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Initial and terminal objects

An object I ∈ |K| is initial in K if for each object A ∈ |K| there is exactly one

morphism from I to A.

Examples:

• ∅ is initial in Set.

• For any signature Σ ∈ |AlgSig|, TΣ is initial in Alg(Σ).

• For any signature Σ ∈ |AlgSig| and set of Σ-equations Φ, the initial model of

⟨Σ,Φ⟩ is initial in Mod(Σ,Φ), the full subcategory of Alg(Σ) determined by the

class Mod(Σ,Φ) of all models of Φ.
Look for initial objects in other categories.

Theorem: Initial objects, if exist, are unique up to isomorphism:

• Any two initial objects in K are isomorphic.

• If I is initial in K and I′ is isomorphic to I in K then I′ is initial in K as well.
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Terminal objects

An object T ∈ |K| is terminal in K if for each object A ∈ |K| there is exactly one

morphism from A to T.

terminal = co-initial

Exercises: Dualise those for initial objects.

• Look for terminal objects in standard categories.
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Terminal objects

An object T ∈ |K| is terminal in K if for each object A ∈ |K| there is exactly one

morphism from A to T.

terminal = co-initial

Exercises: Dualise those for initial objects.

• Look for terminal objects in standard categories.

• Show that terminal objects are unique to within an isomorphism.
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Terminal objects

An object T ∈ |K| is terminal in K if for each object A ∈ |K| there is exactly one

morphism from A to T.

terminal = co-initial

Exercises: Dualise those for initial objects.

• Look for terminal objects in standard categories.

• Show that terminal objects are unique to within an isomorphism.

• Look for categories where there is an object which is both initial and terminal.
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Products

A product of two objects A,B ∈ |K| is any object A×B ∈ |K| with two morphisms

(product projections) π1 : A×B → A and π2 : A×B → B such that for any object

C ∈ |K| with morphisms f1 : C → A and f2 : C → B there exists a unique morphism

h : C → A×B such that h;π1 = f1 and h;π2 = f2.

In Set, Cartesian product is a product
A BA×B� π1 -π2

C
@

@
@

@
@

@I

f1

�
�

�
�

�
��

f2

6

∃! hWe write ⟨f1, f2⟩ for h defined as above. Then:

⟨f1, f2⟩;π1 = f1 and ⟨f1, f2⟩;π2 = f2. Moreover,

for any h into the product A×B: h = ⟨h;π1, h;π2⟩.
Essentially, this equationally defines product!

Theorem: Products are defined to within an isomorphism (which commutes with

projections).

Andrzej Tarlecki: Category Theory, 2025 - 65 -



Products

A product of two objects A,B ∈ |K| is any object A×B ∈ |K| with two morphisms

(product projections) π1 : A×B → A and π2 : A×B → B such that for any object

C ∈ |K| with morphisms f1 : C → A and f2 : C → B there exists a unique morphism

h : C → A×B such that h;π1 = f1 and h;π2 = f2.

In Set, Cartesian product is a product
A BA×B� π1 -π2

C
@

@
@

@
@

@I

f1

�
�

�
�

�
��

f2

6

∃! hWe write ⟨f1, f2⟩ for h defined as above. Then:

⟨f1, f2⟩;π1 = f1 and ⟨f1, f2⟩;π2 = f2. Moreover,

for any h into the product A×B: h = ⟨h;π1, h;π2⟩.
Essentially, this equationally defines product!

Theorem: Products are defined to within an isomorphism (which commutes with

projections).

Andrzej Tarlecki: Category Theory, 2025 - 65 -



Products

A product of two objects A,B ∈ |K| is any object A×B ∈ |K| with two morphisms

(product projections) π1 : A×B → A and π2 : A×B → B such that for any object

C ∈ |K| with morphisms f1 : C → A and f2 : C → B there exists a unique morphism

h : C → A×B such that h;π1 = f1 and h;π2 = f2.

In Set, Cartesian product is a product
A BA×B� π1 -π2

C
@

@
@

@
@

@I

f1

�
�

�
�

�
��

f2

6

∃! hWe write ⟨f1, f2⟩ for h defined as above. Then:

⟨f1, f2⟩;π1 = f1 and ⟨f1, f2⟩;π2 = f2. Moreover,

for any h into the product A×B: h = ⟨h;π1, h;π2⟩.
Essentially, this equationally defines product!

Theorem: Products are defined to within an isomorphism (which commutes with

projections).

Andrzej Tarlecki: Category Theory, 2025 - 65 -



Products

A product of two objects A,B ∈ |K| is any object A×B ∈ |K| with two morphisms

(product projections) π1 : A×B → A and π2 : A×B → B such that for any object

C ∈ |K| with morphisms f1 : C → A and f2 : C → B there exists a unique morphism

h : C → A×B such that h;π1 = f1 and h;π2 = f2.

In Set, Cartesian product is a product
A BA×B� π1 -π2

C
@

@
@

@
@

@I

f1

�
�

�
�

�
��

f2

6

∃! hWe write ⟨f1, f2⟩ for h defined as above. Then:

⟨f1, f2⟩;π1 = f1 and ⟨f1, f2⟩;π2 = f2. Moreover,

for any h into the product A×B: h = ⟨h;π1, h;π2⟩.
Essentially, this equationally defines product!

Theorem: Products are defined to within an isomorphism (which commutes with

projections).

Andrzej Tarlecki: Category Theory, 2025 - 65 -



Products

A product of two objects A,B ∈ |K| is any object A×B ∈ |K| with two morphisms

(product projections) π1 : A×B → A and π2 : A×B → B such that for any object

C ∈ |K| with morphisms f1 : C → A and f2 : C → B there exists a unique morphism

h : C → A×B such that h;π1 = f1 and h;π2 = f2.

In Set, Cartesian product is a product
A BA×B� π1 -π2

C
@

@
@

@
@

@I

f1

�
�

�
�

�
��

f2

6

∃! hWe write ⟨f1, f2⟩ for h defined as above. Then:

⟨f1, f2⟩;π1 = f1 and ⟨f1, f2⟩;π2 = f2. Moreover,

for any h into the product A×B: h = ⟨h;π1, h;π2⟩.
Essentially, this equationally defines product!

Theorem: Products are defined to within an isomorphism (which commutes with

projections).

Andrzej Tarlecki: Category Theory, 2025 - 65 -



Products

A product of two objects A,B ∈ |K| is any object A×B ∈ |K| with two morphisms

(product projections) π1 : A×B → A and π2 : A×B → B such that for any object

C ∈ |K| with morphisms f1 : C → A and f2 : C → B there exists a unique morphism

h : C → A×B such that h;π1 = f1 and h;π2 = f2.

In Set, Cartesian product is a product
A BA×B� π1 -π2

C
@

@
@

@
@

@I

f1

�
�

�
�

�
��

f2

6

∃! hWe write ⟨f1, f2⟩ for h defined as above. Then:

⟨f1, f2⟩;π1 = f1 and ⟨f1, f2⟩;π2 = f2. Moreover,

for any h into the product A×B: h = ⟨h;π1, h;π2⟩.
Essentially, this equationally defines product!

Theorem: Products are defined to within an isomorphism (which commutes with

projections).

Andrzej Tarlecki: Category Theory, 2025 - 65 -



Products

A product of two objects A,B ∈ |K| is any object A×B ∈ |K| with two morphisms

(product projections) π1 : A×B → A and π2 : A×B → B such that for any object

C ∈ |K| with morphisms f1 : C → A and f2 : C → B there exists a unique morphism

h : C → A×B such that h;π1 = f1 and h;π2 = f2.

In Set, Cartesian product is a product
A BA×B� π1 -π2

C
@

@
@

@
@

@I

f1

�
�

�
�

�
��

f2

6

∃! hWe write ⟨f1, f2⟩ for h defined as above. Then:

⟨f1, f2⟩;π1 = f1 and ⟨f1, f2⟩;π2 = f2. Moreover,

for any h into the product A×B: h = ⟨h;π1, h;π2⟩.
Essentially, this equationally defines product!

Theorem: Products are defined to within an isomorphism (which commutes with

projections).

Andrzej Tarlecki: Category Theory, 2025 - 65 -



Products

A product of two objects A,B ∈ |K| is any object A×B ∈ |K| with two morphisms

(product projections) π1 : A×B → A and π2 : A×B → B such that for any object

C ∈ |K| with morphisms f1 : C → A and f2 : C → B there exists a unique morphism

h : C → A×B such that h;π1 = f1 and h;π2 = f2.

In Set, Cartesian product is a product
A BA×B� π1 -π2

C
@

@
@

@
@

@I

f1

�
�

�
�

�
��

f2

6

∃! hWe write ⟨f1, f2⟩ for h defined as above. Then:

⟨f1, f2⟩;π1 = f1 and ⟨f1, f2⟩;π2 = f2. Moreover,

for any h into the product A×B: h = ⟨h;π1, h;π2⟩.
Essentially, this equationally defines product!

Theorem: Products are defined to within an isomorphism (which commutes with

projections).

Andrzej Tarlecki: Category Theory, 2025 - 65 -



Products

A product of two objects A,B ∈ |K| is any object A×B ∈ |K| with two morphisms

(product projections) π1 : A×B → A and π2 : A×B → B such that for any object

C ∈ |K| with morphisms f1 : C → A and f2 : C → B there exists a unique morphism

h : C → A×B such that h;π1 = f1 and h;π2 = f2.

In Set, Cartesian product is a product
A BA×B� π1 -π2

C
@

@
@

@
@

@I

f1

�
�

�
�

�
��

f2

6

∃! hWe write ⟨f1, f2⟩ for h defined as above. Then:

⟨f1, f2⟩;π1 = f1 and ⟨f1, f2⟩;π2 = f2. Moreover,

for any h into the product A×B: h = ⟨h;π1, h;π2⟩.
Essentially, this equationally defines product!

Theorem: Products are defined to within an isomorphism (which commutes with

projections).

Andrzej Tarlecki: Category Theory, 2025 - 65 -



Products

A product of two objects A,B ∈ |K| is any object A×B ∈ |K| with two morphisms

(product projections) π1 : A×B → A and π2 : A×B → B such that for any object

C ∈ |K| with morphisms f1 : C → A and f2 : C → B there exists a unique morphism

h : C → A×B such that h;π1 = f1 and h;π2 = f2.

In Set, Cartesian product is a product
A BA×B� π1 -π2

C
@

@
@

@
@

@I

f1

�
�

�
�

�
��

f2

6

∃! hWe write ⟨f1, f2⟩ for h defined as above. Then:

⟨f1, f2⟩;π1 = f1 and ⟨f1, f2⟩;π2 = f2. Moreover,

for any h into the product A×B: h = ⟨h;π1, h;π2⟩.
Essentially, this equationally defines product!

Theorem: Products are defined to within an isomorphism (which commutes with

projections).

Andrzej Tarlecki: Category Theory, 2025 - 65 -



Exercises

• Product commutes (up to isomorphism): A×B ∼= B ×A
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A

B

A×B
�

�
�
�
��

πA

@
@

@
@
@R

πB

B ×A
@

@
@

@
@I

π′
A

�
�

�
�

�	

π′
B

�
⟨π′

A, π
′
B⟩

�
�^

idA×B = ⟨πA, πB⟩ -
⟨πB , πA⟩

�
��
idB×A = ⟨π′

B , π
′
A⟩
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− Now: (⟨πB , πA⟩;⟨π′
A, π

′
B⟩);πA= ⟨πB , πA⟩;(⟨π′
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• Product commutes (up to isomorphism): A×B ∼= B ×A

• Product is associative (up to isomorphism): (A×B)× C ∼= A× (B × C)
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Exercises

• Product commutes (up to isomorphism): A×B ∼= B ×A

• Product is associative (up to isomorphism): (A×B)× C ∼= A× (B × C)

• What is a product of two objects in a preorder category?

• Define the product of any family of objects. What is the product of the empty

family?

• For any algebraic signature Σ ∈ |AlgSig|, try to define products in Alg(Σ),

PAlgs(Σ), PAlg(Σ). Expect troubles in the two latter cases. . .

• Define products in the category of partial functions, Pfn, with sets (as objects)

and partial functions as morphisms between them.
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• For any algebraic signature Σ ∈ |AlgSig|, try to define products in Alg(Σ),

PAlgs(Σ), PAlg(Σ). Expect troubles in the two latter cases. . .

• Define products in the category of partial functions, Pfn, with sets (as objects)

and partial functions as morphisms between them.

• Define products in the category of relations, Rel, with sets (as objects) and

binary relations as morphisms between them.

− BTW: What about products in Relop?
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Coproducts
coproduct = co-product

A coproduct of two objects A,B ∈ |K| is any object A+B ∈ |K| with two

morphisms (coproduct injections) ι1 : A→ A+B and ι2 : B → A+B such that for

any object C ∈ |K| with morphisms f1 : A→ C and f2 : B → C there exists a

unique morphism h : A+B → C such that ι1;h = f1 and ι2;h = f2.

In Set, disjoint union is a coproduct A BA+B-ι1 � ι2

C

@
@

@
@
@
@R

f1

�
�

�
�

�
�	

f2

?

∃! hWe write [f1, f2] for h defined as above. Then:

ι1;[f1, f2] = f1 and ι2;[f1, f2] = f2. Moreover, for

any h from the coproduct A+B: h = [ι1;h, ι2;h].

Essentially, this equationally defines coproduct!

Theorem: Coproducts are defined to within an isomorphism (which commutes with

injections).
Exercises: Dualise!
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Equalisers

An equaliser of two “parallel” morphisms f, g : A→ B is a morphism e : E → A

such that e;f = e;g, and such that for all h : H → A, if h;f = h;g then for a unique

morphism k : H → E, k;e = h.
A B

-f
-

g
E -e

H
�
�

�
�
��3

h

6
∃! k

• Equalisers are unique up to isomorphism.

• Every equaliser is mono.

• Every epi equaliser is iso.
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• Equalisers are unique up to isomorphism.

• Every equaliser is mono.

• Every epi equaliser is iso.

In Set, given functions f, g : A→ B, define E = {a ∈ A | f(a) = g(a)}
The inclusion e : E ↪→ A is an equaliser of f and g.
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Define equalisers in Alg(Σ).

Try also in: PAlgs(Σ), PAlg(Σ), Pfn, Rel, . . .
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• Equalisers are unique up to isomorphism.

• Every equaliser is mono.

• Every epi equaliser is iso.

Proof:

Consider k1, k2 : H → E such that k1;e = k2;e.
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Proof:

Since e is epi and e;f = e;g, we have f = g.
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Thus, e is a retraction, and is mono

— and so is iso.
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In Set, given functions f, g : A→ B, define E = {a ∈ A | f(a) = g(a)}
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Define equalisers in Alg(Σ).
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Coequalisers

A coequaliser of two “parallel” morphisms f, g : A→ B is a morphism c : B → C

such that f ;c = g;c, and such that for all h : B → H, if f ;h = g;h then for a unique

morphism k : C → H, c;k = h.
A B

-f
-

g
C-c

H

Q
Q

Q
Q

QQs
h

?

∃! k
• Coequalisers are unique up to isomorphism.

• Every coequaliser is epi.

• Every mono coequaliser is iso.

In Set, given functions f, g : A→ B,

let ≡ ⊆ B ×B be the least equivalence such that f(a) ≡ g(a) for all a ∈ A

The quotient function [ ]≡ : B → B/≡ is a coequaliser of f and g.

Define coequalisers in Alg(Σ).

Try also in: PAlgs(Σ), PAlg(Σ), Pfn, Rel, . . .

Most general unifiers are

coequalisers in SubstΣ
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Pullbacks

A pullback of two morphisms with common target f : A→ C and g : B → C is an

object P ∈ |K| with morphisms j : P → A and k : P → B such that j;f = k;g, and

such that for all P ′ ∈ |K| with morphisms j′ : P ′ → A and k′ : P ′ → B, if j′;f = k′;g

then for a unique morphism h : P ′ → P , h;j = j′ and h;k = k′.

A

C

B
�

�
�
��

f

@
@

@
@I

g

P
@

@
@

@I
j

�
�
�
��

k

P ′
A
A
A

A
A
A

A
AAK

j′

�
�
�
�
�
�
�
���

k′
6
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In Set, given functions f : A→ C and f : B → C,

define P = {⟨a, b⟩ ∈ A×B | f(a) = g(b)}
Then P with obvious projections on A and B,

respectively, is a pullback of f and g.

Define pullbacks in Alg(Σ).

Try also in: PAlgs(Σ), PAlg(Σ), Pfn, Rel, . . .

Wait for a hint to come. . .
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Few facts

• Pullbacks are unique up to isomorphism.

• If K has all products (of pairs of objects) and all equalis-

ers (of pairs of parallel morphisms) then it has all pull-

backs (of pairs of morphisms with common target).
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Few facts

• Pullbacks are unique up to isomorphism.

• If K has all products (of pairs of objects) and all equalis-

ers (of pairs of parallel morphisms) then it has all pull-

backs (of pairs of morphisms with common target).

• If K has all pullbacks and a terminal object then it has

all binary products and equalisers. HINT: to build

an equaliser of f, g : A → B, consider a pullback of

⟨idA, f⟩, ⟨idA, g⟩ : A→ A×B.
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pushout = co-pullbackPushouts

A pushout of two morphisms with common source f : C → A and g : C → B is an

object P ∈ |K| with morphisms j : A→ P and k : B → P such that f ;j = g;k, and

such that for all P ′ ∈ |K| with morphisms j′ : A→ P ′ and k′ : B → P ′, if f ;j′ = g;k′

then for a unique morphism h : P → P ′, j;h = j′ and k;h = k′.
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k
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A
A
A
A

A
A
A

AAK

k′

6

∃! h
In Set, given two functions f : C → A and g : C →
B, define the least equivalence ≡ on A ⊎ B such that

f(c) ≡ g(c) for all c ∈ C. The quotient (A ⊎B)/≡ with

compositions of injections and the quotient function is a

pushout of f and g.

Dualise facts for pullbacks!
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Example

{a, b}

{0, 1, 2, 3} {1, 2, 3}

@
@

@
@I

{a 7→ 1, b 7→ 2}
�
�

�
��

{a 7→ 1, b 7→ 3}

{0, [1=1], [2=3], 2, 3}

�
�
�
��{0 7→ 0, 1 7→ [1= 1],

2 7→ [2= 3], 3 7→ 3}

@
@

@
@I {1 7→ [1 =1],

2 7→ 2, 3 7→ [2 =3]}

PO

Pushouts put objects together taking account of the indicated sharing.
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Pushouts put objects together taking account of the indicated sharing.
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Example in AlgSig

sort Elem

sort String
ops a, . . . , z : String ;̂ : String × String

→ String

6

sorts Elem,Nat ,Array [Elem]

ops empty : Array [Elem];

put : Nat × Elem ×Array [Elem]

→ Array [Elem];

get : Nat ×Array [Elem] → Elem

-

sorts String ,Nat ,Array [String ]

ops a, . . . , z : String ;̂ : String × String → String ;

empty : Array [String ];

put : Nat × String ×Array [String ]

→ Array [String ];

get : Nat ×Array [String ] → String

-

6
PO
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Graphs

A graph consists of sets of nodes and edges,

and indicate source and target nodes for each edge

ΣGraph = sorts nodes, edges

opns source : edges → nodes

target : edges → nodes

Graph is any ΣGraph -algebra.

The category of graphs:

Graph = Alg(ΣGraph)

For any small category K, define its graph, G(K)

For any graph G ∈ |Graph|, define the category of paths in G, Path(G):

− objects: |G|nodes
− morphisms: paths in G, i.e., sequences n0e1n1 . . . nk−1eknk of nodes

n0, . . . , nk ∈ |G|nodes and edges e1, . . . , ek ∈ |G|edges such that

source(ei) = ni−1 and target(ei) = ni for i = 1, . . . , k.
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Diagrams

A diagram in K is a graph with nodes labelled with K-objects

and edges labelled with K-morphisms with appropriate sources and targets.

A diagram D consists of:

− a graph G(D),

− an object Dn ∈ |K| for each node n ∈ |G(D)|nodes ,
− a morphism De : Dsource(e) → Dtarget(e) for each edge e ∈ |G(D)|edges .

For any small category K, define its diagram, D(K), with graph G(D(K)) = G(K)

BTW: A diagram D commutes (or is commutative) if for any two

paths in G(D) with common source and target, the compositions

of morphisms that label the edges of each of them coincide.
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Diagram categories

Given a graph G with nodes N = |G|nodes and edges

E = |G|edges , the category of diagrams of shape G in

K, DiagG
K, is defined as follows:

− objects: all diagrams D in K with G(D) = G

− morphisms: for any two diagrams D and D′ in K

of shape G, a morphism µ : D → D′ is any family

µ = ⟨µn : Dn → D′
n⟩n∈N of morphisms in K such

that for each edge e ∈ E with sourceG(D)(e) = n

and targetG(D)(e) = m,

µn;D
′
e = De;µm

.

•

•
D′

n

•
D′

m

•

-D′
eA

AK

�
'

&

$

%

•

•
Dn

•
Dm

•

-DeA
AK

�
'

&

$

%

?

? ?

?

µn µm

µ µ
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Let D be a diagram over G(D) with nodes N = |G(D)|nodes and edges E = |G(D)|edges .

Cones and cocones

A cone on D (in K) is an object X ∈ |K| together
with a family of morphisms ⟨αn : X → Dn⟩n∈N such

that for each edge e ∈ E with sourceG(D)(e) = n and

targetG(D)(e) = m, αn;De = αm.
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So
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α α

A cocone on D (in K) is an object X ∈ |K| together
with a family of morphisms ⟨αn : Dn → X⟩n∈N such

that for each edge e ∈ E with sourceG(D)(e) = n and

targetG(D)(e) = m, αn = De;αm.

Andrzej Tarlecki: Category Theory, 2025 - 78 -



Let D be a diagram over G(D) with nodes N = |G(D)|nodes and edges E = |G(D)|edges .

Cones and cocones

A cone on D (in K) is an object X ∈ |K| together
with a family of morphisms ⟨αn : X → Dn⟩n∈N such

that for each edge e ∈ E with sourceG(D)(e) = n and

targetG(D)(e) = m, αn;De = αm.

•

•
Dn

•
Dm

•

-DeA
AK

�
'
&

$
%

X

�
�

�
�

�/

�
�
�
�
�
�
��


B
B
B
B
B
B
BBN

S
S
S
S
Sw

αn αm

α α

•

•
Dn

•
Dm

•

-DeA
AK

�
'
&

$
%

X

�
�
�
�
�7

�
�
�
�
�
�
���

B
B
B
B
B
B
BBM

S
S

S
S

So

αn αm

α α

A cocone on D (in K) is an object X ∈ |K| together
with a family of morphisms ⟨αn : Dn → X⟩n∈N such

that for each edge e ∈ E with sourceG(D)(e) = n and

targetG(D)(e) = m, αn = De;αm.

Andrzej Tarlecki: Category Theory, 2025 - 78 -



Let D be a diagram over G(D) with nodes N = |G(D)|nodes and edges E = |G(D)|edges .

Cones and cocones

A cone on D (in K) is an object X ∈ |K| together
with a family of morphisms ⟨αn : X → Dn⟩n∈N such

that for each edge e ∈ E with sourceG(D)(e) = n and

targetG(D)(e) = m, αn;De = αm.

•

•
Dn

•
Dm

•

-DeA
AK

�
'
&

$
%

X

�
�

�
�

�/

�
�
�
�
�
�
��


B
B
B
B
B
B
BBN

S
S
S
S
Sw

αn αm

α α

•

•
Dn

•
Dm

•

-DeA
AK

�
'
&

$
%

X

�
�
�
�
�7

�
�
�
�
�
�
���

B
B
B
B
B
B
BBM

S
S

S
S

So

αn αm

α α

A cocone on D (in K) is an object X ∈ |K| together
with a family of morphisms ⟨αn : Dn → X⟩n∈N such

that for each edge e ∈ E with sourceG(D)(e) = n and

targetG(D)(e) = m, αn = De;αm.

Andrzej Tarlecki: Category Theory, 2025 - 78 -



Let D be a diagram over G(D) with nodes N = |G(D)|nodes and edges E = |G(D)|edges .

Cones and cocones

A cone on D (in K) is an object X ∈ |K| together
with a family of morphisms ⟨αn : X → Dn⟩n∈N such

that for each edge e ∈ E with sourceG(D)(e) = n and

targetG(D)(e) = m, αn;De = αm.

•

•
Dn

•
Dm

•

-DeA
AK

�
'
&

$
%

X

�
�

�
�

�/

�
�
�
�
�
�
��


B
B
B
B
B
B
BBN

S
S
S
S
Sw

αn αm

α α

•

•
Dn

•
Dm

•

-DeA
AK

�
'
&

$
%

X

�
�
�
�
�7

�
�
�
�
�
�
���

B
B
B
B
B
B
BBM

S
S

S
S

So

αn αm

α α

A cocone on D (in K) is an object X ∈ |K| together
with a family of morphisms ⟨αn : Dn → X⟩n∈N such

that for each edge e ∈ E with sourceG(D)(e) = n and

targetG(D)(e) = m, αn = De;αm.

Andrzej Tarlecki: Category Theory, 2025 - 78 -



Let D be a diagram over G(D) with nodes N = |G(D)|nodes and edges E = |G(D)|edges .

Cones and cocones

A cone on D (in K) is an object X ∈ |K| together
with a family of morphisms ⟨αn : X → Dn⟩n∈N such

that for each edge e ∈ E with sourceG(D)(e) = n and

targetG(D)(e) = m, αn;De = αm.

•

•
Dn

•
Dm

•

-DeA
AK

�
'
&

$
%

X

�
�

�
�

�/

�
�
�
�
�
�
��


B
B
B
B
B
B
BBN

S
S
S
S
Sw

αn αm

α α

•

•
Dn

•
Dm

•

-DeA
AK

�
'
&

$
%

X

�
�
�
�
�7

�
�
�
�
�
�
���

B
B
B
B
B
B
BBM

S
S

S
S

So

αn αm

α α

A cocone on D (in K) is an object X ∈ |K| together
with a family of morphisms ⟨αn : Dn → X⟩n∈N such

that for each edge e ∈ E with sourceG(D)(e) = n and

targetG(D)(e) = m, αn = De;αm.

Andrzej Tarlecki: Category Theory, 2025 - 78 -



Let D be a diagram over G(D) with nodes N = |G(D)|nodes and edges E = |G(D)|edges .

Cones and cocones

A cone on D (in K) is an object X ∈ |K| together
with a family of morphisms ⟨αn : X → Dn⟩n∈N such

that for each edge e ∈ E with sourceG(D)(e) = n and

targetG(D)(e) = m, αn;De = αm.

•

•
Dn

•
Dm

•

-DeA
AK

�
'
&

$
%

X

�
�

�
�

�/

�
�
�
�
�
�
��


B
B
B
B
B
B
BBN

S
S
S
S
Sw

αn αm

α α

•

•
Dn

•
Dm

•

-DeA
AK

�
'
&

$
%

X

�
�
�
�
�7

�
�
�
�
�
�
���

B
B
B
B
B
B
BBM

S
S

S
S

So

αn αm

α α

A cocone on D (in K) is an object X ∈ |K| together
with a family of morphisms ⟨αn : Dn → X⟩n∈N such

that for each edge e ∈ E with sourceG(D)(e) = n and

targetG(D)(e) = m, αn = De;αm.

Andrzej Tarlecki: Category Theory, 2025 - 78 -



Let D be a diagram over G(D) with nodes N = |G(D)|nodes and edges E = |G(D)|edges .

Cones and cocones

A cone on D (in K) is an object X ∈ |K| together
with a family of morphisms ⟨αn : X → Dn⟩n∈N such

that for each edge e ∈ E with sourceG(D)(e) = n and

targetG(D)(e) = m, αn;De = αm.

•

•
Dn

•
Dm

•

-DeA
AK

�
'
&

$
%

X

�
�

�
�

�/

�
�
�
�
�
�
��


B
B
B
B
B
B
BBN

S
S
S
S
Sw

αn αm

α α

•

•
Dn

•
Dm

•

-DeA
AK

�
'
&

$
%

X

�
�
�
�
�7

�
�
�
�
�
�
���

B
B
B
B
B
B
BBM

S
S

S
S

So

αn αm

α α

A cocone on D (in K) is an object X ∈ |K| together
with a family of morphisms ⟨αn : Dn → X⟩n∈N such

that for each edge e ∈ E with sourceG(D)(e) = n and

targetG(D)(e) = m, αn = De;αm.

Andrzej Tarlecki: Category Theory, 2025 - 78 -



Let D be a diagram over G(D) with nodes N = |G(D)|nodes and edges E = |G(D)|edges .

Cones and cocones

A cone on D (in K) is an object X ∈ |K| together
with a family of morphisms ⟨αn : X → Dn⟩n∈N such

that for each edge e ∈ E with sourceG(D)(e) = n and

targetG(D)(e) = m, αn;De = αm.

•

•
Dn

•
Dm

•

-DeA
AK

�
'
&

$
%

X

�
�

�
�

�/

�
�
�
�
�
�
��


B
B
B
B
B
B
BBN

S
S
S
S
Sw

αn αm

α α

•

•
Dn

•
Dm

•

-DeA
AK

�
'
&

$
%

X

�
�
�
�
�7

�
�
�
�
�
�
���

B
B
B
B
B
B
BBM

S
S

S
S

So

αn αm

α α

A cocone on D (in K) is an object X ∈ |K| together
with a family of morphisms ⟨αn : Dn → X⟩n∈N such

that for each edge e ∈ E with sourceG(D)(e) = n and

targetG(D)(e) = m, αn = De;αm.

Andrzej Tarlecki: Category Theory, 2025 - 78 -



Limits and colimits
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A colimit of D (in K) is a cocone ⟨αn : Dn → X⟩n∈N

on D such that for all cocones ⟨α′
n : Dn → X ′⟩n∈N on

D, for a unique morphism h : X → X ′, αn;h = α′
n for

all n ∈ N .
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Some limits

diagram limit in Set

(empty) terminal object {∗}

A B product A×B

A
f
−→−→
g

B equaliser {a ∈ A | f(a) = g(a)} ↪→ A

A
f−→ C

g←− B pullback {(a, b) ∈ A×B | f(a) = g(b)}
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Cones A B
-f
-

g
X -αA� �6αB

where αA;f = αB and αA;g = αB

coincide with morphisms A B
-f
-

g
X -αA where αA;f = αA;g.
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. . . & colimits

diagram colimit in Set

(empty) initial object ∅

A B coproduct A ⊎B

A
f
−→−→
g

B coequaliser B −→ B/≡
where f(a) ≡ g(a) for all a ∈ A

A
f←− C

g−→ B pushout (A ⊎B)/≡
where f(c) ≡ g(c) for all c ∈ C
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Exercises

• For any diagram D, define the category of cones over D, Cone(D):

− objects: all cones over D

− morphisms: a morphism from ⟨αn : X → Dn⟩n∈N to ⟨α′
n : X

′ → Dn⟩n∈N is

any K-morphism h : X → X ′ such that h;α′
n = αn for all n ∈ N .
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Notation:

− We may write α : X → D for the

cone ⟨αn : X → Dn⟩n∈N .

− Then for f : Y → X, f ;α : Y → D

is the cone ⟨f ;αn : X → Dn⟩n∈N .

− So, h : X → X ′ is a cone morphism

h : (α : X → D) → (α′ : X ′ → D)

iff α = h;α′.
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JĴ

Z
Z
Z

Z
Z
Z
Z~

αn

X ′

�
�

�
�

�
�

�=




















� ?

C
C
C
C
CCW

α′
n

-h
X ′′

�

=

�

�

α′′
n

-h′

Notation:

− We may write α : X → D for the

cone ⟨αn : X → Dn⟩n∈N .

− Then for f : Y → X, f ;α : Y → D

is the cone ⟨f ;αn : X → Dn⟩n∈N .

− So, h : X → X ′ is a cone morphism

h : (α : X → D) → (α′ : X ′ → D)

iff α = h;α′.

Andrzej Tarlecki: Category Theory, 2025 - 82 -



Exercises

• For any diagram D, define the category of cones over D, Cone(D):

− objects: all cones over D

− morphisms: a morphism from ⟨αn : X → Dn⟩n∈N to ⟨α′
n : X

′ → Dn⟩n∈N is

any K-morphism h : X → X ′ such that h;α′
n = αn for all n ∈ N .

− composition: inherited from K.

•

•
Dn

•

•

-A
AAK

�
'

&

$

%

X

�
�
�
�
���

?

J
J
J
J
J
J
J
JĴ
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Exercises

• For any diagram D, define the category of cones over D, Cone(D):

− objects: all cones over D

− morphisms: a morphism from ⟨αn : X → Dn⟩n∈N to ⟨α′
n : X

′ → Dn⟩n∈N is

any K-morphism h : X → X ′ such that h;α′
n = αn for all n ∈ N .

• Show that limits of D are terminal objects in Cone(D). Conclude that limits are

defined uniquely up to isomorphism (which commutes with limit projections).

• Construct a limit in Set of the following diagram:

A0
f0←− A1

f1←− A2
f2←− · · ·
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• For any diagram D, define the category of cones over D, Cone(D):

− objects: all cones over D

− morphisms: a morphism from ⟨αn : X → Dn⟩n∈N to ⟨α′
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′ → Dn⟩n∈N is

any K-morphism h : X → X ′ such that h;α′
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• Show that limits of D are terminal objects in Cone(D). Conclude that limits are

defined uniquely up to isomorphism (which commutes with limit projections).

• Construct a limit in Set of the following diagram:

A0
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f1←− A2
f2←− · · ·

Hint: {⟨ai⟩i≥0 | for i ≥ 0, ai ∈ Ai and fi(ai+1) = ai}
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D then for all f, g : A→ X, f = g whenever f ;αn = g;αn for all n ∈ N .
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Dualise all the exercises above!

Andrzej Tarlecki: Category Theory, 2025 - 82 -



Completeness and cocompleteness

A category K is (finitely) complete if

any (finite) diagram in K has a limit.

A categoryK is (finitely) cocomplete if

any (finite) diagram in K has a colimit.

• If K has a terminal object, binary products (of all pairs of objects) and equalisers

(of all pairs of parallel morphisms) then it is finitely complete.

Andrzej Tarlecki: Category Theory, 2025 - 83 -



Completeness and cocompleteness

A category K is (finitely) complete if

any (finite) diagram in K has a limit.

A categoryK is (finitely) cocomplete if

any (finite) diagram in K has a colimit.

• If K has a terminal object, binary products (of all pairs of objects) and equalisers

(of all pairs of parallel morphisms) then it is finitely complete.

Andrzej Tarlecki: Category Theory, 2025 - 83 -



Completeness and cocompleteness

A category K is (finitely) complete if

any (finite) diagram in K has a limit.

A categoryK is (finitely) cocomplete if

any (finite) diagram in K has a colimit.

• If K has a terminal object, binary products (of all pairs of objects) and equalisers

(of all pairs of parallel morphisms) then it is finitely complete.

Andrzej Tarlecki: Category Theory, 2025 - 83 -



Completeness and cocompleteness

A category K is (finitely) complete if

any (finite) diagram in K has a limit.

A categoryK is (finitely) cocomplete if
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morphisms) then it is complete.

Proof (idea): Diagram D nodes N and edges E.
− P0 =

∏
n∈N Dn,

projections πn : P0 → Dn, n ∈ N
− P1 =

∏
e∈E Dtarget(e),

projections πe : P1 → Dtarget(e), e ∈ E

− α = ⟨πtarget(e)⟩e∈E , β = ⟨πsource(e);De⟩e∈E

− p = eql(α, β)

− P with projections ⟨p;πn⟩n∈N is the limit of D.
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Completeness and cocompleteness

A category K is (finitely) complete if

any (finite) diagram in K has a limit.

A categoryK is (finitely) cocomplete if

any (finite) diagram in K has a colimit.

• If K has a terminal object, binary products (of all pairs of objects) and equalisers

(of all pairs of parallel morphisms) then it is finitely complete.

• If K has products of all families of objects and equalisers (of all pairs of parallel

morphisms) then it is complete.

Prove completeness of Set, Alg(Σ), AlgSig, Pfn, . . .
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When a preorder category is complete?

Any lower complete semilattice is a complete lattice.
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Completeness and cocompleteness

A category K is (finitely) complete if

any (finite) diagram in K has a limit.

A categoryK is (finitely) cocomplete if

any (finite) diagram in K has a colimit.

• If K has a terminal object, binary products (of all pairs of objects) and equalisers

(of all pairs of parallel morphisms) then it is finitely complete.

• If K has products of all families of objects and equalisers (of all pairs of parallel

morphisms) then it is complete.

Prove completeness of Set, Alg(Σ), AlgSig, Pfn, . . .

When a preorder category is complete?

BTW: If a small category is complete then it is a preorder. Dualise the above!
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Completeness and cocompleteness

BTW: If a small category is complete then it is a preorder.

Proof: Consider a small category K, with card(K) = κ, and let f, g : A→ B (in K).

• Let P =
∏

λ<κ B — that is, P = B × · · · ×B︸ ︷︷ ︸
κ-times

.

• For each X ⊆ κ we have hX : A→ P

− where hX = ⟨αX
λ : A→ B⟩λ<κ, defined by: αX

λ =

f if λ ∈ X

g if λ ̸∈ X

• If f ̸= g then for X,Y ⊆ κ such that X ̸= Y , hX ̸= hY (since for λ < κ,

hX ;πλ = αX
λ and hY ;πλ = αY

λ ) and so

card(K(A,P)) ≥ card({X ⊆ κ}) = 2κ > κ — contradiction.
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Completeness and cocompleteness

A category K is (finitely) complete if

any (finite) diagram in K has a limit.

A categoryK is (finitely) cocomplete if

any (finite) diagram in K has a colimit.

• If K has a terminal object, binary products (of all pairs of objects) and equalisers

(of all pairs of parallel morphisms) then it is finitely complete.

• If K has products of all families of objects and equalisers (of all pairs of parallel

morphisms) then it is complete.

Prove completeness of Set, Alg(Σ), AlgSig, Pfn, . . .

When a preorder category is complete?

BTW: If a small category is complete then it is a preorder. Dualise the above!
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