Functors and natural transformations

Functors and natural transformations

functors → category morphisms

natural transformations → functor morphisms

A functor $F \colon K \to K'$ from a category K to a category K' consists of:

A functor $F \colon K \to K'$ from a category K to a category K' consists of:

ullet a function $\mathbf{F}\colon |\mathbf{K}| o |\mathbf{K}'|$, and

A functor $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ from a category \mathbf{K} to a category \mathbf{K}' consists of:

- ullet a function $\mathbf{F}\colon |\mathbf{K}| o |\mathbf{K}'|$, and
- for all $A, B \in |\mathbf{K}|$, a function $\mathbf{F} \colon \mathbf{K}(A, B) \to \mathbf{K}'(\mathbf{F}(A), \mathbf{F}(B))$

A functor $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ from a category \mathbf{K} to a category \mathbf{K}' consists of:

- ullet a function $\mathbf{F}\colon |\mathbf{K}| o |\mathbf{K}'|$, and
- for all $A, B \in |\mathbf{K}|$, a function $\mathbf{F} \colon \mathbf{K}(A, B) \to \mathbf{K}'(\mathbf{F}(A), \mathbf{F}(B))$

A functor $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ from a category \mathbf{K} to a category \mathbf{K}' consists of:

- ullet a function $\mathbf{F}\colon |\mathbf{K}| o |\mathbf{K}'|$, and
- for all $A, B \in |\mathbf{K}|$, a function $\mathbf{F} \colon \mathbf{K}(A, B) \to \mathbf{K}'(\mathbf{F}(A), \mathbf{F}(B))$

such that:

Make explicit categories in which we work at various places here

A functor $F \colon K \to K'$ from a category K to a category K' consists of:

- ullet a function $\mathbf{F}\colon |\mathbf{K}| o |\mathbf{K}'|$, and
- for all $A, B \in |\mathbf{K}|$, a function $\mathbf{F} \colon \mathbf{K}(A, B) \to \mathbf{K}'(\mathbf{F}(A), \mathbf{F}(B))$

such that:

Make explicit categories in which we work at various places here

• **F** preserves identities, i.e.,

$$\mathbf{F}(id_A) = id_{\mathbf{F}(A)}$$

for all $A \in |\mathbf{K}|$, and

A functor $F \colon K \to K'$ from a category K to a category K' consists of:

- ullet a function $\mathbf{F}\colon |\mathbf{K}| o |\mathbf{K}'|$, and
- for all $A, B \in |\mathbf{K}|$, a function $\mathbf{F} \colon \mathbf{K}(A, B) \to \mathbf{K}'(\mathbf{F}(A), \mathbf{F}(B))$

such that:

Make explicit categories in which we work at various places here

• **F** preserves identities, i.e.,

$$\mathbf{F}(id_A) = id_{\mathbf{F}(A)}$$

for all $A \in |\mathbf{K}|$, and

• **F** preserves composition, i.e.,

$$\mathbf{F}(f;g) = \mathbf{F}(f); \mathbf{F}(g)$$

for all $f: A \to B$ and $g: B \to C$ in **K**.

 \bullet identity functors: $\mathbf{Id}_{\mathbf{K}} \colon \mathbf{K} \to \mathbf{K},$ for any category \mathbf{K}

ullet identity functors: $\mathbf{Id}_{\mathbf{K}} \colon \mathbf{K} \to \mathbf{K}$, for any category \mathbf{K}

ullet inclusions: $\mathbf{I}_{\mathbf{K}\hookrightarrow\mathbf{K}'}\colon\mathbf{K}\to\mathbf{K}'$, for any subcategory \mathbf{K} of \mathbf{K}'

Andrzej Tarlecki: Category Theory, 2025

- ullet identity functors: $\mathbf{Id}_{\mathbf{K}} \colon \mathbf{K} \to \mathbf{K}$, for any category \mathbf{K}
- ullet inclusions: $\mathbf{I}_{\mathbf{K}\hookrightarrow\mathbf{K}'}\colon\mathbf{K}\to\mathbf{K}'$, for any subcategory \mathbf{K} of \mathbf{K}'
- constant functors: $C_A \colon \mathbf{K} \to \mathbf{K}'$, for any categories \mathbf{K}, \mathbf{K}' and $A \in |\mathbf{K}'|$, with $C_A(f) = id_A$ for all morphisms f in \mathbf{K}

Andrzej Tarlecki: Category Theory, 2025

- ullet identity functors: $\mathbf{Id}_{\mathbf{K}} \colon \mathbf{K} o \mathbf{K}$, for any category \mathbf{K}
- ullet inclusions: $\mathbf{I}_{\mathbf{K}\hookrightarrow\mathbf{K}'}\colon\mathbf{K}\to\mathbf{K}'$, for any subcategory \mathbf{K} of \mathbf{K}'
- constant functors: $C_A : K \to K'$, for any categories K, K' and $A \in |K'|$, with $C_A(f) = id_A$ for all morphisms f in K
- ullet powerset functor: $\mathbf{P} \colon \mathbf{Set} \to \mathbf{Set}$ given by

$$\mathbf{Set} \xrightarrow{\mathbf{P}} \mathbf{Set}$$

- ullet identity functors: $\mathbf{Id}_{\mathbf{K}} \colon \mathbf{K} \to \mathbf{K}$, for any category \mathbf{K}
- ullet inclusions: $\mathbf{I}_{\mathbf{K}\hookrightarrow\mathbf{K}'}\colon\mathbf{K}\to\mathbf{K}'$, for any subcategory \mathbf{K} of \mathbf{K}'
- constant functors: $C_A \colon \mathbf{K} \to \mathbf{K}'$, for any categories \mathbf{K}, \mathbf{K}' and $A \in |\mathbf{K}'|$, with $C_A(f) = id_A$ for all morphisms f in \mathbf{K}
- powerset functor: $P \colon \mathbf{Set} \to \mathbf{Set}$ given by
 - $-\mathbf{P}(X) = \{Y \mid Y \subseteq X\}, \text{ for all } X \in |\mathbf{Set}|$

$$\mathbf{Set} \xrightarrow{\mathbf{P}} \mathbf{Set}$$

$$X \longmapsto 2^X$$

- ullet identity functors: $\mathbf{Id}_{\mathbf{K}} \colon \mathbf{K} \to \mathbf{K}$, for any category \mathbf{K}
- ullet inclusions: $\mathbf{I}_{\mathbf{K}\hookrightarrow\mathbf{K}'}\colon\mathbf{K}\to\mathbf{K}'$, for any subcategory \mathbf{K} of \mathbf{K}'
- constant functors: $C_A \colon \mathbf{K} \to \mathbf{K}'$, for any categories \mathbf{K}, \mathbf{K}' and $A \in |\mathbf{K}'|$, with $C_A(f) = id_A$ for all morphisms f in \mathbf{K}
- powerset functor: $P \colon \mathbf{Set} \to \mathbf{Set}$ given by

$$-\mathbf{P}(X) = \{Y \mid Y \subseteq X\}, \text{ for all } X \in |\mathbf{Set}|$$

$$\mathbf{Set} \xrightarrow{\mathbf{P}} \mathbf{Set}$$

$$X \longmapsto 2^X$$

$$X' \longmapsto 2X'$$

- ullet identity functors: $\mathbf{Id}_{\mathbf{K}} \colon \mathbf{K} \to \mathbf{K}$, for any category \mathbf{K}
- ullet inclusions: $\mathbf{I}_{\mathbf{K}\hookrightarrow\mathbf{K}'}\colon\mathbf{K}\to\mathbf{K}'$, for any subcategory \mathbf{K} of \mathbf{K}'
- constant functors: $C_A \colon \mathbf{K} \to \mathbf{K}'$, for any categories \mathbf{K}, \mathbf{K}' and $A \in |\mathbf{K}'|$, with $C_A(f) = id_A$ for all morphisms f in \mathbf{K}
- powerset functor: $P \colon \mathbf{Set} \to \mathbf{Set}$ given by
 - $-\mathbf{P}(X) = \{Y \mid Y \subseteq X\}, \text{ for all } X \in |\mathbf{Set}|$
 - $-\mathbf{P}(f)\colon \mathbf{P}(X)\to \mathbf{P}(X')$ for all $f\colon X\to X'$ in Set,

- ullet identity functors: $\mathbf{Id}_{\mathbf{K}} \colon \mathbf{K} \to \mathbf{K}$, for any category \mathbf{K}
- ullet inclusions: $\mathbf{I}_{\mathbf{K}\hookrightarrow\mathbf{K}'}\colon\mathbf{K}\to\mathbf{K}'$, for any subcategory \mathbf{K} of \mathbf{K}'
- constant functors: $C_A \colon \mathbf{K} \to \mathbf{K}'$, for any categories \mathbf{K}, \mathbf{K}' and $A \in |\mathbf{K}'|$, with $C_A(f) = id_A$ for all morphisms f in \mathbf{K}
- powerset functor: $P \colon \mathbf{Set} \to \mathbf{Set}$ given by
 - $\mathbf{P}(X) = \{Y \mid Y \subseteq X\}, \text{ for all } X \in |\mathbf{Set}|$
 - $\mathbf{P}(f) \colon \mathbf{P}(X) \to \mathbf{P}(X') \text{ for all } f \colon X \to X' \text{ in } \mathbf{Set},$ $\mathbf{P}(f)(Y) = \{ f(y) \mid y \in Y \} \text{ for all } Y \subseteq X$

- ullet identity functors: $\mathbf{Id}_{\mathbf{K}} \colon \mathbf{K} \to \mathbf{K}$, for any category \mathbf{K}
- ullet inclusions: $\mathbf{I}_{\mathbf{K}\hookrightarrow\mathbf{K}'}\colon\mathbf{K}\to\mathbf{K}'$, for any subcategory \mathbf{K} of \mathbf{K}'
- constant functors: $C_A : K \to K'$, for any categories K, K' and $A \in |K'|$, with $C_A(f) = id_A$ for all morphisms f in K
- powerset functor: $P \colon \mathbf{Set} \to \mathbf{Set}$ given by
 - $-\mathbf{P}(X) = \{Y \mid Y \subseteq X\}, \text{ for all } X \in |\mathbf{Set}|$
 - $\ \mathbf{P}(f) \colon \mathbf{P}(X) \to \mathbf{P}(X') \text{ for all } f \colon X \to X' \text{ in } \mathbf{Set},$ $\mathbf{P}(f)(Y) = \{f(y) \mid y \in Y\} \text{ for all } Y \subseteq X$

$$\mathbf{Set}^{op} \xrightarrow{\mathbf{P}_{-1}} \mathbf{Set}$$

• contravariant powerset functor: $\mathbf{P}_{-1} \colon \mathbf{Set}^{op} \to \mathbf{Set}$ given by

- ullet identity functors: $\mathbf{Id}_{\mathbf{K}} \colon \mathbf{K} \to \mathbf{K}$, for any category \mathbf{K}
- ullet inclusions: $\mathbf{I}_{\mathbf{K}\hookrightarrow\mathbf{K}'}\colon\mathbf{K}\to\mathbf{K}'$, for any subcategory \mathbf{K} of \mathbf{K}'
- constant functors: $C_A : K \to K'$, for any categories K, K' and $A \in |K'|$, with $C_A(f) = id_A$ for all morphisms f in K
- powerset functor: $P : \mathbf{Set} \to \mathbf{Set}$ given by
 - $-\mathbf{P}(X) = \{Y \mid Y \subseteq X\}, \text{ for all } X \in |\mathbf{Set}|$
 - $\mathbf{P}(f) \colon \mathbf{P}(X) \to \mathbf{P}(X') \text{ for all } f \colon X \to X' \text{ in } \mathbf{Set},$ $\mathbf{P}(f)(Y) = \{ f(y) \mid y \in Y \} \text{ for all } Y \subseteq X$

$$\mathbf{Set}^{\mathit{op}} \xrightarrow{\mathbf{P}_{-1}} \mathbf{Set}$$

ullet contravariant powerset functor: $\mathbf{P}_{-1} \colon \mathbf{Set}^{op} o \mathbf{Set}$ given by

$$X \longmapsto 2^X$$

$$-\mathbf{P}_{-1}(X) = \{Y \mid Y \subseteq X\}, \text{ for all } X \in |\mathbf{Set}|$$

- ullet identity functors: $\mathbf{Id}_{\mathbf{K}} \colon \mathbf{K} \to \mathbf{K}$, for any category \mathbf{K}
- ullet inclusions: $\mathbf{I}_{\mathbf{K}\hookrightarrow\mathbf{K}'}\colon\mathbf{K}\to\mathbf{K}'$, for any subcategory \mathbf{K} of \mathbf{K}'
- constant functors: $C_A : K \to K'$, for any categories K, K' and $A \in |K'|$, with $C_A(f) = id_A$ for all morphisms f in K
- powerset functor: $P \colon \mathbf{Set} \to \mathbf{Set}$ given by
 - $-\mathbf{P}(X) = \{Y \mid Y \subseteq X\}, \text{ for all } X \in |\mathbf{Set}|$
 - $\mathbf{P}(f) \colon \mathbf{P}(X) \to \mathbf{P}(X') \text{ for all } f \colon X \to X' \text{ in } \mathbf{Set},$ $\mathbf{P}(f)(Y) = \{ f(y) \mid y \in Y \} \text{ for all } Y \subseteq X$

$$\operatorname{Set}^{op} \xrightarrow{\mathbf{P}_{-1}} \operatorname{Set}$$

ullet contravariant powerset functor: $\mathbf{P}_{-1}\colon \mathbf{Set}^{op} o \mathbf{Set}$ given by

$$X \longmapsto 2^X$$

$$-\mathbf{P}_{-1}(X) = \{Y \mid Y \subseteq X\}, \text{ for all } X \in |\mathbf{Set}|$$

$$X' \longmapsto 2^{X'}$$

- ullet identity functors: $\mathbf{Id}_{\mathbf{K}} \colon \mathbf{K} \to \mathbf{K}$, for any category \mathbf{K}
- ullet inclusions: $\mathbf{I}_{\mathbf{K}\hookrightarrow\mathbf{K}'}\colon\mathbf{K}\to\mathbf{K}'$, for any subcategory \mathbf{K} of \mathbf{K}'
- constant functors: $C_A : K \to K'$, for any categories K, K' and $A \in |K'|$, with $C_A(f) = id_A$ for all morphisms f in K
- powerset functor: $P \colon \mathbf{Set} \to \mathbf{Set}$ given by
 - $-\mathbf{P}(X) = \{Y \mid Y \subseteq X\}, \text{ for all } X \in |\mathbf{Set}|$
 - $\mathbf{P}(f) \colon \mathbf{P}(X) \to \mathbf{P}(X') \text{ for all } f \colon X \to X' \text{ in } \mathbf{Set},$ $\mathbf{P}(f)(Y) = \{ f(y) \mid y \in Y \} \text{ for all } Y \subseteq X$
- contravariant powerset functor: $\mathbf{P}_{-1} \colon \mathbf{Set}^{op} \to \mathbf{Set}$ given by
 - $-\mathbf{P}_{-1}(X) = \{Y \mid Y \subseteq X\}, \text{ for all } X \in |\mathbf{Set}|$

$$\begin{array}{cccc}
\text{Set}^{op} & \xrightarrow{\mathbf{P}_{-1}} & \text{Set} \\
X & & & & \\
X' & & & \\
X' & & & & \\
X' & & & & \\
X' & & & & \\
\end{array}$$

- ullet identity functors: $\mathbf{Id}_{\mathbf{K}} \colon \mathbf{K} \to \mathbf{K}$, for any category \mathbf{K}
- ullet inclusions: $\mathbf{I}_{\mathbf{K}\hookrightarrow\mathbf{K}'}\colon\mathbf{K}\to\mathbf{K}'$, for any subcategory \mathbf{K} of \mathbf{K}'
- constant functors: $C_A : K \to K'$, for any categories K, K' and $A \in |K'|$, with $C_A(f) = id_A$ for all morphisms f in K
- powerset functor: $P \colon \mathbf{Set} \to \mathbf{Set}$ given by
 - $-\mathbf{P}(X) = \{Y \mid Y \subseteq X\}, \text{ for all } X \in |\mathbf{Set}|$
 - $\mathbf{P}(f) \colon \mathbf{P}(X) \to \mathbf{P}(X') \text{ for all } f \colon X \to X' \text{ in } \mathbf{Set},$ $\mathbf{P}(f)(Y) = \{ f(y) \mid y \in Y \} \text{ for all } Y \subseteq X$
- contravariant powerset functor: $\mathbf{P}_{-1} \colon \mathbf{Set}^{op} \to \mathbf{Set}$ given by
 - $-\mathbf{P}_{-1}(X) = \{Y \mid Y \subseteq X\}, \text{ for all } X \in |\mathbf{Set}|$
 - $-\mathbf{P}_{-1}(f)\colon \mathbf{P}(X)\to \mathbf{P}(X')$ for all $f\colon X'\to X$ in Set,

$$\begin{array}{ccc}
Set^{op} & \xrightarrow{\mathbf{P}_{-1}} & \operatorname{Set} \\
X & & \xrightarrow{\mathbf{Z}^{X}} & \\
X' & & &$$

- ullet identity functors: $\mathbf{Id}_{\mathbf{K}} \colon \mathbf{K} \to \mathbf{K}$, for any category \mathbf{K}
- ullet inclusions: $\mathbf{I}_{\mathbf{K}\hookrightarrow\mathbf{K}'}\colon\mathbf{K}\to\mathbf{K}'$, for any subcategory \mathbf{K} of \mathbf{K}'
- constant functors: $C_A \colon \mathbf{K} \to \mathbf{K}'$, for any categories \mathbf{K}, \mathbf{K}' and $A \in |\mathbf{K}'|$, with $C_A(f) = id_A$ for all morphisms f in \mathbf{K}
- powerset functor: $P \colon \mathbf{Set} \to \mathbf{Set}$ given by
 - $-\mathbf{P}(X) = \{Y \mid Y \subseteq X\}, \text{ for all } X \in |\mathbf{Set}|$
 - $\mathbf{P}(f) \colon \mathbf{P}(X) \to \mathbf{P}(X') \text{ for all } f \colon X \to X' \text{ in } \mathbf{Set},$ $\mathbf{P}(f)(Y) = \{ f(y) \mid y \in Y \} \text{ for all } Y \subseteq X$
- contravariant powerset functor: $\mathbf{P}_{-1} \colon \mathbf{Set}^{op} \to \mathbf{Set}$ given by
 - $-\mathbf{P}_{-1}(X) = \{Y \mid Y \subseteq X\}, \text{ for all } X \in |\mathbf{Set}|$
 - $\mathbf{P}_{-1}(f) \colon \mathbf{P}(X) \to \mathbf{P}(X') \text{ for all } f \colon X' \to X \text{ in } \mathbf{Set},$ $\mathbf{P}_{-1}(f)(Y) = \{x' \in X' \mid f(x') \in Y\} \text{ for all } Y \subseteq X$

$$\mathbf{Set}^{op} \xrightarrow{\mathbf{P}_{-1}} \mathbf{Set}$$

- ullet identity functors: $\mathbf{Id}_{\mathbf{K}} \colon \mathbf{K} \to \mathbf{K}$, for any category \mathbf{K}
- ullet inclusions: $\mathbf{I}_{\mathbf{K}\hookrightarrow\mathbf{K}'}\colon\mathbf{K}\to\mathbf{K}'$, for any subcategory \mathbf{K} of \mathbf{K}'
- constant functors: $C_A : K \to K'$, for any categories K, K' and $A \in |K'|$, with $C_A(f) = id_A$ for all morphisms f in K
- powerset functor: $P \colon \mathbf{Set} \to \mathbf{Set}$ given by
 - $-\mathbf{P}(X) = \{Y \mid Y \subseteq X\}, \text{ for all } X \in |\mathbf{Set}|$
 - $\mathbf{P}(f) \colon \mathbf{P}(X) \to \mathbf{P}(X') \text{ for all } f \colon X \to X' \text{ in } \mathbf{Set},$ $\mathbf{P}(f)(Y) = \{ f(y) \mid y \in Y \} \text{ for all } Y \subseteq X$
- contravariant powerset functor: $\mathbf{P}_{-1} \colon \mathbf{Set}^{op} \to \mathbf{Set}$ given by
 - $-\mathbf{P}_{-1}(X) = \{Y \mid Y \subseteq X\}, \text{ for all } X \in |\mathbf{Set}|$
 - $\mathbf{P}_{-1}(f) \colon \mathbf{P}(X) \to \mathbf{P}(X') \text{ for all } f \colon X' \to X \text{ in } \mathbf{Set},$ $\mathbf{P}_{-1}(f)(Y) = \{x' \in X' \mid f(x') \in Y\} \text{ for all } Y \subseteq X$

• projection functors: $\pi_1 \colon \mathbf{K} \times \mathbf{K}' \to \mathbf{K}$, $\pi_2 \colon \mathbf{K} \times \mathbf{K}' \to \mathbf{K}'$

- projection functors: $\pi_1 : \mathbf{K} \times \mathbf{K}' \to \mathbf{K}, \ \pi_2 : \mathbf{K} \times \mathbf{K}' \to \mathbf{K}'$
- *list functor*: $\mathbf{List} : \mathbf{Set} \to \mathbf{Monoid}$, where \mathbf{Monoid} is the category of monoids (as objects) with monoid homomorphisms as morphisms:

- projection functors: $\pi_1 \colon \mathbf{K} \times \mathbf{K}' \to \mathbf{K}, \ \pi_2 \colon \mathbf{K} \times \mathbf{K}' \to \mathbf{K}'$
- *list functor*: $\mathbf{List} : \mathbf{Set} \to \mathbf{Monoid}$, where \mathbf{Monoid} is the category of monoids (as objects) with monoid homomorphisms as morphisms:
 - **List** $(X) = \langle X^*, \widehat{}, \epsilon \rangle$, for all $X \in |\mathbf{Set}|$, where X^* is the set of all finite lists of elements from X, $\widehat{}$ is the list concatenation, and ϵ is the empty list.

$$X \longmapsto \langle X^*, \widehat{}, \epsilon \rangle$$

- projection functors: $\pi_1 : \mathbf{K} \times \mathbf{K}' \to \mathbf{K}, \ \pi_2 : \mathbf{K} \times \mathbf{K}' \to \mathbf{K}'$
- *list functor*: $\mathbf{List} : \mathbf{Set} \to \mathbf{Monoid}$, where \mathbf{Monoid} is the category of monoids (as objects) with monoid homomorphisms as morphisms:
 - $\mathbf{List}(X) = \langle X^*, \widehat{}, \epsilon \rangle$, for all $X \in |\mathbf{Set}|$, where X^* is the set of all finite lists of elements from X, $\widehat{}$ is the list concatenation, and ϵ is the empty list.

$$X \longmapsto \langle X^*, \hat{}, \epsilon \rangle$$

$$X' \longmapsto \langle (X')^*, \widehat{}, \epsilon \rangle$$

- projection functors: $\pi_1 : \mathbf{K} \times \mathbf{K}' \to \mathbf{K}, \ \pi_2 : \mathbf{K} \times \mathbf{K}' \to \mathbf{K}'$
- *list functor*: $\mathbf{List} : \mathbf{Set} \to \mathbf{Monoid}$, where \mathbf{Monoid} is the category of monoids (as objects) with monoid homomorphisms as morphisms:
 - $\mathbf{List}(X) = \langle X^*, \widehat{}, \epsilon \rangle$, for all $X \in |\mathbf{Set}|$, where X^* is the set of all finite lists of elements from X, $\widehat{}$ is the list concatenation, and ϵ is the empty list.
 - List(f): List $(X) \to$ List(X') for $f: X \to X'$ in Set,

- projection functors: $\pi_1 \colon \mathbf{K} \times \mathbf{K}' \to \mathbf{K}, \ \pi_2 \colon \mathbf{K} \times \mathbf{K}' \to \mathbf{K}'$
- *list functor*: $\mathbf{List} : \mathbf{Set} \to \mathbf{Monoid}$, where \mathbf{Monoid} is the category of monoids (as objects) with monoid homomorphisms as morphisms:
 - $\mathbf{List}(X) = \langle X^*, \widehat{}, \epsilon \rangle$, for all $X \in |\mathbf{Set}|$, where X^* is the set of all finite lists of elements from X, $\widehat{}$ is the list concatenation, and ϵ is the empty list.
 - $\mathbf{List}(f) : \mathbf{List}(X) \to \mathbf{List}(X')$ for $f : X \to X'$ in \mathbf{Set} , $\mathbf{List}(f)(\langle x_1, \dots, x_n \rangle) = \langle f(x_1), \dots, f(x_n) \rangle$ for all $x_1, \dots, x_n \in X$

$$X \longmapsto \langle X^*, \widehat{}, \epsilon \rangle$$

$$f \downarrow \qquad \qquad \downarrow f^*$$

$$X' \longmapsto \langle (X')^*, \widehat{}, \epsilon \rangle$$

- projection functors: $\pi_1 \colon \mathbf{K} \times \mathbf{K}' \to \mathbf{K}$, $\pi_2 \colon \mathbf{K} \times \mathbf{K}' \to \mathbf{K}'$
- *list functor*: $\mathbf{List} \colon \mathbf{Set} \to \mathbf{Monoid}$, where \mathbf{Monoid} is the category of monoids (as objects) with monoid homomorphisms as morphisms:
 - **List** $(X) = \langle X^*, \widehat{}, \epsilon \rangle$, for all $X \in |\mathbf{Set}|$, where X^* is the set of all finite lists of elements from X, $\widehat{}$ is the list concatenation, and ϵ is the empty list.
 - $\mathbf{List}(f) : \mathbf{List}(X) \to \mathbf{List}(X')$ for $f : X \to X'$ in \mathbf{Set} , $\mathbf{List}(f)(\langle x_1, \dots, x_n \rangle) = \langle f(x_1), \dots, f(x_n) \rangle$ for all $x_1, \dots, x_n \in X$
- totalisation functor: $\mathbf{Tot} \colon \mathbf{Pfn} \to \mathbf{Set}_*$, where \mathbf{Set}_* is the subcategory of \mathbf{Set} of sets with a distinguished element * and *-preserving functions

- projection functors: $\pi_1 \colon \mathbf{K} \times \mathbf{K}' \to \mathbf{K}$, $\pi_2 \colon \mathbf{K} \times \mathbf{K}' \to \mathbf{K}'$
- *list functor*: $\mathbf{List} \colon \mathbf{Set} \to \mathbf{Monoid}$, where \mathbf{Monoid} is the category of monoids (as objects) with monoid homomorphisms as morphisms:
 - **List** $(X) = \langle X^*, \widehat{}, \epsilon \rangle$, for all $X \in |\mathbf{Set}|$, where X^* is the set of all finite lists of elements from X, $\widehat{}$ is the list concatenation, and ϵ is the empty list.
 - $\mathbf{List}(f) : \mathbf{List}(X) \to \mathbf{List}(X')$ for $f : X \to X'$ in \mathbf{Set} , $\mathbf{List}(f)(\langle x_1, \dots, x_n \rangle) = \langle f(x_1), \dots, f(x_n) \rangle$ for all $x_1, \dots, x_n \in X$
- totalisation functor: $\mathbf{Tot} \colon \mathbf{Pfn} \to \mathbf{Set}_*$, where \mathbf{Set}_* is the subcategory of \mathbf{Set} of sets with a distinguished element * and *-preserving functions

Define **Set*** as the category of algebras

- projection functors: $\pi_1 : \mathbf{K} \times \mathbf{K}' \to \mathbf{K}, \ \pi_2 : \mathbf{K} \times \mathbf{K}' \to \mathbf{K}'$
- *list functor*: $\mathbf{List} \colon \mathbf{Set} \to \mathbf{Monoid}$, where \mathbf{Monoid} is the category of monoids (as objects) with monoid homomorphisms as morphisms:
 - $\mathbf{List}(X) = \langle X^*, \widehat{}, \epsilon \rangle$, for all $X \in |\mathbf{Set}|$, where X^* is the set of all finite lists of elements from X, $\widehat{}$ is the list concatenation, and ϵ is the empty list.
 - $\mathbf{List}(f) : \mathbf{List}(X) \to \mathbf{List}(X')$ for $f : X \to X'$ in \mathbf{Set} , $\mathbf{List}(f)(\langle x_1, \dots, x_n \rangle) = \langle f(x_1), \dots, f(x_n) \rangle$ for all $x_1, \dots, x_n \in X$
- totalisation functor: $\mathbf{Tot} \colon \mathbf{Pfn} \to \mathbf{Set}_*$, where \mathbf{Set}_* is the subcategory of \mathbf{Set} of sets with a distinguished element * and *-preserving functions
 - $\mathbf{Tot}(X) = X \uplus \{*\}$

Define \mathbf{Set}_* as the category of algebras

- projection functors: $\pi_1 : \mathbf{K} \times \mathbf{K}' \to \mathbf{K}, \ \pi_2 : \mathbf{K} \times \mathbf{K}' \to \mathbf{K}'$
- *list functor*: $\mathbf{List} \colon \mathbf{Set} \to \mathbf{Monoid}$, where \mathbf{Monoid} is the category of monoids (as objects) with monoid homomorphisms as morphisms:
 - **List** $(X) = \langle X^*, \widehat{}, \epsilon \rangle$, for all $X \in |\mathbf{Set}|$, where X^* is the set of all finite lists of elements from X, $\widehat{}$ is the list concatenation, and ϵ is the empty list.
 - $\mathbf{List}(f) : \mathbf{List}(X) \to \mathbf{List}(X')$ for $f : X \to X'$ in \mathbf{Set} , $\mathbf{List}(f)(\langle x_1, \dots, x_n \rangle) = \langle f(x_1), \dots, f(x_n) \rangle$ for all $x_1, \dots, x_n \in X$
- totalisation functor: $\mathbf{Tot} \colon \mathbf{Pfn} \to \mathbf{Set}_*$, where \mathbf{Set}_* is the subcategory of \mathbf{Set} of sets with a distinguished element * and *-preserving functions
 - $\mathbf{Tot}(X) = X \uplus \{*\}$

Define \mathbf{Set}_* as the category of algebras

$$- \mathbf{Tot}(f)(x) = \begin{cases} f(x) & \text{if it is defined} \\ * & \text{otherwise} \end{cases}$$

• carrier set functors: $|_|: \mathbf{Alg}(\Sigma) \to \mathbf{Set}^S$, for any algebraic signature $\Sigma = \langle S, \Omega \rangle$, yielding the algebra carriers and homomorphisms as functions between them

- carrier set functors: $|_|: \mathbf{Alg}(\Sigma) \to \mathbf{Set}^S$, for any algebraic signature $\Sigma = \langle S, \Omega \rangle$, yielding the algebra carriers and homomorphisms as functions between them
- reduct functors: $-|_{\sigma} : \mathbf{Alg}(\Sigma') \to \mathbf{Alg}(\Sigma)$, for any signature morphism $\sigma : \Sigma \to \Sigma'$, as defined earlier

- carrier set functors: $|_|: \mathbf{Alg}(\Sigma) \to \mathbf{Set}^S$, for any algebraic signature $\Sigma = \langle S, \Omega \rangle$, yielding the algebra carriers and homomorphisms as functions between them
- reduct functors: $-|_{\sigma} : \mathbf{Alg}(\Sigma') \to \mathbf{Alg}(\Sigma)$, for any signature morphism $\sigma : \Sigma \to \Sigma'$, as defined earlier
- term algebra functors: $\mathbf{T}_{\Sigma} \colon \mathbf{Set} \to \mathbf{Alg}(\Sigma)$ for all (single-sorted) algebraic signatures $\Sigma \in |\mathbf{AlgSig}|$

- carrier set functors: $|_|: \mathbf{Alg}(\Sigma) \to \mathbf{Set}^S$, for any algebraic signature $\Sigma = \langle S, \Omega \rangle$, yielding the algebra carriers and homomorphisms as functions between them
- reduct functors: $-|_{\sigma} : \mathbf{Alg}(\Sigma') \to \mathbf{Alg}(\Sigma)$, for any signature morphism $\sigma : \Sigma \to \Sigma'$, as defined earlier
- term algebra functors: $\mathbf{T}_{\Sigma} \colon \mathbf{Set} \to \mathbf{Alg}(\Sigma)$ for all (single-sorted) algebraic signatures $\Sigma \in |\mathbf{AlgSig}|$
 - $-\mathbf{T}_{\Sigma}(X) = T_{\Sigma}(X)$ for all $X \in |\mathbf{Set}|$

- carrier set functors: $|_|: \mathbf{Alg}(\Sigma) \to \mathbf{Set}^S$, for any algebraic signature $\Sigma = \langle S, \Omega \rangle$, yielding the algebra carriers and homomorphisms as functions between them
- reduct functors: $-|_{\sigma} : \mathbf{Alg}(\Sigma') \to \mathbf{Alg}(\Sigma)$, for any signature morphism $\sigma : \Sigma \to \Sigma'$, as defined earlier
- term algebra functors: $\mathbf{T}_{\Sigma} \colon \mathbf{Set} \to \mathbf{Alg}(\Sigma)$ for all (single-sorted) algebraic signatures $\Sigma \in |\mathbf{AlgSig}|$
 - $-\mathbf{T}_{\Sigma}(X) = T_{\Sigma}(X)$ for all $X \in |\mathbf{Set}|$
 - $-\mathbf{T}_{\Sigma}(f) = f^{\#} : T_{\Sigma}(X) \to T_{\Sigma}(X')$ for all functions $f : X \to X'$

- carrier set functors: $|_|: \mathbf{Alg}(\Sigma) \to \mathbf{Set}^S$, for any algebraic signature $\Sigma = \langle S, \Omega \rangle$, yielding the algebra carriers and homomorphisms as functions between them
- reduct functors: $-|_{\sigma} : \mathbf{Alg}(\Sigma') \to \mathbf{Alg}(\Sigma)$, for any signature morphism $\sigma : \Sigma \to \Sigma'$, as defined earlier
- term algebra functors: $\mathbf{T}_{\Sigma} \colon \mathbf{Set} \to \mathbf{Alg}(\Sigma)$ for all (single-sorted) algebraic signatures $\Sigma \in |\mathbf{AlgSig}|$ Generalise to many-sorted signatures
 - $-\mathbf{T}_{\Sigma}(X) = T_{\Sigma}(X)$ for all $X \in |\mathbf{Set}|$
 - $-\mathbf{T}_{\Sigma}(f) = f^{\#} : T_{\Sigma}(X) \to T_{\Sigma}(X')$ for all functions $f : X \to X'$

- carrier set functors: $|_|: \mathbf{Alg}(\Sigma) \to \mathbf{Set}^S$, for any algebraic signature $\Sigma = \langle S, \Omega \rangle$, yielding the algebra carriers and homomorphisms as functions between them
- reduct functors: $-|_{\sigma} : \mathbf{Alg}(\Sigma') \to \mathbf{Alg}(\Sigma)$, for any signature morphism $\sigma : \Sigma \to \Sigma'$, as defined earlier
- term algebra functors: $\mathbf{T}_{\Sigma} \colon \mathbf{Set} \to \mathbf{Alg}(\Sigma)$ for all (single-sorted) algebraic signatures $\Sigma \in |\mathbf{AlgSig}|$ Generalise to many-sorted signatures
 - $\mathbf{T}_{\Sigma}(X) = T_{\Sigma}(X) \text{ for all } X \in |\mathbf{Set}|$
 - $-\mathbf{T}_{\Sigma}(f) = f^{\#} : T_{\Sigma}(X) \to T_{\Sigma}(X')$ for all functions $f : X \to X'$
- diagonal functors: $\Delta_{\mathbf{K}}^G \colon \mathbf{K} \to \mathbf{Diag}_{\mathbf{K}}^G$ for any graph G with nodes $N = |G|_{nodes}$ and edges $E = |G|_{edges}$, and category \mathbf{K}

- carrier set functors: $|_|: \mathbf{Alg}(\Sigma) \to \mathbf{Set}^S$, for any algebraic signature $\Sigma = \langle S, \Omega \rangle$, yielding the algebra carriers and homomorphisms as functions between them
- reduct functors: $-|_{\sigma}$: $\mathbf{Alg}(\Sigma') \to \mathbf{Alg}(\Sigma)$, for any signature morphism $\sigma: \Sigma \to \Sigma'$, as defined earlier
- term algebra functors: $\mathbf{T}_{\Sigma} \colon \mathbf{Set} \to \mathbf{Alg}(\Sigma)$ for all (single-sorted) algebraic signatures $\Sigma \in |\mathbf{AlgSig}|$ Generalise to many-sorted signatures
 - $-\mathbf{T}_{\Sigma}(X) = T_{\Sigma}(X)$ for all $X \in |\mathbf{Set}|$
 - $-\mathbf{T}_{\Sigma}(f) = f^{\#} : T_{\Sigma}(X) \to T_{\Sigma}(X')$ for all functions $f : X \to X'$
- diagonal functors: $\Delta^G_{\mathbf{K}} \colon \mathbf{K} \to \mathbf{Diag}^G_{\mathbf{K}}$ for any graph G with nodes $N = |G|_{nodes}$ and edges $E = |G|_{edges}$, and category \mathbf{K}
 - $\Delta^G_{\mathbf{K}}(A)=D^A$, where D^A is the "constant" diagram, with $D^A_n=A$ for all $n\in N$ and $D^A_e=id_A$ for all $e\in E$

- carrier set functors: $|-|: \mathbf{Alg}(\Sigma) \to \mathbf{Set}^S$, for any algebraic signature $\Sigma = \langle S, \Omega \rangle$, yielding the algebra carriers and homomorphisms as functions between them
- reduct functors: $-|_{\sigma} : \mathbf{Alg}(\Sigma') \to \mathbf{Alg}(\Sigma)$, for any signature morphism $\sigma : \Sigma \to \Sigma'$, as defined earlier
- term algebra functors: $\mathbf{T}_{\Sigma} \colon \mathbf{Set} \to \mathbf{Alg}(\Sigma)$ for all (single-sorted) algebraic signatures $\Sigma \in |\mathbf{AlgSig}|$ Generalise to many-sorted signatures
 - $-\mathbf{T}_{\Sigma}(X) = T_{\Sigma}(X)$ for all $X \in |\mathbf{Set}|$
 - $-\mathbf{T}_{\Sigma}(f) = f^{\#} : T_{\Sigma}(X) \to T_{\Sigma}(X')$ for all functions $f : X \to X'$
- diagonal functors: $\Delta_{\mathbf{K}}^G \colon \mathbf{K} \to \mathbf{Diag}_{\mathbf{K}}^G$ for any graph G with nodes $N = |G|_{nodes}$ and edges $E = |G|_{edges}$, and category \mathbf{K}
 - $\Delta^G_{\mathbf{K}}(A)=D^A$, where D^A is the "constant" diagram, with $D^A_n=A$ for all $n\in N$ and $D^A_e=id_A$ for all $e\in E$
 - $\Delta^G_{\mathbf{K}}(f) = \mu^f \colon D^A \to D^B$, for all $f \colon A \to B$, where $\mu_n^f = f$ for all $n \in N$

Given a *locally small* category \mathbf{K} , define

 $\mathbf{Hom}_{\mathbf{K}} \colon \mathbf{K}^{op} imes \mathbf{K} o \mathbf{Set}$

a binary *hom-functor*, contravariant on the first argument and covariant on the second argument, as follows:

Andrzej Tarlecki: Category Theory, 2025

Given a *locally small* category \mathbf{K} , define

$$\mathbf{Hom}_{\mathbf{K}} \colon \mathbf{K}^{op} imes \mathbf{K} o \mathbf{Set}$$

a binary *hom-functor*, contravariant on the first argument and covariant on the second argument, as follows:

• $\mathbf{Hom}_{\mathbf{K}}(\langle A, B \rangle) = \mathbf{K}(A, B)$, for all $\langle A, B \rangle \in |\mathbf{K}^{op} \times \mathbf{K}|$, i.e., $A, B \in |\mathbf{K}|$

Given a *locally small* category \mathbf{K} , define

 $\mathbf{Hom}_{\mathbf{K}} \colon \mathbf{K}^{op} imes \mathbf{K} o \mathbf{Set}$

a binary hom-functor, contravariant on the first argument and covariant on the second argument, as follows:

• $\mathbf{Hom}_{\mathbf{K}}(\langle A, B \rangle) = \mathbf{K}(A, B)$, for all $\langle A, B \rangle \in |\mathbf{K}^{op} \times \mathbf{K}|$, i.e., $A, B \in |\mathbf{K}|$

Given a *locally small* category \mathbf{K} , define

$$\mathbf{Hom}_{\mathbf{K}} \colon \mathbf{K}^{op} \times \mathbf{K} \to \mathbf{Set}$$

a binary *hom-functor*, contravariant on the first argument and covariant on the second argument, as follows:

- $\mathbf{Hom}_{\mathbf{K}}(\langle A, B \rangle) = \mathbf{K}(A, B)$, for all $\langle A, B \rangle \in |\mathbf{K}^{op} \times \mathbf{K}|$, i.e., $A, B \in |\mathbf{K}|$
- $\mathbf{Hom}_{\mathbf{K}}(\langle f, g \rangle) \colon \mathbf{K}(A, B) \to \mathbf{K}(A', B')$, for $\langle f, g \rangle \colon \langle A, B \rangle \to \langle A', B' \rangle$ in $\mathbf{K}^{op} \times \mathbf{K}$,

Given a *locally small* category \mathbf{K} , define

$$\mathbf{Hom}_{\mathbf{K}} \colon \mathbf{K}^{op} \times \mathbf{K} \to \mathbf{Set}$$

a binary *hom-functor*, contravariant on the first argument and covariant on the second argument, as follows:

- $\mathbf{Hom}_{\mathbf{K}}(\langle A, B \rangle) = \mathbf{K}(A, B)$, for all $\langle A, B \rangle \in |\mathbf{K}^{op} \times \mathbf{K}|$, i.e., $A, B \in |\mathbf{K}|$
- $\mathbf{Hom}_{\mathbf{K}}(\langle f, g \rangle) \colon \mathbf{K}(A, B) \to \mathbf{K}(A', B')$, for $\langle f, g \rangle \colon \langle A, B \rangle \to \langle A', B' \rangle$ in $\mathbf{K}^{op} \times \mathbf{K}$, i.e., $f \colon A' \to A$ and $g \colon B \to B'$ in \mathbf{K} ,

Given a *locally small* category \mathbf{K} , define

$$\mathbf{Hom}_{\mathbf{K}} \colon \mathbf{K}^{op} \times \mathbf{K} \to \mathbf{Set}$$

a binary *hom-functor*, contravariant on the first argument and covariant on the second argument, as follows:

- $\mathbf{Hom}_{\mathbf{K}}(\langle A, B \rangle) = \mathbf{K}(A, B)$, for all $\langle A, B \rangle \in |\mathbf{K}^{op} \times \mathbf{K}|$, i.e., $A, B \in |\mathbf{K}|$
- $\mathbf{Hom}_{\mathbf{K}}(\langle f, g \rangle) \colon \mathbf{K}(A, B) \to \mathbf{K}(A', B')$, for $\langle f, g \rangle \colon \langle A, B \rangle \to \langle A', B' \rangle$ in $\mathbf{K}^{op} \times \mathbf{K}$, i.e., $f \colon A' \to A$ and $g \colon B \to B'$ in \mathbf{K} , as a function given by

 $\mathbf{Hom}_{\mathbf{K}}(\langle f, g \rangle)(h) = f; h; g.$

Given a *locally small* category \mathbf{K} , define

$$\mathbf{Hom}_{\mathbf{K}} \colon \mathbf{K}^{op} \times \mathbf{K} \to \mathbf{Set}$$

a binary *hom-functor*, contravariant on the first argument and covariant on the second argument, as follows:

- $\mathbf{Hom}_{\mathbf{K}}(\langle A, B \rangle) = \mathbf{K}(A, B)$, for all $\langle A, B \rangle \in |\mathbf{K}^{op} \times \mathbf{K}|$, i.e., $A, B \in |\mathbf{K}|$
- $\mathbf{Hom}_{\mathbf{K}}(\langle f,g\rangle) \colon \mathbf{K}(A,B) \to \mathbf{K}(A',B')$, for $\langle f,g\rangle \colon \langle A,B\rangle \to \langle A',B'\rangle$ in $\mathbf{K}^{op} \times \mathbf{K}$, i.e., $f \colon A' \to A$ and $g \colon B \to B'$ in \mathbf{K} , as a function given by

 $\mathbf{Hom}_{\mathbf{K}}(\langle f, g \rangle)(h) = f; h; g.$

Also: $\mathbf{Hom}_{\mathbf{K}}(A, _) \colon \mathbf{K} \to \mathbf{Set}$ $\mathbf{Hom}_{\mathbf{K}}(_, B) \colon \mathbf{K}^{op} \to \mathbf{Set}$

• Check whether functors preserve:

- Check whether functors preserve:
 - monomorphisms

- Check whether functors preserve:
 - monomorphisms

 $\mathbf{F} \colon \mathbf{K} o \mathbf{K}'$

If $f: A \to B$ is mono in **K** then

 $\mathbf{F}(f) \colon \mathbf{F}(A) \to \mathbf{F}(B)$ is mono in \mathbf{K}' ??

- Check whether functors preserve:
 - monomorphisms
 - epimorphisms

 $\mathbf{F} \colon \mathbf{K} o \mathbf{K}'$

If $f: A \to B$ is epi in **K** then

 $\mathbf{F}(f) \colon \mathbf{F}(A) \to \mathbf{F}(B)$ is epi in \mathbf{K}' ??

- Check whether functors preserve:
 - monomorphisms
 - epimorphisms
 - (co)retractions

 $\mathbf{F} \colon \mathbf{K} o \mathbf{K}'$

If $f: A \to B$ is a retraction in **K** then

 $\mathbf{F}(f) \colon \mathbf{F}(A) \to \mathbf{F}(B)$ is a retraction in \mathbf{K}' ??

- Check whether functors preserve:
 - monomorphisms
 - epimorphisms
 - (co)retractions
 - isomorphisms

 $\mathbf{F} \colon \mathbf{K} o \mathbf{K}'$

If $f: A \to B$ is iso in **K** then

 $\mathbf{F}(f) \colon \mathbf{F}(A) \to \mathbf{F}(B)$ is iso in \mathbf{K}' ??

- Check whether functors preserve:
 - monomorphisms
 - epimorphisms
 - (co)retractions
 - isomorphisms
 - (co)cones

$\mathbf{F} \colon \mathbf{K} o \mathbf{K}'$

If $\alpha\colon X\to D$ is a cone on diagram D in $\mathbf K$ then $\mathbf F(\alpha)\colon \mathbf F(X)\to \mathbf F(D)$ is a cone on diagram $\mathbf F(D)$ in $\mathbf K'$??

BTW:

- $\mathbf{F}(D)$ has the same shape as D, i.e. $\mathcal{G}(\mathbf{F}(D)) = \mathcal{G}(D)$ (with nodes N and edges E)
 - $(\mathbf{F}(D))_n = \mathbf{F}(D_n) \text{ for } n \in N$
 - $(\mathbf{F}(D))_e = \mathbf{F}(D_e) \text{ for } e \in E$
- $\mathbf{F}(\alpha) = \langle \mathbf{F}(\alpha_n) \colon \mathbf{F}(X) \to (\mathbf{F}(D))_n \rangle_{n \in N}$

- Check whether functors preserve:
 - monomorphisms
 - epimorphisms
 - (co)retractions
 - isomorphisms
 - (co)cones
 - (co)limits

 $\mathbf{F} \colon \mathbf{K} o \mathbf{K}'$

If $\alpha \colon X \to D$ is a limit of diagram D in \mathbf{K} then $\mathbf{F}(\alpha) \colon \mathbf{F}(X) \to \mathbf{F}(D)$ is a limit of diagram $\mathbf{F}(D)$ in \mathbf{K}' ?

- Check whether functors preserve:
 - monomorphisms
 - epimorphisms
 - (co)retractions
 - isomorphisms
 - (co)cones
 - (co)limits
 - ...

 $\mathbf{F} \colon \mathbf{K} o \mathbf{K}'$

. .

- Check whether functors preserve:
 - monomorphisms
 - epimorphisms
 - (co)retractions
 - isomorphisms
 - (co)cones
 - (co)limits
 - **—** ...
- A functor is continuous if it preserves all existing limits.

- Check whether functors preserve:
 - monomorphisms
 - epimorphisms
 - (co)retractions
 - isomorphisms
 - (co)cones
 - (co)limits
 - **—** ...
- A functor is (finitely) continuous if it preserves all existing (finite) limits.

- Check whether functors preserve:
 - monomorphisms
 - epimorphisms
 - (co)retractions
 - isomorphisms
 - (co)cones
 - (co)limits
 - ...
- A functor is (finitely) continuous if it preserves all existing (finite) limits. Which of the above functors are (finitely) continuous?

- Check whether functors preserve:
 - monomorphisms
 - epimorphisms
 - (co)retractions
 - isomorphisms
 - (co)cones
 - (co)limits
 - **–** ...
- A functor is (finitely) continuous if it preserves all existing (finite) limits. Which of the above functors are (finitely) continuous?

Dualise!

Given two functors $F \colon K \to K'$ and $G \colon K' \to K''$, their composition $F \colon G \colon K \to K''$ is defined as expected:

Given two functors $F \colon K \to K'$ and $G \colon K' \to K''$, their composition $F \colon G \colon K \to K''$ is defined as expected:

- $(\mathbf{F};\mathbf{G})(A) = \mathbf{G}(\mathbf{F}(A))$ for all $A \in |\mathbf{K}|$
- $(\mathbf{F};\mathbf{G})(f) = \mathbf{G}(\mathbf{F}(f))$ for all $f: A \to B$ in \mathbf{K}

Given two functors $F \colon K \to K'$ and $G \colon K' \to K''$, their composition $F \colon G \colon K \to K''$ is defined as expected:

- $(\mathbf{F};\mathbf{G})(A) = \mathbf{G}(\mathbf{F}(A))$ for all $A \in |\mathbf{K}|$
- $(\mathbf{F};\mathbf{G})(f) = \mathbf{G}(\mathbf{F}(f))$ for all $f: A \to B$ in \mathbf{K}

Cat, the category of (sm)all categories

Given two functors $F \colon K \to K'$ and $G \colon K' \to K''$, their composition $F \colon G \colon K \to K''$ is defined as expected:

- $(\mathbf{F};\mathbf{G})(A) = \mathbf{G}(\mathbf{F}(A))$ for all $A \in |\mathbf{K}|$
- $(\mathbf{F};\mathbf{G})(f) = \mathbf{G}(\mathbf{F}(f))$ for all $f: A \to B$ in \mathbf{K}

Cat, the category of (sm)all categories

- objects: (sm)all categories
- morphisms: functors between them
- composition: as above

Given two functors $F \colon K \to K'$ and $G \colon K' \to K''$, their composition $F \colon G \colon K \to K''$ is defined as expected:

- $(\mathbf{F};\mathbf{G})(A) = \mathbf{G}(\mathbf{F}(A))$ for all $A \in |\mathbf{K}|$
- $(\mathbf{F};\mathbf{G})(f) = \mathbf{G}(\mathbf{F}(f))$ for all $f: A \to B$ in \mathbf{K}

Cat, the category of (sm)all categories

- objects: (sm)all categories
- morphisms: functors between them
- composition: as above

Characterise isomorphisms in Cat

Functors compose...

Given two functors $F \colon K \to K'$ and $G \colon K' \to K''$, their composition $F \colon G \colon K \to K''$ is defined as expected:

- $(\mathbf{F};\mathbf{G})(A) = \mathbf{G}(\mathbf{F}(A))$ for all $A \in |\mathbf{K}|$
- $(\mathbf{F};\mathbf{G})(f) = \mathbf{G}(\mathbf{F}(f))$ for all $f: A \to B$ in \mathbf{K}

Cat, the category of (sm)all categories

- objects: (sm)all categories
- morphisms: functors between them
- composition: as above

Characterise isomorphisms in Cat

Define products, terminal objects, equalisers and pullback in Cat

Functors compose...

Given two functors $F \colon K \to K'$ and $G \colon K' \to K''$, their composition $F \colon G \colon K \to K''$ is defined as expected:

- $(\mathbf{F};\mathbf{G})(A) = \mathbf{G}(\mathbf{F}(A))$ for all $A \in |\mathbf{K}|$
- $(\mathbf{F};\mathbf{G})(f) = \mathbf{G}(\mathbf{F}(f))$ for all $f: A \to B$ in \mathbf{K}

Cat, the category of (sm)all categories

- objects: (sm)all categories
- morphisms: functors between them
- composition: as above

Characterise isomorphisms in Cat

Define products, terminal objects, equalisers and pullback in Cat

Try to define their duals

Given two functors with a common target, $F\colon K1 \to K$ and $G\colon K2 \to K$, define their comma category

 (\mathbf{F},\mathbf{G})

Given two functors with a common target, $F \colon K1 \to K$ and $G \colon K2 \to K$, define their comma category

$$(\mathbf{F},\mathbf{G})$$

- objects: triples $\langle A_1, f \colon \mathbf{F}(A_1) \to \mathbf{G}(A_2), A_2 \rangle$, where $A_1 \in |\mathbf{K1}|$, $A_2 \in |\mathbf{K2}|$, and $f \colon \mathbf{F}(A_1) \to \mathbf{G}(A_2)$ in \mathbf{K}

$$\mathbf{K1}$$
: \mathbf{K} : $\mathbf{K2}$: $\mathbf{K2}$: $\mathbf{F}(A_1) \longrightarrow \mathbf{G}(A_2)$

Given two functors with a common target, $F \colon K1 \to K$ and $G \colon K2 \to K$, define their comma category

$$(\mathbf{F},\mathbf{G})$$

- objects: triples $\langle A_1, f \colon \mathbf{F}(A_1) \to \mathbf{G}(A_2), A_2 \rangle$, where $A_1 \in |\mathbf{K1}|$, $A_2 \in |\mathbf{K2}|$, and $\overline{f \colon \mathbf{F}(A_1)} \to \mathbf{G}(A_2)$ in \mathbf{K}
- morphisms: a morphism in (\mathbf{F}, \mathbf{G}) is

$$\mathbf{K1}$$
: K : f $\mathbf{K2}$: A_1 $\mathbf{F}(A_1)$ \longrightarrow $\mathbf{G}(A_2)$ A_2

$$B_1 \qquad \mathbf{F}(B_1) \xrightarrow{g} \mathbf{G}(B_2) \qquad B_2$$

Given two functors with a common target, $F \colon K1 \to K$ and $G \colon K2 \to K$, define their comma category

 (\mathbf{F},\mathbf{G})

- objects: triples $\langle A_1, f \colon \mathbf{F}(A_1) \to \mathbf{G}(A_2), A_2 \rangle$, where $A_1 \in |\mathbf{K1}|$, $A_2 \in |\mathbf{K2}|$, and $\overline{f \colon \mathbf{F}(A_1)} \to \mathbf{G}(A_2)$ in \mathbf{K}
- morphisms: a morphism in (\mathbf{F}, \mathbf{G}) is any pair $\overline{\langle h_1, h_2 \rangle} \colon \overline{\langle A_1, f \colon \mathbf{F}(A_1) \to \mathbf{G}(A_2), A_2 \rangle} \to \overline{\langle B_1, g \colon \mathbf{F}(B_1) \to \mathbf{G}(B_2), B_2 \rangle}$, where $h_1 \colon A_1 \to B_1$ in $\mathbf{K1}$, $h_2 \colon A_2 \to B_2$ in $\mathbf{K2}$,

Given two functors with a common target, $F \colon K1 \to K$ and $G \colon K2 \to K$, define their comma category

 (\mathbf{F},\mathbf{G})

- objects: triples $\langle A_1, f \colon \mathbf{F}(A_1) \to \mathbf{G}(A_2), A_2 \rangle$, where $A_1 \in |\mathbf{K1}|$, $A_2 \in |\mathbf{K2}|$, and $\overline{f \colon \mathbf{F}(A_1)} \to \mathbf{G}(A_2)$ in \mathbf{K}
- morphisms: a morphism in (\mathbf{F}, \mathbf{G}) is any pair $\overline{\langle h_1, h_2 \rangle} \colon \overline{\langle A_1, f \colon \mathbf{F}(A_1) \to \mathbf{G}(A_2), A_2 \rangle} \to \overline{\langle B_1, g \colon \mathbf{F}(B_1) \to \mathbf{G}(B_2), B_2 \rangle}$, where $h_1 \colon A_1 \to B_1$ in $\mathbf{K1}$, $h_2 \colon A_2 \to B_2$ in $\mathbf{K2}$, and $\mathbf{F}(h_1); g = f; \mathbf{G}(h_2)$ in \mathbf{K} .

– composition:

K1: K: K2:

 $A_1 \qquad \mathbf{F}(A_1) \xrightarrow{f} \mathbf{G}(A_2) \qquad A_2$

$$A_1 \qquad \mathbf{F}(A_1) \xrightarrow{f} \mathbf{G}(A_2) \qquad A_2$$

$$A_1'$$
 $\mathbf{F}(A_1') \xrightarrow{f'} \mathbf{G}(A_2')$ A_2'

composition: component-wise

composition: component-wise

$$\mathbf{F}(h_1;h_1');f'' = \mathbf{F}(h_1);\mathbf{F}(h_1');f'' = \mathbf{F}(h_1);f';\mathbf{G}(h_2') = f;\mathbf{G}(h_2);\mathbf{G}(h_2') = f;\mathbf{G}(h_2;h_2')$$

Given two functors with a common target, $F\colon K1 \to K$ and $G\colon K2 \to K$, define their comma category

 (\mathbf{F},\mathbf{G})

- objects: triples $\langle A_1, f \colon \mathbf{F}(A_1) \to \mathbf{G}(A_2), A_2 \rangle$, where $A_1 \in |\mathbf{K1}|$, $A_2 \in |\mathbf{K2}|$, and $\overline{f \colon \mathbf{F}(A_1)} \to \mathbf{G}(A_2)$ in \mathbf{K}
- morphisms: a morphism in (\mathbf{F}, \mathbf{G}) is any pair $\overline{\langle h_1, h_2 \rangle} \colon \overline{\langle A_1, f \colon \mathbf{F}(A_1) \to \mathbf{G}(A_2), A_2 \rangle} \to \overline{\langle B_1, g \colon \mathbf{F}(B_1) \to \mathbf{G}(B_2), B_2 \rangle}$, where $h_1 \colon A_1 \to B_1$ in $\mathbf{K1}$, $h_2 \colon A_2 \to B_2$ in $\mathbf{K2}$, and $\mathbf{F}(h_1); g = f; \mathbf{G}(h_2)$ in \mathbf{K} .
- composition: component-wise A_1 A_1 $F(A_1)$ $F(A_2)$ A_2 $F(h_1)$ $F(h_1)$ $G(h_2)$ $F(h_2)$

• The category of graphs as a comma category:

$$\mathbf{Graph} = (\mathbf{Id_{Set}}, \mathbf{CP})$$

where $\mathbf{CP} \colon \mathbf{Set} \to \mathbf{Set}$ is the (Cartesian) product functor, i.e. $\mathbf{CP}(X) = X \times X$ and $\mathbf{CP}(f)(\langle x, x' \rangle) = \langle f(x), f(x') \rangle$.

• The category of graphs as a comma category:

$$\mathbf{Graph} = (\mathbf{Id_{Set}}, \mathbf{CP})$$

where $\mathbf{CP} \colon \mathbf{Set} \to \mathbf{Set}$ is the (Cartesian) product functor, i.e. $\mathbf{CP}(X) = X \times X$ and $\mathbf{CP}(f)(\langle x, x' \rangle) = \langle f(x), f(x') \rangle$. Hint: write objects of this category as $\langle E, \langle source, target \rangle \colon E \to N \times N, N \rangle$.

• The category of graphs as a comma category:

$$\mathbf{Graph} = (\mathbf{Id_{Set}}, \mathbf{CP})$$

where $\mathbf{CP} \colon \mathbf{Set} \to \mathbf{Set}$ is the (Cartesian) product functor, i.e. $\mathbf{CP}(X) = X \times X$ and $\mathbf{CP}(f)(\langle x, x' \rangle) = \langle f(x), f(x') \rangle$. Hint: write objects of this category as $\langle E, \langle source, target \rangle \colon E \to N \times N, N \rangle$.

The category of algebraic signatures as a comma category:

$$\mathbf{AlgSig} = (\mathbf{Id_{Set}}, (_)^+)$$

where $(_)^+$: **Set** \to **Set** is the non-empty list functor, i.e. $(X)^+$ is the set of all non-empty lists of elements from X, $(f)^+(\langle x_1,\ldots,x_n\rangle)=\langle f(x_1),\ldots,f(x_n)\rangle$.

• The category of graphs as a comma category:

$$\mathbf{Graph} = (\mathbf{Id_{Set}}, \mathbf{CP})$$

where $\mathbf{CP} \colon \mathbf{Set} \to \mathbf{Set}$ is the (Cartesian) product functor, i.e. $\mathbf{CP}(X) = X \times X$ and $\mathbf{CP}(f)(\langle x, x' \rangle) = \langle f(x), f(x') \rangle$. Hint: write objects of this category as $\langle E, \langle source, target \rangle \colon E \to N \times N, N \rangle$.

The category of algebraic signatures as a comma category:

$$\mathbf{AlgSig} = (\mathbf{Id_{Set}}, (_)^+)$$

where $(_)^+$: Set \to Set is the non-empty list functor, i.e. $(X)^+$ is the set of all non-empty lists of elements from X, $(f)^+(\langle x_1,\ldots,x_n\rangle)=\langle f(x_1),\ldots,f(x_n)\rangle$. Hint: write objects of this category as $\langle \Omega,\langle arity,sort\rangle:\Omega\to S^+,S\rangle$.

• The category of graphs as a comma category:

$$\mathbf{Graph} = (\mathbf{Id_{Set}}, \mathbf{CP})$$

where $\mathbf{CP} \colon \mathbf{Set} \to \mathbf{Set}$ is the (Cartesian) product functor, i.e. $\mathbf{CP}(X) = X \times X$ and $\mathbf{CP}(f)(\langle x, x' \rangle) = \langle f(x), f(x') \rangle$. Hint: write objects of this category as $\langle E, \langle source, target \rangle \colon E \to N \times N, N \rangle$.

The category of algebraic signatures as a comma category:

$$\mathbf{AlgSig} = (\mathbf{Id_{Set}}, (_)^+)$$

where $(_)^+: \mathbf{Set} \to \mathbf{Set}$ is the non-empty list functor, i.e. $(X)^+$ is the set of all non-empty lists of elements from X, $(f)^+(\langle x_1,\ldots,x_n\rangle)=\langle f(x_1),\ldots,f(x_n)\rangle$. Hint: write objects of this category as $\langle \Omega,\langle arity,sort\rangle:\Omega\to S^+,S\rangle$.

Define \mathbf{K}^{\rightarrow} , $\mathbf{K} \downarrow A$ as comma categories.

• The category of graphs as a comma category:

$$\mathbf{Graph} = (\mathbf{Id_{Set}}, \mathbf{CP})$$

where $\mathbf{CP} \colon \mathbf{Set} \to \mathbf{Set}$ is the (Cartesian) product functor, i.e. $\mathbf{CP}(X) = X \times X$ and $\mathbf{CP}(f)(\langle x, x' \rangle) = \langle f(x), f(x') \rangle$. Hint: write objects of this category as $\langle E, \langle source, target \rangle \colon E \to N \times N, N \rangle$.

The category of algebraic signatures as a comma category:

$$\mathbf{AlgSig} = (\mathbf{Id_{Set}}, (_)^+)$$

where $(_)^+: \mathbf{Set} \to \mathbf{Set}$ is the non-empty list functor, i.e. $(X)^+$ is the set of all non-empty lists of elements from X, $(f)^+(\langle x_1,\ldots,x_n\rangle)=\langle f(x_1),\ldots,f(x_n)\rangle$. Hint: write objects of this category as $\langle \Omega,\langle arity,sort\rangle:\Omega\to S^+,S\rangle$.

Define \mathbf{K}^{\rightarrow} , $\mathbf{K} \downarrow A$ as comma categories. The same for $\mathbf{Alg}(\Sigma)$.

Theorem: If K1 and K2 are (finitely) cocomplete categories, $F: K1 \to K$ is a (finitely) cocontinuous functor, and $G: K2 \to K$ is a functor then the comma category (F, G) is (finitely) cocomplete.

Theorem: If K1 and K2 are (finitely) cocomplete categories, $F: K1 \to K$ is a (finitely) cocontinuous functor, and $G: K2 \to K$ is a functor then the comma category (F, G) is (finitely) cocomplete.

Proof (idea):

Construct coproducts and coequalisers in (\mathbf{F}, \mathbf{G}) , using the corresponding constructions in $\mathbf{K1}$ and $\mathbf{K2}$, and cocontinuity of \mathbf{F} .

Theorem: If K1 and K2 are (finitely) cocomplete categories, $F: K1 \to K$ is a (finitely) cocontinuous functor, and $G: K2 \to K$ is a functor then the comma category (F, G) is (finitely) cocomplete.

Proof (idea):

Construct coproducts and coequalisers in (\mathbf{F}, \mathbf{G}) , using the corresponding constructions in $\mathbf{K1}$ and $\mathbf{K2}$, and cocontinuity of \mathbf{F} .

State and prove the dual fact, concerning completeness of comma categories

Theorem: If K1 and K2 are (finitely) cocomplete categories, $F: K1 \to K$ is a (finitely) cocontinuous functor, and $G: K2 \to K$ is a functor then the comma category (F, G) is (finitely) cocomplete.

Proof (idea):

Construct coproducts and coequalisers in (\mathbf{F}, \mathbf{G}) , using the corresponding constructions in $\mathbf{K1}$ and $\mathbf{K2}$, and cocontinuity of \mathbf{F} .

State and prove the dual fact, concerning completeness of comma categories

Theorem: If K1 and K2 are (finitely) complete categories, $F: K1 \to K$ is a functor, and $G: K2 \to K$ is a (finitely) continuous functor then the comma category (F,G) is (finitely) complete.

$$A_1 \qquad \mathbf{F}(A_1) \stackrel{f}{\longrightarrow} \mathbf{G}(A_2) \qquad A_2$$

$$B_1 \qquad \mathbf{F}(B_1) \xrightarrow{g} \mathbf{G}(B_2) \qquad B_2$$

Fact: $\langle A_1 + B_1, [f; \mathbf{G}(\iota_{A_2}), g; \mathbf{G}(\iota_{B_2})] \colon \mathbf{F}(A_1 + B_1) \to \mathbf{G}(A_2 + B_2), A_2 + B_2 \rangle$ with injections $\langle \iota_{A_1}, \iota_{A_2} \rangle$ and $\langle \iota_{B_1}, \iota_{B_2} \rangle$ is a coproduct of $\langle A_1, f \colon \mathbf{F}(A_1) \to \mathbf{G}(A_2), A_2 \rangle$ and $\langle B_1, g \colon \mathbf{F}(B_1) \to \mathbf{G}(B_2), B_2 \rangle$ in (\mathbf{F}, \mathbf{G}) .

$$C_1$$
 $\mathbf{F}(C_1)$ $\longrightarrow \mathbf{G}(C_2)$ C_2 where $r = [f; \mathbf{G}(\iota_{A_2}), g; \mathbf{G}(\iota_{B_2})],$

where
$$r = [f; \mathbf{G}(\iota_{A_2}), g; \mathbf{G}(\iota_{B_2})], \ \mathbf{F}(j_1); h = f; \mathbf{G}(j_2),$$

where
$$r = [f; \mathbf{G}(\iota_{A_2}), g; \mathbf{G}(\iota_{B_2})]$$
, $\mathbf{F}(j_1); h = f; \mathbf{G}(j_2)$, $\mathbf{F}(k_1); h = g; \mathbf{G}(k_2)$,

where $r = [f; \mathbf{G}(\iota_{A_2}), g; \mathbf{G}(\iota_{B_2})]$, $\mathbf{F}(j_1); h = f; \mathbf{G}(j_2)$, $\mathbf{F}(k_1); h = g; \mathbf{G}(k_2)$, $r_1 = [j_1, k_1]$, $r_2 = [j_2, k_2]$.

where $r = [f; \mathbf{G}(\iota_{A_2}), g; \mathbf{G}(\iota_{B_2})]$, $\mathbf{F}(j_1); h = f; \mathbf{G}(j_2)$, $\mathbf{F}(k_1); h = g; \mathbf{G}(k_2)$, $r_1 = [j_1, k_1]$, $r_2 = [j_2, k_2]$.

where
$$r = [f; \mathbf{G}(\iota_{A_2}), g; \mathbf{G}(\iota_{B_2})]$$
, $\mathbf{F}(j_1); h = f; \mathbf{G}(j_2)$, $\mathbf{F}(k_1); h = g; \mathbf{G}(k_2)$, $r_1 = [j_1, k_1]$, $r_2 = [j_2, k_2]$. We need $\mathbf{F}(r_1); h = r; \mathbf{G}(r_2)$

where $r=[f;\mathbf{G}(\iota_{A_2}),g;\mathbf{G}(\iota_{B_2})]$, $\mathbf{F}(j_1);h=f;\mathbf{G}(j_2)$, $\mathbf{F}(k_1);h=g;\mathbf{G}(k_2)$, $r_1=[j_1,k_1]$, $r_2=[j_2,k_2]$. We need $\mathbf{F}(r_1);h=r;\mathbf{G}(r_2)$ This follows from $\mathbf{F}(\iota_{A_1});\mathbf{F}(r_1);h=\mathbf{F}(\iota_{A_1});r;\mathbf{G}(r_2)$ and $\mathbf{F}(\iota_{B_1});\mathbf{F}(r_1);h=\mathbf{F}(\iota_{B_1});r;\mathbf{G}(r_2)$.

where $r = [f; \mathbf{G}(\iota_{A_2}), g; \mathbf{G}(\iota_{B_2})]$, $\mathbf{F}(j_1); h = f; \mathbf{G}(j_2)$, $\mathbf{F}(k_1); h = g; \mathbf{G}(k_2)$, $r_1 = [j_1, k_1]$, $r_2 = [j_2, k_2]$. We need $\mathbf{F}(r_1); h = r; \mathbf{G}(r_2)$ This follows from $\mathbf{F}(\iota_{A_1}); \mathbf{F}(r_1); h = \mathbf{F}(\iota_{A_1}); r; \mathbf{G}(r_2)$ and $\mathbf{F}(\iota_{B_1}); \mathbf{F}(r_1); h = \mathbf{F}(\iota_{B_1}); r; \mathbf{G}(r_2)$. $-\mathbf{F}(\iota_{A_1}); \mathbf{F}(r_1); h = \mathbf{F}(j_1); h = f; \mathbf{G}(j_2) = f; \mathbf{G}(\iota_{A_2}); \mathbf{G}(r_2) = \mathbf{F}(\iota_{A_1}); r; \mathbf{G}(r_2)$

$$A_1$$
 $\mathbf{F}(A_1)$ \longrightarrow $\mathbf{G}(A_2)$ A_2 B_1 $\mathbf{F}(B_1)$ \longrightarrow $\mathbf{G}(B_2)$ B_2

Standard example: $\mathbf{AlgSig}^{op} \to \mathbf{Cat}$

An indexed category is a functor

 $\mathcal{C} \colon \mathbf{Ind}^{op} o \mathbf{Cat}$

Standard example: $\mathbf{AlgSig}^{op} \to \mathbf{Cat}$

 $\operatorname{Ind} \left(\begin{array}{c} \bullet \\ i \end{array} \right)$

Cat

Cat

Cat

An indexed category is a functor

 $\mathcal{C} \colon \mathbf{Ind}^{op} o \mathbf{Cat}$

Standard example: $\mathbf{AlgSig}^{op} \to \mathbf{Cat}$

The Grothendieck construction: Given $\mathcal{C} \colon \mathbf{Ind}^{op} \to \mathbf{Cat}$, define a category $\mathbf{Flat}(\mathcal{C})$:

An indexed category is a functor

 $\mathcal{C} \colon \mathbf{Ind}^{op} o \mathbf{Cat}$

Standard example: $\mathbf{AlgSig}^{op} \to \mathbf{Cat}$

The Grothendieck construction: Given $\mathcal{C} \colon \mathbf{Ind}^{op} \to \mathbf{Cat}$, define a category $\mathbf{Flat}(\mathcal{C})$:

- objects: $\langle i, A \rangle$ for all $i \in |\mathbf{Ind}|$, $A \in |\mathcal{C}(i)|$

An indexed category is a functor

 $\mathcal{C} \colon \mathbf{Ind}^{op} o \mathbf{Cat}$

Standard example: $\mathbf{AlgSig}^{op} \to \mathbf{Cat}$

The Grothendieck construction: Given $\mathcal{C} \colon \mathbf{Ind}^{op} \to \mathbf{Cat}$, define a category $\mathbf{Flat}(\mathcal{C})$:

- objects: $\langle i, A \rangle$ for all $i \in |\mathbf{Ind}|$, $A \in |\mathcal{C}(i)|$
- morphisms: a morphism from $\langle i, A \rangle$ to $\langle i', A' \rangle$, $\langle \sigma, f \rangle : \langle i, A \rangle \rightarrow \langle i', A' \rangle$, consists of a morphism $\sigma : i \rightarrow j$ in **Ind** and a morphism $f : A \rightarrow \mathcal{C}(\sigma)(A')$ in $\mathcal{C}(i)$

where
$$X' = \mathcal{C}(\sigma')(A'')$$

where
$$X' = \mathcal{C}(\sigma')(A'')$$
 and $X = \mathcal{C}(\sigma)(X') = \mathcal{C}(\sigma)(\mathcal{C}(\sigma')(A''))$.

where $X' = \mathcal{C}(\sigma')(A'')$ and $X = \mathcal{C}(\sigma)(X') = \mathcal{C}(\sigma)(\mathcal{C}(\sigma')(A''))$.

This works fine, since $C(\sigma; \sigma') = C(\sigma'); C(\sigma)$, and so:

$$X=\mathcal{C}(\sigma)(\mathcal{C}(\sigma')(A''))=\mathcal{C}(\sigma;\sigma')(A''), \text{ and so } f;\mathcal{C}(\sigma)(f')\colon A\to \mathcal{C}(\sigma;\sigma')(A'').$$

An indexed category is a functor

 $\mathcal{C} \colon \mathbf{Ind}^{op} o \mathbf{Cat}$

Standard example: $\mathbf{AlgSig}^{op} \to \mathbf{Cat}$

The Grothendieck construction: Given $\mathcal{C} \colon \mathbf{Ind}^{op} \to \mathbf{Cat}$, define a category $\mathbf{Flat}(\mathcal{C})$:

- objects: $\langle i, A \rangle$ for all $i \in |\mathbf{Ind}|$, $A \in |\mathcal{C}(i)|$
- $\ \underline{\underline{\text{morphisms}}}: \text{ a morphism from } \langle i,A \rangle \text{ to } \langle i',A' \rangle, \ \langle \sigma,f \rangle \colon \langle i,A \rangle \to \langle i',A' \rangle, \text{ consists} \\ \overline{\text{of a morphism } \sigma \colon i \to j \text{ in } \mathbf{Ind} \text{ and a morphism } f \colon A \to \mathcal{C}(\sigma)(A') \text{ in } \mathcal{C}(i)$
- <u>composition</u>: given $\langle \sigma, f \rangle \colon \langle i, A \rangle \to \langle i', A' \rangle$ and $\langle \sigma', f' \rangle \colon \langle i', A' \rangle \to \langle i'', A'' \rangle$, their composition in $\mathbf{Flat}(\mathcal{C})$, $\langle \sigma, f \rangle \colon \langle \sigma', f' \rangle \colon \langle i, A \rangle \to \langle i'', A'' \rangle$, is given by

 $\langle \sigma, f \rangle; \langle \sigma', f' \rangle = \langle \sigma; \sigma', f; \mathcal{C}(\sigma)(f') \rangle$

An *indexed category* is a functor

 $\mathcal{C} \colon \mathbf{Ind}^{op} o \mathbf{Cat}$

Standard example: $\mathbf{AlgSig}^{op} \to \mathbf{Cat}$

The Grothendieck construction: Given $\mathcal{C} \colon \mathbf{Ind}^{op} \to \mathbf{Cat}$, define a category $\mathbf{Flat}(\mathcal{C})$:

- objects: $\langle i, A \rangle$ for all $i \in |\mathbf{Ind}|$, $A \in |\mathcal{C}(i)|$
- morphisms: a morphism from $\langle i,A \rangle$ to $\langle i',A' \rangle$, $\langle \sigma,f \rangle \colon \langle i,A \rangle \to \langle i',A' \rangle$, consists of a morphism $\sigma \colon i \to j$ in \mathbf{Ind} and a morphism $f \colon A \to \mathcal{C}(\sigma)(A')$ in $\mathcal{C}(i)$
- <u>composition</u>: given $\langle \sigma, f \rangle \colon \langle i, A \rangle \to \langle i', A' \rangle$ and $\langle \sigma', f' \rangle \colon \langle i', A' \rangle \to \langle i'', A'' \rangle$, their composition in $\mathbf{Flat}(\mathcal{C})$, $\langle \sigma, f \rangle \colon \langle \sigma', f' \rangle \colon \langle i, A \rangle \to \langle i'', A'' \rangle$, is given by

$$\langle \sigma, f \rangle; \langle \sigma', f' \rangle = \langle \sigma; \sigma', f; \mathcal{C}(\sigma)(f') \rangle$$

Theorem: If Ind is complete, C(i) are complete for all $i \in |\text{Ind}|$, and $C(\sigma)$ are continuous for all $\sigma: i \to j$ in Ind, then Flat(C) is complete.

An indexed category is a functor

 $\mathcal{C} \colon \mathbf{Ind}^{op} o \mathbf{Cat}$

Standard example: $\mathbf{AlgSig}^{op} \to \mathbf{Cat}$

The Grothendieck construction: Given $\mathcal{C} \colon \mathbf{Ind}^{op} \to \mathbf{Cat}$, define a category $\mathbf{Flat}(\mathcal{C})$:

- objects: $\langle i, A \rangle$ for all $i \in |\mathbf{Ind}|$, $A \in |\mathcal{C}(i)|$
- $\ \underline{\underline{\text{morphisms}}}: \text{ a morphism from } \langle i,A \rangle \text{ to } \langle i',A' \rangle, \ \langle \sigma,f \rangle \colon \langle i,A \rangle \to \langle i',A' \rangle, \text{ consists of a morphism } \sigma \colon i \to j \text{ in } \mathbf{Ind} \text{ and a morphism } f \colon A \to \mathcal{C}(\sigma)(A') \text{ in } \mathcal{C}(i)$
- composition: given $\langle \sigma, f \rangle \colon \langle i, A \rangle \to \langle i', A' \rangle$ and $\langle \sigma', f' \rangle \colon \langle i', A' \rangle \to \langle i'', A'' \rangle$, their composition in $\mathbf{Flat}(\mathcal{C})$, $\langle \sigma, f \rangle \colon \langle \sigma', f' \rangle \colon \langle i, A \rangle \to \langle i'', A'' \rangle$, is given by

$$\langle \sigma, f \rangle; \langle \sigma', f' \rangle = \langle \sigma; \sigma', f; \mathcal{C}(\sigma)(f') \rangle$$

Theorem: If Ind is complete, C(i) are complete for all $i \in |Ind|$, and $C(\sigma)$ are continuous for all $\sigma: i \to j$ in Ind, then Flat(C) is complete.

Try to formulate and prove a theorem concerning cocompleteness of $\mathbf{Flat}(\mathcal{C})$