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Universal constructions:

limits and colimits

Consider and arbitrary but fixed category K for a while.
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Initial and terminal objects'

An object | € |K] is initial in K if for each object A € |K]| there is exactly one
morphism from | to A.
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morphism from | to A.

Examples:

e () is initial in Set.
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e For any signature X € |AlgSig|, Ty, is initial in Alg(X).

e For any signature > € |AlgSig| and set of Y-equations ®, the initial model of
(3, ®) is initial in Mod (2, @), the full subcategory of Alg(X) determined by the
class Mod (X, ®) of all models of ®.

Look for initial objects in other categories.
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Initial and terminal objects'

An object | € |K] is initial in K if for each object A € |K]| there is exactly one
morphism from | to A.

Examples:
e () is initial in Set.
e For any signature ¥ € |AlgSig|, Ty, is initial in Alg(X).

e For any signature ¥ € |AlgSig| and set of Y-equations ®, the initial model of
(35, ®) is initial in Mod (2, @), the full subcategory of Alg(X) determined by the
class Mod (32, @) of all models of ®.

Look for initial objects in other categories.

Theorem: Initial objects, if exist, are unique up to isomorphism:
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Initial and terminal objects'

An object | € |K] is initial in K if for each object A € |K]| there is exactly one
morphism from | to A.

Examples:
e () is initial in Set.
e For any signature ¥ € |AlgSig|, Ty, is initial in Alg(X).

e For any signature ¥ € |AlgSig| and set of Y-equations ®, the initial model of
(35, ®) is initial in Mod (2, @), the full subcategory of Alg(X) determined by the
class Mod (32, @) of all models of ®.

Look for initial objects in other categories.

Theorem: Initial objects, if exist, are unique up to isomorphism:

e Any two initial objects in K are isomorphic.
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Initial and terminal objects'

An object | € |K] is initial in K if for each object A € |K]| there is exactly one
morphism from | to A. |

_ l—J - .
Examples: o1 = ZdICI - JDZdJ =l
|

- J—1
e () is initial in Set.

e For any signature ¥ € |AlgSig|, Ty, is initial in Alg(X).

e For any signature ¥ € |AlgSig| and set of Y-equations ®, the initial model of
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Theorem: Initial objects, if exist, are unique up to isomorphism:
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Initial and terminal objects'

An object | € |K] is initial in K if for each object A € |K]| there is exactly one
morphism from | to A.

Examples:
e () is initial in Set.
e For any signature ¥ € |AlgSig|, Ty, is initial in Alg(X).

e For any signature ¥ € |AlgSig| and set of Y-equations ®, the initial model of
(35, ®) is initial in Mod (2, @), the full subcategory of Alg(X) determined by the
class Mod (32, @) of all models of ®.

Look for initial objects in other categories.

Theorem: Initial objects, if exist, are unique up to isomorphism:
e Any two initial objects in K are isomorphic.

e Ifl is initial in K and |’ is isomorphic to | in K then |’ is initial in K as well.
D
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Initial and terminal objects'

An object | € |K] is initial in K if for each object A € |K]| there is exactly one

morphism from | to A. - = TN A
K | > A
Examples: k —1 >
% )
e () is initial in Set. s =154

e For any signature ¥ € |AlgSig|, Ty, is initial in Alg(X).
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(35, ®) is initial in Mod (2, @), the full subcategory of Alg(X) determined by the
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Terminal objects I

An object T € |K| is terminal in K if for each object A € |K| there is exactly one
morphism from A to T.
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Terminal objects I

An object T € |K| is terminal in K if for each object A € |K| there is exactly one
morphism from A to T.

terminal = co-initial
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morphism from A to T.

Exercises:

Terminal objects I

An object T € |K| is terminal in K if for each object A € |K| there is exactly one

terminal = co-initial

Dualise those for initial objects.
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Terminal objects'

An object T € |K| is terminal in K if for each object A € |K| there is exactly one
morphism from A to T.

terminal = co-initial

Exercises: Dualise those for initial objects.

e Look for terminal objects in standard categories.
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e Look for terminal objects in standard categories.

— any singleton set {x} is terminal in Set.

Andrzej Tarlecki: Category Theory, 2025 - 64 -



Terminal objects I

An object T € |K]| is terminal in K if for each object A € |K]| there is exactly one
morphism from A to T.

terminal = co-initial

Exercises: Dualise those for initial objects.

e Look for terminal objects in standard categories.
— any singleton set {x} is terminal in Set.

— For any signature 3 € |AlgSig|, “singleton” X-algebra 1y is terminal in
Alg(X).
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Terminal objects I

An object T € |K]| is terminal in K if for each object A € |K]| there is exactly one

morphism from A to T.

terminal = co-initial

Exercises:

e Look for terminal objects in standard categories.

— any singleton set {x} is terminal in Set.

Dualise those for initial objects.

— For any signature 3 € |AlgSig|, “singleton” X-algebra 1y is terminal in

Alg(X).

— For any signature 3 € |AlgSig| and set of Y-equations ®, “singleton”
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Terminal objects'

An object T € |K| is terminal in K if for each object A € |K| there is exactly one
morphism from A to T.

terminal = co-initial

Exercises: Dualise those for initial objects.

e Look for terminal objects in standard categories.

e Show that terminal objects are unique to within an isomorphism.
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Terminal objects'

An object T € |K| is terminal in K if for each object A € |K| there is exactly one

morphism from A to T.

terminal = co-initial

Exercises:

Dualise those for initial objects.

e Look for terminal objects in standard categories.

e Show that terminal objects are unique to within an isomorphism.

e Look for categories where there is an object which is both initial and terminal.
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Products I

A product of two objects A, B € |K|
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Products '

A product of two objects A, B € |K]| is any object A x B € |K| with two morphisms
(product projections) my: AX B — A and my: AX B — B

! T2

Ax B > B
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Products '

A product of two objects A, B € |K]| is any object A x B € |K| with two morphisms
(product projections) m1: A X B — A and mo: A X B — B such that for any object
C' € |K| with morphisms f1: C — A and f5: C — B

! T2

A Ax B > B

J1 f2
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Products '

A product of two objects A, B € |K]| is any object A x B € |K| with two morphisms
(product projections) m1: A X B — A and mo: A X B — B such that for any object

C' € |K]| with morphisms f;: C — A and f3: C — B there exists a unique morphism
h: C'— A x B such that h;m = f1 and h;me = fo.
A =

! T2

Ax B > B
A

e o

C
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Products '

A product of two objects A, B € |K]| is any object A x B € |K| with two morphisms
(product projections) m1: A X B — A and mo: A X B — B such that for any object
C' € |K]| with morphisms f;: C — A and f3: C — B there exists a unique morphism
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In Set, Cartesian product is a product A
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Products '

A product of two objects A, B € |K]| is any object A x B € |K| with two morphisms
(product projections) m1: A X B — A and mo: A X B — B such that for any object

C' € |K]| with morphisms f;: C — A and f3: C — B there exists a unique morphism
h: C'— A X B such that h;my = f1 and h;my = fo.

! T2

A = Ax B > 3
In Set, Cartesian product is a product A
We write (fi, f2) for h defined as above. Then: f1 3t (A fo
(f1, fa);m1 = f1 and (f1, f2);m2 = fo.
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A product of two objects A, B € |K]| is any object A x B € |K| with two morphisms
(product projections) m1: A X B — A and mo: A X B — B such that for any object

C' € |K]| with morphisms f;: C — A and f3: C — B there exists a unique morphism
h: C'— A X B such that h;my = f1 and h;my = fo.
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A product of two objects A, B € |K]| is any object A x B € |K| with two morphisms
(product projections) m1: A X B — A and mo: A X B — B such that for any object

C' € |K]| with morphisms f;: C — A and f3: C — B there exists a unique morphism
h: C'— A X B such that h;my = f1 and h;my = fo.
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Products '

A product of two objects A, B € |K]| is any object A x B € |K| with two morphisms
(product projections) m1: A X B — A and mo: A X B — B such that for any object
C' € |K]| with morphisms f;: C — A and f3: C — B there exists a unique morphism
h: C'— A X B such that h;my = f1 and h;my = fo.

m1 U

A = Ax B > B
In Set, Cartesian product is a product A
We write {f1, fo) for h defined as above. Then: f1 3k s
(f1, fo);m1 = f1 and (f1, fa);m2 = fo. Moreover,
for any h into the product A x B: h = (h;my, h;ms). C
Essentially, this equationally defines product!

Theorem: Products are defined to within an isomorphism (which commutes with
projections).
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Exercises '

e Product commutes (up to isomorphism): Ax B2 B x A
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e Product commutes (up to isomorphism): Ax B~ B x A

A
TA g
Ax B Bx A
TR ng
B
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Exercises '

e Product commutes (up to isomorphism): Ax B~ B x A

A
A K
(my, )
idaxp = (T, TRB) Ax B ™ Bx A
B

Andrzej Tarlecki: Category Theory, 2025

- 66 -



Exercises '

e Product commutes (up to isomorphism): Ax B~ B x A

Andrzej Tarlecki: Category Theory, 2025

- 66 -



Exercises '

e Product commutes (up to isomorphism): Ax B~ B x A

TA A

idaxp = (TA,TB) @ B ™

B

— Now: ({mp,ma);{my, 75));mA
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Exercises '

e Product commutes (up to isomorphism): Ax B~ B x A

A

TA A

(4> T)
idaxp = (Ta,TB) @ B~ >B X@ideA = (T, Ta)
(TB,TA)

B

— Now: ((mB,7A)i(Ty, Tp));TA = (7B, Ta);((Ty, Tp)iTA) = (TB,TA);Ty = TA

— Similarly: ((mp,7ma);{(7'y,75));m = 7B
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Exercises '

e Product commutes (up to isomorphism): Ax B~ B x A

TA A

idaxp = (TA,TB) @ B ™

B

— Now: ((mB,7A)i(Ty, Tp));TA = (7B, Ta);((Ty, Tp)iTA) = (TB,TA);Ty = TA
— Similarly: ((mp,7ma);{(7'y,75));m = 7B

— Thus: (mp,ma) {1y, 7g) = (Ta,TB) = idaxB
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Exercises '

e Product commutes (up to isomorphism): Ax B~ B x A

— By much the same argument, any two products of A and B are isomorphic.
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Exercises '

e Product commutes (up to isomorphism): Ax B B x A

e Product is associative (up to isomorphism): (A x B) x C =2 A x (B x C)
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Exercises '

e Product commutes (up to isomorphism): A x B~ B x A

e Product is associative (up to isomorphism): (A x B) x C =2 A x (B x C)

Ax B

Andrzej Tarlecki: Category Theory, 2025

- 66 -



Exercises '

e Product commutes (up to isomorphism): A x B~ B x A

e Product is associative (up to isomorphism): (A x B) x C =2 A x (B x C)

(Ax B) x C

v\\
NN\

A \B \c
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Exercises '

e Product commutes (up to isomorphism): A x B~ B x A

e Product is associative (up to isomorphism): (A x B) x C =2 A x (B x C)

(Ax B)xC A x (B x ()
Y Y
Ax B B xC
Y Y
A B C
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Exercises '

e Product commutes (up to isomorphism): A x B~ B x A

e Product is associative (up to isomorphism): (A x B) x C =2 A x (B x C)
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Exercises '

e Product commutes (up to isomorphism): A x B~ B x A

e Product is associative (up to isomorphism): (A x B) x C =2 A x (B x C)

<:‘(A><B)><C’< >A><(B><C’)’:>

Y Y
Ax B B xC
Y Y
A B C
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Exercises '

e Product commutes (up to isomorphism): A x B~ B x A
e Product is associative (up to isomorphism): (A x B) x C =2 A x (B x C)

e What is a product of two objects in a preorder category?
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Exercises '

e Product commutes (up to isomorphism): A x B~ B x A
e Product is associative (up to isomorphism): (A x B) x C =2 A x (B x C)
e What is a product of two objects in a preorder category?

e Define the product of any family of objects. What is the product of the empty
family?
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Exercises '

e Product commutes (up to isomorphism): A x B~ B x A
e Product is associative (up to isomorphism): (A x B) x C =2 A x (B x C)
e What is a product of two objects in a preorder category?

e Define the product of any family of objects. What is the product of the empty
family?

e For any algebraic signature ¥ € |AlgSig|, try to define products in Alg(X),
PAlgs(X), PAlg(3). Expect troubles in the two latter cases. ..
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e Product commutes (up to isomorphism): A x B~ B x A
e Product is associative (up to isomorphism): (A x B) x C =2 A x (B x C)
e What is a product of two objects in a preorder category?

e Define the product of any family of objects. What is the product of the empty
family?

e For any algebraic signature ¥ € |AlgSig|, try to define products in Alg(X),
PAlgs(X), PAlg(3). Expect troubles in the two latter cases. ..

e Define products in the category of partial functions, Pfn, with sets (as objects)

and partial functions as morphisms between them.
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Exercises '

e Product commutes (up to isomorphism): A x B~ B x A
e Product is associative (up to isomorphism): (A x B) x C =2 A x (B x C)
e What is a product of two objects in a preorder category?

e Define the product of any family of objects. What is the product of the empty
family?

e For any algebraic signature ¥ € |AlgSig|, try to define products in Alg(X),
PAlgs(Y), PAlg(3). Expect troubles in the two latter cases. ..

e Define products in the category of partial functions, Pfn, with sets (as objects)
and partial functions as morphisms between them.

A —21 Ax B

f H?Th f>
C

T2

> B
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Exercises '

e Product commutes (up to isomorphism): A x B~ B x A
e Product is associative (up to isomorphism): (A x B) x C =2 A x (B x C)
e What is a product of two objects in a preorder category?

e Define the product of any family of objects. What is the product of the empty
family?

e For any algebraic signature ¥ € |AlgSig|, try to define products in Alg(X),
PAlgs(Y), PAlg(3). Expect troubles in the two latter cases. ..

e Define products in the category of partial functions, Pfn, with sets (as objects)

and partial functions as morphisms between them.
1

A Ax B > B
> 37| h 4
f1 >~ ~ fa
\(I;/
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Exercises '

e Product commutes (up to isomorphism): A x B~ B x A
e Product is associative (up to isomorphism): (A x B) x C =2 A x (B x C)
e What is a product of two objects in a preorder category?

e Define the product of any family of objects. What is the product of the empty
family?

e For any algebraic signature ¥ € |AlgSig|, try to define products in Alg(X),
PAlgs(Y), PAlg(3). Expect troubles in the two latter cases. ..

e Define products in the category of partial functions, Pfn, with sets (as objects)
and partial functions as morphisms between them.

A< _A+(AxB)+B—"2—% B
\ /

3 h =

N
J1 >~ ~ J2
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Exercises I

e Product commutes (up to isomorphism): Ax B2 B x A
e Product is associative (up to isomorphism): (A x B) x C =2 A x (B x C)
e What is a product of two objects in a preorder category?

e Define the product of any family of objects. What is the product of the empty
family?

e For any algebraic signature ¥ € |AlgSig|, try to define products in Alg(X),
PAlgs(X), PAlg(3). Expect troubles in the two latter cases. ..

e Define products in the category of partial functions, Pfn, with sets (as objects)
and partial functions as morphisms between them.

e Define products in the category of relations, Rel, with sets (as objects) and
binary relations as morphisms between them.
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Exercises I

e Product commutes (up to isomorphism): Ax B2 B x A
e Product is associative (up to isomorphism): (A x B) x C =2 A x (B x C)
e What is a product of two objects in a preorder category?

e Define the product of any family of objects. What is the product of the empty
family?

e For any algebraic signature ¥ € |AlgSig|, try to define products in Alg(X),
PAlgs(X), PAlg(3). Expect troubles in the two latter cases. ..

e Define products in the category of partial functions, Pfn, with sets (as objects)
and partial functions as morphisms between them.

e Define products in the category of relations, Rel, with sets (as objects) and
binary relations as morphisms between them.

— BTW: What about products in Rel°??
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Coproducts I

A coproduct of two objects A, B € |K|

coproduct = co-product
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Coproducts I

coproduct = co-product

A coproduct of two objects A, B € |K]| is any object A + B € |K]| with two
morphisms (coproduct injections) t1: A— A+ B and ts: B— A+ B

L1 L2

> A+ B <«
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Coproducts I
coproduct = co-product

A coproduct of two objects A, B € |K]| is any object A + B € |K]| with two
morphisms (coproduct injections) t1: A — A+ B and 1o: B — A 4+ B such that for
any object C' € |K| with morphisms f1: A — C and fo: B— C

A -l >A+B<L2 B

J1 f2
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Coproducts I

A coproduct of two objects A, B € |K]| is any object A + B € |K]| with two
morphisms (coproduct injections) t1: A — A+ B and 1o: B — A 4+ B such that for
any object C' € |K| with morphisms f1: A — C and fy: B — C there exists a
unique morphism h: A+ B — C such that t1;h = f1 and 19;h = fo.

coproduct = co-product

A -l >A+B<L2 B

e N
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A coproduct of two objects A, B € |K]| is any object A + B € |K]| with two
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A coproduct of two objects A, B € |K]| is any object A + B € |K]| with two
morphisms (coproduct injections) t1: A — A+ B and 1o: B — A 4+ B such that for
any object C' € |K| with morphisms f1: A — C and fy: B — C there exists a
unique morphism h: A+ B — C such that t1;h = f1 and 19;h = fo.

coproduct = co-product

L1 %)
In Set, disjoint union is a coproduct A » A+ B < B
We write |f1, f2] for h defined as above.
=
fi f2
Y
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A coproduct of two objects A, B € |K]| is any object A + B € |K]| with two
morphisms (coproduct injections) t1: A — A+ B and 1o: B — A 4+ B such that for
any object C' € |K| with morphisms f1: A — C and fy: B — C there exists a
unique morphism h: A+ B — C such that t1;h = f1 and 19;h = fo.

coproduct = co-product
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A coproduct of two objects A, B € |K]| is any object A + B € |K]| with two
morphisms (coproduct injections) t1: A — A+ B and 1o: B — A 4+ B such that for
any object C' € |K| with morphisms f1: A — C and fy: B — C there exists a
unique morphism h: A+ B — C such that t1;h = f1 and 19;h = fo.

coproduct = co-product

L1 %)
In Set, disjoint union is a coproduct A ~ A+ D B
We write |f1, f2] for h defined as above. Then: =1
Ll;[fl,fz] = fl and LQ;[fl,fQ] = f2. MOFGOVGF, for fl f2
any h from the coproduct A+ B: h = [t1;h, t2;h]. Y
Essentially, this equationally defines coproduct! ¢
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Coproducts I

A coproduct of two objects A, B € |K]| is any object A + B € |K]| with two
morphisms (coproduct injections) t1: A — A+ B and t2: B — A + B such that for
any object C' € |K| with morphisms f1: A — C and fy: B — C there exists a
unique morphism h: A+ B — C such that ¢1;h = f1 and 19;h = f5.

coproduct = co-product

U1 %)
In Set, disjoint union is a coproduct A - A+ D B
We write [f1, f2] for h defined as above. Then: =1
Ll;[fl,fz] = f1 and LQ;[fl,fQ] = f5. Moreover, for f1 f2
any h from the coproduct A+ B: h = [t1;h, t2;h]. Y
Essentially, this equationally defines coproduct! ¢

Theorem: Coproducts are defined to within an isomorphism (which commutes with
injections).
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A coproduct of two objects A, B € |K]| is any object A + B € |K]| with two
morphisms (coproduct injections) t1: A — A+ B and t2: B — A + B such that for
any object C' € |K| with morphisms f1: A — C and fy: B — C there exists a
unique morphism h: A+ B — C such that ¢1;h = f1 and 19;h = f5.

coproduct = co-product

U1 %)
In Set, disjoint union is a coproduct A - A+ D B
We write [f1, f2] for h defined as above. Then: =1
Ll;[fl,fz] = f1 and LQ;[fl,fQ] = f5. Moreover, for f1 f2
any h from the coproduct A+ B: h = [t1;h, t2;h]. Y
Essentially, this equationally defines coproduct! ¢

Theorem: Coproducts are defined to within an isomorphism (which commutes with
injections).

Exercises: Dualise!
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Equalisers I

An equaliser of two “parallel” morphisms f,g: A — B
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Equalisers I

An equaliser of two “parallel” morphisms f,g: A — B is a morphisme: £ — A
such that e;f = e;g,

> A -
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Equalisers I

An equaliser of two “parallel” morphisms f,g: A — B is a morphisme: £ — A
such that e;f = e;g, and such that for all h: H — A, if h;f = h;g
f
e

E
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> A -
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Equalisers I

An equaliser of two “parallel” morphisms f,g: A — B is a morphisme: £ — A
such that e;f = e;g, and such that for all h: H — A, if h;f = h;g then for a unique

morphism k: H — F, k;e = h. > e - > 3
P
|
H.Tk 1
H
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Equalisers I

An equaliser of two “parallel” morphisms f,g: A — B is a morphisme: £ — A
such that e;f = e;g, and such that for all h: H — A, if h;f = h;g then for a unique

morphism k: H — E, ke = h.

> A > B

In Set, given functions f,g: A — B, define

E={ac Al f(a)=gla)}

The inclusion e: E — A is an equaliser of f and g.
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Equalisers I

An equaliser of two “parallel” morphisms f,g: A — B is a morphisme: £ — A
such that e;f = e;g, and such that for all h: H — A, if h;f = h;g then for a unique

morphism k: H — E, ke = h.

> A > B

In Set, given functions f,g: A — B, define

E={ac Al f(a)=gla)}

The inclusion e: EE — A is an equaliser of f and g.

Define equalisers in Alg(X).
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In Set, given functions f,g: A — B, define
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Define equalisers in Alg(X).
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Andrzej Tarlecki: Category Theory, 2025

- 68 -



Equalisers I
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such that e;f = e;g, and such that for all h: H — A, if h;f = h;g then for a unique
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An equaliser of two “parallel” morphisms f,g: A — B is a morphisme: £ — A
such that e;f = e;g, and such that for all h: H — A, if h;f = h;g then for a unique

morphism k: H — FE, k;e = h. e /
E > A > B
e Equalisers are unique up to isomorphism. g
o Ever liser i Sk
y equaliser is mono. h
° H

Proof:
Consider ki, ko: H — E such that ki;e = kgse.
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An equaliser of two “parallel” morphisms f,g: A — B is a morphisme: £ — A
such that e;f = e;g, and such that for all h: H — A, if h;f = h;g then for a unique

morphism k: H — FE, k;e = h. e /
E > A > B
e Equalisers are unique up to isomorphism. g
o Ever liser i Sk
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° H

Proof:
Consider k1, ko: H — FE such that kq;e = kose.
Put h = kq;e = kose; then h;f = hig.

Andrzej Tarlecki: Category Theory, 2025 - 68 -



Equalisers I

An equaliser of two “parallel” morphisms f,g: A — B is a morphisme: £ — A
such that e;f = e;g, and such that for all h: H — A, if h;f = h;g then for a unique

orphism k: H — E, k;e = h. /
morphism e 5 e - >
e Equalisers are unique up to isomorphism. g
e Every equaliser is mono. Sk h
° H
Proof:
Consider ki, ko: H — E such that k1;e = kgse.
Put h = kq;e = kose; then h;f = h:g. (Since h;f = ky1;(e;f) = k1s(e;9) = hsg.)
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Equalisers I

An equaliser of two “parallel” morphisms f,g: A — B is a morphisme: £ — A
such that e;f = e;g, and such that for all h: H — A, if h;f = h;g then for a unique

morphism k: H — FE, k;e = h. e /
E > A > B
e Equalisers are unique up to isomorphism. g
o Ever liser i Sk
y equaliser is mono. h
° H
Proof:

Consider k1, ko: H — FE such that kq;e = kose.
Put h = kq;e = kose; then h;f = hig.
Thus k’l = kg.
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Equalisers I

An equaliser of two “parallel” morphisms f,g: A — B is a morphisme: £ — A
such that e;f = e;g, and such that for all h: H — A, if h;f = h;g then for a unique

morphism k: H — FE, k;e = h. /
. E C > 4 > B
e Equalisers are unique up to isomorphism. 9
. 'k
e Every equaliser is mono. h
e Every epi equaliser is iso. H

In Set, given functions f,g: A — B, define

E={ac Al f(a)=gla)}

The inclusion e: EE — A is an equaliser of f and g.

Define equalisers in Alg(X).
Try also in: PAlgs(2), PAlg(Y), Pfn, Rel, ...
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Equalisers I

An equaliser of two “parallel” morphisms f,g: A — B is a morphisme: £ — A
such that e;f = e;g, and such that for all h: H — A, if h;f = h;g then for a unique

morphism k: H — E, ke = h. e /
E > A > B
e Equalisers are unique up to isomorphism. g
. 3!k
e Every equaliser is mono. h
e Every epi equaliser is iso. H

Proof:

Since e is epi and e;f = e;g, we have f = g.
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Equalisers I

An equaliser of two “parallel” morphisms f,g: A — B is a morphisme: £ — A
such that e;f = e;g, and such that for all h: H — A, if h;f = h;g then for a unique

morphism k: H — E, k;e = h. e /
E > A > B
e Equalisers are unique up to isomorphism. 9
. 3!k
e Every equaliser is mono. h
e Every epi equaliser is iso. H
Proof:
Since e is epi and e;f = e;g, we have f = g. E € - A f > B
Hence ida;f = ida;g. 9
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An equaliser of two “parallel” morphisms f,g: A — B is a morphisme: £ — A
such that e;f = e;g, and such that for all h: H — A, if h;f = h;g then for a unique

morphism k: H — E, ke = h. 5 e - / > 3
e Equalisers are unique up to isomorphism. 9
e Every equaliser is mono. E”Tk h
e Every epi equaliser is iso. H
Proof:
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Equalisers I

An equaliser of two “parallel” morphisms f,g: A — B is a morphisme: £ — A
such that e;f = e;g, and such that for all h: H — A, if h;f = h;g then for a unique

morphism k: H — E, ke = h. 5 e - / >
e Equalisers are unique up to isomorphism. g
e Every equaliser is mono. E”Tk h
e Every epi equaliser is iso. H
Proof:
Since e is epi and e;f = e;g, we have f = g. E € - A f > B
Hence 1dg;f = ida;g. 9
We get k: A — E such that k;e = id4. H'Tk T

Thus, e is a retraction, and is mono

A

— and so Is 1so.
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Equalisers I

An equaliser of two “parallel” morphisms f,g: A — B is a morphisme: £ — A
such that e;f = e;g, and such that for all h: H — A, if h;f = h;g then for a unique

morphism k: H — FE, k;e = h. /
. E—C% >4 B
e Equalisers are unique up to isomorphism. g
. 'k
e Every equaliser is mono. h
e Every epi equaliser is iso. H

In Set, given functions f,g: A — B, define

E={ac Al [(a)=g(a);

The inclusion e: E — A is an equaliser of f and g.

Define equalisers in Alg(X).
Try also in: PAlgs(2), PAlg(Y), Pfn, Rel, ...
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Coequalisers I

A coequaliser of two “parallel” morphisms f,g: A — B

A
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Coequalisers I

A coequaliser of two “parallel” morphisms f,g: A — B is a morphism ¢: B — C
such that f;c = g;c,

f
A > > B ¢

>
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Coequalisers I

A coequaliser of two “parallel” morphisms f,g: A — B is a morphism ¢: B — C
such that f;c = g;c, and such that for all h: B — H, if f;h = g;h

A

> B

>
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A coequaliser of two “parallel” morphisms f,g: A — B is a morphism ¢: B — C
such that f;c = g;c, and such that for all h: B — H, if f;h = g;h then for a unique

morphism k: C — H, c;k = h. c

f
A — B - C

=

b k

H
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A coequaliser of two “parallel” morphisms f,g: A — B is a morphism ¢: B — C
such that f;c = g;c, and such that for all h: B — H, if f;h = g;h then for a unique

morphism k: C — H, c;k = h. 4 / > c . O
e Coequalisers are unique up to isomorphism. I
e Every coequaliser is epi. h HF
e Every mono coequaliser is iso. H
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A coequaliser of two “parallel” morphisms f,g: A — B is a morphism ¢: B — C
such that f;c = g;c, and such that for all h: B — H, if f;h = g;h then for a unique

morphism k: C — H, c;k = h. 4 / > c . O
e Coequalisers are unique up to isomorphism. I
e Every coequaliser is epi. h HF
e Every mono coequaliser is iso. H

In Set, given functions f,g: A — B,
let = C B x B be the least equivalence such that | f(a) = g(a) for alla € A

The quotient function [ |=: B — B/= is a coequaliser of f and g.
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Coequalisers I

A coequaliser of two “parallel” morphisms f,g: A — B is a morphism ¢: B — C
such that f;c = g;c, and such that for all h: B — H, if f;h = g;h then for a unique

morphism k: C — H, c;k = h. 4 / > c . O
e Coequalisers are unique up to isomorphism. I
e Every coequaliser is epi. h HF
e Every mono coequaliser is iso. H

In Set, given functions f,g: A — B,
let = C B x B be the least equivalence such that | f(a) = g(a) for alla € A

The quotient function [ |=: B — B/= is a coequaliser of f and g.

Define coequalisers in Alg(2).
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Coequalisers I

A coequaliser of two “parallel” morphisms f,g: A — B is a morphism ¢: B — C
such that f;c = g;c, and such that for all h: B — H, if f;h = g;h then for a unique

morphism k: C — H, c;k = h.

C

f
A 5 > B
e Coequalisers are unique up to isomorphism.
e Every coequaliser is epi.

e Every mono coequaliser is iso.

>

=

b k

H

In Set, given functions f,g: A — B,

let = C B x B be the least equivalence such that | f(a) = g(a) for alla € A

The quotient function [ |=: B — B/= is a coequaliser of f and g.

Define coequalisers in Alg(2).
Try also in: PAlgs(2), PAlg(Y), Pfn, Rel, ...
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Coequalisers I

A coequaliser of two “parallel” morphisms f,g: A — B is a morphism ¢: B — C
such that f;c = g;c, and such that for all h: B — H, if f;h = g;h then for a unique

morphism k: C — H, c;k = h. 4 / > c . O
e Coequalisers are unique up to isomorphism. I
e Every coequaliser is epi. h HF
e Every mono coequaliser is iso. H

In Set, given functions f,g: A — B,
let = C B x B be the least equivalence such that | f(a) = g(a) for alla € A

The quotient function [ |=: B — B/= is a coequaliser of f and g.
Define coequalisers in Alg(3). Most general unifiers are
Try also in: PAlgs(X), PAlg(X), Pfn, Rel, ... coequalisers in Substsy;
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Pullbacks'

A pullback of two morphisms with common target f: A— C and g: B— C
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Pullbacks'

A pullback of two morphisms with common target f: A — C and g: B — C'is an
object P € |K| with morphisms j: P — A and k: P — B such that j;f = k;g,
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Pullbacks'

A pullback of two morphisms with common target f: A — C and g: B — C'is an
object P € |K| with morphisms j: P — A and k: P — B such that j;f = k;g, and
such that for all P" € |[K| with morphisms j': P’ - Aand k': P' — B, if j';f = k';g

/
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Pullbacks'

A pullback of two morphisms with common target f: A — C and g: B — C'is an
object P € |K| with morphisms j: P — A and k: P — B such that j;f = k;g, and
such that for all P" € |[K| with morphisms j': P’ - Aand k': P' — B, if j';f = k';g
then for a unique morphism h: P’ — P, h;j = j' and h;k = k.
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Pullbacks'

A pullback of two morphisms with common target f: A — C and g: B — C'is an
object P € |K| with morphisms j: P — A and k: P — B such that j;f = k;g, and
such that for all P" € |[K| with morphisms j': P’ - Aand k': P' — B, if j';f = k';g
then for a unique morphism h: P’ — P, h;j = j' and h;k = k.

In Set, given functions f: A— C and f: B — C,
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Pullbacks'

A pullback of two morphisms with common target f: A — C and g: B — C'is an
object P € |K| with morphisms j: P — A and k: P — B such that j;f = k;g, and
such that for all P" € |[K| with morphisms j': P’ - Aand k': P' — B, if j';f = k';g
then for a unique morphism h: P’ — P, h;j = j' and h;k = k.

In Set, given functions f: A— C and f: B — C,
define | P = {{(a,b) € Ax B | f(a) = g(b)}
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Pullbacks'

A pullback of two morphisms with common target f: A — C and g: B — C'is an
object P € |K| with morphisms j: P — A and k: P — B such that j;f = k;g, and
such that for all P" € |[K| with morphisms j': P’ - Aand k': P' — B, if j';f = k';g
then for a unique morphism h: P’ — P, h;j = j' and h;k = k.

In Set, given functions f: A— C and f: B — C,
define | P = {{a,b) € Ax B | f(a) = g(b)}
Then P with obvious projections on A and B,
respectively, is a pullback of f and g.
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Pullbacks'

A pullback of two morphisms with common target f: A — C and g: B — C'is an
object P € |K| with morphisms j: P — A and k: P — B such that j;f = k;g, and
such that for all P" € |[K| with morphisms j': P’ - Aand k': P' — B, if j';f = k';g
then for a unique morphism h: P’ — P, h;j = j' and h;k = k.

In Set, given functions f: A— C and f: B — C,
define | P = {{a,b) € Ax B | f(a) = g(b)}
Then P with obvious projections on A and B,
respectively, is a pullback of f and g.

Define pullbacks in Alg(Y).
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Pullbacks'

A pullback of two morphisms with common target f: A — C and g: B — C'is an
object P € |K| with morphisms j: P — A and k: P — B such that j;f = k;g, and
such that for all P" € |[K| with morphisms j': P’ - Aand k': P' — B, if j';f = k';g
then for a unique morphism h: P’ — P, h;j = j' and h;k = k.

In Set, given functions f: A— C and f: B — C,
define | P = {{a,b) € Ax B | f(a) = g(b)}
Then P with obvious projections on A and B,
respectively, is a pullback of f and g.

Define pullbacks in Alg(Y).
Try also in: PAlgs(2), PAlg(X), Pfn, Rel, ...
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Pullbacks'

A pullback of two morphisms with common target f: A — C and g: B — C'is an
object P € |K| with morphisms j: P — A and k: P — B such that j;f = k;g, and
such that for all P" € |[K| with morphisms j': P’ - Aand k': P' — B, if j';f = k';g
then for a unique morphism h: P’ — P, h;j = j' and h;k = k.

In Set, given functions f: A— C and f: B — C,
define | P = {{a,b) € Ax B | f(a) = g(b)}
Then P with obvious projections on A and B,
respectively, is a pullback of f and g.

Define pullbacks in Alg(Y).
Try also in: PAlgs(2), PAlg(X), Pfn, Rel, ...

Wait for a hint to come. ..
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Few facts '

e Pullbacks are unique up to isomorphism.
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e Pullbacks are unique up to isomorphism.

e If K has all products (of pairs of objects) and all equalis-
ers (of pairs of parallel morphisms) then it has all pull-
backs (of pairs of morphisms with common target).
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Few facts'

e Pullbacks are unique up to isomorphism.

e If K has all products (of pairs of objects) and all equalis-
ers (of pairs of parallel morphisms) then it has all pull-

backs (of pairs of morphisms with common target).
Proof:
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Few facts' 8.

e Pullbacks are unique up to isomorphism. / J
e If K has all products (of pairs of objects) and all equalis-
ers (of pairs of parallel morphisms) then it has all pull-
backs (of pairs of morphisms with common target). & 2
Proof: Build product Ax B
AXx B
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Few facts' 8.

e Pullbacks are unique up to isomorphism.

e If K has all products (of pairs of objects) and all equalis- A B
ers (of pairs of parallel morphisms) then it has all pull-
backs (of pairs of morphisms with common target).
Proof: Build product Ax B and equalisere: P -+ A x B

of m;f and ma;g.

Andrzej Tarlecki: Category Theory, 2025

- 71 -



Few facts' 8.
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e If K has all products (of pairs of objects) and all equalis- A B
ers (of pairs of parallel morphisms) then it has all pull-
backs (of pairs of morphisms with common target).
Proof: Build product Ax B and equalisere: P -+ A x B
of m1;f and my;9. We get a pullback of f and g:

P withem: P— Aandenmy: P— B
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e If K has all products (of pairs of objects) and all equalis- A B
ers (of pairs of parallel morphisms) then it has all pull-
backs (of pairs of morphisms with common target).
Proof: Build product Ax B and equalisere: P -+ A x B
of m1;f and my;9. We get a pullback of f and g:

P withem: P— Aandenmy: P— B

— Clearly, (e;m1);f = (e5m2)39-
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Few facts'

e Pullbacks are unique up to isomorphism.

e If K has all products (of pairs of objects) and all equalis-
ers (of pairs of parallel morphisms) then it has all pull-
backs (of pairs of morphisms with common target).
Proof: Build product Ax B and equalisere: P -+ A x B
of m1;f and my;9. We get a pullback of f and g:

P withem: P— Aandenmy: P— B

— Clearly, (esm1);f = (esm2)39.
— Consider P’ with j': P/ —+ A and k': P/ — B such

that j';f = K;9.
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Few facts'

e Pullbacks are unique up to isomorphism.

e If K has all products (of pairs of objects) and all equalis-
ers (of pairs of parallel morphisms) then it has all pull-
backs (of pairs of morphisms with common target).
Proof: Build product Ax B and equalisere: P -+ A x B
of m1;f and my;9. We get a pullback of f and g:

P withem: P— Aandenmy: P— B

— Clearly, (esm1);f = (esm2)39.
— Consider P’ with j': P/ —+ A and k': P/ — B such

that j';f = k’;g. We have unique p: P’ - A X B
s.t. p;m; = 7" and pymy = K.

=
N‘
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Few facts'

e Pullbacks are unique up to isomorphism.

e If K has all products (of pairs of objects) and all equalis-
ers (of pairs of parallel morphisms) then it has all pull-
backs (of pairs of morphisms with common target).
Proof: Build product Ax B and equalisere: P -+ A x B
of m1;f and my;9. We get a pullback of f and g:

P withem: P— Aandenmy: P— B

— Clearly, (esm1);f = (esm2)39.
— Consider P’ with j': P/ —+ A and k': P/ — B such

that j';f = k’;g. We have unique p: P’ - A X B
s.t. pymp = 7" and pymo = K’ Then py(m;f) = 55 f =
k'sg = pi(masg).

=
N‘
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Few facts'

e Pullbacks are unique up to isomorphism.

e If K has all products (of pairs of objects) and all equalis-
ers (of pairs of parallel morphisms) then it has all pull-
backs (of pairs of morphisms with common target).
Proof: Build product Ax B and equalisere: P -+ A x B
of m1;f and my;9. We get a pullback of f and g:

P withem: P— Aandenmy: P— B

— Clearly, (esm1);f = (esm2)39.
— Consider P’ with j': P/ —+ A and k': P/ — B such

that j';f = k’;g. We have unique p: P’ - A X B
s.t. pymy = §' and pymy = K. Then piy(mysf) =55 f =
k';g = p;(m2;9). This yields unique h: P’ — P such
that h;e = p,

~A X B

=
N‘
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Few facts'

e Pullbacks are unique up to isomorphism.

e If K has all products (of pairs of objects) and all equalis-
ers (of pairs of parallel morphisms) then it has all pull-
backs (of pairs of morphisms with common target).
Proof: Build product Ax B and equalisere: P -+ A x B
of m1;f and my;9. We get a pullback of f and g:

P withem: P— Aandenmy: P— B

— Clearly, (esm1);f = (esm2)39.
— Consider P’ with j': P/ —+ A and k': P/ — B such

that j';f = k’;g. We have unique p: P’ - A X B
s.t. pymy = §' and pymy = K. Then piy(mysf) =55 f =
k';g = p;(m2;9). This yields unique h: P’ — P such
that h;e = p, as well as h;(e;m) = p;m = j' and
h;(e;me) = psme = K.

~A X B

=
N
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Few facts '

e Pullbacks are unique up to isomorphism.

e If K has all products (of pairs of objects) and all equalis-
ers (of pairs of parallel morphisms) then it has all pull-
backs (of pairs of morphisms with common target).

e If K has all pullbacks and a terminal object then it has
all binary products
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Few facts'

e Pullbacks are unique up to isomorphism.

e If K has all products (of pairs of objects) and all equalis-
ers (of pairs of parallel morphisms) then it has all pull-
backs (of pairs of morphisms with common target).

e If K has all pullbacks and a terminal object then it has

all binary products

A

T

\

PB

"‘/

N
V4
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e Pullbacks are unique up to isomorphism.
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e If K has all pullbacks and a terminal object then it has
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Few facts '

e Pullbacks are unique up to isomorphism.

e If K has all products (of pairs of objects) and all equalis-
ers (of pairs of parallel morphisms) then it has all pull-
backs (of pairs of morphisms with common target).

e If K has all pullbacks and a terminal object then it has

all binary products and equalisers.
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e If K has all products (of pairs of objects) and all equalis-
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e Pullbacks are unique up to isomorphism.

e If K has all products (of pairs of objects) and all equalis-
ers (of pairs of parallel morphisms) then it has all pull-
backs (of pairs of morphisms with common target).

e If K has all pullbacks and a terminal object then it has
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Few facts'

e Pullbacks are unique up to isomorphism.

e If K has all products (of pairs of objects) and all equalis-
ers (of pairs of parallel morphisms) then it has all pull-

backs (of pairs of morphisms with common target). B
e If K has all pullbacks and a terminal object then it has 44
all binary products and equalisers. f19
A
Al
€1 |€2
P
€1 =" €2
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Few facts '

e Pullbacks are unique up to isomorphism.

e If K has all products (of pairs of objects) and all equalis-
ers (of pairs of parallel morphisms) then it has all pull-
backs (of pairs of morphisms with common target).

e If K has all pullbacks and a terminal object then it has
all binary products and equalisers. HINT: to build
an equaliser of f,g: A — B, consider a pullback of
<’idA, f>, <idA,g>: A— AxB.
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Few facts'

e Pullbacks are unique up to isomorphism.

e If K has all products (of pairs of objects) and all equalis-
ers (of pairs of parallel morphisms) then it has all pull-
backs (of pairs of morphisms with common target).

AXxXB
e If K has all pullbacks and a terminal object then it has :
P . J = {ida, f) (ida, g)
all binary products and equalisers. HINT: to build
an equaliser of f,g: A — B, consider a pullback of A A

<’idA, f>, <idA,g>: A— AxB.
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Few facts'

e Pullbacks are unique up to isomorphism.

e If K has all products (of pairs of objects) and all equalis-
ers (of pairs of parallel morphisms) then it has all pull-
backs (of pairs of morphisms with common target).

AXxXB
e If K has all pullbacks and a terminal object then it has . :
P . J = {ida, f) (ida, g)
all binary products and equalisers. HINT: to build
an equaliser of f,g: A — B, consider a pullback of
. . A A
(ida, f), (ida,g): A — A X B.
€1 €92
P

Andrzej Tarlecki: Category Theory, 2025 -71 -



Few facts'

e Pullbacks are unique up to isomorphism.

e If K has all products (of pairs of objects) and all equalis-
ers (of pairs of parallel morphisms) then it has all pull-
backs (of pairs of morphisms with common target).

e If K has all pullbacks and a terminal object then it has

all binary products and equalisers. HINT: to build Ax B
an equaliser of f,g: A — B, consider a pullback of lidy, f) iy, g)
lida, f), (ida,g): A — A x B. & -
Now: eq;{ida, f) = ea;(ida, g). A 4
€1 €9
P
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Few facts'

e Pullbacks are unique up to isomorphism.

e If K has all products (of pairs of objects) and all equalis-
ers (of pairs of parallel morphisms) then it has all pull-
backs (of pairs of morphisms with common target).

e If K has all pullbacks and a terminal object then it has

all binary products and equalisers. HINT: to build Ax B
an equaliser of f,g: A — B, consider a pullback of lidy, f) iy, g)
<’idA,f>, <idA,g>: A— AxB.
Now: eq;{ida, f) = ea;(ida, g). A A
Hence (e1,e1;f) = (e2, €2;9),
€1 €2
P
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Few facts'

e Pullbacks are unique up to isomorphism.

e If K has all products (of pairs of objects) and all equalis-
ers (of pairs of parallel morphisms) then it has all pull-
backs (of pairs of morphisms with common target).

e If K has all pullbacks and a terminal object then it has

all binary products and equalisers. HINT: to build Ax B
an equaliser of f,g: A — B, consider a pullback of lidy, f) iy, g)
<’idA, f>, <idA,g>: A— AxB.
Now: eq;{ida, f) = ea;(ida, g). A 4
Hence (e1, e1;f) = (ea, e2;9), which implies e; = e and
e1;f = eaig €1 eo

P
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Few facts'

e Pullbacks are unique up to isomorphism.

e If K has all products (of pairs of objects) and all equalis-
ers (of pairs of parallel morphisms) then it has all pull-
backs (of pairs of morphisms with common target).

e If K has all pullbacks and a terminal object then it has
all binary products and equalisers. HINT: to build Ax B

an equaliser of f,g: A — B, consider a pullback of (ida, f) (ida, g)
A A

<’idA, f>, <idA,g>: A— AxB.

Now: eq;{ida, f) = ea;(ida, g). A 4
Hence (e1, e1;f) = (ea, e2;9), which implies e; = e and

e1;f = eg;g — and yields e; = ey as the equaliser of f e) és

and g.
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Few facts'

e Pullbacks are unique up to isomorphism.

e If K has all products (of pairs of objects) and all equalis-
ers (of pairs of parallel morphisms) then it has all pull-
backs (of pairs of morphisms with common target).

e If K has all pullbacks and a terminal object then it has
all binary products and equalisers. HINT: to build
an equaliser of f,g: A — B, consider a pullback of
<’idA, f>, <idA,g>: A— AxB.

e Pullbacks translate monos to monos: if the following is

a pullback square and f is mono then f/ is mono as well.
o <¢4—©

1t

O <¢4+—°©
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backs (of pairs of morphisms with common target).

e If K has all pullbacks and a terminal object then it has
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Few facts'

e Pullbacks are unique up to isomorphism.

e If K has all products (of pairs of objects) and all equalis-
ers (of pairs of parallel morphisms) then it has all pull-
backs (of pairs of morphisms with common target).

e If K has all pullbacks and a terminal object then it has
all binary products and equalisers. HINT: to build
an equaliser of f,g: A — B, consider a pullback of

<’idA, f>, <idA,g>: A— AxB.

e Pullbacks translate monos to monos: if the following is

a pullback square and f is mono then f’ is mono as well.
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Few facts'

e Pullbacks are unique up to isomorphism.

e If K has all products (of pairs of objects) and all equalis-
ers (of pairs of parallel morphisms) then it has all pull-
backs (of pairs of morphisms with common target).

e If K has all pullbacks and a terminal object then it has
all binary products and equalisers. HINT: to build
an equaliser of f,g: A — B, consider a pullback of

<’idA, f>, <idA,g>: A— AxB.

e Pullbacks translate monos to monos: if the following is

a pullback square and f is mono then f’ is mono as well.
o <¢4—©

1t

O <¢4+—°©
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Few facts'

e Pullbacks are unique up to isomorphism.

e If K has all products (of pairs of objects) and all equalis-
ers (of pairs of parallel morphisms) then it has all pull-
backs (of pairs of morphisms with common target).

e If K has all pullbacks and a terminal object then it has
all binary products and equalisers. HINT: to build
an equaliser of f,g: A — B, consider a pullback of

<’idA, f>, <idA,g>: A— AxB.

e Pullbacks translate monos to monos: if the following is

a pullback square and f is mono then f’ is mono as well.
o <¢4—©

1t

O <¢4+—°©

° < °
A A
PB,
fl >~ |f
° < 7 o
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Few facts'

e Pullbacks are unique up to isomorphism.

e If K has all products (of pairs of objects) and all equalis-
ers (of pairs of parallel morphisms) then it has all pull-

backs (of pairs of morphisms with common target). q
o <« [
e If K has all pullbacks and a terminal object then it has A A
all binary products and equalisers. HINT: to build PB,
7 - |/

an equaliser of f,g: A — B, consider a pullback of
<’idA,f>, <idA,g>: A— AxB.

e Pullbacks translate monos to monos: if the following is * = q A.A
a pullback square and f is mono then f’ is mono as well.
Proof: Suppose hi;f’ = ha;f’. hi| |heo
o
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Few facts'

e Pullbacks are unique up to isomorphism.

e If K has all products (of pairs of objects) and all equalis-
ers (of pairs of parallel morphisms) then it has all pull-

backs (of pairs of morphisms with common target). q
o <« L
e If K has all pullbacks and a terminal object then it has A A
all binary products and equalisers. HINT: to build PB,
7 - |/

an equaliser of f,g: A — B, consider a pullback of
<’idA,f>, <idA,g>: A— AxB.

e Pullbacks translate monos to monos: if the following is * = q A.A
a pullback square and f is mono then f’ is mono as well.
Proof: Suppose hy;f’ = ho;f’. Then (hy;f');g = hi| |heo
(h2;f");9,
[
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Few facts'

e Pullbacks are unique up to isomorphism.

e If K has all products (of pairs of objects) and all equalis-
ers (of pairs of parallel morphisms) then it has all pull-

backs (of pairs of morphisms with common target). o q .
e If K has all pullbacks and a terminal object then it has A A
all binary products and equalisers. HINT: to build | PB, /
an equaliser of f,g: A — B, consider a pullback of I ~ |/
<’idA, f>, <idA,g>: A— AxB.
e Pullbacks translate monos to monos: if the following is * = q A.A

a pullback square and f is mono then f’ is mono as well.
Proof: Suppose hy;f’ = ho;f’. Then (hy;f');g = hi| |heo
(h2;f)ig, and (h1;g');f = (hasg')sf.
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Few facts'

e Pullbacks are unique up to isomorphism.

e If K has all products (of pairs of objects) and all equalis-
ers (of pairs of parallel morphisms) then it has all pull-
backs (of pairs of morphisms with common target). q

e If K has all pullbacks and a terminal object then it has A A
all binary products and equalisers. HINT: to build PB,

an equaliser of f,g: A — B, consider a pullback of
<’idA,f>, <idA,g>: A— AxB.

e Pullbacks translate monos to monos: if the following is * = q *

a pullback square and f is mono then f’ is mono as well.
Proof: Suppose hy;f’ = ho;f’. Then (hy;f');g = hi| |heo
(ho;f);g, and (h1;9");f = (ha;g’);f. Since f is mono,
hi;g" = ha;g’.
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Few facts'

e Pullbacks are unique up to isomorphism.

e If K has all products (of pairs of objects) and all equalis-
ers (of pairs of parallel morphisms) then it has all pull-

backs (of pairs of morphisms with common target). o q .
e If K has all pullbacks and a terminal object then it has A A
all binary products and equalisers. HINT: to build | PB, /
an equaliser of f,g: A — B, consider a pullback of I ~ |/
<’idA, f>, <idA,g>: A— AxB.
e Pullbacks translate monos to monos: if the following is * = q A.A

a pullback square and f is mono then f’ is mono as well.
Proof: Suppose hy;f’ = ho;f’. Then (hy;f');g = hi| |heo
(ho;f);g, and (h1;9");f = (ha;g’);f. Since f is mono,
hi:9' = ha:;g’. By the pullback property, h1 = ho.
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e Pullbacks are unique up to isomorphism.

e If K has all products (of pairs of objects) and all equalis-
ers (of pairs of parallel morphisms) then it has all pull-
backs (of pairs of morphisms with common target).

e If K has all pullbacks and a terminal object then it has
all binary products and equalisers. HINT: to build
an equaliser of f,g: A — B, consider a pullback of
<’idA, f>, <idA,g>: A— AxB.

e Pullbacks translate monos to monos: if the following is
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Pushouts '

pushout = co-pullback

A pushout of two morphisms with common source f: C' — A and g: C — B
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Pushouts '

pushout = co-pullback

A pushout of two morphisms with common source f: C' -+ A and g: C — B is an
object P € |K| with morphisms j: A — P and k: B — P such that f;j = g;k,
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Pushouts '

pushout = co-pullback

A pushout of two morphisms with common source f: C' -+ A and g: C — B is an

object P € |K| with morphisms j: A — P and k: B — P such that f;j = ¢;k, and

such that for all P" € |K| with morphisms j': A — P" and k': B — P, if f;5' = g;K
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Pushouts ' pushout = co-pullback

A pushout of two morphisms with common source f: C' -+ A and g: C — B is an
object P € |K| with morphisms j: A — P and k: B — P such that f;j = ¢;k, and
such that for all P" € |K| with morphisms j': A — P" and k': B — P, if f;5' = g;K
then for a unique morphism h: P — P’ j;h = j" and k;h = k.
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Pushouts ' pushout = co-pullback

A pushout of two morphisms with common source f: C' -+ A and g: C — B is an
object P € |K| with morphisms j: A — P and k: B — P such that f;j = ¢;k, and
such that for all P" € |K| with morphisms j': A — P" and k': B — P, if f;5' = g;K
then for a unique morphism h: P — P’ j;h = j" and k;h = k.

In Set, given two functions f: C' — A and ¢g: C —
B7
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A pushout of two morphisms with common source f: C' -+ A and g: C — B is an
object P € |K| with morphisms j: A — P and k: B — P such that f;j = ¢;k, and
such that for all P" € |K| with morphisms j': A — P" and k': B — P, if f;5' = g;K
then for a unique morphism h: P — P’ j;h = j" and k;h = k.

In Set, given two functions f: C — A and ¢g: C —
B, define the least equivalence = on A W B such that
f(c) = g(c) for all c € C. K’
k
B
f g

Andrzej Tarlecki: Category Theory, 2025 -72 -



Pushouts ' pushout = co-pullback

A pushout of two morphisms with common source f: C' -+ A and g: C — B is an
object P € |K| with morphisms j: A — P and k: B — P such that f;j = ¢;k, and
such that for all P" € |K| with morphisms j': A — P" and k': B — P, if f;5' = g;K
then for a unique morphism h: P — P’ j;h = j" and k;h = k.

In Set, given two functions f: C' — A and ¢g: C —
B, define the least equivalence = on A W B such that
f(c) = g(c) for all ¢ € C. | The quotient (AW B)/= with k'
compositions of injections and the quotient function is a
pushout of f and g. k
B
f 9
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Pushouts ' pushout = co-pullback

A pushout of two morphisms with common source f: C' -+ A and g: C — B is an
object P € |K| with morphisms j: A — P and k: B — P such that f;j = ¢;k, and
such that for all P" € |K| with morphisms j': A — P" and k': B — P, if f;5' = g;K
then for a unique morphism h: P — P’ j;h = j" and k;h = k.

In Set, given two functions f: C — A and ¢g: C —
B, define the least equivalence = on A W B such that
f(c) = g(c) for all ¢ € C. | The quotient (AW B)/= with

compositions of injections and the quotient function is a

pushout of f and g.

Dualise facts for pullbacks!
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{0,1,2,3}

{a— 1,b— 2}

Example I

{a,b}

{1,2,3}

{a— 1,b+— 3}
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Example I

0,1 ,1,2 ,3,2,3}

—~—

{0—0,1— 1 : {1 — 1,
2+ 2 ,3— 3} 2+ 2,3 — 3}

4

{0,1,2,3} {1,2,3}

{a— 1,b— 2} {a— 1,b— 3}

N

{a,b}
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Example I

{07 [1 — 1]7 [2 — 3]7273}
{0—0,1+— [1=1], {1 — [1 =1],
2+ [2=3],3— 3} 2+ 2,3 [2=3]}
{0,1,2,3} PO {1,2,3}
{a|—>1,b|—t2\ %Ll,bn—ﬂ%}

{a,b}
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Example I

{07 [1 — 1]7 [2 — 3]7273}
{0— 0,1~ [1=1], {1 —[1 =1],
2+— 2=3],3— 3} 2+ 2,3+ [2=3]}
{0,1,2,3} PO {1,2,3}

{a— 1,b— 2} {a— 1,b+— 3}

N

{a,b}

Pushouts put objects together taking account of the indicated sharing.
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Example in AlgSigI

Andrzej Tarlecki: Category Theory, 2025

- 74 -



Example in AlgSigI

sort Flem
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Example in AlgSigI

sort String

ops a,...,z: String;

_ 7 _: String x String
— String

A

sort Flem
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Example in AlgSigI

sort String

ops a,...,z: String;

_ 7 _: String x String
— String

A

sort Flem

sorts Elem, Nat, Array|Elem]

ops empty: Array|Elem|;

put: Nat X Elem x Array|Elem]
— Array|Elem];

get: Nat X Array|Elem| — Elem
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Example in AlgSigI

sort String

ops a,...,z: String;
_ 7 _: String x String
— String
A
sort [lem

PO

sorts String, Nat, Array[String]
ops a,...,z: String;

_ 7 _: String x String — String;

empty : Array|String|;

put: Nat x String x Array|String]
— Array|String|;

get: Nat x Array|String| — String

sorts Elem, Nat, Array|Elem]

ops empty: Array|Elem|;

put: Nat X Elem x Array|Elem]
— Array|Elem];

get: Nat X Array|Elem| — Elem
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Graphs I

A graph consists of sets of nodes and edges,
and indicate source and target nodes for each edge
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Graphs I
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and indicate source and target nodes for each edge

Graph is any X grapn-algebra.
> Graph = SOrts nodes, edges

The category of graphs:

opns source: edges — nodes
target : edges — modes Graph = Alg(X crapn)

For any small category K, define its graph, G(K)
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and indicate source and target nodes for each edge

Graph is any X grapn-algebra.
> Graph = SOrts nodes, edges

The category of graphs:

opns source: edges — nodes
target: edges — nodes Graph = Alg(X crapn)

For any small category K, define its graph, G(K)

For any graph G € |Graph|, define the category of paths in G, Path(G):
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A graph consists of sets of nodes and edges,

and indicate source and target nodes for each edge

Graph is any X grapn-algebra.
> Graph = SOrts nodes, edges

The category of graphs:

opns source: edges — nodes
target: edges — nodes Graph = Alg(X crapn)

For any small category K, define its graph, G(K)

For any graph G € |Graph|, define the category of paths in G, Path(G):

— objects: |G| podes
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Graphs I

A graph consists of sets of nodes and edges,
and indicate source and target nodes for each edge

Graph is any X grapn-algebra.

> Graph = SOrts nodes, edges The category of graphs:

opns source: edges — nodes
target: edges — nodes Graph = Alg(X crapn)

For any small category K, define its graph, G(K)

For any graph G € |Graph
— objects: |G| podes

, define the category of paths in G, Path(G):

— morphisms: paths in G, i.e., sequences ngeiny ...Ng_1€xni of nodes

noy .-+, Nk € |Glnodes and edges e, ..., e € |G|edges such that
source(e;) = n;_1 and target(e;) =n; fori=1,... k.
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Diagrams
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Diagrams'

A diagram in K is a graph with nodes labelled with K-objects

and edges labelled with K-morphisms with appropriate sources and targets.
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A diagram in K is a graph with nodes labelled with K-objects
and edges labelled with K-morphisms with appropriate sources and targets.

A diagram D consists of:
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Diagrams'

A diagram in K is a graph with nodes labelled with K-objects
and edges labelled with K-morphisms with appropriate sources and targets.

A diagram D consists of:
— a graph G(D),
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Diagrams'

A diagram in K is a graph with nodes labelled with K-objects
and edges labelled with K-morphisms with appropriate sources and targets.

A diagram D consists of:
— a graph G(D),
— an object D,, € |K]| for each node n € |G(D)|n0des.
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Diagrams'

A diagram in K is a graph with nodes labelled with K-objects
and edges labelled with K-morphisms with appropriate sources and targets.

A diagram D consists of:
— a graph G(D),
— an object D,, € |K]| for each node n € |G(D)|n0des.
— a morphism D¢ Dgoyree(e) =+ Diarget(e) for each edge e € |G(D)]edges-
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Diagrams'

A diagram in K is a graph with nodes labelled with K-objects

and edges labelled with K-morphisms with appropriate sources and targets.

A diagram D consists of:
— a graph G(D),
— an object D,, € |K]| for each node n € |G(D)|nodes.
— a morphism D¢ Dgoyree(e) =+ Diarget(e) for each edge e € |G(D)]edges-

For any small category K, define its diagram, D(K), with graph G(D(K))

G(K)
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Diagrams'

A diagram in K is a graph with nodes labelled with K-objects

and edges labelled with K-morphisms with appropriate sources and targets.

A diagram D consists of:
— a graph G(D),
— an object D,, € |K]| for each node n € |G(D)|nodes.
— a morphism D¢ Dgoyree(e) =+ Diarget(e) for each edge e € |G(D)]edges-

For any small category K, define its diagram, D(K), with graph G(D(K)) = G(K)

BTW: A diagram D commutes (or is commutative) if for any two
paths in G(D) with common source and target, the compositions

of morphisms that label the edges of each of them coincide.

Andrzej Tarlecki: Category Theory, 2025

- 76 -



Diagram categories I
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Diagram categories I

Given a graph G with nodes N = |G|nodes and edges
E = |G|edges. the category of diagrams of shape G in
K, Diagﬁ, Is defined as follows:
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Diagram categories I

Given a graph G with nodes N = |G|podes and edges o o
E = |G|edges. the category of diagrams of shape G in \ 5
K, Diag$, is defined as follows: D.° - >
S— —
— objects: all diagrams D in K with G(D) =G
o< .
N
Dy, m
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Diagram categories I

Given a graph G with nodes N = |G|podes and edges o o
E = |G|edges. the category of diagrams of shape G in 5
K, Diag$, is defined as follows: D.e —>y
— objects: all diagrams D in K with G(D) =G B -
— morphisms: for any two diagrams D and D’ in K p M
of shape G, a morphism p: D — D’ is any family
p = : Dy, — D), oy of morphisms in K fn Hom
°— .
NN,
[ ]
D! D1,
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Diagram categories I

Given a graph G with nodes N = |G|podes and edges °— °
E = |G|edges. the category of diagrams of shape G in 5
K, Diagﬁ, is defined as follows: D.e = e
— objects: all diagrams D in K with G(D) =G B -
— morphisms: for any two diagrams D and D’ in K p M
of shape G, a morphism p: D — D’ is any family
p= (n: Dy — D), o n of morphisms in K such Hm Him
that for each edge e € E with sourceg(py(e) = n
and targetg py(e) = m, o .
pin; D = De;pim \I D, 1
Dy, Dy,
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Let D be a diagram over G(D) with nodes N = |G(D)|nodes and edges E = |G(D)|edges-
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Let D be a diagram over G(D) with nodes N = |G(D)|nodes and edges E = |G(D)|edges-

Cones and COCOHES'
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Let D be a diagram over G(D) with nodes N = |G(D)|nodes and edges E = |G(D)|edges-

Cones and COCOHES'

A cone on D (in K)
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Let D be a diagram over G(D) with nodes N = |G(D)|nodes and edges E = |G(D)|edges-

X

Cones and cocones' //\\
o o
A cone on D (in K) is an object X € |K| together

with a family of morphisms {(a,: X — D,) e/ N

neN / \
D,
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Let D be a diagram over G(D) with nodes N = |G(D)|nodes and edges E = |G(D)|edges-

X
Cones and COCO"ES' //\\
o o
A cone on D (in K) is an object X € |K| together
with a family of morphisms (ay,: X — D,), .5 such 1 LN
that for each edge e € E with sourceg(py(e) = n and \/a" \Oém
Dy, - "D

targetg(D)(e) = m, an;De = .
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Let D be a diagram over G(D) with nodes N = |G(D)|nodes and edges E = |G(D)|edges-

X
Cones and COCO"ES' //\\
o o
A cone on D (in K) is an object X € |K| together
with a family of morphisms (ay,: X — D,), .5 such 1 LN
that for each edge e € E with sourceg(py(e) = n and \/a" \Oém
Dy, - "D

targetg(D)(e) = m, an;De = .

A cocone on D (in K)

o< o
\ b
Dy, D
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Let D be a diagram over G(D) with nodes N = |G(D)|nodes and edges E = |G(D)|edges-

X
Cones and COCO"ES' //\\
o o
A cone on D (in K) is an object X € |K| together
with a family of morphisms (ay,: X — D,), .5 such 1 LN
that for each edge e € E with sourceg(py(e) = n and \/a" \Oém
Dy, - "D

targetg(D)(e) = m, an;De = .

A cocone on D (in K) is an object X € |K| together

o< // \\ \0 with a family of morphisms {(a,,: D, — X}neN
Onp, O,

N/, %

D, D

Andrzej Tarlecki: Category Theory, 2025 - 78 -



Let D be a diagram over G(D) with nodes N = |G(D)|nodes and edges E = |G(D)|cdges-

X
Cones and COCO"ES' //\\
o o
A cone on D (in K) is an object X € |K| together
with a family of morphisms {(a,: X — D } cn such
that for each edge e € E with sourceg(py(e) = n and \/a" \Oém

targetg(D)(e) = m, an;De = .

A cocone on D (in K) is an object X € |K| together

L/ \ N\ with a family of morphisms (o, : D, — X), .5 such
\/ozn - \Oém that for each edge e € E with sourceg(py(e) = n and

targetgpy(e) =m, an = De;p,.
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A limit of D (in K)

Limits and colimits'
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Limits and colimits'

A limit of D (in K) is a cone (o, : X — Dy), oy on D
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Limits and colimits'

A limit of D (in K) is a cone (o, : X — Dy), oy on D
such that for all cones (o, : X" — D,,), . on D,
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Limits and colimits'

A limit of D (in K) is a cone (o, : X — Dy), oy on D
such that for all cones (a;,: X' — D), .y on D, for a

unique morphism h: X" — X, h;a, =, foralln € N.
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Limits and colimits'

A limit of D (in K) is a cone (o, : X — Dy), oy on D
such that for all cones (a;,: X' — D), .y on D, for a

unique morphism h: X" — X, h;a, =, foralln € N.

— ) T A colimit of D (in K)
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Limits and colimits'

A limit of D (in K) is a cone (o, : X — Dy), oy on D
such that for all cones (a;,: X' — D), .y on D, for a

unique morphism h: X" — X, h;a, =, foralln € N.

ANS
1NN
A

A colimit of D (in K) is a cocone (ay,: D, — X)
on D

neN
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/

Limits and colimits'

A limit of D (in K) is a cone (o, : X — Dy), oy on D
such that for all cones (a;,: X' — D), .y on D, for a
unique morphism h: X" — X, h;a, =, foralln € N.

X ’ »!
A \
Qn
v 7\ RN A colimit of D (in K) is a cocone (o, : D,, = X), oy
* < o
/ on D such that for all cocones {(a;,: D,, — X') _5 on
\|/~ b
D. -0
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/

Limits and colimits'

A limit of D (in K) is a cone (o, : X — Dy), oy on D
such that for all cones (a;,: X' — D), .y on D, for a

unique morphism h: X" — X, h;a, =, foralln € N.

j »Xi ' R
.<// \\. A colimit of D (in K) is a cocone (o, : D,, = X), oy
/ on D such that for all cocones {(a;,: D,, — X') _5 on
\ @ D, for a unique morphism h: X — X' ay;h = o for
D, ~° alln € N.
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Some limits '

diagram

limit

In Set
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Some limits '

diagram

limit

In Set

(empty)

terminal object

1+}
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Some limits '

diagram limit in Set
(empty) terminal object {x}
A B product AxB
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Some limits '

diagram limit in Set
(empty) terminal object {x}
A B product AxB
f
ATZB equaliser {fae A| fla)=g(a)} — A
g
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Some limits '

diagram limit in Set
(empty) terminal object {x}
A B product AxB
f
ATZB equaliser {ae A| fla)=g(a)} — A
g
Y/ p— 5
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Some limits '

diagram limit in Set
(empty) terminal object {x}
A B product Ax B
f
ATZB equaliser {ae A| fla)=g(a)} — A
g

f

o N
Cones X—A>A_,.B where a4;f = ap and a4;9 = ap

o5 7 4
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Some limits '

diagram limit in Set
(empty) terminal object {x}
A B product Ax B
f
ATZB equaliser {ae A| fla)=g(a)} — A
g

f

Cones X%A_L B where ayg;f = ap and a4;9 = ap
/

a5 7 4
coincide with morphisms X&»A_L B where aa;f = aa:g.
g
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Some limits '

diagram limit in Set
(empty) terminal object {x}
A B product AxB
f
ATZB equaliser {fae A| fla)=g(a)} — A
g
Alicd pullback {(a,b) € Ax B| f(a) = g(b)}

Andrzej Tarlecki: Category Theory, 2025

- 80 -



Some limits '

diagram limit in Set
(empty) terminal object {x}
A B product Ax B
f
ATZB equaliser {ae A| fla)=g(a)} — A
g
Alcd B pullback {(a,b) € Ax B| f(a) =g(b)}
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Some limits '

diagram limit in Set
(empty) terminal object {x}
A B product Ax B
f
ATZB equaliser {ae A| fla)=g(a)} — A
g
Alsod pullback {(a,b) € Ax B| f(a) =g(b)}
f

Cones A——(C

B where as;f = ac and ap;g = ac
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Some limits '

diagram limit in Set
(empty) terminal object {x}
A B product Ax B
f
ATZB equaliser {ae A| fla)=g(a)} — A
g
Alcd B pullback {(a,b) € Ax B| f(a) =g(b)}
f g

Cones A——(C

aact Z

X

B where as;f = ac and ap;g = ac

coincide with pairs of morphisms

A

f

_>C

X

g

B where aa;f = ap;g.
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. & colimits'

diagram colimit in Set
(empty) initial object )
A B coproduct AW B
A fj B coequaliser B — B/=
7 where f(a) =g(a) foralla € A
Ad o 4B pushout (AW B)/=

where f(c) = g(c) forall c e C
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e For any diagram D, define the category of cones over D, Cone(D):
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e For any diagram D, define the category of cones over D, Cone(D):

— objects: all cones over D

Andrzej Tarlecki: Category Theory, 2025 - 82 -



Exercises '

e For any diagram D, define the category of cones over D, Cone(D):

— objects: all cones over D

— morphisms: a morphism from (a,: X — D)y to (a;,: X' — Dy)

neN
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Exercises '

e For any diagram D, define the category of cones over D, Cone(D):

— objects: all cones over D

— morphisms: a morphism from (a,: X — D), .y to (o, : X' = Dyp), cn IS

any K-morphism h: X — X’ such that h;a!, = «, for all n € N.
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e For any diagram D, define the category of cones over D, Cone(D):

— objects: all cones over D

— morphisms: a morphism from (a,: X — D), .y to (o, : X' = Dp), cn IS

any K-morphism h: X — X’ such that h;a!, = «, for all n € N.

— composition: inherited from K. h h' e
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Exercises '

e For any diagram D, define the category of cones over D, Cone(D):

— objects: all cones over D

— morphisms: a morphism from (a,: X — D), .y to (o, : X' = Dyp), cn IS

any K-morphism h: X — X’ such that h;a!, = «, for all n € N.

— composition: inherited from K. h Iy

Notation:

2.4 >
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Exercises '

e For any diagram D, define the category of cones over D, Cone(D):

— objects: all cones over D

— morphisms: a morphism from (a,: X — D), .y to (o, : X' = Dyp), cn IS
any K-morphism h: X — X’ such that h;a!, = «, for all n € N.

— composition: inherited from K. h Iy

Notation:

— We may write a: X — D for the

cone {ap: X — Dp),cn-

2.4 >

Andrzej Tarlecki: Category Theory, 2025

-82-



Exercises '

e For any diagram D, define the category of cones over D, Cone(D):

— objects: all cones over D

— morphisms: a morphism from (a,: X — D), .y to (o, : X' = Dyp), cn IS

any K-morphism h: X — X’ such that h;a!, = «, for all n € N.

— composition: inherited from K. h

/
> X' h X"

Notation:

— We may write a: X — D for the

cone {ap: X — Dp),cn-

— Thenfor f: Y - X, fia: Y — D
is the cone (f;a,: X — D,)

neN -
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Exercises '

e For any diagram D, define the category of cones over D, Cone(D):

— objects: all cones over D

— morphisms: a morphism from (a,: X — D), .y to (o, : X' = Dyp), cn IS

any K-morphism h: X — X’ such that h;a!, = «, for all n € N.

— composition: inherited from K. h h' !

Notation:

— We may write a: X — D for the

cone {ap: X — Dp),cn-

— Thenfor f: Y - X, fia: Y — D
is the cone (f;a,: X — D,)

neN -

— So, h: X — X' is a cone morphism
h: (a: X - D) = (o/: X' = D)
iff o = h;a.
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Exercises '

e For any diagram D, define the category of cones over D, Cone(D):

— objects: all cones over D

— morphisms: a morphism from (a,: X — D), .y to (o, : X' = Dyp), cn IS

any K-morphism h: X — X’ such that h;a), = «, for all n € N.

e Show that limits of D are terminal objects in Cone(D).
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Exercises '

e For any diagram D, define the category of cones over D, Cone(D):

— objects: all cones over D

— morphisms: a morphism from (a,: X — D), .y to (o, : X' = Dyp), cn IS

any K-morphism h: X — X’ such that h;a), = «, for all n € N.

e Show that limits of D are terminal objects in Cone(D). Conclude that limits are

defined uniquely up to isomorphism (which commutes with limit projections).
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Exercises '

e For any diagram D, define the category of cones over D, Cone(D):

— objects: all cones over D

— morphisms: a morphism from (a,: X — D), .y to (o, : X' = Dyp), cn IS
any K-morphism h: X — X’ such that h;a), = «, for all n € N.

e Show that limits of D are terminal objects in Cone(D). Conclude that limits are

defined uniquely up to isomorphism (which commutes with limit projections).

e Construct a limit in Set of the following diagram:

Ag 42 Ay o4, 2
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Exercises '

e For any diagram D, define the category of cones over D, Cone(D):

— objects: all cones over D

— morphisms: a morphism from (a,: X — D), .y to (o, : X' = Dyp), cn IS
any K-morphism h: X — X’ such that h;a), = «, for all n € N.

e Show that limits of D are terminal objects in Cone(D). Conclude that limits are

defined uniquely up to isomorphism (which commutes with limit projections).

e Construct a limit in Set of the following diagram:

Ag 42 Ay o4, 2

e Easier: Consider Ag 2 A1 D Ay O ---. Construct a limit in Set of the following
diagram: Ag > A1 ¢« Ay < - -+
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Exercises '

e For any diagram D, define the category of cones over D, Cone(D):

— objects: all cones over D

— morphisms: a morphism from (a,: X — D), .y to (o, : X' = Dyp), cn IS
any K-morphism h: X — X’ such that h;a), = «, for all n € N.

e Show that limits of D are terminal objects in Cone(D). Conclude that limits are

defined uniquely up to isomorphism (which commutes with limit projections).

e Construct a limit in Set of the following diagram:

Ag 42 Ay o4, 2

e Easier: Consider Ag 2 A1 D Ay O ---. Construct a limit in Set of the following
diagram: Ag <> Ay <= Ag <= -+ (Hint: (7,59 4i)
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Exercises '

e For any diagram D, define the category of cones over D, Cone(D):

— objects: all cones over D

— morphisms: a morphism from (a,: X — D), .y to (o, : X' = D), cn IS
any K-morphism h: X — X’ such that h;a!, = «, for all n € N.

e Show that limits of D are terminal objects in Cone(D). Conclude that limits are

defined uniquely up to isomorphism (which commutes with limit projections).

e Construct a limit in Set of the following diagram:
Ag 42 Ay o4, 2

Hint: {(ai);>¢ | fort>0,a; € A; and fi(ai+1) = a;}
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Exercises '

e For any diagram D, define the category of cones over D, Cone(D):

— objects: all cones over D

— morphisms: a morphism from (a,: X — D), -y to (o, : X' = Dyp), cn IS
any K-morphism h: X — X’ such that h;a!, = «, for all n € N.

e Show that limits of D are terminal objects in Cone(D). Conclude that limits are

defined uniquely up to isomorphism (which commutes with limit projections).

e Construct a limit in Set of the following diagram:

Ag 42 Ay o4, 2

e Show that limiting cones are jointly mono, i.e., if (ap: X — Dy), _ is a limit of
D then for all f,g: A — X, f = g whenever f;a,, = g;a, for alln € N.
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Exercises '

e For any diagram D, define the category of cones over D, Cone(D):

— objects: all cones over D

— morphisms: a morphism from (o, : X — D), o to (ay,: X' — Dyp), oy is
any K-morphism h: X — X’ such that h;a!, = «, for all n € N.

e Show that limits of D are terminal objects in Cone(D). Conclude that limits are
defined uniquely up to isomorphism (which commutes with limit projections).

e Construct a limit in Set of the following diagram:
Ag L& Ay 4y 2

e Show that limiting cones are jointly mono, i.e., if (an: X — Dy),  is a limit of
D then for all f,g: A — X, f = g whenever f;a,, = g;a,, for all n € N.

Proof: Let 8 = f;a =g;a: A — D.
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Exercises '

e For any diagram D, define the category of cones over D, Cone(D):

— objects: all cones over D

— morphisms: a morphism from (o, : X — D), o to (ay,: X' — Dyp), oy is
any K-morphism h: X — X’ such that h;a!, = «, for all n € N.

e Show that limits of D are terminal objects in Cone(D). Conclude that limits are
defined uniquely up to isomorphism (which commutes with limit projections).

e Construct a limit in Set of the following diagram:
Ag L& Ay 4y 2

e Show that limiting cones are jointly mono, i.e., if (an: X — Dy),  is a limit of
D then for all f,g: A — X, f = g whenever f;a,, = g;a,, for all n € N.

Proof: Let 8 = f;aa = g;ae: A — D. There is unique h: 8 — «, and so
h=f=g.
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Exercises '

e For any diagram D, define the category of cones over D, Cone(D):

— objects: all cones over D

— morphisms: a morphism from (o, : X — D), o to {ay,: X' — D),y is
any K-morphism h: X — X’ such that h;a!, = «, for all n € N.

e Show that limits of D are terminal objects in Cone(D). Conclude that limits are
defined uniquely up to isomorphism (which commutes with limit projections).

e Construct a limit in Set of the following diagram:
Ag 42 Ay doa, 2

e Show that limiting cones are jointly mono, i.e., if {(a,: X — Dy), n is a limit of
D then for all f,g: A — X, f = g whenever f;a,, = g;a,, for alln € N.

Dualise all the exercises above!
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Completeness and cocompleteness'

A category K is complete if

any diagram in K has a limit.

A category K is cocomplete if

any diagram in K has a colimit.
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Completeness and cocompleteness'

A category K is (finitely ) complete if

any (finite) diagram in K has a limit.

A category K is (finitely ) cocomplete if

any (finite) diagram in K has a colimit.
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Completeness and cocompleteness'

A category K is (finitely ) complete if

any (finite) diagram in K has a limit.

A category K is (finitely ) cocomplete if

any (finite) diagram in K has a colimit.

e If K has a terminal object, binary products (of all pairs of objects) and equalisers

(of all pairs of parallel morphisms) then it is finitely complete.
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Completeness and cocompletenessl

A category K is (finitely ) complete if

any (finite) diagram in K has a limit.

A category K is (finitely ) cocomplete if
any (finite) diagram in K has a colimit.

e If K has a terminal object, binary products (of all pairs of objects) and equalisers

(of all pairs of parallel morphisms) then it is finitely complete.

Proof (idea): Let D be a diagram with nodes N ﬁ
<

and edges F = {ey1,...,ex}.

B

\D._>-.
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Completeness and cocompletenessl

A category K is (finitely ) complete if A category K is (finitely ) cocomplete if

any (finite) diagram in K has a limit. any (finite) diagram in K has a colimit.

e If K has a terminal object, binary products (of all pairs of objects) and equalisers
(of all pairs of parallel morphisms) then it is finitely complete.

Proof (idea): Let D be a diagram with nodes N
and edges F = {ey1,...,ex}.

— Take the product Py =[] D,, with projections m,: Py — D,,, n € N.

neN
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Completeness and cocompletenessl

A category K is (finitely ) complete if A category K is (finitely ) cocomplete if

any (finite) diagram in K has a limit. any (finite) diagram in K has a colimit.

e If K has a terminal object, binary products (of all pairs of objects) and equalisers
(of all pairs of parallel morphisms) then it is finitely complete.

Proof (idea): Let D be a diagram with nodes N
and edges F = {e1,...,ex}.

— Take the product Py =[]

— For e1: mqy — mq in G(D) take the equaliser p1: P, — Py of
Tny i Deyt Po — Dy, and mp 0 Py = Doy,

neN D,, with projections m,,: Pp —+ D,,, n € N.
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Completeness and cocompletenessl

A category K is (finitely ) complete if A category K is (finitely ) cocomplete if
any (finite) diagram in K has a limit. any (finite) diagram in K has a colimit.

e If K has a terminal object, binary products (of all pairs of objects) and equalisers
(of all pairs of parallel morphisms) then it is finitely complete.

Proof (idea): Let D be a diagram with nodes N
and edges F = {e1,...,ex}.

Pz'—*pi Pi_q - P1—>p1 P,

— Take the product Fy = HneN D,, with projections m,,: Py —+ D,,, n € N.
— Fore;:n; = m; in G(D),i=1,...,k, take the equaliser p;: P; — P;_1 of
(Pi—15+3p1)iTn;3De; s Pi1 — Dy, and (pi—13---5p1)iTm, : Pic1 — Doy,
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Completeness and cocompletenessl

A category K is (finitely ) complete if A category K is (finitely ) cocomplete if
any (finite) diagram in K has a limit. any (finite) diagram in K has a colimit.

e If K has a terminal object, binary products (of all pairs of objects) and equalisers
(of all pairs of parallel morphisms) then it is finitely complete.
Proof (idea): Let D be a diagram with nodes N
and edges F = {e1,...,ex}.

Pkﬁ»Pk—l Pzi>'P’L—1 P1£>. PO

— Take the product Fy = HneN D,, with projections m,,: Py —+ D,,, n € N.
— Fore;:n; = m; in G(D),i=1,...,k, take the equaliser p;: P; — P;_1 of

(Pi—15+3p1)iTn;3De; s Pi1 — Dy, and (pi—13---5p1)iTm, : Pic1 — Doy,
— P with projections pg;---p1;7m: Py — D, n € N, is the limit of D.
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Completeness and cocompleteness'

A category K is (finitely ) complete if A category K is (finitely ) cocomplete if

any (finite) diagram in K has a limit. any (finite) diagram in K has a colimit.

e If K has a terminal object, binary products (of all pairs of objects) and equalisers
(of all pairs of parallel morphisms) then it is finitely complete.

e If K has products of all families of objects and equalisers (of all pairs of parallel
morphisms) then it is complete.
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Completeness and cocompletenessl

A category K is (finitely ) complete if

any (finite) diagram in K has a limit.

A category K is (finitely ) cocomplete if

any (finite) diagram in K has a colimit.

e If K has a terminal object, binary products (of all pairs of objects) and equalisers

(of all pairs of parallel morphisms) then it is finitely complete.

e If K has products of all families of objects and equalisers (of all pairs of parallel

morphisms) then it is complete.

B

Ad

f

f/

A

9

/

9

Yy
B
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Completeness and cocompletenessl

A category K is (finitely ) complete if

any (finite) diagram in K has a limit.

A category K is (finitely ) cocomplete if

any (finite) diagram in K has a colimit.

e If K has a terminal object, binary products (of all pairs of objects) and equalisers

(of all pairs of parallel morphisms) then it is finitely complete.

e If K has products of all families of objects and equalisers (of all pairs of parallel

morphisms) then it is complete.

P\j

P = GQZ(f, g)

B

Ad

A
f/

9

/

9

Yy
B
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Completeness and cocompletenessl

A category K is (finitely ) complete if

any (finite) diagram in K has a limit.

A category K is (finitely ) cocomplete if

any (finite) diagram in K has a colimit.

e If K has a terminal object, binary products (of all pairs of objects) and equalisers

(of all pairs of parallel morphisms) then it is finitely complete.

e If K has products of all families of objects and equalisers (of all pairs of parallel

morphisms) then it is complete.

P = GQZ(f, g)
q = eql(p;f',p;9")

B

Ad

A
f/

9

/

9

Yy
B
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Completeness and cocompletenessl

A category K is (finitely ) complete if

any (finite) diagram in K has a limit.

A category K is (finitely ) cocomplete if

any (finite) diagram in K has a colimit.

e If K has a terminal object, binary products (of all pairs of objects) and equalisers

(of all pairs of parallel morphisms) then it is finitely complete.

e If K has products of all families of objects and equalisers (of all pairs of parallel

morphisms) then it is complete.

B

Al
fl 19 1B

A B x B’
f/ g, B’

Yy

B/
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Completeness and cocompletenessl

A category K is (finitely ) complete if A category K is (finitely ) cocomplete if

any (finite) diagram in K has a limit. any (finite) diagram in K has a colimit.

e If K has a terminal object, binary products (of all pairs of objects) and equalisers
(of all pairs of parallel morphisms) then it is finitely complete.

e If K has products of all families of objects and equalisers (of all pairs of parallel

morphisms) then it is complete. B

Ad
f

A > B x B’

f/ g, B’
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Completeness and cocompletenessl

A category K is (finitely ) complete if

any (finite) diagram in K has a limit.

A category K is (finitely ) cocomplete if

any (finite) diagram in K has a colimit.

e If K has a terminal object, binary products (of all pairs of objects) and equalisers

(of all pairs of parallel morphisms) then it is finitely complete.

e If K has products of all families of objects and equalisers (of all pairs of parallel

morphisms) then it is complete.

B

r=eqgl((f,f"),{9,9"))

> A > B x B’

f/ g, B’

Andrzej Tarlecki: Category Theory, 2025

-83-



Completeness and cocompletenessl

A category K is (finitely ) complete if

any (finite) diagram in K has a limit.

A category K is (finitely ) cocomplete if

any (finite) diagram in K has a colimit.

e If K has a terminal object, binary products (of all pairs of objects) and equalisers

(of all pairs of parallel morphisms) then it is finitely complete.

e If K has products of all families of objects and equalisers (of all pairs of parallel

morphisms) then it is complete. B

Ad

f

f/

> B x B’

g B’

Yy
B

r=eql({(f, f').{9.9")) Hint: ri(f, f')

=r1i(g,9') ift rif =rig and rif" = ;g
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Completeness and cocompletenessl

A category K is (finitely ) complete if A category K is (finitely ) cocomplete if

any (finite) diagram in K has a limit. any (finite) diagram in K has a colimit.

e If K has a terminal object, binary products (of all pairs of objects) and equalisers
(of all pairs of parallel morphisms) then it is finitely complete.

e If K has products of all families of objects and equalisers (of all pairs of parallel
morphisms) then it is complete.

Q =R - > A > B x B’
ol (g,9")
_ 9 B’
p=eql(f,9) v
q = eql(p;f',p;9") B’
r=eql((f, f"),{9,9")) Hint: ri(f, f"y = ri{g,¢') iff r;f =rig and r;f =r;g’
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Completeness and cocompletenessl

A category K is (finitely ) complete if

any (finite) diagram in K has a limit.

A category K is (finitely ) cocomplete if

any (finite) diagram in K has a colimit.

e If K has a terminal object, binary products (of all pairs of objects) and equalisers

(of all pairs of parallel morphisms) then it is finitely complete.

e If K has products of all families of objects and equalisers (of all pairs of parallel

morphisms) then it is complete.

Proof (idea): Diagram D nodes N and edges F.
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Completeness and cocompletenessl

A category K is (finitely ) complete if

any (finite) diagram in K has a limit.

A category K is (finitely ) cocomplete if

any (finite) diagram in K has a colimit.

e If K has a terminal object, binary products (of all pairs of objects) and equalisers

(of all pairs of parallel morphisms) then it is finitely complete.

e If K has products of all families of objects and equalisers (of all pairs of parallel

morphisms) then it is complete.

Proof (idea): Diagram D nodes N and edges F.

projections m,: Py — D,, n € N
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Completeness and cocompletenessl

A category K is (finitely ) complete if

any (finite) diagram in K has a limit.

A category K is (finitely ) cocomplete if

any (finite) diagram in K has a colimit.

e If K has a terminal object, binary products (of all pairs of objects) and equalisers

(of all pairs of parallel morphisms) then it is finitely complete.

e If K has products of all families of objects and equalisers (of all pairs of parallel

morphisms) then it is complete.

Proof (idea): Diagram D nodes N and edges F.

projections m,: Py — D,, n € N

— P = HeEE Dtafr’get(e)v

projections Te: Pt — Dygrget(e), € € B
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Completeness and cocompletenessl

A category K is (finitely ) complete if

any (finite) diagram in K has a limit.

A category K is (finitely ) cocomplete if

any (finite) diagram in K has a colimit.

e If K has a terminal object, binary products (of all pairs of objects) and equalisers

(of all pairs of parallel morphisms) then it is finitely complete.

e If K has products of all families of objects and equalisers (of all pairs of parallel

morphisms) then it is complete.

Proof (idea): Diagram D nodes N and edges F.

projections m,: Py — D,, n € N

— P = HeEE Dtafr’get(e)v

projections me: Pi = Dygrget(e), € € E Py

Py
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Completeness and cocompletenessl

A category K is (finitely ) complete if A category K is (finitely ) cocomplete if

any (finite) diagram in K has a limit. any (finite) diagram in K has a colimit.

e If K has a terminal object, binary products (of all pairs of objects) and equalisers
(of all pairs of parallel morphisms) then it is finitely complete.

e If K has products of all families of objects and equalisers (of all pairs of parallel
morphisms) then it is complete.

Proof (idea): Diagram D nodes N and edges F.

o PO:HnENDn’

projections m,: Py — D,, n € N

— P = HeEE Dtafr’get(e)v
projections Te: Pt — Dygrget(e), € € B

— = <7Ttarget(€)>e€E'
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Completeness and cocompletenessl

A category K is (finitely ) complete if A category K is (finitely ) cocomplete if

any (finite) diagram in K has a limit. any (finite) diagram in K has a colimit.

e If K has a terminal object, binary products (of all pairs of objects) and equalisers
(of all pairs of parallel morphisms) then it is finitely complete.

e If K has products of all families of objects and equalisers (of all pairs of parallel

morphisms) then it is complete. P
A
Proof (idea): Diagram D nodes N and edges F.
— Py =1l,en Dn Bl |«

projections m,: Py — D,, n € N

— P = HeEE Dtafr’get(e)v
projections me: Pi = Dygrget(e), € € E Py

- = <7Ttarget(e)>eeE' B = <7Tsourc€(6);De>€€E
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Completeness and cocompletenessl

A category K is (finitely ) complete if A category K is (finitely ) cocomplete if

any (finite) diagram in K has a limit. any (finite) diagram in K has a colimit.

e If K has a terminal object, binary products (of all pairs of objects) and equalisers
(of all pairs of parallel morphisms) then it is finitely complete.

e If K has products of all families of objects and equalisers (of all pairs of parallel

morphisms) then it is complete. P
A
Proof (idea): Diagram D nodes N and edges F.
— Po=[len Dn, B| |
projections m,: Py — D,, n € N
— P = HeEE Dtafr’get(e)v
projections me: Pi = Dygrget(e), € € E Py
- = <7Ttafr‘get(e)>e€Ev b= <7Tsource(e);De>e€E D
— P = 6(]1(05,6)
P
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Completeness and cocompletenessl

A category K is (finitely ) complete if

any (finite) diagram in K has a limit.

A category K is (finitely ) cocomplete if

any (finite) diagram in K has a colimit.

e If K has a terminal object, binary products (of all pairs of objects) and equalisers

(of all pairs of parallel morphisms) then it is finitely complete.

e If K has products of all families of objects and equalisers (of all pairs of parallel

morphisms) then it is complete.

P
Proof (|dea) Diagram D nodes N and edges E. ¥
o PO LIneN D
prOJectlons 7w Py — D,, n€N B
— P = lecE Dtafr’get(e)
pI’OJeCtIOﬂS Te: P1 = Dyigrget(e), € € B P
0
- = <7Ttafr‘get(e)>e€Ev 6 — <7Tsource(e);De>eeE
— p = eql(a, B) p
— P with projections {p;my,),, is the limit of D. b
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Completeness and cocompletenessl

A category K is (finitely ) complete if A category K is (finitely ) cocomplete if

any (finite) diagram in K has a limit. any (finite) diagram in K has a colimit.

e If K has a terminal object, binary products (of all pairs of objects) and equalisers
(of all pairs of parallel morphisms) then it is finitely complete.

e If K has products of all families of objects and equalisers (of all pairs of parallel
morphisms) then it is complete.

Prove completeness of Set, Alg(X), AlgSig, Pfn, ...
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Completeness and cocompletenessl

A category K is (finitely ) complete if A category K is (finitely ) cocomplete if

any (finite) diagram in K has a limit. any (finite) diagram in K has a colimit.

e If K has a terminal object, binary products (of all pairs of objects) and equalisers
(of all pairs of parallel morphisms) then it is finitely complete.

e If K has products of all families of objects and equalisers (of all pairs of parallel
morphisms) then it is complete.

Prove completeness of Set, Alg(X), AlgSig, Pfn, ...

When a preorder category is complete?
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Completeness and cocompletenessl

A category K is (finitely ) complete if A category K is (finitely ) cocomplete if

any (finite) diagram in K has a limit. any (finite) diagram in K has a colimit.

e If K has a terminal object, binary products (of all pairs of objects) and equalisers
(of all pairs of parallel morphisms) then it is finitely complete.

e If K has products of all families of objects and equalisers (of all pairs of parallel
morphisms) then it is complete.

Prove completeness of Set, Alg(X), AlgSig, Pfn, ...

When a preorder category is complete?

Any lower complete semilattice is a complete lattice.
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A category K is (finitely ) complete if A category K is (finitely ) cocomplete if

any (finite) diagram in K has a limit. any (finite) diagram in K has a colimit.

e If K has a terminal object, binary products (of all pairs of objects) and equalisers
(of all pairs of parallel morphisms) then it is finitely complete.

e If K has products of all families of objects and equalisers (of all pairs of parallel
morphisms) then it is complete.

Prove completeness of Set, Alg(X), AlgSig, Pfn, ...

When a preorder category is complete?

BTW: If a small category is complete then it is a preorder.
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Completeness and cocompletenessl

BTW: If a small category is complete then it is a preorder.

Proof: Consider a small category K, with card(K) = k, and let f,g: A — B (in K).
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Completeness and cocompletenessl

BTW: If a small category is complete then it is a preorder.

Proof: Consider a small category K, with card(K) = k, and let f,g: A — B (in K).

o Let P=][,.,. B
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Completeness and cocompletenessl

BTW: If a small category is complete then it is a preorder.

Proof: Consider a small category K, with card(K) = k, and let f,g: A — B (in K).

° LetP:HA<&B—thatis,P:JBX---XBJ.

-~

K-times
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Completeness and cocompletenessl

BTW: If a small category is complete then it is a preorder.

Proof: Consider a small category K, with card(K) = k, and let f,g: A — B (in K).

° LetP:HAq}B—thatis,P:JBX---XBJ.

-~

Kk-times

e Foreach X C k we have hX: A —» P

f
g

— where h* = (a5 : A — B) defined by: aff =

ALK

fAeX
fAg X
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Completeness and cocompletenessl

BTW: If a small category is complete then it is a preorder.

Proof: Consider a small category K, with card(K) = k, and let f,g: A — B (in K).

° LetP:HAq}B—thatis,P:JBX---XBJ.

-~

k-times
e Foreach X C k we have hX: A —» P
f iftaxeX

— where h* = (a3': A — B),_,, defined by: a3 =
’ a Yy ifagx

o If f+# gthen for X,Y C k such that X #Y, h* # h¥ (since for A\ < &,

hsmy = aff and Y ;) = ay)
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Completeness and cocompletenessl

BTW: If a small category is complete then it is a preorder.

Proof: Consider a small category K, with card(K) = k, and let f,g: A — B (in K).

° LetP:HAq}B—thatis,P:JBX---XBJ.

-~

K-times

e Foreach X C k we have hX: A —» P

foifaeX

— where h* = (a5 : A — B)
g fAZ€X

A< defined by: ai{ =

o If f+# gthen for X,Y C k such that X #Y, h* # h¥ (since for A\ < &,

h*imy = a3t and hY ;) = @3 ) and so
card(K(A, P)) > card({X C k}) = 2" > k — contradiction.

Andrzej Tarlecki: Category Theory, 2025

- 83 -



Completeness and cocompletenessl

A category K is (finitely ) complete if A category K is (finitely ) cocomplete if
any (finite) diagram in K has a limit. any (finite) diagram in K has a colimit.

e If K has a terminal object, binary products (of all pairs of objects) and equalisers

(of all pairs of parallel morphisms) then it is finitely complete.

e If K has products of all families of objects and equalisers (of all pairs of parallel

morphisms) then it is complete.

Prove completeness of Set, Alg(X), AlgSig, Pfn, ...

When a preorder category is complete?

BTW: If a small category is complete then it is a preorder.

Dualise the above!
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