subalgebras Ag,, of A and B,
of B, the image of Agyup under h, h(Asyy), is a subalgebra of B, and the coimage of
By under h, h™Y(Bsyu), is a subalgebra of A.
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Homomorphisms I

o for A, B € Alg(3), a X-homomorphism h: A — B is a function h: |A| — |B|
that preserves the operations:

— for frs1 X ...x 8, > sanday € |Als,...,an €|A]s,
hs(fa(ay, ... an)) = fB(hs,(a1),..., hs, (an))

Theorem: Given a homomorphism h: A — B and subalgebras Ag,, of A and B,y

of B, the image of Agyup under h, h(Asyy), is a subalgebra of B, and the coimage of
By under h, h™Y(Bsyu), is a subalgebra of A.

Proof: Check that:

— h7Y(|Bsus|) is closed under the operations (in A) — easy!

— h(|Asup|) is closed under the operations (in B) — just a tiny bit more difficult. ..
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Homomorphisms I

e for A, B € Alg(3), a ¥-homomorphism h: A — B is a function h: |A| — |B|
that preserves the operations:

— for f:s1 X ...x 8, > sanday € |Als,...,an €|A]s,
hs(falar,...,an)) = fe(hs, (a1),... ks, (an))

Theorem: Given a homomorphism h: A — B and subalgebras Ag,, of A and B,
of B, the image of Agyup under h, h(Asyy), is a subalgebra of B, and the coimage of
By under h, h™Y(Bsu), is a subalgebra of A.

Theorem: Given a homomorphism h: A — B and X C |A|, h({A)x) = (B)nx)-
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Homomorphisms I

e for A, B € Alg(>), a X-homomorphism h: A — B is a function h: |A| — | B|
that preserves the operations:

— for fis1 X...x 8, > sand aj € |Als,...,an € |Als,,
hs(falar,...,an)) = fe(hs,(a1),...,hs, (an))

Theorem: Given a homomorphism h: A — B and subalgebras Ag,, of A and B,y

of B, the image of Agyy under h, h(Asyy), is a subalgebra of B, and the coimage of
By under h, h™Y(Bsyy), is a subalgebra of A.

Theorem: Given a homomorphism h: A — B and X C |A|, h({A)x) = (B)nx)-
Proof:
— h((A)x) 2 (B)nx), since h({A)x) is a subalgebra of B and contains h(X);

— (A)x Ch7 ' ((B)nx)), since h~'((B)p(x)) is a subalgebra of A and contains X.
Hence h((4)x) € h(h~ ({B)acx))) € (Bhux).

Andrzej Tarlecki: Category Theory, 2025



Homomorphisms I

o for A, B € Alg(3), a X-homomorphism h: A — B is a function h: |A| — |B|
that preserves the operations:

— for f:s1 X ...xX 8, > sanday € |Als,...,an €|A]s,
hs(fa(as, ... an)) = fB(hs,(a1),..., hs, (an))

Theorem: Given a homomorphism h: A — B and subalgebras Ag,, of A and B,y
of B, the image of Agyup under h, h(Asyy), is a subalgebra of B, and the coimage of
By under h, h™Y(Bsu), is a subalgebra of A.

Theorem: Given a homomorphism h: A — B and X C |A], h({A)x) = (B)nx)-

Theorem: If two homomorphisms hi,hs: A — B coincide on X C |A|, then they
coincide on (A)x .
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Homomorphisms I

o for A, B € Alg(3), a ¥-homomorphism h: A — B is a function h: |A| — |B|
that preserves the operations:

— for f:s1 X ...xX 8, > sanday € |Als,...,an €|A]s,
hs(falat,...,an)) = fe(hs, (a1),... ks, (an))

Theorem: Given a homomorphism h: A — B and subalgebras Ag,, of A and B,y
of B, the image of Agyup under h, h(Asyy), is a subalgebra of B, and the coimage of
By under h, h™Y(Bsyuy), is a subalgebra of A.

Theorem: Given a homomorphism h: A — B and X C |A], h({A)x) = (B)nx)-

Theorem: If two homomorphisms hi,hs: A — B coincide on X C |A|, then they
coincide on (A)x .

Proof: Check that {a € |A| | h1(a) = ha(a)} is closed under the operations in A.
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Homomorphisms I

e for A, B € Alg(X), a X-homomorphism h: A — B is a function h: |A| — | B|
that preserves the operations:

— for frs1 X ...xX 8, > sanda € |Als,...,an €|A]s,
hs(falar,...,an)) = fe(hs,(a1),...,hs, (an))

Theorem: Given a homomorphism h: A — B and subalgebras Ag,, of A and By
of B, the image of Agyup under h, h(Asyy), is a subalgebra of B, and the coimage of
By, under h, h™1(Byyy), is a subalgebra of A.

Theorem: Given a homomorphism h: A — B and X C |A|, h({A)x) = (B)n(x)-

Theorem: If two homomorphisms hi,hs: A — B coincide on X C |A|, then they
coincide on (A) x .

Theorem: Identity function on the carrier of A € Alg(X) is a homomorphism
ida: A — A. Composition of homomorphisms h: A — B and g: B — C' is a
homomorphism h;g: A — C.
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Isomorphisms I

o for A, B € Alg(>l), a 3-isomorphism is any ¥-homomorphism i: A — B that

has an inverse, i.e., a X-homomorphism i=': B — A such that ;i ! = id4 and

i_l;i = 1dpg.

A > B
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Isomorphisms I

o for A, B € Alg(>l), a 3-isomorphism is any ¥-homomorphism i: A — B that

has an inverse, i.e., a X-homomorphism i=': B — A such that ;i ! = id4 and

i_l;i = 1dpg.

A > B

‘\ J
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Isomorphisms I

o for A, B € Alg(>l), a 3-isomorphism is any ¥-homomorphism i: A — B that
has an inverse, i.e., a X-homomorphism i=': B — A such that ;i ! = id4 and

ida Cﬁ{\ i »jBOz'dB

[/ ;’i — ’idB.
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Isomorphisms I

o for A, B € Alg(>l), a 3-isomorphism is any ¥-homomorphism i: A — B that
has an inverse, i.e., a X-homomorphism i=': B — A such that ;i ! = id4 and

ida Cﬁ{\ i »jBOz'dB

[/ ;i — ’idB.
—1

1
e >.-algebras are isomorphic if there exists an isomorphism between them.
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Isomorphisms I

o for A, B € Alg(>l), a 3-isomorphism is any ¥-homomorphism i: A — B that
has an inverse, i.e., a X-homomorphism i=': B — A such that ;i ! = id4 and

ida Cﬁ{\ i JBOMB

[/ ;i — ’idB.
—1

(4

e >.-algebras are isomorphic if there exists an isomorphism between them.

Theorem: A Y-homomorphism is a ¥-isomorphism iff it is bijective ( “1-1" and

“onto” ).
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Isomorphisms I

o for A, B € Alg(>l), a 3-isomorphism is any ¥-homomorphism ¢: A — B that
has an inverse, i.e., a X-homomorphism i=': B — A such that ;i = id4 and

id Cﬁ{\ i JBC)@'CZB

[/ ;’i — ’idB.
—1

(4

e Y.-algebras are isomorphic if there exists an isomorphism between them.

Theorem: A Y-homomorphism is a ¥-isomorphism iff it is bijective ( “1-1" and
“onto” ).

Proof ("«<="): For f:s1 X ... X 8, — sand by € |B|s,,...,b, € |B|s,,
i (fB (b1, bn)) = i (fB (T (01)), - . i(17 1 (Bn)))) =
Z's_l(i(fA(i_l(bl)a s 77;_1(67%)))) — fA(i_l(bl)a e 7i_1(bn))
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Isomorphisms I

o for A, B € Alg(>l), a 3-isomorphism is any ¥-homomorphism i: A — B that
has an inverse, i.e., a X-homomorphism i=': B — A such that ;i = id4 and

id Cﬁ{\ i JBQMB

[/ ;’i — ’idB.
—1

(4

e >.-algebras are isomorphic if there exists an isomorphism between them.

Theorem: A Y-homomorphism is a ¥-isomorphism iff it is bijective ( “1-1" and
“onto” ).

Theorem: Identities are isomorphisms, and any composition of isomorphisms is an
iIsomorphism.

Andrzej Tarlecki: Category Theory, 2025



Congruences I

o for A € Alg(X), a X-congruence on A is an equivalence = C |A| x |A]| that is
closed under the operations:
— for fis1 X ... X 8, = sand ay,a} € |Als,,...,an,a, € |A|s,,

if ay =5, al,...,an =5, a, then fa(ay,...,an) =5 falal,...,a

/
n

)

Andrzej Tarlecki: Category Theory, 2025
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Congruences I

o for A € Alg(X), a X-congruence on A is an equivalence = C |A| x |A]| that is
closed under the operations:

— for fi 81 X ... X 8, = sand ay,a} € |Als,,...,an,a, € |Als,,
ifay =5, a,...,a, =5, a then fa(ay,...,a,) =s falal,...,a)).
BTW:
equivalence
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Congruences I

o for A € Alg(X), a ¥-congruence on A is an equivalence = C |A| x |A] that is
closed under the operations:

— for fi 81 X ... X 8, = s and ay,a} € |Als,,...,an,a, € |A|s,,
ifay =5, af,...,a, =5, a, then fa(ay,...,a,) =s falal,...,a)).
BTW:
equivalence
~CX x X

— reflexivity: x =~ x
— symmetry: if z =y theny =~z
— transitivity: if x &y and y = z then x =~ 2

Then:
— equivalence class: |z

— quotient set: X/~ = {[zr]x |
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Congruences I

o for A € Alg(X), a X-congruence on A is an equivalence = C |A| x |A]| that is
closed under the operations:
— for fis1 X ... X 8, = sand ay,a} € |Als,,...,an,a, € |A|s,,

if ay =5, al,...,an =5, a, then fa(ay,...,an) =5 falal,...,a

/
n

)
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Congruences I

o for A € Alg(X), a X-congruence on A is an equivalence = C |A| x |A] that is

closed under the operations:

— for fi 81 X ... X 8, = sand ay,a} € |Als,,...,an,a, € |A|s,,
ifay =5, al,...,an =5, a, then fa(ay,...,a,) =5 falal,...,a
(CLl, * an)

/
n

)
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Congruences I

o for A € Alg(X), a X-congruence on A is an equivalence = C |A| x |A] that is

closed under the operations:

— for f:s1 X ...x 8, = sand ay,a] € |Als,,...,an,a, € |Als,,
ifay =5, al,...,an =5, a, then fa(ay,...,a,) =5 falal,...,a
fA
(a1, -.., Qyp) >fa(ay,...,an)

/
n

)
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Congruences I

o for A € Alg(X), a X-congruence on A is an equivalence = C |A| x |A] that is

closed under the operations:

— for f:s1 X ...x 8, = sand ay,a] € |Als,,...,an,a, € |Als,,
ifay =5, al,...,an =5, a, then fa(ay,...,a,) =5 falal,...,a
fA
(0’17 ) Cln) >'fA(afl: 7an)

/
n

)
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Congruences I

o for A € Alg(X), a X-congruence on A is an equivalence = C |A| x |A]| that is
closed under the operations:

— for fis1 X ... X 8, = sand ay,a} € |Als,,...,an,a, € |Als,,
ifay =5, a,...,a, =5, a then fa(ay,...,a,) =s falal,...,a)).

Theorem: For any relation R C |A| x |A| on the carrier of a ¥:-algebra A, there
exists the least congruence on A that contains R.
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Congruences I

o for A € Alg(X), a X-congruence on A is an equivalence = C |A| x |A]| that is
closed under the operations:

— for fis1 X ... X 8, = sand ay,a} € |Als,,...,an,a, € |A|s,,

ifay =5, a,...,a, =, a then fa(ay,...,a,) =5 falal,...,a)).

Theorem: For any relation R C |A| x |A| on the carrier of a Y.-algebra A, there
exists the least congruence on A that contains R.

Proof (idea):

e generate the least congruence from R by closing it under reflexivity, symmetry,
transitivity and the operations in A; or

e the intersection of any family of congruences on A is a congruence on A.
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Congruences I

o for A € Alg(>), a X-congruence on A is an equivalence = C |A| x |A]| that is
closed under the operations:

— for fi 81 X ... X 8, = sand ay,a} € |Als,,...,an,a, € |Als,,

if a1 =5, al,...,an =5, a, then fa(ay,...,a,) =5 falay,...,a).

Theorem: For any relation R C |A| x |A| on the carrier of a Y:-algebra A, there
exists the least congruence on A that contains R.

Theorem: For any Y-homomorphism h: A — B, the kernel of h, K(h) C |A| x |A
where a K(h) a’ iff h(a) = h(a’), is a ¥%-congruence on A.
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Congruences I

o for A € Alg(X), a X-congruence on A is an equivalence = C |A| x |A] that is
closed under the operations:

— for fi 81 X ... X 8, = sand ay,a} € |Als,,...,an,a, € |Als,,
if a1 =5, al,...,an =5, a, then fa(ay,...,a,) =5 falay,...,a).
Theorem: For any relation R C |A| x |A| on the carrier of a Y:-algebra A, there

exists the least congruence on A that contains R.

Theorem: For any ¥-homomorphism h: A — B, the kernel of h, K(h) C |A| x |4],
where a K(h) a’ iff h(a) = h(a’), is a ¥%-congruence on A.

Proof: For f:s1 X ... X s, = sand ay,a] € |Als,,-..,an,a, €|As,
if a1 K(h),, aj,...,an K(h), a then fa(a1,...,a,) K(h), falai,... a;,), since
hs(falar,...,an)) = fe(hs,(a1),... ks, (an)) = fB(hs, (1), - 7h3n( )) =

Andrzej Tarlecki: Category Theory, 2025 - 10 -



Congruences I

o for A € Alg(>), a X-congruence on A is an equivalence = C |A| x |A]| that is
closed under the operations:

— for fi 81 X ... X 8, = sand ay,a} € |Als,,...,an,a, € |Als,,

if a1 =5, al,...,an =5, a, then fa(ay,...,a,) =5 falay,...,a).

Theorem: For any relation R C |A| x |A| on the carrier of a Y:-algebra A, there
exists the least congruence on A that contains R.

Theorem: For any Y-homomorphism h: A — B, the kernel of h, K(h) C |A| x |A
where a K(h) a’ iff h(a) = h(a’), is a ¥%-congruence on A.
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Quotients I

e for A € Alg(>) and X-congruence = C |A| x |A| on A, the quotient algebra
A/= is built in the natural way on the equivalence classes of =:

— fors e S, |[A/=|s ={la]l= | a € |A|s}, with [a]=z = {d' € |A|s | a =5 a'}

— for fis1 X ... x 8, > sand aj € |Als,...,an € |Als,,

fA/E([al]Ea JRIC) [an]E) — [fA(alv IR aan)]
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Quotients I

e for A € Alg(>) and X-congruence = C |A| x |A| on A, the quotient algebra
A/= is built in the natural way on the equivalence classes of =:

— fors e S, |[A/=|s ={la]l= | a € |A|s}, with [a]l= = {d' € |A|s |a=sd"}

— for fis1 X ... x 8, > sand aj € |Als,...,an € |Als,,

fA/E([al]Ea JRIC) [an]E) — [fA(alv IR aa’n)]

Theorem: The above is well-defined.
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Quotients I

o for A € Alg(>) and X-congruence = C |A| x |A| on A, the quotient algebra
A/= is built in the natural way on the equivalence classes of =:

— fors e S, |A/=|s ={a]l= | a € |A|s}, with [a]l= ={a’ € |Als | a =5 a'}
— for fis1 X ... X8, > sand aj € |Als,...,an € |Als,,

fA/E([al]Ea SR [an]E) — [fA(CLl, IR 7an)]

Theorem: The above is well-defined.

Proof: Given a} € |Als,, ..., al, € |A|s, such that @} =, a1, ..., a,, =5 ay,
— so that a; is another representant of the equivalence class [a;|=, i =1,...,n —
falai,...,an) =5 falai,...,a;,). Hence fa/=(la1]=,...|an]=) =

[falar, ... an)l= = [fa(al, ... ay)]= = fay=(lai]=, .. [a]=)
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Quotients I

e for A € Alg(>) and X-congruence = C |A| x |A| on A, the quotient algebra
A/= is built in the natural way on the equivalence classes of =:

— fors e S, |[A/=|s ={la]l= | a € |A|s}, with [a]l= = {d’ € |A|s |a=sd"}
— for frs1 X ...x 8, > sanday € |Als,...,an €|A]s,

fA/E([al]Ea JRIC) [an]E) — [fA(alv R 7an)]

Theorem: The above is well-defined. Moreover, the natural map that assigns to

every element its equivalence class is a ¥-homomorphisms | |=: A — A/=.
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Quotients I

e for A € Alg(>) and X-congruence = C |A| x |A| on A, the quotient algebra
A/= is built in the natural way on the equivalence classes of =:

— fors e S, |A/=|s ={la]l= | a € |A|s}, with [a]l= = {d' € |A|s |a=sd"}
— for frs1 X ...x 8, > sanday € |Als,...,an €|A]s,

fA/E([al}Ea JRI) [an]E) — [fA(alv IR 7an)]

Theorem: The above is well-defined. Moreover, the natural map that assigns to

every element its equivalence class is a ¥-homomorphisms | |=: A — A/=.

Theorem: Given two Y-congruences = and =’ on A, = C =’ iff there exists a
Y.-homomorphism h: A/= — A/=' such that [ |=;h = [ ]=".
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Quotients I

e for A € Alg(X) and X-congruence = C |A| x |A] on A, the quotient algebra
A/= is built in the natural way on the equivalence classes of =:

— fors e S, |[A/=|s ={la]l= | a € |A|s}, with [a]l= = {d’ € |A|s |a=sd"}
— for frs1 X ... X8, > sanday € |[Als,...,an €|A]s,

fas=(laal=, - lanl=) = [falar, . - an)]

Theorem: The above is well-defined. Moreover, the natural map that assigns to

every element its equivalence class is a ¥-homomorphisms | |=: A — A/=.

Theorem: Given two Y-congruences = and =’ on A, = C =’ iff there exists a
Y:-homomorphism h: A/= — A/=' such that | |=;h = |_]

Proof (idea): Define h(la|z) = [a]=:

/.
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Quotients I

o for A € Alg(>) and X-congruence = C |A| x |A| on A, the quotient algebra
A/= is built in the natural way on the equivalence classes of =:

— fors e S, |[A/=|s ={la]l= | a € |A|s}, with [a]=z = {d' € |A|s | a =5 a'}
— for frs1 X ...x 8, > sanday € |Als,...,an €|A]s,

fA/E([al}Ea SR [an]E) — [fA(alv IR 7an)]

Theorem: The above is well-defined. Moreover, the natural map that assigns to

every element its equivalence class is a ¥-homomorphisms | |=: A — A/=.

Theorem: Given two Y-congruences = and =’ on A, = C =’ iff there exists a
Y-homomorphism h: A/= — A/=' such that [ |=;h = [ ]=".

Theorem: For any ¥-homomorphism h: A — B, A/K(h) is isomorphic with h(A).
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Quotients I

e for A € Alg(X) and X-congruence = C |A| x |A| on A, the quotient algebra
A/= is built in the natural way on the equivalence classes of =:

— fors e S, |[A/=|s ={la]l= | a € |A|s}, with [a]=z = {d' € |A|s | a =5 a'}
— for frs1 X ...x 8, > sanday € |[Als,...,an €|A]s,

fA/E([al]Ev JR) [an]E) — [fA(CLl, R 7an)]

Theorem: The above is well-defined. Moreover, the natural map that assigns to

every element its equivalence class is a ¥-homomorphisms [ |=: A — A/=.

Theorem: Given two Y-congruences = and =’ on A, = C =’ iff there exists a
Y-homomorphism h: A/= — A/=" such that | |=;h = | ]=/.

Theorem: For any Y-homomorphism h: A — B, A/K(h) is isomorphic with h(A).

Proof (idea): Check that i: A/K(h) — B defined by i(|a]kn)) = h(a) is injective
and is “onto” h(A).
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Quotients I

o for A € Alg(>) and X-congruence = C |A| x |A| on A, the quotient algebra
A/= is built in the natural way on the equivalence classes of =:

— fors e S, |[A/=|s ={la]l= | a € |A|s}, with [a]=z = {d' € |A|s | a =5 a'}
— for frs1 X ...x 8, > sanday € |Als,...,an €|A]s,

fA/E([al}Ea SR [an]E) — [fA(alv IR 7an)]

Theorem: The above is well-defined. Moreover, the natural map that assigns to

every element its equivalence class is a ¥-homomorphisms | |=: A — A/=.

Theorem: Given two Y-congruences = and =’ on A, = C =’ iff there exists a
Y-homomorphism h: A/= — A/=' such that [ |=;h = [ ]=".

Theorem: For any ¥-homomorphism h: A — B, A/K(h) is isomorphic with h(A).
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Products '

o for A; € Alg(X), ¢ € Z, the product of (A;);c7, 11;e7 As is built in the natural
way on the Cartesian product of the carriers of A;, i € Z:
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Products '

o for A; € Alg(X), ¢ € Z, the product of (A;);c7, [1;e7 As is built in the natural
way on the Cartesian product of the carriers of A;, i € Z:

BTW:

Cartesian product of sets X;, 1 € 1
HieI X

— HiEIXi = {p: 17— UiGIXi |p(@) ~ XZ,Z = Z}
X; = X, m(p) = p(k).

— projections w1 ],c7
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Products '

o for A; € Alg(X), ¢ € Z, the product of (A;);c7, [1;e7 As is built in the natural
way on the Cartesian product of the carriers of A;, i € Z:

BTW:
Cartesian product of sets X;, 1 € 1
HieI X
— JLes Xi ={p: L = U, Xi | p(3) € Xy,0 € L} (for T=10, U;er Xi =0)

— projections mi: [[.o7 Xi = Xk, m(p) = p(k).

1€l
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Products '

o for A; € Alg(X), ¢ € Z, the product of (A;);c7, [1;e7 As is built in the natural
way on the Cartesian product of the carriers of A;, 1 € Z:

— fors €S, [[Lez Ails = [z [Ails
— for fisy x...xs, wsanday € |]],c7 Ailsis---san €11z Ails,, for
€T, 1, (@ 0)(0) = fa,(01(0)s -0 (D)
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Products '

o for A; € Alg(X), ¢ € Z, the product of (A;);c7, 11;e7 As is built in the natural
way on the Cartesian product of the carriers of A;, 1 € Z:

— for s € 5, |H7:€IA’I;|S — HieI‘Ai‘S
— for fisy x...xs, wsanday € |[],c7 Ailsis---san € 1Lz Ails,,, for
P €T, i1 (@t s 00)(0) = Fa (@1 (D) n(0)

Theorem: For any family (A;), .y of ¥.-algebras, projections m;(a) = a(i), where
i €T anda€|],.7|A A; — A,

, are X-homomorphisms 7;: |1
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Products '

o for A; € Alg(X), ¢ € Z, the product of (A;);c7, 11;e7 As is built in the natural
way on the Cartesian product of the carriers of A;, i € Z:

— for s € 85, |H,L-€IA7L|8 — HZ‘GI‘Ai‘S
— for fisy x...xs, wsanday € |[],c7 Ailsis---san €]z Ails,, for
€T, fi1, (@, s 0)(0) = fa,(01(0), -0 ()

Theorem: For any family (A;), ., of ¥-algebras, projections m;(a) = a(i), where
i €T anda € |],c.7|A A; — A,

, are X-homomorphisms 7;: | ],.1

Define the product of the empty family of X-algebras.
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Products '

o for A; € Alg(X), ¢ € Z, the product of (A;);c7, 11;e7 As is built in the natural
way on the Cartesian product of the carriers of A;, i € Z:

— for s € 5, |H,L-€IA7L|S — H@'QI‘AZ"S
— for fisy x...xs, wsanday € |[],c7 Ailsis---san €]z Ails,, for
€T, fi1, (@, s 0)(0) = fa,(01(0), -0 ()

Theorem: For any family (A;), ., of ¥-algebras, projections m;(a) = a(i), where
i €T anda € ]],7|A A; — A;.

, are ¥X-homomorphisms ;2 [[,c7

Define the product of the empty family of X-algebras.

When the projection 7; is an isomorphism?

Andrzej Tarlecki: Category Theory, 2025



Define H, S, P: 2A18(%) _ 9Alg(>)

H

S

P
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7—[877'

Define H,S, P: 2A18(%) 5 9Ale(®) for P C Alg(X):
o HV)={h(A)| A€V, h: A — B}
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7—[877'

Define H,S, P: 2A18(%) 5 9Ale(®) for P C Alg(X):
o HV)={h(A)| A€V, h: A — B}
° S(V) = {Asub ‘ Aqp CT A€ V}

Andrzej Tarlecki: Category Theory, 2025

- 13-



7—[877'

Define H,S, P: 2A18(%) 5 9Ale(®) for P C Alg(X):
o HV)={h(A)| A€V, h: A — B}

o S(V)={Asuwp | Asur C A€V}

e PW)={P|P=]],c7 Ai, forieZ, A; eV}
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7—[877'

Define H,S, P: 2A18(%) 5 9Ale(®) for P C Alg(X):
o HV)={h(A)| A€V, h: A — B}
o S(V)={Asuwp | Asur C A€V}
e PW)={P|P=]],c7 Ai, forieZ, A; eV}
o HSP(V) = H(S(P(V)))
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7—[877'

Define H,S, P: 2A18(%) 5 9Ale(®) for P C Alg(X):
o HV)={h(A)| A€V, h: A — B}
o S(V)={Asuwp | Asur C A€V}
e PW)={P|P=]],c7 Ai, forieZ, A; eV}
o HSP(V) = H(S(P(V)))

Fact: FEach O € {H,S,P} is a closure operator on 2Alg(X) .
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H S§ P

Define H,S, P: 2A18(%) 5 2Al8(X) for P C Alg(X):
o HV)={h(A)|AcV,h: A— B}
° S(V) — {Asub ’ Aqp C A€ V}
o PV)={P|P2][,c; Ai, fori € T,A; € V}
o HSP(V)=H(S(P(V)))

Fact: Each O € {#H,S,P} is a closure operator on 2418(>) -
YV COW) OOW)) =0() OWV) COW)
for V C Alg(X) and V' CV,
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H S§ P

Define H,S, P: 2A18(%) 5 2Al8(X) for P C Alg(X):
o HV)={h(A)|AcV,h: A— B}
° S(V) — {Asub ’ Aqp C A€ V}
o PV)={P|P2][,c; Ai, fori € T,A; € V}
o HSP(V)=H(S(P(V)))

Fact: Each O € {#H,S,P} is a closure operator on 2418(>) -
YV COW) OOW)) =0() OWV) COW)
for V C Alg(X) and V' CV,

Fact: |P(H(V)) CH(P(V))
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H S§ P

Define H,S, P: 2A18(%) 5 2Al8(X) for P C Alg(X):
o HV)={h(A)|AcV,h: A— B}
° S(V) — {Asub ’ Aqp C A€ V}
o PV)={P|P2][,c; Ai, fori € T,A; € V}

o HSP(V) = H(S(P(V)))

Fact: Each O € {#H,S,P} is a closure operator on 2418(>) -

YV COWW)

OOW)=0WV)| |O0WV)cOol)

Fact: |P(H(V)) CH(P(V))

for V C Alg(X) and V' CV,

P(S(V)) € S(P(V))
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H S§ P

Define H,S, P: 2A18(%) 5 2Al8(X) for P C Alg(X):
o HV)={h(A)|AcV,h: A— B}
° S(V) — {Asub ’ Aqp C A€ V}
o PV)={P|P2][,c; Ai, fori € T,A; € V}
o HSP(V)=H(S(P(V)))

Fact: Each O € {#H,S,P} is a closure operator on 2418(>) -

Fact:

YV COWW)

OOW)=0WV)| |O0WV)cOol)

PH((V)) € H(P(V))

for V C Alg(X) and V' CV,

P(S(V)) C S(P(V)) SH(V)) CH(S(V))
for V C Alg(Y).
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H S§ P

Define H,S, P: 2A18(%) 5 2Al8(X) for P C Alg(X):
o HV)={h(A)|AcV,h: A— B}
° S(V) — {Asub ’ Aqp C A€ V}
o PV)={P|P2][,c; Ai, fori € T,A; € V}
o HSP(V)=H(S(P(V)))

Fact: Each O € {#H,S,P} is a closure operator on 2418(>) -

YV COW) OOW)) =0(V) oWV’ Cc o)

for V C Alg(X) and V' CV,

Fact: |P(H(V)) CH(P(V))| |P(SV)) S S(PV)) S(H(V)) S H(S(V))

Corollary:

for V C Alg(Y).

HSP: 2M18(2) _, 9Al8(X) js 5 closure operator on 2A18(%)
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7—[877'

Define H,S,P: 2A18(%) 5 2Ale(®) for Y C Alg(X):
o HV)={h(A)| A€V, h: A— B}
° S(V) = {Asub ‘ Asub C A € V}
o PV)={P|P=]],cz A, foricI A; €V}
o HSP(V) =H(S(P(V)))

Fact: FEach O € {H,S,P} is a closure operator on 2Alg(X) .

YV COWV) OOW)) =0() oWV’ CcoWw)

for V C Alg(X) and V' C VY,

Fact: |P(H(V)) CH(P(V))| |P(S(V)) CS(P(YV)) S(H(V)) S H(S(V))

Corollary:

for YV C Alg(X).

HSP: 2M18(2) _, 9A18(X) s 5 closure operator on 2A18(%)

No other order of H, &, P works!
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Terms '

Consider an S-sorted set X of variables.

o terms t € |I;(X)| are built using variables X, constants and operations from {2
in the usual way: |Tx(X)| is the least set such that

- X C[Tx(X)]

— for fis1 X ... x 8, > sand t; € [T (X)|syy---,tn € |T2(X)]s,,
f(t1,...,tn) € [T (X)|s

Andrzej Tarlecki: Category Theory, 2025

- 14 -



Terms '

Consider an S-sorted set X of variables.
e terms t € |[Tx(X)| are built using variables X, constants and operations from 2
in the usual way: |Tx(X)| is the least set such that
- X C [Ts(X)
— for frsy x...x 8, = sand t; € |T5(X)|sys---stn € [T2(X)]|s,,
f(ts. . stn) € [Te(X)]s
BTW:
— f(t1,...,ty) really is “f" 70" "ty 70 T,
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Terms '

Consider an S-sorted set X of variables.

e terms t € |[Tx(X)| are built using variables X, constants and operations from 2
in the usual way: |Tx(X)| is the least set such that

- X C [Ts(X)

— for f: S1 X ...X S8, —>sandt] € |T2(X)‘31,...,tn < ’TE(X”Snv
ft, .o otn) € [Tx(X)]s

BTW:

— f(t1,. ., ty) reallyis “f" " (" "t ") T,

— constants: for f: s (i.e. f: — s), the term f() is simply written as f
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Terms '

Consider an S-sorted set X of variables.

e terms t € |[Tx(X)| are built using variables X, constants and operations from 2
in the usual way: |Tx(X)| is the least set such that

- X C [Ts(X)

— for f: S1 X ...X S8, —>sandt] € |TE(X)‘31,...,tn < ’TE(X”Snv
ft, .o otn) € [Tx(X)]s

BTW:

— f(t1,. ., ty) reallyis “f" " (" "t ") T,

— constants: for f: s (i.e. f: — s), the term f() is simply written as f

— overloading may cause problems with “parsing’:

S
consider for instance a: s1, f: s1 — s,a: So, f: S9 — S; ¢7‘ \f
a:Ssi a:S2

then there are “two” terms “f(a)" of sort s
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Terms '

Consider an S-sorted set X of variables.

e terms t € |[Tx(X)| are built using variables X, constants and operations from 2
in the usual way: |Tx(X)| is the least set such that
- X C [Ts(X)
— for fi sy X ...x 8, > sand t; € [Tx(X)|syy---,tn € |T2(X)]s,,
f(ts. . stn) € [Te(X)]s
BTW:
— f(t1,. ., ty) reallyis “f" " (" "t ") T,
— constants: for f: s (i.e. f: — s), the term f() is simply written as f

— overloading may cause problems with “parsing’:

S
consider for instance a: s1, f: s1 — s,a: So, f: S9 — S; ¢7‘ \f
a:Si a:Ss2

then there are “two” terms “f(a)" of sort s
— better write terms for instance as f(a:s1):s and f(a:s2):s.
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Terms '

Consider an S-sorted set X of variables.

o terms t € |Tx(X)| are built using variables X, constants and operations from {2
in the usual way: |Tx(X)| is the least set such that

- X C|T=(X)

— for fis1 x...x 8, > sand t; € [Tx(X)|syy---,tn € |T2(X)]s,,
f(t1,...,tn) € [T (X)|s

Above and in the following: assuming unambiguous “parsing” of terms!
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Terms '

Consider an S-sorted set X of variables.

o terms t € |Tx;(X)| are built using variables X, constants and operations from {2
in the usual way: |Tx(X)| is the least set such that
- X ¢ [Tx(X)]
— for f: S1 X ...X 8, — sandty € |T2(X)‘81,...,tn c ‘TZ(X)L%’
fti, ... tn) € [Tn(X)]s
e for any X-algebra A and valuation v: X — |A|, the value t o[v] € |A|s of a term
t € |Ts(X)|s in A under v is determined inductively:

— xalv] =vg(x), forx € X5, s €S

— (f(t1,.. - tn))alv] = fa((tr)alv], ..., (tn)alv]), for frsy x...xs, =5
and t1 € [Ts(X)|sys---stn € |T(X)]s,
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Terms '

Consider an S-sorted set X of variables.

o terms t € |Tx(X)| are built using variables X, constants and operations from {2
in the usual way: |Tx(X)| is the least set such that

- X C|Ts(X)|
— for frs1 X ... x 8, = sand t; € |[T5(X)|sys- -5 tn € [T2(X)]s, .
f(tla---atn) S |TZ(X)‘3
e for any Y-algebra A and valuation v: X — |A|, the value t o[v] € |A|s of a term
t € |Ts(X)|s in A under v is determined inductively:
— xalv] =vs(x), forxz e X, s €8

— (f(t1,...,tn))alv] = fa((t1)alv], ..., (tn)alv]), for frs1 X ... X s, =5
and t; € |TE(X)|817"'7tn S |TE(X)’87’L

BTW: There are three kinds of parenthesis here!
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Terms '

Consider an S-sorted set X of variables.

o terms t € |Tx(X)| are built using variables X, constants and operations from {2
in the usual way: |Tx(X)| is the least set such that
- X C [Tx(X)
— for frsy x...x 8, = sand t; € |[T5(X)|sys---stn € [T9(X)]s, .
flti, ... tn) € [Tx(X)]s
e for any Y-algebra A and valuation v: X — |A|, the value t o[v] € |Al|s of a term
t € |Ts(X)|s in A under v is determined inductively:
— xalv] =vg(x), forx € X4, s €S

— (f(t1,. .. tn))alv] = fa((t1)alv], ..., (tn)alv]), for fis1 x ... X8, = s
and ¢y € |TE(X)|S17"'7tn S |TE(X)‘3n

Above and in the following: assuming unambiguous “parsing” of terms!
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Term algebras I

Consider an S-sorted set X of variables.

e The term algebra Tx;(X) has the set of terms as the carrier and operations
defined “syntactically”:
— for frsy x...x 8, = sand t; € |[T5(X)|sys---stn € [T2(X)]|s, .
fTE(X)(tly costn) = f(t1, .. tn).
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Term algebras I

Consider an S-sorted set X of variables.

e The term algebra Tx(X) has the set of terms as the carrier and operations
defined “syntactically”:

— for frs1 x ... xs, = sand t; € |Txn(X)|sy,s---stn € |T2(X)]s,,,
ng(X)(tla'“?tn) — f(t177tn)

e Ground terms: terms with no variables.

e Ground term algebra:

Ty, =Tx(0)
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Term algebras I

Consider an S-sorted set X of variables.

e The term algebra Tx;(X) has the set of terms as the carrier and operations
defined “syntactically”:

— for frs1 x ... xs, = sand t; € |Tx(X)|sy,s---stn € |T2(X)]s,,,
fTE(X)(tlw“vtn) — f(t177tn)

Fact: Tx(X) is generated by X; Tx, is reachable.
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Term algebras I

Consider an S-sorted set X of variables.

e The term algebra Tx(X) has the set of terms as the carrier and operations
defined “syntactically”:
— for frs1 X ... x 8, = sand t; € |Tx(X)|sys---stn € [T2(X)]s, .
frex)(1, i tn) = f(t1, ... tn).

Theorem: For any S-sorted set X of variables,

d
e X | To (X)) .

Set” Alg(®)

T5(X)] Ts(X)
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Term algebras I

Consider an S-sorted set X of variables.

e The term algebra Tx(X) has the set of terms as the carrier and operations

defined “syntactically”:
— for fis1 x ... x s, = sand t; € |Tx(X)|sys---stn € |T5(X)]s,,,
freo)(te, o ostn) = f(t1, -0 tn).

Theorem: For any S-sorted set X of variables, Y-algebra A and valuation
v: X — |A],

WX | Te (X
X L 11 (X) Ts(X)

Set” Alg(D)

Al A
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Term algebras I

Consider an S-sorted set X of variables.

e The term algebra Tx(X) has the set of terms as the carrier and operations
defined “syntactically”:
— for frs1 X ... x 8, = sand t; € |Tx(X)|sys---stn € [T2(X)]s, .
frex)(1, i tn) = f(t1, ... tn).
Theorem: For any S-sorted set X of variables, Y-algebra A and valuation
v: X — |A|, there is a unique X-homomorphism v¥* : Ts;(X) — A that extends v.

x| T (X))

X > |15 (X)) T5(X)
Set® > 07| [ Alg(X)
4] A
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Term algebras I

Consider an S-sorted set X of variables.

e The term algebra Tx(X) has the set of terms as the carrier and operations
defined “syntactically”:
— for frs1 X ... x 8, = sand t; € |Tx(X)|sys---stn € [T2(X)]s, .
ng(X)(t].? cotn) = f(t1, ... tn).
Theorem: For any S-sorted set X of variables, Y-algebra A and valuation

v: X — |A|, there is a unique X-homomorphism v# : Ts(X) — A that extends v.
Moreover, fort € |Ts,(X)|, v¥#(t) = ta[v].

x| T (X))

X > |15 (X)) T5(X)
Set® > 07| [ Alg(X)
4] A

Andrzej Tarlecki: Category Theory, 2025 - 15 -



One simple consequence'
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One simple consequence'

Notation: Givent € |Tx(X)|, z1 € Xs,, t1 € |[Ts(X)|sy, -- -, Tn € X5, ,

tn € | Ts(X)|s,, x1, ..., xn mutually distinct:
t with t1, ..., t, simultaneously substituted for x1, ..., x,, respectively:
t[xll%tl, ce ,antn]
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One simple consequence'

Notation: Givent € |TE(X) , L1 € Xsl, t1 € |TE(X)‘51, o, Ty € Xsn;

tn € |Ts(X)|s,, x1, ..., xn mutually distinct:
t with t1, ..., t, simultaneously substituted for x1, ..., x,, respectively:
t[xp%tl, ce ,antn]

Fact: t[iIZ‘ll—)tl][le—)tQ] = t[$1|—>t1[$2|—>t2], ZEQI—HfQ]
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One simple consequence'

tn € |Ts(X)|s,, x1, ..., xn mutually distinct:
t with t1, ..., t, simultaneously substituted for x1, ..., x,,, respectively:
t[xll%tl, e ,antn]

Fact: t[ZCll—HleZUQI—)tQ] = t[$1|—>t1[$2|—>t2], CIZ‘QI—HfQ]

Proof: By laborious (double) induction on the structure of ¢ and ¢;.
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One simple consequence'

tn € |Tx(X)|s,, x1, ..., xn mutually distinct:
t with tq, ..., t, simultaneously substituted for x+, ..., x,, respectively:
t[$1|—>t1, e ,xnl—>tn]

Fact: t[:Cll—)tl][iEQl—)tQ] = t[ﬂ?ll—)tl[CEQI—)tQ], ZCQI—HfQ]
Proof: By laborious (double) induction on the structure of ¢ and ¢;.

Alternative:

Generalise!

Andrzej Tarlecki: Category Theory, 2025
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One simple consequence'

Notation: Given substitution 8: X — |Tx(X)|:

t with substitution 6 carried out: t|0]
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One simple consequence'

Notation: Given substitution 8: X — |Tx(X)|:

t with substitution 6 carried out: t|0]

Fact: t[0] = try(x)[0] = 67 (¢)

X

x| Ty (X))

Set®

> |15 (X)] T%(X)
> 67| 31| g#
T (X)| Ts(X)

Andrzej Tarlecki: Category Theory, 2025

- 16 -



One simple consequence'

Theorem: For any S-sorted sets X,Y and Z (of variables) and substitutions
01: X - |Tx(Y)| and 05: Y — |Tx(Z)]

Alg(%)
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One simple consequence'

Theorem: For any S-sorted sets X,Y and Z (of variables) and substitutions
01: X - |Tx(Y)| and 05: Y — |Tx(Z)]

Alg(X)
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One simple consequence'

Theorem: For any S-sorted sets X,Y and Z (of variables) and substitutions
01: X - |Tx(Y)| and 05: Y — |Tx(Z)]

Alg(%)

1 (01;07)#
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One simple consequence'

Theorem: For any S-sorted sets X,Y and Z (of variables) and substitutions
01: X - |Tx(Y)| and 05: Y — |Tx(Z)]

ot 0t = (01:08)

Alg(X)

1 (01;07)#

Andrzej Tarlecki: Category Theory, 2025
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One simple consequence'

Theorem: For any S-sorted set X, Y.-algebras A, B € Alg(X), valuation

v: X — |A| and ¥-homomorphism h: A — B,

v#:h = (v;h)?

In other words, for any term t € |Tx(X)|s, hs(talv]) =

x| T (X))

X >~ !Tz:(X)I\
Set”

i

3!
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Consequences for reachability'
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Consequences for reachability'

Set”

| 0] 3| p#
idp| A
Al A

Alg(%)
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Consequences for reachability'

id@;ﬂ Ts|

0 T T
Set? o o e Al
s
Al A

Theorem:
e for any Y-algebra A € Alg(X), there is a unique 3-homomorphism ! 4: T, — A.
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Consequences for reachability'

idges| T
SetS o 0] e Alg)
—
A A

Theorem:
e for any Y-algebra A € Alg(X), there is a unique 3-homomorphism ! 4: Ty, — A.
e Y-algebra A € Alg(X) is reachable iff the unique homomorphism '4: Ty, — A is

surjective.

Andrzej Tarlecki: Category Theory, 2025 - 17 -



Consequences for reachability'

Set” . 07| Jlg#  Alg(X)
idpe| A

N

Al

Theorem:
e for any Y-algebra A € Alg(X), there is a unique 3-homomorphism ! 4: Ty, — A.
e Y-algebra A € Alg(X) is reachable iff the unique homomorphism '4: Ty, — A is

surjective.
e Each reachable X-algebra is isomorphic to a quotient of Tx..
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Consequences for reachability'

idges| T
SetS o 0] e Alg)
—
A A

Theorem:
e for any Y-algebra A € Alg(X), there is a unique 3-homomorphism ! 4: Ty, — A.
e Y-algebra A € Alg(X) is reachable iff the unique homomorphism '4: Ty, — A is
surjective.
e Each reachable X-algebra is isomorphic to a quotient of Tx..
e for any Y-algebras A, B € Alg(X), if A is reachable then there is at most one
homomorphism h: A — B.

Andrzej Tarlecki: Category Theory, 2025 - 17 -



Consequences for reachability'

idges| T
SetS o 0] e Alg)
—
A A

Theorem:

e for any Y-algebra A € Alg(X), there is a unique 3-homomorphism ! 4: Ty, — A.

e Y-algebra A € Alg(X) is reachable iff the unique homomorphism '4: Ty, — A is

surjective.

e Each reachable X-algebra is isomorphic to a quotient of Tx..

e for any Y-algebras A, B € Alg(X), if A is reachable then there is at most one
homomorphism h: A — B.

e for any reachable X-algebra A, each homomorphism h: B — A is surjective.

Andrzej Tarlecki: Category Theory, 2025
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Equaﬁons'

VX.it=1t

e Equation:

where:
— X is a set of variables, and

— t,t' € |[Txs(X)|s are terms of a common sort.

Andrzej Tarlecki: Category Theory, 2025



Equaﬁons'

VX.it=1t

e Equation:

where:
— X is a set of variables, and

— t,t' € |[Txs(X)|s are terms of a common sort.

e Satisfaction relation: Y-algebra A satisfies VX.t =t/

AEvXt=t

when for all v: X — |A], ta[v] = t/4[v].
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Equaﬁons'

VX.it=1t

e Equation:

where:
— X is a set of variables, and

— t,t' € |[Txs(X)|s are terms of a common sort.

e Satisfaction relation: Y-algebra A satisfies VX.t =t/

AEvXt=t

when for all v: X — |A], ta[v] = t/4[v].

BTW: A = VX.t =t holds “trivially” if for some s € S, X, £ 0 and |A|; = 0.

Andrzej Tarlecki: Category Theory, 2025
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Semantic entailment '

¢ =5 @

Yi-equation @ Is a semantic consequence of a set of Y-equations ®

if ¢ holds in every X:-algebra that satisfies ®.
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Semantic entailment'

¢ =5 @

Yi-equation @ Is a semantic consequence of a set of Y-equations ®

if ¢ holds in every X:-algebra that satisfies ®.

BTW:
e Models of a set of equations: Mod(®) ={A € Alg(X) | A = ¢}
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Semantic entailment'

¢ =5 @

Yi-equation @ Is a semantic consequence of a set of Y-equations ®

if ¢ holds in every X:-algebra that satisfies ®.

BTW:
e Models of a set of equations: Mod(®) ={A € Alg(X) | A = ¢}
e Theory of a class of algebras: Th(C) = {¢ | C & ¢}
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Semantic entailment'

¢ =5 @

Yi-equation @ Is a semantic consequence of a set of Y-equations ®

if ¢ holds in every X:-algebra that satisfies ®.

BTW:
e Models of a set of equations: Mod(®) ={A € Alg(X) | A = ¢}
e Theory of a class of algebras: Th(C) = {p | C E ¢}
o P=¢p <— pec Th(Mod(®P))
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Semantic entailment'

¢ =5 @

Yi-equation @ Is a semantic consequence of a set of Y-equations ®

if ¢ holds in every X:-algebra that satisfies ®.

BTW:

Models of a set of equations: Mod(®) = {A € Alg(X) | A = &}
Theory of a class of algebras: Th(C) = {p | C E ¢}
b= <= pe Th(Mod(P))

Mod and Th form a Galois connection: Mod(®) O C iff ® C Th(C).

— CC Mod(Th(C)), ® C Th(Mod(®P))
— Mod(Th(Mod(®))) = Mod(®), Th(Mod(Th(C))) = Th(C)

Andrzej Tarlecki: Category Theory, 2025
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Equational specifications'

(%, @)

e signature X, to determine the static module interface
e axioms (-equations), to determine required module properties
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Equational specifications'

(%, @)

e signature X, to determine the static module interface
e axioms (-equations), to determine required module properties

BUT:

Equational specifications typically admit a lot of undesirable “modules”
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Equational specifications'

(%, @)

e signature X, to determine the static module interface
e axioms (-equations), to determine required module properties

BUT:

Equational specifications typically admit a lot of undesirable “modules”

Theorem: A class of Y.-algebras is equationally definable iff it is a variety
(i.e. is closed under subalgebras, products and homomorphic images).
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Equational specifications'

(%, @)

e signature X, to determine the static module interface
e axioms (-equations), to determine required module properties

BUT:

Equational specifications typically admit a lot of undesirable “modules”

Theorem: A class of Y.-algebras is equationally definable iff it is a variety
(i.e. is closed under subalgebras, products and homomorphic images).

for YV C Alg(X):
Mod(Th(V)) =V iff V =HSP(V)
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Equational specifications'

(%, @)

e signature X, to determine the static module interface
e axioms (-equations), to determine required module properties

BUT:

Equational specifications typically admit a lot of undesirable “modules”

Theorem: A class of Y.-algebras is equationally definable iff it is a variety
(i.e. is closed under subalgebras, products and homomorphic images).

for YV C Alg(X): “—": Easy!
Mod(Th(V)) =V iff V =HSP(V)
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Equational specifications'

(%, @)

e signature X, to determine the static module interface

e axioms (-equations), to determine required module properties

BUT:

Equational specifications typically admit a lot of undesirable “modules”

Theorem: A class of Y.-algebras is equationally definable iff it is a variety

(i.e. is closed under subalgebras, products and homomorphic images).

for YV C Alg(X):
Mod(Th(V)) =V iff V =HSP(V)

i 7

—": Easy!

'y 144

<=": Not so easy, hints later. . .

Andrzej Tarlecki: Category Theory, 2025
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Example

spec NAIVENAT = sort Nat
ops 0: Nat;
succ: Nat — Nat;
_+_: Nat x Nat — Nat
axioms Vn:Nat en + 0 = n;

Vn, m:Nat e n + succ(m) = succ(n + m)

Now:
NAIVENAT = Vn,m:Naten+m=m+n

Andrzej Tarlecki: Category Theory, 2025
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How to fix this'

e Other (stronger) logical systems: conditional equations, first-order logic,
higher-order logics, other bells-and-whistles
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How to fix this'

e Other (stronger) logical systems: conditional equations, first-order logic,
higher-order logics, other bells-and-whistles

There has been a population explosion among logical systems. ..
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How to fix this'

e Other (stronger) logical systems: conditional equations, first-order logic,
higher-order logics, other bells-and-whistles

— more about this elsewhere. .. (Institutions!]

There has been a population explosion among logical systems. ..
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How to fix this'

e Other (stronger) logical systems: conditional equations, first-order logic,
higher-order logics, other bells-and-whistles

— more about this elsewhere. .. (Institutions!]

e (Constraints:
— reachability (and generation): “no junk”

— initiality (and freeness): “no junk” & “no confusion”

There has been a population explosion among logical systems. ..
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How to fix this'

e Other (stronger) logical systems: conditional equations, first-order logic,
higher-order logics, other bells-and-whistles

— more about this elsewhere. .. (Institutions!]

e (Constraints:
— reachability (and generation): “no junk”
— initiality (and freeness): “no junk” & “no confusion”

Constraints can be thought of as special (higher-order) formulae.

There has been a population explosion among logical systems. ..

Andrzej Tarlecki: Category Theory, 2025 -22 -



Initial models '

Theorem: Every equational specification (3, ®) has an initial model: there exists a
Y-algebra I € Mod(®) such that for every Y.-algebra M € Mod(®) there exists a
unique >-homomorphism from I to M.
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Initial models '

Theorem: Every equational specification (3, ®) has an initial model: there exists a

Y-algebra I € Mod(®) such that for every Y.-algebra M € Mod(®) there exists a
unique >-homomorphism from I to M.

Proof (idea):

e [ is the reachable subalgebra of the product of “all” (up to isomorphism)
reachable algebras in Mod(®).
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Initial models '

Theorem: Every equational specification (3, ®) has an initial model: there exists a

Y-algebra I € Mod(®) such that for every Y.-algebra M € Mod(®) there exists a
unique >-homomorphism from I to M.

Proof (idea):

e [ is the reachable subalgebra of the product of “all” (up to isomorphism)
reachable algebras in Mod(®).

I = <P>@;>-P
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Initial models '

Theorem: Every equational specification (3, ®) has an initial model: there exists a

Y-algebra I € Mod(®) such that for every Y.-algebra M € Mod(®) there exists a
unique >-homomorphism from I to M.

Proof (idea):

e [ is the reachable subalgebra of the product of “all” (up to isomorphism)
reachable algebras in Mod(®).

I=(P)y—>P ME S
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Initial models '

Theorem: Every equational specification (3, ®) has an initial model: there exists a

Y-algebra I € Mod(®) such that for every Y.-algebra M € Mod(®) there exists a
unique >-homomorphism from I to M.

Proof (idea):

e [ is the reachable subalgebra of the product of “all” (up to isomorphism)
reachable algebras in Mod(®).

I:<P>@;>-P <M>(/);>-M|:(I)
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Initial models '

Theorem: Every equational specification (3, ®) has an initial model: there exists a

Y-algebra I € Mod(®) such that for every Y.-algebra M € Mod(®) there exists a
unique >-homomorphism from I to M.

Proof (idea):

e [ is the reachable subalgebra of the product of “all” (up to isomorphism)
reachable algebras in Mod(®).

I =(P)y—>P Ty /=<+— (M)y—>M =
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Initial models '

Theorem: Every equational specification (3, ®) has an initial model: there exists a

Y-algebra I € Mod(®) such that for every Y.-algebra M € Mod(®) there exists a
unique >-homomorphism from I to M.

Proof (idea):

e [ is the reachable subalgebra of the product of “all” (up to isomorphism)
reachable algebras in Mod(®).

I =(P)yy—>»P— Ty /=<+—> (M)§—>M =
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Initial models '

Theorem: Every equational specification (3, ®) has an initial model: there exists a

Y-algebra I € Mod(®) such that for every Y.-algebra M € Mod(®) there exists a
unique >-homomorphism from I to M.

Proof (idea):

e [ is the quotient of the algebra of ground Y-terms by the congruence that glues
together all ground terms ¢, ¢’ such that ® = V0.t =t'.
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Initial models '

Theorem: Every equational specification (3, ®) has an initial model: there exists a

Y-algebra I € Mod(®) such that for every Y.-algebra M € Mod(®) there exists a
unique >-homomorphism from I to M.

Proof (idea):

e [ is the quotient of the algebra of ground Y-terms by the congruence that glues
together all ground terms ¢, ¢’ such that ® = V0.t =t'.

BTW: This can be generalised to the existence of a free
model of (3, ®) over any (many-sorted) set of data.
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Free models '

Theorem: For any equational specification (3, ®) and S-sorted set X, there exists
an algebra F' € Mod(®) over X that is free over X with unit n: X — |F
that for every Y.-algebra M € Mod(®) and valuation v: X — |M
unique Y-homomorphism h: F' — M such that n;h = v.

, I.e. such

. there exists a
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Free models '

Theorem: For any equational specification (3, ®) and S-sorted set X, there exists
an algebra F' € Mod(®) over X that is free over X with unit n: X — |F
that for every ¥-algebra M € Mod(®) and valuation v: X — |M
unique Y-homomorphism h: F' — M such that n;h = v.

, I.e. such

. there exists a

X i - |F| F

Set® h 3|p Mod(®)

| M| M
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Free models '

Theorem: For any equational specification (3, ®) and S-sorted set X, there exists
an algebra F' € Mod(®) over X that is free over X with unit n: X — |F
that for every ¥-algebra M € Mod(®) and valuation v: X — |M
unique Y-homomorphism h: F' — M such that n;h = v.

, I.e. such

. there exists a

X d -~ |F| F
Set” > h Jn  Mod(®)
| M| M

Proof:
— Define = C ’TE(X” X |T2(X)| t1 = t9 Iff & ‘: \V/X.tl = 19
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Free models '

Theorem: For any equational specification (3, ®) and S-sorted set X, there exists
an algebra F' € Mod(®) over X that is free over X with unit n: X — |F)|, i.e. such
that for every 3:-algebra M € Mod(®) and valuation v: X — |M|, there exists a
unique Y-homomorphism h: F' — M such that n;h = v.

X d -~ |F| F
Set” > h 3n Mod(®)
| M| M

Proof:
— Define = C ’TE(X” X |TE(X)| t1 = t9 Iff ® ‘: \V/X.tl = {9
— Show that = is a congruence on Ty (X), and T (X)/=EF ®
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Free models '

Theorem: For any equational specification (3, ®) and S-sorted set X, there exists
an algebra F' € Mod(®) over X that is free over X with unit n: X — |F
that for every ¥-algebra M € Mod(®) and valuation v: X — |M
unique Y-homomorphism h: F' — M such that n;h = v.

, I.e. such

. there exists a

X d -~ |F| F
Set” > h 3 Mod(®)
| M| M

Proof:
— Define = C [Tx(X)| x [T (X)|: t1 =t2 iff @ EVX.t; =5
— Show that = is a congruence on Ty (X), and T (X)/=EF ®
— Show that for any M | ® with v: X — |M|, = C K(v": Tx(X) — M)
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Free models '

Theorem: For any equational specification (3, ®) and S-sorted set X, there exists
an algebra F' € Mod(®) over X that is free over X with unit n: X — |F)|, i.e. such
that for every 3.-algebra M € Mod(®) and valuation v: X — |M|, there exists a
unique >-homomorphism h: F' — M such that n;h = v.

X d -~ |F| F
Set” > h 3 Mod(®)
| M| M

Proof:
— Define = C |Tx(X)| x [T (X)|: t1 =tz iff @ EVX.t; =5
— Show that = is a congruence on Tx(X), and T (X)/=E ®
— Show that for any M = ® with v: X — |M|, = C K(v": Ts(X) — M)
— Conclude that F = Tx(X)/= with n = [_]=: X — |F| has the required property.

Andrzej Tarlecki: Category Theory, 2025 - 23 -



C|Ts(X)| % |Ts(X)]: t1 = to iff & = VXt = to
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C|Ts(X)| % |Ts(X)]: t1 = to iff & = VXt = to

e = is a congruence on Tx(X)
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C |TE(X)| X |T2(X)| t1 = o Iff P ‘: \V/X.tl = {9

e = is a congruence on Tx(X)
— reflexivity, transitivity, symmetry: easy!

— congruence property: easy as well!
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C ’TE(X” X |T2(X)| tl = t2 Iff & ‘: \V/X.tl = tg

e = is a congruence on Tx(X)

o TE(X)/E — O
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C ’ ( )| X |T2( )| 11 = 19 Iff @ ‘: \V/X.tl = {9

e = is a congruence on Tx(X)
. Ty(X)/= |- o

Lemma: Forw:Y — |Tx(
w(y) = wy)l=, yeY.

X)/=|, let @: Y — |Ts(X

)| be such that
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C ’ ( )| X |T2( )| 11 = 19 Iff @ ‘: \V/X.tl = {9

e = is a congruence on Tx(X)

o To(X)/= O

Lemma: Forw:Y — |Tx(X)/=|, let w: Y — |Tx(X)| be such that

w(y) = [w(y)l=, y €Y. Then fort € |Tx(Y)|, try(x)/=(w] =

tre () [w]]=
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C|Ts(X)| % [Ts(X)]: t1 = to iff & = VX 1y = L

e = is a congruence on Tx(X)
o TE(X)/_ — @

Lemma: Forw:Y — |Tx(X)/=|, let w: Y — |Tx(X)| be such that
w(y) = [@(y)l=, y €Y. Then fort € [T(Y)], tryco=lw] = [tz (0 [@))=.

idy < 75 (v

Y ~ |15 (Y)] Ts(Y) —
Set® | Alg(Y)

w !

|TE(X)/E|</ TE(X)/E/
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C|Ts(X)| % [Ts(X)]: t1 = to iff & = VX 1y = L

e = is a congruence on Tx(X)
o TE(X)/: — O

Lemma: Forw:Y — |Tx(X)/=|, let w: Y — |Tx(X)| be such that
w(y) = [@(y)l=, y €Y. Then fort € [T(Y)], tryco=lw] = [tz (0 [@))=.
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C|Ts(X)| % [Ts(X)]: t1 = to iff & = VX 1y = L

e = is a congruence on Tx(X)
o TE(X)/: — O

Lemma: Forw:Y — |Tx(X)/=|, let w: Y — |Tx(X)| be such that

w(y) = (@)=, y €Y. Then fort € |Tu(Y)], tryx)/=lw] = bz [@])=.

idy < 75 (v

Y

Set®
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C ’ ( )| X |T2( )| 11 = 19 Iff @ ‘: \V/X.tl = 19

e = is a congruence on Tx(X)
Lemma: Forw:Y — |Tx(X)/=|, let w: Y — |Tx(X)| be such that

w(y) = w(y)l=, y €Y. Then fort € |Tx(Y)|, tryx)/=lw] = [try(x)|[W]]=.

Let (VY.t; =t3) € ®, and consider w: Y — |Tx(X)/=|.
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C ’ ( )| X |T2( )| 11 = 19 Iff @ ‘: \V/X.tl = 19

e = is a congruence on Tx(X)
) TE(X)/_ — O
Lemma: Forw:Y — |Tx(X)/=|, let w: Y — |Tx(X)| be such that
w(y) = w(y)l=, y €Y. Then fort € |Tx(Y)|, tryx)/=lw] = [try(x)|[W]]=.

Let (VY.t; =t9) € ®, and consider w: Y — [Tx(X)/=|.
Then & = \V/X-(tl)TE(X)[{D] = (tz)TZ(X)[{E].
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C|Ts(X)| % [Ts(X)]: t1 = to iff & = VX 1y = L

e = is a congruence on Tx(X)
o TE(X)/: — O

Lemma: Forw:Y — |Tx(X)/=|, let w: Y — |Tx(X)| be such that

w(y) = (@)=, y €Y. Then fort € |Tu(Y)], tryx)/=[w] = tr(x)[@])=.

Let (VY.t; =t2) € ®, and consider w: Y — |Tx(X)/=|.
Then ® = VXo(tl)TE(X)[{E] = (tQ)TE(X)[@].

— for M E® and v: X — [M], ((t1)1s0)[@0])mlv] = v#

|
~—~
~—~

~
\©
~—
%
s
S
N
=
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C

’TZ(XH X |T2(X)| t1 = t9 Iff d ‘: \V/X.tl = {9
= is a congruence on Tx(X)

Lemma: Forw:Y — |Tx(X)/=|, let w: Y — |Tx(X)| be such that

w(y) =wy)l=, y €Y. Then fort € |Te(Y)|, tryx)/=lw] = [ty (x)|w]]=.
Let (VY.t; =t2) € ®, and consider w: Y — [Tx(X)/=|.

Then @ = VX (t1) 1y x)[w] = (t2) 75 (x)[w].

So, by definition of =, (t1)7y,x)w] = (t2) 1y (x) W]
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C|Ts(X)| % [Ts(X)]: t1 = to iff & = VX 1y = L

e = is a congruence on Tx(X)

[ ) TE(X)/: — O

Lemma: Forw:Y — |Tx(X)/=|, let w: Y — |Tx(X)| be such that

w(y) = [w(y)l=, y €Y. Then fort e |Ts(Y)], tryx)/=lw] =

Let (VY.t; =t2) € ®, and consider w: Y — [Tx(X)/=|.
Then ® = VX-(tl)TE(X)[{E] = (tz)TE(X)[@].
So, by definition of =, (t1)7y,x)w] = (t2) 1y (x) W]

Hence (t1)71y(x)/=[w] = [(t1) e (x) [W]]= = [(t2) 7 (x) [W]] = =

L1 (0 [w]]=

(tQ)Tz(X)/E[w]
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C|Ts(X)| % [Ts(X)]: t1 = to iff & = VX 1y = L

e = is a congruence on Tx(X)

[ ) TE(X)/: — O

Lemma: Forw:Y — |Tx(X)/=|, let w: Y — |Tx(X)| be such that

w(y) = [w(y)l=, y €Y. Then fort e |Ts(Y)], tryx)/=lw] =

Let (VY.t; =t2) € ®, and consider w: Y — [Tx(X)/=|.
Then ® = VX-(tl)TE(X)[{D] = (tz)TE(X)[@].
So, by definition of =, (t1)7y,x)w] = (t2) 1y (x) W]

Hence (t1)71y(x)/=[w] = [(t1) e (x) [W]]= = [(t2) 7 (x) [W]] = =

and so

TE(X)/E |: \V/Y.tl = t2

L1 (0 [w]]=

(tQ)Tz(X)/E[w]
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C ’ ( )| X |T2( )| 11 = 19 Iff @ ‘: \V/X.tl = 19

e = is a congruence on Tx(X)
o for M = ® with v: X — |M|, = C K(v": Ts;(X) — M)
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C ’ ( )| X |T2( )| 11 = 19 Iff @ ‘: \V/X.tl = 19

e = is a congruence on Tx(X)
o for M = ® with v: X — |M|, = C K(v": Ts,(X) — M)
— Ift; =ty then M =VX.t; =ty so v (t1) = (t1)m[v] = (t2)mr[v] = v7(t2)
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g ’TE(X” X |T2(X)| tl = t2 Iff & ‘: \V/X.tl = t2

e = is a congruence on Tx(X)
o TE(X)/E:(I)
o for M = ® with v: X — |M|, = C K(v": Ts;(X) — M)

o for M = ® with v: X — |M|, there is unique 3-homomorphism
h: (Ix(X)/=) — M such that h([x]z) = v(x).
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C|Ts(X)| % [Ts(X)]: t1 = to iff & = VX 1y = L

e = is a congruence on Tx(X)
) TE(X)/_:(I)
o for M = ® with v: X — |M|, = C K(v": Ts;(X) — M)

o for M = ® with v: X — | M|, there is unique ¥-homomorphism
h: (Ix(X)/=) — M such that h([x]z) = v(x).

Ts(X)
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Free models '

Theorem: For any equational specification (3, ®) and S-sorted set X, define
= C |Tx(X)| x |[Tx(X)| so that t1 =ty iff ® =VX.t; = ts.

Then = is a congruence on Tx(X) and the quotient term algebra Tx(X)/=
unit [ |=: X — |ITx(X)/=| is free over X in Mod(®), that is Tx(X)/= € Mod(®P)
and for every ¥.-algebra M € Mod(®) and valuation v: X — |M|, there exists a
unique Y.-homomorphism h: (T (X)/=) — M such that [ |=;h = v.

with

X Limxys Tex))=
3| Mod(®)

Set® > h

| M| M
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Initial models '

Theorem: Every equational specification (3, ®) has an initial model: there exists a

Y-algebra I € Mod(®) such that for every Y.-algebra M € Mod(®) there exists a
unique >-homomorphism from I to M.

Proof (idea):

e [ is the quotient of the algebra of ground Y-terms by the congruence that glues
together all ground terms ¢, ¢’ such that ® = V0.t =t'.

e [ is the reachable subalgebra of the product of “all” (up to isomorphism)
reachable algebras in Mod(®).

BTW: This can be generalised to the existence of a free
model of (3, ®) over any (many-sorted) set of data.

Andrzej Tarlecki: Category Theory, 2025 - 23 -




Initial models '

Theorem: Every equational specification (3, ®) has an initial model: there exists a

Y.-algebra I € Mod(®) such that for every ¥.-algebra M € Mod(®) there exists a
unique >-homomorphism from I to M.

Fact: Any two initial models of an equational specification are isomorphic.

BTW: This can be generalised for free models of (3, ®)
over any (many-sorted) set of data.
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Initial models '

Theorem: Every equational specification (3, ®) has an initial model: there exists a

Y.-algebra I € Mod(®) such that for every ¥.-algebra M € Mod(®) there exists a
unique >-homomorphism from I to M.

Fact: Any two initial models of an equational specification are isomorphic.

!I/

‘\ /

BTW: This can be generalised for free models of (3, ®)
over any (many-sorted) set of data.
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Example

spec NAT = free { sort Nat
ops 0: Nat;
succ: Nat — Nat;
_+ _: Nat X Nat — Nat
axioms Vn:Nat en + 0 = n;

Vn, m:Nat e n + succ(m) = succ(n + m)

Now:
NAT E=Vn,m:Naten+m =m+n

Andrzej Tarlecki: Category Theory, 2025 =24 -



Example’

spec NAT' = free type Nat ::= 0| succ(Nat)
op _+ _: Nat x Nat — Nat
axioms Vn:Nat en + 0 = n;

Vn, m:Nat e n + succ(m) = succ(n + m)

NAT = NAT'

Andrzej Tarlecki: Category Theory, 2025
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Another example

spec STRING =
generated { sort String
ops nil: String;

a,...,z: String;

axioms Vs:String e s~ nil = s;
Vs:String @ nil ~ s = s;

Vs,t,v:Stringe s~ (t ~ v)

_ 7 _: String x String — String }

(s t) w

Andrzej Tarlecki: Category Theory, 2025
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Birkhoff’s Theorem '

Theorem: A class of Y.-algebras is equationally definable iff it is closed under
subalgebras, products and homomorphic images.

Andrzej Tarlecki: Category Theory, 2025
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Birkhoff’s Theorem '

Theorem: A class of Y.-algebras is equationally definable iff it is closed under
subalgebras, products and homomorphic images.

Proof ("<="):
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Birkhoff’s Theorem '

Theorem: A class of Y.-algebras is equationally definable iff it is closed under
subalgebras, products and homomorphic images.

Proof (“<="): Make precise and prove:
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Birkhoff’s Theorem '

Theorem: A class of Y.-algebras is equationally definable iff it is closed under
subalgebras, products and homomorphic images.

Proof (“<="): Make precise and prove:

e If C is closed under subalgebras and products then for any set X, there exists an
algebra Fx € C that is free in C over X with unit nx: X — |Fx/|,
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Birkhoff’s Theorem '

Theorem: A class of Y.-algebras is equationally definable iff it is closed under

subalgebras, products and homomorphic images.

Proof (“<="): Make precise and prove:

e If C is closed under subalgebras and products then for any set X, there exists an
algebra F'x € C that is free in C over X with unit nx: X — |Fx|, given as the
subalgebra generated by (the image under nx of) X of the product of “all”
algebras A € C generated by v(X) for v: X — |A].
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Birkhoff’s Theorem '

Theorem: A class of Y.-algebras is equationally definable iff it is closed under

subalgebras, products and homomorphic images.

Proof (“«<="): Make precise and prove:

e If C is closed under subalgebras and products then for any set X, there exists an
algebra F'x € C that is free in C over X with unit nx: X — |Fx|, given as the
subalgebra generated by (the image under nx of) X of the product of “all”
algebras A € C generated by v(X) for v: X — |A].

o For t,t' € |Ts(X)ls, if tey [nx] =t [nx] then VX .t = € Th(C).
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Birkhoff’s Theorem '

Theorem: A class of Y.-algebras is equationally definable iff it is closed under

subalgebras, products and homomorphic images.
Proof (“«<="): Make precise and prove:

e If C is closed under subalgebras and products then for any set X, there exists an
algebra Fx € C that is free in C over X with unit nx: X — |Fx/|, given as the
subalgebra generated by (the image under nx of) X of the product of “all”
algebras A € C generated by v(X) for v: X — |A].

o Fort,t' € |Tx(X)ls, if tpy [nx] =t [nx] then VX.t =t € Th(C).

o Let A€ Mod(Th(C)). Then there is a homomorphism h: F]4 — A such that
77|A|;h — id|A|.
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Birkhoff’s Theorem '

Theorem: A class of Y.-algebras is equationally definable iff it is closed under

subalgebras, products and homomorphic images.
Proof (“«<="): Make precise and prove:

e If C is closed under subalgebras and products then for any set X, there exists an
algebra F'x € C that is free in C over X with unit nx: X — |Fx|, given as the
subalgebra generated by (the image under nx of) X of the product of “all”
algebras A € C generated by v(X) for v: X — |A].

o For t,t' € |Ts(X)ls, if tey [nx] =t [nx] then VX .t = € Th(C).

o Let A€ Mod(Th(C)). Then there is a homomorphism h: F]4 — A such that
77|A|;h = id|A|. Hence A € C.
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Birkhoff’s Theorem '

Theorem: A class of Y.-algebras is equationally definable iff it is closed under

subalgebras, products and homomorphic images.
Proof (“«<="): Make precise and prove:

e If C is closed under subalgebras and products then for any set X, there exists an
algebra Fx € C that is free in C over X with unit nx: X — |Fx/|, given as the
subalgebra generated by (the image under nx of) X of the product of “all”
algebras A € C generated by v(X) for v: X — |A].

o Fort,t' € |Tx(X)ls, if tpy [nx] =t [nx] then VX.t =t € Th(C).

o Let A€ Mod(Th(C)). Then there is a homomorphism h: F]4 — A such that
77|A|;h — id|A|. Hence A € C.

Conclude:

Mod(Th(C)) = C

Andrzej Tarlecki: Category Theory, 2025 - 27 -



Equational calculus I

VXit=t

VX.t =]

VX.t=1t VXt=t VXt =+t"
VX.t' =t VX.t=t"

VX.t, =t VX.t =1t
for 0: X — |Tx(Y)]

VX.f(t1...tn) = f(t]... 1) VY.t[6] = t'[0]
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Equational calculus I

VXit=t

VX.t =t]

VX.t=1t VXt=t VXt =+t"
VX.t' =t VX.t=t"

VX.t, =t VX.t =1t

for 0: X — |Tx(Y),

VX.f(t1...tn) = f(t]... 1) VY.t[6] = t'[0]

Mind the variables!

a = b does not follow from a = f(x) and f(z) =b
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Equational calculus I

VX.t=1+¢ VXt=t VXt =1t

VX.t=t VXt =1 VXt =1t"
VX.t =t VX.t, =t VXit=1
for 0: X — |Tx(Y)]
VX.f(ty...ty) = f(t]...1) VY.t[0] = t'[6]

Mind the variables!

a = b does not follow from a = f(x) and f(x) =10

In general, Va:s.(a:s") = (b:s’) p& V0.(a:s") = (b:s').

For instance, over signature > with sorts s, s’ and constants a, b: s’ and no other

operations, for any algebra A € Alg(>) such that |A|; =10

AlEVr:is.a=Db, evenifas # by

Andrzej Tarlecki: Category Theory, 2025
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Equational calculus I

VX.t=1t VXt=t VXt =+t"
VX.t=t VX.t' =t VX.t=t"

VXt =t ... VXit,=t, VXt =1
VX.f(tr...ty) = f(t]...1) VY.t[0] = t'[6]

for 0: X — |Tx(Y),

Mind the variables!

a = b does not follow from a = f(x) and f(x) = b without a “witness” for x
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Equational calculus I

VXit=t

VX.t =]

VX.t=1t VXt=t VXt =+t"
VX.t' =t VX.t=t"

VX.t, =t VX.t =1t
for 0: X — |Tx(Y)]

VX.f(t1...tn) = f(t]... 1) VY.t[6] = t'[0]
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Equational calculus I

VX.t=1+¢ VXt=t VX.t'=+t"
VX.t=t VX.t' =t VX.t=1t"

VXt =t ... VXit,=t, VXt=1
VX.f(t1...tn) = f(£]... 1) VY.t[6] = t'[0]

for 0: X — |Ts(Y)]

o reflexivity, symmetry, transitivity: clear
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Equational calculus I

VX.t=1+¢ VXt=t VX.t'=+t"
VX.t=t VX.t' =t VX.t=1t"

VXt =t ... VXit,=t, VXt =1
VX.f(t1...tn) = f(£]... 1) VY.t[6] = t'[0]

for 0: X — |Ts(Y)]

o reflexivity, symmetry, transitivity: clear

e congruence: clear as well
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Equational calculus I

VX.t=1+¢ VXt=t VX.t'=+t"
VX.t=t VX.t' =t VX.t=1t"

VXt =t ... VXit,=t, VXt =1
VX.f(t1...tn) = f(£]... 1) VY.t[6] = t'[0]

for 0: X — |Ts(Y)]

o reflexivity, symmetry, transitivity: clear
e congruence: clear as well

e substitution allows one to:
— substitute terms for (some) variables, possibly with different variables
— Increase the set of variables

— remove unused variables, if “witnesses” to substitute for them remain

Andrzej Tarlecki: Category Theory, 2025
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Proof-theoretic entailment I

(I)l—zgp

Y.-equation @ is a proof-theoretic consequence of a set of Y.-equations o

if © can be derived from ® by the rules.

How to justify this?

Semantics!

Andrzej Tarlecki: Category Theory, 2025
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Soundness & completeness'

Theorem: The equational calculus is sound and complete:

P=p <— Pty

e soundness: “all that can be proved, is true” (® = p <= ¢ + )

e completeness: “all that is true, can be proved” (¢ = = & I )

Proof (idea):

e soundness: easy!

e completeness: not so easy!

Andrzej Tarlecki: Category Theory, 2025
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“Ground” completeness'

d IZV(Z).tl =ty — P FV@.tl = 19
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Proof (idea):

“Ground” completeness'

P IZ\VIQ.tl =ty — P F\V/@.tl = 19
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Proof (idea):

“Ground” completeness'

P IZ\V/@.tl =ty — ® |_\V/(Z).t1 = 19

— Define =~ g ‘TE| X |TE|Z tl ~ t2 Iff d F\V/(Z).tl — t2
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P IZ\V/@.tl =ty — ® |_\V/(Z).t1 = 19
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— Show that =~ is a congruence on Ty, and Ty /~ = ®
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Proof (idea):

“Ground” completeness'

d I:\VIQ.tl =ty — P |_\V/(Z).t1 = 19

— Define = C |Tx| x |Tx|: t1 = to iff & - V.t =t

— Show that =~ is a congruence on Ty, and Ty /~ = ®
— Show that forany M =&, =~ C K(Ips: Ty — M)

— Conclude that Ty, /~ is initial in Mod(®)
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Proof (idea):

“Ground” completeness'

d IZ\V/@.tl =ty — ® |_\V/(Z).t1 = 19

— Define = C |Tx| x |Tx|: t1 = to iff & - V.t =t

— Show that =~ is a congruence on Ty, and Ty /~ = ®
— Show that forany M =&, =~ C K(Ips: Ty — M)

— Conclude that Ty, /~ is initial in Mod(®)

— Therefore Tx; /= and Ty /~ are isomorphic
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Proof (idea):

“Ground” completeness'

d I:\VIQ.tl =ty — P |_\V/(Z).t1 = 19

— Define = C |Tx| x |Tx|: t1 = to iff & - V.t =t

— Show that =~ is a congruence on Ty, and Ty /~ = ®
— Show that forany M =&, =~ C K(Ips: Ty — M)

— Conclude that Ty, /~ is initial in Mod(®)

— Therefore Tx; /= and Ty /~ are isomorphic

— Thus ==~
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Proof (idea):

“Ground” completeness'

d I:\VIQ.tl =ty — P |_\V/(Z).t1 = 19

— Define = C |Tx| x |Tx|: t1 = to iff & - V.t =t

— Show that =~ is a congruence on Ty, and Ty /~ = ®
— Show that forany M =&, =~ C K(Ips: Ty — M)

— Conclude that Ty, /~ is initial in Mod(®)

— Therefore Tx; /= and Ty /~ are isomorphic

— Thus ==~

d ':\V/(Z).tl =ty — P F\V/@.tl = 19

Andrzej Tarlecki: Category Theory, 2025
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Completeness I

P |:\V/X.t1 =ty —= O VXt =15
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Completeness I
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Completeness I

P ':\V/X.tl =ty —= O VXt =15

Proof (idea): Generalise the previous proof by building a free algebra Tx(X)/~ in
Mod(®) with unit [ ]~: X — Tx(X)/~, where = C |Tx(X)| x |Tx(X)] is given by
tl ~ t2 Iff & VX.tl = t2.
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Proof (idea):

Completeness I

P IZ\V/X.tl =ty —= O VXt =15
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Proof (idea):

Completeness I

P IZ\V/X.tl =ty —= O VXt =15

— For each signature ¥ and a set of variables X, define a new signature 3(X) that

extends X by variables from X as constants
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Proof (idea):

Completeness I

P IZ\V/X.tl =ty —= O VXt =15

— For each signature ¥ and a set of variables X, define a new signature 3(X) that

extends X by variables from X as constants

— Y.-algebras A € Alg(>) with valuations v: X — |A| correspond to

Y(X)-algebras Afv] € Alg(X(X))
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Proof (idea):

Completeness I

P IZ\V/X.tl =ty —= O VXt =15

— For each signature ¥ and a set of variables X, define a new signature 3(X) that

extends X by variables from X as constants

— Y.-algebras A € Alg(>) with valuations v: X — |A| correspond to

Y(X)-algebras Afv] € Alg(X(X))

— lIdentify terms in |Tx(X)| with those in |Txx)| (and in |Tx(X)[idx]|)
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Proof (idea):

Completeness I

d IZ\V/X.tl =ty — O FHVX.t; =15

— For each signature ¥ and a set of variables X, define a new signature 3(X) that

extends X by variables from X as constants

— Y.-algebras A € Alg(>) with valuations v: X — |A| correspond to

Y(X)-algebras Afv] € Alg(X(X))

— lIdentify terms in |Tx(X)| with those in |Txx)| (and in |Tx(X)[idx]|)

— Show @ |:E VX.t1 =ty iff & ‘ZZ(X) V.t1 =t
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Proof (idea):

Completeness I

d IZ\V/X.tl =ty —= O VX.t; =15

— For each signature ¥ and a set of variables X, define a new signature 3(X) that

extends X by variables from X as constants

— Y.-algebras A € Alg(>) with valuations v: X — |A| correspond to

Y(X)-algebras Afv] € Alg(X(X))

— lIdentify terms in |Tx(X)| with those in |Txx)| (and in |Tx(X)[idx]|)

— Show @ |:E VX.t1 =t iff & ‘ZZ(X) V.t1 =t

- easy!
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Proof (idea):

Completeness I

) IZ\V/X.tl =ty —= O VXt =15

— For each signature ¥ and a set of variables X, define a new signature 3(X) that

extends X by variables from X as constants

— Y.-algebras A € Alg(>) with valuations v: X — |A| correspond to

Y(X)-algebras Afv] € Alg(X(X))

— lIdentify terms in |Tx(X)| with those in |Txx)| (and in |Tx(X)[idx]|)

— Show & |:E VX.t1 =ty iff ® ‘ZZ(X) V(.t1 = to
— Show & |_E \V/X.tl = t2 iff P |_E(X) V@.tl = tz
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Proof (idea):

Completeness I

) IZ\V/X.tl =ty —= O FVX.t] =15

— For each signature ¥ and a set of variables X, define a new signature 3(X) that

extends X by variables from X as constants

— X-algebras A € Alg(X) with valuations v: X — |A| correspond to

Y.(X)-algebras Afv] € Alg(X(X))

— lIdentify terms in |Tx(X)| with those in |Txx)| (and in |Tx(X)[idx]|)

— Show @ |:E VX.t1 =t iff & )ZZ(X) V.t; =t
— Show @ |—§3 \V/X.tl = t2 iff d |_E(X) \V/@.tl = tz

- Straightforward induction on the structure of derivation does not go through!
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Proof (idea):

Completeness I

d ’:\V/X.tl = {9 :>(I)|—\V/Xt1 = 19

— For each signature X2 and a set of variables X, define a new signature 3(X) that

extends X by variables from X as constants

— X-algebras A € Alg(X) with valuations v: X — |A| correspond to

Y(X)-algebras Afv] € Alg(3(X))

— ldentify terms in |Tx(X)| with those in |Txx)| (and in [Tx(X)[idx]|)

— Show @ |:E VX.t1 =ty iff & ‘ZZ(X) V(.t1 =ty
— Show @ |_E \V/X.tl = t2 iff P I_Z(X) V@.tl = t2

. Straightforward induction on the structure of derivation does not go through!
- Induction works for a more general thesis:

Oy VXUY .ty = by iff @ by x) VYity =ty

Andrzej Tarlecki: Category Theory, 2025
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Completeness I

d ’:\V/X.tl =ty —= O VXt =15

Proof (idea):

For each signature ¥ and a set of variables X, define a new signature (X)) that
extends X by variables from X as constants

Y.-algebras A € Alg(3) with valuations v: X — |A] correspond to
Y(X)-algebras Afv] € Alg(3(X))

Identify terms in |Tx(X)| with those in |Tx(x)| (and in |Tx(X)[idx]|)

Show & |:E VX.t1 =ty iff ® ‘:E(X) V(.t1 = to

Show ® Fx VX.t1 =ty iff O |_E(X) V.t1 =t

Using ground completeness, conclude: @ =5 VX.t1 =ty iff @ [=5x) V0.t = 12
iff @ Fsyxy V0.1, =2 iff @ by VXt =1

Andrzej Tarlecki: Category Theory, 2025 - 30 -



Moving between signatures'

Let ¥ = (S,9Q) and ¥’ = (', )

o: Y — Y

e Signature morphism maps:
— sorts to sorts: o: S — 9’

— operation names to operation names, preserving their profiles:
o: Qs — Q;(w)p(s), forwe S*, s S
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Moving between signatures'

Let ¥ = (S,9Q) and ¥’ = (', )

o: Y — Y

e Signature morphism maps:
— sorts to sorts: o: S — 9’

— operation names to operation names, preserving their profiles:
o: Qs — Q;(w) o(s)" forw € §*, s € S, that is:
if f:s1X...X8, =>stheno(f): o(s1) X...x0o(sp) = o(s),

Andrzej Tarlecki: Category Theory, 2025



let o: 2 — Y

Translating syntax'

e translation of variables: X — X' where X/, = H-JO,(S):S, X,
e translation of terms: o: |ITx(X)|s — |T5/(X')|s), for s € S

e translation of equations: o(VX.t; = to) yields VX '.o(t1) = o(t2)

Andrzej Tarlecki: Category Theory, 2025
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Llet o: 2 — Y

Translating syntax'

e translation of variables: X — X', where X!, =4 X,

o(s)=s’

e translation of terms: o: |ITx(X)|s — |Tx/(X')|ss), for s € S

e translation of equations: o(VX.t1 = to) yields VX .o(t1) = o(t2)

...and semantics'

o o-reduct: _|o: Alg(X') — Alg(X), where for A" € Alg(X')
— |Aols = |A|o(s), for s €S
— fu = o(f)a for €9

(o2
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Llet o: 2 — Y

Translating syntax'

e translation of variables: X — X', where X!, =4 , X

o(s)=s

e translation of terms: o: |Ts(X)|s — [Tx/(X')|s(s), for s € S

e translation of equations: o(VX.t; = to) yields VX '.o(t1) = o(t2)

...and semantics'

o o-reduct: _|s: Alg(X') — Alg(X), where for A" € Alg(X')
— |A" s = |A|5(5), for s € S (( J
this is We//—defined)

— fa = o(f)a for f€Q

for frsi XXy = s [ A olsy XX A 6ls, = |AT|os since

o(f)ar: [A o) X oo X A 5(s0) = [A]5(s)
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Llet o: 2 — Y

Translating syntax'

e translation of variables: X — X', where X, =4 , Xs

o(s)=s

e translation of terms: o: |Ts(X)|s — [Tx/(X')|(s), for s € S

e translation of equations: o(VX.t; = tg) yields VX '.o(t1) = o(t2)

...and semantics'

o o-reduct: _|o: Alg(X') — Alg(X), where for A" € Alg(X)
— [Ao|s = [A|o(s), for s €S

f — o(f)u for f €O @this IS We//-definedD
_ A, — A’

BTW: Given a ¥X’-homomorphism h': A" — B’, ¥-homomorphism h"a: A"a — B"a
is defined by (h'|q)s = hy () for s € 5.
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Llet o: 2 — Y

Translating syntax'

e translation of variables: X — X', where X!, =4 X,

o(s)=s’

e translation of terms: o: |ITx(X)|s — |Tx/(X')|ss), for s € S

e translation of equations: o(VX.t1 = to) yields VX .o(t1) = o(t2)

...and semantics'

o o-reduct: _|o: Alg(X') — Alg(X), where for A" € Alg(X')

— |A/‘a|s: ‘A/|G(S), forse S
f ( f) for f € Q @this Is We//-definedD
— Jar — 0 A’

(o2

Note the contravariancy!

Andrzej Tarlecki: Category Theory, 2025

-32-



Satisfaction condition '

Theorem: For any signature morphism o: X — ', ¥'-algebra A’ and X-equation p:
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Satisfaction condition '

Theorem: For any signature morphism o: X — ', ¥'-algebra A’ and X-equation p:

)3 A’
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Satisfaction condition '

Theorem: For any signature morphism o: X — ', ¥'-algebra A’ and X-equation p:
> A’

o 7=

Andrzej Tarlecki: Category Theory, 2025 - 33 -



Satisfaction condition '

Theorem: For any signature morphism o: X — ', ¥'-algebra A’ and X-equation p:
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Satisfaction condition '

Theorem: For any signature morphism o: X — ', ¥'-algebra A’ and X-equation p:

> A Es o(p)

b
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Satisfaction condition '

Theorem: For any signature morphism o: X — ', ¥'-algebra A’ and X-equation p:

> A Es o(p)

.

> Al‘a =

Ally Exp <= A s o)
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Satisfaction condition '

Theorem: For any signature morphism o: X — ', ¥'-algebra A’ and X-equation p:

> A Ex o(p)

.

> Al‘a =

Alls Ex o = Alls o(p)

Proof (idea): for ¢ € [Tx(X)| and v: X — [A|o], t ,,| [v] = o(t)ar[v], where

v's X' — A’ is given by v) (@) =vs(x) for s € 5, z € X,

Andrzej Tarlecki: Category Theory, 2025 - 33 -



Satisfaction condition '

Theorem: For any signature morphism o: ¥ — Y/, ¥/-algebra A’ and Y-equation :

> A Ex o(p)

.

) A/‘U =

Allg s ¢ = A s o)

TRUTH is preserved (at least) under:
e change of notation

e restriction/extension of irrelevant context

Andrzej Tarlecki: Category Theory, 2025 - 33 -



Preservation of consequence'

Given any signature morphism o: X — Y/, set of X-equations ® and X-equation :

P s = o(®) s o(p)
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Preservation of consequence'

Given any signature morphism o: X — Y/, set of X-equations ® and X-equation :

P s = o(®) s o(p)

Proof: If M" = o(®) then M|, |= ®. Hence M’|s = ¢, and so M' |= o(¢).
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Preservation of consequence'

Given any signature morphism o: X — Y/, set of X-equations ® and X-equation :

P s = o(®) s o(p)

Proof: If M" = o(®) then M|, |= ®. Hence M’|s = ¢, and so M' |= o(¢).

@n general, the equivalence does not hold@
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Preservation of consequence'

Given any signature morphism o: X — Y/, set of X-equations ® and X-equation :

P s = o(®) s o(p)

Moreover, if _|,: Alg(X') — Alg(X) is surjective then:

by o = a(P) s o(p)

@n general, the equivalence does not hoIdD)

Andrzej Tarlecki: Category Theory, 2025 - 34 -



Specification morphism:

is a signature morphism ¢: X — ¥/ such that for all M’ € Alg(X>'):

Specification morphisms'

o: (3, P) = (3, D)

M'" € Mod(®') = M'|, € Mod(®)

Andrzej Tarlecki: Category Theory, 2025
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Specification morphisms'

Specification morphism:

o: (3, P) = (3, D)

is a signature morphism ¢: X — ¥/ such that for all M’ € Alg(X>'):

M'" € Mod(®') = M'|, € Mod(®)

(Then ot Mod(®') — Mod((I))]
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Specification morphisms'

Specification morphism:

o: (3, P) = (3, D)

is a signature morphism ¢: X — ¥/ such that for all M’ € Alg(X>'):

M'" € Mod(®') = M'|, € Mod(®)

(Then ot Mod(®') — Mod((I))]

Theorem: A signature morphism o: Y — Y is a specification morphism
o: (X, ®) — (X, ®") if and only if &' = o (D) .
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Specification morphisms'

Specification morphism:

o: (3, P) — (3, D)

is a signature morphism ¢: X — ¥/ such that for all M’ € Alg(X>'):

M' € Mod(®') = M'|, € Mod(®)

(Then ot Mod(®') — Mod((I))j

Theorem: A signature morphism o: 3 — > is a specification morphism
o: (X, ) — (X', ®") if and only if ®' = o (D) .

Proof: " «="If M" |= @ then M’ = o(®), and so M|, = ®.
=" If M" = @ then M|, = @, and so M |= o(P).

Andrzej Tarlecki: Category Theory, 2025 - 35 -



A specification morphism:

Conservativity I

o1 (2, 8) — (X', ')

is conservative if for all X-equations ¢: | ®' Ex () = @ Ex ¢
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A specification morphism:

is conservative if for all X-equations ¢: | ®' Ex () = @ Ex ¢

Conservativity I

o1 (2, 8) — (X', ')

BTW: for all specification morphisms
s = ' fx o(p)
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Conservativity I

o1 (2, 8) — (X', ')

A specification morphism:

is conservative if for all X-equations ¢: | ®' Ex () = @ Ex ¢

BTW: for all specification morphisms
s = ' fx o(p)

A specification morphism o: (3, ®) — (X', ®') admits model expansion if for each
M € Mod(®) there exists M" € Mod(®') such that M'|, = M

(e, —|o: Mod(®’) — Mod(®) is surjective).
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Conservativity I

o1 (2, 8) — (X', ')

A specification morphism:

is conservative if for all X-equations ¢: | ®' Ex () = @ Ex ¢

BTW: for all specification morphisms
s = ' fx o(p)

A specification morphism o: (3, ®) — (X', ®') admits model expansion if for each
M € Mod(®) there exists M" € Mod(®') such that M'|, = M

(e, —|o: Mod(®’) — Mod(®) is surjective).

Theorem: [fo: (3, ®) — (X', ®') admits model expansion then it is conservative.
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Conservativity I

o1 (2, 8) — (X', ')

A specification morphism:

is conservative if for all X-equations ¢: | ®' Ex () = @ Ex ¢

BTW: for all specification morphisms
s = ' fx o(p)

A specification morphism o: (3, ®) — (X', ®') admits model expansion if for each
M € Mod(®) there exists M" € Mod(®') such that M'|, = M

(e, —|o: Mod(®’) — Mod(®) is surjective).

Theorem: [fo: (3, ®) — (X', ®') admits model expansion then it is conservative.

@n general, the equivalence does not hoIdD)
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More general signature morphisms'

Let & = (S,Q) and ¥/ = (', )

o: 2 —= Y/

Andrzej Tarlecki: Category Theory, 2025
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More general signature morphisms'

Let & = (S,Q) and ¥/ = (', )

o: X =Y/

e Derived signature morphism maps sorts to sorts: §: S — S’, and operation
names to terms, preserving their profiles:
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More general signature morphisms'

Let & = (S,Q) and ¥/ = (', )

o: X =Y/

e Derived signature morphism maps sorts to sorts: §: S — S’, and operation
names to terms, preserving their profiles: for f: s; X ... X s, — s,

5(f) € [Ts ({21:6(51), - - -, 20 (50) ls(s)
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More general signature morphisms'

Let & = (S,Q) and ¥/ = (', )

o: X =Y/

e Derived signature morphism maps sorts to sorts: §: S — S’, and operation

names to terms, preserving their profiles: for f: s; X ... X s, — s,

5(f) € [Ts ({21:6(51), - - -, 20 (50) ls(s)

e Translation of syntax, reducts of algebras, satisfaction condition, and many other

notions and results: similarly as before. _
Cnot quite all though. . )

Andrzej Tarlecki: Category Theory, 2025 - 37 -



Partial aIgebrasI

o Algebraic signature X:: as before

Andrzej Tarlecki: Category Theory, 2025
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Partial aIgebrasI

o Algebraic signature X:: as before

e Partial X:-algebra:

A = (|4], (fa)req)

as before, but operations fa: |Als, X ... X |Als, — |A

f:s81 X...x8, — s, may now be partial functions.

s, for
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Partial aIgebrasI

o Algebraic signature X:: as before

e Partial X:-algebra:

as before, but operations f4:

A = (|4], (fa)req)

Als, X ... x |Als, = |A

f:s81 X...x8, — s, may now be partial functions.

s, for

(BTW: Constants may be undefined as Well.)
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Partial aIgebrasI

o Algebraic signature X:: as before

e Partial X:-algebra:

A = (|4], (fa)req)

as before, but operations fa: |Als, X ... X |Als, — |A

s, for

f:s81 X...x8, — s, may now be partial functions.

(BTW: Constants may be undefined as well.)

e PAlg(>) stands for the class of all partial Y-algebras.

Andrzej Tarlecki: Category Theory, 2025 - 38 -



Fix a signature ¥ = (S, 2) for a while.

Few further notions'
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Fix a signature ¥ = (S, 2) for a while.

Few further notions'

e subalgebra Ay, C A: given by subset |Ag,| C |A| closed under the operations;
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Fix a signature X = (S, 2) for a while.

Few further notions'

e subalgebra Agu, C A: given by subset |Ag,p| C |A| closed under the operations;
BTW: at least three different natural notions are possible.

For f:s1 X ...8, > sand a1 € |Asup|sy -1 On € |Asubls,

— (strong) subalgebra: if fa(ai,...,a,) is defined then fa_,(a1,...,a,) is
defined

— (full) subalgebra: if fa(ai,...,a,) is defined and fa(ay,...,an) € [Asupls
then fa_,(a1,...,ay) is defined

— (weak) subalgebra: if fa_,(a1,...,ay) is defined then fa(aq,...,a,) is
defined

and fa_ (a1,...,a,) = falai,...,ay).

Andrzej Tarlecki: Category Theory, 2025 - 39 -



Fix a signature X = (S, 2) for a while.

Few further notions'

e subalgebra Agyu, C A: given by subset |Agup| C |A| closed under the operations;
BTW: at least three different natural notions are possible.

e homomorphism h: A — B: map h: |A| — |B| that preserves definedness and
results of operations;
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Fix a signature X = (S, 2) for a while.

Few further notions'

e subalgebra Agyu, C A: given by subset |Agup| C |A| closed under the operations;
BTW: at least three different natural notions are possible.

e homomorphism h: A — B: map h: |A| — |B| that preserves definedness and
results of operations; it is strong if in addition it reflects definedness of
operations; (strong) homomorphisms are closed under composition;
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Fix a signature X = (S, 2) for a while.

Few further notions'

e subalgebra Agyu, C A: given by subset |Agup| C |A| closed under the operations;

BTW: at least three different natural notions are possible.

e homomorphism h: A — B: map h: |A| — |B| that preserves definedness and
results of operations; it is strong if in addition it reflects definedness of
operations; (strong) homomorphisms are closed under composition;

BTW: very interesting alternative: partial map h: |A| — |B| that preserves
results of operations.

e congruence = on A: equivalence = C |A| x |A]| closed under the operations
whenever they are defined; it is strong if in addition it reflects definedness of
operations; (strong) congruences are kernels of (strong) homomorphisms

e quotient algebra A/=: built in the natural way on the equivalence classes of =;

the natural homomorphism from A to A/= is strong if the congruence is strong.
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Formulae '

(Strong) equation:

VX.t=¢

as before

Satisfaction relation

partial X-algebra A satisfies VX.t = ¢’

AEVXtZH

when for all v: X — |A], talv] is de-
fined iff ¢’y [v] is defined, and then t4[v] =

ta[v]
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Formulae '

(Strong) equation:

VX.t=¢

as before

Definedness formula:

VX.def t

where X is a set of variables, and t &
T5(X)|s is a term

Satisfaction relation

partial X-algebra A satisfies VX.t = ¢’

AEVXtZH

when for all v: X — |A], talv] is de-
fined iff ¢’y [v] is defined, and then t4[v] =

ta[v]

partial X-algebra A satisfies VX .def t

AEVX.def t

when for all v: X — |A], ta[v] is defined
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An alternative '

VX.t=t

e (Existence) equation:

where:
— X is a set of variables, and

— t,t' € |[Ts(X)|s are terms of a common sort.
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An alternative '

e (Existence) equation:

where:

— X is a set of variables, and

VX.t=t

— t,t' € |[Ts(X)|s are terms of a common sort.

e Satisfaction relation: Y-algebra A satisfies VX.t =t/

AEVXt=t

when for all v: X — |A|, talv] = t/,[v] — both sides are defined and equal.
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An alternative '

e (Existence) equation:

where:

— X is a set of variables, and

VX.t=1t

— t,t' € |[Tx(X)|s are terms of a common sort.

e Satisfaction relation: Y-algebra A satisfies VX.t = ¢’

when for all v: X — |A|, talv] =

BTW:
o VX.t =t iff YX.(t =t' A deft)

AEVXt=t

t'y|[v] — both sides are defined and equal.

o VX.t =t iff VX.(deft <= deft') A (deft = t =1t')
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Further notions and results'

To introduce and/or check:
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Further notions and results'

To introduce and/or check:

partial equational specifications (trivial)
characterisation of definable classes of partial algebras (difficult!)

existence of initial models for partial equational specifications (non-trivial for
existence equations; difficult for strong equations and definedness formulae)

proof systems for partial equational logic (ditto)

signature morphisms, translation of formulae, reducts of partial algebras,
satisfaction condition; specification morphisms, conservativity, etc. (easy)

even more general signature morphisms: §: X — >’ maps sort names to sort
names, and operation names f: s; X ...s, — s to sequences {;,t;),~q, Where
; is a '-formula and ¢; is a X'-term of sort §(s), both with variables among
x1:0(81), ..., Tp:6(sn); syntax does not quite translate, but reducts are well
defined. ..
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Example

spec NATPRED = free { sort Nat
ops 0: Nat;
succ: Nat — Nat;
_+ _: Nat x Nat — Nat
pred: Nat —7 Nat
axioms Vn:Nat en + 0 = n;
Vn, m:Nat e n + succ(m

Vn:Nat e pred(succ(n))

)

= succ(n +m)

Uz
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Example’

spec NATPRED' = free type Nat ::= 0 | succ(pred :? Nat)
op _+ _: Nat x Nat — Nat
axioms Vn:Nat en + 0 = n;

Vn, m:Nat e n + succ(m) = succ(n + m)

NATPRED = NATPRED'
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