Algebraic signature:

$$\Sigma = (S, \Omega, arity, sort)$$

with sort names S, operation names Ω , and arity and result sort functions

 $arity \colon \Omega \to S^* \text{ and } sort \colon \Omega \to S.$

Algebraic signature:

$$\Sigma = (S, \Omega)$$

- sort names: S
- operation names, classified by arities and result sorts: $\Omega = \langle \Omega_{w,s} \rangle_{w \in S^*, s \in S}$

Alternatively:

$$\Sigma = (S, \Omega, arity, sort)$$

with sort names S, operation names Ω , and arity and result sort functions $arity: \Omega \to S^*$ and $sort: \Omega \to S$.

• $f: s_1 \times \ldots \times s_n \to s$ stands for $s_1, \ldots, s_n, s \in S$ and $f \in \Omega_{s_1 \ldots s_n, s}$

Algebraic signature:

$$\Sigma = (S, \Omega)$$

- sort names: S
- operation names, classified by arities and result sorts: $\Omega = \langle \Omega_{w,s} \rangle_{w \in S^*, s \in S}$

Alternatively:

$$\Sigma = (S, \Omega, arity, sort)$$

with sort names S, operation names Ω , and arity and result sort functions $arity: \Omega \to S^*$ and $sort: \Omega \to S$.

• $f: s_1 \times \ldots \times s_n \to s$ stands for $s_1, \ldots, s_n, s \in S$ and $f \in \Omega_{s_1 \ldots s_n, s}$

Compare the two notions

Algebraic signature:

$$\Sigma = (S, \Omega)$$

- sort names: S
- operation names, classified by arities and result sorts: $\Omega = \langle \Omega_{w,s} \rangle_{w \in S^*, s \in S}$

Alternatively:

$$\Sigma = (S, \Omega, arity, sort)$$

with sort names S, operation names Ω , and arity and result sort functions $arity: \Omega \to S^*$ and $sort: \Omega \to S$.

- $f: s_1 \times \ldots \times s_n \to s$ stands for $s_1, \ldots, s_n, s \in S$ and $f \in \Omega_{s_1 \ldots s_n, s}$
- $f: s_1 \times \ldots \times s_n \to s$ and $f: s'_1 \times \ldots \times s'_m \to s'$ overloading allowed

Compare the two notions

Algebraic signature:

$$\Sigma = (S, \Omega)$$

- sort names: S
- operation names, classified by arities and result sorts: $\Omega = \langle \Omega_{w,s} \rangle_{w \in S^*, s \in S}$

Alternatively:

$$\Sigma = (S, \Omega, arity, sort)$$

with sort names S, operation names Ω , and arity and result sort functions $arity \colon \Omega \to S^*$ and $sort \colon \Omega \to S$.

- $f: s_1 \times \ldots \times s_n \to s$ stands for $s_1, \ldots, s_n, s \in S$ and $f \in \Omega_{s_1 \ldots s_n, s}$
- $f: s_1 \times \ldots \times s_n \to s$ and $f: s'_1 \times \ldots \times s'_m \to s'$ overloading allowed
- n = 0 yields $f: \rightarrow s$, often written f: s constants allowed

Algebras

• Σ -algebra:

$$A = (|A|, \langle f_A \rangle_{f \in \Omega})$$

- carrier sets: $|A| = \langle |A|_s \rangle_{s \in S}$
- operations: $f_A: |A|_{s_1} \times \ldots \times |A|_{s_n} \to |A|_s$, for $f: s_1 \times \ldots \times s_n \to s$

Algebras

• Σ -algebra:

$$A = (|A|, \langle f_A \rangle_{f \in \Omega})$$

- carrier sets: $|A| = \langle |A|_s \rangle_{s \in S}$
- operations: $f_A: |A|_{s_1} \times \ldots \times |A|_{s_n} \to |A|_s$, for $f: s_1 \times \ldots \times s_n \to s$ BTW: constants: $f_A: \{\langle \rangle \} \to |A|_s$, i.e. $f_A \in |A|_s$, for f: s

Algebras

• Σ -algebra:

$$A = (|A|, \langle f_A \rangle_{f \in \Omega})$$

- carrier sets: $|A| = \langle |A|_s \rangle_{s \in S}$
- operations: $f_A: |A|_{s_1} \times \ldots \times |A|_{s_n} \to |A|_s$, for $f: s_1 \times \ldots \times s_n \to s$
- the class of all Σ -algebras:

 $\mathbf{Alg}(\Sigma)$

Algebras

• Σ -algebra:

$$A = (|A|, \langle f_A \rangle_{f \in \Omega})$$

- carrier sets: $|A| = \langle |A|_s \rangle_{s \in S}$
- operations: $f_A: |A|_{s_1} \times \ldots \times |A|_{s_n} \to |A|_s$, for $f: s_1 \times \ldots \times s_n \to s$
- the class of all Σ -algebras:

$$\mathbf{Alg}(\Sigma)$$

Can $\mathbf{Alg}(\Sigma)$ be empty? Finite?

Algebras

• Σ -algebra:

$$A = (|A|, \langle f_A \rangle_{f \in \Omega})$$

- carrier sets: $|A| = \langle |A|_s \rangle_{s \in S}$
- operations: $f_A: |A|_{s_1} \times \ldots \times |A|_{s_n} \to |A|_s$, for $f: s_1 \times \ldots \times s_n \to s$
- the class of all Σ -algebras:

$$\mathbf{Alg}(\Sigma)$$

Can $\mathbf{Alg}(\Sigma)$ be empty? Finite?

Can $A \in \mathbf{Alg}(\Sigma)$ have empty carriers?

Given a set (of sort names) S,

S-sorted set $X = \langle X_s \rangle_{s \in S}$ is a family of sets X_s , $s \in S$.

Given a set (of sort names) S,

S-sorted set $X = \langle X_s \rangle_{s \in S}$ is a family of sets X_s , $s \in S$.

The usual set-theoretic concepts and notations apply component-wise.

Given a set (of sort names) S,

S-sorted set $X = \langle X_s \rangle_{s \in S}$ is a family of sets X_s , $s \in S$.

The usual set-theoretic concepts and notations apply component-wise.

For instance, given $X = \langle X_s \rangle_{s \in S}$, $Y = \langle Y_s \rangle_{s \in S}$, $Z = \langle Z_s \rangle_{s \in S}$:

- $X \cap Y = \langle X_s \cap Y_s \rangle_{s \in S}$, $X \times Y = \langle X_s \times Y_s \rangle_{s \in S}$, etc
- $X \subseteq Y$ iff $X_s \subseteq Y_s$, for $s \in S$
- $R \subseteq X \times Y$ means $R = \langle R_s \subseteq X_s \times Y_s \rangle_{s \in S}$
- $f: X \to Y$ means $f = \langle f_s \colon X_s \to Y_s \rangle_{s \in S}$

Given a set (of sort names) S,

S-sorted set $X = \langle X_s \rangle_{s \in S}$ is a family of sets X_s , $s \in S$.

The usual set-theoretic concepts and notations apply component-wise.

For instance, given $X = \langle X_s \rangle_{s \in S}$, $Y = \langle Y_s \rangle_{s \in S}$, $Z = \langle Z_s \rangle_{s \in S}$:

- $X \cap Y = \langle X_s \cap Y_s \rangle_{s \in S}$, $X \times Y = \langle X_s \times Y_s \rangle_{s \in S}$, etc
- $X \subseteq Y$ iff $X_s \subseteq Y_s$, for $s \in S$
- $R \subseteq X \times Y$ means $R = \langle R_s \subseteq X_s \times Y_s \rangle_{s \in S}$
- $f: X \to Y$ means $f = \langle f_s \colon X_s \to Y_s \rangle_{s \in S}$
- for $f: X \to Y$, $g: Y \to Z$, $f:g = \langle f_s; g_s: X_s \to Z_s \rangle_{s \in S}: X \to Z$

BTW: (f;g)(x) = g(f(x)), where by abuse of notation for $x \in X_s$, $f(x) = f_s(x)$

Definition: For $A, A_{sub} \in \mathbf{Alg}(\Sigma)$, A_{sub} is a Σ -subalgebra of A, written $A_{sub} \subseteq A$, if

- $|A_{sub}| \subseteq |A|$, and
- for $f: s_1 \times \ldots \times s_n \to s$, and $a_1 \in |A_{sub}|_{s_1}, \ldots, a_n \in |A_{sub}|_{s_n}$, $f_{A_{sub}}(a_1, \ldots, a_n) = f_A(a_1, \ldots, a_n)$

• for $A \in \mathbf{Alg}(\Sigma)$, a Σ -subalgebra $A_{sub} \subseteq A$ is given by subset $|A_{sub}| \subseteq |A|$ closed under the operations:

- for
$$f\colon s_1\times\ldots\times s_n\to s$$
 and $a_1\in |A_{sub}|_{s_1},\ldots,a_n\in |A_{sub}|_{s_n}$,
$$f_A(a_1,\ldots,a_n)\in |A_{sub}|_s$$

- for $A \in \mathbf{Alg}(\Sigma)$, a Σ -subalgebra $A_{sub} \subseteq A$ is given by subset $|A_{sub}| \subseteq |A|$ closed under the operations.
- for $A \in \mathbf{Alg}(\Sigma)$ and $X \subseteq |A|$, the subalgebra of A generated by X, $\langle A \rangle_X$, is the least subalgebra of A that contains X.
- $A \in \mathbf{Alg}(\Sigma)$ is reachable if $\langle A \rangle_{\emptyset}$ coincides with A.

- for $A \in \mathbf{Alg}(\Sigma)$, a Σ -subalgebra $A_{sub} \subseteq A$ is given by subset $|A_{sub}| \subseteq |A|$ closed under the operations.
- for $A \in \mathbf{Alg}(\Sigma)$ and $X \subseteq |A|$, the subalgebra of A generated by X, $\langle A \rangle_X$, is the least subalgebra of A that contains X.
- $A \in \mathbf{Alg}(\Sigma)$ is reachable if $\langle A \rangle_{\emptyset}$ coincides with A.

Theorem: For any $A \in \mathbf{Alg}(\Sigma)$ and $X \subseteq |A|$, $\langle A \rangle_X$ exists.

- for $A \in \mathbf{Alg}(\Sigma)$, a Σ -subalgebra $A_{sub} \subseteq A$ is given by subset $|A_{sub}| \subseteq |A|$ closed under the operations.
- for $A \in \mathbf{Alg}(\Sigma)$ and $X \subseteq |A|$, the subalgebra of A generated by X, $\langle A \rangle_X$, is the least subalgebra of A that contains X.
- $A \in \mathbf{Alg}(\Sigma)$ is reachable if $\langle A \rangle_{\emptyset}$ coincides with A.

Theorem: For any $A \in \mathbf{Alg}(\Sigma)$ and $X \subseteq |A|$, $\langle A \rangle_X$ exists.

Proof: Let $X_0 = X$, and for $i \ge 0$,

$$X_{i+1} = X_i \cup \{f_A(x_1, \dots, x_n) \mid f: s_1 \times \dots \times s_n \to s, x_1 \in (X_i)_{s_1}, \dots, x_n \in (X_i)_{s_n}\}.$$

- for $A \in \mathbf{Alg}(\Sigma)$, a Σ -subalgebra $A_{sub} \subseteq A$ is given by subset $|A_{sub}| \subseteq |A|$ closed under the operations.
- for $A \in \mathbf{Alg}(\Sigma)$ and $X \subseteq |A|$, the subalgebra of A generated by X, $\langle A \rangle_X$, is the least subalgebra of A that contains X.
- $A \in \mathbf{Alg}(\Sigma)$ is reachable if $\langle A \rangle_{\emptyset}$ coincides with A.

Theorem: For any $A \in \mathbf{Alg}(\Sigma)$ and $X \subseteq |A|$, $\langle A \rangle_X$ exists.

Proof: Let $X_0 = X$, and for $i \ge 0$, $X_{i+1} = X_i + \int f_{+}(x_1, \dots, x_n) \mid f \cdot e_1 \times \dots \times e_n \rightarrow e_n x_1$

 $X_{i+1} = X_i \cup \{f_A(x_1, \dots, x_n) \mid f : s_1 \times \dots \times s_n \to s, x_1 \in (X_i)_{s_1}, \dots, x_n \in (X_i)_{s_n}\}.$

Then $|\langle A \rangle_X| = \bigcup_{i>0} X_i$ contains X (clearly) and is closed under the operations.

Moreover, if a subset of |A| contains X and is closed under the operations then it contains each X_i , $i \geq 0$, and hence so defined $|\langle A \rangle_X|$ as well.

- for $A \in \mathbf{Alg}(\Sigma)$, a Σ -subalgebra $A_{sub} \subseteq A$ is given by subset $|A_{sub}| \subseteq |A|$ closed under the operations.
- for $A \in \mathbf{Alg}(\Sigma)$ and $X \subseteq |A|$, the subalgebra of A generated by X, $\langle A \rangle_X$, is the least subalgebra of A that contains X.
- $A \in \mathbf{Alg}(\Sigma)$ is reachable if $\langle A \rangle_{\emptyset}$ coincides with A.

Theorem: For any $A \in \mathbf{Alg}(\Sigma)$ and $X \subseteq |A|$, $\langle A \rangle_X$ exists.

Proof:

Lemma: The intersection of any family of subsets of |A| closed under the operations is closed under the operations as well.

- for $A \in \mathbf{Alg}(\Sigma)$, a Σ -subalgebra $A_{sub} \subseteq A$ is given by subset $|A_{sub}| \subseteq |A|$ closed under the operations.
- for $A \in \mathbf{Alg}(\Sigma)$ and $X \subseteq |A|$, the subalgebra of A generated by X, $\langle A \rangle_X$, is the least subalgebra of A that contains X.
- $A \in \mathbf{Alg}(\Sigma)$ is reachable if $\langle A \rangle_{\emptyset}$ coincides with A.

Theorem: For any $A \in \mathbf{Alg}(\Sigma)$ and $X \subseteq |A|$, $\langle A \rangle_X$ exists.

Proof:

Lemma: The intersection of any family of subsets of |A| closed under the operations is closed under the operations as well.

Then $|\langle A \rangle_X| = \bigcap \{|A_{sub}| \mid X \subseteq |A_{sub}|, A_{sub} \subseteq A\}$ is closed under the operations and contains X. Moreover, it is contained in every subalgebra of A that contains X.

- for $A \in \mathbf{Alg}(\Sigma)$, a Σ -subalgebra $A_{sub} \subseteq A$ is given by subset $|A_{sub}| \subseteq |A|$ closed under the operations.
- for $A \in \mathbf{Alg}(\Sigma)$ and $X \subseteq |A|$, the subalgebra of A generated by X, $\langle A \rangle_X$, is the least subalgebra of A that contains X.
- $A \in \mathbf{Alg}(\Sigma)$ is reachable if $\langle A \rangle_{\emptyset}$ coincides with A.

Theorem: For any $A \in \mathbf{Alg}(\Sigma)$ and $X \subseteq |A|$, $\langle A \rangle_X$ exists.

Proof (idea):

- ullet generate the generated subalgebra from X by closing it under operations in A; or
- ullet the intersection of any family of subalgebras of A is a subalgebra of A.

• for $A, B \in \mathbf{Alg}(\Sigma)$, a Σ -homomorphism $h \colon A \to B$ is a function $h \colon |A| \to |B|$ that preserves the operations:

- for
$$f: s_1 \times \ldots \times s_n \to s$$
 and $a_1 \in |A|_{s_1}, \ldots, a_n \in |A|_{s_n}$,
$$h_s(f_A(a_1, \ldots, a_n)) = f_B(h_{s_1}(a_1), \ldots, h_{s_n}(a_n))$$

$$|A|_{s_1} \times \ldots \times |A|_{s_n} \xrightarrow{f_A} |A|_s$$

$$h_{s_1} \times \ldots \times h_{s_n} \downarrow \qquad \qquad \downarrow h_s$$

$$|B|_{s_1} \times \ldots \times |B|_{s_n} \xrightarrow{f_B} |B|_s$$

• for $A, B \in \mathbf{Alg}(\Sigma)$, a Σ -homomorphism $h \colon A \to B$ is a function $h \colon |A| \to |B|$ that preserves the operations:

- for
$$f: s_1 \times \ldots \times s_n \to s$$
 and $a_1 \in |A|_{s_1}, \ldots, a_n \in |A|_{s_n}$,
$$h_s(f_A(a_1, \ldots, a_n)) = f_B(h_{s_1}(a_1), \ldots, h_{s_n}(a_n))$$

Theorem: Given a homomorphism $h: A \to B$ and subalgebras A_{sub} of A and B_{sub} of B, the image of A_{sub} under h, $h(A_{sub})$, is a subalgebra of B, and the coimage of B_{sub} under h, $h^{-1}(B_{sub})$, is a subalgebra of A.

• for $A, B \in \mathbf{Alg}(\Sigma)$, a Σ -homomorphism $h \colon A \to B$ is a function $h \colon |A| \to |B|$ that preserves the operations:

- for
$$f: s_1 \times \ldots \times s_n \to s$$
 and $a_1 \in |A|_{s_1}, \ldots, a_n \in |A|_{s_n}$,
$$h_s(f_A(a_1, \ldots, a_n)) = f_B(h_{s_1}(a_1), \ldots, h_{s_n}(a_n))$$

Theorem: Given a homomorphism $h: A \to B$ and subalgebras A_{sub} of A and B_{sub} of B, the image of A_{sub} under h, $h(A_{sub})$, is a subalgebra of B, and the coimage of B_{sub} under h, $h^{-1}(B_{sub})$, is a subalgebra of A.

Proof: Check that:

- $-h^{-1}(|B_{sub}|)$ is closed under the operations (in A) easy!
- $-h(|A_{sub}|)$ is closed under the operations (in B) just a tiny bit more difficult...

• for $A, B \in \mathbf{Alg}(\Sigma)$, a Σ -homomorphism $h \colon A \to B$ is a function $h \colon |A| \to |B|$ that preserves the operations:

- for
$$f: s_1 \times \ldots \times s_n \to s$$
 and $a_1 \in |A|_{s_1}, \ldots, a_n \in |A|_{s_n}$,
$$h_s(f_A(a_1, \ldots, a_n)) = f_B(h_{s_1}(a_1), \ldots, h_{s_n}(a_n))$$

Theorem: Given a homomorphism $h: A \to B$ and subalgebras A_{sub} of A and B_{sub} of B, the image of A_{sub} under h, $h(A_{sub})$, is a subalgebra of B, and the coimage of B_{sub} under h, $h^{-1}(B_{sub})$, is a subalgebra of A.

Theorem: Given a homomorphism $h: A \to B$ and $X \subseteq |A|$, $h(\langle A \rangle_X) = \langle B \rangle_{h(X)}$.

• for $A, B \in \mathbf{Alg}(\Sigma)$, a Σ -homomorphism $h \colon A \to B$ is a function $h \colon |A| \to |B|$ that preserves the operations:

- for
$$f: s_1 \times \ldots \times s_n \to s$$
 and $a_1 \in |A|_{s_1}, \ldots, a_n \in |A|_{s_n}$,
$$h_s(f_A(a_1, \ldots, a_n)) = f_B(h_{s_1}(a_1), \ldots, h_{s_n}(a_n))$$

Theorem: Given a homomorphism $h: A \to B$ and subalgebras A_{sub} of A and B_{sub} of B, the image of A_{sub} under h, $h(A_{sub})$, is a subalgebra of B, and the coimage of B_{sub} under h, $h^{-1}(B_{sub})$, is a subalgebra of A.

Theorem: Given a homomorphism $h: A \to B$ and $X \subseteq |A|$, $h(\langle A \rangle_X) = \langle B \rangle_{h(X)}$.

Proof:

- $-h(\langle A\rangle_X)\supseteq \langle B\rangle_{h(X)}$, since $h(\langle A\rangle_X)$ is a subalgebra of B and contains h(X);
- $-\langle A\rangle_X\subseteq h^{-1}(\langle B\rangle_{h(X)})$, since $h^{-1}(\langle B\rangle_{h(X)})$ is a subalgebra of A and contains X. Hence $h(\langle A\rangle_X)\subseteq h(h^{-1}(\langle B\rangle_{h(X)}))\subseteq \langle B\rangle_{h(X)}$.

• for $A, B \in \mathbf{Alg}(\Sigma)$, a Σ -homomorphism $h \colon A \to B$ is a function $h \colon |A| \to |B|$ that preserves the operations:

- for
$$f: s_1 \times \ldots \times s_n \to s$$
 and $a_1 \in |A|_{s_1}, \ldots, a_n \in |A|_{s_n}$,
$$h_s(f_A(a_1, \ldots, a_n)) = f_B(h_{s_1}(a_1), \ldots, h_{s_n}(a_n))$$

Theorem: Given a homomorphism $h: A \to B$ and subalgebras A_{sub} of A and B_{sub} of B, the image of A_{sub} under h, $h(A_{sub})$, is a subalgebra of B, and the coimage of B_{sub} under h, $h^{-1}(B_{sub})$, is a subalgebra of A.

Theorem: Given a homomorphism $h: A \to B$ and $X \subseteq |A|$, $h(\langle A \rangle_X) = \langle B \rangle_{h(X)}$.

Theorem: If two homomorphisms $h_1, h_2 : A \to B$ coincide on $X \subseteq |A|$, then they coincide on $\langle A \rangle_X$.

• for $A, B \in \mathbf{Alg}(\Sigma)$, a Σ -homomorphism $h \colon A \to B$ is a function $h \colon |A| \to |B|$ that preserves the operations:

- for
$$f: s_1 \times \ldots \times s_n \to s$$
 and $a_1 \in |A|_{s_1}, \ldots, a_n \in |A|_{s_n}$,
$$h_s(f_A(a_1, \ldots, a_n)) = f_B(h_{s_1}(a_1), \ldots, h_{s_n}(a_n))$$

Theorem: Given a homomorphism $h: A \to B$ and subalgebras A_{sub} of A and B_{sub} of B, the image of A_{sub} under h, $h(A_{sub})$, is a subalgebra of B, and the coimage of B_{sub} under h, $h^{-1}(B_{sub})$, is a subalgebra of A.

Theorem: Given a homomorphism $h: A \to B$ and $X \subseteq |A|$, $h(\langle A \rangle_X) = \langle B \rangle_{h(X)}$.

Theorem: If two homomorphisms $h_1, h_2 \colon A \to B$ coincide on $X \subseteq |A|$, then they coincide on $\langle A \rangle_X$.

Proof: Check that $\{a \in |A| \mid h_1(a) = h_2(a)\}$ is closed under the operations in A.

• for $A, B \in \mathbf{Alg}(\Sigma)$, a Σ -homomorphism $h \colon A \to B$ is a function $h \colon |A| \to |B|$ that preserves the operations:

- for
$$f: s_1 \times \ldots \times s_n \to s$$
 and $a_1 \in |A|_{s_1}, \ldots, a_n \in |A|_{s_n}$,
$$h_s(f_A(a_1, \ldots, a_n)) = f_B(h_{s_1}(a_1), \ldots, h_{s_n}(a_n))$$

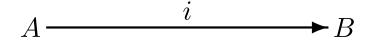
Theorem: Given a homomorphism $h: A \to B$ and subalgebras A_{sub} of A and B_{sub} of B, the image of A_{sub} under h, $h(A_{sub})$, is a subalgebra of B, and the coimage of B_{sub} under h, $h^{-1}(B_{sub})$, is a subalgebra of A.

Theorem: Given a homomorphism $h: A \to B$ and $X \subseteq |A|$, $h(\langle A \rangle_X) = \langle B \rangle_{h(X)}$.

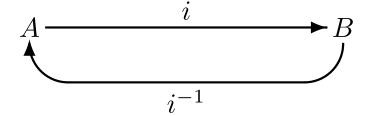
Theorem: If two homomorphisms $h_1, h_2 : A \to B$ coincide on $X \subseteq |A|$, then they coincide on $\langle A \rangle_X$.

Theorem: Identity function on the carrier of $A \in \mathbf{Alg}(\Sigma)$ is a homomorphism $id_A : A \to A$. Composition of homomorphisms $h : A \to B$ and $g : B \to C$ is a homomorphism $h : g : A \to C$.

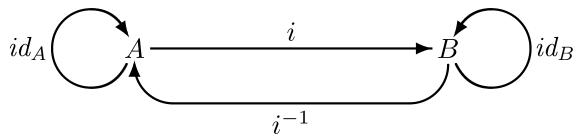
• for $A, B \in \mathbf{Alg}(\Sigma)$, a Σ -isomorphism is any Σ -homomorphism $i \colon A \to B$ that has an inverse, i.e., a Σ -homomorphism $i^{-1} \colon B \to A$ such that $i \colon i^{-1} = id_A$ and $i^{-1} \colon i = id_B$.



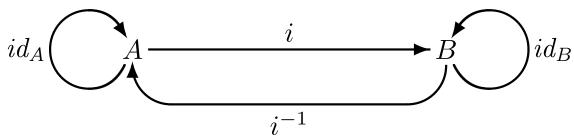
• for $A, B \in \mathbf{Alg}(\Sigma)$, a Σ -isomorphism is any Σ -homomorphism $i : A \to B$ that has an inverse, i.e., a Σ -homomorphism $i^{-1} : B \to A$ such that $i : i^{-1} = id_A$ and $i^{-1} : i = id_B$.



• for $A, B \in \mathbf{Alg}(\Sigma)$, a Σ -isomorphism is any Σ -homomorphism $i \colon A \to B$ that has an inverse, i.e., a Σ -homomorphism $i^{-1} \colon B \to A$ such that $i \colon i^{-1} = id_A$ and $i^{-1} \colon i = id_B$.



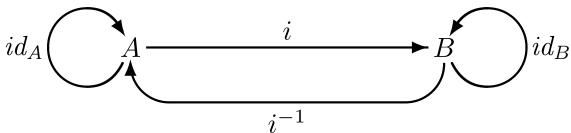
• for $A, B \in \mathbf{Alg}(\Sigma)$, a Σ -isomorphism is any Σ -homomorphism $i : A \to B$ that has an inverse, i.e., a Σ -homomorphism $i^{-1} : B \to A$ such that $i : i^{-1} = id_A$ and $i^{-1} : i = id_B$.



• Σ -algebras are *isomorphic* if there exists an isomorphism between them.

Isomorphisms

• for $A, B \in \mathbf{Alg}(\Sigma)$, a Σ -isomorphism is any Σ -homomorphism $i \colon A \to B$ that has an inverse, i.e., a Σ -homomorphism $i^{-1} \colon B \to A$ such that $i \colon i^{-1} = id_A$ and $i^{-1} \colon i = id_B$.

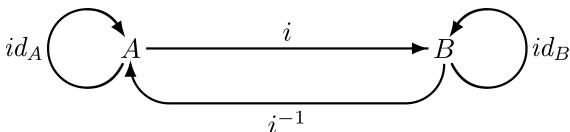


• Σ -algebras are *isomorphic* if there exists an isomorphism between them.

Theorem: A Σ -homomorphism is a Σ -isomorphism iff it is bijective ("1-1" and "onto").

Isomorphisms

• for $A, B \in \mathbf{Alg}(\Sigma)$, a Σ -isomorphism is any Σ -homomorphism $i \colon A \to B$ that has an inverse, i.e., a Σ -homomorphism $i^{-1} \colon B \to A$ such that $i \colon i^{-1} = id_A$ and $i^{-1} \colon i = id_B$.



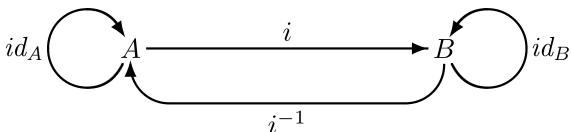
 \bullet Σ -algebras are *isomorphic* if there exists an isomorphism between them.

Theorem: A Σ -homomorphism is a Σ -isomorphism iff it is bijective ("1-1" and "onto").

Proof ("
$$\leftarrow$$
"): For $f: s_1 \times \ldots \times s_n \to s$ and $b_1 \in |B|_{s_1}, \ldots, b_n \in |B|_{s_n}$, $i_s^{-1}(f_B(b_1, \ldots, b_n)) = i_s^{-1}(f_B(i(i^{-1}(b_1)), \ldots, i(i^{-1}(b_n)))) = i_s^{-1}(i(f_A(i^{-1}(b_1), \ldots, i^{-1}(b_n)))) = f_A(i^{-1}(b_1), \ldots, i^{-1}(b_n))$

Isomorphisms

• for $A, B \in \mathbf{Alg}(\Sigma)$, a Σ -isomorphism is any Σ -homomorphism $i : A \to B$ that has an inverse, i.e., a Σ -homomorphism $i^{-1} : B \to A$ such that $i : i^{-1} = id_A$ and $i^{-1} : i = id_B$.



• Σ -algebras are *isomorphic* if there exists an isomorphism between them.

Theorem: A Σ -homomorphism is a Σ -isomorphism iff it is bijective ("1-1" and "onto").

Theorem: Identities are isomorphisms, and any composition of isomorphisms is an isomorphism.

- for
$$f: s_1 \times \ldots \times s_n \to s$$
 and $a_1, a_1' \in |A|_{s_1}, \ldots, a_n, a_n' \in |A|_{s_n}$, if $a_1 \equiv_{s_1} a_1', \ldots, a_n \equiv_{s_n} a_n'$ then $f_A(a_1, \ldots, a_n) \equiv_{s} f_A(a_1', \ldots, a_n')$.

• for $A \in \mathbf{Alg}(\Sigma)$, a Σ -congruence on A is an equivalence $\equiv \subseteq |A| \times |A|$ that is closed under the operations:

- for
$$f: s_1 \times \ldots \times s_n \to s$$
 and $a_1, a_1' \in |A|_{s_1}, \ldots, a_n, a_n' \in |A|_{s_n}$, if $a_1 \equiv_{s_1} a_1', \ldots, a_n \equiv_{s_n} a_n'$ then $f_A(a_1, \ldots, a_n) \equiv_{s} f_A(a_1', \ldots, a_n')$.

BTW:

equivalence

• for $A \in \mathbf{Alg}(\Sigma)$, a Σ -congruence on A is an equivalence $\Xi \subseteq |A| \times |A|$ that is closed under the operations:

- for
$$f: s_1 \times \ldots \times s_n \to s$$
 and $a_1, a_1' \in |A|_{s_1}, \ldots, a_n, a_n' \in |A|_{s_n}$, if $a_1 \equiv_{s_1} a_1', \ldots, a_n \equiv_{s_n} a_n'$ then $f_A(a_1, \ldots, a_n) \equiv_{s} f_A(a_1', \ldots, a_n')$.

BTW:

equivalence

$$\approx \subseteq X \times X$$

- reflexivity: $x \approx x$

- symmetry: if $x \approx y$ then $y \approx x$

- transitivity: if $x \approx y$ and $y \approx z$ then $x \approx z$

Then:

- equivalence class: $[x]_{\approx} = \{y \in X \mid y \approx x\}$
- quotient set: $X/\approx = \{[x]_{\approx} \mid x \in X\}$

- for
$$f: s_1 \times \ldots \times s_n \to s$$
 and $a_1, a_1' \in |A|_{s_1}, \ldots, a_n, a_n' \in |A|_{s_n}$, if $a_1 \equiv_{s_1} a_1', \ldots, a_n \equiv_{s_n} a_n'$ then $f_A(a_1, \ldots, a_n) \equiv_{s} f_A(a_1', \ldots, a_n')$.

- for
$$f: s_1 \times \ldots \times s_n \to s$$
 and $a_1, a_1' \in |A|_{s_1}, \ldots, a_n, a_n' \in |A|_{s_n}$, if $a_1 \equiv_{s_1} a_1', \ldots, a_n \equiv_{s_n} a_n'$ then $f_A(a_1, \ldots, a_n) \equiv_{s} f_A(a_1', \ldots, a_n')$.

$$(a_1, \ldots, a_n)$$

$$\stackrel{\uparrow}{\equiv}_{s_1} \cdots \stackrel{\downarrow}{\equiv}_{s_n}$$

$$\downarrow \qquad \qquad \downarrow$$

$$(a'_1, \ldots, a'_n)$$

- for
$$f: s_1 \times \ldots \times s_n \to s$$
 and $a_1, a_1' \in |A|_{s_1}, \ldots, a_n, a_n' \in |A|_{s_n}$, if $a_1 \equiv_{s_1} a_1', \ldots, a_n \equiv_{s_n} a_n'$ then $f_A(a_1, \ldots, a_n) \equiv_{s} f_A(a_1', \ldots, a_n')$.

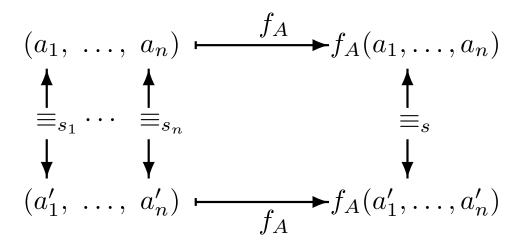
$$(a_1, \ldots, a_n) \xrightarrow{f_A} f_A(a_1, \ldots, a_n)$$

$$\stackrel{\uparrow}{=}_{s_1} \cdots \stackrel{\downarrow}{=}_{s_n}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(a'_1, \ldots, a'_n) \xrightarrow{f_A} f_A(a'_1, \ldots, a'_n)$$

- for
$$f: s_1 \times \ldots \times s_n \to s$$
 and $a_1, a_1' \in |A|_{s_1}, \ldots, a_n, a_n' \in |A|_{s_n}$, if $a_1 \equiv_{s_1} a_1', \ldots, a_n \equiv_{s_n} a_n'$ then $f_A(a_1, \ldots, a_n) \equiv_{s} f_A(a_1', \ldots, a_n')$.



• for $A \in \mathbf{Alg}(\Sigma)$, a Σ -congruence on A is an equivalence $\Xi \subseteq |A| \times |A|$ that is closed under the operations:

- for
$$f: s_1 \times \ldots \times s_n \to s$$
 and $a_1, a_1' \in |A|_{s_1}, \ldots, a_n, a_n' \in |A|_{s_n}$,
if $a_1 \equiv_{s_1} a_1', \ldots, a_n \equiv_{s_n} a_n'$ then $f_A(a_1, \ldots, a_n) \equiv_{s} f_A(a_1', \ldots, a_n')$.

Theorem: For any relation $R \subseteq |A| \times |A|$ on the carrier of a Σ -algebra A, there exists the least congruence on A that contains R.

• for $A \in \mathbf{Alg}(\Sigma)$, a Σ -congruence on A is an equivalence $\Xi \subseteq |A| \times |A|$ that is closed under the operations:

- for
$$f: s_1 \times \ldots \times s_n \to s$$
 and $a_1, a_1' \in |A|_{s_1}, \ldots, a_n, a_n' \in |A|_{s_n}$,
if $a_1 \equiv_{s_1} a_1', \ldots, a_n \equiv_{s_n} a_n'$ then $f_A(a_1, \ldots, a_n) \equiv_{s} f_A(a_1', \ldots, a_n')$.

Theorem: For any relation $R \subseteq |A| \times |A|$ on the carrier of a Σ -algebra A, there exists the least congruence on A that contains R.

Proof (idea):

- generate the least congruence from R by closing it under reflexivity, symmetry, transitivity and the operations in A; or
- ullet the intersection of any family of congruences on A is a congruence on A.

• for $A \in \mathbf{Alg}(\Sigma)$, a Σ -congruence on A is an equivalence $\Xi \subseteq |A| \times |A|$ that is closed under the operations:

- for
$$f: s_1 \times \ldots \times s_n \to s$$
 and $a_1, a_1' \in |A|_{s_1}, \ldots, a_n, a_n' \in |A|_{s_n}$,
if $a_1 \equiv_{s_1} a_1', \ldots, a_n \equiv_{s_n} a_n'$ then $f_A(a_1, \ldots, a_n) \equiv_{s} f_A(a_1', \ldots, a_n')$.

Theorem: For any relation $R \subseteq |A| \times |A|$ on the carrier of a Σ -algebra A, there exists the least congruence on A that contains R.

Theorem: For any Σ -homomorphism $h: A \to B$, the kernel of $h, K(h) \subseteq |A| \times |A|$, where a K(h) a' iff h(a) = h(a'), is a Σ -congruence on A.

• for $A \in \mathbf{Alg}(\Sigma)$, a Σ -congruence on A is an equivalence $\equiv \subseteq |A| \times |A|$ that is closed under the operations:

- for
$$f: s_1 \times \ldots \times s_n \to s$$
 and $a_1, a_1' \in |A|_{s_1}, \ldots, a_n, a_n' \in |A|_{s_n}$, if $a_1 \equiv_{s_1} a_1', \ldots, a_n \equiv_{s_n} a_n'$ then $f_A(a_1, \ldots, a_n) \equiv_{s} f_A(a_1', \ldots, a_n')$.

Theorem: For any relation $R \subseteq |A| \times |A|$ on the carrier of a Σ -algebra A, there exists the least congruence on A that contains R.

Theorem: For any Σ -homomorphism $h: A \to B$, the kernel of $h, K(h) \subseteq |A| \times |A|$, where a K(h) a' iff h(a) = h(a'), is a Σ -congruence on A.

Proof: For $f: s_1 \times \ldots \times s_n \to s$ and $a_1, a_1' \in |A|_{s_1}, \ldots, a_n, a_n' \in |A|_{s_n}$, if $a_1 K(h)_{s_1} a_1', \ldots, a_n K(h)_{s_n} a_n'$ then $f_A(a_1, \ldots, a_n) K(h)_s f_A(a_1', \ldots, a_n')$, since $h_s(f_A(a_1, \ldots, a_n)) = f_B(h_{s_1}(a_1), \ldots, h_{s_n}(a_n)) = f_B(h_{s_1}(a_1', \ldots, a_n'))$.

• for $A \in \mathbf{Alg}(\Sigma)$, a Σ -congruence on A is an equivalence $\Xi \subseteq |A| \times |A|$ that is closed under the operations:

- for
$$f: s_1 \times \ldots \times s_n \to s$$
 and $a_1, a_1' \in |A|_{s_1}, \ldots, a_n, a_n' \in |A|_{s_n}$,
if $a_1 \equiv_{s_1} a_1', \ldots, a_n \equiv_{s_n} a_n'$ then $f_A(a_1, \ldots, a_n) \equiv_{s} f_A(a_1', \ldots, a_n')$.

Theorem: For any relation $R \subseteq |A| \times |A|$ on the carrier of a Σ -algebra A, there exists the least congruence on A that contains R.

Theorem: For any Σ -homomorphism $h: A \to B$, the kernel of $h, K(h) \subseteq |A| \times |A|$, where a K(h) a' iff h(a) = h(a'), is a Σ -congruence on A.

- for $A \in \mathbf{Alg}(\Sigma)$ and Σ -congruence $\equiv \subseteq |A| \times |A|$ on A, the *quotient algebra* A/\equiv is built in the natural way on the equivalence classes of \equiv :
 - for $s \in S$, $|A/\equiv|_s = \{[a]_{\equiv} \mid a \in |A|_s\}$, with $[a]_{\equiv} = \{a' \in |A|_s \mid a \equiv_s a'\}$
 - $\text{ for } f\colon s_1\times\ldots\times s_n\to s \text{ and } a_1\in |A|_{s_1},\ldots,a_n\in |A|_{s_n},$ $f_{A/\equiv}([a_1]_{\equiv},\ldots,[a_n]_{\equiv})=[f_A(a_1,\ldots,a_n)]_{\equiv}$

• for $A \in \mathbf{Alg}(\Sigma)$ and Σ -congruence $\equiv \subseteq |A| \times |A|$ on A, the *quotient algebra* A/\equiv is built in the natural way on the equivalence classes of \equiv :

- for
$$s \in S$$
, $|A/\equiv|_s = \{[a]_{\equiv} \mid a \in |A|_s\}$, with $[a]_{\equiv} = \{a' \in |A|_s \mid a \equiv_s a'\}$

$$- \text{ for } f\colon s_1\times\ldots\times s_n\to s \text{ and } a_1\in |A|_{s_1},\ldots,a_n\in |A|_{s_n},$$

$$f_{A/\equiv}([a_1]_{\equiv},\ldots,[a_n]_{\equiv})=[f_A(a_1,\ldots,a_n)]_{\equiv}$$

Theorem: The above is well-defined.

- for $A \in \mathbf{Alg}(\Sigma)$ and Σ -congruence $\equiv \subseteq |A| \times |A|$ on A, the *quotient algebra* A/\equiv is built in the natural way on the equivalence classes of \equiv :
 - for $s \in S$, $|A/\equiv|_s = \{[a]_{\equiv} \mid a \in |A|_s\}$, with $[a]_{\equiv} = \{a' \in |A|_s \mid a \equiv_s a'\}$
 - $\text{ for } f\colon s_1\times\ldots\times s_n\to s \text{ and } a_1\in |A|_{s_1},\ldots,a_n\in |A|_{s_n},$ $f_{A/\equiv}([a_1]_{\equiv},\ldots,[a_n]_{\equiv})=[f_A(a_1,\ldots,a_n)]_{\equiv}$

Theorem: The above is well-defined.

Proof: Given $a_1' \in |A|_{s_1}, \ldots, a_n' \in |A|_{s_n}$ such that $a_1' \equiv_{s_1} a_1, \ldots, a_n' \equiv_{s_n} a_n$ — so that a_i' is another representant of the equivalence class $[a_i]_{\equiv}$, $i=1,\ldots,n$ — $f_A(a_1,\ldots,a_n)\equiv_s f_A(a_1',\ldots,a_n')$. Hence $f_{A/\equiv}([a_1]_{\equiv},\ldots[a_n]_{\equiv})=[f_A(a_1,\ldots,a_n)]_{\equiv}=[f_A(a_1',\ldots,a_n')]_{\equiv}=f_{A/\equiv}([a_1']_{\equiv},\ldots[a_n']_{\equiv})$

- for $A \in \mathbf{Alg}(\Sigma)$ and Σ -congruence $\equiv \subseteq |A| \times |A|$ on A, the *quotient algebra* A/\equiv is built in the natural way on the equivalence classes of \equiv :
 - for $s \in S$, $|A/\equiv|_s = \{[a]_{\equiv} \mid a \in |A|_s\}$, with $[a]_{\equiv} = \{a' \in |A|_s \mid a \equiv_s a'\}$
 - $\text{ for } f\colon s_1\times\ldots\times s_n\to s \text{ and } a_1\in |A|_{s_1},\ldots,a_n\in |A|_{s_n},$ $f_{A/\equiv}([a_1]_{\equiv},\ldots,[a_n]_{\equiv})=[f_A(a_1,\ldots,a_n)]_{\equiv}$

Theorem: The above is well-defined. Moreover, the natural map that assigns to every element its equivalence class is a Σ -homomorphisms $[_]_{\equiv} : A \to A/\equiv$.

- for $A \in \mathbf{Alg}(\Sigma)$ and Σ -congruence $\equiv \subseteq |A| \times |A|$ on A, the *quotient algebra* A/\equiv is built in the natural way on the equivalence classes of \equiv :
 - for $s \in S$, $|A/\equiv|_s = \{[a]_{\equiv} \mid a \in |A|_s\}$, with $[a]_{\equiv} = \{a' \in |A|_s \mid a \equiv_s a'\}$
 - $\text{ for } f\colon s_1\times\ldots\times s_n\to s \text{ and } a_1\in |A|_{s_1},\ldots,a_n\in |A|_{s_n},$ $f_{A/\equiv}([a_1]_{\equiv},\ldots,[a_n]_{\equiv})=[f_A(a_1,\ldots,a_n)]_{\equiv}$

Theorem: The above is well-defined. Moreover, the natural map that assigns to every element its equivalence class is a Σ -homomorphisms $[_]_{\equiv}: A \to A/\equiv$.

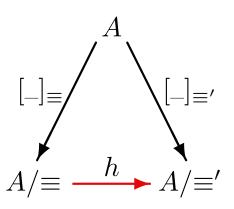
Theorem: Given two Σ -congruences \equiv and \equiv' on A, $\equiv \subseteq \equiv'$ iff there exists a Σ -homomorphism $h: A/\equiv \to A/\equiv'$ such that $[_]_{\equiv}; h = [_]_{\equiv'}$.

- for $A \in \mathbf{Alg}(\Sigma)$ and Σ -congruence $\equiv \subseteq |A| \times |A|$ on A, the *quotient algebra* A/\equiv is built in the natural way on the equivalence classes of \equiv :
 - for $s \in S$, $|A/\equiv|_s = \{[a]_{\equiv} \mid a \in |A|_s\}$, with $[a]_{\equiv} = \{a' \in |A|_s \mid a \equiv_s a'\}$
 - $\text{ for } f\colon s_1\times\ldots\times s_n\to s \text{ and } a_1\in |A|_{s_1},\ldots,a_n\in |A|_{s_n},$ $f_{A/\equiv}([a_1]_{\equiv},\ldots,[a_n]_{\equiv})=[f_A(a_1,\ldots,a_n)]_{\equiv}$

Theorem: The above is well-defined. Moreover, the natural map that assigns to every element its equivalence class is a Σ -homomorphisms $[_]_{\equiv}: A \to A/\equiv$.

Theorem: Given two Σ -congruences \equiv and \equiv' on A, $\equiv \subseteq \equiv'$ iff there exists a Σ -homomorphism $h: A/\equiv \to A/\equiv'$ such that $[_]_{\equiv}; h = [_]_{\equiv'}$.

Proof (idea): Define $h([a]_{\equiv}) = [a]_{\equiv'}$:



- for $A \in \mathbf{Alg}(\Sigma)$ and Σ -congruence $\equiv \subseteq |A| \times |A|$ on A, the *quotient algebra* A/\equiv is built in the natural way on the equivalence classes of \equiv :
 - for $s \in S$, $|A/\equiv|_s = \{[a]_{\equiv} \mid a \in |A|_s\}$, with $[a]_{\equiv} = \{a' \in |A|_s \mid a \equiv_s a'\}$
 - $\text{ for } f\colon s_1\times\ldots\times s_n\to s \text{ and } a_1\in |A|_{s_1},\ldots,a_n\in |A|_{s_n},$ $f_{A/\equiv}([a_1]_{\equiv},\ldots,[a_n]_{\equiv})=[f_A(a_1,\ldots,a_n)]_{\equiv}$

Theorem: The above is well-defined. Moreover, the natural map that assigns to every element its equivalence class is a Σ -homomorphisms $[_]_{\equiv}: A \to A/\equiv$.

Theorem: Given two Σ -congruences \equiv and \equiv' on A, $\equiv \subseteq \equiv'$ iff there exists a Σ -homomorphism $h: A/\equiv \to A/\equiv'$ such that $[_]_{\equiv}; h = [_]_{\equiv'}$.

Theorem: For any Σ -homomorphism $h: A \to B$, A/K(h) is isomorphic with h(A).

- for $A \in \mathbf{Alg}(\Sigma)$ and Σ -congruence $\equiv \subseteq |A| \times |A|$ on A, the *quotient algebra* A/\equiv is built in the natural way on the equivalence classes of \equiv :
 - for $s \in S$, $|A/\equiv|_s = \{[a]_{\equiv} \mid a \in |A|_s\}$, with $[a]_{\equiv} = \{a' \in |A|_s \mid a \equiv_s a'\}$
 - $\text{ for } f\colon s_1\times\ldots\times s_n\to s \text{ and } a_1\in |A|_{s_1},\ldots,a_n\in |A|_{s_n},$ $f_{A/\equiv}([a_1]_{\equiv},\ldots,[a_n]_{\equiv})=[f_A(a_1,\ldots,a_n)]_{\equiv}$

Theorem: The above is well-defined. Moreover, the natural map that assigns to every element its equivalence class is a Σ -homomorphisms $[_]_{\equiv}: A \to A/\equiv$.

Theorem: Given two Σ -congruences \equiv and \equiv' on A, $\equiv \subseteq \equiv'$ iff there exists a Σ -homomorphism $h: A/\equiv \to A/\equiv'$ such that $[_]_{\equiv}; h = [_]_{\equiv'}$.

Theorem: For any Σ -homomorphism $h: A \to B$, A/K(h) is isomorphic with h(A).

Proof (idea): Check that $i: A/K(h) \to B$ defined by $i([a]_{K(h)}) = h(a)$ is injective and is "onto" h(A).

- for $A \in \mathbf{Alg}(\Sigma)$ and Σ -congruence $\equiv \subseteq |A| \times |A|$ on A, the *quotient algebra* A/\equiv is built in the natural way on the equivalence classes of \equiv :
 - for $s \in S$, $|A/\equiv|_s = \{[a]_{\equiv} \mid a \in |A|_s\}$, with $[a]_{\equiv} = \{a' \in |A|_s \mid a \equiv_s a'\}$
 - $\text{ for } f\colon s_1\times\ldots\times s_n\to s \text{ and } a_1\in |A|_{s_1},\ldots,a_n\in |A|_{s_n},$ $f_{A/\equiv}([a_1]_{\equiv},\ldots,[a_n]_{\equiv})=[f_A(a_1,\ldots,a_n)]_{\equiv}$

Theorem: The above is well-defined. Moreover, the natural map that assigns to every element its equivalence class is a Σ -homomorphisms $[_]_{\equiv}: A \to A/\equiv$.

Theorem: Given two Σ -congruences \equiv and \equiv' on A, $\equiv \subseteq \equiv'$ iff there exists a Σ -homomorphism $h: A/\equiv \to A/\equiv'$ such that $[_]_{\equiv}; h = [_]_{\equiv'}$.

Theorem: For any Σ -homomorphism $h: A \to B$, A/K(h) is isomorphic with h(A).

• for $A_i \in \mathbf{Alg}(\Sigma)$, $i \in \mathcal{I}$, the product of $\langle A_i \rangle_{i \in \mathcal{I}}$, $\prod_{i \in \mathcal{I}} A_i$ is built in the natural way on the Cartesian product of the carriers of A_i , $i \in \mathcal{I}$:

• for $A_i \in \mathbf{Alg}(\Sigma)$, $i \in \mathcal{I}$, the product of $\langle A_i \rangle_{i \in \mathcal{I}}$, $\prod_{i \in \mathcal{I}} A_i$ is built in the natural way on the Cartesian product of the carriers of A_i , $i \in \mathcal{I}$:

BTW:

Cartesian product of sets X_i , $i \in \mathcal{I}$

$$\prod_{i\in\mathcal{I}}X_i$$

- $\prod_{i \in \mathcal{I}} X_i = \{ p \colon \mathcal{I} \to \bigcup_{i \in \mathcal{I}} X_i \mid p(i) \in X_i, i \in \mathcal{I} \}$
- projections $\pi_k \colon \prod_{i \in \mathcal{I}} X_i \to X_k$, $\pi_k(p) = p(k)$.

• for $A_i \in \mathbf{Alg}(\Sigma)$, $i \in \mathcal{I}$, the product of $\langle A_i \rangle_{i \in \mathcal{I}}$, $\prod_{i \in \mathcal{I}} A_i$ is built in the natural way on the Cartesian product of the carriers of A_i , $i \in \mathcal{I}$:

BTW:

Cartesian product of sets X_i , $i \in \mathcal{I}$

$$\prod_{i\in\mathcal{I}}X_i$$

$$- \prod_{i \in \mathcal{I}} X_i = \{ p \colon \mathcal{I} \to \bigcup_{i \in \mathcal{I}} X_i \mid p(i) \in X_i, i \in \mathcal{I} \}$$
 (for $\mathcal{I} = \emptyset$, $\bigcup_{i \in \mathcal{I}} X_i = \emptyset$)

- projections $\pi_k \colon \prod_{i \in \mathcal{I}} X_i \to X_k$, $\pi_k(p) = p(k)$.

- for $A_i \in \mathbf{Alg}(\Sigma)$, $i \in \mathcal{I}$, the product of $\langle A_i \rangle_{i \in \mathcal{I}}$, $\prod_{i \in \mathcal{I}} A_i$ is built in the natural way on the Cartesian product of the carriers of A_i , $i \in \mathcal{I}$:
 - for $s \in S$, $|\prod_{i \in \mathcal{I}} A_i|_s = \prod_{i \in \mathcal{I}} |A_i|_s$
 - for $f: s_1 \times \ldots \times s_n \to s$ and $a_1 \in |\prod_{i \in \mathcal{I}} A_i|_{s_1}, \ldots, a_n \in |\prod_{i \in \mathcal{I}} A_i|_{s_n}$, for $i \in \mathcal{I}$, $f_{\prod_{i \in \mathcal{I}} A_i}(a_1, \ldots, a_n)(i) = f_{A_i}(a_1(i), \ldots, a_n(i))$

- for $A_i \in \mathbf{Alg}(\Sigma)$, $i \in \mathcal{I}$, the product of $\langle A_i \rangle_{i \in \mathcal{I}}$, $\prod_{i \in \mathcal{I}} A_i$ is built in the natural way on the Cartesian product of the carriers of A_i , $i \in \mathcal{I}$:
 - for $s \in S$, $|\prod_{i \in \mathcal{I}} A_i|_s = \prod_{i \in \mathcal{I}} |A_i|_s$
 - for $f: s_1 \times \ldots \times s_n \to s$ and $a_1 \in |\prod_{i \in \mathcal{I}} A_i|_{s_1}, \ldots, a_n \in |\prod_{i \in \mathcal{I}} A_i|_{s_n}$, for $i \in \mathcal{I}$, $f_{\prod_{i \in \mathcal{I}} A_i}(a_1, \ldots, a_n)(i) = f_{A_i}(a_1(i), \ldots, a_n(i))$

Theorem: For any family $\langle A_i \rangle_{i \in \mathcal{I}}$ of Σ -algebras, projections $\pi_i(a) = a(i)$, where $i \in \mathcal{I}$ and $a \in \prod_{i \in \mathcal{I}} |A_i|$, are Σ -homomorphisms $\pi_i \colon \prod_{i \in \mathcal{I}} A_i \to A_i$.

- for $A_i \in \mathbf{Alg}(\Sigma)$, $i \in \mathcal{I}$, the product of $\langle A_i \rangle_{i \in \mathcal{I}}$, $\prod_{i \in \mathcal{I}} A_i$ is built in the natural way on the Cartesian product of the carriers of A_i , $i \in \mathcal{I}$:
 - for $s \in S$, $|\prod_{i \in \mathcal{I}} A_i|_s = \prod_{i \in \mathcal{I}} |A_i|_s$
 - for $f: s_1 \times \ldots \times s_n \to s$ and $a_1 \in |\prod_{i \in \mathcal{I}} A_i|_{s_1}, \ldots, a_n \in |\prod_{i \in \mathcal{I}} A_i|_{s_n}$, for $i \in \mathcal{I}$, $f_{\prod_{i \in \mathcal{I}} A_i}(a_1, \ldots, a_n)(i) = f_{A_i}(a_1(i), \ldots, a_n(i))$

Theorem: For any family $\langle A_i \rangle_{i \in \mathcal{I}}$ of Σ -algebras, projections $\pi_i(a) = a(i)$, where $i \in \mathcal{I}$ and $a \in \prod_{i \in \mathcal{I}} |A_i|$, are Σ -homomorphisms $\pi_i \colon \prod_{i \in \mathcal{I}} A_i \to A_i$.

Define the product of the empty family of Σ -algebras.

- for $A_i \in \mathbf{Alg}(\Sigma)$, $i \in \mathcal{I}$, the product of $\langle A_i \rangle_{i \in \mathcal{I}}$, $\prod_{i \in \mathcal{I}} A_i$ is built in the natural way on the Cartesian product of the carriers of A_i , $i \in \mathcal{I}$:
 - for $s \in S$, $|\prod_{i \in \mathcal{I}} A_i|_s = \prod_{i \in \mathcal{I}} |A_i|_s$
 - for $f: s_1 \times \ldots \times s_n \to s$ and $a_1 \in |\prod_{i \in \mathcal{I}} A_i|_{s_1}, \ldots, a_n \in |\prod_{i \in \mathcal{I}} A_i|_{s_n}$, for $i \in \mathcal{I}$, $f_{\prod_{i \in \mathcal{I}} A_i}(a_1, \ldots, a_n)(i) = f_{A_i}(a_1(i), \ldots, a_n(i))$

Theorem: For any family $\langle A_i \rangle_{i \in \mathcal{I}}$ of Σ -algebras, projections $\pi_i(a) = a(i)$, where $i \in \mathcal{I}$ and $a \in \prod_{i \in \mathcal{I}} |A_i|$, are Σ -homomorphisms $\pi_i \colon \prod_{i \in \mathcal{I}} A_i \to A_i$.

Define the product of the empty family of Σ -algebras. When the projection π_i is an isomorphism?

$$\mathcal{H}$$
 \mathcal{S} \mathcal{P}

Define $\mathcal{H}, \mathcal{S}, \mathcal{P} \colon 2^{\mathbf{Alg}(\Sigma)} \to 2^{\mathbf{Alg}(\Sigma)}$

Define $\mathcal{H}, \mathcal{S}, \mathcal{P} \colon 2^{\mathbf{Alg}(\Sigma)} \to 2^{\mathbf{Alg}(\Sigma)}$, for $\mathcal{V} \subseteq \mathbf{Alg}(\Sigma)$:

• $\mathcal{H}(\mathcal{V}) = \{h(A) \mid A \in \mathcal{V}, h \colon A \to B\}$

Define $\mathcal{H}, \mathcal{S}, \mathcal{P} \colon 2^{\mathbf{Alg}(\Sigma)} \to 2^{\mathbf{Alg}(\Sigma)}$, for $\mathcal{V} \subseteq \mathbf{Alg}(\Sigma)$:

- $\mathcal{H}(\mathcal{V}) = \{h(A) \mid A \in \mathcal{V}, h \colon A \to B\}$
- $\mathcal{S}(\mathcal{V}) = \{A_{sub} \mid A_{sub} \subseteq A \in \mathcal{V}\}$

Define $\mathcal{H}, \mathcal{S}, \mathcal{P} \colon 2^{\mathbf{Alg}(\Sigma)} \to 2^{\mathbf{Alg}(\Sigma)}$, for $\mathcal{V} \subseteq \mathbf{Alg}(\Sigma)$:

- $\mathcal{H}(\mathcal{V}) = \{h(A) \mid A \in \mathcal{V}, h \colon A \to B\}$
- $\mathcal{S}(\mathcal{V}) = \{A_{sub} \mid A_{sub} \subseteq A \in \mathcal{V}\}$
- $\mathcal{P}(\mathcal{V}) = \{ P \mid P \cong \prod_{i \in \mathcal{I}} A_i, \text{ for } i \in \mathcal{I}, A_i \in \mathcal{V} \}$

Define $\mathcal{H}, \mathcal{S}, \mathcal{P} \colon 2^{\mathbf{Alg}(\Sigma)} \to 2^{\mathbf{Alg}(\Sigma)}$, for $\mathcal{V} \subseteq \mathbf{Alg}(\Sigma)$:

- $\mathcal{H}(\mathcal{V}) = \{h(A) \mid A \in \mathcal{V}, h \colon A \to B\}$
- $S(V) = \{A_{sub} \mid A_{sub} \subseteq A \in V\}$
- $\mathcal{P}(\mathcal{V}) = \{ P \mid P \cong \prod_{i \in \mathcal{I}} A_i, \text{ for } i \in \mathcal{I}, A_i \in \mathcal{V} \}$
- $\mathcal{HSP}(V) = \mathcal{H}(\mathcal{S}(\mathcal{P}(V)))$

\mathcal{H} \mathcal{S} \mathcal{P}

Define $\mathcal{H}, \mathcal{S}, \mathcal{P} \colon 2^{\mathbf{Alg}(\Sigma)} \to 2^{\mathbf{Alg}(\Sigma)}$, for $\mathcal{V} \subseteq \mathbf{Alg}(\Sigma)$:

- $\mathcal{H}(\mathcal{V}) = \{h(A) \mid A \in \mathcal{V}, h \colon A \to B\}$
- $S(V) = \{A_{sub} \mid A_{sub} \subseteq A \in V\}$
- $\mathcal{P}(\mathcal{V}) = \{ P \mid P \cong \prod_{i \in \mathcal{I}} A_i, \text{ for } i \in \mathcal{I}, A_i \in \mathcal{V} \}$
- $\mathcal{HSP}(\mathcal{V}) = \mathcal{H}(\mathcal{S}(\mathcal{P}(\mathcal{V})))$

Fact: Each $\mathcal{O} \in \{\mathcal{H}, \mathcal{S}, \mathcal{P}\}$ is a closure operator on $2^{\mathbf{Alg}(\Sigma)}$:

Define $\mathcal{H}, \mathcal{S}, \mathcal{P} \colon 2^{\mathbf{Alg}(\Sigma)} \to 2^{\mathbf{Alg}(\Sigma)}$, for $\mathcal{V} \subset \mathbf{Alg}(\Sigma)$:

- $\mathcal{H}(\mathcal{V}) = \{h(A) \mid A \in \mathcal{V}, h \colon A \to B\}$
- $\mathcal{S}(\mathcal{V}) = \{A_{sub} \mid A_{sub} \subseteq A \in \mathcal{V}\}$
- $\mathcal{P}(\mathcal{V}) = \{ P \mid P \cong \prod_{i \in \mathcal{I}} A_i, \text{ for } i \in \mathcal{I}, A_i \in \mathcal{V} \}$
- $\mathcal{HSP}(\mathcal{V}) = \mathcal{H}(\mathcal{S}(\mathcal{P}(\mathcal{V})))$

Fact: Each $\mathcal{O} \in \{\mathcal{H}, \mathcal{S}, \mathcal{P}\}$ is a closure operator on $2^{\mathbf{Alg}(\Sigma)}$:

$$\mathcal{V}\subseteq\mathcal{O}(\mathcal{V})$$

$$\mathcal{V} \subseteq \mathcal{O}(\mathcal{V})$$
 $\mathcal{O}(\mathcal{O}(\mathcal{V})) = \mathcal{O}(\mathcal{V})$ $\mathcal{O}(\mathcal{V}') \subseteq \mathcal{O}(\mathcal{V})$

$$\mathcal{O}(\mathcal{V}')\subseteq\mathcal{O}(\mathcal{V})$$

for $\mathcal{V} \subseteq \mathbf{Alg}(\Sigma)$ and $\mathcal{V}' \subseteq \mathcal{V}$.

Define $\mathcal{H}, \mathcal{S}, \mathcal{P} \colon 2^{\mathbf{Alg}(\Sigma)} \to 2^{\mathbf{Alg}(\Sigma)}$, for $\mathcal{V} \subset \mathbf{Alg}(\Sigma)$:

- $\mathcal{H}(\mathcal{V}) = \{h(A) \mid A \in \mathcal{V}, h \colon A \to B\}$
- $\mathcal{S}(\mathcal{V}) = \{A_{sub} \mid A_{sub} \subseteq A \in \mathcal{V}\}$
- $\mathcal{P}(\mathcal{V}) = \{ P \mid P \cong \prod_{i \in \mathcal{I}} A_i, \text{ for } i \in \mathcal{I}, A_i \in \mathcal{V} \}$
- $\mathcal{HSP}(\mathcal{V}) = \mathcal{H}(\mathcal{S}(\mathcal{P}(\mathcal{V})))$

Fact: Each $\mathcal{O} \in \{\mathcal{H}, \mathcal{S}, \mathcal{P}\}$ is a closure operator on $2^{\mathbf{Alg}(\Sigma)}$:

$$\mathcal{V}\subseteq\mathcal{O}(\mathcal{V})$$

$$\mathcal{V} \subseteq \mathcal{O}(\mathcal{V})$$
 $\mathcal{O}(\mathcal{O}(\mathcal{V})) = \mathcal{O}(\mathcal{V})$ $\mathcal{O}(\mathcal{V}') \subseteq \mathcal{O}(\mathcal{V})$

$$\mathcal{O}(\mathcal{V}')\subseteq\mathcal{O}(\mathcal{V})$$

for $\mathcal{V} \subseteq \mathbf{Alg}(\Sigma)$ and $\mathcal{V}' \subseteq \mathcal{V}$.

 $|\mathcal{P}(\mathcal{H}(\mathcal{V})) \subseteq \mathcal{H}(\mathcal{P}(\mathcal{V}))|$ Fact:

Define $\mathcal{H}, \mathcal{S}, \mathcal{P} \colon 2^{\mathbf{Alg}(\Sigma)} \to 2^{\mathbf{Alg}(\Sigma)}$, for $\mathcal{V} \subseteq \mathbf{Alg}(\Sigma)$:

- $\mathcal{H}(\mathcal{V}) = \{h(A) \mid A \in \mathcal{V}, h \colon A \to B\}$
- $\mathcal{S}(\mathcal{V}) = \{A_{sub} \mid A_{sub} \subseteq A \in \mathcal{V}\}$
- $\mathcal{P}(\mathcal{V}) = \{ P \mid P \cong \prod_{i \in \mathcal{T}} A_i, \text{ for } i \in \mathcal{I}, A_i \in \mathcal{V} \}$
- $\mathcal{HSP}(\mathcal{V}) = \mathcal{H}(\mathcal{S}(\mathcal{P}(\mathcal{V})))$

Fact: Each $\mathcal{O} \in \{\mathcal{H}, \mathcal{S}, \mathcal{P}\}$ is a closure operator on $2^{\mathbf{Alg}(\Sigma)}$:

$$\mathcal{V}\subseteq\mathcal{O}(\mathcal{V})$$

$$\mathcal{V} \subseteq \mathcal{O}(\mathcal{V})$$
 $\mathcal{O}(\mathcal{O}(\mathcal{V})) = \mathcal{O}(\mathcal{V})$ $\mathcal{O}(\mathcal{V}') \subseteq \mathcal{O}(\mathcal{V})$

$$\mathcal{O}(\mathcal{V}')\subseteq\mathcal{O}(\mathcal{V})$$

for $\mathcal{V} \subseteq \mathbf{Alg}(\Sigma)$ and $\mathcal{V}' \subseteq \mathcal{V}$.

Fact: $|\mathcal{P}(\mathcal{H}(\mathcal{V})) \subseteq \mathcal{H}(\mathcal{P}(\mathcal{V}))|$

$$\mathcal{P}(\mathcal{S}(\mathcal{V})) \subseteq \mathcal{S}(\mathcal{P}(\mathcal{V}))$$

\mathcal{H} \mathcal{S} \mathcal{P}

Define $\mathcal{H}, \mathcal{S}, \mathcal{P} \colon 2^{\mathbf{Alg}(\Sigma)} \to 2^{\mathbf{Alg}(\Sigma)}$, for $\mathcal{V} \subseteq \mathbf{Alg}(\Sigma)$:

- $\mathcal{H}(\mathcal{V}) = \{h(A) \mid A \in \mathcal{V}, h \colon A \to B\}$
- $S(V) = \{A_{sub} \mid A_{sub} \subseteq A \in V\}$
- $\mathcal{P}(\mathcal{V}) = \{ P \mid P \cong \prod_{i \in \mathcal{I}} A_i, \text{ for } i \in \mathcal{I}, A_i \in \mathcal{V} \}$
- $\mathcal{HSP}(\mathcal{V}) = \mathcal{H}(\mathcal{S}(\mathcal{P}(\mathcal{V})))$

Fact: Each $\mathcal{O} \in \{\mathcal{H}, \mathcal{S}, \mathcal{P}\}$ is a closure operator on $2^{\mathbf{Alg}(\Sigma)}$:

$$\mathcal{V}\subseteq\mathcal{O}(\mathcal{V})$$

$$\mathcal{O}(\mathcal{O}(\mathcal{V})) = \mathcal{O}(\mathcal{V})$$

$$\mathcal{O}(\mathcal{V}') \subseteq \mathcal{O}(\mathcal{V})$$

for $\mathcal{V} \subseteq \mathbf{Alg}(\Sigma)$ and $\mathcal{V}' \subseteq \mathcal{V}$,

Fact:
$$\mathcal{P}(\mathcal{H}(\mathcal{V})) \subseteq \mathcal{H}(\mathcal{P}(\mathcal{V}))$$

$$\mathcal{P}(\mathcal{S}(\mathcal{V})) \subseteq \mathcal{S}(\mathcal{P}(\mathcal{V}))$$

$$\mathcal{S}(\mathcal{H}(\mathcal{V})) \subseteq \mathcal{H}(\mathcal{S}(\mathcal{V}))$$
for $\mathcal{V} \subseteq \mathbf{Alg}(\Sigma)$.

Define $\mathcal{H}, \mathcal{S}, \mathcal{P} \colon 2^{\mathbf{Alg}(\Sigma)} \to 2^{\mathbf{Alg}(\Sigma)}$, for $\mathcal{V} \subset \mathbf{Alg}(\Sigma)$:

- $\mathcal{H}(\mathcal{V}) = \{h(A) \mid A \in \mathcal{V}, h \colon A \to B\}$
- $\mathcal{S}(\mathcal{V}) = \{A_{sub} \mid A_{sub} \subseteq A \in \mathcal{V}\}$
- $\mathcal{P}(\mathcal{V}) = \{ P \mid P \cong \prod_{i \in \mathcal{I}} A_i, \text{ for } i \in \mathcal{I}, A_i \in \mathcal{V} \}$
- $\mathcal{HSP}(\mathcal{V}) = \mathcal{H}(\mathcal{S}(\mathcal{P}(\mathcal{V})))$

Fact: Each $\mathcal{O} \in \{\mathcal{H}, \mathcal{S}, \mathcal{P}\}$ is a closure operator on $2^{\mathbf{Alg}(\Sigma)}$:

$$\mathcal{V} \subseteq \mathcal{O}(\mathcal{V})$$

$$\mathcal{V} \subseteq \mathcal{O}(\mathcal{V})$$
 $\mathcal{O}(\mathcal{O}(\mathcal{V})) = \mathcal{O}(\mathcal{V})$ $\mathcal{O}(\mathcal{V}') \subseteq \mathcal{O}(\mathcal{V})$

$$\mathcal{O}(\mathcal{V}')\subseteq\mathcal{O}(\mathcal{V})$$

for $\mathcal{V} \subseteq \mathbf{Alg}(\Sigma)$ and $\mathcal{V}' \subseteq \mathcal{V}$,

Fact:

$$\mathcal{P}(\mathcal{H}(\mathcal{V})) \subseteq \mathcal{H}(\mathcal{P}(\mathcal{V}))$$

$$\mathcal{P}(\mathcal{S}(\mathcal{V})) \subseteq \mathcal{S}(\mathcal{P}(\mathcal{V}))$$

$$\mathcal{S}(\mathcal{H}(\mathcal{V})) \subseteq \mathcal{H}(\mathcal{S}(\mathcal{V}))$$
for $\mathcal{V} \subseteq \mathbf{Alg}(\Sigma)$

Corollary:

$$\mathcal{HSP} \colon 2^{\mathbf{Alg}(\Sigma)} \to 2^{\mathbf{Alg}(\Sigma)}$$
 is a closure operator on $2^{\mathbf{Alg}(\Sigma)}$

S

Define $\mathcal{H}, \mathcal{S}, \mathcal{P} \colon 2^{\mathbf{Alg}(\Sigma)} \to 2^{\mathbf{Alg}(\Sigma)}$, for $\mathcal{V} \subseteq \mathbf{Alg}(\Sigma)$:

- $\mathcal{H}(\mathcal{V}) = \{h(A) \mid A \in \mathcal{V}, h \colon A \to B\}$
- $\mathcal{S}(\mathcal{V}) = \{A_{sub} \mid A_{sub} \subseteq A \in \mathcal{V}\}$
- $\mathcal{P}(\mathcal{V}) = \{ P \mid P \cong \prod_{i \in \mathcal{I}} A_i, \text{ for } i \in \mathcal{I}, A_i \in \mathcal{V} \}$
- $\mathcal{HSP}(\mathcal{V}) = \mathcal{H}(\mathcal{S}(\mathcal{P}(\mathcal{V})))$

Fact: Each $\mathcal{O} \in \{\mathcal{H}, \mathcal{S}, \mathcal{P}\}$ is a closure operator on $2^{\mathbf{Alg}(\Sigma)}$:

$$\mathcal{V}\subseteq\mathcal{O}(\mathcal{V})$$

$$\mathcal{V} \subseteq \mathcal{O}(\mathcal{V})$$
 $\mathcal{O}(\mathcal{O}(\mathcal{V})) = \mathcal{O}(\mathcal{V})$

$$\mathcal{O}(\mathcal{V}') \subseteq \mathcal{O}(\mathcal{V})$$

for $\mathcal{V} \subseteq \mathbf{Alg}(\Sigma)$ and $\mathcal{V}' \subseteq \mathcal{V}$,

Fact:

$$\mathcal{P}(\mathcal{H}(\mathcal{V})) \subseteq \mathcal{H}(\mathcal{P}(\mathcal{V}))$$

$$\mathcal{P}(\mathcal{S}(\mathcal{V})) \subseteq \mathcal{S}(\mathcal{P}(\mathcal{V}))$$

$$\mathcal{S}(\mathcal{H}(\mathcal{V})) \subseteq \mathcal{H}(\mathcal{S}(\mathcal{V}))$$
for $\mathcal{V} \subseteq \mathbf{Alg}(\Sigma)$

Corollary:

$$\mathcal{HSP} \colon 2^{\mathbf{Alg}(\Sigma)} \to 2^{\mathbf{Alg}(\Sigma)}$$
 is a closure operator on $2^{\mathbf{Alg}(\Sigma)}$

No other order of \mathcal{H} , \mathcal{S} , \mathcal{P} works!

Consider an S-sorted set X of variables.

- terms $t \in |T_{\Sigma}(X)|$ are built using variables X, constants and operations from Ω in the usual way: $|T_{\Sigma}(X)|$ is the least set such that
 - $-X\subseteq |T_{\Sigma}(X)|$
 - for $f: s_1 \times \ldots \times s_n \to s$ and $t_1 \in |T_\Sigma(X)|_{s_1}, \ldots, t_n \in |T_\Sigma(X)|_{s_n}$, $f(t_1, \ldots, t_n) \in |T_\Sigma(X)|_s$

Consider an S-sorted set X of variables.

- terms $t \in |T_{\Sigma}(X)|$ are built using variables X, constants and operations from Ω in the usual way: $|T_{\Sigma}(X)|$ is the least set such that
 - $-X\subseteq |T_{\Sigma}(X)|$
 - for $f: s_1 \times \ldots \times s_n \to s$ and $t_1 \in |T_\Sigma(X)|_{s_1}, \ldots, t_n \in |T_\Sigma(X)|_{s_n}$, $f(t_1, \ldots, t_n) \in |T_\Sigma(X)|_s$

BTW·

 $- f(t_1, \ldots, t_n)$ really is "f"^"("^ t_1 ^","\\","\tan^")"

Consider an S-sorted set X of variables.

- terms $t \in |T_{\Sigma}(X)|$ are built using variables X, constants and operations from Ω in the usual way: $|T_{\Sigma}(X)|$ is the least set such that
 - $-X\subseteq |T_{\Sigma}(X)|$
 - for $f: s_1 \times \ldots \times s_n \to s$ and $t_1 \in |T_\Sigma(X)|_{s_1}, \ldots, t_n \in |T_\Sigma(X)|_{s_n}$, $f(t_1, \ldots, t_n) \in |T_\Sigma(X)|_s$

BTW.

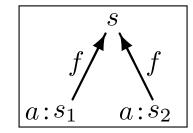
- $f(t_1, \ldots, t_n)$ really is "f"\^"("\^t_1\^",\"\\",\"\^")"
- constants: for f: s (i.e. $f: \rightarrow s$), the term f() is simply written as f

Consider an S-sorted set X of variables.

- terms $t \in |T_{\Sigma}(X)|$ are built using variables X, constants and operations from Ω in the usual way: $|T_{\Sigma}(X)|$ is the least set such that
 - $-X\subseteq |T_{\Sigma}(X)|$
 - for $f: s_1 \times \ldots \times s_n \to s$ and $t_1 \in |T_\Sigma(X)|_{s_1}, \ldots, t_n \in |T_\Sigma(X)|_{s_n}$, $f(t_1, \ldots, t_n) \in |T_\Sigma(X)|_s$

BTW·

- $f(t_1, \ldots, t_n)$ really is "f"\^"("\^t_1\^",\"\\",\"\^")"
- constants: for f: s (i.e. $f: \rightarrow s$), the term f() is simply written as f
- overloading may cause problems with "parsing": consider for instance $a\colon s_1, f\colon s_1\to s, a\colon s_2, f\colon s_2\to s;$ then there are "two" terms "f(a)" of sort s

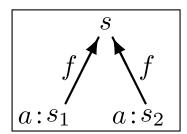


Consider an S-sorted set X of variables.

- terms $t \in |T_{\Sigma}(X)|$ are built using variables X, constants and operations from Ω in the usual way: $|T_{\Sigma}(X)|$ is the least set such that
 - $-X\subseteq |T_{\Sigma}(X)|$
 - for $f: s_1 \times \ldots \times s_n \to s$ and $t_1 \in |T_\Sigma(X)|_{s_1}, \ldots, t_n \in |T_\Sigma(X)|_{s_n}$, $f(t_1, \ldots, t_n) \in |T_\Sigma(X)|_s$

BTW:

- $-f(t_1,\ldots,t_n)$ really is "f"^"("^t_1^","\\","\tan^")"
- constants: for f: s (i.e. $f: \rightarrow s$), the term f() is simply written as f
- overloading may cause problems with "parsing": consider for instance $a\colon s_1, f\colon s_1\to s, a\colon s_2, f\colon s_2\to s;$ then there are "two" terms "f(a)" of sort s
 - better write terms for instance as $f(a:s_1):s$ and $f(a:s_2):s$.



Consider an S-sorted set X of variables.

- terms $t \in |T_{\Sigma}(X)|$ are built using variables X, constants and operations from Ω in the usual way: $|T_{\Sigma}(X)|$ is the least set such that
 - $-X\subseteq |T_{\Sigma}(X)|$
 - for $f: s_1 \times \ldots \times s_n \to s$ and $t_1 \in |T_\Sigma(X)|_{s_1}, \ldots, t_n \in |T_\Sigma(X)|_{s_n}$, $f(t_1, \ldots, t_n) \in |T_\Sigma(X)|_s$

Above and in the following: assuming unambiguous "parsing" of terms!

Consider an S-sorted set X of variables.

- terms $t \in |T_{\Sigma}(X)|$ are built using variables X, constants and operations from Ω in the usual way: $|T_{\Sigma}(X)|$ is the least set such that
 - $-X\subseteq |T_{\Sigma}(X)|$
 - for $f:s_1\times\ldots\times s_n\to s$ and $t_1\in |T_\Sigma(X)|_{s_1},\ldots,t_n\in |T_\Sigma(X)|_{s_n}$, $f(t_1,\ldots,t_n)\in |T_\Sigma(X)|_s$
- for any Σ -algebra A and valuation $v \colon X \to |A|$, the value $t_A[v] \in |A|_s$ of a term $t \in |T_\Sigma(X)|_s$ in A under v is determined inductively:
 - $x_A[v] = v_s(x)$, for $x \in X_s$, $s \in S$
 - $(f(t_1, \dots, t_n))_A[v] = f_A((t_1)_A[v], \dots, (t_n)_A[v]), \text{ for } f \colon s_1 \times \dots \times s_n \to s$ and $t_1 \in |T_\Sigma(X)|_{s_1}, \dots, t_n \in |T_\Sigma(X)|_{s_n}$

Consider an S-sorted set X of variables.

- terms $t \in |T_{\Sigma}(X)|$ are built using variables X, constants and operations from Ω in the usual way: $|T_{\Sigma}(X)|$ is the least set such that
 - $-X\subseteq |T_{\Sigma}(X)|$
 - for $f:s_1\times\ldots\times s_n\to s$ and $t_1\in |T_\Sigma(X)|_{s_1},\ldots,t_n\in |T_\Sigma(X)|_{s_n}$, $f(t_1,\ldots,t_n)\in |T_\Sigma(X)|_s$
- for any Σ -algebra A and valuation $v \colon X \to |A|$, the value $t_A[v] \in |A|_s$ of a term $t \in |T_\Sigma(X)|_s$ in A under v is determined inductively:
 - $-x_A[v] = v_s(x)$, for $x \in X_s$, $s \in S$
 - $(f(t_1, \dots, t_n))_A[v] = f_A((t_1)_A[v], \dots, (t_n)_A[v]), \text{ for } f : s_1 \times \dots \times s_n \to s$ and $t_1 \in |T_\Sigma(X)|_{s_1}, \dots, t_n \in |T_\Sigma(X)|_{s_n}$

BTW: There are three kinds of parenthesis here!

Consider an S-sorted set X of variables.

- terms $t \in |T_{\Sigma}(X)|$ are built using variables X, constants and operations from Ω in the usual way: $|T_{\Sigma}(X)|$ is the least set such that
 - $-X\subseteq |T_{\Sigma}(X)|$
 - for $f: s_1 \times \ldots \times s_n \to s$ and $t_1 \in |T_\Sigma(X)|_{s_1}, \ldots, t_n \in |T_\Sigma(X)|_{s_n}$, $f(t_1, \ldots, t_n) \in |T_\Sigma(X)|_s$
- for any Σ -algebra A and valuation $v: X \to |A|$, the value $t_A[v] \in |A|_s$ of a term $t \in |T_\Sigma(X)|_s$ in A under v is determined inductively:
 - $-x_A[v]=v_s(x)$, for $x\in X_s$, $s\in S$
 - $(f(t_1, \dots, t_n))_A[v] = f_A((t_1)_A[v], \dots, (t_n)_A[v]), \text{ for } f : s_1 \times \dots \times s_n \to s$ and $t_1 \in |T_\Sigma(X)|_{s_1}, \dots, t_n \in |T_\Sigma(X)|_{s_n}$

Above and in the following: assuming unambiguous "parsing" of terms!

Consider an S-sorted set X of variables.

- The term algebra $T_{\Sigma}(X)$ has the set of terms as the carrier and operations defined "syntactically":
 - for $f: s_1 \times \ldots \times s_n \to s$ and $t_1 \in |T_\Sigma(X)|_{s_1}, \ldots, t_n \in |T_\Sigma(X)|_{s_n}$, $f_{T_\Sigma(X)}(t_1, \ldots, t_n) = f(t_1, \ldots, t_n)$.

Consider an S-sorted set X of variables.

• The term algebra $T_{\Sigma}(X)$ has the set of terms as the carrier and operations defined "syntactically":

- for
$$f: s_1 \times \ldots \times s_n \to s$$
 and $t_1 \in |T_\Sigma(X)|_{s_1}, \ldots, t_n \in |T_\Sigma(X)|_{s_n}$, $f_{T_\Sigma(X)}(t_1, \ldots, t_n) = f(t_1, \ldots, t_n)$.

- Ground terms: terms with no variables.
- Ground term algebra:

$$T_{\Sigma} = T_{\Sigma}(\emptyset)$$

Consider an S-sorted set X of variables.

• The term algebra $T_{\Sigma}(X)$ has the set of terms as the carrier and operations defined "syntactically":

- for
$$f: s_1 \times \ldots \times s_n \to s$$
 and $t_1 \in |T_\Sigma(X)|_{s_1}, \ldots, t_n \in |T_\Sigma(X)|_{s_n}$, $f_{T_\Sigma(X)}(t_1, \ldots, t_n) = f(t_1, \ldots, t_n)$.

Fact: $T_{\Sigma}(X)$ is generated by X; T_{Σ} is reachable.

Consider an S-sorted set X of variables.

• The term algebra $T_{\Sigma}(X)$ has the set of terms as the carrier and operations defined "syntactically":

- for
$$f: s_1 \times \ldots \times s_n \to s$$
 and $t_1 \in |T_\Sigma(X)|_{s_1}, \ldots, t_n \in |T_\Sigma(X)|_{s_n}$, $f_{T_\Sigma(X)}(t_1, \ldots, t_n) = f(t_1, \ldots, t_n)$.

Theorem: For any S-sorted set X of variables,

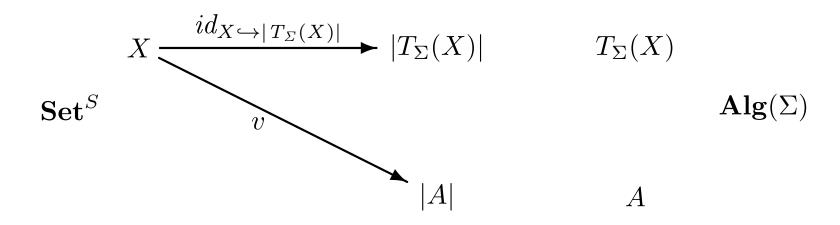
$$X \xrightarrow{id_{X \hookrightarrow |T_{\Sigma}(X)|}} |T_{\Sigma}(X)| \qquad T_{\Sigma}(X)$$

$$\mathbf{Set}^{S} \qquad \mathbf{Alg}(\Sigma)$$

Consider an S-sorted set X of variables.

- The term algebra $T_{\Sigma}(X)$ has the set of terms as the carrier and operations defined "syntactically":
 - for $f: s_1 \times \ldots \times s_n \to s$ and $t_1 \in |T_\Sigma(X)|_{s_1}, \ldots, t_n \in |T_\Sigma(X)|_{s_n}$, $f_{T_\Sigma(X)}(t_1, \ldots, t_n) = f(t_1, \ldots, t_n)$.

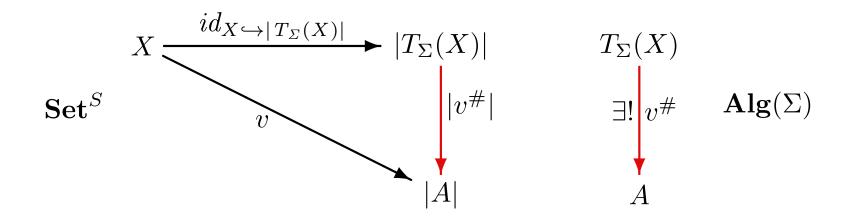
Theorem: For any S-sorted set X of variables, Σ -algebra A and valuation $v: X \to |A|$,



Consider an S-sorted set X of variables.

- The term algebra $T_{\Sigma}(X)$ has the set of terms as the carrier and operations defined "syntactically":
 - for $f: s_1 \times \ldots \times s_n \to s$ and $t_1 \in |T_\Sigma(X)|_{s_1}, \ldots, t_n \in |T_\Sigma(X)|_{s_n}$, $f_{T_\Sigma(X)}(t_1, \ldots, t_n) = f(t_1, \ldots, t_n)$.

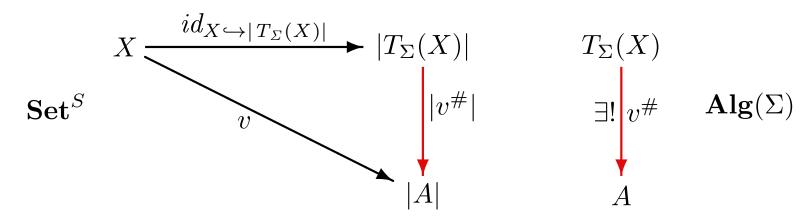
Theorem: For any S-sorted set X of variables, Σ -algebra A and valuation $v\colon X\to |A|$, there is a unique Σ -homomorphism $v^\#\colon T_\Sigma(X)\to A$ that extends v.



Consider an S-sorted set X of variables.

- The term algebra $T_{\Sigma}(X)$ has the set of terms as the carrier and operations defined "syntactically":
 - for $f: s_1 \times \ldots \times s_n \to s$ and $t_1 \in |T_\Sigma(X)|_{s_1}, \ldots, t_n \in |T_\Sigma(X)|_{s_n}$, $f_{T_\Sigma(X)}(t_1, \ldots, t_n) = f(t_1, \ldots, t_n)$.

Theorem: For any S-sorted set X of variables, Σ -algebra A and valuation $v: X \to |A|$, there is a unique Σ -homomorphism $v^{\#}: T_{\Sigma}(X) \to A$ that extends v. Moreover, for $t \in |T_{\Sigma}(X)|$, $v^{\#}(t) = t_{A}[v]$.



Notation: Given $t \in |T_{\Sigma}(X)|$, $x_1 \in X_{s_1}$, $t_1 \in |T_{\Sigma}(X)|_{s_1}$, ..., $x_n \in X_{s_n}$, $t_n \in |T_{\Sigma}(X)|_{s_n}$, x_1 , ..., x_n mutually distinct:

t with t_1, \ldots, t_n simultaneously substituted for x_1, \ldots, x_n , respectively: $t[x_1 \mapsto t_1, \ldots, x_n \mapsto t_n]$

Notation: Given $t \in |T_{\Sigma}(X)|$, $x_1 \in X_{s_1}$, $t_1 \in |T_{\Sigma}(X)|_{s_1}$, ..., $x_n \in X_{s_n}$, $t_n \in |T_{\Sigma}(X)|_{s_n}$, x_1 , ..., x_n mutually distinct:

t with t_1, \ldots, t_n simultaneously substituted for x_1, \ldots, x_n , respectively: $t[x_1 \mapsto t_1, \ldots, x_n \mapsto t_n]$

Fact: $t[x_1 \mapsto t_1][x_2 \mapsto t_2] = t[x_1 \mapsto t_1[x_2 \mapsto t_2], x_2 \mapsto t_2]$

Notation: Given $t \in |T_{\Sigma}(X)|$, $x_1 \in X_{s_1}$, $t_1 \in |T_{\Sigma}(X)|_{s_1}$, ..., $x_n \in X_{s_n}$, $t_n \in |T_{\Sigma}(X)|_{s_n}$, x_1 , ..., x_n mutually distinct:

t with t_1, \ldots, t_n simultaneously substituted for x_1, \ldots, x_n , respectively: $t[x_1 \mapsto t_1, \ldots, x_n \mapsto t_n]$

Fact: $t[x_1 \mapsto t_1][x_2 \mapsto t_2] = t[x_1 \mapsto t_1[x_2 \mapsto t_2], x_2 \mapsto t_2]$

Proof: By laborious (double) induction on the structure of t and t_1 .

Notation: Given $t \in |T_{\Sigma}(X)|$, $x_1 \in X_{s_1}$, $t_1 \in |T_{\Sigma}(X)|_{s_1}$, ..., $x_n \in X_{s_n}$, $t_n \in |T_{\Sigma}(X)|_{s_n}$, x_1 , ..., x_n mutually distinct:

t with t_1, \ldots, t_n simultaneously substituted for x_1, \ldots, x_n , respectively: $t[x_1 \mapsto t_1, \ldots, x_n \mapsto t_n]$

Fact: $t[x_1 \mapsto t_1][x_2 \mapsto t_2] = t[x_1 \mapsto t_1[x_2 \mapsto t_2], x_2 \mapsto t_2]$

Proof: By laborious (double) induction on the structure of t and t_1 .

Alternative:

Generalise!

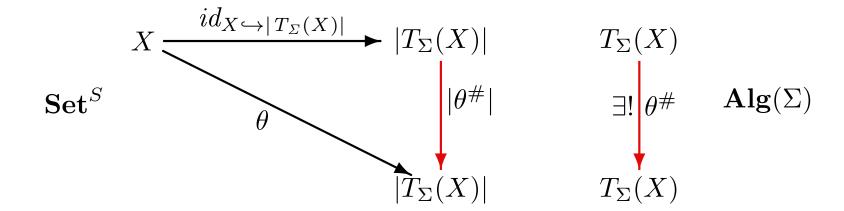
Notation: *Given substitution* $\theta: X \to |T_{\Sigma}(X)|$:

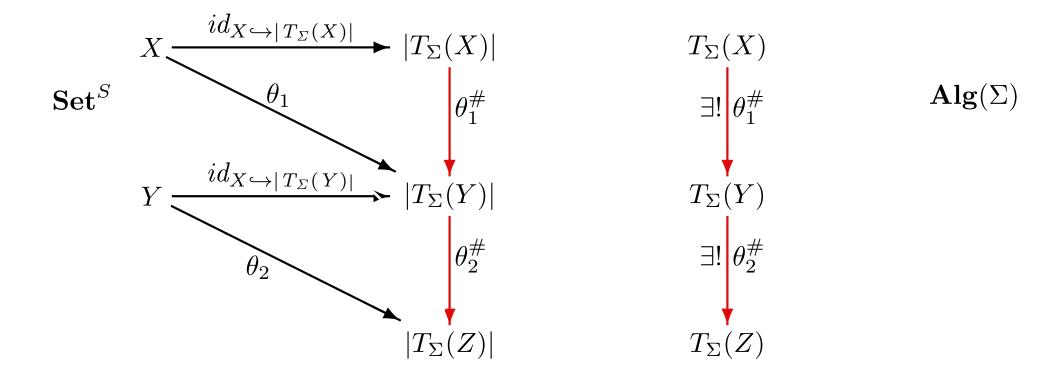
t with substitution θ carried out: $t[\theta]$

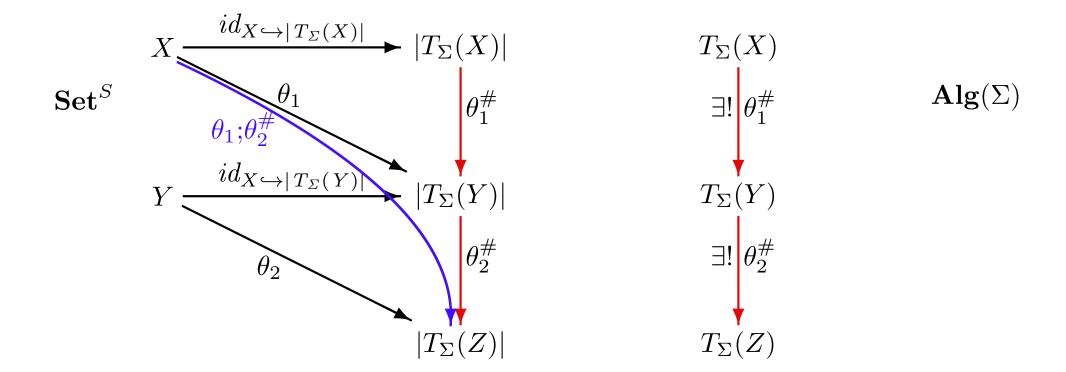
Notation: *Given substitution* $\theta: X \to |T_{\Sigma}(X)|$:

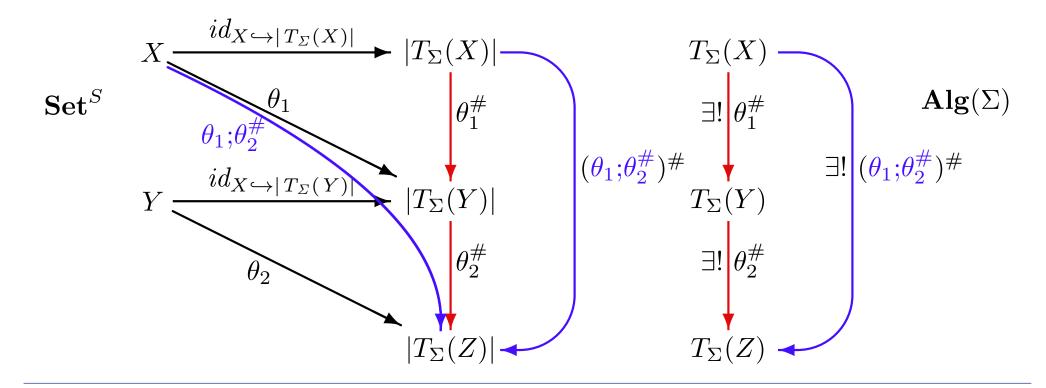
t with substitution θ carried out: $t[\theta]$

Fact: $t[\theta] = t_{T_{\Sigma}(X)}[\theta] = \theta^{\#}(t)$

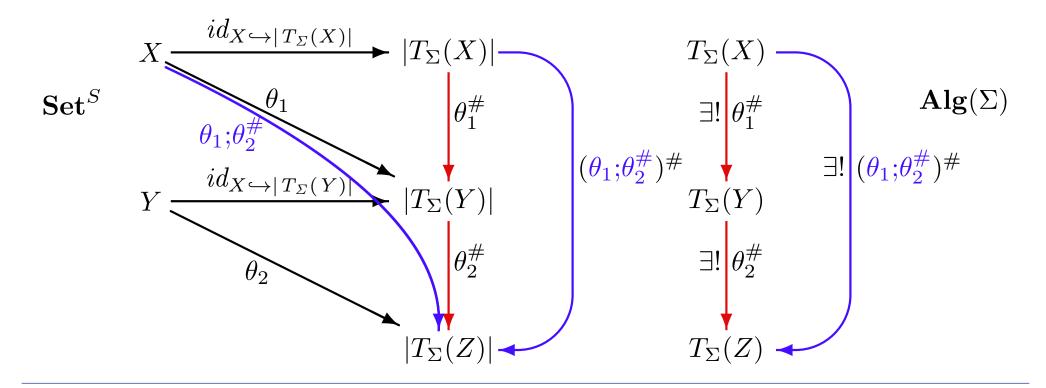








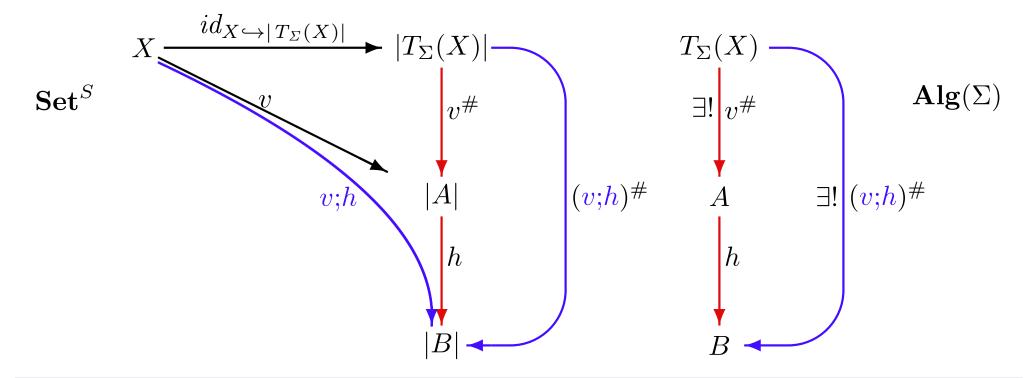
$$\theta_1^{\#}; \theta_2^{\#} = (\theta_1; \theta_2^{\#})^{\#}$$



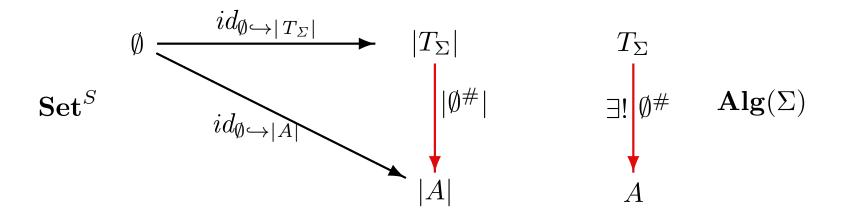
Theorem: For any S-sorted set X, Σ -algebras $A, B \in \mathbf{Alg}(\Sigma)$, valuation $v: X \to |A|$ and Σ -homomorphism $h: A \to B$,

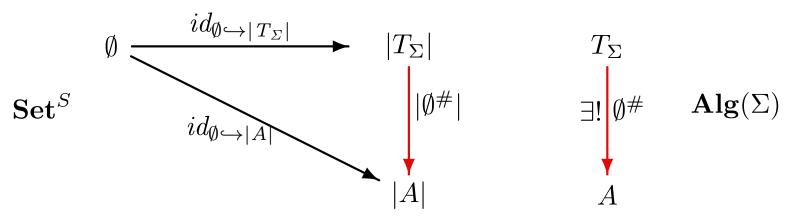
$$v^{\#};h = (v;h)^{\#}$$

In other words, for any term $t \in |T_{\Sigma}(X)|_s$, $h_s(t_A[v]) = t_B[v;h]$.



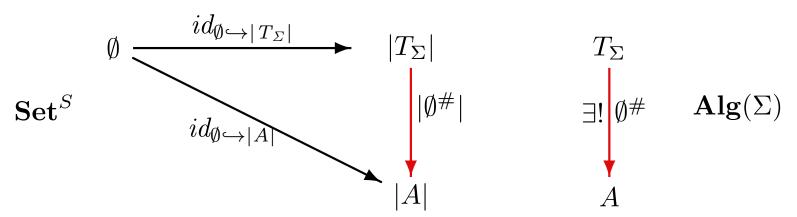
Consequences for reachability



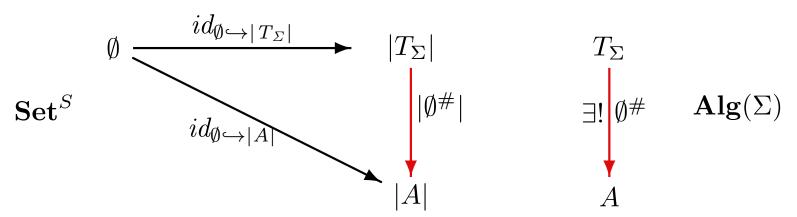


Theorem:

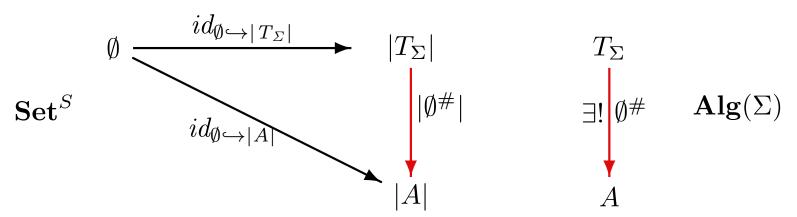
• For any Σ -algebra $A \in \mathbf{Alg}(\Sigma)$, there is a unique Σ -homomorphism $!_A \colon T_{\Sigma} \to A$.



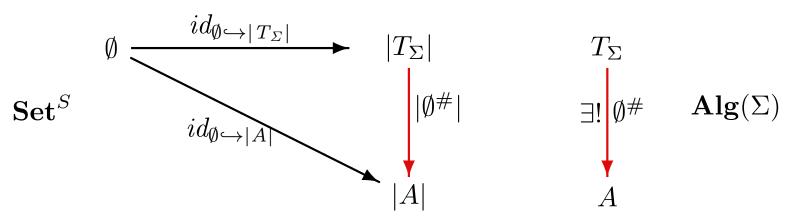
- For any Σ -algebra $A \in \mathbf{Alg}(\Sigma)$, there is a unique Σ -homomorphism $!_A \colon T_{\Sigma} \to A$.
- Σ -algebra $A \in \mathbf{Alg}(\Sigma)$ is reachable iff the unique homomorphism $!_A \colon T_{\Sigma} \to A$ is surjective.



- For any Σ -algebra $A \in \mathbf{Alg}(\Sigma)$, there is a unique Σ -homomorphism $!_A : T_{\Sigma} \to A$.
- Σ -algebra $A \in \mathbf{Alg}(\Sigma)$ is reachable iff the unique homomorphism $!_A : T_{\Sigma} \to A$ is surjective.
- Each reachable Σ -algebra is isomorphic to a quotient of T_{Σ} .



- For any Σ -algebra $A \in \mathbf{Alg}(\Sigma)$, there is a unique Σ -homomorphism $!_A \colon T_{\Sigma} \to A$.
- Σ -algebra $A \in \mathbf{Alg}(\Sigma)$ is reachable iff the unique homomorphism $!_A : T_{\Sigma} \to A$ is surjective.
- ullet Each reachable Σ -algebra is isomorphic to a quotient of T_{Σ} .
- For any Σ -algebras $A, B \in \mathbf{Alg}(\Sigma)$, if A is reachable then there is at most one homomorphism $h \colon A \to B$.



- For any Σ -algebra $A \in \mathbf{Alg}(\Sigma)$, there is a unique Σ -homomorphism $!_A : T_{\Sigma} \to A$.
- Σ -algebra $A \in \mathbf{Alg}(\Sigma)$ is reachable iff the unique homomorphism $!_A : T_{\Sigma} \to A$ is surjective.
- ullet Each reachable Σ -algebra is isomorphic to a quotient of T_{Σ} .
- For any Σ -algebras $A, B \in \mathbf{Alg}(\Sigma)$, if A is reachable then there is at most one homomorphism $h \colon A \to B$.
- For any reachable Σ -algebra A, each homomorphism $h \colon B \to A$ is surjective.

Equations

• Equation:

$$\forall X.t = t'$$

where:

- -X is a set of variables, and
- $-t,t'\in |T_\Sigma(X)|_s$ are terms of a common sort.

Equations

• Equation:

$$\forall X.t = t'$$

where:

- -X is a set of variables, and
- $-t,t'\in |T_{\Sigma}(X)|_s$ are terms of a common sort.
- Satisfaction relation: Σ -algebra A satisfies $\forall X.t = t'$

$$A \models \forall X.t = t'$$

when for all $v: X \to |A|$, $t_A[v] = t'_A[v]$.

Equations

• Equation:

$$\forall X.t = t'$$

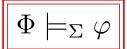
where:

- -X is a set of variables, and
- $-t,t'\in |T_{\Sigma}(X)|_s$ are terms of a common sort.
- Satisfaction relation: Σ -algebra A satisfies $\forall X.t = t'$

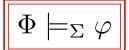
$$A \models \forall X.t = t'$$

when for all $v: X \to |A|$, $t_A[v] = t'_A[v]$.

BTW: $A \models \forall X.t = t'$ holds "trivially" if for some $s \in S$, $X_s \neq \emptyset$ and $|A|_s = \emptyset$.



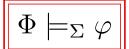
 Σ -equation φ is a semantic consequence of a set of Σ -equations Φ if φ holds in every Σ -algebra that satisfies Φ .



 Σ -equation φ is a semantic consequence of a set of Σ -equations Φ if φ holds in every Σ -algebra that satisfies Φ .

BTW:

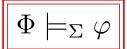
• *Models* of a set of equations: $Mod(\Phi) = \{A \in \mathbf{Alg}(\Sigma) \mid A \models \Phi\}$



 Σ -equation φ is a semantic consequence of a set of Σ -equations Φ if φ holds in every Σ -algebra that satisfies Φ .

BTW:

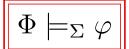
- *Models* of a set of equations: $Mod(\Phi) = \{A \in \mathbf{Alg}(\Sigma) \mid A \models \Phi\}$
- Theory of a class of algebras: $Th(\mathcal{C}) = \{ \varphi \mid \mathcal{C} \models \varphi \}$



 Σ -equation φ is a semantic consequence of a set of Σ -equations Φ if φ holds in every Σ -algebra that satisfies Φ .

BTW:

- *Models* of a set of equations: $Mod(\Phi) = \{A \in \mathbf{Alg}(\Sigma) \mid A \models \Phi\}$
- Theory of a class of algebras: $Th(\mathcal{C}) = \{ \varphi \mid \mathcal{C} \models \varphi \}$
- $\Phi \models \varphi \iff \varphi \in Th(Mod(\Phi))$



 Σ -equation φ is a semantic consequence of a set of Σ -equations Φ if φ holds in every Σ -algebra that satisfies Φ .

BTW:

- *Models* of a set of equations: $Mod(\Phi) = \{A \in \mathbf{Alg}(\Sigma) \mid A \models \Phi\}$
- Theory of a class of algebras: $Th(\mathcal{C}) = \{ \varphi \mid \mathcal{C} \models \varphi \}$
- $\Phi \models \varphi \iff \varphi \in Th(Mod(\Phi))$
- Mod and Th form a Galois connection: $Mod(\Phi) \supseteq \mathcal{C}$ iff $\Phi \subseteq Th(\mathcal{C})$.
 - $-\mathcal{C}\subseteq Mod(Th(\mathcal{C})), \ \Phi\subseteq Th(Mod(\Phi))$
 - $Mod(Th(Mod(\Phi))) = Mod(\Phi), Th(Mod(Th(C))) = Th(C)$

 $\langle \Sigma, \Phi \rangle$

- ullet signature Σ , to determine the static module interface
- axioms (Σ -equations), to determine required module properties

 $\langle \Sigma, \Phi \rangle$

- ullet signature Σ , to determine the static module interface
- axioms (Σ -equations), to determine required module properties

BUT:

Equational specifications typically admit a lot of undesirable "modules"

 $\langle \Sigma, \Phi \rangle$

- ullet signature Σ , to determine the static module interface
- axioms (Σ -equations), to determine required module properties

BUT:

Equational specifications typically admit a lot of undesirable "modules"

Theorem: A class of Σ -algebras is equationally definable iff it is a variety (i.e. is closed under subalgebras, products and homomorphic images).

 $\langle \Sigma, \Phi \rangle$

- ullet signature Σ , to determine the static module interface
- axioms (Σ -equations), to determine required module properties

BUT:

Equational specifications typically admit a lot of undesirable "modules"

Theorem: A class of Σ -algebras is equationally definable iff it is a variety (i.e. is closed under subalgebras, products and homomorphic images).

for
$$\mathcal{V} \subseteq \mathbf{Alg}(\Sigma)$$
:
 $Mod(Th(\mathcal{V})) = \mathcal{V} \ \textit{iff} \ \mathcal{V} = \mathcal{HSP}(\mathcal{V})$

$$\langle \Sigma, \Phi \rangle$$

- \bullet signature Σ , to determine the static module interface
- axioms (Σ -equations), to determine required module properties

BUT:

Equational specifications typically admit a lot of undesirable "modules"

Theorem: A class of Σ -algebras is equationally definable iff it is a variety (i.e. is closed under subalgebras, products and homomorphic images).

for
$$\mathcal{V} \subseteq \mathbf{Alg}(\Sigma)$$
:
$$Mod(Th(\mathcal{V})) = \mathcal{V} \text{ iff } \mathcal{V} = \mathcal{HSP}(\mathcal{V})$$

"⇒": Easy!

 $\langle \Sigma, \Phi \rangle$

- ullet signature Σ , to determine the static module interface
- \bullet axioms (Σ -equations), to determine required module properties

BUT:

Equational specifications typically admit a lot of undesirable "modules"

Theorem: A class of Σ -algebras is equationally definable iff it is a variety (i.e. is closed under subalgebras, products and homomorphic images).

for
$$\mathcal{V} \subseteq \mathbf{Alg}(\Sigma)$$
:
 $Mod(Th(\mathcal{V})) = \mathcal{V} \ \textit{iff} \ \mathcal{V} = \mathcal{HSP}(\mathcal{V})$

"⇒": Easy!
"←": Not so easy, hints later...

Example

```
 \begin{aligned} \mathbf{spec} \ \mathrm{NaiveNat} &= \mathbf{sort} \ \mathit{Nat}; \\ \mathbf{ops} \ 0 \colon \mathit{Nat}; \\ \mathit{succ} \colon \mathit{Nat} \to \mathit{Nat}; \\ -+- \colon \mathit{Nat} \times \mathit{Nat} \to \mathit{Nat} \\ \mathbf{axioms} \ \forall n \colon \mathit{Nat} \bullet n + 0 = n; \\ \forall n, m \colon \mathit{Nat} \bullet n + \mathit{succ}(m) = \mathit{succ}(n+m) \end{aligned}
```

Now:

NaiveNat $\not\models \forall n, m : Nat \bullet n + m = m + n$

• Other (stronger) *logical systems*: conditional equations, first-order logic, higher-order logics, other bells-and-whistles

• Other (stronger) *logical systems*: conditional equations, first-order logic, higher-order logics, other bells-and-whistles

- Other (stronger) logical systems: conditional equations, first-order logic, higher-order logics, other bells-and-whistles
 - more about this elsewhere...

Institutions!

- Other (stronger) logical systems: conditional equations, first-order logic, higher-order logics, other bells-and-whistles
 - more about this elsewhere...

Institutions!

- Constraints:
 - reachability (and generation): "no junk"
 - initiality (and freeness): "no junk" & "no confusion"

- Other (stronger) logical systems: conditional equations, first-order logic, higher-order logics, other bells-and-whistles
 - more about this elsewhere...

Institutions!

- Constraints:
 - reachability (and generation): "no junk"
 - initiality (and freeness): "no junk" & "no confusion"

Constraints can be thought of as special (higher-order) formulae.

Theorem: Every equational specification $\langle \Sigma, \Phi \rangle$ has an initial model: there exists a Σ -algebra $I \in Mod(\Phi)$ such that for every Σ -algebra $M \in Mod(\Phi)$ there exists a unique Σ -homomorphism from I to M.

Theorem: Every equational specification $\langle \Sigma, \Phi \rangle$ has an initial model: there exists a Σ -algebra $I \in Mod(\Phi)$ such that for every Σ -algebra $M \in Mod(\Phi)$ there exists a unique Σ -homomorphism from I to M.

Proof (idea):

Theorem: Every equational specification $\langle \Sigma, \Phi \rangle$ has an initial model: there exists a Σ -algebra $I \in Mod(\Phi)$ such that for every Σ -algebra $M \in Mod(\Phi)$ there exists a unique Σ -homomorphism from I to M.

Proof (idea):

• I is the reachable subalgebra of the product of "all" (up to isomorphism) reachable algebras in $Mod(\Phi)$.

P

where
$$P=\prod_{\equiv\in\{\equiv\;|\;(T_{\Sigma}/\equiv)\models\Phi\}}T_{\Sigma}/\equiv$$

Theorem: Every equational specification $\langle \Sigma, \Phi \rangle$ has an initial model: there exists a Σ -algebra $I \in Mod(\Phi)$ such that for every Σ -algebra $M \in Mod(\Phi)$ there exists a unique Σ -homomorphism from I to M.

Proof (idea):

$$I = \langle P \rangle_{\emptyset} \longrightarrow P$$

where
$$P = \prod_{\equiv \in \{\equiv \mid (T_{\Sigma}/\equiv) \models \Phi\}} T_{\Sigma}/\equiv$$

Theorem: Every equational specification $\langle \Sigma, \Phi \rangle$ has an initial model: there exists a Σ -algebra $I \in Mod(\Phi)$ such that for every Σ -algebra $M \in Mod(\Phi)$ there exists a unique Σ -homomorphism from I to M.

Proof (idea):

$$I = \langle P \rangle_{\emptyset} \longrightarrow P$$

$$M \models \Phi$$

where
$$P = \prod_{\equiv \in \{\equiv \mid (T_{\Sigma}/\equiv) \models \Phi\}} T_{\Sigma}/\equiv$$

Theorem: Every equational specification $\langle \Sigma, \Phi \rangle$ has an initial model: there exists a Σ -algebra $I \in Mod(\Phi)$ such that for every Σ -algebra $M \in Mod(\Phi)$ there exists a unique Σ -homomorphism from I to M.

Proof (idea):

$$I = \langle P \rangle_{\emptyset} \longrightarrow P$$

$$\langle M \rangle_{\emptyset} \longrightarrow M \models \Phi$$

where
$$P = \prod_{\equiv \in \{\equiv \mid (T_{\Sigma}/\equiv) \models \Phi\}} T_{\Sigma}/\equiv$$

Theorem: Every equational specification $\langle \Sigma, \Phi \rangle$ has an initial model: there exists a Σ -algebra $I \in Mod(\Phi)$ such that for every Σ -algebra $M \in Mod(\Phi)$ there exists a unique Σ -homomorphism from I to M.

Proof (idea):

$$I = \langle P \rangle_{\emptyset} \longrightarrow P$$

$$T_{\Sigma} / \equiv \longrightarrow \langle M \rangle_{\emptyset} \longrightarrow M \models \Phi$$
 where $P = \prod_{\equiv \in \{ \equiv \mid (T_{\Sigma} / \equiv) \models \Phi \}} T_{\Sigma} / \equiv$

Theorem: Every equational specification $\langle \Sigma, \Phi \rangle$ has an initial model: there exists a Σ -algebra $I \in Mod(\Phi)$ such that for every Σ -algebra $M \in Mod(\Phi)$ there exists a unique Σ -homomorphism from I to M.

Proof (idea):

$$I = \langle P \rangle_{\emptyset} \longrightarrow P \longrightarrow T_{\Sigma} / \equiv \longrightarrow \langle M \rangle_{\emptyset} \longrightarrow M \models \Phi$$

$$\text{where } P = \prod_{\equiv \in \{ \equiv \mid (T_{\Sigma} / \equiv) \models \Phi \}} T_{\Sigma} / \equiv$$

Theorem: Every equational specification $\langle \Sigma, \Phi \rangle$ has an initial model: there exists a Σ -algebra $I \in Mod(\Phi)$ such that for every Σ -algebra $M \in Mod(\Phi)$ there exists a unique Σ -homomorphism from I to M.

Proof (idea):

• I is the quotient of the algebra of ground Σ -terms by the congruence that glues together all ground terms t, t' such that $\Phi \models \forall \emptyset. t = t'$.

Theorem: Every equational specification $\langle \Sigma, \Phi \rangle$ has an initial model: there exists a Σ -algebra $I \in Mod(\Phi)$ such that for every Σ -algebra $M \in Mod(\Phi)$ there exists a unique Σ -homomorphism from I to M.

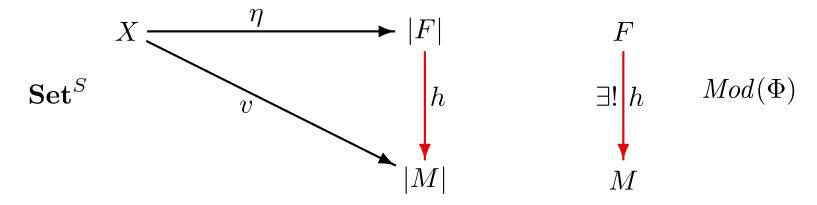
Proof (idea):

• I is the quotient of the algebra of ground Σ -terms by the congruence that glues together all ground terms t, t' such that $\Phi \models \forall \emptyset. t = t'$.

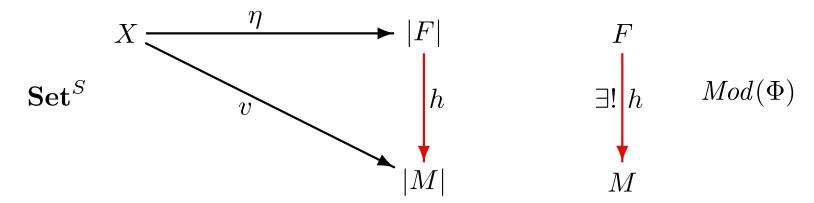
BTW: This can be generalised to the existence of a free model of $\langle \Sigma, \Phi \rangle$ over any (many-sorted) set of data.

Theorem: For any equational specification $\langle \Sigma, \Phi \rangle$ and S-sorted set X, there exists an algebra $F \in Mod(\Phi)$ over X that is free over X with unit $\eta \colon X \to |F|$, i.e. such that for every Σ -algebra $M \in Mod(\Phi)$ and valuation $v \colon X \to |M|$, there exists a unique Σ -homomorphism $h \colon F \to M$ such that $\eta; h = v$.

Theorem: For any equational specification $\langle \Sigma, \Phi \rangle$ and S-sorted set X, there exists an algebra $F \in Mod(\Phi)$ over X that is free over X with unit $\eta \colon X \to |F|$, i.e. such that for every Σ -algebra $M \in Mod(\Phi)$ and valuation $v \colon X \to |M|$, there exists a unique Σ -homomorphism $h \colon F \to M$ such that $\eta; h = v$.



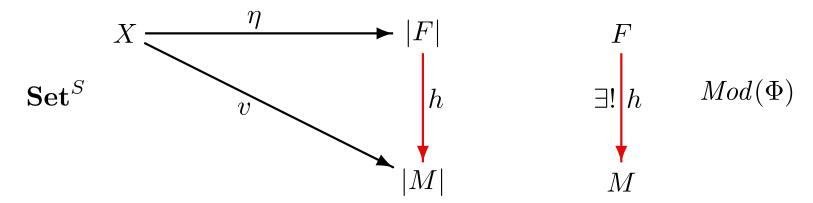
Theorem: For any equational specification $\langle \Sigma, \Phi \rangle$ and S-sorted set X, there exists an algebra $F \in Mod(\Phi)$ over X that is free over X with unit $\eta \colon X \to |F|$, i.e. such that for every Σ -algebra $M \in Mod(\Phi)$ and valuation $v \colon X \to |M|$, there exists a unique Σ -homomorphism $h \colon F \to M$ such that $\eta; h = v$.



Proof:

- Define $\equiv \subseteq |T_{\Sigma}(X)| \times |T_{\Sigma}(X)|$: $t_1 \equiv t_2$ iff $\Phi \models \forall X.t_1 = t_2$

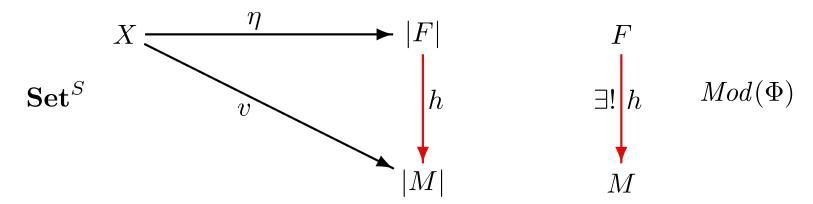
Theorem: For any equational specification $\langle \Sigma, \Phi \rangle$ and S-sorted set X, there exists an algebra $F \in Mod(\Phi)$ over X that is free over X with unit $\eta \colon X \to |F|$, i.e. such that for every Σ -algebra $M \in Mod(\Phi)$ and valuation $v \colon X \to |M|$, there exists a unique Σ -homomorphism $h \colon F \to M$ such that $\eta; h = v$.



Proof:

- Define $\equiv \subseteq |T_{\Sigma}(X)| \times |T_{\Sigma}(X)|$: $t_1 \equiv t_2$ iff $\Phi \models \forall X.t_1 = t_2$
- Show that \equiv is a congruence on $T_{\Sigma}(X)$, and $T_{\Sigma}(X)/\equiv \models \Phi$

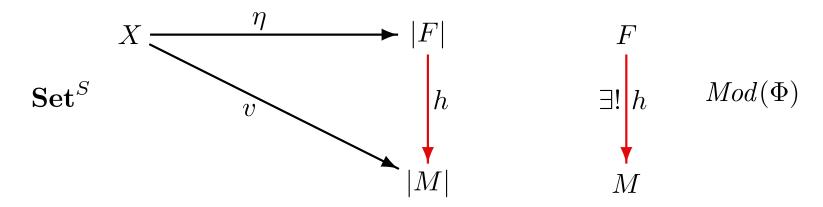
Theorem: For any equational specification $\langle \Sigma, \Phi \rangle$ and S-sorted set X, there exists an algebra $F \in Mod(\Phi)$ over X that is free over X with unit $\eta \colon X \to |F|$, i.e. such that for every Σ -algebra $M \in Mod(\Phi)$ and valuation $v \colon X \to |M|$, there exists a unique Σ -homomorphism $h \colon F \to M$ such that $\eta; h = v$.



Proof:

- Define $\equiv \subseteq |T_{\Sigma}(X)| \times |T_{\Sigma}(X)|$: $t_1 \equiv t_2$ iff $\Phi \models \forall X.t_1 = t_2$
- Show that \equiv is a congruence on $T_{\Sigma}(X)$, and $T_{\Sigma}(X)/\equiv \models \Phi$
- Show that for any $M \models \Phi$ with $v: X \to |M|$, $\equiv \subseteq K(v^{\#}: T_{\Sigma}(X) \to M)$

Theorem: For any equational specification $\langle \Sigma, \Phi \rangle$ and S-sorted set X, there exists an algebra $F \in Mod(\Phi)$ over X that is free over X with unit $\eta \colon X \to |F|$, i.e. such that for every Σ -algebra $M \in Mod(\Phi)$ and valuation $v \colon X \to |M|$, there exists a unique Σ -homomorphism $h \colon F \to M$ such that $\eta; h = v$.



Proof:

- Define $\equiv \subseteq |T_{\Sigma}(X)| \times |T_{\Sigma}(X)|$: $t_1 \equiv t_2$ iff $\Phi \models \forall X.t_1 = t_2$
- Show that \equiv is a congruence on $T_{\Sigma}(X)$, and $T_{\Sigma}(X)/\equiv \models \Phi$
- Show that for any $M \models \Phi$ with $v: X \to |M|$, $\equiv \subseteq K(v^{\#}: T_{\Sigma}(X) \to M)$
- Conclude that $F = T_{\Sigma}(X)/\equiv$ with $\eta = [-]_{\equiv} : X \to |F|$ has the required property.

$$\equiv \subseteq |T_{\Sigma}(X)| \times |T_{\Sigma}(X)|$$
: $t_1 \equiv t_2$ iff $\Phi \models \forall X.t_1 = t_2$

$$\equiv \subseteq |T_{\Sigma}(X)| \times |T_{\Sigma}(X)|$$
: $t_1 \equiv t_2$ iff $\Phi \models \forall X.t_1 = t_2$

ullet \equiv is a congruence on $T_{\Sigma}(X)$

$$\equiv \subseteq |T_{\Sigma}(X)| \times |T_{\Sigma}(X)|$$
: $t_1 \equiv t_2$ iff $\Phi \models \forall X.t_1 = t_2$

- \equiv is a congruence on $T_{\Sigma}(X)$
 - reflexivity, transitivity, symmetry: easy!
 - congruence property: easy as well!

$$\equiv \subseteq |T_{\Sigma}(X)| \times |T_{\Sigma}(X)|$$
: $t_1 \equiv t_2$ iff $\Phi \models \forall X.t_1 = t_2$

- \equiv is a congruence on $T_{\Sigma}(X)$
- $T_{\Sigma}(X)/\equiv \models \Phi$

$$\equiv \subseteq |T_{\Sigma}(X)| \times |T_{\Sigma}(X)|$$
: $t_1 \equiv t_2$ iff $\Phi \models \forall X.t_1 = t_2$

- \equiv is a congruence on $T_{\Sigma}(X)$
- $T_{\Sigma}(X)/\equiv \models \Phi$

Lemma: For $w: Y \to |T_{\Sigma}(X)/\equiv|$, let $\widetilde{w}: Y \to |T_{\Sigma}(X)|$ be such that $w(y) = [\widetilde{w}(y)]_{\equiv}$, $y \in Y$.

$$\equiv \subseteq |T_{\Sigma}(X)| \times |T_{\Sigma}(X)|$$
: $t_1 \equiv t_2$ iff $\Phi \models \forall X.t_1 = t_2$

- \equiv is a congruence on $T_{\Sigma}(X)$
- $T_{\Sigma}(X)/\equiv \models \Phi$

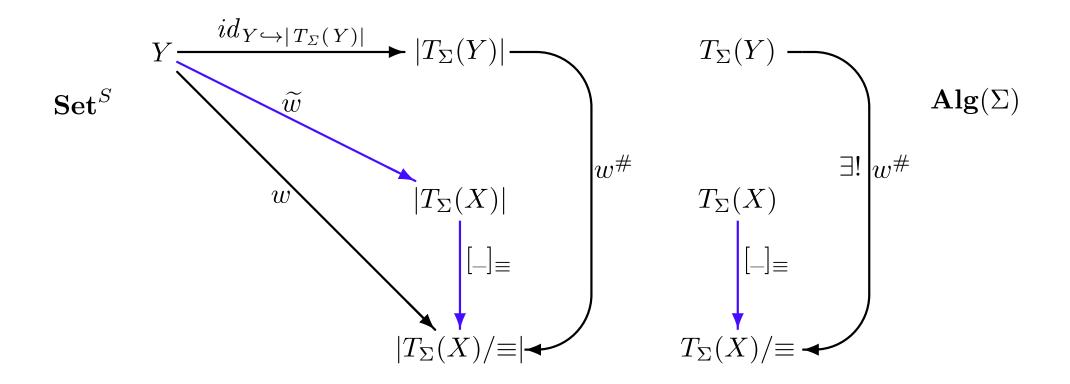
$$\equiv \subseteq |T_{\Sigma}(X)| \times |T_{\Sigma}(X)| \colon t_1 \equiv t_2 \text{ iff } \Phi \models \forall X.t_1 = t_2$$

- \equiv is a congruence on $T_{\Sigma}(X)$
- $T_{\Sigma}(X)/\equiv \models \Phi$



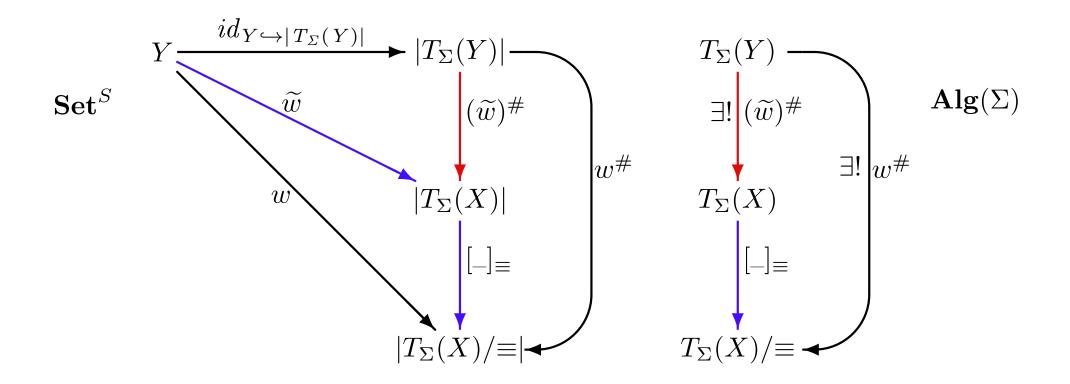
$$\equiv \subseteq |T_{\Sigma}(X)| \times |T_{\Sigma}(X)| \colon t_1 \equiv t_2 \text{ iff } \Phi \models \forall X.t_1 = t_2$$

- \equiv is a congruence on $T_{\Sigma}(X)$
- $T_{\Sigma}(X)/\equiv \models \Phi$



$$\equiv \subseteq |T_{\Sigma}(X)| \times |T_{\Sigma}(X)| \colon t_1 \equiv t_2 \text{ iff } \Phi \models \forall X.t_1 = t_2$$

- \equiv is a congruence on $T_{\Sigma}(X)$
- $T_{\Sigma}(X)/\equiv \models \Phi$



$$\equiv \subseteq |T_{\Sigma}(X)| \times |T_{\Sigma}(X)|$$
: $t_1 \equiv t_2$ iff $\Phi \models \forall X.t_1 = t_2$

- \equiv is a congruence on $T_{\Sigma}(X)$
- $T_{\Sigma}(X)/\equiv \models \Phi$

Lemma: For $w\colon Y\to |T_\Sigma(X)/\equiv|$, let $\widetilde w\colon Y\to |T_\Sigma(X)|$ be such that $w(y)=[\widetilde w(y)]_{\equiv}$, $y\in Y$. Then for $t\in |T_\Sigma(Y)|$, $t_{T_\Sigma(X)/\equiv}[w]=[t_{T_\Sigma(X)}[\widetilde w]]_{\equiv}$. Let $(\forall Y.t_1=t_2)\in \Phi$, and consider $w\colon Y\to |T_\Sigma(X)/\equiv|$.

$$\equiv \subseteq |T_{\Sigma}(X)| \times |T_{\Sigma}(X)|$$
: $t_1 \equiv t_2$ iff $\Phi \models \forall X.t_1 = t_2$

- $\bullet \equiv \text{is a congruence on } T_{\Sigma}(X)$
- $T_{\Sigma}(X)/\equiv \models \Phi$

Lemma: For $w\colon Y\to |T_\Sigma(X)/\equiv|$, let $\widetilde w\colon Y\to |T_\Sigma(X)|$ be such that $w(y)=[\widetilde w(y)]_{\equiv},\ y\in Y$. Then for $t\in |T_\Sigma(Y)|,\ t_{T_\Sigma(X)/\equiv}[w]=[t_{T_\Sigma(X)}[\widetilde w]]_{\equiv}.$ Let $(\forall Y.t_1=t_2)\in \Phi$, and consider $w\colon Y\to |T_\Sigma(X)/\equiv|.$ Then $\Phi\models \forall X.(t_1)_{T_\Sigma(X)}[\widetilde w]=(t_2)_{T_\Sigma(X)}[\widetilde w].$

$$\equiv \subseteq |T_{\Sigma}(X)| \times |T_{\Sigma}(X)| \colon t_1 \equiv t_2 \text{ iff } \Phi \models \forall X.t_1 = t_2$$

- \equiv is a congruence on $T_{\Sigma}(X)$
- $T_{\Sigma}(X)/\equiv \models \Phi$

Lemma: For $w\colon Y\to |T_\Sigma(X)/\equiv|$, let $\widetilde w\colon Y\to |T_\Sigma(X)|$ be such that $w(y)=[\widetilde w(y)]_{\equiv}$, $y\in Y$. Then for $t\in |T_\Sigma(Y)|$, $t_{T_\Sigma(X)/\equiv}[w]=[t_{T_\Sigma(X)}[\widetilde w]]_{\equiv}$. Let $(\forall Y.t_1=t_2)\in \Phi$, and consider $w\colon Y\to |T_\Sigma(X)/\equiv|$. Then $\Phi\models \forall X.(t_1)_{T_\Sigma(X)}[\widetilde w]=(t_2)_{T_\Sigma(X)}[\widetilde w]$.

$$- \text{ for } M \models \Phi \text{ and } v \colon X \to |M|, \quad ((t_1)_{T_\Sigma(X)}[\widetilde{w}])_M[v] = v^\#((t_1)_{T_\Sigma(X)}[\widetilde{w}])$$

$$= (t_1)_M[\widetilde{w}; v^\#]$$

$$= (t_2)_M[\widetilde{w}; v^\#]$$

$$= v^\#((t_2)_{T_\Sigma(X)}[\widetilde{w}])$$

$$= ((t_2)_{T_\Sigma(X)}[\widetilde{w}])_M[v]$$

$$\equiv \subseteq |T_{\Sigma}(X)| \times |T_{\Sigma}(X)|$$
: $t_1 \equiv t_2$ iff $\Phi \models \forall X.t_1 = t_2$

- $\bullet \equiv \text{is a congruence on } T_{\Sigma}(X)$
- $T_{\Sigma}(X)/\equiv \models \Phi$

Lemma: For $w: Y \to |T_{\Sigma}(X)/\equiv|$, let $\widetilde{w}: Y \to |T_{\Sigma}(X)|$ be such that $w(y)=[\widetilde{w}(y)]_{\equiv}$, $y\in Y$. Then for $t\in |T_{\Sigma}(Y)|$, $t_{T_{\Sigma}(X)/\equiv}[w]=[t_{T_{\Sigma}(X)}[\widetilde{w}]]_{\equiv}$. Let $(\forall Y.t_1 = t_2) \in \Phi$, and consider $w: Y \to |T_{\Sigma}(X)/\equiv|$. Then $\Phi \models \forall X.(t_1)_{T_{\Sigma}(X)}[\widetilde{w}] = (t_2)_{T_{\Sigma}(X)}[\widetilde{w}].$

So, by definition of \equiv , $(t_1)_{T_{\Sigma}(X)}[\widetilde{w}] \equiv (t_2)_{T_{\Sigma}(X)}[\widetilde{w}]$.

$$\equiv \subseteq |T_{\Sigma}(X)| \times |T_{\Sigma}(X)|$$
: $t_1 \equiv t_2$ iff $\Phi \models \forall X.t_1 = t_2$

- \equiv is a congruence on $T_{\Sigma}(X)$
- $T_{\Sigma}(X)/\equiv \models \Phi$

Lemma: For $w\colon Y\to |T_\Sigma(X)/\equiv|$, let $\widetilde w\colon Y\to |T_\Sigma(X)|$ be such that $w(y)=[\widetilde w(y)]_{\equiv},\ y\in Y$. Then for $t\in |T_\Sigma(Y)|,\ t_{T_\Sigma(X)/\equiv}[w]=[t_{T_\Sigma(X)}[\widetilde w]]_{\equiv}.$ Let $(\forall Y.t_1=t_2)\in \Phi$, and consider $w\colon Y\to |T_\Sigma(X)/\equiv|.$ Then $\Phi\models \forall X.(t_1)_{T_\Sigma(X)}[\widetilde w]=(t_2)_{T_\Sigma(X)}[\widetilde w].$ So, by definition of \equiv , $(t_1)_{T_\Sigma(X)}[\widetilde w]\equiv (t_2)_{T_\Sigma(X)}[\widetilde w].$ Hence $(t_1)_{T_\Sigma(X)/\equiv}[w]=[(t_1)_{T_\Sigma(X)}[\widetilde w]]_{\equiv}=[(t_2)_{T_\Sigma(X)}[\widetilde w]]_{\equiv}=(t_2)_{T_\Sigma(X)/\equiv}[w]$

$$\equiv \subseteq |T_{\Sigma}(X)| \times |T_{\Sigma}(X)| \colon t_1 \equiv t_2 \text{ iff } \Phi \models \forall X.t_1 = t_2$$

- \equiv is a congruence on $T_{\Sigma}(X)$
- $T_{\Sigma}(X)/\equiv \models \Phi$

Lemma: For
$$w\colon Y\to |T_\Sigma(X)/\equiv|$$
, let $\widetilde w\colon Y\to |T_\Sigma(X)|$ be such that $w(y)=[\widetilde w(y)]_{\equiv}$, $y\in Y$. Then for $t\in |T_\Sigma(Y)|$, $t_{T_\Sigma(X)/\equiv}[w]=[t_{T_\Sigma(X)}[\widetilde w]]_{\equiv}$. Let $(\forall Y.t_1=t_2)\in \Phi$, and consider $w\colon Y\to |T_\Sigma(X)/\equiv|$.

Then $\Phi \models \forall X.(t_1)_{T_{\Sigma}(X)}[\widetilde{w}] = (t_2)_{T_{\Sigma}(X)}[\widetilde{w}].$

So, by definition of \equiv , $(t_1)_{T_{\Sigma}(X)}[\widetilde{w}] \equiv (t_2)_{T_{\Sigma}(X)}[\widetilde{w}]$.

Hence $(t_1)_{T_{\Sigma}(X)/\equiv}[w] = [(t_1)_{T_{\Sigma}(X)}[\widetilde{w}]]_{\equiv} = [(t_2)_{T_{\Sigma}(X)}[\widetilde{w}]]_{\equiv} = (t_2)_{T_{\Sigma}(X)/\equiv}[w]$

and so

$$T_{\Sigma}(X)/\equiv \models \forall Y.t_1 = t_2$$

.

$$\equiv \subseteq |T_{\Sigma}(X)| \times |T_{\Sigma}(X)|$$
: $t_1 \equiv t_2$ iff $\Phi \models \forall X.t_1 = t_2$

- \equiv is a congruence on $T_{\Sigma}(X)$
- $T_{\Sigma}(X)/\equiv \models \Phi$
- for $M \models \Phi$ with $v: X \to |M|$, $\equiv \subseteq K(v^{\#}: T_{\Sigma}(X) \to M)$

$$\equiv \subseteq |T_{\Sigma}(X)| \times |T_{\Sigma}(X)|$$
: $t_1 \equiv t_2$ iff $\Phi \models \forall X.t_1 = t_2$

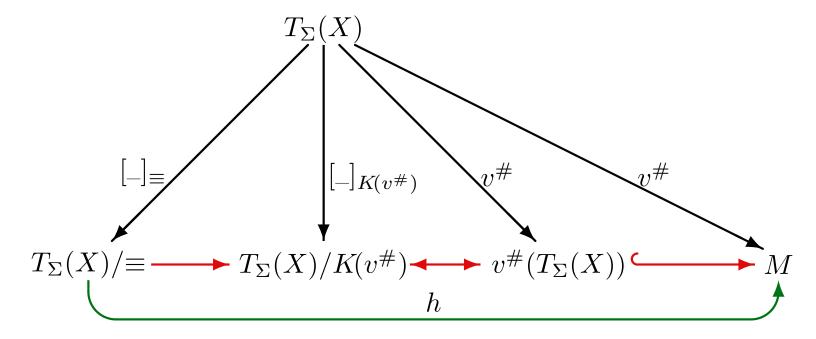
- \equiv is a congruence on $T_{\Sigma}(X)$
- $T_{\Sigma}(X)/\equiv \models \Phi$
- for $M \models \Phi$ with $v: X \to |M|$, $\equiv \subseteq K(v^{\#}: T_{\Sigma}(X) \to M)$
 - If $t_1 \equiv t_2$ then $M \models \forall X.t_1 = t_2$; so $v^{\#}(t_1) = (t_1)_M[v] = (t_2)_M[v] = v^{\#}(t_2)$

$$\equiv \subseteq |T_{\Sigma}(X)| \times |T_{\Sigma}(X)|$$
: $t_1 \equiv t_2$ iff $\Phi \models \forall X.t_1 = t_2$

- \equiv is a congruence on $T_{\Sigma}(X)$
- $T_{\Sigma}(X)/\equiv \models \Phi$
- for $M \models \Phi$ with $v: X \to |M|$, $\equiv \subseteq K(v^{\#}: T_{\Sigma}(X) \to M)$
- for $M \models \Phi$ with $v: X \to |M|$, there is unique Σ -homomorphism $h: (T_{\Sigma}(X)/\equiv) \to M$ such that $h_s([x]_{\equiv}) = v(x)$.

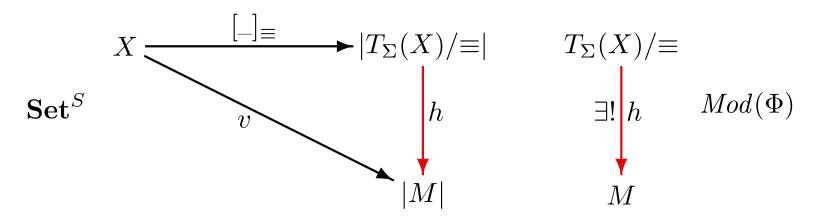
$$\equiv \subseteq |T_{\Sigma}(X)| \times |T_{\Sigma}(X)| \colon t_1 \equiv t_2 \text{ iff } \Phi \models \forall X.t_1 = t_2$$

- \equiv is a congruence on $T_{\Sigma}(X)$
- $T_{\Sigma}(X)/\equiv \models \Phi$
- for $M \models \Phi$ with $v: X \to |M|$, $\equiv \subseteq K(v^{\#}: T_{\Sigma}(X) \to M)$
- for $M \models \Phi$ with $v: X \to |M|$, there is unique Σ -homomorphism $h: (T_{\Sigma}(X)/\equiv) \to M$ such that $h_s([x]_{\equiv}) = v(x)$.



Theorem: For any equational specification $\langle \Sigma, \Phi \rangle$ and S-sorted set X, define $\equiv \subseteq |T_{\Sigma}(X)| \times |T_{\Sigma}(X)|$ so that $t_1 \equiv t_2$ iff $\Phi \models \forall X.t_1 = t_2$.

Then \equiv is a congruence on $T_{\Sigma}(X)$ and the quotient term algebra $T_{\Sigma}(X)/\equiv$ with unit $[_]_{\equiv}\colon X\to |T_{\Sigma}(X)/\equiv|$ is free over X in $Mod(\Phi)$, that is $T_{\Sigma}(X)/\equiv\in Mod(\Phi)$ and for every Σ -algebra $M\in Mod(\Phi)$ and valuation $v\colon X\to |M|$, there exists a unique Σ -homomorphism $h\colon (T_{\Sigma}(X)/\equiv)\to M$ such that $[_]_{\equiv};h=v$.



Initial models

Theorem: Every equational specification $\langle \Sigma, \Phi \rangle$ has an initial model: there exists a Σ -algebra $I \in Mod(\Phi)$ such that for every Σ -algebra $M \in Mod(\Phi)$ there exists a unique Σ -homomorphism from I to M.

Proof (idea):

- I is the quotient of the algebra of ground Σ -terms by the congruence that glues together all ground terms t, t' such that $\Phi \models \forall \emptyset. t = t'$.
- I is the reachable subalgebra of the product of "all" (up to isomorphism) reachable algebras in $Mod(\Phi)$.

BTW: This can be generalised to the existence of a free model of $\langle \Sigma, \Phi \rangle$ over any (many-sorted) set of data.

Initial models

Theorem: Every equational specification $\langle \Sigma, \Phi \rangle$ has an initial model: there exists a Σ -algebra $I \in Mod(\Phi)$ such that for every Σ -algebra $M \in Mod(\Phi)$ there exists a unique Σ -homomorphism from I to M.

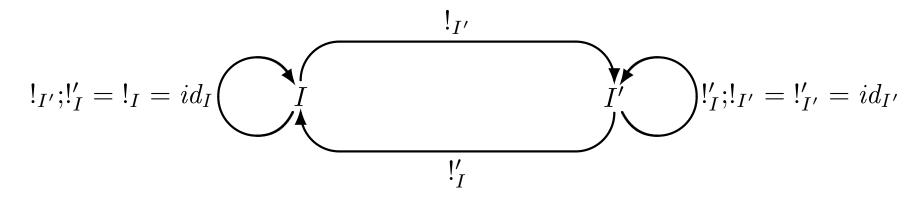
Fact: Any two initial models of an equational specification are isomorphic.

BTW: This can be generalised for free models of $\langle \Sigma, \Phi \rangle$ over any (many-sorted) set of data.

Initial models

Theorem: Every equational specification $\langle \Sigma, \Phi \rangle$ has an initial model: there exists a Σ -algebra $I \in Mod(\Phi)$ such that for every Σ -algebra $M \in Mod(\Phi)$ there exists a unique Σ -homomorphism from I to M.

Fact: Any two initial models of an equational specification are isomorphic.



BTW: This can be generalised for free models of $\langle \Sigma, \Phi \rangle$ over any (many-sorted) set of data.

Example

```
\mathbf{spec} \ \ \mathbf{Nat} = \mathbf{free} \ \{ \ \mathbf{sort} \ \ \mathit{Nat}; \\ \mathbf{ops} \ 0 \colon \mathit{Nat}; \\ \mathit{succ} \colon \mathit{Nat} \to \mathit{Nat}; \\ -+-: \ \mathit{Nat} \times \mathit{Nat} \to \mathit{Nat} \\ \mathbf{axioms} \ \forall n \colon \mathit{Nat} \bullet n + 0 = n; \\ \forall n, m \colon \mathit{Nat} \bullet n + \mathit{succ}(m) = \mathit{succ}(n+m) \\ \}
```

Now:

NAT
$$\models \forall n, m : Nat \bullet n + m = m + n$$

Example[']

$$\begin{aligned} \mathbf{spec} \ \ \mathbf{NAT'} &= \mathbf{free} \ \ \mathbf{type} \ \ Nat ::= 0 \mid succ(Nat) \\ \mathbf{op} \ _+ _: \ Nat \times Nat \to Nat \\ \mathbf{axioms} \ \forall n : Nat \bullet n + 0 = n; \\ \forall n, m : Nat \bullet n + succ(m) = succ(n + m) \end{aligned}$$

 $NAT \equiv NAT'$

Another example

```
spec String =
     generated { sort String
                         ops nil: String;
                               a, \ldots, z : String;
                               \_ : String \times String \rightarrow String 
                         axioms \forall s : String \bullet s \cap nil = s;
                                    \forall s : String \bullet nil \ \hat{\ } s = s;
                                    \forall s, t, v : String \bullet s \land (t \land v) = (s \land t) \land v
```

Theorem: A class of Σ -algebras is equationally definable iff it is closed under subalgebras, products and homomorphic images.

Theorem: A class of Σ -algebras is equationally definable iff it is closed under subalgebras, products and homomorphic images.

Proof ("←="):

Theorem: A class of Σ -algebras is equationally definable iff it is closed under subalgebras, products and homomorphic images.

Proof ("←"): Make precise and prove:

Theorem: A class of Σ -algebras is equationally definable iff it is closed under subalgebras, products and homomorphic images.

Proof ("←"): Make precise and prove:

• If \mathcal{C} is closed under subalgebras and products then for any set X, there exists an algebra $F_X \in \mathcal{C}$ that is free in \mathcal{C} over X with unit $\eta_X \colon X \to |F_X|$,

Theorem: A class of Σ -algebras is equationally definable iff it is closed under subalgebras, products and homomorphic images.

Proof (" \Leftarrow "): Make precise and prove:

• If \mathcal{C} is closed under subalgebras and products then for any set X, there exists an algebra $F_X \in \mathcal{C}$ that is free in \mathcal{C} over X with unit $\eta_X \colon X \to |F_X|$, given as the subalgebra generated by (the image under η_X of) X of the product of "all" algebras $A \in \mathcal{C}$ generated by v(X) for $v \colon X \to |A|$.

Theorem: A class of Σ -algebras is equationally definable iff it is closed under subalgebras, products and homomorphic images.

Proof ("←"): Make precise and prove:

- If \mathcal{C} is closed under subalgebras and products then for any set X, there exists an algebra $F_X \in \mathcal{C}$ that is free in \mathcal{C} over X with unit $\eta_X \colon X \to |F_X|$, given as the subalgebra generated by (the image under η_X of) X of the product of "all" algebras $A \in \mathcal{C}$ generated by v(X) for $v \colon X \to |A|$.
- For $t, t' \in |T_{\Sigma}(X)|_s$, if $t_{F_X}[\eta_X] = t'_{F_X}[\eta_X]$ then $\forall X.t = t' \in Th(\mathcal{C})$.

Theorem: A class of Σ -algebras is equationally definable iff it is closed under subalgebras, products and homomorphic images.

Proof ("←"): Make precise and prove:

- If \mathcal{C} is closed under subalgebras and products then for any set X, there exists an algebra $F_X \in \mathcal{C}$ that is free in \mathcal{C} over X with unit $\eta_X \colon X \to |F_X|$, given as the subalgebra generated by (the image under η_X of) X of the product of "all" algebras $A \in \mathcal{C}$ generated by v(X) for $v \colon X \to |A|$.
- For $t, t' \in |T_{\Sigma}(X)|_s$, if $t_{F_X}[\eta_X] = t'_{F_X}[\eta_X]$ then $\forall X.t = t' \in Th(\mathcal{C})$.
- Let $A \in Mod(Th(\mathcal{C}))$. Then there is a homomorphism $h \colon F_{|A|} \to A$ such that $\eta_{|A|}; h = id_{|A|}$.

Theorem: A class of Σ -algebras is equationally definable iff it is closed under subalgebras, products and homomorphic images.

Proof (" \Leftarrow "): Make precise and prove:

- If \mathcal{C} is closed under subalgebras and products then for any set X, there exists an algebra $F_X \in \mathcal{C}$ that is free in \mathcal{C} over X with unit $\eta_X \colon X \to |F_X|$, given as the subalgebra generated by (the image under η_X of) X of the product of "all" algebras $A \in \mathcal{C}$ generated by v(X) for $v \colon X \to |A|$.
- For $t, t' \in |T_{\Sigma}(X)|_s$, if $t_{F_X}[\eta_X] = t'_{F_X}[\eta_X]$ then $\forall X.t = t' \in Th(\mathcal{C})$.
- Let $A \in Mod(Th(\mathcal{C}))$. Then there is a homomorphism $h \colon F_{|A|} \to A$ such that $\eta_{|A|}; h = id_{|A|}$. Hence $A \in \mathcal{C}$.

Theorem: A class of Σ -algebras is equationally definable iff it is closed under subalgebras, products and homomorphic images.

Proof (" \Leftarrow "): Make precise and prove:

- If \mathcal{C} is closed under subalgebras and products then for any set X, there exists an algebra $F_X \in \mathcal{C}$ that is free in \mathcal{C} over X with unit $\eta_X \colon X \to |F_X|$, given as the subalgebra generated by (the image under η_X of) X of the product of "all" algebras $A \in \mathcal{C}$ generated by v(X) for $v \colon X \to |A|$.
- For $t, t' \in |T_{\Sigma}(X)|_s$, if $t_{F_X}[\eta_X] = t'_{F_X}[\eta_X]$ then $\forall X.t = t' \in Th(\mathcal{C})$.
- Let $A \in Mod(Th(\mathcal{C}))$. Then there is a homomorphism $h \colon F_{|A|} \to A$ such that $\eta_{|A|}; h = id_{|A|}$. Hence $A \in \mathcal{C}$.

Conclude:

$$Mod(Th(\mathcal{C})) = \mathcal{C}$$

$$\frac{\forall X.t = t'}{\forall X.t = t} \qquad \frac{\forall X.t = t'}{\forall X.t' = t'} \qquad \frac{\forall X.t = t'}{\forall X.t = t''}$$

$$\frac{\forall X.t_1 = t'_1 \quad \dots \quad \forall X.t_n = t'_n}{\forall X.f(t_1 \dots t_n) = f(t'_1 \dots t'_n)} \qquad \frac{\forall X.t = t'}{\forall Y.t[\theta] = t'[\theta]} \text{ for } \theta \colon X \to |T_{\Sigma}(Y)|$$

$$\frac{\forall X.t = t'}{\forall X.t = t} \qquad \frac{\forall X.t = t'}{\forall X.t' = t'} \qquad \frac{\forall X.t = t'}{\forall X.t = t''}$$

$$\frac{\forall X.t_1 = t'_1 \quad \dots \quad \forall X.t_n = t'_n}{\forall X.f(t_1 \dots t_n) = f(t'_1 \dots t'_n)} \qquad \frac{\forall X.t = t'}{\forall Y.t[\theta] = t'[\theta]} \text{ for } \theta \colon X \to |T_{\Sigma}(Y)|$$

Mind the variables!

a=b does **not** follow from a=f(x) and f(x)=b

$$\frac{\forall X.t = t'}{\forall X.t = t} \qquad \frac{\forall X.t = t'}{\forall X.t' = t} \qquad \frac{\forall X.t = t'}{\forall X.t = t''}$$

$$\frac{\forall X.t_1 = t'_1 \dots \forall X.t_n = t'_n}{\forall X.f(t_1 \dots t_n) = f(t'_1 \dots t'_n)} \qquad \frac{\forall X.t = t'}{\forall Y.t[\theta] = t'[\theta]} \text{ for } \theta \colon X \to |T_{\Sigma}(Y)|$$

Mind the variables!

$$a=b$$
 does **not** follow from $a=f(x)$ and $f(x)=b$

In general, $\forall x : s.(a:s') = (b:s') \not\models \forall \emptyset.(a:s') = (b:s').$

For instance, over signature Σ with sorts s,s' and constants $a,b\colon s'$ and no other operations, for any algebra $A\in\mathbf{Alg}(\Sigma)$ such that $|A|_s=\emptyset$

$$A \models \forall x : s.a = b$$
, even if $a_A \neq b_A$

$$\frac{\forall X.t = t'}{\forall X.t = t} \qquad \frac{\forall X.t = t'}{\forall X.t' = t'} \qquad \frac{\forall X.t = t'}{\forall X.t = t''}$$

$$\frac{\forall X.t_1 = t'_1 \quad \dots \quad \forall X.t_n = t'_n}{\forall X.f(t_1 \dots t_n) = f(t'_1 \dots t'_n)} \qquad \frac{\forall X.t = t'}{\forall Y.t[\theta] = t'[\theta]} \text{ for } \theta \colon X \to |T_{\Sigma}(Y)|$$

Mind the variables!

a=b does **not** follow from a=f(x) and f(x)=b without a "witness" for x

$$\frac{\forall X.t = t'}{\forall X.t = t} \qquad \frac{\forall X.t = t'}{\forall X.t' = t'} \qquad \frac{\forall X.t = t'}{\forall X.t = t''}$$

$$\frac{\forall X.t_1 = t'_1 \quad \dots \quad \forall X.t_n = t'_n}{\forall X.f(t_1 \dots t_n) = f(t'_1 \dots t'_n)} \qquad \frac{\forall X.t = t'}{\forall Y.t[\theta] = t'[\theta]} \text{ for } \theta \colon X \to |T_{\Sigma}(Y)|$$

$$\frac{\forall X.t = t'}{\forall X.t = t} \qquad \frac{\forall X.t = t'}{\forall X.t' = t'} \qquad \frac{\forall X.t = t'}{\forall X.t = t''}$$

$$\frac{\forall X.t_1 = t'_1 \quad \dots \quad \forall X.t_n = t'_n}{\forall X.f(t_1 \dots t_n) = f(t'_1 \dots t'_n)} \qquad \frac{\forall X.t = t'}{\forall Y.t[\theta] = t'[\theta]} \text{ for } \theta \colon X \to |T_{\Sigma}(Y)|$$

• reflexivity, symmetry, transitivity: clear

$$\frac{\forall X.t = t'}{\forall X.t = t} \qquad \frac{\forall X.t = t'}{\forall X.t' = t} \qquad \frac{\forall X.t = t'}{\forall X.t = t'}$$

$$\frac{\forall X.t_1 = t'_1 \quad \dots \quad \forall X.t_n = t'_n}{\forall X.f(t_1 \dots t_n) = f(t'_1 \dots t'_n)} \qquad \frac{\forall X.t = t'}{\forall Y.t[\theta] = t'[\theta]} \text{ for } \theta \colon X \to |T_{\Sigma}(Y)|$$

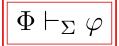
- reflexivity, symmetry, transitivity: clear
- congruence: clear as well

$$\frac{\forall X.t = t'}{\forall X.t = t} \qquad \frac{\forall X.t = t'}{\forall X.t' = t} \qquad \frac{\forall X.t = t'}{\forall X.t = t''}$$

$$\frac{\forall X.t_1 = t'_1 \quad \dots \quad \forall X.t_n = t'_n}{\forall X.f(t_1 \dots t_n) = f(t'_1 \dots t'_n)} \qquad \frac{\forall X.t = t'}{\forall Y.t[\theta] = t'[\theta]} \text{ for } \theta \colon X \to |T_{\Sigma}(Y)|$$

- reflexivity, symmetry, transitivity: clear
- congruence: clear as well
- *substitution* allows one to:
 - substitute terms for (some) variables, possibly with different variables
 - increase the set of variables
 - remove unused variables, if "witnesses" to substitute for them remain

Proof-theoretic entailment



 Σ -equation φ is a proof-theoretic consequence of a set of Σ -equations Φ if φ can be derived from Φ by the rules.

How to justify this?

Semantics!

Soundness & completeness

Theorem: The equational calculus is sound and complete:

$$\Phi \models \varphi \iff \Phi \vdash \varphi$$

- soundness: "all that can be proved, is true" ($\Phi \models \varphi \Longleftarrow \Phi \vdash \varphi$)
- completeness: "all that is true, can be proved" $(\Phi \models \varphi \Longrightarrow \Phi \vdash \varphi)$

- soundness: easy!
- completeness: not so easy!

$$\Phi \models \forall \emptyset. t_1 = t_2 \Longrightarrow \Phi \vdash \forall \emptyset. t_1 = t_2$$

$$\Phi \models \forall \emptyset. t_1 = t_2 \Longrightarrow \Phi \vdash \forall \emptyset. t_1 = t_2$$

$$\Phi \models \forall \emptyset. t_1 = t_2 \Longrightarrow \Phi \vdash \forall \emptyset. t_1 = t_2$$

Proof (idea):

- Define $\approx \subseteq |T_{\Sigma}| \times |T_{\Sigma}|$: $t_1 \approx t_2$ iff $\Phi \vdash \forall \emptyset . t_1 = t_2$

$$\Phi \models \forall \emptyset. t_1 = t_2 \Longrightarrow \Phi \vdash \forall \emptyset. t_1 = t_2$$

- Define $\approx \subseteq |T_{\Sigma}| \times |T_{\Sigma}|$: $t_1 \approx t_2$ iff $\Phi \vdash \forall \emptyset . t_1 = t_2$
- Show that \approx is a congruence on T_{Σ} , and $T_{\Sigma}/\approx \models \Phi$

$$\Phi \models \forall \emptyset. t_1 = t_2 \Longrightarrow \Phi \vdash \forall \emptyset. t_1 = t_2$$

- Define $\approx \subseteq |T_{\Sigma}| \times |T_{\Sigma}|$: $t_1 \approx t_2$ iff $\Phi \vdash \forall \emptyset . t_1 = t_2$
- Show that \approx is a congruence on T_{Σ} , and $T_{\Sigma}/\approx \models \Phi$
- Show that for any $M \models \Phi$, $\approx \subseteq K(!_M : T_{\Sigma} \to M)$

$$\Phi \models \forall \emptyset. t_1 = t_2 \Longrightarrow \Phi \vdash \forall \emptyset. t_1 = t_2$$

- Define $\approx \subseteq |T_{\Sigma}| \times |T_{\Sigma}|$: $t_1 \approx t_2$ iff $\Phi \vdash \forall \emptyset . t_1 = t_2$
- Show that \approx is a congruence on T_{Σ} , and $T_{\Sigma}/\approx \models \Phi$
- Show that for any $M \models \Phi$, $\approx \subseteq K(!_M : T_{\Sigma} \to M)$
- Conclude that T_{Σ}/\approx is initial in $Mod(\Phi)$

$$\Phi \models \forall \emptyset. t_1 = t_2 \Longrightarrow \Phi \vdash \forall \emptyset. t_1 = t_2$$

- Define $\approx \subseteq |T_{\Sigma}| \times |T_{\Sigma}|$: $t_1 \approx t_2$ iff $\Phi \vdash \forall \emptyset . t_1 = t_2$
- Show that \approx is a congruence on T_{Σ} , and $T_{\Sigma}/\approx \models \Phi$
- Show that for any $M \models \Phi$, $\approx \subseteq K(!_M : T_{\Sigma} \to M)$
- Conclude that T_{Σ}/\approx is initial in $Mod(\Phi)$
- Therefore T_{Σ}/\equiv and T_{Σ}/\approx are isomorphic

$$\Phi \models \forall \emptyset. t_1 = t_2 \Longrightarrow \Phi \vdash \forall \emptyset. t_1 = t_2$$

- Define $\approx \subseteq |T_{\Sigma}| \times |T_{\Sigma}|$: $t_1 \approx t_2$ iff $\Phi \vdash \forall \emptyset . t_1 = t_2$
- Show that \approx is a congruence on T_{Σ} , and $T_{\Sigma}/\approx \models \Phi$
- Show that for any $M \models \Phi$, $\approx \subseteq K(!_M : T_{\Sigma} \to M)$
- Conclude that T_{Σ}/\approx is initial in $Mod(\Phi)$
- Therefore T_{Σ}/\equiv and T_{Σ}/\approx are isomorphic
- Thus \equiv = \approx

$$\Phi \models \forall \emptyset. t_1 = t_2 \Longrightarrow \Phi \vdash \forall \emptyset. t_1 = t_2$$

- Define $\approx \subseteq |T_{\Sigma}| \times |T_{\Sigma}|$: $t_1 \approx t_2$ iff $\Phi \vdash \forall \emptyset . t_1 = t_2$
- Show that \approx is a congruence on T_{Σ} , and $T_{\Sigma}/\approx \models \Phi$
- Show that for any $M \models \Phi$, $\approx \subseteq K(!_M : T_{\Sigma} \to M)$
- Conclude that T_{Σ}/\approx is initial in $Mod(\Phi)$
- Therefore T_{Σ}/\equiv and T_{Σ}/\approx are isomorphic
- Thus $\equiv = \approx$

$$\Phi \models \forall \emptyset. t_1 = t_2 \Longrightarrow \Phi \vdash \forall \emptyset. t_1 = t_2$$

$$\Phi \models \forall X.t_1 = t_2 \Longrightarrow \Phi \vdash \forall X.t_1 = t_2$$

$$\Phi \models \forall X.t_1 = t_2 \Longrightarrow \Phi \vdash \forall X.t_1 = t_2$$

$$\Phi \models \forall X.t_1 = t_2 \Longrightarrow \Phi \vdash \forall X.t_1 = t_2$$

Proof (idea): Generalise the previous proof by building a free algebra $T_{\Sigma}(X)/\approx$ in $Mod(\Phi)$ with unit $[_]_{\approx} \colon X \to T_{\Sigma}(X)/\approx$, where $\approx \subseteq |T_{\Sigma}(X)| \times |T_{\Sigma}(X)|$ is given by $t_1 \approx t_2$ iff $\Phi \vdash \forall X.t_1 = t_2$.

$$\Phi \models \forall X.t_1 = t_2 \Longrightarrow \Phi \vdash \forall X.t_1 = t_2$$

$$\Phi \models \forall X.t_1 = t_2 \Longrightarrow \Phi \vdash \forall X.t_1 = t_2$$

Proof (idea):

– For each signature Σ and a set of variables X, define a new signature $\Sigma(X)$ that extends Σ by variables from X as constants

$$\Phi \models \forall X.t_1 = t_2 \Longrightarrow \Phi \vdash \forall X.t_1 = t_2$$

- For each signature Σ and a set of variables X, define a new signature $\Sigma(X)$ that extends Σ by variables from X as constants
- Σ -algebras $A \in \mathbf{Alg}(\Sigma)$ with valuations $v \colon X \to |A|$ correspond to $\Sigma(X)$ -algebras $A[v] \in \mathbf{Alg}(\Sigma(X))$

$$\Phi \models \forall X.t_1 = t_2 \Longrightarrow \Phi \vdash \forall X.t_1 = t_2$$

- For each signature Σ and a set of variables X, define a new signature $\Sigma(X)$ that extends Σ by variables from X as constants
- Σ -algebras $A \in \mathbf{Alg}(\Sigma)$ with valuations $v \colon X \to |A|$ correspond to $\Sigma(X)$ -algebras $A[v] \in \mathbf{Alg}(\Sigma(X))$
- Identify terms in $|T_{\Sigma}(X)|$ with those in $|T_{\Sigma(X)}|$ (and in $|T_{\Sigma}(X)[id_X]|$)

$$\Phi \models \forall X.t_1 = t_2 \Longrightarrow \Phi \vdash \forall X.t_1 = t_2$$

- For each signature Σ and a set of variables X, define a new signature $\Sigma(X)$ that extends Σ by variables from X as constants
- Σ -algebras $A \in \mathbf{Alg}(\Sigma)$ with valuations $v \colon X \to |A|$ correspond to $\Sigma(X)$ -algebras $A[v] \in \mathbf{Alg}(\Sigma(X))$
- Identify terms in $|T_{\Sigma}(X)|$ with those in $|T_{\Sigma(X)}|$ (and in $|T_{\Sigma}(X)[id_X]|$)
- Show $\Phi \models_{\Sigma} \forall X.t_1 = t_2 \text{ iff } \Phi \models_{\Sigma(X)} \forall \emptyset.t_1 = t_2$

$$\Phi \models \forall X.t_1 = t_2 \Longrightarrow \Phi \vdash \forall X.t_1 = t_2$$

- For each signature Σ and a set of variables X, define a new signature $\Sigma(X)$ that extends Σ by variables from X as constants
- Σ -algebras $A \in \mathbf{Alg}(\Sigma)$ with valuations $v \colon X \to |A|$ correspond to $\Sigma(X)$ -algebras $A[v] \in \mathbf{Alg}(\Sigma(X))$
- Identify terms in $|T_{\Sigma}(X)|$ with those in $|T_{\Sigma(X)}|$ (and in $|T_{\Sigma}(X)[id_X]|$)
- $\ \, \hbox{Show} \,\, \Phi \models_{\Sigma} \forall X.t_1 = t_2 \,\, \hbox{iff} \,\, \Phi \models_{\Sigma(X)} \forall \emptyset.t_1 = t_2 \\ \cdot \,\, \hbox{easy!}$

$$\Phi \models \forall X.t_1 = t_2 \Longrightarrow \Phi \vdash \forall X.t_1 = t_2$$

- For each signature Σ and a set of variables X, define a new signature $\Sigma(X)$ that extends Σ by variables from X as constants
- Σ -algebras $A \in \mathbf{Alg}(\Sigma)$ with valuations $v \colon X \to |A|$ correspond to $\Sigma(X)$ -algebras $A[v] \in \mathbf{Alg}(\Sigma(X))$
- Identify terms in $|T_{\Sigma}(X)|$ with those in $|T_{\Sigma(X)}|$ (and in $|T_{\Sigma}(X)[id_X]|$)
- Show $\Phi \models_{\Sigma} \forall X.t_1 = t_2 \text{ iff } \Phi \models_{\Sigma(X)} \forall \emptyset.t_1 = t_2$
- Show $\Phi \vdash_{\Sigma} \forall X.t_1 = t_2 \text{ iff } \Phi \vdash_{\Sigma(X)} \forall \emptyset.t_1 = t_2$

$$\Phi \models \forall X.t_1 = t_2 \Longrightarrow \Phi \vdash \forall X.t_1 = t_2$$

- For each signature Σ and a set of variables X, define a new signature $\Sigma(X)$ that extends Σ by variables from X as constants
- Σ -algebras $A \in \mathbf{Alg}(\Sigma)$ with valuations $v \colon X \to |A|$ correspond to $\Sigma(X)$ -algebras $A[v] \in \mathbf{Alg}(\Sigma(X))$
- Identify terms in $|T_{\Sigma}(X)|$ with those in $|T_{\Sigma(X)}|$ (and in $|T_{\Sigma}(X)[id_X]|$)
- Show $\Phi \models_{\Sigma} \forall X.t_1 = t_2 \text{ iff } \Phi \models_{\Sigma(X)} \forall \emptyset.t_1 = t_2$
- Show $\Phi \vdash_{\Sigma} \forall X.t_1 = t_2 \text{ iff } \Phi \vdash_{\Sigma(X)} \forall \emptyset.t_1 = t_2$
 - · Straightforward induction on the structure of derivation does not go through!

$$\Phi \models \forall X.t_1 = t_2 \Longrightarrow \Phi \vdash \forall X.t_1 = t_2$$

- For each signature Σ and a set of variables X, define a new signature $\Sigma(X)$ that extends Σ by variables from X as constants
- $\ \Sigma\text{-algebras}\ A \in \mathbf{Alg}(\Sigma) \ \text{with valuations}\ v\colon X \to |A| \ \text{correspond to}$ $\Sigma(X)\text{-algebras}\ A[v] \in \mathbf{Alg}(\Sigma(X))$
- Identify terms in $|T_{\Sigma}(X)|$ with those in $|T_{\Sigma(X)}|$ (and in $|T_{\Sigma}(X)[id_X]|$)
- Show $\Phi \models_{\Sigma} \forall X.t_1 = t_2 \text{ iff } \Phi \models_{\Sigma(X)} \forall \emptyset.t_1 = t_2$
- Show $\Phi \vdash_{\Sigma} \forall X.t_1 = t_2 \text{ iff } \Phi \vdash_{\Sigma(X)} \forall \emptyset.t_1 = t_2$
 - · Straightforward induction on the structure of derivation does not go through!
 - Induction works for a more general thesis:

$$\Phi \vdash_{\Sigma} \forall X \cup Y.t_1 = t_2 \text{ iff } \Phi \vdash_{\Sigma(X)} \forall Y.t_1 = t_2$$

Completeness

$$\Phi \models \forall X.t_1 = t_2 \Longrightarrow \Phi \vdash \forall X.t_1 = t_2$$

Proof (idea):

- For each signature Σ and a set of variables X, define a new signature $\Sigma(X)$ that extends Σ by variables from X as constants
- Σ -algebras $A \in \mathbf{Alg}(\Sigma)$ with valuations $v \colon X \to |A|$ correspond to $\Sigma(X)$ -algebras $A[v] \in \mathbf{Alg}(\Sigma(X))$
- Identify terms in $|T_{\Sigma}(X)|$ with those in $|T_{\Sigma(X)}|$ (and in $|T_{\Sigma}(X)[id_X]|$)
- Show $\Phi \models_{\Sigma} \forall X.t_1 = t_2 \text{ iff } \Phi \models_{\Sigma(X)} \forall \emptyset.t_1 = t_2$
- Show $\Phi \vdash_{\Sigma} \forall X.t_1 = t_2 \text{ iff } \Phi \vdash_{\Sigma(X)} \forall \emptyset.t_1 = t_2$
- Using ground completeness, conclude: $\Phi \models_{\Sigma} \forall X.t_1 = t_2 \text{ iff } \Phi \models_{\Sigma(X)} \forall \emptyset.t_1 = t_2 \text{ iff } \Phi \vdash_{\Sigma(X)} \forall \emptyset.t_1 = t_2 \text{ iff } \Phi \vdash_{\Sigma} \forall X.t_1 = t_2$

Moving between signatures

Let
$$\Sigma = (S,\Omega)$$
 and $\Sigma' = (S',\Omega')$

$$\sigma\colon \Sigma \to \Sigma'$$

- Signature morphism maps:
 - sorts to sorts: $\sigma: S \to S'$
 - operation names to operation names, preserving their profiles:

$$\sigma \colon \Omega_{w,s} \to \Omega'_{\sigma(w),\sigma(s)}$$
, for $w \in S^*$, $s \in S$

Moving between signatures

Let
$$\Sigma = (S,\Omega)$$
 and $\Sigma' = (S',\Omega')$

$$\sigma\colon \Sigma \to \Sigma'$$

- Signature morphism maps:
 - sorts to sorts: $\sigma: S \to S'$
 - operation names to operation names, preserving their profiles:

$$\sigma \colon \Omega_{w,s} \to \Omega'_{\sigma(w),\sigma(s)}$$
, for $w \in S^*$, $s \in S$, that is:

if
$$f: s_1 \times \ldots \times s_n \to s$$
 then $\sigma(f): \sigma(s_1) \times \ldots \times \sigma(s_n) \to \sigma(s)$,

Translating syntax

- translation of variables: $X \mapsto X'$, where $X'_{s'} = \biguplus_{\sigma(s)=s'} X_s$
- translation of terms: $\sigma: |T_{\Sigma}(X)|_s \to |T_{\Sigma'}(X')|_{\sigma(s)}$, for $s \in S$
- translation of equations: $\sigma(\forall X.t_1 = t_2)$ yields $\forall X'.\sigma(t_1) = \sigma(t_2)$

Translating syntax

- translation of variables: $X \mapsto X'$, where $X'_{s'} = \biguplus_{\sigma(s)=s'} X_s$
- translation of terms: $\sigma: |T_{\Sigma}(X)|_s \to |T_{\Sigma'}(X')|_{\sigma(s)}$, for $s \in S$
- translation of equations: $\sigma(\forall X.t_1 = t_2)$ yields $\forall X'.\sigma(t_1) = \sigma(t_2)$

...and semantics

- σ -reduct: $-|_{\sigma} : \mathbf{Alg}(\Sigma') \to \mathbf{Alg}(\Sigma)$, where for $A' \in \mathbf{Alg}(\Sigma')$
 - $|A'|_{\sigma}|_s = |A'|_{\sigma(s)}$, for $s \in S$
 - $f_{A'|_{\sigma}} = \sigma(f)_{A'} \text{ for } f \in \Omega$

Translating syntax

- translation of variables: $X \mapsto X'$, where $X'_{s'} = \biguplus_{\sigma(s)=s'} X_s$
- translation of terms: $\sigma: |T_{\Sigma}(X)|_s \to |T_{\Sigma'}(X')|_{\sigma(s)}$, for $s \in S$
- translation of equations: $\sigma(\forall X.t_1 = t_2)$ yields $\forall X'.\sigma(t_1) = \sigma(t_2)$

...and semantics

- σ -reduct: $-|_{\sigma} : \mathbf{Alg}(\Sigma') \to \mathbf{Alg}(\Sigma)$, where for $A' \in \mathbf{Alg}(\Sigma')$
 - $|A'|_{\sigma}|_s = |A'|_{\sigma(s)}$, for $s \in S$
 - $f_{A'|_{\sigma}} = \sigma(f)_{A'} \text{ for } f \in \Omega$

(this is well-defined)

$$for f: s_1 \times \ldots \times s_n \to s, \ f_{A'|_{\sigma}}: |A'|_{\sigma}|_{s_1} \times \ldots \times |A'|_{\sigma}|_{s_n} \to |A'|_{\sigma}|_s \text{ since }$$

$$\sigma(f)_{A'}: |A'|_{\sigma(s_1)} \times \ldots \times |A'|_{\sigma(s_n)} \to |A'|_{\sigma(s)}$$

Translating syntax

- translation of variables: $X \mapsto X'$, where $X'_{s'} = \biguplus_{\sigma(s)=s'} X_s$
- translation of terms: $\sigma: |T_{\Sigma}(X)|_s \to |T_{\Sigma'}(X')|_{\sigma(s)}$, for $s \in S$
- translation of equations: $\sigma(\forall X.t_1 = t_2)$ yields $\forall X'.\sigma(t_1) = \sigma(t_2)$

...and semantics

- σ -reduct: $_{-}|_{\sigma}$: $\mathbf{Alg}(\Sigma') \to \mathbf{Alg}(\Sigma)$, where for $A' \in \mathbf{Alg}(\Sigma')$
 - $|A'|_{\sigma}|_s = |A'|_{\sigma(s)}$, for $s \in S$
 - $f_{A'|_{\sigma}} = \sigma(f)_{A'} \text{ for } f \in \Omega$

this is well-defined

BTW: Given a Σ' -homomorphism $h': A' \to B'$, Σ -homomorphism $h'|_{\sigma}: A'|_{\sigma} \to B'|_{\sigma}$ is defined by $(h'|_{\sigma})_s = h'_{\sigma(s)}$ for $s \in S$.

Translating syntax

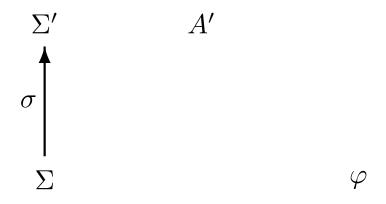
- translation of variables: $X \mapsto X'$, where $X'_{s'} = \biguplus_{\sigma(s)=s'} X_s$
- translation of terms: $\sigma: |T_{\Sigma}(X)|_s \to |T_{\Sigma'}(X')|_{\sigma(s)}$, for $s \in S$
- translation of equations: $\sigma(\forall X.t_1 = t_2)$ yields $\forall X'.\sigma(t_1) = \sigma(t_2)$

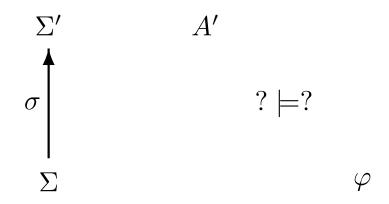
...and semantics

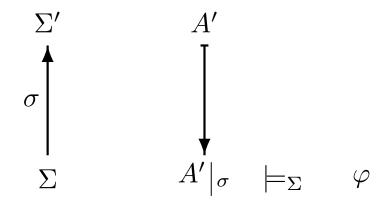
- σ -reduct: $-|_{\sigma} : \mathbf{Alg}(\Sigma') \to \mathbf{Alg}(\Sigma)$, where for $A' \in \mathbf{Alg}(\Sigma')$
 - $|A'|_{\sigma}|_s = |A'|_{\sigma(s)}$, for $s \in S$
 - $f_{A'|_{\sigma}} = \sigma(f)_{A'} \text{ for } f \in \Omega$

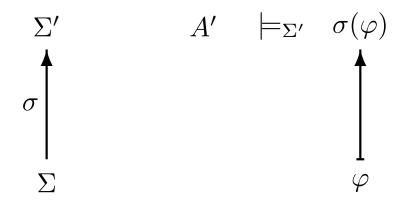
this is well-defined

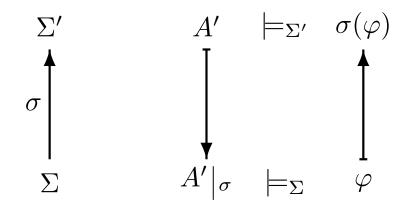
Note the contravariancy!





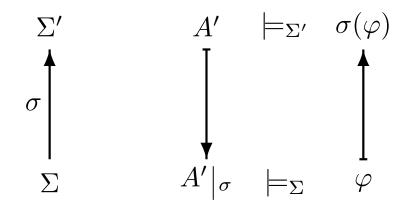






$$A'|_{\sigma} \models_{\Sigma} \varphi \iff A' \models_{\Sigma'} \sigma(\varphi)$$

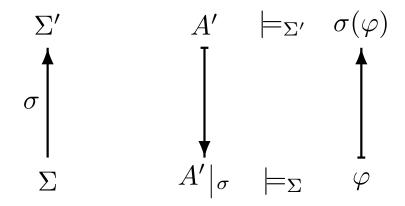
Theorem: For any signature morphism $\sigma: \Sigma \to \Sigma'$, Σ' -algebra A' and Σ -equation φ :



$$A'|_{\sigma} \models_{\Sigma} \varphi \iff A' \models_{\Sigma'} \sigma(\varphi)$$

Proof (idea): for $t \in |T_{\Sigma}(X)|$ and $v \colon X \to |A'|_{\sigma}$, $t_{A'|_{\sigma}}[v] = \sigma(t)_{A'}[v']$, where $v' \colon X' \to |A'|$ is given by $v'_{\sigma(s)}(x) = v_s(x)$ for $s \in S$, $x \in X_s$.

Theorem: For any signature morphism $\sigma: \Sigma \to \Sigma'$, Σ' -algebra A' and Σ -equation φ :



$$A'|_{\sigma} \models_{\Sigma} \varphi \iff A' \models_{\Sigma'} \sigma(\varphi)$$

TRUTH is preserved (at least) under:

- change of notation
- restriction/extension of irrelevant context

Given any signature morphism $\sigma \colon \Sigma \to \Sigma'$, set of Σ -equations Φ and Σ -equation φ :

$$\Phi \models_{\Sigma} \varphi \implies \sigma(\Phi) \models_{\Sigma'} \sigma(\varphi)$$

Given any signature morphism $\sigma \colon \Sigma \to \Sigma'$, set of Σ -equations Φ and Σ -equation φ :

$$\Phi \models_{\Sigma} \varphi \implies \sigma(\Phi) \models_{\Sigma'} \sigma(\varphi)$$

Proof: If $M' \models \sigma(\Phi)$ then $M'|_{\sigma} \models \Phi$. Hence $M'|_{\sigma} \models \varphi$, and so $M' \models \sigma(\varphi)$.

Given any signature morphism $\sigma \colon \Sigma \to \Sigma'$, set of Σ -equations Φ and Σ -equation φ :

$$\Phi \models_{\Sigma} \varphi \implies \sigma(\Phi) \models_{\Sigma'} \sigma(\varphi)$$

Proof: If $M' \models \sigma(\Phi)$ then $M'|_{\sigma} \models \Phi$. Hence $M'|_{\sigma} \models \varphi$, and so $M' \models \sigma(\varphi)$.

(In general, the equivalence does not hold!)

Given any signature morphism $\sigma \colon \Sigma \to \Sigma'$, set of Σ -equations Φ and Σ -equation φ :

$$\Phi \models_{\Sigma} \varphi \implies \sigma(\Phi) \models_{\Sigma'} \sigma(\varphi)$$

Moreover, if $-|_{\sigma} : \mathbf{Alg}(\Sigma') \to \mathbf{Alg}(\Sigma)$ is surjective then:

$$\Phi \models_{\Sigma} \varphi \iff \sigma(\Phi) \models_{\Sigma'} \sigma(\varphi)$$

(In general, the equivalence does not hold!)

Specification morphism:

$$\sigma \colon \langle \Sigma, \Phi \rangle \to \langle \Sigma', \Phi' \rangle$$

is a signature morphism $\sigma \colon \Sigma \to \Sigma'$ such that for all $M' \in \mathbf{Alg}(\Sigma')$:

$$M' \in Mod(\Phi') \implies M'|_{\sigma} \in Mod(\Phi)$$

Specification morphism:

$$\sigma \colon \langle \Sigma, \Phi \rangle \to \langle \Sigma', \Phi' \rangle$$

is a signature morphism $\sigma \colon \Sigma \to \Sigma'$ such that for all $M' \in \mathbf{Alg}(\Sigma')$:

$$M' \in Mod(\Phi') \implies M'|_{\sigma} \in Mod(\Phi)$$

Then
$$-|_{\sigma} \colon Mod(\Phi') \to Mod(\Phi)$$

Specification morphism:

$$\sigma \colon \langle \Sigma, \Phi \rangle \to \langle \Sigma', \Phi' \rangle$$

is a signature morphism $\sigma \colon \Sigma \to \Sigma'$ such that for all $M' \in \mathbf{Alg}(\Sigma')$:

$$M' \in Mod(\Phi') \implies M'|_{\sigma} \in Mod(\Phi)$$

Then
$$-|_{\sigma} \colon Mod(\Phi') o Mod(\Phi)$$

Theorem: A signature morphism $\sigma \colon \Sigma \to \Sigma'$ is a specification morphism $\sigma \colon \langle \Sigma, \Phi \rangle \to \langle \Sigma', \Phi' \rangle$ if and only if $\Phi' \models \sigma(\Phi)$.

Specification morphism:

$$\sigma \colon \langle \Sigma, \Phi \rangle \to \langle \Sigma', \Phi' \rangle$$

is a signature morphism $\sigma \colon \Sigma \to \Sigma'$ such that for all $M' \in \mathbf{Alg}(\Sigma')$:

$$M' \in Mod(\Phi') \implies M'|_{\sigma} \in Mod(\Phi)$$

Then
$$_|_{\sigma}\colon Mod(\Phi') o Mod(\Phi)$$

Theorem: A signature morphism $\sigma \colon \Sigma \to \Sigma'$ is a specification morphism $\sigma \colon \langle \Sigma, \Phi \rangle \to \langle \Sigma', \Phi' \rangle$ if and only if $\Phi' \models \sigma(\Phi)$.

Proof: " \Leftarrow " If $M' \models \Phi'$ then $M' \models \sigma(\Phi)$, and so $M'|_{\sigma} \models \Phi$.

" \Longrightarrow " If $M' \models \Phi'$ then $M'|_{\sigma} \models \Phi$, and so $M' \models \sigma(\Phi)$.

A specification morphism:

$$\sigma \colon \langle \Sigma, \Phi \rangle \to \langle \Sigma', \Phi' \rangle$$

is conservative if for all Σ -equations φ : $\Phi' \models_{\Sigma'} \sigma(\varphi) \implies \Phi \models_{\Sigma} \varphi$

$$\Phi' \models_{\Sigma'} \sigma(\varphi) \implies \Phi \models_{\Sigma} \varphi$$

A specification morphism:

$$\sigma \colon \langle \Sigma, \Phi \rangle \to \langle \Sigma', \Phi' \rangle$$

is conservative if for all Σ -equations φ : $\Phi' \models_{\Sigma'} \sigma(\varphi) \implies \Phi \models_{\Sigma} \varphi$

$$\Phi' \models_{\Sigma'} \sigma(\varphi) \implies \Phi \models_{\Sigma} \varphi$$

BTW: for all specification morphisms $\Phi \models_{\Sigma} \varphi \implies \Phi' \models_{\Sigma'} \sigma(\varphi)$

$$\Phi \models_{\Sigma} \varphi \implies \Phi' \models_{\Sigma'} \sigma(\varphi)$$

A specification morphism:

$$\sigma \colon \langle \Sigma, \Phi \rangle \to \langle \Sigma', \Phi' \rangle$$

is conservative if for all Σ -equations φ : $|\Phi' \models_{\Sigma'} \sigma(\varphi) \implies \Phi \models_{\Sigma} \varphi$

$$|\Phi' \models_{\Sigma'} \sigma(\varphi) \implies \Phi \models_{\Sigma} \varphi$$

BTW: for all specification morphisms $\Phi \models_{\Sigma} \varphi \implies \Phi' \models_{\Sigma'} \sigma(\varphi)$

A specification morphism $\sigma: \langle \Sigma, \Phi \rangle \to \langle \Sigma', \Phi' \rangle$ admits model expansion if for each $M \in Mod(\Phi)$ there exists $M' \in Mod(\Phi')$ such that $M'|_{\sigma} = M$

(i.e., $-|_{\sigma} : Mod(\Phi') \to Mod(\Phi)$ is surjective).

A specification morphism:

$$\sigma \colon \langle \Sigma, \Phi \rangle \to \langle \Sigma', \Phi' \rangle$$

is conservative if for all Σ -equations φ : $|\Phi' \models_{\Sigma'} \sigma(\varphi) \implies \Phi \models_{\Sigma} \varphi$

$$\Phi' \models_{\Sigma'} \sigma(\varphi) \implies \Phi \models_{\Sigma} \varphi$$

BTW: for all specification morphisms $\Phi \models_{\Sigma} \varphi \implies \Phi' \models_{\Sigma'} \sigma(\varphi)$

A specification morphism $\sigma: \langle \Sigma, \Phi \rangle \to \langle \Sigma', \Phi' \rangle$ admits model expansion if for each $M \in Mod(\Phi)$ there exists $M' \in Mod(\Phi')$ such that $M'|_{\sigma} = M$

(i.e., $-|_{\sigma} : Mod(\Phi') \to Mod(\Phi)$ is surjective).

Theorem: If $\sigma: \langle \Sigma, \Phi \rangle \to \langle \Sigma', \Phi' \rangle$ admits model expansion then it is conservative.

A specification morphism:

$$\sigma \colon \langle \Sigma, \Phi \rangle \to \langle \Sigma', \Phi' \rangle$$

is conservative if for all Σ -equations φ : $\Phi' \models_{\Sigma'} \sigma(\varphi) \implies \Phi \models_{\Sigma} \varphi$

$$\Phi' \models_{\Sigma'} \sigma(\varphi) \implies \Phi \models_{\Sigma} \varphi$$

BTW: for all specification morphisms $\Phi \models_{\Sigma} \varphi \implies \Phi' \models_{\Sigma'} \sigma(\varphi)$

$$\Phi \models_{\Sigma} \varphi \implies \Phi' \models_{\Sigma'} \sigma(\varphi)$$

A specification morphism $\sigma: \langle \Sigma, \Phi \rangle \to \langle \Sigma', \Phi' \rangle$ admits model expansion if for each $M \in Mod(\Phi)$ there exists $M' \in Mod(\Phi')$ such that $M'|_{\sigma} = M$

(i.e.,
$$-|_{\sigma} : Mod(\Phi') \to Mod(\Phi)$$
 is surjective).

Theorem: If $\sigma: \langle \Sigma, \Phi \rangle \to \langle \Sigma', \Phi' \rangle$ admits model expansion then it is conservative.

In general, the equivalence does not hold!

Let
$$\Sigma = (S, \Omega)$$
 and $\Sigma' = (S', \Omega')$

$$\delta \colon \Sigma \to \Sigma'$$

Let
$$\Sigma = (S,\Omega)$$
 and $\Sigma' = (S',\Omega')$

$$\delta \colon \Sigma \to \Sigma'$$

• Derived signature morphism maps sorts to sorts: $\delta \colon S \to S'$, and operation names to terms, preserving their profiles:

Let
$$\Sigma = (S,\Omega)$$
 and $\Sigma' = (S',\Omega')$

$$\delta \colon \Sigma \to \Sigma'$$

• Derived signature morphism maps sorts to sorts: $\delta: S \to S'$, and operation names to terms, preserving their profiles: for $f: s_1 \times ... \times s_n \to s$,

$$\delta(f) \in |T_{\Sigma'}(\{x_1:\delta(s_1),\ldots,x_n:\delta(s_n)\})|_{\delta(s)}|$$

Let
$$\Sigma = (S,\Omega)$$
 and $\Sigma' = (S',\Omega')$

$$\delta \colon \Sigma \to \Sigma'$$

• Derived signature morphism maps sorts to sorts: $\delta: S \to S'$, and operation names to terms, preserving their profiles: for $f: s_1 \times \ldots \times s_n \to s$,

$$\delta(f) \in |T_{\Sigma'}(\{x_1:\delta(s_1),\ldots,x_n:\delta(s_n)\})|_{\delta(s)}$$

• Translation of syntax, reducts of algebras, satisfaction condition, and many other notions and results: similarly as before.

not quite all though...

Partial algebras

• Algebraic signature Σ : as before

Partial algebras

- Algebraic signature Σ : as before
- Partial Σ -algebra:

$$A = (|A|, \langle f_A \rangle_{f \in \Omega})$$

as before, but operations $f_A: |A|_{s_1} \times \ldots \times |A|_{s_n} \rightharpoonup |A|_s$, for $f: s_1 \times \ldots \times s_n \to s$, may now be partial functions.

Partial algebras

- Algebraic signature Σ : as before
- Partial Σ -algebra:

$$A = (|A|, \langle f_A \rangle_{f \in \Omega})$$

as before, but operations $f_A: |A|_{s_1} \times \ldots \times |A|_{s_n} \rightharpoonup |A|_s$, for $f: s_1 \times \ldots \times s_n \to s$, may now be partial functions.

BTW: Constants may be undefined as well.

Partial algebras

- Algebraic signature Σ : as before
- Partial Σ -algebra:

$$A = (|A|, \langle f_A \rangle_{f \in \Omega})$$

as before, but operations $f_A: |A|_{s_1} \times \ldots \times |A|_{s_n} \rightharpoonup |A|_s$, for $f: s_1 \times \ldots \times s_n \to s$, may now be partial functions.

BTW: Constants may be undefined as well.

• $\mathbf{PAlg}(\Sigma)$ stands for the class of all partial Σ -algebras.

Few further notions

• subalgebra $A_{sub} \subseteq A$: given by subset $|A_{sub}| \subseteq |A|$ closed under the operations;

Few further notions

• subalgebra $A_{sub} \subseteq A$: given by subset $|A_{sub}| \subseteq |A|$ closed under the operations; BTW: at least three different natural notions are possible.

For
$$f: s_1 \times \ldots s_n \to s$$
 and $a_1 \in |A_{sub}|_{s_1}, \ldots, a_n \in |A_{sub}|_{s_n}$

- (strong) subalgebra: if $f_A(a_1,\ldots,a_n)$ is defined then $f_{A_{sub}}(a_1,\ldots,a_n)$ is defined
- (full) subalgebra: if $f_A(a_1,\ldots,a_n)$ is defined and $f_A(a_1,\ldots,a_n)\in |A_{sub}|_s$ then $f_{A_{sub}}(a_1,\ldots,a_n)$ is defined
- (weak) subalgebra: if $f_{A_{sub}}(a_1,\ldots,a_n)$ is defined then $f_A(a_1,\ldots,a_n)$ is defined

and
$$f_{A_{sub}}(a_1, \dots, a_n) = f_A(a_1, \dots, a_n)$$
.

- subalgebra $A_{sub} \subseteq A$: given by subset $|A_{sub}| \subseteq |A|$ closed under the operations; BTW: at least three different natural notions are possible.
- homomorphism $h: A \to B$: map $h: |A| \to |B|$ that preserves definedness and results of operations;

- subalgebra $A_{sub} \subseteq A$: given by subset $|A_{sub}| \subseteq |A|$ closed under the operations; BTW: at least three different natural notions are possible.
- homomorphism $h: A \to B$: map $h: |A| \to |B|$ that preserves definedness and results of operations; it is *strong* if in addition it reflects definedness of operations; (strong) homomorphisms are closed under composition;

Few further notions

- subalgebra $A_{sub} \subseteq A$: given by subset $|A_{sub}| \subseteq |A|$ closed under the operations; BTW: at least three different natural notions are possible.
- homomorphism $h\colon A\to B\colon$ map $h\colon |A|\to |B|$ that preserves definedness and results of operations; it is *strong* if in addition it reflects definedness of operations; (strong) homomorphisms are closed under composition; BTW: very interesting alternative: partial map $h\colon |A|\to |B|$ that preserves results of operations.

Andrzej Tarlecki: Category Theory, 2025

- subalgebra $A_{sub} \subseteq A$: given by subset $|A_{sub}| \subseteq |A|$ closed under the operations; BTW: at least three different natural notions are possible.
- homomorphism $h\colon A\to B\colon$ map $h\colon |A|\to |B|$ that preserves definedness and results of operations; it is *strong* if in addition it reflects definedness of operations; (strong) homomorphisms are closed under composition; BTW: very interesting alternative: partial map $h\colon |A|\to |B|$ that preserves results of operations.
- congruence \equiv on A: equivalence $\equiv \subseteq |A| \times |A|$ closed under the operations whenever they are defined;

- subalgebra $A_{sub} \subseteq A$: given by subset $|A_{sub}| \subseteq |A|$ closed under the operations; BTW: at least three different natural notions are possible.
- homomorphism $h\colon A\to B\colon$ map $h\colon |A|\to |B|$ that preserves definedness and results of operations; it is *strong* if in addition it reflects definedness of operations; (strong) homomorphisms are closed under composition; BTW: very interesting alternative: partial map $h\colon |A|\to |B|$ that preserves results of operations.
- congruence \equiv on A: equivalence $\equiv \subseteq |A| \times |A|$ closed under the operations whenever they are defined; it is strong if in addition it reflects definedness of operations; (strong) congruences are kernels of (strong) homomorphisms

- subalgebra $A_{sub} \subseteq A$: given by subset $|A_{sub}| \subseteq |A|$ closed under the operations; BTW: at least three different natural notions are possible.
- homomorphism $h\colon A\to B\colon$ map $h\colon |A|\to |B|$ that preserves definedness and results of operations; it is *strong* if in addition it reflects definedness of operations; (strong) homomorphisms are closed under composition; BTW: very interesting alternative: partial map $h\colon |A|\to |B|$ that preserves results of operations.
- congruence \equiv on A: equivalence $\equiv \subseteq |A| \times |A|$ closed under the operations whenever they are defined; it is strong if in addition it reflects definedness of operations; (strong) congruences are kernels of (strong) homomorphisms
- quotient algebra A/\equiv : built in the natural way on the equivalence classes of \equiv ;

- subalgebra $A_{sub} \subseteq A$: given by subset $|A_{sub}| \subseteq |A|$ closed under the operations; BTW: at least three different natural notions are possible.
- homomorphism $h\colon A\to B\colon$ map $h\colon |A|\to |B|$ that preserves definedness and results of operations; it is *strong* if in addition it reflects definedness of operations; (strong) homomorphisms are closed under composition; BTW: very interesting alternative: partial map $h\colon |A|\to |B|$ that preserves results of operations.
- congruence \equiv on A: equivalence $\equiv \subseteq |A| \times |A|$ closed under the operations whenever they are defined; it is strong if in addition it reflects definedness of operations; (strong) congruences are kernels of (strong) homomorphisms
- quotient algebra A/\equiv : built in the natural way on the equivalence classes of \equiv ; the natural homomorphism from A to A/\equiv is strong if the congruence is strong.

Formulae

Formulae

(Strong) equation:

$$\forall X.t \stackrel{s}{=} t'$$

as before

Satisfaction relation

partial Σ -algebra A satisfies $\forall X.t \stackrel{s}{=} t'$

$$A \models \forall X.t \stackrel{s}{=} t'$$

when for all $v\colon X\to |A|$, $t_A[v]$ is defined iff $t_A'[v]$ is defined, and then $t_A[v]=t_A'[v]$

Formulae

(Strong) equation:

$$\forall X.t \stackrel{s}{=} t'$$

as before

Definedness formula:

$$\forall X.def t$$

where X is a set of variables, and $t \in |T_{\Sigma}(X)|_s$ is a term

Satisfaction relation

partial Σ -algebra A satisfies $\forall X.t \stackrel{s}{=} t'$

$$A \models \forall X.t \stackrel{s}{=} t'$$

when for all $v\colon X\to |A|$, $t_A[v]$ is defined iff $t_A'[v]$ is defined, and then $t_A[v]=t_A'[v]$

partial Σ -algebra A satisfies $\forall X.def t$

$$A \models \forall X.def\ t$$

when for all $v: X \to |A|$, $t_A[v]$ is defined

An alternative

• (Existence) equation:

$$\forall X.t \stackrel{e}{=} t'$$

where:

- -X is a set of variables, and
- $t, t' \in |T_{\Sigma}(X)|_s$ are terms of a common sort.

An alternative

• (Existence) equation:

$$\forall X.t \stackrel{e}{=} t'$$

where:

- -X is a set of variables, and
- $-t,t'\in |T_{\Sigma}(X)|_s$ are terms of a common sort.
- Satisfaction relation: Σ -algebra A satisfies $\forall X.t \stackrel{e}{=} t'$

$$A \models \forall X.t \stackrel{e}{=} t'$$

when for all $v: X \to |A|$, $t_A[v] = t'_A[v]$ — both sides are defined and equal.

An alternative

• (Existence) equation:

$$\forall X.t \stackrel{e}{=} t'$$

where:

- -X is a set of variables, and
- $-t,t'\in |T_{\Sigma}(X)|_s$ are terms of a common sort.
- Satisfaction relation: Σ -algebra A satisfies $\forall X.t \stackrel{e}{=} t'$

$$A \models \forall X.t \stackrel{e}{=} t'$$

when for all $v: X \to |A|$, $t_A[v] = t'_A[v]$ — both sides are defined and equal.

BTW:

- $\forall X.t \stackrel{e}{=} t' \text{ iff } \forall X.(t \stackrel{s}{=} t' \land def t)$
- $\forall X.t \stackrel{s}{=} t' \text{ iff } \forall X.(def t \iff def t') \land (def t \implies t \stackrel{e}{=} t')$

To introduce and/or check:

• partial equational specifications (trivial)

- partial equational specifications (trivial)
- characterisation of definable classes of partial algebras (difficult!)

- partial equational specifications (trivial)
- characterisation of definable classes of partial algebras (difficult!)
- existence of initial models for partial equational specifications (non-trivial for existence equations; difficult for strong equations and definedness formulae)

- partial equational specifications (trivial)
- characterisation of definable classes of partial algebras (difficult!)
- existence of initial models for partial equational specifications (non-trivial for existence equations; difficult for strong equations and definedness formulae)
- proof systems for partial equational logic (ditto)

- partial equational specifications (trivial)
- characterisation of definable classes of partial algebras (difficult!)
- existence of initial models for partial equational specifications (non-trivial for existence equations; difficult for strong equations and definedness formulae)
- proof systems for partial equational logic (ditto)
- signature morphisms, translation of formulae, reducts of partial algebras, satisfaction condition; specification morphisms, conservativity, etc. (easy)

- partial equational specifications (trivial)
- characterisation of definable classes of partial algebras (difficult!)
- existence of initial models for partial equational specifications (non-trivial for existence equations; difficult for strong equations and definedness formulae)
- proof systems for partial equational logic (ditto)
- signature morphisms, translation of formulae, reducts of partial algebras, satisfaction condition; specification morphisms, conservativity, etc. (easy)
- even more general signature morphisms: $\delta \colon \Sigma \to \Sigma'$ maps sort names to sort names, and operation names $f \colon s_1 \times \ldots s_n \to s$ to sequences $\langle \varphi_i, t_i \rangle_{i \geq 0}$, where φ_i is a Σ' -formula and t_i is a Σ' -term of sort $\delta(s)$, both with variables among $x_1 \colon \delta(s_1), \ldots, x_n \colon \delta(s_n)$; syntax does not quite translate, but reducts are well defined...

Example

```
\mathbf{spec} \ \mathrm{NATPRED} = \mathbf{free} \ \{ \ \mathbf{sort} \ \mathit{Nat}
                                          ops 0: Nat;
                                                 succ: Nat \rightarrow Nat;
                                                 \_+\_: Nat \times Nat \rightarrow Nat
                                                 pred: Nat \rightarrow ? Nat
                                          axioms \forall n : Nat \bullet n + 0 = n;
                                                       \forall n, m : Nat \bullet n + succ(m) = succ(n + m)
                                                       \forall n : Nat \bullet pred(succ(n)) \stackrel{s}{=} n;
```

Example[']

```
 \begin{aligned} \mathbf{spec} \ \ \mathbf{NATPRED'} &= \mathbf{free} \ \mathbf{type} \ \mathit{Nat} ::= 0 \ | \ \mathit{succ(pred} :? \ \mathit{Nat}) \\ \mathbf{op} \ \_+ \_: \ \mathit{Nat} \times \mathit{Nat} \to \mathit{Nat} \\ \mathbf{axioms} \ \forall n : \mathit{Nat} \bullet n + 0 = n; \\ \forall n, m : \mathit{Nat} \bullet n + \mathit{succ}(m) = \mathit{succ}(n + m) \end{aligned}
```

 $NATPRED \equiv NATPRED'$