Category theory for computer science

• generality • abstraction • convenience • constructiveness •

Category theory for computer science

• generality • abstraction • convenience • constructiveness

Overall idea

look at all objects exclusively through relationships between them

capture relationships between objects as appropriate morphisms between them

• Cartesian product of two sets A and B, is the set $A \times B = \{\langle a, b \rangle \mid a \in A, b \in B\}$ with projections $\pi_1 \colon A \times B \to A$ and $\pi_2 \colon A \times B \to B$ given by $\pi_1(\langle a, b \rangle) = a$ and $\pi_2(\langle a, b \rangle) = b$.

- Cartesian product of two sets A and B, is the set $A \times B = \{\langle a, b \rangle \mid a \in A, b \in B\}$ with projections $\pi_1 \colon A \times B \to A$ and $\pi_2 \colon A \times B \to B$ given by $\pi_1(\langle a, b \rangle) = a$ and $\pi_2(\langle a, b \rangle) = b$.
- A product of two sets A and B,

A B

- Cartesian product of two sets A and B, is the set $A \times B = \{\langle a, b \rangle \mid a \in A, b \in B\}$ with projections $\pi_1 \colon A \times B \to A$ and $\pi_2 \colon A \times B \to B$ given by $\pi_1(\langle a, b \rangle) = a$ and $\pi_2(\langle a, b \rangle) = b$.
- A product of two sets A and B, is any set P with projections $\pi_1 \colon P \to A$ and $\pi_2 \colon P \to B$ such that

$$A \stackrel{\pi_1}{\longleftarrow} P \stackrel{\pi_2}{\longrightarrow} B$$

- Cartesian product of two sets A and B, is the set $A \times B = \{\langle a, b \rangle \mid a \in A, b \in B\}$ with projections $\pi_1 \colon A \times B \to A$ and $\pi_2 \colon A \times B \to B$ given by $\pi_1(\langle a, b \rangle) = a$ and $\pi_2(\langle a, b \rangle) = b$.
- A product of two sets A and B, is any set P with projections $\pi_1: P \to A$ and $\pi_2: P \to B$ such that for any set C with functions $f_1: C \to A$ and $f_2: C \to B$

- Cartesian product of two sets A and B, is the set $A \times B = \{\langle a, b \rangle \mid a \in A, b \in B\}$ with projections $\pi_1 \colon A \times B \to A$ and $\pi_2 \colon A \times B \to B$ given by $\pi_1(\langle a, b \rangle) = a$ and $\pi_2(\langle a, b \rangle) = b$.
- A product of two sets A and B, is any set P with projections $\pi_1 \colon P \to A$ and $\pi_2 \colon P \to B$ such that for any set C with functions $f_1 \colon C \to A$ and $f_2 \colon C \to B$ there exists a unique function $h \colon C \to P$ such that $h; \pi_1 = f_1$ and $h; \pi_2 = f_2$.

- Cartesian product of two sets A and B, is the set $A \times B = \{\langle a, b \rangle \mid a \in A, b \in B\}$ with projections $\pi_1 \colon A \times B \to A$ and $\pi_2 \colon A \times B \to B$ given by $\pi_1(\langle a, b \rangle) = a$ and $\pi_2(\langle a, b \rangle) = b$.
- A product of two sets A and B, is any set P with projections $\pi_1 \colon P \to A$ and $\pi_2 \colon P \to B$ such that for any set C with functions $f_1 \colon C \to A$ and $f_2 \colon C \to B$ there exists a unique function $h \colon C \to P$ such that $h; \pi_1 = f_1$ and $h; \pi_2 = f_2$.

Theorem: Cartesian product (of sets A and B) is a product (of A and B).

- Cartesian product of two sets A and B, is the set $A \times B = \{\langle a, b \rangle \mid a \in A, b \in B\}$ with projections $\pi_1 \colon A \times B \to A$ and $\pi_2 \colon A \times B \to B$ given by $\pi_1(\langle a, b \rangle) = a$ and $\pi_2(\langle a, b \rangle) = b$.
- A product of two sets A and B, is any set P with projections $\pi_1 \colon P \to A$ and $\pi_2 \colon P \to B$ such that for any set C with functions $f_1 \colon C \to A$ and $f_2 \colon C \to B$ there exists a unique function $h \colon C \to P$ such that $h; \pi_1 = f_1$ and $h; \pi_2 = f_2$.

Theorem: Cartesian product (of sets A and B) is a product (of A and B).

Recall the definition of (Cartesian) product of Σ -algebras. Define product of Σ -algebras as above. What have you changed?

the same concrete definition \rightsquigarrow distinct abstract generalisations

the same concrete definition \rightsquigarrow distinct abstract generalisations

Given a function $f: A \to B$, the following conditions are equivalent:

the same concrete definition \rightarrow distinct abstract generalisations

Given a function $f: A \to B$, the following conditions are equivalent:

• f is a surjection: $\forall b \in B \cdot \exists a \in A \cdot f(a) = b$.

the same concrete definition \rightarrow distinct abstract generalisations

Given a function $f: A \to B$, the following conditions are equivalent:

- f is a surjection: $\forall b \in B \cdot \exists a \in A \cdot f(a) = b$.
- f is an epimorphism: for all $h_1, h_2 \colon B \to C$, if $f; h_1 = f; h_2$ then $h_1 = h_2$.

the same concrete definition \rightsquigarrow distinct abstract generalisations

Given a function $f: A \to B$, the following conditions are equivalent:

- f is a surjection: $\forall b \in B \cdot \exists a \in A \cdot f(a) = b$.
- f is an epimorphism: for all $h_1, h_2 \colon B \to C$, if $f; h_1 = f; h_2$ then $h_1 = h_2$.
- f is a retraction: there exists $g: B \to A$ such that $g; f = id_B$.

the same concrete definition \simple distinct abstract generalisations

Given a function $f: A \to B$, the following conditions are equivalent:

- f is a surjection: $\forall b \in B \cdot \exists a \in A \cdot f(a) = b$.
- f is an epimorphism: for all $h_1, h_2 \colon B \to C$, if $f; h_1 = f; h_2$ then $h_1 = h_2$.
- f is a retraction: there exists $g: B \to A$ such that $g; f = id_B$.

BUT: Given a Σ -homomorphism $f: A \to B$ for $A, B \in \mathbf{Alg}(\Sigma)$:

f is retraction $\implies f$ is surjection

the same concrete definition \(\rightarrow \) distinct abstract generalisations

Given a function $f: A \to B$, the following conditions are equivalent:

- f is a surjection: $\forall b \in B \cdot \exists a \in A \cdot f(a) = b$.
- f is an epimorphism: for all $h_1, h_2 \colon B \to C$, if $f; h_1 = f; h_2$ then $h_1 = h_2$.
- f is a retraction: there exists $g: B \to A$ such that $g; f = id_B$.

BUT: Given a Σ -homomorphism $f: A \to B$ for $A, B \in \mathbf{Alg}(\Sigma)$:

f is retraction $\implies f$ is surjection $\iff f$ is epimorphism

the same concrete definition → distinct abstract generalisations

Given a function $f: A \to B$, the following conditions are equivalent:

- f is a surjection: $\forall b \in B \cdot \exists a \in A \cdot f(a) = b$.
- f is an epimorphism: for all $h_1, h_2 \colon B \to C$, if $f; h_1 = f; h_2$ then $h_1 = h_2$.
- f is a retraction: there exists $g: B \to A$ such that $g; f = id_B$.

BUT: Given a Σ -homomorphism $f: A \to B$ for $A, B \in \mathbf{Alg}(\Sigma)$:

f is retraction $\implies f$ is surjection $\iff f$ is epimorphism

BUT: Given a (weak) Σ -homomorphism $f: A \to B$ for $A, B \in \mathbf{PAlg}(\Sigma)$:

f is retraction $\implies f$ is surjection

the same concrete definition → distinct abstract generalisations

Given a function $f: A \to B$, the following conditions are equivalent:

- f is a surjection: $\forall b \in B \cdot \exists a \in A \cdot f(a) = b$.
- f is an epimorphism: for all $h_1, h_2 \colon B \to C$, if $f; h_1 = f; h_2$ then $h_1 = h_2$.
- f is a retraction: there exists $g: B \to A$ such that $g; f = id_B$.

BUT: Given a Σ -homomorphism $f : A \to B$ for $A, B \in \mathbf{Alg}(\Sigma)$:

f is retraction $\implies f$ is surjection $\iff f$ is epimorphism

BUT: Given a (weak) Σ -homomorphism $f: A \to B$ for $A, B \in \mathbf{PAlg}(\Sigma)$:

f is retraction $\implies f$ is surjection $\implies f$ is epimorphism

Definition: Category **K** consists of:

Definition: Category **K** consists of:

• a collection of objects: |K|

Definition: Category **K** consists of:

- a collection of objects: |**K**|
- mutually disjoint collections of morphisms: $\mathbf{K}(A,B)$, for all $A,B \in |\mathbf{K}|$; $m\colon A\to B$ stands for $m\in \mathbf{K}(A,B)$

Definition: Category **K** consists of:

- a collection of objects: |**K**|
- mutually disjoint collections of morphisms: $\mathbf{K}(A,B)$, for all $A,B \in |\mathbf{K}|$; $m\colon A\to B$ stands for $m\in \mathbf{K}(A,B)$
- morphism composition: for $m: A \to B$ and $m': B \to C$, we have $m; m': A \to C$;

Definition: Category **K** consists of:

- a collection of objects: |**K**|
- mutually disjoint collections of morphisms: $\mathbf{K}(A,B)$, for all $A,B \in |\mathbf{K}|$; $m\colon A\to B$ stands for $m\in \mathbf{K}(A,B)$
- morphism composition: for $m: A \to B$ and $m': B \to C$, we have $m; m': A \to C$;
 - the composition is associative: for $m_1: A_0 \rightarrow A_1$, $m_2: A_1 \rightarrow A_2$ and $m_3: A_2 \rightarrow A_3$, $(m_1; m_2); m_3 = m_1; (m_2; m_3)$

Definition: Category **K** consists of:

- a collection of objects: |**K**|
- mutually disjoint collections of morphisms: $\mathbf{K}(A,B)$, for all $A,B \in |\mathbf{K}|$; $m\colon A\to B$ stands for $m\in \mathbf{K}(A,B)$
- morphism composition: for $m: A \to B$ and $m': B \to C$, we have $m; m': A \to C$;
 - the composition is associative: for $m_1: A_0 \to A_1$, $m_2: A_1 \to A_2$ and $m_3: A_2 \to A_3$, $(m_1; m_2); m_3 = m_1; (m_2; m_3)$
 - the composition has identities: for $A \in |\mathbf{K}|$, there is $id_A : A \to A$ such that for all $m_1 : A_1 \to A$, $m_1 ; id_A = m_1$, and $m_2 : A \to A_2$, $id_A ; m_2 = m_2$.

Definition: Category **K** consists of:

- a collection of objects: |**K**|
- mutually disjoint collections of morphisms: $\mathbf{K}(A,B)$, for all $A,B \in |\mathbf{K}|$; $m\colon A\to B$ stands for $m\in \mathbf{K}(A,B)$
- morphism composition: for $m: A \to B$ and $m': B \to C$, we have $m; m': A \to C$;
 - the composition is associative: for $m_1: A_0 \to A_1$, $m_2: A_1 \to A_2$ and $m_3: A_2 \to A_3$, $(m_1; m_2); m_3 = m_1; (m_2; m_3)$
 - the composition has identities: for $A \in |\mathbf{K}|$, there is $id_A : A \to A$ such that for all $m_1 : A_1 \to A$, $m_1 ; id_A = m_1$, and $m_2 : A \to A_2$, $id_A ; m_2 = m_2$.

BTW: "collection" means "set", "class", etc, as appropriate.

Definition: Category **K** consists of:

- a collection of objects: |K|
- mutually disjoint collections of morphisms: $\mathbf{K}(A,B)$, for all $A,B \in |\mathbf{K}|$; $m\colon A \to B$ stands for $m\in \mathbf{K}(A,B)$
- morphism composition: for $m: A \to B$ and $m': B \to C$, we have $m; m': A \to C$;
 - the composition is associative: for $m_1: A_0 \to A_1$, $m_2: A_1 \to A_2$ and $m_3: A_2 \to A_3$, $(m_1; m_2); m_3 = m_1; (m_2; m_3)$
 - the composition has identities: for $A \in |\mathbf{K}|$, there is $id_A : A \to A$ such that for all $m_1 : A_1 \to A$, $m_1 ; id_A = m_1$, and $m_2 : A \to A_2$, $id_A ; m_2 = m_2$.

BTW: "collection" means "set", "class", etc, as appropriate.

K is *locally small* if for all $A, B \in |\mathbf{K}|$, $\mathbf{K}(A, B)$ is a set.

 \mathbf{K} is *small* if in addition |K| is a set.

0:

0:

1:

0:

1:

2: • • • •

0:

1: •

2: • → •

3:

0: 1: 2: **3: 4**:

Discrete categories: A category \mathbf{K} is *discrete* if all $\mathbf{K}(A,B)$ are empty, for distinct $A,B \in |\mathbf{K}|$, and $\mathbf{K}(A,A) = \{id_A\}$ for all $A \in |\mathbf{K}|$.

Discrete categories: A category \mathbf{K} is *discrete* if all $\mathbf{K}(A,B)$ are empty, for distinct $A,B \in |\mathbf{K}|$, and $\mathbf{K}(A,A) = \{id_A\}$ for all $A \in |\mathbf{K}|$.

Preorders: A category $\mathbf K$ is *thin* if for all $A,B\in |\mathbf K|$, $\mathbf K(A,B)$ contains at most one element.

Discrete categories: A category \mathbf{K} is *discrete* if all $\mathbf{K}(A,B)$ are empty, for distinct $A,B \in |\mathbf{K}|$, and $\mathbf{K}(A,A) = \{id_A\}$ for all $A \in |\mathbf{K}|$.

Preorders: A category \mathbf{K} is *thin* if for all $A, B \in |\mathbf{K}|$, $\mathbf{K}(A, B)$ contains at most one element.

Every preorder $\leq \subseteq X \times X$

Discrete categories: A category \mathbf{K} is *discrete* if all $\mathbf{K}(A,B)$ are empty, for distinct $A,B \in |\mathbf{K}|$, and $\mathbf{K}(A,A) = \{id_A\}$ for all $A \in |\mathbf{K}|$.

Preorders: A category $\mathbf K$ is *thin* if for all $A,B\in |\mathbf K|$, $\mathbf K(A,B)$ contains at most one element.

Every preorder $\leq \subseteq X \times X$

- reflexivity: $x \leq x$
- transitivity: if $x \le y$ and $y \le z$ then $x \le z$

Discrete categories: A category \mathbf{K} is *discrete* if all $\mathbf{K}(A,B)$ are empty, for distinct $A,B \in |\mathbf{K}|$, and $\mathbf{K}(A,A) = \{id_A\}$ for all $A \in |\mathbf{K}|$.

Preorders: A category **K** is *thin* if for all $A, B \in |\mathbf{K}|$, $\mathbf{K}(A, B)$ contains at most one element.

Every preorder $\leq \subseteq X \times X$ determines a thin category \mathbf{K}_{\leq} with $|\mathbf{K}_{\leq}| = X$ and for $x, y \in |\mathbf{K}_{\leq}|$, $\mathbf{K}_{\leq}(x, y)$ is nonempty iff $x \leq y$.

Discrete categories: A category \mathbf{K} is *discrete* if all $\mathbf{K}(A,B)$ are empty, for distinct $A,B \in |\mathbf{K}|$, and $\mathbf{K}(A,A) = \{id_A\}$ for all $A \in |\mathbf{K}|$.

Preorders: A category **K** is *thin* if for all $A, B \in |\mathbf{K}|$, $\mathbf{K}(A, B)$ contains at most one element.

Every preorder $\leq \subseteq X \times X$ determines a thin category \mathbf{K}_{\leq} with $|\mathbf{K}_{\leq}| = X$ and for $x, y \in |\mathbf{K}_{\leq}|$, $\mathbf{K}_{\leq}(x, y)$ is nonempty iff $x \leq y$.

Every (small) category \mathbf{K} determines a preorder $\leq_{\mathbf{K}} \subseteq |\mathbf{K}| \times |\mathbf{K}|$, where for $A, B \in |\mathbf{K}|$, $A \leq_{\mathbf{K}} B$ iff $\mathbf{K}(A, B)$ is nonempty.

Discrete categories: A category \mathbf{K} is *discrete* if all $\mathbf{K}(A,B)$ are empty, for distinct $A,B \in |\mathbf{K}|$, and $\mathbf{K}(A,A) = \{id_A\}$ for all $A \in |\mathbf{K}|$.

Preorders: A category **K** is *thin* if for all $A, B \in |\mathbf{K}|$, $\mathbf{K}(A, B)$ contains at most one element.

Every preorder $\leq \subseteq X \times X$ determines a thin category \mathbf{K}_{\leq} with $|\mathbf{K}_{\leq}| = X$ and for $x, y \in |\mathbf{K}_{\leq}|$, $\mathbf{K}_{\leq}(x, y)$ is nonempty iff $x \leq y$.

Every (small) category \mathbf{K} determines a preorder $\leq_{\mathbf{K}} \subseteq |\mathbf{K}| \times |\mathbf{K}|$, where for $A, B \in |\mathbf{K}|$, $A \leq_{\mathbf{K}} B$ iff $\mathbf{K}(A, B)$ is nonempty.

Monoids: A category \mathbf{K} is a *monoid* if $|\mathbf{K}|$ is a singleton.

Discrete categories: A category \mathbf{K} is *discrete* if all $\mathbf{K}(A,B)$ are empty, for distinct $A,B \in |\mathbf{K}|$, and $\mathbf{K}(A,A) = \{id_A\}$ for all $A \in |\mathbf{K}|$.

Preorders: A category **K** is *thin* if for all $A, B \in |\mathbf{K}|$, $\mathbf{K}(A, B)$ contains at most one element.

Every preorder $\leq \subseteq X \times X$ determines a thin category \mathbf{K}_{\leq} with $|\mathbf{K}_{\leq}| = X$ and for $x, y \in |\mathbf{K}_{\leq}|$, $\mathbf{K}_{\leq}(x, y)$ is nonempty iff $x \leq y$.

Every (small) category \mathbf{K} determines a preorder $\leq_{\mathbf{K}} \subseteq |\mathbf{K}| \times |\mathbf{K}|$, where for $A, B \in |\mathbf{K}|$, $A \leq_{\mathbf{K}} B$ iff $\mathbf{K}(A, B)$ is nonempty.

Monoids: A category K is a *monoid* if |K| is a singleton.

Every monoid $\mathcal{X} = \langle X, :, id \rangle$, where $_: = : X \times X \to X$ and $id \in X$,

Discrete categories: A category \mathbf{K} is *discrete* if all $\mathbf{K}(A,B)$ are empty, for distinct $A,B \in |\mathbf{K}|$, and $\mathbf{K}(A,A) = \{id_A\}$ for all $A \in |\mathbf{K}|$.

Preorders: A category **K** is *thin* if for all $A, B \in |\mathbf{K}|$, $\mathbf{K}(A, B)$ contains at most one element.

Every preorder $\leq \subseteq X \times X$ determines a thin category \mathbf{K}_{\leq} with $|\mathbf{K}_{\leq}| = X$ and for $x, y \in |\mathbf{K}_{\leq}|$, $\mathbf{K}_{\leq}(x, y)$ is nonempty iff $x \leq y$.

Every (small) category \mathbf{K} determines a preorder $\leq_{\mathbf{K}} \subseteq |\mathbf{K}| \times |\mathbf{K}|$, where for $A, B \in |\mathbf{K}|$, $A \leq_{\mathbf{K}} B$ iff $\mathbf{K}(A, B)$ is nonempty.

Monoids: A category K is a monoid if |K| is a singleton.

Every monoid $\mathcal{X} = \langle X, :, id \rangle$, where $_: : X \times X \to X$ and $id \in X$,

- associativity: x;(y;z) = (x;y);z
- identity: id; x = x; id = x

Discrete categories: A category \mathbf{K} is *discrete* if all $\mathbf{K}(A,B)$ are empty, for distinct $A,B \in |\mathbf{K}|$, and $\mathbf{K}(A,A) = \{id_A\}$ for all $A \in |\mathbf{K}|$.

Preorders: A category **K** is *thin* if for all $A, B \in |\mathbf{K}|$, $\mathbf{K}(A, B)$ contains at most one element.

Every preorder $\leq \subseteq X \times X$ determines a thin category \mathbf{K}_{\leq} with $|\mathbf{K}_{\leq}| = X$ and for $x, y \in |\mathbf{K}_{\leq}|$, $\mathbf{K}_{\leq}(x, y)$ is nonempty iff $x \leq y$.

Every (small) category \mathbf{K} determines a preorder $\leq_{\mathbf{K}} \subseteq |\mathbf{K}| \times |\mathbf{K}|$, where for $A, B \in |\mathbf{K}|$, $A \leq_{\mathbf{K}} B$ iff $\mathbf{K}(A, B)$ is nonempty.

Monoids: A category K is a *monoid* if |K| is a singleton.

Every monoid $\mathcal{X} = \langle X, ;, id \rangle$, where $_;_: X \times X \to X$ and $id \in X$, determines a (monoid) category $\mathbf{K}_{\mathcal{X}}$ with $|\mathbf{K}_{\mathcal{X}}| = \{*\}$, $\mathbf{K}(*,*) = X$ and the composition given by the monoid operation.

• Sets (as objects) and functions between them (as morphisms) with the usual composition form the category **Set**.

• Sets (as objects) and functions between them (as morphisms) with the usual composition form the category **Set**.

Functions have to be considered with their sources and targets

• Sets (as objects) and functions between them (as morphisms) with the usual composition form the category **Set**.

Functions have to be considered with their sources and targets

• For any set S, S-sorted sets (as objects) and S-functions between them (as morphisms) with the usual composition form the category \mathbf{Set}^S .

 Sets (as objects) and functions between them (as morphisms) with the usual composition form the category Set.

Functions have to be considered with their sources and targets

- For any set S, S-sorted sets (as objects) and S-functions between them (as morphisms) with the usual composition form the category \mathbf{Set}^S .
- For any signature Σ , Σ -algebras (as objects) and their homomorphisms (as morphisms) form the category $\mathbf{Alg}(\Sigma)$.

• Sets (as objects) and functions between them (as morphisms) with the usual composition form the category **Set**.

Functions have to be considered with their sources and targets

- For any set S, S-sorted sets (as objects) and S-functions between them (as morphisms) with the usual composition form the category \mathbf{Set}^S .
- For any signature Σ , Σ -algebras (as objects) and their homomorphisms (as morphisms) form the category $\mathbf{Alg}(\Sigma)$.
- For any signature Σ , partial Σ -algebras (as objects) and their weak homomorphisms (as morphisms) form the category $\mathbf{PAlg}(\Sigma)$.

• Sets (as objects) and functions between them (as morphisms) with the usual composition form the category **Set**.

Functions have to be considered with their sources and targets

- For any set S, S-sorted sets (as objects) and S-functions between them (as morphisms) with the usual composition form the category \mathbf{Set}^S .
- For any signature Σ , Σ -algebras (as objects) and their homomorphisms (as morphisms) form the category $\mathbf{Alg}(\Sigma)$.
- For any signature Σ , partial Σ -algebras (as objects) and their weak homomorphisms (as morphisms) form the category $\mathbf{PAlg}(\Sigma)$.
- For any signature Σ , partial Σ -algebras (as objects) and their strong homomorphisms (as morphisms) form the category $\mathbf{PAlg_s}(\Sigma)$.

• Sets (as objects) and functions between them (as morphisms) with the usual composition form the category **Set**.

Functions have to be considered with their sources and targets

- For any set S, S-sorted sets (as objects) and S-functions between them (as morphisms) with the usual composition form the category \mathbf{Set}^S .
- For any signature Σ , Σ -algebras (as objects) and their homomorphisms (as morphisms) form the category $\mathbf{Alg}(\Sigma)$.
- For any signature Σ , partial Σ -algebras (as objects) and their weak homomorphisms (as morphisms) form the category $\mathbf{PAlg}(\Sigma)$.
- For any signature Σ , partial Σ -algebras (as objects) and their strong homomorphisms (as morphisms) form the category $\mathbf{PAlg_s}(\Sigma)$.
- Algebraic signatures (as objects) and their morphisms (as morphisms) with the composition defined in the obvious way form the category **AlgSig**.

Substitutions

For any signature $\Sigma = (S, \Omega)$, the category of Σ -substitutions \mathbf{Subst}_{Σ} is defined as follows:

- objects of \mathbf{Subst}_{Σ} are S-sorted sets (of variables);
- morphisms in $\mathbf{Subst}_{\Sigma}(X,Y)$ are substitutions $\theta\colon X \to |T_{\Sigma}(Y)|$,
- composition is defined in the obvious way:

Substitutions

For any signature $\Sigma = (S, \Omega)$, the category of Σ -substitutions \mathbf{Subst}_{Σ} is defined as follows:

- objects of \mathbf{Subst}_{Σ} are S-sorted sets (of variables);
- morphisms in $\mathbf{Subst}_{\Sigma}(X,Y)$ are substitutions $\theta\colon X\to |T_{\Sigma}(Y)|$,
- composition is defined in the obvious way:

```
for \theta_1 \colon X \to Y and \theta_2 \colon Y \to Z, that is functions \theta_1 \colon X \to |T_\Sigma(Y)| and \theta_2 \colon Y \to |T_\Sigma(Z)|, their composition \theta_1; \theta_2 \colon X \to Z in \mathbf{Subst}_\Sigma is a function \theta_1; \theta_2 \colon X \to |T_\Sigma(Z)| \dots
```

- the composition $\theta_1; \theta_2 \colon X \to Z$, which is a function $\theta_1; \theta_2 \colon X \to |T_{\Sigma}(Z)|$, is not the function composition of $\theta_1 \colon X \to |T_{\Sigma}(Y)|$ and $\theta_2 \colon Y \to |T_{\Sigma}(Z)|$

Substitutions

For any signature $\Sigma = (S, \Omega)$, the category of Σ -substitutions \mathbf{Subst}_{Σ} is defined as follows:

- objects of \mathbf{Subst}_{Σ} are S-sorted sets (of variables);
- morphisms in $\mathbf{Subst}_{\Sigma}(X,Y)$ are substitutions $\theta\colon X\to |T_{\Sigma}(Y)|$,
- composition is defined in the obvious way:

```
for \theta_1 \colon X \to Y and \theta_2 \colon Y \to Z, that is functions \theta_1 \colon X \to |T_\Sigma(Y)| and \theta_2 \colon Y \to |T_\Sigma(Z)|, their composition \theta_1 \colon \theta_2 \colon X \to Z in \mathbf{Subst}_\Sigma is a function \theta_1 \colon \theta_2 \colon X \to |T_\Sigma(Z)| such that for each x \in X, (\theta_1 \colon \theta_2)(x) = \theta_2^\#(\theta_1(x)).
```

Given a category K, a *subcategory* of K is any category K' such that

- $|\mathbf{K}'| \subseteq |\mathbf{K}|$,
- $\mathbf{K}'(A,B) \subseteq \mathbf{K}(A,B)$, for all $A,B \in |\mathbf{K}'|$,
- ullet composition in ${f K}'$ coincides with the composition in K on morphisms in ${f K}'$, and
- identities in \mathbf{K}' coincide with identities in \mathbf{K} on objects in $|\mathbf{K}'|$.

Given a category K, a *subcategory* of K is any category K' such that

- $|\mathbf{K}'| \subseteq |\mathbf{K}|$,
- $\mathbf{K}'(A,B) \subseteq \mathbf{K}(A,B)$, for all $A,B \in |\mathbf{K}'|$,
- \bullet composition in \mathbf{K}' coincides with the composition in K on morphisms in \mathbf{K}' , and
- identities in \mathbf{K}' coincide with identities in \mathbf{K} on objects in $|\mathbf{K}'|$.

A subcategory \mathbf{K}' of \mathbf{K} is full if $\mathbf{K}'(A,B) = \mathbf{K}(A,B)$ for all $A,B \in |\mathbf{K}'|$.

Given a category K, a *subcategory* of K is any category K' such that

- $|\mathbf{K}'| \subseteq |\mathbf{K}|$,
- $\mathbf{K}'(A,B) \subseteq \mathbf{K}(A,B)$, for all $A,B \in |\mathbf{K}'|$,
- \bullet composition in \mathbf{K}' coincides with the composition in K on morphisms in \mathbf{K}' , and
- identities in \mathbf{K}' coincide with identities in \mathbf{K} on objects in $|\mathbf{K}'|$.

A subcategory \mathbf{K}' of \mathbf{K} is full if $\mathbf{K}'(A,B) = \mathbf{K}(A,B)$ for all $A,B \in |\mathbf{K}'|$.

Any collection $X \subseteq |\mathbf{K}|$ gives the full subcategory $\mathbf{K}|_X$ of \mathbf{K} by $|\mathbf{K}|_X| = X$.

Given a category K, a *subcategory* of K is any category K' such that

- $|\mathbf{K}'| \subseteq |\mathbf{K}|$,
- $\mathbf{K}'(A,B) \subseteq \mathbf{K}(A,B)$, for all $A,B \in |\mathbf{K}'|$,
- ullet composition in ${f K}'$ coincides with the composition in K on morphisms in ${f K}'$, and
- identities in \mathbf{K}' coincide with identities in \mathbf{K} on objects in $|\mathbf{K}'|$.

A subcategory \mathbf{K}' of \mathbf{K} is full if $\mathbf{K}'(A,B) = \mathbf{K}(A,B)$ for all $A,B \in |\mathbf{K}'|$.

Any collection $X \subseteq |\mathbf{K}|$ gives the full subcategory $\mathbf{K}|_X$ of \mathbf{K} by $|\mathbf{K}|_X| = X$.

- The category **FinSet** of finite sets is a full subcategory of **Set**.
- The discrete category of sets is a subcategory of the category of sets with inclusions as morphisms, which is a subcategory of the category of sets with injective functions as morphisms, which is a subcategory of **Set**.
- The category of single-sorted signatures is a full subcategory of AlgSig.

Given a category K, its opposite category K^{op} is defined as follows:

Given a category K, its opposite category K^{op} is defined as follows:

$$-$$
 objects: $|\mathbf{K}^{op}| = |\mathbf{K}|$

Given a category K, its opposite category K^{op} is defined as follows:

- objects: $|\mathbf{K}^{op}| = |\mathbf{K}|$
- morphisms: $\mathbf{K}^{op}(A,B) = \mathbf{K}(B,A)$ for all $A,B \in |\mathbf{K}^{op}| = |\mathbf{K}|$

Given a category \mathbf{K} , its opposite category \mathbf{K}^{op} is defined as follows:

- objects: $|\mathbf{K}^{op}| = |\mathbf{K}|$
- morphisms: $\mathbf{K}^{op}(A,B) = \mathbf{K}(B,A)$ for all $A,B \in |\mathbf{K}^{op}| = |\mathbf{K}|$
- composition: given $m_1 \colon A \to B$ and $m_2 \colon B \to C$ in \mathbf{K}^{op} , their composition in \mathbf{K}^{op} , $m_1; m_2 \colon A \to C$, is set to be

Given a category \mathbf{K} , its opposite category \mathbf{K}^{op} is defined as follows:

- objects: $|\mathbf{K}^{op}| = |\mathbf{K}|$
- morphisms: $\mathbf{K}^{op}(A,B) = \mathbf{K}(B,A)$ for all $A,B \in |\mathbf{K}^{op}| = |\mathbf{K}|$
- composition: given $m_1: A \to B$ and $m_2: B \to C$ in \mathbf{K}^{op} , that is, $m_1: B \to A$ and $m_2: C \to B$ in \mathbf{K} , their composition in \mathbf{K}^{op} , $m_1; m_2: A \to C$, is set to be

Given a category \mathbf{K} , its opposite category \mathbf{K}^{op} is defined as follows:

- objects: $|\mathbf{K}^{op}| = |\mathbf{K}|$
- morphisms: $\mathbf{K}^{op}(A,B) = \mathbf{K}(B,A)$ for all $A,B \in |\mathbf{K}^{op}| = |\mathbf{K}|$
- composition: given $m_1: A \to B$ and $m_2: B \to C$ in \mathbf{K}^{op} , that is, $m_1: B \to A$ and $m_2: C \to B$ in \mathbf{K} , their composition in \mathbf{K}^{op} , $m_1; m_2: A \to C$, is set to be their composition $m_2; m_1: C \to A$ in \mathbf{K} .

Given a category \mathbf{K} , its opposite category \mathbf{K}^{op} is defined as follows:

- objects: $|\mathbf{K}^{op}| = |\mathbf{K}|$
- morphisms: $\mathbf{K}^{op}(A,B) = \mathbf{K}(B,A)$ for all $A,B \in |\mathbf{K}^{op}| = |\mathbf{K}|$
- composition: given $m_1: A \to B$ and $m_2: B \to C$ in \mathbf{K}^{op} , that is, $m_1: B \to A$ and $m_2: C \to B$ in \mathbf{K} , their composition in \mathbf{K}^{op} , $m_1; m_2: A \to C$, is set to be their composition $m_2; m_1: C \to A$ in \mathbf{K} .

Theorem: The identities in \mathbf{K}^{op} coincide with the identities in \mathbf{K} .

Given a category \mathbf{K} , its opposite category \mathbf{K}^{op} is defined as follows:

- objects: $|\mathbf{K}^{op}| = |\mathbf{K}|$
- morphisms: $\mathbf{K}^{op}(A,B) = \mathbf{K}(B,A)$ for all $A,B \in |\mathbf{K}^{op}| = |\mathbf{K}|$
- composition: given $m_1: A \to B$ and $m_2: B \to C$ in \mathbf{K}^{op} , that is, $m_1: B \to A$ and $m_2: C \to B$ in \mathbf{K} , their composition in \mathbf{K}^{op} , $m_1; m_2: A \to C$, is set to be their composition $m_2; m_1: C \to A$ in \mathbf{K} .

Theorem: The identities in \mathbf{K}^{op} coincide with the identities in \mathbf{K} .

Theorem: Every category is opposite to some category:

Given a category \mathbf{K} , its opposite category \mathbf{K}^{op} is defined as follows:

- objects: $|\mathbf{K}^{op}| = |\mathbf{K}|$
- morphisms: $\mathbf{K}^{op}(A,B) = \mathbf{K}(B,A)$ for all $A,B \in |\mathbf{K}^{op}| = |\mathbf{K}|$
- composition: given $m_1: A \to B$ and $m_2: B \to C$ in \mathbf{K}^{op} , that is, $m_1: B \to A$ and $m_2: C \to B$ in \mathbf{K} , their composition in \mathbf{K}^{op} , $m_1; m_2: A \to C$, is set to be their composition $m_2; m_1: C \to A$ in \mathbf{K} .

Theorem: The identities in \mathbf{K}^{op} coincide with the identities in \mathbf{K} .

Theorem: Every category is opposite to some category:

$$(\mathbf{K}^{op})^{op} = \mathbf{K}$$

If W is a categorical concept (notion, property, statement, . . .) then its dual , $\mathit{co-W}$, is obtained by reversing all the morphisms in W.

If W is a categorical concept (notion, property, statement, . . .) then its dual , $\mathit{co-W}$, is obtained by reversing all the morphisms in W.

Example:

P(X): "for any object Y there exists a morphism $f: X \to Y$ "

co-P(X): "for any object Y there exists a morphism $f\colon Y\to X$ "

If W is a categorical concept (notion, property, statement, . . .) then its dual , $\mathit{co-W}$, is obtained by reversing all the morphisms in W.

Example:

P(X): "for any object Y there exists a morphism $f: X \to Y$ "

co-P(X): "for any object Y there exists a morphism $f: Y \to X$ "

NOTE: co-P(X) in \mathbf{K} coincides with P(X) in \mathbf{K}^{op} .

If W is a categorical concept (notion, property, statement, . . .) then its dual , $\mathit{co-W}$, is obtained by reversing all the morphisms in W.

Example:

P(X): "for any object Y there exists a morphism $f: X \to Y$ "

co-P(X): "for any object Y there exists a morphism $f: Y \to X$ "

NOTE: co-P(X) in \mathbf{K} coincides with P(X) in \mathbf{K}^{op} .

Theorem: If a property W holds for all categories then co-W holds for all categories as well.

Given categories K and K', their product $K \times K'$ is the category defined as follows:

- objects: $|\mathbf{K} \times \mathbf{K}'| = |\mathbf{K}| \times |\mathbf{K}'|$

A

A'

- objects: $|\mathbf{K} \times \mathbf{K}'| = |\mathbf{K}| \times |\mathbf{K}'|$
- morphisms: $(\mathbf{K} \times \mathbf{K}')(\langle A, A' \rangle, \langle B, B' \rangle) = \mathbf{K}(A, B) \times \mathbf{K}'(A', B')$ for all $\overline{A, B \in |\mathbf{K}|}$ and $A', B' \in |\mathbf{K}'|$

- objects: $|\mathbf{K} \times \mathbf{K}'| = |\mathbf{K}| \times |\mathbf{K}'|$
- morphisms: $(\mathbf{K} \times \mathbf{K}')(\langle A, A' \rangle, \langle B, B' \rangle) = \mathbf{K}(A, B) \times \mathbf{K}'(A', B')$ for all $A, B \in |\mathbf{K}|$ and $A', B' \in |\mathbf{K}'|$
- composition: for $\langle m_1, m_1' \rangle \colon \langle A, A' \rangle \to \langle B, B' \rangle$ and $\langle m_2, m_2' \rangle \colon \langle B, B' \rangle \to \langle C, C' \rangle$ in $\mathbf{K} \times \mathbf{K}'$,

- objects: $|\mathbf{K} \times \mathbf{K}'| = |\mathbf{K}| \times |\mathbf{K}'|$
- morphisms: $(\mathbf{K} \times \mathbf{K}')(\langle A, A' \rangle, \langle B, B' \rangle) = \mathbf{K}(A, B) \times \mathbf{K}'(A', B')$ for all $\overline{A, B \in |\mathbf{K}|}$ and $A', B' \in |\mathbf{K}'|$
- composition: for $\langle m_1, m_1' \rangle \colon \langle A, A' \rangle \to \langle B, B' \rangle$ and $\langle m_2, m_2' \rangle \colon \langle B, B' \rangle \to \langle C, C' \rangle$ in $\mathbf{K} \times \mathbf{K}'$, their composition in $\mathbf{K} \times \mathbf{K}'$ is

$$\langle m_1, m_1' \rangle; \langle m_2, m_2' \rangle = \langle m_1; m_2, m_1'; m_2' \rangle$$

Given categories K and K', their product $K \times K'$ is the category defined as follows:

- objects: $|\mathbf{K} \times \mathbf{K}'| = |\mathbf{K}| \times |\mathbf{K}'|$
- morphisms: $(\mathbf{K} \times \mathbf{K}')(\langle A, A' \rangle, \langle B, B' \rangle) = \mathbf{K}(A, B) \times \mathbf{K}'(A', B')$ for all $A, B \in |\mathbf{K}|$ and $A', B' \in |\mathbf{K}'|$
- composition: for $\langle m_1, m_1' \rangle \colon \langle A, A' \rangle \to \langle B, B' \rangle$ and $\langle m_2, m_2' \rangle \colon \langle B, B' \rangle \to \langle C, C' \rangle$ in $\mathbf{K} \times \mathbf{K}'$, their composition in $\mathbf{K} \times \mathbf{K}'$ is

$$\langle m_1, m_1' \rangle; \langle m_2, m_2' \rangle = \langle m_1; m_2, m_1'; m_2' \rangle$$

Define \mathbf{K}^n , where \mathbf{K} is a category and $n \geq 1$. Extend this definition to n = 0.

Given a category K, its morphism category K^{\rightarrow} is the category defined as follows:

- objects: $|\mathbf{K}^{\rightarrow}|$ is the collection of all morphisms in \mathbf{K}

- objects: $|\mathbf{K}^{\rightarrow}|$ is the collection of all morphisms in \mathbf{K}
- morphisms: for $f: A \to A'$ and $g: B \to B'$ in \mathbf{K} ,

- objects: $|\mathbf{K}^{\rightarrow}|$ is the collection of all morphisms in \mathbf{K}
- morphisms: for $f: A \to A'$ and $g: B \to B'$ in \mathbf{K} , $\mathbf{K}^{\to}(f,g)$ consists of all $\overline{\langle k, k' \rangle}$, where $k: A \to B$ and $k': A' \to B'$ are such that k; g = f; k' in \mathbf{K}

- objects: $|\mathbf{K}^{\rightarrow}|$ is the collection of all morphisms in \mathbf{K}
- morphisms: for $f: A \to A'$ and $g: B \to B'$ in \mathbf{K} , $\mathbf{K}^{\to}(f,g)$ consists of all $\overline{\langle k, k' \rangle}$, where $k: A \to B$ and $k': A' \to B'$ are such that k; g = f; k' in \mathbf{K}
- $\ \underline{\underline{\text{composition:}}} \ \text{for} \ \langle k,k' \rangle \colon (f\colon A \to A') \to (g\colon B \to B') \ \text{and} \ \overline{\langle j,j' \rangle \colon (g\colon B \to B') \to (h\colon C \to C')} \ \text{in} \ \mathbf{K}^\to,$

- objects: $|\mathbf{K}^{\rightarrow}|$ is the collection of all morphisms in \mathbf{K}
- morphisms: for $f: A \to A'$ and $g: B \to B'$ in \mathbf{K} , $\mathbf{K}^{\to}(f,g)$ consists of all $\overline{\langle k, k' \rangle}$, where $k: A \to B$ and $k': A' \to B'$ are such that k; g = f; k' in \mathbf{K}
- composition: for $\langle k, k' \rangle$: $(f: A \to A') \to (g: B \to B')$ and $\overline{\langle j, j' \rangle}$: $(g: B \to B') \to (h: C \to C')$ in \mathbf{K}^{\to} , their composition in \mathbf{K}^{\to} is $\langle k, k' \rangle$; $\langle j, j' \rangle = \langle k; j, k'; j' \rangle$.

Given a category \mathbf{K} , its morphism category \mathbf{K}^{\rightarrow} is the category defined as follows:

- objects: $|\mathbf{K}^{\rightarrow}|$ is the collection of all morphisms in \mathbf{K}
- morphisms: for $f: A \to A'$ and $g: B \to B'$ in \mathbf{K} , $\mathbf{K}^{\to}(f,g)$ consists of all $\overline{\langle k, k' \rangle}$, where $k: A \to B$ and $k': A' \to B'$ are such that k; g = f; k' in \mathbf{K}
- composition: for $\langle k, k' \rangle$: $(f: A \to A') \to (g: B \to B')$ and $\overline{\langle j, j' \rangle}$: $(g: B \to B') \to (h: C \to C')$ in \mathbf{K}^{\to} , their composition in \mathbf{K}^{\to} is $\langle k, k' \rangle$; $\langle j, j' \rangle = \langle k; j, k'; j' \rangle$.

Check that the composition is well-defined.

Given a category \mathbf{K} and an object $A \in |K|$, the category of \mathbf{K} -objects over A, $\mathbf{K} \! \downarrow \! A$, is the category defined as follows:

- objects: $\mathbf{K} \!\!\downarrow \!\! A$ is the collection of all morphisms into A in \mathbf{K}

- objects: $\mathbf{K} \!\!\downarrow\!\! A$ is the collection of all morphisms into A in \mathbf{K}
- morphisms: for $f: B \to A$ and $g: B' \to A$ in \mathbf{K} ,

- objects: $\mathbf{K} \!\!\downarrow\!\! A$ is the collection of all morphisms into A in \mathbf{K}
- morphisms: for $f: B \to A$ and $g: B' \to A$ in \mathbf{K} , $(\mathbf{K} \downarrow A)(f,g)$ consists of all morphisms $k: B \to B'$ such that k; g = f in \mathbf{K}

- objects: $\mathbf{K} \!\!\downarrow \!\! A$ is the collection of all morphisms into A in \mathbf{K}
- morphisms: for $f\colon B\to A$ and $g\colon B'\to A$ in $\mathbf K$, $(\mathbf K{\downarrow}A)(f,g)$ consists of all morphisms $k\colon B\to B'$ such that k;g=f in $\mathbf K$
- composition: the composition in $\mathbf{K}{\downarrow}A$ is the same as in \mathbf{K}

- objects: $\mathbf{K}{\downarrow}A$ is the collection of all morphisms into A in \mathbf{K}
- morphisms: for $f: B \to A$ and $g: B' \to A$ in \mathbf{K} , $(\mathbf{K} \downarrow A)(f,g)$ consists of all morphisms $k: B \to B'$ such that k; g = f in \mathbf{K}
- composition: the composition in $\mathbf{K} \! \! \downarrow \! \! A$ is the same as in \mathbf{K}

Given a category \mathbf{K} and an object $A \in |K|$, the category of \mathbf{K} -objects over A, $\mathbf{K} \downarrow A$, is the category defined as follows:

- objects: $\mathbf{K} \!\!\downarrow\!\! A$ is the collection of all morphisms into A in \mathbf{K}
- morphisms: for $f: B \to A$ and $g: B' \to A$ in \mathbf{K} , $(\mathbf{K} \!\!\downarrow\!\! A)(f,g)$ consists of all morphisms $k: B \to B'$ such that k; g = f in \mathbf{K}
- composition: the composition in $\mathbf{K}{\downarrow}A$ is the same as in \mathbf{K}

Check that the composition is well-defined.

Given a category \mathbf{K} and an object $A \in |K|$, the category of \mathbf{K} -objects over A, $\mathbf{K} \downarrow A$, is the category defined as follows:

- objects: $\mathbf{K} \!\!\downarrow\!\! A$ is the collection of all morphisms into A in \mathbf{K}
- morphisms: for $f: B \to A$ and $g: B' \to A$ in \mathbf{K} , $(\mathbf{K} \downarrow A)(f,g)$ consists of all morphisms $k: B \to B'$ such that k; g = f in \mathbf{K}
- composition: the composition in $\mathbf{K}{\downarrow}A$ is the same as in \mathbf{K}

Check that the composition is well-defined.

View $\mathbf{K} \downarrow A$ as a subcategory of \mathbf{K}^{\rightarrow} .

Given a category \mathbf{K} and an object $A \in |K|$, the category of \mathbf{K} -objects over A, $\mathbf{K} \! \downarrow \! A$, is the category defined as follows:

- objects: $\mathbf{K} \!\!\downarrow\!\! A$ is the collection of all morphisms into A in \mathbf{K}
- morphisms: for $f: B \to A$ and $g: B' \to A$ in \mathbf{K} , $(\mathbf{K} \downarrow A)(f,g)$ consists of all morphisms $k: B \to B'$ such that k; g = f in \mathbf{K}
- composition: the composition in $\mathbf{K}{\downarrow}A$ is the same as in \mathbf{K}

Check that the composition is well-defined.

View $\mathbf{K} \downarrow A$ as a subcategory of \mathbf{K}^{\rightarrow} .

Define $\mathbf{K} \uparrow A$, the category of \mathbf{K} -objects under A.

Simple categorical definitions

Simple categorical definitions

• $f: A \to B$ is an epimorphism (is epi):

Simple categorical definitions

• $f: A \to B$ is an epimorphism (is epi): for all $g, h: B \to C$,

$$A \xrightarrow{f} B \xrightarrow{g} C$$

Simple categorical definitions

• $f: A \to B$ is an epimorphism (is epi): for all $g, h: B \to C$,

Simple categorical definitions

• $f: A \to B$ is an epimorphism (is epi): for all $g, h: B \to C$, f; g = f; h implies g = h

Simple categorical definitions

• $f: A \to B$ is an epimorphism (is epi): for all $g, h: B \to C$, f; g = f; h implies g = h

In Set, a function is epi iff it is surjective

Simple categorical definitions

• $f: A \to B$ is an epimorphism (is epi): for all $g, h: B \to C$, f; g = f; h implies g = h

In Set, a function is epi iff it is surjective

• $f: A \to B$ is a monomorphism (is mono):

Simple categorical definitions

• $f: A \to B$ is an epimorphism (is epi): for all $g, h: B \to C$, f; g = f; h implies g = h

In Set, a function is epi iff it is surjective

• $f: A \to B$ is a monomorphism (is mono): for all $g, h: C \to A$,

$$C \xrightarrow{g} A \xrightarrow{f} B$$

Simple categorical definitions

• $f: A \to B$ is an epimorphism (is epi): for all $g, h: B \to C$, f; g = f; h implies g = h

In Set, a function is epi iff it is surjective

• $f: A \to B$ is a monomorphism (is mono): for all $g, h: C \to A$,

Simple categorical definitions

• $f: A \to B$ is an epimorphism (is epi): for all $g, h: B \to C$, f; g = f; h implies g = h

In Set, a function is epi iff it is surjective

• $f: A \to B$ is a monomorphism (is mono): for all $g, h: C \to A$, g; f = h; f implies g = h

Simple categorical definitions

• $f: A \to B$ is an epimorphism (is epi): for all $g, h: B \to C$, f; g = f; h implies g = h

In Set, a function is epi iff it is surjective

• $f: A \to B$ is a monomorphism (is mono): for all $g, h: C \to A$, g; f = h; f implies g = h

In Set, a function is mono iff it is injective

Simple facts

• If $f: A \to B$ and $g: B \to C$ are mono then $f; g: A \to C$ is mono as well.

• If $f;g:A\to C$ is mono then $f:A\to B$ is mono as well.

Simple facts

- If $f: A \to B$ and $g: B \to C$ are mono then $f; g: A \to C$ is mono as well.
- If $f;g:A\to C$ is mono then $f:A\to B$ is mono as well.

Prove, and then dualise the above facts.

Simple facts

- If $f: A \to B$ and $g: B \to C$ are mono then $f; g: A \to C$ is mono as well.
- If $f;g:A\to C$ is mono then $f:A\to B$ is mono as well.

Prove, and then dualise the above facts.

- If $h_1, h_2 : D \to A$ are such that $h_1; (f;g) = h_2; (f;g)$

- If $f: A \to B$ and $g: B \to C$ are mono then $f; g: A \to C$ is mono as well.
- If $f;g:A\to C$ is mono then $f:A\to B$ is mono as well.

Prove, and then dualise the above facts.

- If $h_1, h_2: D \to A$ are such that $h_1; (f;g) = h_2; (f;g)$ then $(h_1;f); g = (h_2;f); g$,

- If $f: A \to B$ and $g: B \to C$ are mono then $f; g: A \to C$ is mono as well.
- If $f;g:A\to C$ is mono then $f:A\to B$ is mono as well.

Prove, and then dualise the above facts.

- If $h_1, h_2: D \to A$ are such that $h_1; (f;g) = h_2; (f;g)$ then $(h_1;f); g = (h_2;f); g$, and so $h_1; f = h_2; f$,

- If $f: A \to B$ and $g: B \to C$ are mono then $f; g: A \to C$ is mono as well.
- If $f;g:A\to C$ is mono then $f:A\to B$ is mono as well.

Prove, and then dualise the above facts.

- If $h_1, h_2: D \to A$ are such that $h_1; (f;g) = h_2; (f;g)$ then $(h_1;f); g = (h_2;f); g$, and so $h_1; f = h_2; f$, which yields $h_1 = h_2$

- If $f: A \to B$ and $g: B \to C$ are mono then $f; g: A \to C$ is mono as well.
- If $f;g:A\to C$ is mono then $f:A\to B$ is mono as well.

Prove, and then dualise the above facts.

- If $h_1, h_2: D \to A$ are such that $h_1; (f;g) = h_2; (f;g)$ then $(h_1;f); g = (h_2;f); g$, and so $h_1; f = h_2; f$, which yields $h_1 = h_2$
- If $h_1, h_2 : D \to A$ are such that $h_1; f = h_2; f$

- If $f: A \to B$ and $g: B \to C$ are mono then $f; g: A \to C$ is mono as well.
- If $f;g:A\to C$ is mono then $f:A\to B$ is mono as well.

Prove, and then dualise the above facts.

- If $h_1, h_2: D \to A$ are such that $h_1; (f;g) = h_2; (f;g)$ then $(h_1;f); g = (h_2;f); g$, and so $h_1; f = h_2; f$, which yields $h_1 = h_2$
- If $h_1, h_2 \colon D \to A$ are such that $h_1; f = h_2; f$ then $h_1; (f;g) = h_2; (f;g)$,

- If $f: A \to B$ and $g: B \to C$ are mono then $f; g: A \to C$ is mono as well.
- If $f;g:A\to C$ is mono then $f:A\to B$ is mono as well.

Prove, and then dualise the above facts.

- If $h_1, h_2: D \to A$ are such that $h_1; (f;g) = h_2; (f;g)$ then $(h_1;f); g = (h_2;f); g$, and so $h_1; f = h_2; f$, which yields $h_1 = h_2$
- If $h_1, h_2: D \to A$ are such that $h_1; f = h_2; f$ then $h_1; (f;g) = h_2; (f;g)$, which yields $h_1 = h_2$

- If $f: A \to B$ and $g: B \to C$ are mono then $f: g: A \to C$ is mono as well.
- If $f;g:A\to C$ is mono then $f:A\to B$ is mono as well.

Prove, and then dualise the above facts.

NOTE: A morphism f is mono in \mathbf{K} iff f is epi in \mathbf{K}^{op} .

mono = co-epi

- If $f: A \to B$ and $g: B \to C$ are mono then $f:g: A \to C$ is mono as well.
- If $f;g:A\to C$ is mono then $f:A\to B$ is mono as well.

Prove, and then dualise the above facts.

NOTE: A morphism f is mono in \mathbf{K} iff f is epi in \mathbf{K}^{op} .

$$mono = co$$
-epi

- If $f: A \to B$ and $g: B \to C$ are epi then $f: g: A \to C$ is epi as well.
- If $f;g:A\to C$ is epi then $g:B\to C$ is epi as well.

- If $f: A \to B$ and $g: B \to C$ are mono then $f; g: A \to C$ is mono as well.
- If $f;g:A\to C$ is mono then $f:A\to B$ is mono as well.

Prove, and then dualise the above facts.

NOTE: A morphism f is mono in \mathbf{K} iff f is epi in \mathbf{K}^{op} .

mono = co-epi

Give "natural" examples of categories where epis need not be "surjective". Give "natural" examples of categories where monos need not be "injective".

 $f: A \to B$ is an isomorphism (is iso)

if there is $g \colon B \to A$ such that $f \colon g = id_A$ and $g \colon f = id_B$.

 $f: A \to B$ is an isomorphism (is iso)

if there is $g: B \to A$ such that $f; g = id_A$ and $g; f = id_B$.

Then g is the (unique) inverse of f, $g = f^{-1}$.

 $f: A \to B$ is an isomorphism (is iso)

if there is $g: B \to A$ such that $f; g = id_A$ and $g; f = id_B$.

In Set, a function is iso iff it is both epi and mono

Then g is the (unique) inverse of f, $g = f^{-1}$.

 $f: A \to B$ is an isomorphism (is iso)

if there is $g \colon B \to A$ such that $f \colon g = id_A$ and $g \colon f = id_B$.

Then g is the (unique) inverse of f, $g = f^{-1}$.

In Set, a function is iso iff it is both epi and mono

Theorem: If f is iso then it is both epi and mono.

 $f\colon A\to B$ is an isomorphism (is iso) if there is $g\colon B\to A$ such that $f;g=id_A$ and $g;f=id_B$.

Then g is the (unique) inverse of f, $g = f^{-1}$.

In Set, a function is iso iff it is both epi and mono

Theorem: If f is iso then it is both epi and mono.

Proof: If $h_1, h_2: B \to C$ are such that $f; h_1 = f; h_2$ then $f^{-1}; f; h_1 = f^{-1}; f; h_2$, hence $id_B; h_1 = id_B; h_2$, which yields $h_1 = h_2$. Thus f is epi. By a similar (dual!) argument, f is mono.

 $f: A \to B$ is an isomorphism (is iso)

if there is $g: B \to A$ such that $f; g = id_A$ and $g; f = id_B$.

Then g is the (unique) inverse of f, $g = f^{-1}$.

In Set, a function is iso iff it is both epi and mono

Theorem: If f is iso then it is both epi and mono.

Give counterexamples to show that the opposite implication fails.

 $f\colon A\to B$ is an isomorphism (is iso) if there is $g\colon B\to A$ such that $f;g=id_A$ and $g;f=id_B$.

Then g is the (unique) inverse of f, $g = f^{-1}$.

In Set, a function is iso iff it is both epi and mono

Theorem: If f is iso then it is both epi and mono.

Give counterexamples to show that the opposite implication fails.

Theorem: $f: A \rightarrow B$ is iso iff

- f is a retraction, i.e., there is $g_1 \colon B \to A$ such that $g_1 \colon f = id_B$, and
- f is a coretraction, i.e., there is $g_2 \colon B \to A$ such that $f \colon g_2 = id_A$.

 $f\colon A \to B$ is an isomorphism (is iso) if there is $g\colon B \to A$ such that $f;g=id_A$ and $g;f=id_B$.

Then g is the (unique) inverse of f, $g = f^{-1}$.

In Set, a function is iso iff it is both epi and mono

Theorem: If f is iso then it is both epi and mono.

Give counterexamples to show that the opposite implication fails.

Theorem: $f: A \rightarrow B$ is iso iff

- f is a retraction, i.e., there is $g_1 \colon B \to A$ such that $g_1 \colon f = id_B$, and
- f is a coretraction, i.e., there is $g_2 \colon B \to A$ such that $f; g_2 = id_A$.

Proof:
$$g_1 = g_1; (f;g_2) = (g_1;f); g_2 = g_2$$

 $f\colon A\to B$ is an isomorphism (is iso) if there is $g\colon B\to A$ such that $f;g=id_A$ and $g;f=id_B$.

Then g is the (unique) inverse of f, $g = f^{-1}$.

In Set, a function is iso iff it is both epi and mono

Theorem: If f is iso then it is both epi and mono.

Give counterexamples to show that the opposite implication fails.

Theorem: $f: A \rightarrow B$ is iso iff

- f is a retraction, i.e., there is $g_1 \colon B \to A$ such that $g_1 \colon f = id_B$, and
- f is a coretraction, i.e., there is $g_2 \colon B \to A$ such that $f \colon g_2 = id_A$.

Theorem: A morphism is iso iff it is an epi coretraction.

 $f\colon A\to B$ is an isomorphism (is iso) if there is $g\colon B\to A$ such that $f;g=id_A$ and $g;f=id_B$.

Then g is the (unique) inverse of f, $g = f^{-1}$.

In Set, a function is iso iff it is both epi and mono

Theorem: If f is iso then it is both epi and mono.

Give counterexamples to show that the opposite implication fails.

Theorem: $f: A \rightarrow B$ is iso iff

- f is a retraction, i.e., there is $g_1 \colon B \to A$ such that $g_1; f = id_B$, and
- f is a coretraction, i.e., there is $g_2 \colon B \to A$ such that $f \colon g_2 = id_A$.

Theorem: A morphism is iso iff it is an epi coretraction.

Proof: Suppose f is epi and f; $g_2 = id_A$.

 $f\colon A\to B$ is an isomorphism (is iso) if there is $g\colon B\to A$ such that $f;g=id_A$ and $g;f=id_B$.

Then g is the (unique) inverse of f, $g = f^{-1}$.

In Set, a function is iso iff it is both epi and mono

Theorem: If f is iso then it is both epi and mono.

Give counterexamples to show that the opposite implication fails.

Theorem: $f: A \rightarrow B$ is iso iff

- f is a retraction, i.e., there is $g_1 \colon B \to A$ such that $g_1; f = id_B$, and
- f is a coretraction, i.e., there is $g_2 \colon B \to A$ such that $f \colon g_2 = id_A$.

Theorem: A morphism is iso iff it is an epi coretraction.

Proof: Suppose f is epi and $f;g_2=id_A$. Then $f;id_B=f=(f;g_2);f=f;(g_2;f)$.

 $f\colon A\to B$ is an isomorphism (is iso) if there is $g\colon B\to A$ such that $f;g=id_A$ and $g;f=id_B$.

Then g is the (unique) inverse of f, $g = f^{-1}$.

In Set, a function is iso iff it is both epi and mono

Theorem: If f is iso then it is both epi and mono.

Give counterexamples to show that the opposite implication fails.

Theorem: $f: A \rightarrow B$ is iso iff

- f is a retraction, i.e., there is $g_1 \colon B \to A$ such that $g_1; f = id_B$, and
- f is a coretraction, i.e., there is $g_2 \colon B \to A$ such that $f \colon g_2 = id_A$.

Theorem: A morphism is iso iff it is an epi coretraction.

Proof: Suppose f is epi and $f;g_2=id_A$. Then $f;id_B=f=(f;g_2);f=f;(g_2;f)$. This yields $g_2;f=id_B$, and so g_2 is the inverse of f.

 $f\colon A \to B$ is an isomorphism (is iso) if there is $g\colon B \to A$ such that $f;g=id_A$ and $g;f=id_B$.

Then g is the (unique) inverse of f, $g = f^{-1}$.

In Set, a function is iso iff it is both epi and mono

Theorem: If f is iso then it is both epi and mono.

Give counterexamples to show that the opposite implication fails.

Theorem: $f: A \rightarrow B$ is iso iff

- f is a retraction, i.e., there is $g_1 \colon B \to A$ such that $g_1 \colon f = id_B$, and
- ullet f is a coretraction, i.e., there is $g_2\colon B o A$ such that $f;g_2=id_A$.

Theorem: A morphism is iso iff it is an epi coretraction.

Theorem: Composition of isomorphisms is an isomorphism.

 $f \colon A \to B$ is an isomorphism (is iso) if there is $g \colon B \to A$ such that $f \colon g = id_A$ and $g \colon f = id_B$.

Then g is the (unique) inverse of f, $g = f^{-1}$.

In Set, a function is iso iff it is both epi and mono

Theorem: If f is iso then it is both epi and mono.

Give counterexamples to show that the opposite implication fails.

Theorem: $f: A \rightarrow B$ is iso iff

- f is a retraction, i.e., there is $g_1 \colon B \to A$ such that $g_1 \colon f = id_B$, and
- f is a coretraction, i.e., there is $g_2 \colon B \to A$ such that $f \colon g_2 = id_A$.

Theorem: A morphism is iso iff it is an epi coretraction.

Theorem: Composition of isomorphisms is an isomorphism.

Proof: $(i_1;i_2)^{-1} = (i_2)^{-1};(i_1)^{-1}$

 $f\colon A\to B$ is an isomorphism (is iso) if there is $g\colon B\to A$ such that $f;g=id_A$ and $g;f=id_B$.

Then g is the (unique) inverse of f, $g = f^{-1}$.

In Set, a function is iso iff it is both epi and mono

Theorem: If f is iso then it is both epi and mono.

Give counterexamples to show that the opposite implication fails.

Theorem: $f: A \rightarrow B$ is iso iff

- f is a retraction, i.e., there is $g_1 \colon B \to A$ such that $g_1 \colon f = id_B$, and
- f is a coretraction, i.e., there is $g_2 \colon B \to A$ such that $f \colon g_2 = id_A$.

Theorem: A morphism is iso iff it is an epi coretraction.

Theorem: Composition of isomorphisms is an isomorphism.

Dualise!