Universal constructions: limits and colimits

Universal constructions: limits and colimits

Consider and arbitrary but fixed category ${f K}$ for a while.

An object $I \in |\mathbf{K}|$ is *initial* in \mathbf{K} if for each object $A \in |\mathbf{K}|$ there is exactly one morphism from I to A.

An object $I \in |\mathbf{K}|$ is *initial* in \mathbf{K} if for each object $A \in |\mathbf{K}|$ there is exactly one morphism from I to A.

Examples:

• Ø is initial in **Set**.

An object $I \in |\mathbf{K}|$ is *initial* in \mathbf{K} if for each object $A \in |\mathbf{K}|$ there is exactly one morphism from I to A.

Examples:

- Ø is initial in **Set**.
- For any signature $\Sigma \in |\mathbf{AlgSig}|$, T_{Σ} is initial in $\mathbf{Alg}(\Sigma)$.

An object $I \in |\mathbf{K}|$ is *initial* in \mathbf{K} if for each object $A \in |\mathbf{K}|$ there is exactly one morphism from I to A.

Examples:

- Ø is initial in **Set**.
- For any signature $\Sigma \in |\mathbf{AlgSig}|$, T_{Σ} is initial in $\mathbf{Alg}(\Sigma)$.
- For any signature $\Sigma \in |\mathbf{AlgSig}|$ and set of Σ -equations Φ , the initial model of $\langle \Sigma, \Phi \rangle$ is initial in $\mathbf{Mod}(\Sigma, \Phi)$, the full subcategory of $\mathbf{Alg}(\Sigma)$ determined by the class $Mod(\Sigma, \Phi)$ of all models of Φ .

An object $I \in |\mathbf{K}|$ is *initial* in \mathbf{K} if for each object $A \in |\mathbf{K}|$ there is exactly one morphism from I to A.

Examples:

- Ø is initial in **Set**.
- For any signature $\Sigma \in |\mathbf{AlgSig}|$, T_{Σ} is initial in $\mathbf{Alg}(\Sigma)$.
- For any signature $\Sigma \in |\mathbf{AlgSig}|$ and set of Σ -equations Φ , the initial model of $\langle \Sigma, \Phi \rangle$ is initial in $\mathbf{Mod}(\Sigma, \Phi)$, the full subcategory of $\mathbf{Alg}(\Sigma)$ determined by the class $Mod(\Sigma, \Phi)$ of all models of Φ .

Look for initial objects in other categories.

An object $I \in |\mathbf{K}|$ is *initial* in \mathbf{K} if for each object $A \in |\mathbf{K}|$ there is exactly one morphism from I to A.

Examples:

- Ø is initial in **Set**.
- For any signature $\Sigma \in |\mathbf{AlgSig}|$, T_{Σ} is initial in $\mathbf{Alg}(\Sigma)$.
- For any signature $\Sigma \in |\mathbf{AlgSig}|$ and set of Σ -equations Φ , the initial model of $\langle \Sigma, \Phi \rangle$ is initial in $\mathbf{Mod}(\Sigma, \Phi)$, the full subcategory of $\mathbf{Alg}(\Sigma)$ determined by the class $Mod(\Sigma, \Phi)$ of all models of Φ .

 Look for initial objects in other categories.

Theorem: Initial objects, if exist, are unique up to isomorphism:

An object $I \in |K|$ is *initial* in K if for each object $A \in |K|$ there is exactly one morphism from I to A.

Examples:

Theorem:

- Ø is initial in Set.
- For any signature $\Sigma \in |\mathbf{AlgSig}|$, T_{Σ} is initial in $\mathbf{Alg}(\Sigma)$.
- For any signature $\Sigma \in |\mathbf{AlgSig}|$ and set of Σ -equations Φ , the initial model of $\langle \Sigma, \Phi \rangle$ is initial in $\mathbf{Mod}(\Sigma, \Phi)$, the full subcategory of $\mathbf{Alg}(\Sigma)$ determined by the class $Mod(\Sigma, \Phi)$ of all models of Φ . Look for initial objects in other categories.

Initial objects, if exist, are unique up to isomorphism:

Any two initial objects in K are isomorphic.

An object $I \in |\mathbf{K}|$ is *initial* in \mathbf{K} if for each object $A \in |\mathbf{K}|$ there is exactly one morphism from I to A.

Examples:

- 0 is initial in **Set**.
- For any signature $\Sigma \in |\mathbf{AlgSig}|$, T_{Σ} is initial in $\mathbf{Alg}(\Sigma)$.
- For any signature $\Sigma \in |\mathbf{AlgSig}|$ and set of Σ -equations Φ , the initial model of $\langle \Sigma, \Phi \rangle$ is initial in $\mathbf{Mod}(\Sigma, \Phi)$, the full subcategory of $\mathbf{Alg}(\Sigma)$ determined by the class $Mod(\Sigma, \Phi)$ of all models of Φ .

 Look for initial objects in other categories.

Theorem: Initial objects, if exist, are unique up to isomorphism:

Any two initial objects in K are isomorphic.

An object $I \in |\mathbf{K}|$ is *initial* in \mathbf{K} if for each object $A \in |\mathbf{K}|$ there is exactly one morphism from I to A.

Examples:

- Ø is initial in **Set**.
- For any signature $\Sigma \in |\mathbf{AlgSig}|$, T_{Σ} is initial in $\mathbf{Alg}(\Sigma)$.
- For any signature $\Sigma \in |\mathbf{AlgSig}|$ and set of Σ -equations Φ , the initial model of $\langle \Sigma, \Phi \rangle$ is initial in $\mathbf{Mod}(\Sigma, \Phi)$, the full subcategory of $\mathbf{Alg}(\Sigma)$ determined by the class $Mod(\Sigma, \Phi)$ of all models of Φ .

 Look for initial objects in other categories.

Theorem: Initial objects, if exist, are unique up to isomorphism:

- Any two initial objects in K are isomorphic.
- If I is initial in ${f K}$ and I' is isomorphic to I in ${f K}$ then I' is initial in ${f K}$ as well.

An object $I \in |\mathbf{K}|$ is *initial* in \mathbf{K} if for each object $A \in |\mathbf{K}|$ there is exactly one

morphism from I to A.

Examples:

• \emptyset is initial in **Set**.

- For any signature $\Sigma \in |\mathbf{AlgSig}|$, T_{Σ} is initial in $\mathbf{Alg}(\Sigma)$.
- For any signature $\Sigma \in |\mathbf{AlgSig}|$ and set of Σ -equations Φ , the initial model of $\langle \Sigma, \Phi \rangle$ is initial in $\mathbf{Mod}(\Sigma, \Phi)$, the full subcategory of $\mathbf{Alg}(\Sigma)$ determined by the class $Mod(\Sigma, \Phi)$ of all models of Φ .

 Look for initial objects in other categories.

Theorem: Initial objects, if exist, are unique up to isomorphism:

- Any two initial objects in K are isomorphic.
- If I is initial in ${\bf K}$ and I' is isomorphic to I in ${\bf K}$ then I' is initial in ${\bf K}$ as well.

An object $T \in |\mathbf{K}|$ is *terminal* in \mathbf{K} if for each object $A \in |\mathbf{K}|$ there is exactly one morphism from A to T.

An object $T \in |\mathbf{K}|$ is terminal in \mathbf{K} if for each object $A \in |\mathbf{K}|$ there is exactly one morphism from A to T.

terminal = co-initial

An object $T \in |\mathbf{K}|$ is terminal in \mathbf{K} if for each object $A \in |\mathbf{K}|$ there is exactly one morphism from A to T.

terminal = co-initial

Exercises:

An object $T \in |\mathbf{K}|$ is terminal in \mathbf{K} if for each object $A \in |\mathbf{K}|$ there is exactly one morphism from A to T.

terminal = co-initial

Exercises:

Dualise those for initial objects.

Look for terminal objects in standard categories.

An object $T \in |\mathbf{K}|$ is terminal in \mathbf{K} if for each object $A \in |\mathbf{K}|$ there is exactly one morphism from A to T.

terminal = co-initial

Exercises:

- Look for terminal objects in standard categories.
 - any singleton set $\{*\}$ is terminal in **Set**.

An object $T \in |\mathbf{K}|$ is *terminal* in \mathbf{K} if for each object $A \in |\mathbf{K}|$ there is exactly one morphism from A to T.

terminal = co-initial

Exercises:

- Look for terminal objects in standard categories.
 - any singleton set $\{*\}$ is terminal in **Set**.
 - For any signature $\Sigma \in |\mathbf{AlgSig}|$, "singleton" Σ -algebra $\mathbf{1}_{\Sigma}$ is terminal in $\mathbf{Alg}(\Sigma)$.

An object $T \in |\mathbf{K}|$ is terminal in \mathbf{K} if for each object $A \in |\mathbf{K}|$ there is exactly one morphism from A to T.

terminal = co-initial

Exercises:

- Look for terminal objects in standard categories.
 - any singleton set {*} is terminal in Set.
 - For any signature $\Sigma \in |\mathbf{AlgSig}|$, "singleton" Σ -algebra $\mathbf{1}_{\Sigma}$ is terminal in $\mathbf{Alg}(\Sigma)$.
 - For any signature $\Sigma \in |\mathbf{AlgSig}|$ and set of Σ -equations Φ , "singleton" Σ -algebra $\mathbf{1}_{\Sigma}$ is terminal in $\mathbf{Mod}(\Sigma, \Phi)$.

An object $T \in |\mathbf{K}|$ is terminal in \mathbf{K} if for each object $A \in |\mathbf{K}|$ there is exactly one morphism from A to T.

terminal = co-initial

Exercises:

- Look for terminal objects in standard categories.
- Show that terminal objects are unique to within an isomorphism.

An object $T \in |\mathbf{K}|$ is *terminal* in \mathbf{K} if for each object $A \in |\mathbf{K}|$ there is exactly one morphism from A to T.

terminal = co-initial

Exercises:

- Look for terminal objects in standard categories.
- Show that terminal objects are unique to within an isomorphism.
- Look for categories where there is an object which is both initial and terminal.

A product of two objects $A, B \in |\mathbf{K}|$

A = B

Andrzej Tarlecki: Category Theory, 2025

A product of two objects $A, B \in |\mathbf{K}|$ is any object $A \times B \in |\mathbf{K}|$ with two morphisms (product projections) $\pi_1 : A \times B \to A$ and $\pi_2 : A \times B \to B$

$$A \stackrel{\pi_1}{\longleftarrow} A \times B \stackrel{\pi_2}{\longrightarrow} B$$

A product of two objects $A, B \in |\mathbf{K}|$ is any object $A \times B \in |\mathbf{K}|$ with two morphisms $(product\ projections)\ \pi_1 \colon A \times B \to A \ \text{and}\ \pi_2 \colon A \times B \to B \ \text{such that for any object}$ $C \in |\mathbf{K}|$ with morphisms $f_1 \colon C \to A \ \text{and}\ f_2 \colon C \to B$

A product of two objects $A, B \in |\mathbf{K}|$ is any object $A \times B \in |\mathbf{K}|$ with two morphisms $(product\ projections)\ \pi_1 \colon A \times B \to A \ \text{and}\ \pi_2 \colon A \times B \to B \ \text{such that for any object}$ $C \in |\mathbf{K}|$ with morphisms $f_1 \colon C \to A \ \text{and}\ f_2 \colon C \to B \ \text{there exists a unique morphism}$ $h \colon C \to A \times B \ \text{such that}\ h; \pi_1 = f_1 \ \text{and}\ h; \pi_2 = f_2.$

A product of two objects $A, B \in |\mathbf{K}|$ is any object $A \times B \in |\mathbf{K}|$ with two morphisms $(product\ projections)\ \pi_1 \colon A \times B \to A \ \text{and}\ \pi_2 \colon A \times B \to B \ \text{such that for any object}$ $C \in |\mathbf{K}|$ with morphisms $f_1 \colon C \to A \ \text{and}\ f_2 \colon C \to B \ \text{there exists a unique morphism}$ $h \colon C \to A \times B \ \text{such that}\ h; \pi_1 = f_1 \ \text{and}\ h; \pi_2 = f_2.$

In Set, Cartesian product is a product

A product of two objects $A, B \in |\mathbf{K}|$ is any object $A \times B \in |\mathbf{K}|$ with two morphisms $(product\ projections)\ \pi_1 \colon A \times B \to A \ \text{and}\ \pi_2 \colon A \times B \to B \ \text{such that for any object}$ $C \in |\mathbf{K}|$ with morphisms $f_1 \colon C \to A \ \text{and}\ f_2 \colon C \to B \ \text{there exists a unique morphism}$ $h \colon C \to A \times B \ \text{such that}\ h; \pi_1 = f_1 \ \text{and}\ h; \pi_2 = f_2.$

In Set, Cartesian product is a product

We write $\langle f_1, f_2 \rangle$ for h defined as above.

A product of two objects $A, B \in |\mathbf{K}|$ is any object $A \times B \in |\mathbf{K}|$ with two morphisms $(product\ projections)\ \pi_1 \colon A \times B \to A \ \text{and}\ \pi_2 \colon A \times B \to B \ \text{such that for any object}$ $C \in |\mathbf{K}|$ with morphisms $f_1 \colon C \to A \ \text{and}\ f_2 \colon C \to B \ \text{there exists a unique morphism}$ $h \colon C \to A \times B \ \text{such that}\ h; \pi_1 = f_1 \ \text{and}\ h; \pi_2 = f_2.$

In Set, Cartesian product is a product

We write $\langle f_1, f_2 \rangle$ for h defined as above. Then: $\langle f_1, f_2 \rangle; \pi_1 = f_1$ and $\langle f_1, f_2 \rangle; \pi_2 = f_2$.

A product of two objects $A, B \in |\mathbf{K}|$ is any object $A \times B \in |\mathbf{K}|$ with two morphisms $(product\ projections)\ \pi_1 \colon A \times B \to A \ \text{and}\ \pi_2 \colon A \times B \to B \ \text{such that for any object}$ $C \in |\mathbf{K}|$ with morphisms $f_1 \colon C \to A \ \text{and}\ f_2 \colon C \to B \ \text{there exists a unique morphism}$ $h \colon C \to A \times B \ \text{such that}\ h; \pi_1 = f_1 \ \text{and}\ h; \pi_2 = f_2.$

In Set, Cartesian product is a product

We write $\langle f_1, f_2 \rangle$ for h defined as above. Then: $\langle f_1, f_2 \rangle; \pi_1 = f_1$ and $\langle f_1, f_2 \rangle; \pi_2 = f_2$. Moreover, for any h into the product $A \times B$: $h = \langle h; \pi_1, h; \pi_2 \rangle$.

A product of two objects $A, B \in |\mathbf{K}|$ is any object $A \times B \in |\mathbf{K}|$ with two morphisms $(product\ projections)\ \pi_1 \colon A \times B \to A \ \text{and}\ \pi_2 \colon A \times B \to B \ \text{such that for any object}$ $C \in |\mathbf{K}|$ with morphisms $f_1 \colon C \to A \ \text{and}\ f_2 \colon C \to B \ \text{there exists a unique morphism}$ $h \colon C \to A \times B \ \text{such that}\ h; \pi_1 = f_1 \ \text{and}\ h; \pi_2 = f_2.$

In Set, Cartesian product is a product

We write $\langle f_1, f_2 \rangle$ for h defined as above. Then: $\langle f_1, f_2 \rangle; \pi_1 = f_1$ and $\langle f_1, f_2 \rangle; \pi_2 = f_2$. Moreover, for any h into the product $A \times B$: $h = \langle h; \pi_1, h; \pi_2 \rangle$. Essentially, this equationally defines product!

A product of two objects $A, B \in |\mathbf{K}|$ is any object $A \times B \in |\mathbf{K}|$ with two morphisms $(product\ projections)\ \pi_1 \colon A \times B \to A \ \text{and}\ \pi_2 \colon A \times B \to B \ \text{such that for any object}$ $C \in |\mathbf{K}|$ with morphisms $f_1 \colon C \to A \ \text{and}\ f_2 \colon C \to B \ \text{there exists a unique morphism}$ $h \colon C \to A \times B \ \text{such that}\ h; \pi_1 = f_1 \ \text{and}\ h; \pi_2 = f_2.$

In Set, Cartesian product is a product

We write $\langle f_1, f_2 \rangle$ for h defined as above. Then: $\langle f_1, f_2 \rangle; \pi_1 = f_1$ and $\langle f_1, f_2 \rangle; \pi_2 = f_2$. Moreover, for any h into the product $A \times B$: $h = \langle h; \pi_1, h; \pi_2 \rangle$. Essentially, this equationally defines product!

Theorem: Products are defined to within an isomorphism (which commutes with projections).

• Product commutes (up to isomorphism): $A \times B \cong B \times A$

- Now: $(\langle \pi_B, \pi_A \rangle; \langle \pi_A', \pi_B' \rangle); \pi_A$

• Product commutes (up to isomorphism): $A \times B \cong B \times A$

- Now: $(\langle \pi_B, \pi_A \rangle; \langle \pi_A', \pi_B' \rangle); \pi_A = \langle \pi_B, \pi_A \rangle; (\langle \pi_A', \pi_B' \rangle; \pi_A)$

• Product commutes (up to isomorphism): $A \times B \cong B \times A$

- Now: $(\langle \pi_B, \pi_A \rangle; \langle \pi_A', \pi_B' \rangle); \pi_A = \langle \pi_B, \pi_A \rangle; (\langle \pi_A', \pi_B' \rangle; \pi_A) = \langle \pi_B, \pi_A \rangle; \pi_A'$

• Product commutes (up to isomorphism): $A \times B \cong B \times A$

- Now: $(\langle \pi_B, \pi_A \rangle; \langle \pi_A', \pi_B' \rangle); \pi_A = \langle \pi_B, \pi_A \rangle; (\langle \pi_A', \pi_B' \rangle; \pi_A) = \langle \pi_B, \pi_A \rangle; \pi_A' = \pi_A$

• Product commutes (up to isomorphism): $A \times B \cong B \times A$

- Now: $(\langle \pi_B, \pi_A \rangle; \langle \pi_A', \pi_B' \rangle); \pi_A = \langle \pi_B, \pi_A \rangle; (\langle \pi_A', \pi_B' \rangle; \pi_A) = \langle \pi_B, \pi_A \rangle; \pi_A' = \pi_A$
- Similarly: $(\langle \pi_B, \pi_A \rangle; \langle \pi'_A, \pi'_B \rangle); \pi_B = \pi_B$

• Product commutes (up to isomorphism): $A \times B \cong B \times A$

- Now: $(\langle \pi_B, \pi_A \rangle; \langle \pi_A', \pi_B' \rangle); \pi_A = \langle \pi_B, \pi_A \rangle; (\langle \pi_A', \pi_B' \rangle; \pi_A) = \langle \pi_B, \pi_A \rangle; \pi_A' = \pi_A$
- Similarly: $(\langle \pi_B, \pi_A \rangle; \langle \pi'_A, \pi'_B \rangle); \pi_B = \pi_B$
- Thus: $\langle \pi_B, \pi_A \rangle; \langle \pi_A', \pi_B' \rangle = \langle \pi_A, \pi_B \rangle = id_{A \times B}$

• Product commutes (up to isomorphism): $A \times B \cong B \times A$

- By much the same argument, any two products of A and B are isomorphic.

- Product commutes (up to isomorphism): $A \times B \cong B \times A$
- Product is associative (up to isomorphism): $(A \times B) \times C \cong A \times (B \times C)$

- Product commutes (up to isomorphism): $A \times B \cong B \times A$
- Product is associative (up to isomorphism): $(A \times B) \times C \cong A \times (B \times C)$

 $A \qquad \qquad B \qquad \qquad C$

- Product commutes (up to isomorphism): $A \times B \cong B \times A$
- Product is associative (up to isomorphism): $(A \times B) \times C \cong A \times (B \times C)$

- Product commutes (up to isomorphism): $A \times B \cong B \times A$
- Product is associative (up to isomorphism): $(A \times B) \times C \cong A \times (B \times C)$

- Product commutes (up to isomorphism): $A \times B \cong B \times A$
- Product is associative (up to isomorphism): $(A \times B) \times C \cong A \times (B \times C)$

- Product commutes (up to isomorphism): $A \times B \cong B \times A$
- Product is associative (up to isomorphism): $(A \times B) \times C \cong A \times (B \times C)$

- Product commutes (up to isomorphism): $A \times B \cong B \times A$
- Product is associative (up to isomorphism): $(A \times B) \times C \cong A \times (B \times C)$

- Product commutes (up to isomorphism): $A \times B \cong B \times A$
- Product is associative (up to isomorphism): $(A \times B) \times C \cong A \times (B \times C)$

- Product commutes (up to isomorphism): $A \times B \cong B \times A$
- Product is associative (up to isomorphism): $(A \times B) \times C \cong A \times (B \times C)$

- Product commutes (up to isomorphism): $A \times B \cong B \times A$
- Product is associative (up to isomorphism): $(A \times B) \times C \cong A \times (B \times C)$
- What is a product of two objects in a preorder category?

- Product commutes (up to isomorphism): $A \times B \cong B \times A$
- Product is associative (up to isomorphism): $(A \times B) \times C \cong A \times (B \times C)$
- What is a product of two objects in a preorder category?
- Define the product of any family of objects. What is the product of the empty family?

- Product commutes (up to isomorphism): $A \times B \cong B \times A$
- Product is associative (up to isomorphism): $(A \times B) \times C \cong A \times (B \times C)$
- What is a product of two objects in a preorder category?
- Define the product of any family of objects. What is the product of the empty family?
- For any algebraic signature $\Sigma \in |\mathbf{AlgSig}|$, try to define products in $\mathbf{Alg}(\Sigma)$, $\mathbf{PAlg}_{\mathbf{s}}(\Sigma)$, $\mathbf{PAlg}(\Sigma)$. Expect troubles in the two latter cases...

Andrzej Tarlecki: Category Theory, 2025

- Product commutes (up to isomorphism): $A \times B \cong B \times A$
- Product is associative (up to isomorphism): $(A \times B) \times C \cong A \times (B \times C)$
- What is a product of two objects in a preorder category?
- Define the product of any family of objects. What is the product of the empty family?
- For any algebraic signature $\Sigma \in |\mathbf{AlgSig}|$, try to define products in $\mathbf{Alg}(\Sigma)$, $\mathbf{PAlg}(\Sigma)$, $\mathbf{PAlg}(\Sigma)$. Expect troubles in the two latter cases...
- Define products in the *category of partial functions*, \mathbf{Pfn} , with sets (as objects) and partial functions as morphisms between them.

- Product commutes (up to isomorphism): $A \times B \cong B \times A$
- Product is associative (up to isomorphism): $(A \times B) \times C \cong A \times (B \times C)$
- What is a product of two objects in a preorder category?
- Define the product of any family of objects. What is the product of the empty family?
- For any algebraic signature $\Sigma \in |\mathbf{AlgSig}|$, try to define products in $\mathbf{Alg}(\Sigma)$, $\mathbf{PAlg}_{\mathbf{s}}(\Sigma)$, $\mathbf{PAlg}(\Sigma)$. Expect troubles in the two latter cases...
- Define products in the *category of partial functions*, \mathbf{Pfn} , with sets (as objects) and partial functions as morphisms between them.

- Product commutes (up to isomorphism): $A \times B \cong B \times A$
- Product is associative (up to isomorphism): $(A \times B) \times C \cong A \times (B \times C)$
- What is a product of two objects in a preorder category?
- Define the product of any family of objects. What is the product of the empty family?
- For any algebraic signature $\Sigma \in |\mathbf{AlgSig}|$, try to define products in $\mathbf{Alg}(\Sigma)$, $\mathbf{PAlg}_{\mathbf{s}}(\Sigma)$, $\mathbf{PAlg}(\Sigma)$. Expect troubles in the two latter cases...
- Define products in the *category of partial functions*, \mathbf{Pfn} , with sets (as objects) and partial functions as morphisms between them.

- Product commutes (up to isomorphism): $A \times B \cong B \times A$
- Product is associative (up to isomorphism): $(A \times B) \times C \cong A \times (B \times C)$
- What is a product of two objects in a preorder category?
- Define the product of any family of objects. What is the product of the empty family?
- For any algebraic signature $\Sigma \in |\mathbf{AlgSig}|$, try to define products in $\mathbf{Alg}(\Sigma)$, $\mathbf{PAlg}_{\mathbf{s}}(\Sigma)$, $\mathbf{PAlg}(\Sigma)$. Expect troubles in the two latter cases...
- Define products in the *category of partial functions*, \mathbf{Pfn} , with sets (as objects) and partial functions as morphisms between them.

- Product commutes (up to isomorphism): $A \times B \cong B \times A$
- Product is associative (up to isomorphism): $(A \times B) \times C \cong A \times (B \times C)$
- What is a product of two objects in a preorder category?
- Define the product of any family of objects. What is the product of the empty family?
- For any algebraic signature $\Sigma \in |\mathbf{AlgSig}|$, try to define products in $\mathbf{Alg}(\Sigma)$, $\mathbf{PAlg}_{\mathbf{s}}(\Sigma)$, $\mathbf{PAlg}(\Sigma)$. Expect troubles in the two latter cases...
- Define products in the *category of partial functions*, \mathbf{Pfn} , with sets (as objects) and partial functions as morphisms between them.
- Define products in the *category of relations*, **Rel**, with sets (as objects) and binary relations as morphisms between them.

- Product commutes (up to isomorphism): $A \times B \cong B \times A$
- Product is associative (up to isomorphism): $(A \times B) \times C \cong A \times (B \times C)$
- What is a product of two objects in a preorder category?
- Define the product of any family of objects. What is the product of the empty family?
- For any algebraic signature $\Sigma \in |\mathbf{AlgSig}|$, try to define products in $\mathbf{Alg}(\Sigma)$, $\mathbf{PAlg}_{\mathbf{s}}(\Sigma)$, $\mathbf{PAlg}(\Sigma)$. Expect troubles in the two latter cases...
- Define products in the *category of partial functions*, \mathbf{Pfn} , with sets (as objects) and partial functions as morphisms between them.
- Define products in the *category of relations*, **Rel**, with sets (as objects) and binary relations as morphisms between them.
 - BTW: What about products in \mathbf{Rel}^{op} ?

coproduct = co-product

A coproduct of two objects $A, B \in |\mathbf{K}|$

 $A ag{B}$

coproduct = co-product

A coproduct of two objects $A, B \in |\mathbf{K}|$ is any object $A + B \in |\mathbf{K}|$ with two morphisms (coproduct injections) $\iota_1 \colon A \to A + B$ and $\iota_2 \colon B \to A + B$

$$A \xrightarrow{\iota_1} A + B \xrightarrow{\iota_2} B$$

coproduct = co-product

A coproduct of two objects $A, B \in |\mathbf{K}|$ is any object $A + B \in |\mathbf{K}|$ with two morphisms (coproduct injections) $\iota_1 \colon A \to A + B$ and $\iota_2 \colon B \to A + B$ such that for any object $C \in |\mathbf{K}|$ with morphisms $f_1 \colon A \to C$ and $f_2 \colon B \to C$

coproduct = co-product

A coproduct of two objects $A, B \in |\mathbf{K}|$ is any object $A + B \in |\mathbf{K}|$ with two morphisms (coproduct injections) $\iota_1 \colon A \to A + B$ and $\iota_2 \colon B \to A + B$ such that for any object $C \in |\mathbf{K}|$ with morphisms $f_1 \colon A \to C$ and $f_2 \colon B \to C$ there exists a unique morphism $h \colon A + B \to C$ such that $\iota_1; h = f_1$ and $\iota_2; h = f_2$.

coproduct = co-product

A coproduct of two objects $A, B \in |\mathbf{K}|$ is any object $A + B \in |\mathbf{K}|$ with two morphisms (coproduct injections) $\iota_1 \colon A \to A + B$ and $\iota_2 \colon B \to A + B$ such that for any object $C \in |\mathbf{K}|$ with morphisms $f_1 \colon A \to C$ and $f_2 \colon B \to C$ there exists a unique morphism $h \colon A + B \to C$ such that $\iota_1; h = f_1$ and $\iota_2; h = f_2$.

In Set, disjoint union is a coproduct

coproduct = co-product

A coproduct of two objects $A, B \in |\mathbf{K}|$ is any object $A + B \in |\mathbf{K}|$ with two morphisms (coproduct injections) $\iota_1 \colon A \to A + B$ and $\iota_2 \colon B \to A + B$ such that for any object $C \in |\mathbf{K}|$ with morphisms $f_1 \colon A \to C$ and $f_2 \colon B \to C$ there exists a unique morphism $h \colon A + B \to C$ such that $\iota_1; h = f_1$ and $\iota_2; h = f_2$.

In Set, disjoint union is a coproduct

We write $[f_1, f_2]$ for h defined as above.

coproduct = co-product

A coproduct of two objects $A, B \in |\mathbf{K}|$ is any object $A + B \in |\mathbf{K}|$ with two morphisms (coproduct injections) $\iota_1 \colon A \to A + B$ and $\iota_2 \colon B \to A + B$ such that for any object $C \in |\mathbf{K}|$ with morphisms $f_1 \colon A \to C$ and $f_2 \colon B \to C$ there exists a unique morphism $h \colon A + B \to C$ such that $\iota_1; h = f_1$ and $\iota_2; h = f_2$.

In Set, disjoint union is a coproduct

We write $[f_1, f_2]$ for h defined as above. Then: $\iota_1; [f_1, f_2] = f_1$ and $\iota_2; [f_1, f_2] = f_2$.

coproduct = co-product

A coproduct of two objects $A, B \in |\mathbf{K}|$ is any object $A + B \in |\mathbf{K}|$ with two morphisms (coproduct injections) $\iota_1 \colon A \to A + B$ and $\iota_2 \colon B \to A + B$ such that for any object $C \in |\mathbf{K}|$ with morphisms $f_1 \colon A \to C$ and $f_2 \colon B \to C$ there exists a unique morphism $h \colon A + B \to C$ such that $\iota_1; h = f_1$ and $\iota_2; h = f_2$.

In Set, disjoint union is a coproduct

We write $[f_1,f_2]$ for h defined as above. Then: $\iota_1;[f_1,f_2]=f_1$ and $\iota_2;[f_1,f_2]=f_2$. Moreover, for any h from the coproduct A+B: $h=[\iota_1;h,\iota_2;h]$.

coproduct = co-product

A coproduct of two objects $A, B \in |\mathbf{K}|$ is any object $A + B \in |\mathbf{K}|$ with two morphisms (coproduct injections) $\iota_1 \colon A \to A + B$ and $\iota_2 \colon B \to A + B$ such that for any object $C \in |\mathbf{K}|$ with morphisms $f_1 \colon A \to C$ and $f_2 \colon B \to C$ there exists a unique morphism $h \colon A + B \to C$ such that $\iota_1; h = f_1$ and $\iota_2; h = f_2$.

In Set, disjoint union is a coproduct

We write $[f_1,f_2]$ for h defined as above. Then: $\iota_1;[f_1,f_2]=f_1$ and $\iota_2;[f_1,f_2]=f_2$. Moreover, for any h from the coproduct A+B: $h=[\iota_1;h,\iota_2;h]$. Essentially, this equationally defines coproduct!

coproduct = co-product

A coproduct of two objects $A, B \in |\mathbf{K}|$ is any object $A + B \in |\mathbf{K}|$ with two morphisms (coproduct injections) $\iota_1 \colon A \to A + B$ and $\iota_2 \colon B \to A + B$ such that for any object $C \in |\mathbf{K}|$ with morphisms $f_1 \colon A \to C$ and $f_2 \colon B \to C$ there exists a unique morphism $h \colon A + B \to C$ such that $\iota_1; h = f_1$ and $\iota_2; h = f_2$.

In Set, disjoint union is a coproduct

We write $[f_1,f_2]$ for h defined as above. Then: $\iota_1;[f_1,f_2]=f_1$ and $\iota_2;[f_1,f_2]=f_2$. Moreover, for any h from the coproduct A+B: $h=[\iota_1;h,\iota_2;h]$. Essentially, this equationally defines coproduct!

Theorem: Coproducts are defined to within an isomorphism (which commutes with injections).

coproduct = co-product

A coproduct of two objects $A, B \in |\mathbf{K}|$ is any object $A + B \in |\mathbf{K}|$ with two morphisms (coproduct injections) $\iota_1:A\to A+B$ and $\iota_2:B\to A+B$ such that for any object $C \in |\mathbf{K}|$ with morphisms $f_1 \colon A \to C$ and $f_2 \colon B \to C$ there exists a unique morphism $h: A+B \to C$ such that $\iota_1; h=f_1$ and $\iota_2; h=f_2$.

In Set, disjoint union is a coproduct

We write $[f_1, f_2]$ for h defined as above. Then: $\iota_1; [f_1, f_2] = f_1 \text{ and } \iota_2; [f_1, f_2] = f_2.$ Moreover, for any h from the coproduct A + B: $h = [\iota_1; h, \iota_2; h]$. Essentially, this equationally defines coproduct!

Coproducts are defined to within an isomorphism (which commutes with Theorem: injections).

Exercises: Dualise!

Equalisers

An equaliser of two "parallel" morphisms $f,g\colon A\to B$

$$A \xrightarrow{f} B$$

An equaliser of two "parallel" morphisms $f,g\colon A\to B$ is a morphism $e\colon E\to A$ such that e;f=e;g,

$$E \xrightarrow{e} A \xrightarrow{g} B$$

An equaliser of two "parallel" morphisms $f,g\colon A\to B$ is a morphism $e\colon E\to A$ such that e;f=e;g, and such that for all $h\colon H\to A$, if h;f=h;g

An equaliser of two "parallel" morphisms $f,g\colon A\to B$ is a morphism $e\colon E\to A$ such that e;f=e;g, and such that for all $h\colon H\to A$, if h;f=h;g then for a unique morphism $k\colon H\to E$, k;e=h.

An equaliser of two "parallel" morphisms $f,g\colon A\to B$ is a morphism $e\colon E\to A$ such that e;f=e;g, and such that for all $h\colon H\to A$, if h;f=h;g then for a unique morphism $k\colon H\to E$, k;e=h.

In Set, given functions $f,g\colon A\to B$, define $E=\{a\in A\mid f(a)=g(a)\}$

The inclusion $e \colon E \hookrightarrow A$ is an equaliser of f and g.

An equaliser of two "parallel" morphisms $f,g\colon A\to B$ is a morphism $e\colon E\to A$ such that e;f=e;g, and such that for all $h\colon H\to A$, if h;f=h;g then for a unique

morphism $k \colon H \to E$, $k \not: e = h$.

In **Set**, given functions $f,g\colon A\to B$, define $E=\{a\in A\mid f(a)=g(a)\}$ The inclusion $e\colon E\hookrightarrow A$ is an equaliser of f and g.

Define equalisers in $\mathbf{Alg}(\Sigma)$.

An equaliser of two "parallel" morphisms $f,g\colon A\to B$ is a morphism $e\colon E\to A$ such that e;f=e;g, and such that for all $h\colon H\to A$, if h;f=h;g then for a unique morphism $k\colon H\to E$, k;e=h.

In Set, given functions $f,g\colon A\to B$, define $E=\{a\in A\mid f(a)=g(a)\}$

The inclusion $e \colon E \hookrightarrow A$ is an equaliser of f and g.

Define equalisers in $\mathbf{Alg}(\Sigma)$.

An equaliser of two "parallel" morphisms $f,g\colon A\to B$ is a morphism $e\colon E\to A$ such that e;f=e;g, and such that for all $h\colon H\to A$, if h;f=h;g then for a unique

morphism $k: H \to E$, k; e = h.

• Equalisers are unique up to isomorphism.

 $E \xrightarrow{e} A \xrightarrow{J} B$ $\exists ! k \qquad h$

In Set, given functions $f,g:A\to B$, define $E=\{a\in A\mid f(a)=g(a)\}$ The inclusion $e:E\hookrightarrow A$ is an equaliser of f and g.

Define equalisers in $\mathbf{Alg}(\Sigma)$.

An equaliser of two "parallel" morphisms $f,g\colon A\to B$ is a morphism $e\colon E\to A$ such that e;f=e;g, and such that for all $h\colon H\to A$, if h;f=h;g then for a unique

morphism $k: H \to E$, k; e = h.

• Equalisers are unique up to isomorphism.

Every equaliser is mono.

In Set, given functions $f,g:A\to B$, define $E=\{a\in A\mid f(a)=g(a)\}$ The inclusion $e\colon E\hookrightarrow A$ is an equaliser of f and g.

Define equalisers in $\mathbf{Alg}(\Sigma)$.

An equaliser of two "parallel" morphisms $f,g\colon A\to B$ is a morphism $e\colon E\to A$ such that e;f=e;g, and such that for all $h\colon H\to A$, if h;f=h;g then for a unique morphism $k\colon H\to E$, k;e=h.

- Equalisers are unique up to isomorphism.
- Every equaliser is mono.

Proof:

Consider $k_1, k_2 : H \to E$ such that $k_1; e = k_2; e$.

An equaliser of two "parallel" morphisms $f,g\colon A\to B$ is a morphism $e\colon E\to A$ such that e;f=e;g, and such that for all $h\colon H\to A$, if h;f=h;g then for a unique morphism $k\colon H\to E,\, k;e=h$.

- Equalisers are unique up to isomorphism.
- Every equaliser is mono.

Proof:

Consider $k_1, k_2 : H \to E$ such that $k_1; e = k_2; e$.

Put $h = k_1; e = k_2; e$; then h; f = h; g.

An equaliser of two "parallel" morphisms $f,g\colon A\to B$ is a morphism $e\colon E\to A$ such that e;f=e;g, and such that for all $h\colon H\to A$, if h;f=h;g then for a unique

morphism $k: H \to E$, k; e = h.

- Equalisers are unique up to isomorphism.
- Every equaliser is mono.

Proof:

Consider $k_1, k_2 : H \to E$ such that $k_1; e = k_2; e$.

Put $h = k_1; e = k_2; e$; then h; f = h; g. (Since $h; f = k_1; (e; f) = k_1; (e; g) = h; g$.)

An equaliser of two "parallel" morphisms $f,g\colon A\to B$ is a morphism $e\colon E\to A$ such that e;f=e;g, and such that for all $h\colon H\to A$, if h;f=h;g then for a unique morphism $k\colon H\to E,\, k;e=h$.

- Equalisers are unique up to isomorphism.
- Every equaliser is mono.

$\exists ! k$ H

Proof:

Consider $k_1, k_2 : H \to E$ such that $k_1; e = k_2; e$.

Put $h = k_1; e = k_2; e$; then h; f = h; g.

Thus $k_1 = k_2$.

An equaliser of two "parallel" morphisms $f,g\colon A\to B$ is a morphism $e\colon E\to A$ such that e;f=e;g, and such that for all $h\colon H\to A$, if h;f=h;g then for a unique morphism $k\colon H\to E,\, k;e=h$.

- Equalisers are unique up to isomorphism.
- Every equaliser is mono.
- Every epi equaliser is iso.

In Set, given functions $f, g: A \to B$, define $E = \{a \in A \mid f(a) = g(a)\}$ The inclusion $e: E \hookrightarrow A$ is an equaliser of f and g.

Define equalisers in $\mathbf{Alg}(\Sigma)$.

An equaliser of two "parallel" morphisms $f,g\colon A\to B$ is a morphism $e\colon E\to A$ such that e;f=e;g, and such that for all $h\colon H\to A$, if h;f=h;g then for a unique morphism $k\colon H\to E,\, k;e=h$.

∃!

- Equalisers are unique up to isomorphism.
- Every equaliser is mono.
- Every epi equaliser is iso.

Proof:

Since e is epi and e; f = e; g, we have f = g.

An equaliser of two "parallel" morphisms $f,g\colon A\to B$ is a morphism $e\colon E\to A$ such that e;f=e;g, and such that for all $h\colon H\to A$, if h;f=h;g then for a unique morphism $k\colon H\to E,\, k;e=h$.

∃!

- Equalisers are unique up to isomorphism.
- Every equaliser is mono.
- Every epi equaliser is iso.

Proof:

Since e is epi and e; f = e; g, we have f = g. Hence id_A ; $f = id_A$; g.

An equaliser of two "parallel" morphisms $f,g\colon A\to B$ is a morphism $e\colon E\to A$ such that e;f=e;g, and such that for all $h\colon H\to A$, if h;f=h;g then for a unique morphism $k\colon H\to E,\, k;e=h$.

- Equalisers are unique up to isomorphism.
- Every equaliser is mono.
- Every epi equaliser is iso.

Proof:

Since e is epi and e; f = e; g, we have f = g. Hence id_A ; $f = id_A$; g.

We get $k: A \to E$ such that $k; e = id_A$.

An equaliser of two "parallel" morphisms $f,g\colon A\to B$ is a morphism $e\colon E\to A$ such that e;f=e;g, and such that for all $h\colon H\to A$, if h;f=h;g then for a unique morphism $k\colon H\to E$, k;e=h.

- Equalisers are unique up to isomorphism.
- Every equaliser is mono.
- Every epi equaliser is iso.

ono. $\exists ! k$ iso. H

Proof:

Since e is epi and e; f = e; g, we have f = g. Hence id_A ; $f = id_A$; g.

We get $k: A \to E$ such that $k; e = id_A$. Thus, e is a retraction, and is mono

— and so is iso.

An equaliser of two "parallel" morphisms $f,g\colon A\to B$ is a morphism $e\colon E\to A$ such that e;f=e;g, and such that for all $h\colon H\to A$, if h;f=h;g then for a unique morphism $k\colon H\to E,\, k;e=h$.

- Equalisers are unique up to isomorphism.
- Every equaliser is mono.
- Every epi equaliser is iso.

In Set, given functions $f,g\colon A\to B$, define $E=\{a\in A\mid f(a)=g(a)\}$ The inclusion $e\colon E\hookrightarrow A$ is an equaliser of f and g.

Define equalisers in $\mathbf{Alg}(\Sigma)$.

A coequaliser of two "parallel" morphisms $f,g\colon A\to B$

$$A \xrightarrow{f} B$$

A coequaliser of two "parallel" morphisms $f,g\colon A\to B$ is a morphism $c\colon B\to C$ such that f;c=g;c,

$$A \xrightarrow{g} B \xrightarrow{c} C$$

A coequaliser of two "parallel" morphisms $f,g\colon A\to B$ is a morphism $c\colon B\to C$ such that f;c=g;c, and such that for all $h\colon B\to H$, if f;h=g;h

A coequaliser of two "parallel" morphisms $f,g\colon A\to B$ is a morphism $c\colon B\to C$ such that f;c=g;c, and such that for all $h\colon B\to H$, if f;h=g;h then for a unique morphism $k\colon C\to H$, c;k=h.

- Coequalisers are unique up to isomorphism.
- Every coequaliser is epi.
- Every mono coequaliser is iso.

A coequaliser of two "parallel" morphisms $f,g\colon A\to B$ is a morphism $c\colon B\to C$ such that f;c=g;c, and such that for all $h\colon B\to H$, if f;h=g;h then for a unique morphism $k\colon C\to H$, c;k=h.

- Coequalisers are unique up to isomorphism.
- Every coequaliser is epi.
- Every mono coequaliser is iso.

In Set, given functions $f, g: A \to B$,

A coequaliser of two "parallel" morphisms $f,g\colon A\to B$ is a morphism $c\colon B\to C$ such that f;c=g;c, and such that for all $h\colon B\to H$, if f;h=g;h then for a unique morphism $k\colon C\to H$, c;k=h.

- Coequalisers are unique up to isomorphism.
- Every coequaliser is epi.
- Every mono coequaliser is iso.

In Set, given functions $f,g\colon A\to B$, let $\equiv \subseteq B\times B$ be the least equivalence such that $f(a)\equiv g(a)$ for all $a\in A$

A coequaliser of two "parallel" morphisms $f,g\colon A\to B$ is a morphism $c\colon B\to C$ such that f;c=g;c, and such that for all $h\colon B\to H$, if f;h=g;h then for a unique morphism $k\colon C\to H$, c;k=h.

- Coequalisers are unique up to isomorphism.
- Every coequaliser is epi.
- Every mono coequaliser is iso.

In Set, given functions $f,g\colon A\to B$, let $\equiv\subseteq B\times B$ be the least equivalence such that $f(a)\equiv g(a)$ for all $a\in A$. The quotient function $[_]_{\equiv}\colon B\to B/\equiv$ is a coequaliser of f and g.

A coequaliser of two "parallel" morphisms $f,g\colon A\to B$ is a morphism $c\colon B\to C$ such that f;c=g;c, and such that for all $h\colon B\to H$, if f;h=g;h then for a unique morphism $k\colon C\to H$, c;k=h.

- Coequalisers are unique up to isomorphism.
- Every coequaliser is epi.
- Every mono coequaliser is iso.

In Set, given functions $f,g\colon A\to B$, let $\equiv\subseteq B\times B$ be the least equivalence such that $f(a)\equiv g(a)$ for all $a\in A$. The quotient function $[_]_{\equiv}\colon B\to B/\equiv$ is a coequaliser of f and g.

Define coequalisers in $\mathbf{Alg}(\Sigma)$.

A coequaliser of two "parallel" morphisms $f,g\colon A\to B$ is a morphism $c\colon B\to C$ such that f;c=g;c, and such that for all $h\colon B\to H$, if f;h=g;h then for a unique morphism $k\colon C\to H$, c;k=h.

- Coequalisers are unique up to isomorphism.
- Every coequaliser is epi.
- Every mono coequaliser is iso.

In Set, given functions $f,g\colon A\to B$, let $\equiv\subseteq B\times B$ be the least equivalence such that $f(a)\equiv g(a)$ for all $a\in A$. The quotient function $[_]_{\equiv}\colon B\to B/\equiv$ is a coequaliser of f and g.

Define coequalisers in $\mathbf{Alg}(\Sigma)$.

A coequaliser of two "parallel" morphisms $f,g\colon A\to B$ is a morphism $c\colon B\to C$ such that f;c=g;c, and such that for all $h\colon B\to H$, if f;h=g;h then for a unique morphism $k\colon C\to H$, c;k=h.

- Coequalisers are unique up to isomorphism.
- Every coequaliser is epi.
- Every mono coequaliser is iso.

In Set, given functions $f,g\colon A\to B$, let $\equiv\subseteq B\times B$ be the least equivalence such that $f(a)\equiv g(a)$ for all $a\in A$. The quotient function $[-]_{\equiv}\colon B\to B/\equiv$ is a coequaliser of f and g.

Define coequalisers in $\mathbf{Alg}(\Sigma)$.

Try also in: $\mathbf{PAlg_s}(\Sigma)$, $\mathbf{PAlg}(\Sigma)$, \mathbf{Pfn} , \mathbf{Rel} , ...

Most general unifiers are coequalisers in \mathbf{Subst}_{Σ}

A pullback of two morphisms with common target $f: A \to C$ and $g: B \to C$

A pullback of two morphisms with common target $f: A \to C$ and $g: B \to C$ is an object $P \in |\mathbf{K}|$ with morphisms $j: P \to A$ and $k: P \to B$ such that j; f = k; g,

A pullback of two morphisms with common target $f\colon A\to C$ and $g\colon B\to C$ is an object $P\in |\mathbf{K}|$ with morphisms $j\colon P\to A$ and $k\colon P\to B$ such that j;f=k;g, and such that for all $P'\in |\mathbf{K}|$ with morphisms $j'\colon P'\to A$ and $k'\colon P'\to B$, if j';f=k';g

A pullback of two morphisms with common target $f\colon A\to C$ and $g\colon B\to C$ is an object $P\in |\mathbf{K}|$ with morphisms $j\colon P\to A$ and $k\colon P\to B$ such that j;f=k;g, and such that for all $P'\in |\mathbf{K}|$ with morphisms $j'\colon P'\to A$ and $k'\colon P'\to B$, if j';f=k';g then for a unique morphism $h\colon P'\to P$, h;j=j' and h;k=k'.

A pullback of two morphisms with common target $f\colon A\to C$ and $g\colon B\to C$ is an object $P\in |\mathbf{K}|$ with morphisms $j\colon P\to A$ and $k\colon P\to B$ such that j;f=k;g, and such that for all $P'\in |\mathbf{K}|$ with morphisms $j'\colon P'\to A$ and $k'\colon P'\to B$, if j';f=k';g then for a unique morphism $h\colon P'\to P$, h;j=j' and h;k=k'.

In Set, given functions $f: A \to C$ and $f: B \to C$,

A pullback of two morphisms with common target $f\colon A\to C$ and $g\colon B\to C$ is an object $P\in |\mathbf{K}|$ with morphisms $j\colon P\to A$ and $k\colon P\to B$ such that j;f=k;g, and such that for all $P'\in |\mathbf{K}|$ with morphisms $j'\colon P'\to A$ and $k'\colon P'\to B$, if j';f=k';g then for a unique morphism $h\colon P'\to P$, h;j=j' and h;k=k'.

In Set, given functions $f \colon A \to C$ and $f \colon B \to C$, define $P = \{\langle a, b \rangle \in A \times B \mid f(a) = g(b)\}$

A pullback of two morphisms with common target $f\colon A\to C$ and $g\colon B\to C$ is an object $P\in |\mathbf{K}|$ with morphisms $j\colon P\to A$ and $k\colon P\to B$ such that j;f=k;g, and such that for all $P'\in |\mathbf{K}|$ with morphisms $j'\colon P'\to A$ and $k'\colon P'\to B$, if j';f=k';g then for a unique morphism $h\colon P'\to P$, h;j=j' and h;k=k'.

In Set, given functions $f\colon A\to C$ and $f\colon B\to C$, define $P=\{\langle a,b\rangle\in A\times B\mid f(a)=g(b)\}$ Then P with obvious projections on A and B,

respectively, is a pullback of f and g.

A pullback of two morphisms with common target $f\colon A\to C$ and $g\colon B\to C$ is an object $P\in |\mathbf{K}|$ with morphisms $j\colon P\to A$ and $k\colon P\to B$ such that j;f=k;g, and such that for all $P'\in |\mathbf{K}|$ with morphisms $j'\colon P'\to A$ and $k'\colon P'\to B$, if j';f=k';g then for a unique morphism $h\colon P'\to P$, h;j=j' and h;k=k'.

In Set, given functions $f \colon A \to C$ and $f \colon B \to C$, define $P = \{\langle a,b \rangle \in A \times B \mid f(a) = g(b)\}$ Then P with obvious projections on A and B, respectively, is a pullback of f and g.

Define pullbacks in $\mathbf{Alg}(\Sigma)$.

A pullback of two morphisms with common target $f\colon A\to C$ and $g\colon B\to C$ is an object $P\in |\mathbf{K}|$ with morphisms $j\colon P\to A$ and $k\colon P\to B$ such that j;f=k;g, and such that for all $P'\in |\mathbf{K}|$ with morphisms $j'\colon P'\to A$ and $k'\colon P'\to B$, if j';f=k';g then for a unique morphism $h\colon P'\to P$, h;j=j' and h;k=k'.

In Set, given functions $f \colon A \to C$ and $f \colon B \to C$, define $P = \{\langle a, b \rangle \in A \times B \mid f(a) = g(b)\}$

Then P with obvious projections on A and B, respectively, is a pullback of f and g.

Define pullbacks in $\mathbf{Alg}(\Sigma)$.

Try also in: $\mathbf{PAlg_s}(\Sigma)$, $\mathbf{PAlg}(\Sigma)$, \mathbf{Pfn} , \mathbf{Rel} , . . .

A pullback of two morphisms with common target $f\colon A\to C$ and $g\colon B\to C$ is an object $P\in |\mathbf{K}|$ with morphisms $j\colon P\to A$ and $k\colon P\to B$ such that j;f=k;g, and such that for all $P'\in |\mathbf{K}|$ with morphisms $j'\colon P'\to A$ and $k'\colon P'\to B$, if j';f=k';g then for a unique morphism $h\colon P'\to P$, h;j=j' and h;k=k'.

In Set, given functions $f \colon A \to C$ and $f \colon B \to C$, define $P = \{\langle a, b \rangle \in A \times B \mid f(a) = g(b)\}$

Then P with obvious projections on A and B, respectively, is a pullback of f and g.

Define pullbacks in $\mathbf{Alg}(\Sigma)$.

Try also in: $\mathbf{PAlg_s}(\Sigma)$, $\mathbf{PAlg}(\Sigma)$, \mathbf{Pfn} , \mathbf{Rel} , . . .

Wait for a hint to come...

• Pullbacks are unique up to isomorphism.

- Pullbacks are unique up to isomorphism.
- If **K** has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).

- Pullbacks are unique up to isomorphism.
- If K has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).
 Proof:

- Pullbacks are unique up to isomorphism.
- If **K** has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).

Proof: Build product $A \times B$

- Pullbacks are unique up to isomorphism.
- If K has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).
 Proof: Build product A×B and equaliser e: P → A × B of π₁;f and π₂;g.

- Pullbacks are unique up to isomorphism.
- If K has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).
 Proof: Build product A×B and equaliser e: P → A × B of π₁;f and π₂;g. We get a pullback of f and g:

 $P \text{ with } e; \pi_1 \colon P \to A \text{ and } e; \pi_2 \colon P \to B$

- Pullbacks are unique up to isomorphism.
- If **K** has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).

Proof: Build product $A \times B$ and equaliser $e: P \to A \times B$ of $\pi_1; f$ and $\pi_2; g$. We get a pullback of f and g:

$$P \text{ with } e;\pi_1\colon P\to A \text{ and } e;\pi_2\colon P\to B$$

- Clearly, $(e;\pi_1); f = (e;\pi_2); g$.

- Pullbacks are unique up to isomorphism.
- If **K** has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).

$$P \text{ with } e;\pi_1\colon P\to A \text{ and } e;\pi_2\colon P\to B$$

- Clearly, $(e;\pi_1); f = (e;\pi_2); g$.
- Consider P' with $j'\colon P'\to A$ and $k'\colon P'\to B$ such that j';f=k';g.

- Pullbacks are unique up to isomorphism.
- If **K** has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).

$$P \text{ with } e;\pi_1\colon P\to A \text{ and } e;\pi_2\colon P\to B$$

- Clearly, $(e;\pi_1); f = (e;\pi_2); g$.
- Consider P' with $j'\colon P'\to A$ and $k'\colon P'\to B$ such that j';f=k';g. We have unique $p\colon P'\to A\times B$ s.t. $p;\pi_1=j'$ and $p;\pi_2=k'$.

- Pullbacks are unique up to isomorphism.
- If **K** has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).

$$P \text{ with } e;\pi_1\colon P\to A \text{ and } e;\pi_2\colon P\to B$$

- Clearly, $(e;\pi_1); f = (e;\pi_2); g$.
- Consider P' with $j'\colon P'\to A$ and $k'\colon P'\to B$ such that j';f=k';g. We have unique $p\colon P'\to A\times B$ s.t. $p;\pi_1=j'$ and $p;\pi_2=k'$. Then $p;(\pi_1;f)=j';f=k';g=p;(\pi_2;g)$.

- Pullbacks are unique up to isomorphism.
- If **K** has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).

$$P \text{ with } e;\pi_1\colon P\to A \text{ and } e;\pi_2\colon P\to B$$

- Clearly, $(e;\pi_1); f = (e;\pi_2); g$.
- Consider P' with $j'\colon P'\to A$ and $k'\colon P'\to B$ such that j';f=k';g. We have unique $p\colon P'\to A\times B$ s.t. $p;\pi_1=j'$ and $p;\pi_2=k'$. Then $p;(\pi_1;f)=j';f=k';g=p;(\pi_2;g)$. This yields unique $h\colon P'\to P$ such that h;e=p,

- Pullbacks are unique up to isomorphism.
- If **K** has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).

$$P \text{ with } e;\pi_1\colon P\to A \text{ and } e;\pi_2\colon P\to B$$

- Clearly, $(e;\pi_1); f = (e;\pi_2); g$.
- Consider P' with $j'\colon P'\to A$ and $k'\colon P'\to B$ such that j';f=k';g. We have unique $p\colon P'\to A\times B$ s.t. $p;\pi_1=j'$ and $p;\pi_2=k'$. Then $p;(\pi_1;f)=j';f=k';g=p;(\pi_2;g)$. This yields unique $h\colon P'\to P$ such that h;e=p, as well as $h;(e;\pi_1)=p;\pi_1=j'$ and $h;(e;\pi_2)=p;\pi_2=k'$.

- Pullbacks are unique up to isomorphism.
- If **K** has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).
- ullet If ${f K}$ has all pullbacks and a terminal object then it has all binary products

- Pullbacks are unique up to isomorphism.
- If **K** has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).
- ullet If old K has all pullbacks and a terminal object then it has all binary products

A

Andrzej Tarlecki: Category Theory, 2025

- Pullbacks are unique up to isomorphism.
- If **K** has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).
- ullet If old K has all pullbacks and a terminal object then it has all binary products

- Pullbacks are unique up to isomorphism.
- If **K** has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).
- ullet If ${f K}$ has all pullbacks and a terminal object then it has all binary products

- Pullbacks are unique up to isomorphism.
- If **K** has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).
- ullet If old K has all pullbacks and a terminal object then it has all binary products

- Pullbacks are unique up to isomorphism.
- If **K** has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).
- ullet If old K has all pullbacks and a terminal object then it has all binary products

- Pullbacks are unique up to isomorphism.
- If **K** has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).
- ullet If ${f K}$ has all pullbacks and a terminal object then it has all binary products and equalisers.

- Pullbacks are unique up to isomorphism.
- If **K** has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).
- If **K** has all pullbacks and a terminal object then it has all binary products and equalisers.

- Pullbacks are unique up to isomorphism.
- If **K** has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).
- If **K** has all pullbacks and a terminal object then it has all binary products and equalisers.

- Pullbacks are unique up to isomorphism.
- If **K** has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).
- If **K** has all pullbacks and a terminal object then it has all binary products and equalisers.

- Pullbacks are unique up to isomorphism.
- If K has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).
- If **K** has all pullbacks and a terminal object then it has all binary products and equalisers.

$$e_1 ?=? e_2$$

- Pullbacks are unique up to isomorphism.
- If **K** has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).
- If **K** has all pullbacks and a terminal object then it has all binary products and equalisers. HINT: to build an equaliser of $f,g:A\to B$, consider a pullback of $\langle id_A,f\rangle, \langle id_A,g\rangle:A\to A\times B$.

- Pullbacks are unique up to isomorphism.
- If **K** has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).
- If **K** has all pullbacks and a terminal object then it has all binary products and equalisers. HINT: to build an equaliser of $f,g\colon A\to B$, consider a pullback of $\langle id_A,f\rangle, \langle id_A,g\rangle\colon A\to A\times B$.

- Pullbacks are unique up to isomorphism.
- If **K** has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).
- If **K** has all pullbacks and a terminal object then it has all binary products and equalisers. HINT: to build an equaliser of $f,g\colon A\to B$, consider a pullback of $\langle id_A,f\rangle, \langle id_A,g\rangle\colon A\to A\times B$.

- Pullbacks are unique up to isomorphism.
- If **K** has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).
- If **K** has all pullbacks and a terminal object then it has all binary products and equalisers. HINT: to build an equaliser of $f,g\colon A\to B$, consider a pullback of $\langle id_A,f\rangle, \langle id_A,g\rangle\colon A\to A\times B.$ Now: $e_1;\langle id_A,f\rangle=e_2;\langle id_A,g\rangle.$

- Pullbacks are unique up to isomorphism.
- If K has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).
- If **K** has all pullbacks and a terminal object then it has all binary products and equalisers. HINT: to build an equaliser of $f,g\colon A\to B$, consider a pullback of $\langle id_A,f\rangle, \langle id_A,g\rangle\colon A\to A\times B$. Now: $e_1;\langle id_A,f\rangle=e_2;\langle id_A,g\rangle$. Hence $\langle e_1,e_1;f\rangle=\langle e_2,e_2;g\rangle$,

- Pullbacks are unique up to isomorphism.
- If K has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).
- If **K** has all pullbacks and a terminal object then it has all binary products and equalisers. HINT: to build an equaliser of $f,g\colon A\to B$, consider a pullback of $\langle id_A,f\rangle, \langle id_A,g\rangle\colon A\to A\times B.$ Now: $e_1;\langle id_A,f\rangle=e_2;\langle id_A,g\rangle.$

Hence $\langle e_1, e_1; f \rangle = \langle e_2, e_2; g \rangle$, which implies $e_1 = e_2$ and $e_1; f = e_2; g$

- Pullbacks are unique up to isomorphism.
- If **K** has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).
- If **K** has all pullbacks and a terminal object then it has all binary products and equalisers. HINT: to build an equaliser of $f,g:A\to B$, consider a pullback of $\langle id_A,f\rangle, \langle id_A,g\rangle:A\to A\times B$.

Now: e_1 ; $\langle id_A, f \rangle = e_2$; $\langle id_A, g \rangle$.

Hence $\langle e_1, e_1; f \rangle = \langle e_2, e_2; g \rangle$, which implies $e_1 = e_2$ and $e_1; f = e_2; g$ — and yields $e_1 = e_2$ as the equaliser of f and g.

- Pullbacks are unique up to isomorphism.
- If **K** has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).
- If **K** has all pullbacks and a terminal object then it has all binary products and equalisers. HINT: to build an equaliser of $f,g\colon A\to B$, consider a pullback of $\langle id_A,f\rangle, \langle id_A,g\rangle\colon A\to A\times B$.
- Pullbacks translate monos to monos: if the following is a pullback square and f is mono then f' is mono as well.

- Pullbacks are unique up to isomorphism.
- If **K** has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).

• Pullbacks translate monos to monos: if the following is a pullback square and f is mono then f' is mono as well.

- Pullbacks are unique up to isomorphism.
- If **K** has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).
- If **K** has all pullbacks and a terminal object then it has all binary products and equalisers. HINT: to build an equaliser of $f,g\colon A\to B$, consider a pullback of $\langle id_A,f\rangle, \langle id_A,g\rangle\colon A\to A\times B$.
- Pullbacks translate monos to monos: if the following is a pullback square and f is mono then f' is mono as well.

- Pullbacks are unique up to isomorphism.
- If **K** has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).
- If **K** has all pullbacks and a terminal object then it has all binary products and equalisers. HINT: to build an equaliser of $f,g\colon A\to B$, consider a pullback of $\langle id_A,f\rangle, \langle id_A,g\rangle\colon A\to A\times B$.
- Pullbacks translate monos to monos: if the following is a pullback square and f is mono then f' is mono as well.

- Pullbacks are unique up to isomorphism.
- If **K** has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).
- If **K** has all pullbacks and a terminal object then it has all binary products and equalisers. HINT: to build an equaliser of $f,g\colon A\to B$, consider a pullback of $\langle id_A,f\rangle, \langle id_A,g\rangle\colon A\to A\times B$.
- Pullbacks translate monos to monos: if the following is a pullback square and f is mono then f' is mono as well.

- Pullbacks are unique up to isomorphism.
- If **K** has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).
- If **K** has all pullbacks and a terminal object then it has all binary products and equalisers. HINT: to build an equaliser of $f,g\colon A\to B$, consider a pullback of $\langle id_A,f\rangle, \langle id_A,g\rangle\colon A\to A\times B$.
- Pullbacks translate monos to monos: if the following is a pullback square and f is mono then f' is mono as well. Proof: Suppose $h_1; f' = h_2; f'$.

- Pullbacks are unique up to isomorphism.
- If **K** has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).
- If **K** has all pullbacks and a terminal object then it has all binary products and equalisers. HINT: to build an equaliser of $f,g\colon A\to B$, consider a pullback of $\langle id_A,f\rangle, \langle id_A,g\rangle\colon A\to A\times B$.
- Pullbacks translate monos to monos: if the following is a pullback square and f is mono then f' is mono as well. Proof: Suppose $h_1; f' = h_2; f'$. Then $(h_1; f'); g = (h_2; f'); g$,

- Pullbacks are unique up to isomorphism.
- If **K** has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).
- If **K** has all pullbacks and a terminal object then it has all binary products and equalisers. HINT: to build an equaliser of $f,g\colon A\to B$, consider a pullback of $\langle id_A,f\rangle, \langle id_A,g\rangle\colon A\to A\times B$.
- Pullbacks translate monos to monos: if the following is a pullback square and f is mono then f' is mono as well. Proof: Suppose $h_1; f' = h_2; f'$. Then $(h_1; f'); g = (h_2; f'); g$, and $(h_1; g'); f = (h_2; g'); f$.

- Pullbacks are unique up to isomorphism.
- If **K** has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).
- If **K** has all pullbacks and a terminal object then it has all binary products and equalisers. HINT: to build an equaliser of $f,g\colon A\to B$, consider a pullback of $\langle id_A,f\rangle, \langle id_A,g\rangle\colon A\to A\times B$.
- Pullbacks translate monos to monos: if the following is a pullback square and f is mono then f' is mono as well. Proof: Suppose $h_1; f' = h_2; f'$. Then $(h_1; f'); g = (h_2; f'); g$, and $(h_1; g'); f = (h_2; g'); f$. Since f is mono, $h_1; g' = h_2; g'$.

- Pullbacks are unique up to isomorphism.
- If **K** has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).
- If **K** has all pullbacks and a terminal object then it has all binary products and equalisers. HINT: to build an equaliser of $f,g\colon A\to B$, consider a pullback of $\langle id_A,f\rangle, \langle id_A,g\rangle\colon A\to A\times B$.
- Pullbacks translate monos to monos: if the following is a pullback square and f is mono then f' is mono as well. Proof: Suppose $h_1;f'=h_2;f'$. Then $(h_1;f');g=(h_2;f');g$, and $(h_1;g');f=(h_2;g');f$. Since f is mono, $h_1;g'=h_2;g'$. By the pullback property, $h_1=h_2$.

- Pullbacks are unique up to isomorphism.
- If **K** has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).
- If **K** has all pullbacks and a terminal object then it has all binary products and equalisers. HINT: to build an equaliser of $f,g\colon A\to B$, consider a pullback of $\langle id_A,f\rangle, \langle id_A,g\rangle\colon A\to A\times B$.
- Pullbacks translate monos to monos: if the following is a pullback square and f is mono then f' is mono as well.

pushout = co-pullback

pushout = co-pullback

A pushout of two morphisms with common source $f: C \to A$ and $g: C \to B$

pushout = co-pullback

A pushout of two morphisms with common source $f: C \to A$ and $g: C \to B$ is an object $P \in |\mathbf{K}|$ with morphisms $j: A \to P$ and $k: B \to P$ such that f; j = g; k,

pushout = co-pullback

A pushout of two morphisms with common source $f\colon C\to A$ and $g\colon C\to B$ is an object $P\in |\mathbf{K}|$ with morphisms $j\colon A\to P$ and $k\colon B\to P$ such that f;j=g;k, and such that for all $P'\in |\mathbf{K}|$ with morphisms $j'\colon A\to P'$ and $k'\colon B\to P'$, if f;j'=g;k'

pushout = co-pullback

A pushout of two morphisms with common source $f\colon C\to A$ and $g\colon C\to B$ is an object $P\in |\mathbf{K}|$ with morphisms $j\colon A\to P$ and $k\colon B\to P$ such that f;j=g;k, and such that for all $P'\in |\mathbf{K}|$ with morphisms $j'\colon A\to P'$ and $k'\colon B\to P'$, if f;j'=g;k' then for a unique morphism $h\colon P\to P'$, j;h=j' and k;h=k'.

pushout = co-pullback

A pushout of two morphisms with common source $f\colon C\to A$ and $g\colon C\to B$ is an object $P\in |\mathbf{K}|$ with morphisms $j\colon A\to P$ and $k\colon B\to P$ such that f;j=g;k, and such that for all $P'\in |\mathbf{K}|$ with morphisms $j'\colon A\to P'$ and $k'\colon B\to P'$, if f;j'=g;k' then for a unique morphism $h\colon P\to P'$, j;h=j' and k;h=k'.

In Set, given two functions $f\colon C\to A$ and $g\colon C\to B$,

pushout = co-pullback

A pushout of two morphisms with common source $f\colon C\to A$ and $g\colon C\to B$ is an object $P\in |\mathbf{K}|$ with morphisms $j\colon A\to P$ and $k\colon B\to P$ such that f;j=g;k, and such that for all $P'\in |\mathbf{K}|$ with morphisms $j'\colon A\to P'$ and $k'\colon B\to P'$, if f;j'=g;k' then for a unique morphism $h\colon P\to P'$, j;h=j' and k;h=k'.

In Set, given two functions $f\colon C\to A$ and $g\colon C\to B$, define the least equivalence \equiv on $A\uplus B$ such that $f(c)\equiv g(c)$ for all $c\in C$.

pushout = co-pullback

A pushout of two morphisms with common source $f\colon C\to A$ and $g\colon C\to B$ is an object $P\in |\mathbf{K}|$ with morphisms $j\colon A\to P$ and $k\colon B\to P$ such that f;j=g;k, and such that for all $P'\in |\mathbf{K}|$ with morphisms $j'\colon A\to P'$ and $k'\colon B\to P'$, if f;j'=g;k' then for a unique morphism $h\colon P\to P'$, j;h=j' and k;h=k'.

In Set, given two functions $f\colon C\to A$ and $g\colon C\to B$, define the least equivalence \equiv on $A\uplus B$ such that $f(c)\equiv g(c)$ for all $c\in C$. The quotient $(A\uplus B)/\equiv$ with compositions of injections and the quotient function is a pushout of f and g.

pushout = co-pullback

A pushout of two morphisms with common source $f\colon C\to A$ and $g\colon C\to B$ is an object $P\in |\mathbf{K}|$ with morphisms $j\colon A\to P$ and $k\colon B\to P$ such that f;j=g;k, and such that for all $P'\in |\mathbf{K}|$ with morphisms $j'\colon A\to P'$ and $k'\colon B\to P'$, if f;j'=g;k' then for a unique morphism $h\colon P\to P'$, j;h=j' and k;h=k'.

In Set, given two functions $f\colon C\to A$ and $g\colon C\to B$, define the least equivalence \equiv on $A\uplus B$ such that $f(c)\equiv g(c)$ for all $c\in C$. The quotient $(A\uplus B)/\equiv$ with compositions of injections and the quotient function is a pushout of f and g.

Dualise facts for pullbacks!

Pushouts put objects together taking account of the indicated sharing.

sort *Elem*

```
sort String
ops a, \ldots, z \colon String;
\_ \hat{} \quad : String \times String
\rightarrow String

sort Elem
```


A graph consists of sets of nodes and edges, and indicate source and target nodes for each edge

A graph consists of sets of nodes and edges, and indicate source and target nodes for each edge

 $\Sigma_{Graph} =$ sorts nodes, edges

opns $source: edges \rightarrow nodes$

 $target: edges \rightarrow nodes$

A graph consists of sets of nodes and edges, and indicate source and target nodes for each edge

 $\Sigma_{Graph} =$ sorts nodes, edges

opns $source: edges \rightarrow nodes$

 $target: edges \rightarrow nodes$

Graph is any Σ_{Graph} -algebra.

A graph consists of sets of nodes and edges, and indicate source and target nodes for each edge

 $\Sigma_{Graph} =$ sorts nodes, edges

opns $source: edges \rightarrow nodes$

 $target: edges \rightarrow nodes$

Graph is any Σ_{Graph} -algebra.

The category of graphs:

 $\mathbf{Graph} = \mathbf{Alg}(\Sigma_{Graph})$

A graph consists of sets of nodes and edges, and indicate source and target nodes for each edge

 $\Sigma_{Graph} =$ sorts nodes, edges

opns $source: edges \rightarrow nodes$

 $target: edges \rightarrow nodes$

Graph is any Σ_{Graph} -algebra.

The category of graphs:

 $\mathbf{Graph} = \mathbf{Alg}(\Sigma_{Graph})$

For any small category K, define its graph, G(K)

Graphs

A graph consists of sets of nodes and edges, and indicate source and target nodes for each edge

 $\Sigma_{Graph} =$ sorts nodes, edges

opns $source: edges \rightarrow nodes$

 $target: edges \rightarrow nodes$

Graph is any Σ_{Graph} -algebra.

The category of graphs:

 $\mathbf{Graph} = \mathbf{Alg}(\Sigma_{Graph})$

For any small category K, define its graph, G(K)

For any graph $G \in |\mathbf{Graph}|$, define the category of paths in G, $\mathbf{Path}(G)$:

Graphs

A graph consists of sets of nodes and edges, and indicate source and target nodes for each edge

$$\Sigma_{Graph} =$$
sorts $nodes, edges$

opns $source: edges \rightarrow nodes$

 $target: edges \rightarrow nodes$

Graph is any Σ_{Graph} -algebra.

The category of graphs:

 $\mathbf{Graph} = \mathbf{Alg}(\Sigma_{Graph})$

For any small category K, define its graph, G(K)

For any graph $G \in |\mathbf{Graph}|$, define the category of paths in G, $\mathbf{Path}(G)$:

- objects: $|G|_{nodes}$

Graphs

A graph consists of sets of nodes and edges, and indicate source and target nodes for each edge

$$\Sigma_{Graph} =$$
sorts $nodes, edges$

opns $source: edges \rightarrow nodes$

 $target: edges \rightarrow nodes$

Graph is any Σ_{Graph} -algebra.

The category of graphs:

 $Graph = Alg(\Sigma_{Graph})$

For any small category K, define its graph, G(K)

For any graph $G \in |\mathbf{Graph}|$, define the category of paths in G, $\mathbf{Path}(G)$:

- objects: $|G|_{nodes}$
- morphisms: paths in G, i.e., sequences $n_0e_1n_1 \dots n_{k-1}e_kn_k$ of nodes $n_0, \dots, n_k \in |G|_{nodes}$ and edges $e_1, \dots, e_k \in |G|_{edges}$ such that $source(e_i) = n_{i-1}$ and $target(e_i) = n_i$ for $i = 1, \dots, k$.

A diagram in \mathbf{K} is a graph with nodes labelled with \mathbf{K} -objects and edges labelled with \mathbf{K} -morphisms with appropriate sources and targets.

A diagram in \mathbf{K} is a graph with nodes labelled with \mathbf{K} -objects and edges labelled with \mathbf{K} -morphisms with appropriate sources and targets.

A diagram D consists of:

A diagram in \mathbf{K} is a graph with nodes labelled with \mathbf{K} -objects and edges labelled with \mathbf{K} -morphisms with appropriate sources and targets.

A diagram D consists of:

- a graph $\mathcal{G}(D)$,

A diagram in ${\bf K}$ is a graph with nodes labelled with ${\bf K}$ -objects and edges labelled with ${\bf K}$ -morphisms with appropriate sources and targets.

A diagram D consists of:

- a graph $\mathcal{G}(D)$,
- an object $D_n \in |\mathbf{K}|$ for each node $n \in |\mathcal{G}(D)|_{nodes}$,

A diagram in ${\bf K}$ is a graph with nodes labelled with ${\bf K}$ -objects and edges labelled with ${\bf K}$ -morphisms with appropriate sources and targets.

A diagram D consists of:

- a graph $\mathcal{G}(D)$,
- an object $D_n \in |\mathbf{K}|$ for each node $n \in |\mathcal{G}(D)|_{nodes}$,
- a morphism $D_e \colon D_{source(e)} \to D_{target(e)}$ for each edge $e \in |\mathcal{G}(D)|_{edges}$.

Andrzej Tarlecki: Category Theory, 2025

A diagram in ${f K}$ is a graph with nodes labelled with ${f K}$ -objects and edges labelled with ${f K}$ -morphisms with appropriate sources and targets.

A diagram D consists of:

- a graph $\mathcal{G}(D)$,
- an object $D_n \in |\mathbf{K}|$ for each node $n \in |\mathcal{G}(D)|_{nodes}$,
- a morphism $D_e: D_{source(e)} \to D_{target(e)}$ for each edge $e \in |\mathcal{G}(D)|_{edges}$.

For any small category K, define its diagram, D(K), with graph $\mathcal{G}(D(K)) = \mathcal{G}(K)$

Andrzej Tarlecki: Category Theory, 2025

A diagram in ${f K}$ is a graph with nodes labelled with ${f K}$ -objects and edges labelled with ${f K}$ -morphisms with appropriate sources and targets.

A diagram D consists of:

- a graph $\mathcal{G}(D)$,
- an object $D_n \in |\mathbf{K}|$ for each node $n \in |\mathcal{G}(D)|_{nodes}$,
- a morphism $D_e: D_{source(e)} \to D_{target(e)}$ for each edge $e \in |\mathcal{G}(D)|_{edges}$.

For any small category K, define its diagram, D(K), with graph $\mathcal{G}(D(K)) = \mathcal{G}(K)$

BTW: A diagram D commutes (or is commutative) if for any two paths in $\mathcal{G}(D)$ with common source and target, the compositions of morphisms that label the edges of each of them coincide.

Given a graph G with nodes $N = |G|_{nodes}$ and edges $E = |G|_{edges}$, the category of diagrams of shape G in K, \mathbf{Diag}_{K}^{G} , is defined as follows:

Given a graph G with nodes $N = |G|_{nodes}$ and edges $E = |G|_{edges}$, the category of diagrams of shape G in K, $\mathbf{Diag}_{\mathbf{K}}^{G}$, is defined as follows:

Given a graph G with nodes $N = |G|_{nodes}$ and edges $E = |G|_{edges}$, the category of diagrams of shape G in K, $\mathbf{Diag}_{\mathbf{K}}^{G}$, is defined as follows:

- objects: all diagrams D in \mathbf{K} with $\mathcal{G}(D)=G$
- morphisms: for any two diagrams D and D' in \mathbf{K} of shape G, a morphism $\mu \colon D \to D'$ is any family $\mu = \langle \mu_n \colon D_n \to D'_n \rangle_{n \in N}$ of morphisms in \mathbf{K}

Given a graph G with nodes $N = |G|_{nodes}$ and edges $E = |G|_{edges}$, the category of diagrams of shape G in K, \mathbf{Diag}_{K}^{G} , is defined as follows:

- objects: all diagrams D in \mathbf{K} with $\mathcal{G}(D)=G$
- morphisms: for any two diagrams D and D' in \mathbf{K} of shape G, a morphism $\mu \colon D \to D'$ is any family $\mu = \langle \mu_n \colon D_n \to D'_n \rangle_{n \in N}$ of morphisms in \mathbf{K} such that for each edge $e \in E$ with $source_{\mathcal{G}(D)}(e) = n$ and $target_{\mathcal{G}(D)}(e) = m$,

$$\mu_n; D'_e = D_e; \mu_m$$

Andrzej Tarlecki: Category Theory, 2025

Cones and cocones

Cones and cocones

A cone on D (in K)

Cones and cocones

A cone on D (in \mathbf{K}) is an object $X \in |\mathbf{K}|$ together with a family of morphisms $\langle \alpha_n \colon X \to D_n \rangle_{n \in N}$

Cones and cocones

A cone on D (in \mathbf{K}) is an object $X \in |\mathbf{K}|$ together with a family of morphisms $\langle \alpha_n \colon X \to D_n \rangle_{n \in N}$ such that for each edge $e \in E$ with $source_{\mathcal{G}(D)}(e) = n$ and $target_{\mathcal{G}(D)}(e) = m$, $\alpha_n ; D_e = \alpha_m$.

Cones and cocones

A cone on D (in \mathbf{K}) is an object $X \in |\mathbf{K}|$ together with a family of morphisms $\langle \alpha_n \colon X \to D_n \rangle_{n \in N}$ such that for each edge $e \in E$ with $source_{\mathcal{G}(D)}(e) = n$ and $target_{\mathcal{G}(D)}(e) = m$, $\alpha_n ; D_e = \alpha_m$.

A cocone on D (in K)

Cones and cocones

A cone on D (in \mathbf{K}) is an object $X \in |\mathbf{K}|$ together with a family of morphisms $\langle \alpha_n \colon X \to D_n \rangle_{n \in N}$ such that for each edge $e \in E$ with $source_{\mathcal{G}(D)}(e) = n$ and $target_{\mathcal{G}(D)}(e) = m$, $\alpha_n; D_e = \alpha_m$.

A cocone on D (in \mathbf{K}) is an object $X \in |\mathbf{K}|$ together with a family of morphisms $\langle \alpha_n \colon D_n \to X \rangle_{n \in \mathbb{N}}$

Cones and cocones

A cone on D (in \mathbf{K}) is an object $X \in |\mathbf{K}|$ together with a family of morphisms $\langle \alpha_n \colon X \to D_n \rangle_{n \in N}$ such that for each edge $e \in E$ with $source_{\mathcal{G}(D)}(e) = n$ and $target_{\mathcal{G}(D)}(e) = m$, $\alpha_n; D_e = \alpha_m$.

A cocone on D (in \mathbf{K}) is an object $X \in |\mathbf{K}|$ together with a family of morphisms $\langle \alpha_n \colon D_n \to X \rangle_{n \in \mathbb{N}}$ such that for each edge $e \in E$ with $source_{\mathcal{G}(D)}(e) = n$ and $target_{\mathcal{G}(D)}(e) = m$, $\alpha_n = D_e; \alpha_m$.

A limit of D (in \mathbf{K})

A limit of D (in \mathbf{K}) is a cone $\langle \alpha_n \colon X \to D_n \rangle_{n \in N}$ on D

A limit of D (in \mathbf{K}) is a cone $\langle \alpha_n \colon X \to D_n \rangle_{n \in N}$ on D such that for all cones $\langle \alpha'_n \colon X' \to D_n \rangle_{n \in N}$ on D,

A limit of D (in \mathbf{K}) is a cone $\langle \alpha_n \colon X \to D_n \rangle_{n \in N}$ on D such that for all cones $\langle \alpha'_n \colon X' \to D_n \rangle_{n \in N}$ on D, for a unique morphism $h \colon X' \to X$, $h; \alpha_n = \alpha'_n$ for all $n \in N$.

A limit of D (in \mathbf{K}) is a cone $\langle \alpha_n \colon X \to D_n \rangle_{n \in N}$ on D such that for all cones $\langle \alpha'_n \colon X' \to D_n \rangle_{n \in N}$ on D, for a unique morphism $h \colon X' \to X$, $h; \alpha_n = \alpha'_n$ for all $n \in N$.

A colimit of D (in \mathbf{K})

A limit of D (in \mathbf{K}) is a cone $\langle \alpha_n \colon X \to D_n \rangle_{n \in N}$ on D such that for all cones $\langle \alpha'_n \colon X' \to D_n \rangle_{n \in N}$ on D, for a unique morphism $h \colon X' \to X$, $h; \alpha_n = \alpha'_n$ for all $n \in N$.

A colimit of D (in \mathbf{K}) is a cocone $\langle \alpha_n \colon D_n \to X \rangle_{n \in \mathbb{N}}$ on D

A limit of D (in \mathbf{K}) is a cone $\langle \alpha_n \colon X \to D_n \rangle_{n \in N}$ on D such that for all cones $\langle \alpha'_n \colon X' \to D_n \rangle_{n \in N}$ on D, for a unique morphism $h \colon X' \to X$, $h; \alpha_n = \alpha'_n$ for all $n \in N$.

A colimit of D (in \mathbf{K}) is a cocone $\langle \alpha_n \colon D_n \to X \rangle_{n \in \mathbb{N}}$ on D such that for all cocones $\langle \alpha'_n \colon D_n \to X' \rangle_{n \in \mathbb{N}}$ on D,

A limit of D (in \mathbf{K}) is a cone $\langle \alpha_n \colon X \to D_n \rangle_{n \in N}$ on D such that for all cones $\langle \alpha'_n \colon X' \to D_n \rangle_{n \in N}$ on D, for a unique morphism $h \colon X' \to X$, $h; \alpha_n = \alpha'_n$ for all $n \in N$.

A colimit of D (in \mathbf{K}) is a cocone $\langle \alpha_n \colon D_n \to X \rangle_{n \in N}$ on D such that for all cocones $\langle \alpha'_n \colon D_n \to X' \rangle_{n \in N}$ on D, for a unique morphism $h \colon X \to X'$, $\alpha_n; h = \alpha'_n$ for all $n \in N$.

Some limits

diagram	limit	in Set

Some limits

diagram	limit	in Set
(empty)	terminal object	{*}

diagram	limit	in Set
(empty)	terminal object	{*}
A B	product	$A \times B$

diagram	limit	in Set
(empty)	terminal object	{*}
A B	product	$A \times B$
$A \xrightarrow{f} B$	equaliser	$\{a \in A \mid f(a) = g(a)\} \hookrightarrow A$

diagram	limit	in Set
(empty)	terminal object	{*}
A B	product	$A \times B$
$A \xrightarrow{f} B$	equaliser	$\{a \in A \mid f(a) = g(a)\} \hookrightarrow A$

$$A \xrightarrow{f} B$$

diagram	limit	in Set
(empty)	terminal object	{*}
A B	product	$A \times B$
$A \xrightarrow{f} B$	equaliser	$\{a \in A \mid f(a) = g(a)\} \hookrightarrow A$

Cones
$$X \xrightarrow{\alpha_A} A \xrightarrow{f} B$$
 where $\alpha_A; f = \alpha_B$ and $\alpha_A; g = \alpha_B$

diagram	limit	in Set
(empty)	terminal object	{*}
A B	product	$A \times B$
$A \xrightarrow{f} B$	equaliser	$\{a \in A \mid f(a) = g(a)\} \hookrightarrow A$

Cones
$$X \xrightarrow{\alpha_A} A \xrightarrow{f} B$$
 where $\alpha_A; f = \alpha_B$ and $\alpha_A; g = \alpha_B$

coincide with morphisms
$$X \xrightarrow{\alpha_A} A \xrightarrow{f} B$$
 where $\alpha_A; f = \alpha_A; g$.

diagram	limit	in Set
(empty)	terminal object	{*}
A B	product	$A \times B$
$A \xrightarrow{f} B$	equaliser	$\{a \in A \mid f(a) = g(a)\} \hookrightarrow A$
$A \xrightarrow{f} C \xleftarrow{g} B$	pullback	$\{(a,b)\in A\times B\mid f(a)=g(b)\}$

diagram	limit	in Set
(empty)	terminal object	{*}
A B	product	$A \times B$
$A \xrightarrow{f \atop g} B$	equaliser	$\{a \in A \mid f(a) = g(a)\} \hookrightarrow A$
$A \xrightarrow{f} C \xleftarrow{g} B$	pullback	$\{(a,b) \in A \times B \mid f(a) = g(b)\}$

$$A \xrightarrow{f} C \xleftarrow{g} B$$

diagram	limit	in Set
(empty)	terminal object	{*}
A B	product	$A \times B$
$A \xrightarrow{f} B$	equaliser	$\{a \in A \mid f(a) = g(a)\} \hookrightarrow A$
$A \xrightarrow{f} C \xleftarrow{g} B$	pullback	$\{(a,b)\in A\times B\mid f(a)=g(b)\}$

Cones
$$A \xrightarrow{f} C \xrightarrow{g} B$$
 where $\alpha_A; f = \alpha_C$ and $\alpha_B; g = \alpha_C$

diagram	limit	in Set
(empty)	terminal object	{*}
A B	product	$A \times B$
$A \xrightarrow{f} B$	equaliser	$\{a \in A \mid f(a) = g(a)\} \hookrightarrow A$
$A \xrightarrow{f} C \xleftarrow{g} B$	pullback	$\{(a,b) \in A \times B \mid f(a) = g(b)\}$

Cones $A \xrightarrow{f} C \xrightarrow{g} B$ where $\alpha_A; f = \alpha_C$ and $\alpha_B; g = \alpha_C$

coincide with pairs of morphisms

$$A \xrightarrow{f} C \xrightarrow{g} B$$
 where $\alpha_A; f = \alpha_B; g$.

...& colimits

diagram	colimit	in Set
(empty)	initial object	Ø
A B	coproduct	$A \uplus B$
$A \xrightarrow{f \atop g} B$	coequaliser	$B \longrightarrow B/\!\!\equiv$ where $f(a) \equiv g(a)$ for all $a \in A$
$A \xleftarrow{f} C \xrightarrow{g} B$	pushout	$(A \uplus B)/{\equiv}$ where $f(c) \equiv g(c)$ for all $c \in C$

• For any diagram D, define the category of cones over D, $\mathbf{Cone}(D)$:

- For any diagram D, define the category of cones over D, $\mathbf{Cone}(D)$:
 - objects: all cones over D

- For any diagram D, define the category of cones over D, $\mathbf{Cone}(D)$:
 - objects: all cones over D
 - morphisms: a morphism from $\langle \alpha_n \colon X \to D_n \rangle_{n \in \mathbb{N}}$ to $\langle \alpha'_n \colon X' \to D_n \rangle_{n \in \mathbb{N}}$

- For any diagram D, define the category of cones over D, $\mathbf{Cone}(D)$:
 - objects: all cones over D
 - morphisms: a morphism from $\langle \alpha_n \colon X \to D_n \rangle_{n \in N}$ to $\langle \alpha'_n \colon X' \to D_n \rangle_{n \in N}$ is any K-morphism $h \colon X \to X'$ such that $h; \alpha'_n = \alpha_n$ for all $n \in N$.

- For any diagram D, define the category of cones over D, $\mathbf{Cone}(D)$:
 - objects: all cones over D
 - morphisms: a morphism from $\langle \alpha_n \colon X \to D_n \rangle_{n \in N}$ to $\langle \alpha'_n \colon X' \to D_n \rangle_{n \in N}$ is any K-morphism $h \colon X \to X'$ such that $h; \alpha'_n = \alpha_n$ for all $n \in N$.
 - composition: inherited from ${f K}$.

- For any diagram D, define the category of cones over D, $\mathbf{Cone}(D)$:
 - objects: all cones over D
 - morphisms: a morphism from $\langle \alpha_n \colon X \to D_n \rangle_{n \in N}$ to $\langle \alpha'_n \colon X' \to D_n \rangle_{n \in N}$ is any K-morphism $h \colon X \to X'$ such that $h; \alpha'_n = \alpha_n$ for all $n \in N$.
 - composition: inherited from ${f K}$.

Notation:

- For any diagram D, define the category of cones over D, $\mathbf{Cone}(D)$:
 - objects: all cones over D
 - morphisms: a morphism from $\langle \alpha_n \colon X \to D_n \rangle_{n \in N}$ to $\langle \alpha'_n \colon X' \to D_n \rangle_{n \in N}$ is any K-morphism $h \colon X \to X'$ such that $h; \alpha'_n = \alpha_n$ for all $n \in N$.
 - composition: inherited from ${f K}$.

Notation:

- We may write $\alpha \colon X \to D$ for the cone $\langle \alpha_n \colon X \to D_n \rangle_{n \in N}$.

- For any diagram D, define the category of cones over D, Cone(D):
 - objects: all cones over D
 - morphisms: a morphism from $\langle \alpha_n \colon X \to D_n \rangle_{n \in N}$ to $\langle \alpha'_n \colon X' \to D_n \rangle_{n \in N}$ is any K-morphism $h \colon X \to X'$ such that $h; \alpha'_n = \alpha_n$ for all $n \in N$.
 - composition: inherited from ${f K}$.

Notation:

- We may write $\alpha \colon X \to D$ for the cone $\langle \alpha_n \colon X \to D_n \rangle_{n \in N}$.
- Then for $f: Y \to X$, $f:\alpha: Y \to D$ is the cone $\langle f:\alpha_n: X \to D_n \rangle_{n \in N}$.

- For any diagram D, define the category of cones over D, $\mathbf{Cone}(D)$:
 - objects: all cones over D
 - morphisms: a morphism from $\langle \alpha_n \colon X \to D_n \rangle_{n \in N}$ to $\langle \alpha'_n \colon X' \to D_n \rangle_{n \in N}$ is any K-morphism $h \colon X \to X'$ such that $h; \alpha'_n = \alpha_n$ for all $n \in N$.
 - composition: inherited from ${f K}$.

Notation:

- We may write $\alpha \colon X \to D$ for the cone $\langle \alpha_n \colon X \to D_n \rangle_{n \in N}$.
- Then for $f: Y \to X$, $f:\alpha: Y \to D$ is the cone $\langle f:\alpha_n: X \to D_n \rangle_{n \in N}$.
- So, $h: X \to X'$ is a cone morphism $h: (\alpha: X \to D) \to (\alpha': X' \to D)$ iff $\alpha = h; \alpha'$.

- For any diagram D, define the category of cones over D, $\mathbf{Cone}(D)$:
 - objects: all cones over D
 - morphisms: a morphism from $\langle \alpha_n \colon X \to D_n \rangle_{n \in N}$ to $\langle \alpha'_n \colon X' \to D_n \rangle_{n \in N}$ is any K-morphism $h \colon X \to X'$ such that $h; \alpha'_n = \alpha_n$ for all $n \in N$.
- Show that limits of D are terminal objects in $\mathbf{Cone}(D)$.

- For any diagram D, define the category of cones over D, $\mathbf{Cone}(D)$:
 - objects: all cones over D
 - morphisms: a morphism from $\langle \alpha_n \colon X \to D_n \rangle_{n \in N}$ to $\langle \alpha'_n \colon X' \to D_n \rangle_{n \in N}$ is any K-morphism $h \colon X \to X'$ such that $h; \alpha'_n = \alpha_n$ for all $n \in N$.
- Show that limits of D are terminal objects in $\mathbf{Cone}(D)$. Conclude that limits are defined uniquely up to isomorphism (which commutes with limit projections).

- For any diagram D, define the category of cones over D, $\mathbf{Cone}(D)$:
 - objects: all cones over D
 - morphisms: a morphism from $\langle \alpha_n \colon X \to D_n \rangle_{n \in N}$ to $\langle \alpha'_n \colon X' \to D_n \rangle_{n \in N}$ is any K-morphism $h \colon X \to X'$ such that $h; \alpha'_n = \alpha_n$ for all $n \in N$.
- Show that limits of D are terminal objects in $\mathbf{Cone}(D)$. Conclude that limits are defined uniquely up to isomorphism (which commutes with limit projections).
- Construct a limit in Set of the following diagram:

$$A_0 \stackrel{f_0}{\longleftarrow} A_1 \stackrel{f_1}{\longleftarrow} A_2 \stackrel{f_2}{\longleftarrow} \cdots$$

- For any diagram D, define the category of cones over D, $\mathbf{Cone}(D)$:
 - objects: all cones over D
 - morphisms: a morphism from $\langle \alpha_n \colon X \to D_n \rangle_{n \in N}$ to $\langle \alpha'_n \colon X' \to D_n \rangle_{n \in N}$ is any K-morphism $h \colon X \to X'$ such that $h; \alpha'_n = \alpha_n$ for all $n \in N$.
- Show that limits of D are terminal objects in $\mathbf{Cone}(D)$. Conclude that limits are defined uniquely up to isomorphism (which commutes with limit projections).
- Construct a limit in Set of the following diagram:

$$A_0 \stackrel{f_0}{\longleftarrow} A_1 \stackrel{f_1}{\longleftarrow} A_2 \stackrel{f_2}{\longleftarrow} \cdots$$

• Easier: Consider $A_0 \supseteq A_1 \supseteq A_2 \supseteq \cdots$. Construct a limit in **Set** of the following diagram: $A_0 \hookleftarrow A_1 \hookleftarrow A_2 \hookleftarrow \cdots$

- For any diagram D, define the category of cones over D, $\mathbf{Cone}(D)$:
 - objects: all cones over D
 - morphisms: a morphism from $\langle \alpha_n \colon X \to D_n \rangle_{n \in N}$ to $\langle \alpha'_n \colon X' \to D_n \rangle_{n \in N}$ is any K-morphism $h \colon X \to X'$ such that $h; \alpha'_n = \alpha_n$ for all $n \in N$.
- Show that limits of D are terminal objects in $\mathbf{Cone}(D)$. Conclude that limits are defined uniquely up to isomorphism (which commutes with limit projections).
- Construct a limit in Set of the following diagram:

$$A_0 \stackrel{f_0}{\longleftarrow} A_1 \stackrel{f_1}{\longleftarrow} A_2 \stackrel{f_2}{\longleftarrow} \cdots$$

• Easier: Consider $A_0 \supseteq A_1 \supseteq A_2 \supseteq \cdots$. Construct a limit in **Set** of the following diagram: $A_0 \longleftrightarrow A_1 \longleftrightarrow A_2 \longleftrightarrow \cdots$ (Hint: $\bigcap_{i>0} A_i$)

- For any diagram D, define the category of cones over D, $\mathbf{Cone}(D)$:
 - objects: all cones over D
 - morphisms: a morphism from $\langle \alpha_n \colon X \to D_n \rangle_{n \in N}$ to $\langle \alpha'_n \colon X' \to D_n \rangle_{n \in N}$ is any K-morphism $h \colon X \to X'$ such that $h; \alpha'_n = \alpha_n$ for all $n \in N$.
- Show that limits of D are terminal objects in $\mathbf{Cone}(D)$. Conclude that limits are defined uniquely up to isomorphism (which commutes with limit projections).
- Construct a limit in Set of the following diagram:

$$A_0 \stackrel{f_0}{\longleftarrow} A_1 \stackrel{f_1}{\longleftarrow} A_2 \stackrel{f_2}{\longleftarrow} \cdots$$

Hint: $\{\langle a_i \rangle_{i>0} \mid \text{ for } i \geq 0, a_i \in A_i \text{ and } f_i(a_{i+1}) = a_i\}$

- For any diagram D, define the category of cones over D, $\mathbf{Cone}(D)$:
 - objects: all cones over D
 - morphisms: a morphism from $\langle \alpha_n \colon X \to D_n \rangle_{n \in N}$ to $\langle \alpha'_n \colon X' \to D_n \rangle_{n \in N}$ is any K-morphism $h \colon X \to X'$ such that $h; \alpha'_n = \alpha_n$ for all $n \in N$.
- Show that limits of D are terminal objects in $\mathbf{Cone}(D)$. Conclude that limits are defined uniquely up to isomorphism (which commutes with limit projections).
- Construct a limit in Set of the following diagram:

$$A_0 \stackrel{f_0}{\longleftarrow} A_1 \stackrel{f_1}{\longleftarrow} A_2 \stackrel{f_2}{\longleftarrow} \cdots$$

• Show that limiting cones are *jointly mono*, i.e., if $\langle \alpha_n \colon X \to D_n \rangle_{n \in N}$ is a limit of D then for all $f, g \colon A \to X$, f = g whenever $f \colon \alpha_n = g \colon \alpha_n$ for all $n \in N$.

- For any diagram D, define the category of cones over D, $\mathbf{Cone}(D)$:
 - objects: all cones over D
 - $\ \underline{\underline{\text{morphisms}}} : \text{ a morphism from } \langle \alpha_n \colon X \to D_n \rangle_{n \in N} \text{ to } \langle \alpha'_n \colon X' \to D_n \rangle_{n \in N} \text{ is any } \mathbf{K}\text{-morphism } h \colon X \to X' \text{ such that } h; \alpha'_n = \alpha_n \text{ for all } n \in N.$
- Show that limits of D are terminal objects in $\mathbf{Cone}(D)$. Conclude that limits are defined uniquely up to isomorphism (which commutes with limit projections).
- Construct a limit in Set of the following diagram:

$$A_0 \stackrel{f_0}{\longleftarrow} A_1 \stackrel{f_1}{\longleftarrow} A_2 \stackrel{f_2}{\longleftarrow} \cdots$$

• Show that limiting cones are *jointly mono*, i.e., if $\langle \alpha_n \colon X \to D_n \rangle_{n \in N}$ is a limit of D then for all $f,g \colon A \to X$, f=g whenever $f;\alpha_n=g;\alpha_n$ for all $n \in N$. Proof: Let $\beta=f;\alpha=g;\alpha \colon A \to D$.

- For any diagram D, define the category of cones over D, $\mathbf{Cone}(D)$:
 - objects: all cones over D
 - $\ \underline{\underline{\text{morphisms}}} : \text{ a morphism from } \langle \alpha_n \colon X \to D_n \rangle_{n \in N} \text{ to } \langle \alpha'_n \colon X' \to D_n \rangle_{n \in N} \text{ is any } \mathbf{K}\text{-morphism } h \colon X \to X' \text{ such that } h; \alpha'_n = \alpha_n \text{ for all } n \in N.$
- Show that limits of D are terminal objects in $\mathbf{Cone}(D)$. Conclude that limits are defined uniquely up to isomorphism (which commutes with limit projections).
- Construct a limit in Set of the following diagram:

$$A_0 \stackrel{f_0}{\longleftarrow} A_1 \stackrel{f_1}{\longleftarrow} A_2 \stackrel{f_2}{\longleftarrow} \cdots$$

• Show that limiting cones are *jointly mono*, i.e., if $\langle \alpha_n \colon X \to D_n \rangle_{n \in N}$ is a limit of D then for all $f,g \colon A \to X$, f=g whenever $f;\alpha_n=g;\alpha_n$ for all $n \in N$.

Proof: Let $\beta=f;\alpha=g;\alpha \colon A \to D$. There is unique $h \colon \beta \to \alpha$, and so h=f=g.

- For any diagram D, define the category of cones over D, $\mathbf{Cone}(D)$:
 - objects: all cones over D
 - morphisms: a morphism from $\langle \alpha_n \colon X \to D_n \rangle_{n \in N}$ to $\langle \alpha'_n \colon X' \to D_n \rangle_{n \in N}$ is any K-morphism $h \colon X \to X'$ such that $h; \alpha'_n = \alpha_n$ for all $n \in N$.
- Show that limits of D are terminal objects in $\mathbf{Cone}(D)$. Conclude that limits are defined uniquely up to isomorphism (which commutes with limit projections).
- Construct a limit in Set of the following diagram:

$$A_0 \stackrel{f_0}{\longleftarrow} A_1 \stackrel{f_1}{\longleftarrow} A_2 \stackrel{f_2}{\longleftarrow} \cdots$$

• Show that limiting cones are *jointly mono*, i.e., if $\langle \alpha_n \colon X \to D_n \rangle_{n \in N}$ is a limit of D then for all $f, g \colon A \to X$, f = g whenever $f \colon \alpha_n = g \colon \alpha_n$ for all $n \in N$.

Dualise all the exercises above!

A category \mathbf{K} is complete if any diagram in \mathbf{K} has a limit.

A category \mathbf{K} is cocomplete if any diagram in \mathbf{K} has a colimit.

A category \mathbf{K} is (finitely) complete if any (finite) diagram in \mathbf{K} has a limit.

A category **K** is (finitely) cocomplete if any (finite) diagram in **K** has a colimit.

A category \mathbf{K} is (finitely) complete if any (finite) diagram in \mathbf{K} has a limit.

A category \mathbf{K} is (finitely) cocomplete if any (finite) diagram in \mathbf{K} has a colimit.

• If K has a terminal object, binary products (of all pairs of objects) and equalisers (of all pairs of parallel morphisms) then it is finitely complete.

A category **K** is (finitely) complete if any (finite) diagram in **K** has a limit.

A category \mathbf{K} is (finitely) cocomplete if any (finite) diagram in \mathbf{K} has a colimit.

• If K has a terminal object, binary products (of all pairs of objects) and equalisers (of all pairs of parallel morphisms) then it is finitely complete.

Proof (idea): Let D be a diagram with nodes N and edges $E = \{e_1, \ldots, e_k\}$.

A category **K** is (finitely) complete if any (finite) diagram in **K** has a limit.

A category \mathbf{K} is (finitely) cocomplete if any (finite) diagram in \mathbf{K} has a colimit.

ullet If ${f K}$ has a terminal object, binary products (of all pairs of objects) and equalisers (of all pairs of parallel morphisms) then it is finitely complete.

Proof (idea): Let D be a diagram with nodes N and edges $E = \{e_1, \ldots, e_k\}$.

- Take the product $P_0 = \prod_{n \in N} D_n$ with projections $\pi_n : P_0 \to D_n$, $n \in N$.

A category **K** is (finitely) complete if any (finite) diagram in **K** has a limit.

A category **K** is (finitely) cocomplete if any (finite) diagram in **K** has a colimit.

• If K has a terminal object, binary products (of all pairs of objects) and equalisers (of all pairs of parallel morphisms) then it is finitely complete.

Proof (idea): Let D be a diagram with nodes N and edges $E = \{e_1, \ldots, e_k\}$.

- Take the product $P_0 = \prod_{n \in N} D_n$ with projections $\pi_n \colon P_0 \to D_n$, $n \in N$.
- For $e_1: n_1 \to m_1$ in $\mathcal{G}(D)$ take the equaliser $p_1: P_1 \to P_0$ of $\pi_{n_1}; D_{e_1}: P_0 \to D_{m_1}$ and $\pi_{m_1}: P_0 \to D_{m_1}$.

A category **K** is (finitely) complete if any (finite) diagram in **K** has a limit.

A category **K** is (finitely) cocomplete if any (finite) diagram in **K** has a colimit.

ullet If old K has a terminal object, binary products (of all pairs of objects) and equalisers (of all pairs of parallel morphisms) then it is finitely complete.

Proof (idea): Let D be a diagram with nodes N and edges $E = \{e_1, \ldots, e_k\}$.

- Take the product $P_0 = \prod_{n \in N} D_n$ with projections $\pi_n \colon P_0 \to D_n$, $n \in N$.
- For $e_i: n_i \to m_i$ in $\mathcal{G}(D)$, i = 1, ..., k, take the equaliser $p_i: P_i \to P_{i-1}$ of $(p_{i-1}; \dots; p_1); \pi_{n_i}; D_{e_i}: P_{i-1} \to D_{m_i}$ and $(p_{i-1}; \dots; p_1); \pi_{m_1}: P_{i-1} \to D_{m_i}$.

A category **K** is (finitely) complete if any (finite) diagram in **K** has a limit.

A category **K** is (finitely) cocomplete if any (finite) diagram in **K** has a colimit.

ullet If old K has a terminal object, binary products (of all pairs of objects) and equalisers (of all pairs of parallel morphisms) then it is finitely complete.

Proof (idea): Let D be a diagram with nodes N and edges $E = \{e_1, \ldots, e_k\}$.

- Take the product $P_0 = \prod_{n \in N} D_n$ with projections $\pi_n \colon P_0 \to D_n$, $n \in N$.
- For $e_i: n_i \to m_i$ in $\mathcal{G}(D)$, i = 1, ..., k, take the equaliser $p_i: P_i \to P_{i-1}$ of $(p_{i-1}; \dots; p_1); \pi_{n_i}; D_{e_i}: P_{i-1} \to D_{m_i}$ and $(p_{i-1}; \dots; p_1); \pi_{m_1}: P_{i-1} \to D_{m_i}$.
- $-P_k$ with projections $p_k; \cdots; p_1; \pi_n: P_k \to D_n$, $n \in N$, is the limit of D.

A category \mathbf{K} is (finitely) complete if any (finite) diagram in \mathbf{K} has a limit.

- ullet If ${f K}$ has a terminal object, binary products (of all pairs of objects) and equalisers (of all pairs of parallel morphisms) then it is finitely complete.
- ullet If old K has products of all families of objects and equalisers (of all pairs of parallel morphisms) then it is complete.

A category **K** is (finitely) complete if any (finite) diagram in **K** has a limit.

- ullet If old K has a terminal object, binary products (of all pairs of objects) and equalisers (of all pairs of parallel morphisms) then it is finitely complete.
- If **K** has products of all families of objects and equalisers (of all pairs of parallel morphisms) then it is complete.

A category \mathbf{K} is (finitely) complete if any (finite) diagram in \mathbf{K} has a limit.

- ullet If old K has a terminal object, binary products (of all pairs of objects) and equalisers (of all pairs of parallel morphisms) then it is finitely complete.
- If K has products of all families of objects and equalisers (of all pairs of parallel morphisms) then it is complete.

$$p = eql(f, g)$$

A category \mathbf{K} is (finitely) complete if any (finite) diagram in \mathbf{K} has a limit.

- If **K** has a terminal object, binary products (of all pairs of objects) and equalisers (of all pairs of parallel morphisms) then it is finitely complete.
- If K has products of all families of objects and equalisers (of all pairs of parallel morphisms) then it is complete.

A category \mathbf{K} is (finitely) complete if any (finite) diagram in \mathbf{K} has a limit.

A category \mathbf{K} is (finitely) cocomplete if any (finite) diagram in \mathbf{K} has a colimit.

ullet If old K has a terminal object, binary products (of all pairs of objects) and equalisers (of all pairs of parallel morphisms) then it is finitely complete.

ullet If ${f K}$ has products of all families of objects and equalisers (of all pairs of parallel

morphisms) then it is complete.

A category \mathbf{K} is (finitely) complete if any (finite) diagram in \mathbf{K} has a limit.

A category \mathbf{K} is (finitely) cocomplete if any (finite) diagram in \mathbf{K} has a colimit.

ullet If old K has a terminal object, binary products (of all pairs of objects) and equalisers (of all pairs of parallel morphisms) then it is finitely complete.

ullet If ${f K}$ has products of all families of objects and equalisers (of all pairs of parallel

morphisms) then it is complete.

A category \mathbf{K} is (finitely) complete if any (finite) diagram in \mathbf{K} has a limit.

- ullet If old K has a terminal object, binary products (of all pairs of objects) and equalisers (of all pairs of parallel morphisms) then it is finitely complete.
- If K has products of all families of objects and equalisers (of all pairs of parallel morphisms) then it is complete.

$$r = eql(\langle f, f' \rangle, \langle g, g' \rangle)$$

A category \mathbf{K} is (finitely) complete if any (finite) diagram in \mathbf{K} has a limit.

A category \mathbf{K} is (finitely) cocomplete if any (finite) diagram in \mathbf{K} has a colimit.

- ullet If ${f K}$ has a terminal object, binary products (of all pairs of objects) and equalisers (of all pairs of parallel morphisms) then it is finitely complete.
- If K has products of all families of objects and equalisers (of all pairs of parallel morphisms) then it is complete.

$$R \xrightarrow{f} g \xrightarrow{\pi_B} A \xrightarrow{\langle f, f' \rangle} B \times B'$$

$$f' \downarrow g' \xrightarrow{\pi_{B'}} B'$$

$$r = eql(\langle f, f' \rangle, \langle g, g' \rangle)$$

Hint: $r:\langle f, f' \rangle = r:\langle g, g' \rangle$ iff r:f = r:g and r:f' = r:g'

A category \mathbf{K} is (finitely) complete if any (finite) diagram in \mathbf{K} has a limit.

A category \mathbf{K} is (finitely) cocomplete if any (finite) diagram in \mathbf{K} has a colimit.

- If **K** has a terminal object, binary products (of all pairs of objects) and equalisers (of all pairs of parallel morphisms) then it is finitely complete.
- If K has products of all families of objects and equalisers (of all pairs of parallel morphisms) then it is complete.

Hint:
$$r:\langle f, f' \rangle = r:\langle g, g' \rangle$$
 iff $r:f = r:g$ and $r:f' = r:g'$

 $r = eql(\langle f, f' \rangle, \langle g, g' \rangle)$

A category \mathbf{K} is (finitely) complete if any (finite) diagram in \mathbf{K} has a limit.

A category \mathbf{K} is (finitely) cocomplete if any (finite) diagram in \mathbf{K} has a colimit.

- ullet If old K has a terminal object, binary products (of all pairs of objects) and equalisers (of all pairs of parallel morphisms) then it is finitely complete.
- If **K** has products of all families of objects and equalisers (of all pairs of parallel morphisms) then it is complete.

A category \mathbf{K} is (finitely) complete if any (finite) diagram in \mathbf{K} has a limit.

A category \mathbf{K} is (finitely) cocomplete if any (finite) diagram in \mathbf{K} has a colimit.

- ullet If ${f K}$ has a terminal object, binary products (of all pairs of objects) and equalisers (of all pairs of parallel morphisms) then it is finitely complete.
- ullet If old K has products of all families of objects and equalisers (of all pairs of parallel morphisms) then it is complete.

$$-\ P_0 = \prod_{n \in N} D_n$$
, projections $\pi_n \colon P_0 \to D_n$, $n \in N$

A category \mathbf{K} is (finitely) complete if any (finite) diagram in \mathbf{K} has a limit.

A category \mathbf{K} is (finitely) cocomplete if any (finite) diagram in \mathbf{K} has a colimit.

- If K has a terminal object, binary products (of all pairs of objects) and equalisers (of all pairs of parallel morphisms) then it is finitely complete.
- If ${f K}$ has products of all families of objects and equalisers (of all pairs of parallel morphisms) then it is complete. P_1

$$- P_0 = \prod_{n \in N} D_n,$$
 projections $\pi_n \colon P_0 \to D_n, \ n \in N$

-
$$P_1 = \prod_{e \in E} D_{target(e)}$$
,
projections $\pi_e \colon P_1 \to D_{target(e)}$, $e \in E$

A category \mathbf{K} is (finitely) complete if any (finite) diagram in \mathbf{K} has a limit.

A category **K** is (finitely) cocomplete if any (finite) diagram in **K** has a colimit.

- ullet If ${f K}$ has a terminal object, binary products (of all pairs of objects) and equalisers (of all pairs of parallel morphisms) then it is finitely complete.
- If ${\bf K}$ has products of all families of objects and equalisers (of all pairs of parallel morphisms) then it is complete. P_{1}

$$- P_0 = \prod_{n \in N} D_n,$$
 projections $\pi_n \colon P_0 \to D_n, \ n \in N$

-
$$P_1 = \prod_{e \in E} D_{target(e)}$$
,
projections $\pi_e \colon P_1 \to D_{target(e)}$, $e \in E$

A category **K** is (finitely) complete if any (finite) diagram in **K** has a limit.

A category **K** is (finitely) cocomplete if any (finite) diagram in **K** has a colimit.

- ullet If old K has a terminal object, binary products (of all pairs of objects) and equalisers (of all pairs of parallel morphisms) then it is finitely complete.
- If **K** has products of all families of objects and equalisers (of all pairs of parallel morphisms) then it is complete. P_{1}

$$-P_0=\prod_{n\in N}D_n$$
, projections $\pi_n\colon P_0 o D_n$, $n\in N$

$$-P_1 = \prod_{e \in E} D_{target(e)},$$
projections $\pi_e : P_1 \to D_{target(e)}, e \in E$

$$- \alpha = \langle \pi_{target(e)} \rangle_{e \in E},$$

A category \mathbf{K} is (finitely) complete if any (finite) diagram in \mathbf{K} has a limit.

A category \mathbf{K} is (finitely) cocomplete if any (finite) diagram in \mathbf{K} has a colimit.

- ullet If old K has a terminal object, binary products (of all pairs of objects) and equalisers (of all pairs of parallel morphisms) then it is finitely complete.
- If **K** has products of all families of objects and equalisers (of all pairs of parallel morphisms) then it is complete. P_{1}

$$-\ P_0 = \prod_{n \in N} D_n,$$
 projections $\pi_n \colon P_0 \to D_n, \ n \in N$

$$- P_1 = \prod_{e \in E} D_{target(e)},$$
projections $\pi_e \colon P_1 \to D_{target(e)}, e \in E$

$$- \alpha = \langle \pi_{target(e)} \rangle_{e \in E}, \quad \beta = \langle \pi_{source(e)}; D_e \rangle_{e \in E}$$

A category \mathbf{K} is (finitely) complete if any (finite) diagram in \mathbf{K} has a limit.

A category **K** is (finitely) cocomplete if any (finite) diagram in **K** has a colimit.

- ullet If old K has a terminal object, binary products (of all pairs of objects) and equalisers (of all pairs of parallel morphisms) then it is finitely complete.
- ullet If ${f K}$ has products of all families of objects and equalisers (of all pairs of parallel

morphisms) then it is complete.

$$-\ P_0 = \prod_{n \in N} D_n$$
, projections $\pi_n \colon P_0 \to D_n$, $n \in N$

$$-P_1 = \prod_{e \in E} D_{target(e)},$$
projections $\pi_e : P_1 \to D_{target(e)}, e \in E$

$$- \alpha = \langle \pi_{target(e)} \rangle_{e \in E}, \quad \beta = \langle \pi_{source(e)}; D_e \rangle_{e \in E}$$

$$- p = eql(\alpha, \beta)$$

A category **K** is (finitely) complete if any (finite) diagram in **K** has a limit.

A category \mathbf{K} is (finitely) cocomplete if any (finite) diagram in \mathbf{K} has a colimit.

- ullet If ${f K}$ has a terminal object, binary products (of all pairs of objects) and equalisers (of all pairs of parallel morphisms) then it is finitely complete.
- If K has products of all families of objects and equalisers (of all pairs of parallel morphisms) then it is complete.

-
$$P_0 = \prod_{n \in N} D_n$$
, projections $\pi_n \colon P_0 \to D_n$, $n \in N$

- $P_1 = \prod_{e \in E} D_{target(e)},$ projections $\pi_e \colon P_1 \to D_{target(e)}, \ e \in E$
- $\alpha = \langle \pi_{target(e)} \rangle_{e \in E}, \quad \beta = \langle \pi_{source(e)}; D_e \rangle_{e \in E}$
- $p = eql(\alpha, \beta)$
- P with projections $\langle p; \pi_n \rangle_{n \in \mathbb{N}}$ is the limit of D.

A category \mathbf{K} is (finitely) complete if any (finite) diagram in \mathbf{K} has a limit.

A category \mathbf{K} is (finitely) cocomplete if any (finite) diagram in \mathbf{K} has a colimit.

- ullet If ${f K}$ has a terminal object, binary products (of all pairs of objects) and equalisers (of all pairs of parallel morphisms) then it is finitely complete.
- ullet If old K has products of all families of objects and equalisers (of all pairs of parallel morphisms) then it is complete.

Prove completeness of Set, $\mathbf{Alg}(\Sigma)$, \mathbf{AlgSig} , \mathbf{Pfn} , ...

A category \mathbf{K} is (finitely) complete if any (finite) diagram in \mathbf{K} has a limit.

A category \mathbf{K} is (finitely) cocomplete if any (finite) diagram in \mathbf{K} has a colimit.

- If **K** has a terminal object, binary products (of all pairs of objects) and equalisers (of all pairs of parallel morphisms) then it is finitely complete.
- ullet If old K has products of all families of objects and equalisers (of all pairs of parallel morphisms) then it is complete.

Prove completeness of Set, $\mathbf{Alg}(\Sigma)$, \mathbf{AlgSig} , \mathbf{Pfn} , ...

When a preorder category is complete?

A category \mathbf{K} is (finitely) complete if any (finite) diagram in \mathbf{K} has a limit.

A category \mathbf{K} is (finitely) cocomplete if any (finite) diagram in \mathbf{K} has a colimit.

- If **K** has a terminal object, binary products (of all pairs of objects) and equalisers (of all pairs of parallel morphisms) then it is finitely complete.
- ullet If old K has products of all families of objects and equalisers (of all pairs of parallel morphisms) then it is complete.

Prove completeness of Set, $\mathbf{Alg}(\Sigma)$, \mathbf{AlgSig} , \mathbf{Pfn} , ...

When a preorder category is complete?

Any lower complete semilattice is a complete lattice.

A category \mathbf{K} is (finitely) complete if any (finite) diagram in \mathbf{K} has a limit.

A category \mathbf{K} is (finitely) cocomplete if any (finite) diagram in \mathbf{K} has a colimit.

- If **K** has a terminal object, binary products (of all pairs of objects) and equalisers (of all pairs of parallel morphisms) then it is finitely complete.
- ullet If old K has products of all families of objects and equalisers (of all pairs of parallel morphisms) then it is complete.

Prove completeness of Set, $\mathbf{Alg}(\Sigma)$, \mathbf{AlgSig} , \mathbf{Pfn} , ...

When a preorder category is complete?

BTW: If a small category is complete then it is a preorder.

BTW: If a small category is complete then it is a preorder.

Proof: Consider a small category \mathbf{K} , with $card(\mathbf{K}) = \kappa$, and let $f, g: A \to B$ (in \mathbf{K}).

BTW: If a small category is complete then it is a preorder.

Proof: Consider a small category \mathbf{K} , with $card(\mathbf{K}) = \kappa$, and let $f, g: A \to B$ (in \mathbf{K}).

• Let
$$P = \prod_{\lambda < \kappa} B$$

BTW: If a small category is complete then it is a preorder.

Proof: Consider a small category \mathbf{K} , with $card(\mathbf{K}) = \kappa$, and let $f, g: A \to B$ (in \mathbf{K}).

• Let
$$P = \prod_{\lambda < \kappa} B$$
 — that is, $P = \underbrace{B \times \cdots \times B}_{\kappa\text{-times}}$.

BTW: If a small category is complete then it is a preorder.

Proof: Consider a small category \mathbf{K} , with $card(\mathbf{K}) = \kappa$, and let $f, g: A \to B$ (in \mathbf{K}).

• Let
$$P = \prod_{\lambda < \kappa} B$$
 — that is, $P = \underbrace{B \times \cdots \times B}_{\kappa\text{-times}}$.

• For each $X \subseteq \kappa$ we have $h^X : A \to P$

$$- \text{ where } h^X = \langle \alpha_\lambda^X \colon A \to B \rangle_{\lambda < \kappa}, \text{ defined by: } \alpha_\lambda^X = \begin{cases} f & \text{if } \lambda \in X \\ g & \text{if } \lambda \not \in X \end{cases}$$

BTW: If a small category is complete then it is a preorder.

Proof: Consider a small category \mathbf{K} , with $card(\mathbf{K}) = \kappa$, and let $f, g: A \to B$ (in \mathbf{K}).

• Let
$$P = \prod_{\lambda < \kappa} B$$
 — that is, $P = \underbrace{B \times \cdots \times B}_{\kappa\text{-times}}$.

• For each $X \subseteq \kappa$ we have $h^X : A \to P$

$$- \text{ where } h^X = \langle \alpha^X_\lambda \colon A \to B \rangle_{\lambda < \kappa}, \text{ defined by: } \alpha^X_\lambda = \begin{cases} f & \text{if } \lambda \in X \\ g & \text{if } \lambda \not \in X \end{cases}$$

• If $f \neq g$ then for $X, Y \subseteq \kappa$ such that $X \neq Y$, $h^X \neq h^Y$ (since for $\lambda < \kappa$, $h^X; \pi_\lambda = \alpha_\lambda^X$ and $h^Y; \pi_\lambda = \alpha_\lambda^Y$)

BTW: If a small category is complete then it is a preorder.

Proof: Consider a small category \mathbf{K} , with $card(\mathbf{K}) = \kappa$, and let $f, g: A \to B$ (in \mathbf{K}).

• Let
$$P = \prod_{\lambda < \kappa} B$$
 — that is, $P = \underbrace{B \times \cdots \times B}_{\kappa\text{-times}}$.

• For each $X \subseteq \kappa$ we have $h^X \colon A \to P$

$$- \text{ where } h^X = \langle \alpha^X_\lambda \colon A \to B \rangle_{\lambda < \kappa}, \text{ defined by: } \alpha^X_\lambda = \begin{cases} f & \text{if } \lambda \in X \\ g & \text{if } \lambda \not \in X \end{cases}$$

• If $f \neq g$ then for $X, Y \subseteq \kappa$ such that $X \neq Y$, $h^X \neq h^Y$ (since for $\lambda < \kappa$, $h^X; \pi_\lambda = \alpha_\lambda^X$ and $h^Y; \pi_\lambda = \alpha_\lambda^Y$) and so $card(\mathbf{K}(A,P)) \geq card(\{X \subseteq \kappa\}) = 2^\kappa > \kappa$ — contradiction.

A category \mathbf{K} is (finitely) complete if any (finite) diagram in \mathbf{K} has a limit.

A category \mathbf{K} is (finitely) cocomplete if any (finite) diagram in \mathbf{K} has a colimit.

- If **K** has a terminal object, binary products (of all pairs of objects) and equalisers (of all pairs of parallel morphisms) then it is finitely complete.
- ullet If old K has products of all families of objects and equalisers (of all pairs of parallel morphisms) then it is complete.

Prove completeness of Set, $\mathbf{Alg}(\Sigma)$, \mathbf{AlgSig} , \mathbf{Pfn} , ...

When a preorder category is complete?

BTW: If a small category is complete then it is a preorder.

Dualise the above!