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Natural transformations'

Given two parallel functors F, G: K — K', a natural transformation from F to G

7 F — G

is a family 7 = (14: F(A4) = G(A4)) 4¢ k| of K'-morphisms such that for all
f: A= Bin K (with A, B € |K|),
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Natural transformations'

Given two parallel functors F, G: K — K', a natural transformation from F to G

7 F — G

is a family 7 = (14: F(A4) = G(A4)) 4¢ k| of K'-morphisms such that for all

f: A— Bin K (with A, B € [K]),

4G(f) = F(f)ims
K: K’

A F(A)
| w

B F(B)

Andrzej Tarlecki: Category Theory, 2025

- 97 -



Natural transformations'

Given two parallel functors F, G: K — K', a natural transformation from F to G

7 F — G

is a family 7 = (14: F(A4) = G(A4)) 4¢ k| of K'-morphisms such that for all

f: A— Bin K (with A, B € |[K|), |74;G(f)

Then, 7 is a natural isomorphism if for

all A € |K|, 74 is an isomorphism.

=F(f)i7s
K: K’
A F(A)
|
B F(B)

A, G(A)
J'G(f)
B, G(B)
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Examples I

e identity transformations: idg: F — F, where F: K — K’ | for all objects
A€ K|, (idp)a = z'dF(A): F(A) — F(A)
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Examples I

e identity transformations: idg: F — F, where F: K — K’ | for all objects
A € ‘K|, (ZdF)A = idF(A): F(A) — F(A)

e singleton functions: sing: Idget — P (: Set — Set), where for all X € |Set|,
singx: X — P(X) is a function defined by singy(x) = {x} for x € X.
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Examples I

e identity transformations: idg: F — F, where F: K — K’ | for all objects
A € ‘K|, (ZdF)A — idF(A): F(A) — F(A)

e singleton functions: sing: Idget — P (: Set — Set), where for all X € |Set|,
singy : X — P(X) is a function defined by singy(x) = {x} for x € X.

SIN
X Idget(X) —2X » P(X)

SN
Y Idget(Y) —2Y »P(Y)
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e singleton functions: sing: Idget — P (: Set — Set), where for all X € |Set|,
singy : X — P(X) is a function defined by singy(x) = {x} for x € X.
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A € ‘K|, (ZdF)A — idF(A): F(A) — F(A)

e singleton functions: sing: Idget — P (: Set — Set), where for all X € |Set|,
singy : X — P(X) is a function defined by singy(x) = {x} for x € X.

S1Ng x

Forall f: X =Y, X X - 2%
sing x;P(f) = Idget(f);singy, f ¥ f
le. singx;f = f;singy,

Sin
v v 9y > oY
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Examples I

e identity transformations: idg: F — F, where F: K — K’ | for all objects
A € ‘K|, (ZdF)A — idF(A): F(A) — F(A)

e singleton functions: sing: Idget — P (: Set — Set), where for all X € |Set|,
singy : X — P(X) is a function defined by singy(x) = {x} for x € X.

S1Ng x

Forall f: X =Y, X > 27
sing x;P(f) = Idset(f);singy, F
l.e. singx;f: fisingy-, fl fl lf
l.e. for x € X, f({f’?}) = {f(x)}. Y Sngy A
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Examples I

e identity transformations: idg: F — F, where F: K — K’ |, for all objects
A€ ’K|, (’idF)A — idF(A): F(A) — F(A)

e singleton functions: sing: Idget — P (: Set — Set), where for all X € |Set|,

singx : X — P(X) is a function defined by singy (x) = {x} for x € X.
e singleton-list functions: sing™s*: Idgey — |List| (: Set — Set), where

|List| = List;| |: Set(— Monoid) — Set, and for all X € |Set]|,

sing ¥t X — X* is a function defined by sing¥st(z) = (z) for x € X
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identity transformations: idg: F — F, where F: K — K’ | for all objects
A€ ’K|, (’idF)A — idF(A): F(A) — F(A)

singleton functions: sing: Idset — P (: Set — Set), where for all X € |Set]|,

singx : X — P(X) is a function defined by singy (x) = {x} for x € X.
singleton-list functions: sing™*: Idges — |List| (: Set — Set), where
|List| = List;| |: Set(— Monoid) — Set, and for all X € |Set
sing ¥t X — X* is a function defined by sing¥st(z) = (z) for x € X

append functions: append: |List|;CP — |List| (: Set — Set), where for all

X € |Set|, append  : (X* x X™) — X™ is the usual append function (list

concatenation) polymorphic functions between algebraic types
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Examples I

identity transformations: idg: F — F, where F: K — K’ | for all objects
A€ ’K|, (’idF)A — idF(A): F(A) — F(A)

singleton functions: sing: Idset — P (: Set — Set), where for all X € |Set]|,

singx : X — P(X) is a function defined by singy (x) = {x} for x € X.
singleton-list functions: sing™*: Idges — |List| (: Set — Set), where
|List| = List;| |: Set(— Monoid) — Set, and for all X € |Set
sing ¥t X — X* is a function defined by sing¥st(z) = (z) for x € X

append functions: append: |List|;CP — |List| (: Set — Set), where for all

X € |Set|, append  : (X* x X™) — X™ is the usual append function (list

concatenation) polymorphic functions between algebraic types

X X* x X* appendX»)(*
Y V* x YV* appendy y*
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Polymorphic functions'

Work out the following generalisation of the last two examples:
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Work out the following generalisation of the last two examples:

— for each algebraic type scheme Vagq ...a,, -1, built in Standard ML using at
least products and algebraic data types (no function types though), define the
corresponding functor [T]: Set"™ — Set
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Polymorphic functions'

Work out the following generalisation of the last two examples:

— for each algebraic type scheme Va; ..., - T, built in Standard ML using at

least products and algebraic data types (no function types though), define the
corresponding functor [T]: Set™ — Set

C[ant] (X, X)) = {00, —2,-1,0,1,2,...)
: T1 X TQ]](Xl,...,Xn) = [[Tl]](Xl,,Xn) X [[TQ]](Xl,,Xn)
T+ T (X, X)) = [T (X, o, X)) + [To] (X, -0, X))

- ... recursive type definitions work as well. . .
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Polymorphic functions'

Work out the following generalisation of the last two examples:

— for each algebraic type scheme Va; ..., - T, built in Standard ML using at
least products and algebraic data types (no function types though), define the
corresponding functor [T]: Set"™ — Set

— argue that in a representative subset of Standard ML, for each polymorphic

expression E: Voq ...a, - T — T’ its semantics is a natural transformation
[E]: [T] — [T7]
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Polymorphic functions'

Work out the following generalisation of the last two examples:

— for each algebraic type scheme Va; ..., - T, built in Standard ML using at
least products and algebraic data types (no function types though), define the
corresponding functor [T]: Set™ — Set

— argue that in a representative subset of Standard ML, for each polymorphic

expression E: Yoy ...a, - T — T’ its semantics is a natural transformation
LE]: [T] — [T7]

- by induction on the structure of well-typed expressions
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Polymorphic functions'

Work out the following generalisation of the last two examples:

— for each algebraic type scheme Vaq ...a,, -1, built in Standard ML using at
least products and algebraic data types (no function types though), define the
corresponding functor [T]: Set™ — Set

— argue that in a representative subset of Standard ML, for each polymorphic

expression E: Yoy ...a, - T — T’ its semantics is a natural transformation
LE]: [T] — [17]

— Then for f1: X1 = Y7, ..., fn: X, = Y,

[T fry s fu )il E] v, vy = Bl xy o x s LT D (frs o f)
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Polymorphic functions'

Work out the following generalisation of the last two examples:

— for each algebraic type scheme Vagq ...a,, -1, built in Standard ML using at
least products and algebraic data types (no function types though), define the
corresponding functor [T']: Set™ — Set

— argue that in a representative subset of Standard ML, for each polymorphic

expression F: Vaq ...y, - T — T’ its semantics is a natural transformation
[E]: [T] — [T"]

— Then for flin%Yl, ,ann%Yn

[T](f1s -5 f)slELiova, vy = [ELixy, x0T 1Ly - fn)

For instance, for rev: a list — « list,
even: int — bool and [: int list:

rev(even™ (1)) = even™ (rev(l))
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Polymorphic functions'

Work out the following generalisation of the last two examples:

— for each algebraic type scheme Vagq ...a,, -1, built in Standard ML using at
least products and algebraic data types (no function types though), define the
corresponding functor [T']: Set™ — Set

— argue that in a representative subset of Standard ML, for each polymorphic

expression F: Vaq ...y, - T — T’ its semantics is a natural transformation
[E]: [T] — [T"]

— Then for flin%Yl, ,ann%Yn

[T](f1s -5 f)slELiova, vy = [ELixy, x0T 1Ly - fn)

For instance, for rev: a list — « list,
Theorems for free!

even: int — bool and [: int list:
(see Wadler 89)

rev(even™ (1)) = even™ (rev(l))
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Yoneda lemma I

Given a locally small category K, functor F: K — Set and object A € |K]|:
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Given a locally small category K, functor F: K — Set and object A € |K]|:

Yoneda lemma '

Nat(Homg (A, ), F)

F(A)
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Yoneda lemma '

Given a locally small category K, functor F: K — Set and object A € |K]|:

Nat(Homgk (A, ), F) = F(A)

natural transformations from Homgk (A, ) to F, between functors

from K to Set, are given exactly by the elements of the set F(A)
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Given a locally small category K, functor F: K — Set and object A € |K|:

Nat(Homgk (A, ), F) 2 F(A)

natural transformations from Homgk (A, ) to F, between functors
from K to Set, are given exactly by the elements of the set F(A)

EXERCISES:
e Dualise: for G: K — Set,
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Yoneda lemma '

Given a locally small category K, functor F: K — Set and object A € |K|:

Nat(Homgk (A, ), F) 2 F(A)

natural transformations from Homgk (A, ) to F, between functors

from K to Set, are given exactly by the elements of the set F(A)

EXERCISES:
e Dualise: for G: K — Set,

Nat(Homgk( ,A),G) = G(A)

e Characterise all natural transformations from Homgk (A, ) to Homgk (B, ), for
all objects A, B € |K|.
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Proof'

e Fora e F(A), define 7*: Homgk (A, ) — F, as the family of functions
% K(A,B) — F(B), B € |K|,
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Proof'

e Fora € F(A), define 7%: Homg (A, ) — F, as the family of functions
% K(A,B) = F(B), B € |K|, given by 7&4(f) =F(f)(a) for f: A— B in K.
Note: F(f): F(A) — F(B) in Set, so F(f)(a) € F(B).
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Proof'

e Fora € F(A), define 7*: Homgk (A, ) — F, as the family of functions

m%: K(A,B) = F(B), B € |K|, given by 7&(f) = F(f)(a) for f: A— B in K.
This is a natural transformation, since for g: B — C

K: Set: .
B K(A,B)—25Z s F(B)
ng (-):g —J’HomK(A, 9) J'F(g)
C K(A,C)—%C  + F(C)
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Proof'

e Fora € F(A), define 7%: Homg (A, ) — F, as the family of functions
% K(A,B) = F(B), B € |K|, given by 7&4(f) =F(f)(a) for f: A— B in K.
This is a natural transformation, since for g: B — C' and then f: A — B,

K: Set: .
B K(A,B)—25Z s F(B)
ng (-):g —J’HomK(A, 9) J'F(g)
C K(A,C)—%C  + F(C)
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Proof'

e Fora € F(A), define 7%: Homg (A, ) — F, as the family of functions
% K(A,B) = F(B), B € |K|, given by 7&4(f) =F(f)(a) for f: A— B in K.
This is a natural transformation, since for g: B — C' and then f: A — B,

F(g)(5(f)) K: Set: ‘
B K(A,B)—25Z s F(B)
ng (-):g —J’HomK(A, 9) J'F(g)
C K(A,C)—C 4 F(C)
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e Fora € F(A), define 7%: Homg (A, ) — F, as the family of functions
% K(A,B) = F(B), B € |K|, given by 7&4(f) =F(f)(a) for f: A— B in K.
This is a natural transformation, since for g: B — C' and then f: A — B,

F(g)(r5(f))=F(9)(F(f)(a)) K. Set: L
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e Fora € F(A), define 7%: Homg (A, ) — F, as the family of functions
% K(A,B) = F(B), B € |K|, given by 7&4(f) =F(f)(a) for f: A— B in K.
This is a natural transformation, since for g: B — C' and then f: A — B,
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Proof'

e Fora € F(A), define 7%: Homg (A, ) — F, as the family of functions
% K(A,B) = F(B), B € |K|, given by 7&4(f) =F(f)(a) for f: A— B in K.
This is a natural transformation, since for g: B — C' and then f: A — B,

F(g)(r5(f))=F(9)(F(f)(a)) K: Set: ra
= F(f9)(@) = 78 (f0) B KB > FiB)
= 7¢:(Homxk (4, g)(f)) gl (L);g —lHomK(A, q9) lF(g)
C K(4,C)—C + F(C)
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Proof'

e Fora € F(A), define 7%: Homg (A, ) — F, as the family of functions
% K(A,B) = F(B), B € |K|, given by 7&4(f) =F(f)(a) for f: A— B in K.
This is a natural transformation, since for g: B — C' and then f: A — B,

F(g)(15(f))=F(9)(F(f)(a)) K: Set: ra

= F(f9)(@) = 78 (f0) B KB > FiB)

= 7¢:(Homxk (4, g)(f)) gl (L);g —lHomK(A, q9) lF(g)
Then 74(ida) = a, a
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Proof'

e Fora € F(A), define 7%: Homg (A, ) — F, as the family of functions
% K(A,B) = F(B), B € |K|, given by 7&4(f) =F(f)(a) for f: A— B in K.
This is a natural transformation, since for g: B — C' and then f: A — B,

F(g)(75(f))= F(9)(F(f)(a)) K: Set: ra

= F(f9)(@) = 78 (f0) B KB > FiB)

— Tg' (HomK (A7 g)(f)) gl (7);g _lHomK (A, g) lF(g)
Then 74(ida) = a, and so for distinct a
a,a’ € F(A), 7 and 7% differ. C K(A,C) = > F(C)
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Proof'

e Fora € F(A), define 7%: Homg (A, ) — F, as the family of functions
7% K(A,B) — F(B), B € |[K|, given by 7&(f) = F(f)(a) for f: A— B in K.
This is a natural transformation, since for g: B — C and then f: A — B,

F(9)(t5(f))=F(g)(F(f)(a)) K Set: ra

= F(fig)(a) = 7&(f39) B K4, B) - F(B)

vt (Home(A,9)(/) gj ) —lﬂome,m lF@
Then 74(id4) = a, and so for distinct —a
a,a’ € F(A), 7% and 7¢ differ. C K(A,C)—~—F(C)

o If 7: Homgk (A, ) — F is a natural
transformation
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Proof'

e Fora € F(A), define 7%: Homg (A, ) — F, as the family of functions
7% K(A,B) — F(B), B € |[K|, given by 7&(f) = F(f)(a) for f: A— B in K.
This is a natural transformation, since for g: B — C and then f: A — B,

F(9)(t5(f))=F(g)(F(f)(a)) K Set: ra

= F(fig)(a) = 7&(f39) B K4, B) - F(B)

vt (Home(A,9)(/) gj ) —lﬂome,m lF@
Then 74(id4) = a, and so for distinct —a
a,a’ € F(A), 7% and 7¢ differ. C K(A,C)—~—F(C)

o If 7: Homgk (A, ) — F is a natural
transformation then 7 = 7%, where we

put a = TA(idA),
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Proof'

e Fora € F(A), define 7%: Homg (A, ) — F, as the family of functions
7% K(A,B) — F(B), B € |[K|, given by 7&(f) = F(f)(a) for f: A— B in K.
This is a natural transformation, since for g: B — C and then f: A — B,

F(9)(t5(f))=F(g)(F(f)(a)) K Set: ra

= F(fig)(a) = 7&(f39) B K4, B) - F(B)

vt (Home(A,9)(/) gj ) —lﬂome,m lF@
Then 74(id4) = a, and so for distinct —a
a,a’ € F(A), 7% and 7¢ differ. C K(A,C)—~—F(C)

o If 7: Homgk (A, ) — F is a natural
transformation then 7 = 7%, where we
puta = 74(ida), since for B € |K| and
f+ A — B, 75(f) = F(f)(7a(ida))

Andrzej Tarlecki: Category Theory, 2025 - 101 -



Proof'

e Fora e F(A), define 7*: Homgk (A, ) — F, as the family of functions
7% K(A,B) = F(B), B € |[K|, given by 74(f) = F(f)(a) for f: A— B in K.
This is a natural transformation, since for g: B — C' and then f: A — B,

F(g)(m5(f))=F(g)(F(f)(a)) K: Set: ro
= F(f9)(@) = 78 (f0) B KAE) > FiB)
= 76(Homgk (4, 9)(f)) gl (L) _lHomK(A, qg) lF(g)
Then 74(ida) = a, and so for distinct —a
a,a’ € F(A), 7 and 7 differ. C K(4,C) —F(C)
o If 7: Homk (A, ) — F is a natural
transformation then 7 = 7%, where we A K(A4, A) A4, F(A)

puta = 74(ida), since for B € |K| and
f: A = B ms(f) = F(f)(ralidy)
by naturality of 7: B K(A,B) B P-F(B)
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vertical composition:
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vertical composition:

K( i F/}K’
N Fi J

Compositions I
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vertical composition:

K ~ R }K’
N Fi )
4 R

K T;O K’
s

Compositions I
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vertical composition:

From: F
( T F/ \
K > K’
N
F//
to F
4 N
K 7,0 K’
N S
F//

Compositions I

horizontal composition:
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vertical composition:

Kf R }K’
N Fi Y
4 R

K T;O K’
 J

Compositions I

horizontal composition:

(-

F/

G

\,/f
AN

o

~

K//

S

G_/
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vertical composition:

K( R }K’
N Fi )
4 R

K T;O K’
 J

Compositions I

horizontal composition:

From: F G
@ é N7 \v
K T K/ o K//
N FAN Y,
| G’
to: F;G
\

T-0O

)

K//

J

F/;G’
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Vertical composition I
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F

T F’\V

Vertical composition' K(

- K’

.

F//

The vertical composition of natural transformations 7: F — F/ and o: F/ — F”

between parallel functors F,F',F": K — K’

Andrzej Tarlecki: Category Theory, 2025
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F

T F’\V

Vertical composition' K(

- K’

.

F//

The vertical composition of natural transformations 7: F — F/ and o: F/ — F”
between parallel functors F,F',F": K — K’

7.0: F —F”

Andrzej Tarlecki: Category Theory, 2025
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F

Vertical composition' / T F’\v
KK > K’

.

F//

The vertical composition of natural transformations 7: F — F/ and o: F/ — F”

between parallel functors F,F',F": K — K’

7.0: F —F”

is a natural transformation given by | (7;0)4 = Ta;04

for all A € |K].

Andrzej Tarlecki: Category Theory, 2025
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F

Vertical composition I ( T F’\v
K > K’
%
F//
The vertical composition of natural transformations 7: F — F/ and o: F/ — F”

between parallel functors F,F',F": K — K’

7.0: F —F”

is a natural transformation given by | (7;0)a = Ta;04 | for all A € |K].

K: K’

A F(A) — 2 F/(4) — 2 F"(A)
fl F(f) J’F’(f) J'F”(f)
B F(B) — L2+ F/(B) —25 » F"(B)
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Horizontal composition I
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Horizontal composition I K/ - \VK,( o \VK//
F’ G’

The horizontal composition of natural transformations 7: F - F and 0: G — G’

between composable pairs of parallel functors F,F': K - K’ G, G": K' — K”
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Horizontal composition I

-

K T

N

Ry
VAN

F/

~

K//

Y

G/

The horizontal composition of natural transformations 7: F - F and 0: G — G’

between composable pairs of parallel functors F,F': K - K’ G, G": K' — K”

70: F;,G - F;G’

Andrzej Tarlecki: Category Theory, 2025
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F G

Horizontal compositi I ( é \v (
position K - K’ o K
N\ VAN J
F’ G’

The horizontal composition of natural transformations 7: F - F and 0: G — G’
between composable pairs of parallel functors F,F': K - K’ G, G": K' — K”

~

70: F;,G - F;G’

is a natural transformation given by | (7-0) 4 for all
A e K|
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F G

Horizontal compositi I ( é \v (
position K - K’ o K
N\ VAN J
F’ G’

The horizontal composition of natural transformations 7: F - F and 0: G — G’
between composable pairs of parallel functors F,F': K - K’ G, G": K' — K”

~

70: F;,G - F;G’

is a natural transformation given by | (7-0) 4 for all
A c [K]|. K
o
G(F(4)) —— = G/(F(4))
(T°0)a
G'(F'(A4))
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F G

Horizontal compositi I ( é \v (
position K - K’ o K
N\ VAN J
F’ G’

The horizontal composition of natural transformations 7: F - F and 0: G — G’
between composable pairs of parallel functors F,F': K - K’ G, G": K' — K”

~

70: F;,G - F;G’

is a natural transformation given by | (7-0) 4 for all
A E ‘K| K/ K,/:
OF(4) /
F(A) G(F(4)) - G'(F(4))
l ()
F'(A) G'(F'(A4))
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F G

Horizontal compositi I ( é \v (
position K - K’ o K
N\ VAN J
F’ G’

The horizontal composition of natural transformations 7: F - F and 0: G — G’
between composable pairs of parallel functors F,F': K - K’ G, G": K' — K”

~

70: F;,G - F;G’

is a natural transformation given by | (7-0) 4 = op(a);G'(74) | for all
A c [K]|. K K
OF(4) /
F(A) G(F(A4)) - G'(F(A))
F'(A) G'(F'(A4))
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F G

Horizontal compositi I ( é \v (
position K - K’ o K
N\ VAN J
F’ G’

The horizontal composition of natural transformations 7: F — F/ and 0: G — G’
between composable pairs of parallel functors F,F': K - K’ G, G": K' — K”

~

70: F;,G - F;G’

is a natural transformation given by | (7:0)4 = G(74):08/(4) = Or(4);G'(Ta) |for all
A e K|

K’ K-

F(4)  G(F(4) — Y 5 G/(F(4))

TAl G(TA)J' (7-0)a J'G’(TA)
OF/(A)

F'(A) G(F'(4)) - G'(F'(4))
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F G

Horizontal compositi I ( é \v (
position K - K’ o K
N\ VAN J
F’ G’

The horizontal composition of natural transformations 7: F - F and 0: G — G’
between composable pairs of parallel functors F,F': K - K’ G, G": K' — K”

~

70: F;,G - F;G’

is a natural transformation given by | (7:0)4 = G(74):08/(4) = Or(4);G'(Ta) |for all
A e K|

K’ K-

F(4)  G(F(4) — Y 5 G/(F(4))

TAl G(TA)J' (7-0)a J'G’(TA)
OF/(A)

F'(A) G(F'(4)) - G'(F'(4))

Show that indeed, 7.0 is a natural transformation
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Show that indeed, 7.0 is a natural transformation
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Show that indeed, 7.0 is a natural transformation
K: K’
(T°0)a o
A G(F(A)) - G'(F'(A))
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Show that indeed, 7.0 is a natural transformation

K: K-
A G(F(4) LY
B G(F(B)) s, qws)
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Show that indeed, 7.0 is a natural transformation

K: K-
A G(F(4) LY

; G(F(f) G(F())
Y Y (1-0)B
B G(F(B)) - G/(F'(B))
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Show that indeed, 7.0 is a natural transformation

K: K-
A G(F(4) SR Y
WT‘(TA) /
oF(4)
G(F'(A)]
; G(F(f) G(F())
Y Y (1-0)B
B G(F(B)) - G/(F'(B))
G(T% %'
G(F'(B))
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Show that indeed, 7.0 is a natural transformation

K: K-
A G(F(4) SR Y
WT‘(TA) /
oF(4)
G(F'(A)]
; G(F(f) G(F())
G(F'(f))
Y Y (1-0)B
B G(F(B)) - G/(F'(B))
G(7B) Y %'
G(F'(B))
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F G

Horizontal compositi I ( é \v (
position K - K’ o K
N\ VAN J
F’ G’

The horizontal composition of natural transformations 7: F - F and 0: G — G’
between composable pairs of parallel functors F,F': K - K’ G, G": K' — K”

~

70: F;,G - F;G’

is a natural transformation given by | (7:0)4 = G(74):08/(4) = Or(4);G'(Ta) |for all
A e K|

K’ K-

F(4)  G(F(4) — Y 5 G/(F(4))

TAl G(TA)J' (7-0)a J'G’(TA)
OF/(A)

F'(A) G(F'(4)) - G'(F'(4))

Show that indeed, 7.0 is a natural transformation
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F G

Horizontal compositi I ( é \v (
position K - K’ o K
N\ VAN J
F’ G’

The horizontal composition of natural transformations 7: F - F and 0: G — G’
between composable pairs of parallel functors F,F': K - K’ G, G": K' — K”

~

70: F;,G - F;G’

is a natural transformation given by | (7:0)4 = G(74):08/(4) = Or(4);G'(Ta) |for all
A e K|

Multiplication by fi ; K K
ultiplication by functor: F(A) G(F(A)) OF(A) ~ G/(F(A))
ml G(m)l & lG’(m)

UF’(A)

F'(A) G(F'(4)) - G'(F'(4))

Show that indeed, 7.0 is a natural transformation

Andrzej Tarlecki: Category Theory, 2025 - 104 -



F G

Horizontal compositi I ( é \v (
position K - K’ o K
N\ VAN J
F’ G’

The horizontal composition of natural transformations 7: F - F and 0: G — G’
between composable pairs of parallel functors F,F': K - K’ G, G": K' — K”

~

70: F;,G - F;G’

is a natural transformation given by | (7:0)4 = G(74):08/(4) = Or(4);G'(Ta) |for all
A e K|

K’: K"
Multiplication by functor: OF(A)
e G G, FA) GEW) - G/(F(4))
TAl G(TA)J' (7-0)a J'G’(TA)

UF’(A)

F'(A) G(F'(4)) - G'(F'(4))

Show that indeed, 7.0 is a natural transformation
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F G

Horizontal compositi I ( é \v (
position K - K’ o K
N\ VAN J
F’ G’

The horizontal composition of natural transformations 7: F - F and 0: G — G’
between composable pairs of parallel functors F,F': K - K’ G, G": K' — K”

~

70: F;,G - F;G’

is a natural transformation given by | (7:0)4 = G(74):08/(4) = Or(4);G'(Ta) |for all
A e K|

K’ K"
Multiplication by functor: OF(A)
e PG e, FUA) GE) - G/(F(4))
e, (1G)a = G(74) TAl G(TA)l (T°0)a lG/(TA)
UF’(A)

F'(A) G(F'(4)) - G'(F'(4))

Show that indeed, 7.0 is a natural transformation
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F G

Horizontal compositi I ( é \v (
position K - K’ o K
N\ VAN J
F’ G’

The horizontal composition of natural transformations 7: F — F/ and 0: G — G’
between composable pairs of parallel functors F,F': K - K’ G, G": K' — K”

~

70: F;,G - F;G’

is a natural transformation given by | (7:0)4 = G(74):08/(4) = Or(4);G'(Ta) |for all
A e K|

K’ K"
Multiplication by functor: OF(A)
e G G, FA) GEW) - G/(F(4))
i.e., (T-G)A = G(TA) .
— F.o=idpo: F;G - F;G’, A G(74) & G'(74)
UF’(A)

F'(A) G(F'(4)) - G'(F'(4))

Show that indeed, 7.0 is a natural transformation
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F G

Horizontal compositi I ( é \v (
position K - K’ o K
N\ VAN J
F’ G’

The horizontal composition of natural transformations 7: F — F/ and 0: G — G’
between composable pairs of parallel functors F,F': K - K’ G, G": K' — K”

~

70: F;,G - F;G’

is a natural transformation given by | (7:0)4 = G(74):08/(4) = Or(4);G'(Ta) |for all
A e K|

K’ K"
Multiplication by functor: OF(A)
e G G, FA) GEW) - G/(F(4)
i.e., (T-G)A = G(TA) .
— F.o=idpo: F;G - F;G’, A G(74) & G'(74)
l.e., (F-O‘)A = OF(A) OF/(A)

F'(A) G(F'(4)) - G'(F'(4))

Show that indeed, 7.0 is a natural transformation
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Functor categories'

Given two categories K, K’, define the category of functors from K’ to K, KK/, as
follows:
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Functor categories'

Given two categories K, K’, define the category of functors from K’ to K, KK/, as
follows:

— objects: functors from K’ to K
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Functor categories'

Given two categories K, K’, define the category of functors from K’ to K, KK/, as

follows:

— objects: functors from K’ to K

— morphisms: natural transformations between them
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Functor categories'

Given two categories K, K’, define the category of functors from K’ to K, KK/, as
follows:

— objects: functors from K’ to K

— morphisms: natural transformations between them

— composition: vertical composition of the natural transformations
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Functor categories'

Given two categories K, K’, define the category of functors from K’ to K, KK/, as
follows:

— objects: functors from K’ to K

— morphisms: natural transformations between them

— composition: vertical composition of the natural transformations

Exercises:
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Functor categories'

Given two categories K, K’, define the category of functors from K’ to K, KK/, as
follows:

— objects: functors from K’ to K

— morphisms: natural transformations between them

— composition: vertical composition of the natural transformations

Exercises:

e View the category of S-sorted sets, Set”, as a functor category.
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Functor categories'

Given two categories K, K’, define the category of functors from K’ to K, KK/, as
follows:

— objects: functors from K’ to K

— morphisms: natural transformations between them

— composition: vertical composition of the natural transformations

Exercises:
e View the category of S-sorted sets, Set”, as a functor category.

e Check whether KX’ is (finitely) (co)complete whenever K is so.

Andrzej Tarlecki: Category Theory, 2025 - 105 -



Theorem: [f K is finitely complete then KK s finitely complete as well.
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Theorem: [f K is finitely complete then KK s finitely complete as well.

Proof (idea): Define a terminal object, binary products and equalisers in KK’
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Theorem: [f K is finitely complete then KK s finitely complete as well.
Proof (idea): Define a terminal object, binary products and equalisers in KK'.

Terminal object: Cr: K’ — K is terminal in KX’ where T is terminal in K.
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Theorem: [f K is finitely complete then KK s finitely complete as well.
Proof (idea): Define a terminal object, binary products and equalisers in KK'.
Terminal object: Cr: K’ — K is terminal in KX’ where T is terminal in K.

Products: Given F,G: K’ — K, their product in KK isFxG: K - K
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Theorem: [f K is finitely complete then KK s finitely complete as well.
Proof (idea): Define a terminal object, binary products and equalisers in KK'.
Terminal object: Cr: K’ — K is terminal in KX’ where T is terminal in K.

Products: Given F,G: K’ — K, their product in KK isFxG: K - K
— for A" € |[K'|, (F x G)(A") =F(4") x G(A")
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Theorem: [f K is finitely complete then KK’ s finitely complete as well.
Proof (idea): Define a terminal object, binary products and equalisers in KK'.
Terminal object: Cr: K’ — K is terminal in KXK' where T is terminal in K.

Products: Given F,G: K’ — K, their product in KK isFxG: K - K
— for A" € |[K'|, (F x G)(A") =F(4") x G(A")
— for f: A" - B/,
(F x G)(f) = (mra);F(f), maan;G(f)): (F x G)(A) = (F x G)(B')
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Theorem: [f K is finitely complete then KK’ s finitely complete as well.
Proof (idea): Define a terminal object, binary products and equalisers in KK'.
Terminal object: Cr: K’ — K is terminal in KXK' where T is terminal in K.

Products: Given F,G: K’ — K, their product in KK isFxG: K - K
— for A’ € [K'|, (F x G)(A") =F(A") x G(A")
— for f: A" - B/,
(F x G)(f) = (mra);F(f), maan:G(f)): (F x G)(4") = (F x G)(B')

F (A P, ey
TR(A) TE(B)
/ /
F(A') x G(A') - F(B') x G(B')
WG(A& 7TG(B&
G(A") G G5
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Theorem: [f K is finitely complete then KK’ s finitely complete as well.
Proof (idea): Define a terminal object, binary products and equalisers in KK'.
Terminal object: Cr: K’ — K is terminal in KXK' where T is terminal in K.

Products: Given F,G: K’ — K, their product in KK isFxG: K - K
— for A’ € [K'|, (F x G)(A") =F(A") x G(A")
— for f: A" - B/,
(F x G)(f) = (mra);F(f), maan:G(f)): (F x G)(4") = (F x G)(B')

F(A") F(f) ~ F(B') To be checked:
TR (A TR(B) (F x G)(idar) = idExc)(ar), and
(FxG)(f;9) = (FxG)(f);(FxG)(g)
F(A") x G(A") > F(B') x G(B)
WG(A& Wg(B&
G(A") G > G(B')
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Theorem: [f K is finitely complete then KK’ s finitely complete as well.
Proof (idea): Define a terminal object, binary products and equalisers in KK'.
Terminal object: Cr: K’ — K is terminal in KXK' where T is terminal in K.

Products: Given F,G: K’ — K, their product in KK isFxG: K - K
— for A’ € [K'|, (F x G)(A") =F(A") x G(A")
— for f: A" - B/,
(F x G)(f) = (mra);F(f), maan:G(f)): (F x G)(4") = (F x G)(B')

F(A) F(f) ~ F(B) To be checked:

7TF(A’) 7TF(B’) (F X G)(ZdA/) = id(FXG)(A’)1 and

(FxG)(f;9) = (FxG)(f);(FxG)(g)
F(A") x G(A") > F(B') x G(B)

This yields natural transformations:

e e (e ) (FxG)—>F
Ter — (T / , /.

G(f) e = (Tgan)aek | (FxG) =
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Theorem: [f K is finitely complete then KK s finitely complete as well.
Proof (idea): Define a terminal object, binary products and equalisers in KK'.
Terminal object: Cr: K’ — K is terminal in KX’ where T is terminal in K.

Products: Given F,G: K’ — K, their product in KK isFxG: K - K
with product projections 7g: (F X G) = F and ng: (F x G) — G.
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Theorem: [f K is finitely complete then KK’ s finitely complete as well.
Proof (idea): Define a terminal object, binary products and equalisers in KK'.
Terminal object: Cr: K’ — K is terminal in KX’ where T is terminal in K.

Products: Given F,G: K’ — K, their product in KK'isFxG: K - K
with product projections 7g: (F X G) = F and ng: (F x G) — G.

Equalisers:
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Theorem: [f K is finitely complete then KK’ s finitely complete as well.
Proof (idea): Define a terminal object, binary products and equalisers in KK'.
Terminal object: Cr: K’ — K is terminal in KX’ where T is terminal in K.

Products: Given F,G: K’ — K, their product in KK'isFxG: K - K
with product projections 7g: (F X G) = F and ng: (F x G) — G.

Equalisers: Given F, G: K’ — K, equaliser of two natural transformations
7,0 F > Gisd: H— F, where:
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Theorem: [f K is finitely complete then KK’ s finitely complete as well.
Proof (idea): Define a terminal object, binary products and equalisers in KK'.
Terminal object: Cr: K’ — K is terminal in KXK', where T is terminal in K.

Products: Given F,G: K’ — K, their product in KK isFxG: K - K
with product projections 7g: (F X G) = F and ng: (F x G) — G.

Equalisers: Given F, G: K’ — K, equaliser of two natural transformations
7,0:F —>Gisd: H— F, where:

— for A" € |[K'|, 04 : H(A") — F(A’) is equaliser of 74/,04/: F(A") = G(A')
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Theorem: [f K is finitely complete then KK’ s finitely complete as well.
Proof (idea): Define a terminal object, binary products and equalisers in KK’
Terminal object: Cr: K’ — K is terminal in KX’ where T is terminal in K.

Products: Given F,G: K’ — K, their product in KK isFxG: K - K
with product projections 7g: (F X G) = F and ng: (F x G) — G.

Equalisers: Given F, G: K’ — K, equaliser of two natural transformations
7,0: F > Gisd: H— F, where:

— for A" € |[K'|, 04 : H(A") — F(A’) is equaliser of 74r,04/: F(A") = G(A')
— for f: A" = B, H(f): HA') > H(B') iss. t. 0a;H(f) = G(f);0p.
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Theorem: [f K is finitely complete then KK’ s finitely complete as well.

Proof (idea): Define a terminal object, binary products and equalisers in K¥':

Terminal object: Cr: K’ — K is terminal in KX’ where T is terminal in K.

Products: Given F,G: K’ — K, their product in KK isFxG: K > K

with product projections 7p: (F x G) = F and ng: (F x G) — G.

Equalisers: Given F, G: K’ — K, equaliser of two natural transformations
7,0 F > Gisd: H—F, where:

G(A) GV | awm)
ok
F(A) s P
. g
H(A) g HO)
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Theorem: [f K is finitely complete then KK’ s finitely complete as well.

Proof (idea): Define a terminal object, binary products and equalisers in K¥':

Terminal object: Cr: K’ — K is terminal in KX’ where T is terminal in K.

Products: Given F,G: K’ — K, their product in KK isFxG: K > K

with product projections 7p: (F x G) = F and ng: (F x G) — G.

Equalisers: Given F, G: K’ — K, equaliser of two natural transformations
7,0 F > Gisd: H—F, where:

G(4') GU) - G(B') To be checked:
TA/T TO’A/ TB/T TO‘B/ H(ZdA’) — idH(A’)v and
H(f;9) = H(f);H
F(A P F(B) (f:9) = H(f);H(g)
(SA/T T5B/
H(A') H(7) » H(B')
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Theorem: [f K is finitely complete then KK’ s finitely complete as well.

Proof (idea): Define a terminal object, binary products and equalisers in K¥':

Terminal object: Cr: K’ — K is terminal in KX’ where T is terminal in K.

Products: Given F,G: K’ — K, their product in KK isFxG: K > K

with product projections 7p: (F x G) = F and ng: (F x G) — G.

Equalisers: Given F, G: K’ — K, equaliser of two natural transformations
7,0 F > Gisd: H—F, where:

G(A) GV | awm)
ok
F(A) s P
. g
H(A) g HO)

To be checked:
H(’idA/) = idH(A/), and
H(f;9) = H(f);H(g)

This yields a natural transformation:
5 — <5A/>A/E|K/|' H —> F

Andrzej Tarlecki: Category Theory, 2025
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Theorem: [f K is complete then KK’ s complete as well.
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Theorem: [f K is complete then KK’ s complete as well.

Proof (idea): Define (arbitrary) products and equalisers in KX, as for the finite case.
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Theorem: [f K is complete then KK’ s complete as well.

Proof (idea): Or proceed with limit construction for an arbitrary diagram:

Andrzej Tarlecki: Category Theory, 2025 - 105 -



Theorem: [f K is complete then KK’ s complete as well.
Proof (idea): Or proceed with limit construction for an arbitrary diagram:

e Let D be a diagram in KK’ with nodes n € N and edges e € F.
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Theorem: [f K is complete then KK’ s complete as well.
Proof (idea): Or proceed with limit construction for an arbitrary diagram:

e Let D be a diagram in KK’ with nodes n € N and edges e € F.
— for A’ € |[K'|, define D(A’) to be a diagram in K with D(A"),, = D,,(4")
and D(A/)e = (De)A’

Andrzej Tarlecki: Category Theory, 2025 - 105 -



Theorem: [f K is complete then KK’ s complete as well.
Proof (idea): Or proceed with limit construction for an arbitrary diagram:

e Let D be a diagram in KK’ with nodes n € N and edges e € F.
— for A’ € |[K'|, define D(A’) to be a diagram in K with D(A"),, = D,,(4")
and D(A’). = (D) ar
— for f: A" — B’ in K’, define a diagram morphism D(f): D(A’") — D(B’) by
D(f)n = Dn(f)
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Theorem: [f K is complete then KK’ s complete as well.
Proof (idea): Or proceed with limit construction for an arbitrary diagram:

e Let D be a diagram in KK’ with nodes n € N and edges e € F.
— for A’ € |[K'|, define D(A’) to be a diagram in K with D(A"),, = D,,(4")
and D(A’). = (D) ar
— for f: A" — B’ in K’, define a diagram morphism D(f): D(A’") — D(B’) by
D(f)n = Dn(f)

e Define a functor X: K’ — K and natural transformations a,,: X — D,, as
follows:
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Theorem: [f K is complete then KK’ s complete as well.
Proof (idea): Or proceed with limit construction for an arbitrary diagram:

e Let D be a diagram in KK’ with nodes n € N and edges e € F.
— for A’ € |[K'|, define D(A’) to be a diagram in K with D(A"),, = D,,(4")
and D(A’). = (D) ar
— for f: A" — B’ in K’, define a diagram morphism D(f): D(A’") — D(B’) by
D(f)n = Dn(f)

e Define a functor X: K’ — K and natural transformations a,,: X — D,, as

follows: /
— for A’ € [K/|, let a® : X(A’) — D(A’) be the limit of D(A’) in K
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Theorem: [f K is complete then KK’ s complete as well.
Proof (idea): Or proceed with limit construction for an arbitrary diagram:

e Let D be a diagram in KK’ with nodes n € N and edges e € F.
— for A’ € |[K'|, define D(A’) to be a diagram in K with D(A"),, = D,,(4")
and D(A’). = (D) ar
— for f: A" — B’ in K’, define a diagram morphism D(f): D(A’") — D(B’) by
D(f)n = Dn(f)

e Define a functor X: K’ — K and natural transformations a,,: X — D,, as

follows: /

— for A’ € [K/|, let a® : X(A’) — D(A’) be the limit of D(A’) in K

— for f: A" — B"in K’, let X(f): X(A") — X(B’) be unique such that
o D(f) = X(f);aP (given by the limit property of a®")
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Theorem: [f K is complete then KK’ s complete as well.
Proof (idea): Or proceed with limit construction for an arbitrary diagram:

e Let D be a diagram in KK’ with nodes n € N and edges e € F.
— for A’ € |[K'|, define D(A’) to be a diagram in K with D(A"),, = D,,(4")
and D(A’). = (D) ar
— for f: A" — B’ in K’, define a diagram morphism D(f): D(A’") — D(B’) by
D(f)n = Dn(f)

e Define a functor X: K’ — K and natural transformations a,,: X — D,, as

follows:

— for A" € |K'|, let a": X(A") — D(A’) be the limit of D(A’) in K

— for f: A" — B"in K’, let X(f): X(A") — X(B’) be unique such that
o D(f) = X(f);aP (given by the limit property of a®")

— define oy : X = Dy, by (ap)a = (a?),, for A’ € |K/|
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Theorem: [f K is complete then KK’ s complete as well.
Proof (idea): Or proceed with limit construction for an arbitrary diagram:

e Let D be a diagram in KK’ with nodes n € N and edges e € F.
— for A’ € |[K'|, define D(A’) to be a diagram in K with D(A"),, = D,,(4")
and D(A’). = (D) ar
— for f: A" — B’ in K’, define a diagram morphism D(f): D(A’") — D(B’) by
D(f)n = Dn(f)

e Define a functor X: K’ — K and natural transformations a,,: X — D,, as

follows:

— for A" € |K'|, let a": X(A") — D(A’) be the limit of D(A’) in K

— for f: A" — B"in K’, let X(f): X(A") — X(B’) be unique such that
o D(f) = X(f);aP (given by the limit property of a®")

— define oy : X = Dy, by (ap)a = (a?),, for A’ € |K/|

— check that X: K’ — K is a functor, and «,,: X — D,, are natural
transformations
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Theorem: [f K is complete then KK’ s complete as well.
Proof (idea): Or proceed with limit construction for an arbitrary diagram:

e Let D be a diagram in KK’ with nodes n € N and edges e € F.
— for A’ € |[K'|, define D(A’) to be a diagram in K with D(A"),, = D,,(4")
and D(A’). = (D) ar
— for f: A" — B’ in K’, define a diagram morphism D(f): D(A’") — D(B’) by
D(f)n = Dn(f)

e Define a functor X: K’ — K and natural transformations a,,: X — D,, as

follows:

— for A" € |K'|, let a": X(A") — D(A’) be the limit of D(A’) in K

— for f: A" — B"in K’, let X(f): X(A") — X(B’) be unique such that
o D(f) = X(f);aP (given by the limit property of a®")

— define oy : X = Dy, by (ap)a = (a?),, for A’ € |K/|

— check that X: K’ — K is a functor, and «,,: X — D,, are natural
transformations

e Prove that a: X — D is a limit of D in KX .
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Functor categories'

Given two categories K, K’, define the category of functors from K’ to K, KK/, as
follows:

— objects: functors from K’ to K

— morphisms: natural transformations between them

— composition: vertical composition of the natural transformations

Exercises:
e View the category of S-sorted sets, Set”, as a functor category.
e Check whether KX’ is (finitely) (co)complete whenever K is so.

e Show how any functor F: K” — K’ induces a functor (F;_): KK — KK”
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Functor categories'

Given two categories K, K’, define the category of functors from K’ to K, KK/, as
follows:

— objects: functors from K’ to K

— morphisms: natural transformations between them

— composition: vertical composition of the natural transformations

Exercises:
e View the category of S-sorted sets, Set”, as a functor category.
e Check whether KX’ is (finitely) (co)complete whenever K is so.

e Show how any functor F: K” — K’ induces a functor (F;_): KX — K¥X",
where for G: K’ — K, (F; )(G) =F;G: K" = K,
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Functor categories'

Given two categories K, K’, define the category of functors from K’ to K, KK/, as
follows:

— objects: functors from K’ to K

— morphisms: natural transformations between them

— composition: vertical composition of the natural transformations

Exercises:
e View the category of S-sorted sets, Set”, as a functor category.
e Check whether KX’ is (finitely) (co)complete whenever K is so.

e Show how any functor F: K” — K’ induces a functor (F;_): KX — K¥X",
where for G: K’ — K, (F; )(G) = F;G: K" — K, and for
7 G- G(: K —K), (F;, )(r)=F7: F,;G - F;G"
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Functor categories'

Given two categories K, K’, define the category of functors from K’ to K, KK/, as
follows:

— objects: functors from K’ to K

— morphisms: natural transformations between them

— composition: vertical composition of the natural transformations

Exercises:
e View the category of S-sorted sets, Set”, as a functor category.
e Check whether KX’ is (finitely) (co)complete whenever K is so.

e Show how any functor F: K” — K’ induces a functor (F;_): KX — K¥X",
where for G: K’ — K, (F; )(G) = F;G: K" — K, and for
7 G- G(: K —K), (F;, )(r)=F7: F,;G - F;G"

o Check if (F;_): KK — KX" is (finitely) (co)continuous, for any F: K” — K.
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Yoneda embedding'

Given a locally small category K, define

V: K — Set¥”
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Yoneda embedding'

Given a locally small category K, define

V: K — Set¥”

o V(A) = Homg(_, A): K — Set, for A € [K|
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Yoneda embedding'

Given a locally small category K, define

V: K — Set¥”

e V(A) =Homgk( ,A): K? — Set, for A € K]
— for X € |[K|, Y(A)(X) = Homk (X, A)
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Yoneda embedding'

Given a locally small category K, define X  Y(AX)
A
S
V:K = SetX” | M 0=
>)
Y
Yy  Y(A)Y)

e V(A) =Homgk( ,A): K? — Set, for A € K]
— for X € |[K|, Y(A)(X) = Homk (X, A)

— forh: X - Y inK, Y(A)(h) = (h; ): Homgk(Y, A) - Homg (X, A)
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Yoneda embedding'

Given a locally small category K, define X  Y(AX)
A
S
V:K = SetX” | M 0=
>)
Y
Yy  Y(A)Y)

e V(A) =Homgk( ,A): K? — Set, for A € K]
— for X € |[K|, Y(A)(X) = Homk (X, A)
— forh: X - Y inK, Y(A)(h) = (h; ): Homgk(Y, A) - Homg (X, A)

e V(f)x = (;f): Homk (X, A) - Homk (X, B), for f: A— B in K,
X € |[K?P|.
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Yoneda embedding' A

Given a locally small category K, define

V: K — Set¥”

e V(A) =Homgk( ,A): K? — Set, for A € K]
— for X € |[K|, Y(A)(X) = Homgk (X, A)

— forh: X =Y inK, Y(A)(h) = (h;): Homgk (Y, A) - Homg (X, A)
e V(f)x = (5f): Homk(X,A) - Homk (X, B), for f: A— B in K,

X € |[K°P|.

X YA(X)
4

A
<

Y

Y YA)Y)

~for f: A— B, Y(f): Y(A) = Y(B)(: K — Set)
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Yoneda embedding' A / >~ B

Y(f)x
Given a locally small category K, define X y(AA)(X)—’y(BA)(X)
= S
V:K - Set¥” | " = -
Y > >
y  J(A)Y) ) Y(B)(Y)
e V(A) =Homgk( ,A): K? — Set, for A € |K| Y

— for X € |[K|, Y(A)(X) = Homgk (X, A)
— forh: X =Y inK, Y(A)(h) = (h;): Homgk (Y, A) - Homg (X, A)

e V(f)x = (L;f): Homk (X, A) - Homgk (X, B), for f: A— B in K,
X € |[K?|.
— for f: A— B, Y(f): Y(A) = Y(B)(: K°? — Set)
— for X € [KP], Y(f)x: Y(A)(X) = V(B)(X)
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Yoneda embedding' A / >~ B

Y(f)x
Given a locally small category K, define X y(AA)(X)—’y(BA)(X)
= S
V:K - Set¥” | " = -
Y > >
Yy JYAY)—YV(B)(Y
(A)( )y(f)y (B)(Y)

e V(A) =Homgk( ,A): K°? — Set, for A € |K]
— for X € |[K|, Y(A)(X) = Homgk (X, A)
— forh: X =Y inK, Y(A)(h) = (h;): Homgk (Y, A) - Homg (X, A)

e V(f)x = (5f): Homk(X,A) - Homk (X, B), for f: A— B in K,
X € |[K°P|.
— for f: A= B, Y(f): Y(A) = Y(B)(: K°? — Set)
— for X € [K|, Y(f)x: V(A)(X) = Y(B)(X)
— naturality of Y(f): Y(A) = Y(B): for h: X =Y in K,

V(A)(h):Y(f)x = (hs)i(f) = his f = (5f)s(hse) = Y(f)y:V(B)(h)
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Yoneda embedding'

Given a locally small category K, define

V: K — Set¥”

e V(A) =Homgk( ,A): K°? — Set, for A € |K|

e V(f)x =(;f): Homk (X, A) - Homgk (X, B), for f: A— B in K,
X € |KP|.

K*°?

Theorem: The category of presheaves Set Is complete and cocomplete.
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V: K — Set¥”

e V(A) =Homgk( ,A): K? — Set, for A € |K|
e V(f)x = (5f): Homk (X, A) - Homk (X, B), for f: A— B in K,
X € |KP|.

K*°?

Theorem: The category of presheaves Set Is complete and cocomplete.

Theorem: YV: K — Set®” is full and faithful.
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Yoneda embedding'

Given a locally small category K, define

V: K — Set¥”

e V(A) =Homgk( ,A): K? — Set, for A € |K|
e V(f)x = (5f): Homk (X, A) - Homk (X, B), for f: A— B in K,
X € |KP|.

K*°?

Theorem: The category of presheaves Set Is complete and cocomplete.

Theorem: YV: K — Set®” is full and faithful.

F: K — K’ is full and faithful
if for all A, B € |K],
F: K(A,B) - K'(F(A),F(B)) is a bijection
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Diagrams as functors'
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Diagrams as functors'

Each diagram D over graph G in category K vyields a functor Fp: Path(G) — K
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Diagrams as functors'

Each diagram D over graph G in category K yields a functor Fp: Path(G) - K
given by:
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Diagrams as functors'

Each diagram D over graph G in category K yields a functor Fp: Path(G) - K
given by:
— Fp(n) = D, for all nodes n € |G|nodes
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Diagrams as functors'

Each diagram D over graph G in category K yields a functor Fp: Path(G) — K

given by:
— Fp(n) = D, for all nodes n € |G|nodes
— Fp(ngeiny ... ng_1exng) = Dey;...;De, , for paths ngeiny ... ng_1egng in G
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Diagrams as functors'

Each diagram D over graph G in category K yields a functor Fp: Path(G) — K

given by:

— Fp(n) = D, for all nodes n € |G|nodes

— Fp(noeiny ... ng_1exng) = Dey;...;De, , for paths ngeiny ... ng_1egng in G
Moreover:
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Diagrams as functors'

Each diagram D over graph G in category K yields a functor Fp: Path(G) — K

given by:

— Fp(n) = D, for all nodes n € |G|nodes

— Fp(noeiny ... ng_1exng) = Dey;...;De, , for paths ngeiny ... ng_1egng in G
Moreover:

— for distinct diagrams D and D’ of shape GG, Fp and Fp, are different
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Diagrams as functors'

Each diagram D over graph G in category K yields a functor Fp: Path(G) — K

given by:

— Fp(n) = D, for all nodes n € |G|nodes

— Fp(noeiny ... ng_1exng) = Dey;...;De, , for paths ngeiny ... ng_1egng in G
Moreover:

— for distinct diagrams D and D’ of shape GG, Fp and Fp, are different

— all functors from Path(G) to K are given by diagrams over G
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Diagrams as functors'

Each diagram D over graph G in category K yields a functor Fp: Path(G) - K
given by:

— Fp(n) = D, for all nodes n € |G|nodes

— Fp(noeiny ... ng_1exng) = Dey;...;De, , for paths ngeiny ... ng_1egng in G

Moreover:
— for distinct diagrams D and D’ of shape GG, Fp and Fp, are different
— all functors from Path(G) to K are given by diagrams over G

Diagram morphisms p: D — D’ between diagrams of the same shape G are exactly
natural transformations u: Fp — Fp.
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Diagrams as functors'

Each diagram D over graph G in category K yields a functor Fp: Path(G) — K
given by:

— Fp(n) = D, for all nodes n € |G|nodes

— Fp(noeiny ... ng_1exng) = Dey;...;De, , for paths ngeiny ... ng_1egng in G

Moreover:
— for distinct diagrams D and D’ of shape GG, Fp and Fp, are different
— all functors from Path(G) to K are given by diagrams over G

Diagram morphisms p: D — D’ between diagrams of the same shape GG are exactly

natural transformations u: Fp — Fp.

Diagﬁ ~ K Path(G)
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Diagrams as functors'

Each diagram D over graph G in category K yields a functor Fp: Path(G) — K
given by:

— Fp(n) = D, for all nodes n € |G|nodes

— Fp(noeiny ... ng_1exng) = Dey;...;De, , for paths ngeiny ... ng_1egng in G

Moreover:
— for distinct diagrams D and D’ of shape GG, Fp and Fp, are different
— all functors from Path(G) to K are given by diagrams over G

Diagram morphisms p: D — D’ between diagrams of the same shape GG are exactly

natural transformations u: Fp — Fp.

Diag% ~ K Path(G)

Diagrams are functors from small (shape) categories
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Double law '

F G
K( ¢ F’}K,f 7% G’?‘K,,
o

Andrzej Tarlecki: Category Theory, 2025 - 108 -



Double law '

F G
K( T F’}K,f 7§ G’?‘K,,
A S N T

F:G

\
</

K K//

N

(.

F//;G//
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Double law '

</

K//

(.

F G
5 - N
A
78
F// G_//
then:
F:G
(
K (T-0);(1"-0") §(7;7")-(0307)
k
F//;G_//
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Double law '

N
K (-0);(7"-0") $ (7377)-(030") K"
/‘

/_

F//;G//
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Double law '

This holds in Cat, which is a

Given:
F G paradigmatic example of a two-
K( Té F/}K,f o'é G/}K// category.
N A N B
F// G_//
then:

(r-0);(7"-0") = (1377)-(030")

F:G

\

N

K (-0);(7"-0") $ (7377)-(030") K"

)

/_

F//;G//
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Double law '

This holds in Cat, which is a

Given: _ _
F G paradigmatic example of a two-
( T P \y [ o G ,\y category.
K > K’ > K" A category K is a two-category
/ /
k Té /A k Ué /A when for all objects A, B €
F” G" K|, K(A,B) is again a cate-
then: gory, with I-morphisms (the usual
(r-0):(r"-0") = (r:7)-(0:0") K-morphisms) as objects and 2-
morphisms between them.

\

\v
K (t-0);(t"-a") s (T;7")-(0;0") K
J

/_

F//;G//
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Double law '

F G
AT
A S N T

(r-0);(7"-0") = (1377)-(030")

F:G

\

\v
K (t-0);(t"-a") s (T;7")-(0;0") K"
J

/_

F//;G_//

This holds in Cat, which is a
paradigmatic example of a two-
category.

A category K is a two-category
when for all objects A, B €
K|, K(A,B) is again a cate-
gory, with I-morphisms (the usual
K-morphisms) as objects and 2-
morphisms between them.

Those 2-morphisms compose ver-
tically (in the categories K(A, B))
and horizontally, subject to the
double law as stated here.
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Double law '

F G
AT
A S N T

(r-0);(7"-0") = (1377)-(030")

F:G

\

\v
K (t-0);(t"-a") s (T;7")-(0;0") K"
J

/_

F//;G_//

This holds in Cat, which is a
paradigmatic example of a two-
category.

A category K is a two-category
when for all objects A, B €
K|, K(A,B) is again a cate-
gory, with I-morphisms (the usual
K-morphisms) as objects and 2-
morphisms between them.

Those 2-morphisms compose ver-
tically (in the categories K(A, B))
and horizontally, subject to the
double law as stated here.

In two-category Cat, we have
Cat(K',K) = KX
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Equivalence of categories'
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Equivalence of categories'

e Two categories K and K’ are isomorphic if there are functors F: K — K’ and
G: K’ — K such that F;G = Idk and G:;F = Idk'.
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Equivalence of categories'

e Two categories K and K’ are isomorphic if there are functors F: K — K’ and
G: K’ — K such that F;G = Idk and G:;F = Idk'.

e Two categories K and K’ are equivalent if there are functors F: K — K’ and
G: K’ — K and natural isomorphisms n: Idg — F;G and ¢: G;F — Idk:.
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Equivalence of categories'
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e Two categories K and K’ are equivalent if there are functors F: K — K’ and
G: K’ — K and natural isomorphisms n: Idg — F;G and ¢: G;F — Idk:.

e A category is skeletal if any two isomorphic objects are identical.
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Equivalence of categories'

e Two categories K and K’ are isomorphic if there are functors F: K — K’ and
G: K’ — K such that F;G = Idk and G:;F = Idk'.

e Two categories K and K’ are equivalent if there are functors F: K — K’ and
G: K’ — K and natural isomorphisms n: Idg — F;G and ¢: G;F — Idk:.

e A category is skeletal if any two isomorphic objects are identical.

e A skeleton of a category is any of its maximal skeletal subcategory.

Theorem: Two categories are equivalent iff they have isomorphic skeletons.
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Equivalence of categories'

e Two categories K and K’ are isomorphic if there are functors F: K — K’ and
G: K’ — K such that F;G = Idk and G:;F = Idk'.

e Two categories K and K’ are equivalent if there are functors F: K — K’ and
G: K’ — K and natural isomorphisms n: Idg — F;G and ¢: G;F — Idk:.

e A category is skeletal if any two isomorphic objects are identical.

e A skeleton of a category is any of its maximal skeletal subcategory.

Theorem: Two categories are equivalent iff they have isomorphic skeletons.

All “categorical” properties are preserved under equivalence of categories

Andrzej Tarlecki: Category Theory, 2025 - 109 -



