Given two parallel functors $\mathbf{F},\mathbf{G}\colon\mathbf{K}\to\mathbf{K}'$,

 \mathbf{K} : \mathbf{K}' :

 $\mathbf{F}(A)$

G(A)

B $\mathbf{F}(B)$

G(B)

Given two parallel functors $\mathbf{F}, \mathbf{G} \colon \mathbf{K} \to \mathbf{K}'$, a natural transformation from \mathbf{F} to \mathbf{G}

$$au\colon \mathbf{F} o \mathbf{G}$$

 \mathbf{K} : \mathbf{K}' :

 $\mathbf{F}(A)$

G(A)

 $B extbf{F}(B)$

G(B)

Given two parallel functors $\mathbf{F}, \mathbf{G} \colon \mathbf{K} \to \mathbf{K}'$, a natural transformation from \mathbf{F} to \mathbf{G}

$$au\colon \mathbf{F} o \mathbf{G}$$

is a family $\tau = \langle \tau_A \colon \mathbf{F}(A) \to \mathbf{G}(A) \rangle_{A \in |\mathbf{K}|}$ of \mathbf{K}' -morphisms

K:
$$\mathbf{K}'$$
:
$$A \qquad \mathbf{F}(A) \xrightarrow{\tau_A} \mathbf{G}(A)$$

$$B \longrightarrow \mathbf{F}(B) \longrightarrow \mathbf{G}(B)$$

Given two parallel functors $\mathbf{F}, \mathbf{G} \colon \mathbf{K} \to \mathbf{K}'$, a natural transformation from \mathbf{F} to \mathbf{G}

$$au\colon \mathbf{F} o \mathbf{G}$$

is a family $\tau = \langle \tau_A \colon \mathbf{F}(A) \to \mathbf{G}(A) \rangle_{A \in |\mathbf{K}|}$ of \mathbf{K}' -morphisms such that for all $f \colon A \to B$ in \mathbf{K} (with $A, B \in |\mathbf{K}|$),

Given two parallel functors $\mathbf{F}, \mathbf{G} \colon \mathbf{K} \to \mathbf{K}'$, a natural transformation from \mathbf{F} to \mathbf{G}

$$au\colon \mathbf{F} o \mathbf{G}$$

is a family $\tau = \langle \tau_A \colon \mathbf{F}(A) \to \mathbf{G}(A) \rangle_{A \in |\mathbf{K}|}$ of \mathbf{K}' -morphisms such that for all $f \colon A \to B$ in \mathbf{K} (with $A, B \in |\mathbf{K}|$), $\boxed{\tau_A; \mathbf{G}(f) = \mathbf{F}(f); \tau_B}$

Given two parallel functors ${f F}, {f G} \colon {f K} o {f K}'$, a natural transformation from ${f F}$ to ${f G}$

$$au\colon \mathbf{F} o \mathbf{G}$$

is a family $\tau = \langle \tau_A \colon \mathbf{F}(A) \to \mathbf{G}(A) \rangle_{A \in |\mathbf{K}|}$ of \mathbf{K}' -morphisms such that for all $f \colon A \to B$ in \mathbf{K} (with $A, B \in |\mathbf{K}|$), $\boxed{\tau_A; \mathbf{G}(f) = \mathbf{F}(f); \tau_B}$

Then, τ is a natural isomorphism if for all $A \in |\mathbf{K}|$, τ_A is an isomorphism.

• identity transformations: $id_{\mathbf{F}} \colon \mathbf{F} \to \mathbf{F}$, where $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$, for all objects $A \in |\mathbf{K}|$, $(id_{\mathbf{F}})_A = id_{\mathbf{F}(A)} \colon \mathbf{F}(A) \to \mathbf{F}(A)$

- identity transformations: $id_{\mathbf{F}} \colon \mathbf{F} \to \mathbf{F}$, where $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$, for all objects $A \in |\mathbf{K}|$, $(id_{\mathbf{F}})_A = id_{\mathbf{F}(A)} \colon \mathbf{F}(A) \to \mathbf{F}(A)$
- singleton functions: $sing: \mathbf{Id_{Set}} \to \mathbf{P} \ (: \mathbf{Set} \to \mathbf{Set})$, where for all $X \in |\mathbf{Set}|$, $sing_X: X \to \mathbf{P}(X)$ is a function defined by $sing_X(x) = \{x\}$ for $x \in X$.

Andrzej Tarlecki: Category Theory, 2025

- identity transformations: $id_{\mathbf{F}} \colon \mathbf{F} \to \mathbf{F}$, where $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$, for all objects $A \in |\mathbf{K}|$, $(id_{\mathbf{F}})_A = id_{\mathbf{F}(A)} \colon \mathbf{F}(A) \to \mathbf{F}(A)$
- singleton functions: $sing: \mathbf{Id_{Set}} \to \mathbf{P} \ (: \mathbf{Set} \to \mathbf{Set})$, where for all $X \in |\mathbf{Set}|$, $sing_X: X \to \mathbf{P}(X)$ is a function defined by $sing_X(x) = \{x\}$ for $x \in X$.

$$X \qquad \mathbf{Id_{Set}}(X) \xrightarrow{sing_X} \mathbf{P}(X)$$

$$Y \qquad \mathbf{Id_{Set}}(Y) \xrightarrow{sing_Y} \mathbf{P}(Y)$$

- identity transformations: $id_{\bf F} \colon {\bf F} \to {\bf F}$, where ${\bf F} \colon {\bf K} \to {\bf K}'$, for all objects $A \in |\mathbf{K}|, (id_{\mathbf{F}})_A = id_{\mathbf{F}(A)} \colon \mathbf{F}(A) \to \mathbf{F}(A)$
- singleton functions: $sing: \mathbf{Id_{Set}} \to \mathbf{P} \ (: \mathbf{Set} \to \mathbf{Set})$, where for all $X \in |\mathbf{Set}|$, $sing_X : X \to \mathbf{P}(X)$ is a function defined by $sing_X(x) = \{x\}$ for $x \in X$.

For all
$$f \colon X \to Y$$
,
$$sing_X; \mathbf{P}(f) = \mathbf{Id}_{\mathbf{Set}}(f); sing_Y,$$

- identity transformations: $id_{\mathbf{F}} \colon \mathbf{F} \to \mathbf{F}$, where $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$, for all objects $A \in |\mathbf{K}|$, $(id_{\mathbf{F}})_A = id_{\mathbf{F}(A)} \colon \mathbf{F}(A) \to \mathbf{F}(A)$
- singleton functions: $sing: \mathbf{Id_{Set}} \to \mathbf{P} \ (: \mathbf{Set} \to \mathbf{Set})$, where for all $X \in |\mathbf{Set}|$, $sing_X: X \to \mathbf{P}(X)$ is a function defined by $sing_X(x) = \{x\}$ for $x \in X$.

For all
$$f\colon X\to Y$$
,
$$sing_X; \mathbf{P}(f)=\mathbf{Id_{Set}}(f); sing_Y,$$
 i.e. $sing_X; \vec{f}=f; sing_Y$,

- identity transformations: $id_{\mathbf{F}} \colon \mathbf{F} \to \mathbf{F}$, where $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$, for all objects $A \in |\mathbf{K}|$, $(id_{\mathbf{F}})_A = id_{\mathbf{F}(A)} \colon \mathbf{F}(A) \to \mathbf{F}(A)$
- singleton functions: $sing: \mathbf{Id_{Set}} \to \mathbf{P} \ (: \mathbf{Set} \to \mathbf{Set})$, where for all $X \in |\mathbf{Set}|$, $sing_X: X \to \mathbf{P}(X)$ is a function defined by $sing_X(x) = \{x\}$ for $x \in X$.

For all $f: X \to Y$, $sing_X; \mathbf{P}(f) = \mathbf{Id_{Set}}(f); sing_Y,$ i.e. $sing_X; \vec{f} = f; sing_Y,$ i.e. for $x \in X$, $\vec{f}(\{x\}) = \{f(x)\}.$ Y

- identity transformations: $id_{\mathbf{F}} \colon \mathbf{F} \to \mathbf{F}$, where $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$, for all objects $A \in |\mathbf{K}|$, $(id_{\mathbf{F}})_A = id_{\mathbf{F}(A)} \colon \mathbf{F}(A) \to \mathbf{F}(A)$
- singleton functions: $sing: \mathbf{Id_{Set}} \to \mathbf{P} \ (: \mathbf{Set} \to \mathbf{Set})$, where for all $X \in |\mathbf{Set}|$, $sing_X: X \to \mathbf{P}(X)$ is a function defined by $sing_X(x) = \{x\}$ for $x \in X$.
- singleton-list functions: $sing^{\mathbf{List}} : \mathbf{Id_{Set}} \to |\mathbf{List}| \ (: \mathbf{Set} \to \mathbf{Set})$, where $|\mathbf{List}| = \mathbf{List}; |_-| : \mathbf{Set}(\to \mathbf{Monoid}) \to \mathbf{Set}$, and for all $X \in |\mathbf{Set}|$, $sing^{\mathbf{List}}_X : X \to X^*$ is a function defined by $sing^{\mathbf{List}}_X(x) = \langle x \rangle$ for $x \in X$

- identity transformations: $id_{\mathbf{F}} \colon \mathbf{F} \to \mathbf{F}$, where $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$, for all objects $A \in |\mathbf{K}|$, $(id_{\mathbf{F}})_A = id_{\mathbf{F}(A)} \colon \mathbf{F}(A) \to \mathbf{F}(A)$
- singleton functions: $sing: \mathbf{Id_{Set}} \to \mathbf{P} \ (: \mathbf{Set} \to \mathbf{Set})$, where for all $X \in |\mathbf{Set}|$, $sing_X: X \to \mathbf{P}(X)$ is a function defined by $sing_X(x) = \{x\}$ for $x \in X$.
- $singleton-list\ functions:\ sing^{\mathbf{List}}:\mathbf{Id_{Set}}\to |\mathbf{List}|\ (:\mathbf{Set}\to\mathbf{Set}),\ \text{where}$ $|\mathbf{List}|=\mathbf{List};|_-|:\mathbf{Set}(\to\mathbf{Monoid})\to\mathbf{Set},\ \text{and for all}\ X\in |\mathbf{Set}|,$ $sing^{\mathbf{List}}_X:X\to X^*$ is a function defined by $sing^{\mathbf{List}}_X(x)=\langle x\rangle$ for $x\in X$
- append functions: $append: |\mathbf{List}|; \mathbf{CP} \to |\mathbf{List}| \ (:\mathbf{Set} \to \mathbf{Set})$, where for all $X \in |\mathbf{Set}|$, $append_X: (X^* \times X^*) \to X^*$ is the usual append function (list concatenation) polymorphic functions between algebraic types

- identity transformations: $id_{\mathbf{F}} \colon \mathbf{F} \to \mathbf{F}$, where $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$, for all objects $A \in |\mathbf{K}|$, $(id_{\mathbf{F}})_A = id_{\mathbf{F}(A)} \colon \mathbf{F}(A) \to \mathbf{F}(A)$
- singleton functions: $sing: \mathbf{Id_{Set}} \to \mathbf{P} \ (: \mathbf{Set} \to \mathbf{Set})$, where for all $X \in |\mathbf{Set}|$, $sing_X: X \to \mathbf{P}(X)$ is a function defined by $sing_X(x) = \{x\}$ for $x \in X$.
- singleton-list functions: $sing^{\mathbf{List}} \colon \mathbf{Id_{Set}} \to |\mathbf{List}| \ (\colon \mathbf{Set} \to \mathbf{Set})$, where $|\mathbf{List}| = \mathbf{List}; |_{-}| \colon \mathbf{Set}(\to \mathbf{Monoid}) \to \mathbf{Set}$, and for all $X \in |\mathbf{Set}|$, $sing^{\mathbf{List}}_{X} \colon X \to X^{*}$ is a function defined by $sing^{\mathbf{List}}_{X}(x) = \langle x \rangle$ for $x \in X$
- append functions: $append: |\mathbf{List}|; \mathbf{CP} \to |\mathbf{List}| \ (:\mathbf{Set} \to \mathbf{Set})$, where for all $X \in |\mathbf{Set}|$, $append_X: (X^* \times X^*) \to X^*$ is the usual append function (list concatenation) polymorphic functions between algebraic types

$$X \qquad X^* \times X^* \xrightarrow{append_X} X^*$$

$$f \qquad f^* \times f^* \qquad \downarrow f^*$$

$$Y \qquad Y^* \times Y^* \xrightarrow{append_Y} Y^*$$

Work out the following generalisation of the last two examples:

- for each algebraic type scheme $\forall \alpha_1 \dots \alpha_n \cdot T$, built in Standard ML using at least products and algebraic data types (no function types though), define the corresponding functor $\llbracket T \rrbracket \colon \mathbf{Set}^n \to \mathbf{Set}$

Work out the following generalisation of the last two examples:

- for each algebraic type scheme $\forall \alpha_1 \dots \alpha_n \cdot T$, built in Standard ML using at least products and algebraic data types (no function types though), define the corresponding functor $[T]: \mathbf{Set}^n \to \mathbf{Set}$

· ... recursive type definitions work as well...

- for each algebraic type scheme $\forall \alpha_1 \dots \alpha_n \cdot T$, built in Standard ML using at least products and algebraic data types (no function types though), define the corresponding functor $\llbracket T \rrbracket \colon \mathbf{Set}^n \to \mathbf{Set}$
- argue that in a representative subset of Standard ML, for each polymorphic expression $E \colon \forall \alpha_1 \dots \alpha_n \cdot T \to T'$ its semantics is a natural transformation $\llbracket E \rrbracket \colon \llbracket T \rrbracket \to \llbracket T' \rrbracket$

- for each algebraic type scheme $\forall \alpha_1 \dots \alpha_n \cdot T$, built in Standard ML using at least products and algebraic data types (no function types though), define the corresponding functor $[T]: \mathbf{Set}^n \to \mathbf{Set}$
- argue that in a representative subset of Standard ML, for each polymorphic expression $E \colon \forall \alpha_1 \dots \alpha_n \cdot T \to T'$ its semantics is a natural transformation $\llbracket E \rrbracket \colon \llbracket T \rrbracket \to \llbracket T' \rrbracket$
 - by induction on the structure of well-typed expressions

- for each algebraic type scheme $\forall \alpha_1 \dots \alpha_n \cdot T$, built in Standard ML using at least products and algebraic data types (no function types though), define the corresponding functor $[T]: \mathbf{Set}^n \to \mathbf{Set}$
- argue that in a representative subset of Standard ML, for each polymorphic expression $E \colon \forall \alpha_1 \dots \alpha_n \cdot T \to T'$ its semantics is a natural transformation $\llbracket E \rrbracket \colon \llbracket T \rrbracket \to \llbracket T' \rrbracket$
- Then for $f_1: X_1 \to Y_1, \ldots, f_n: X_n \to Y_n$:

$$[T](f_1,\ldots,f_n); [E]_{\langle Y_1,\ldots,Y_n\rangle} = [E]_{\langle X_1,\ldots,X_n\rangle}; [T'](f_1,\ldots,f_n)$$

Work out the following generalisation of the last two examples:

- for each algebraic type scheme $\forall \alpha_1 \dots \alpha_n \cdot T$, built in Standard ML using at least products and algebraic data types (no function types though), define the corresponding functor $[T]: \mathbf{Set}^n \to \mathbf{Set}$
- argue that in a representative subset of Standard ML, for each polymorphic expression $E \colon \forall \alpha_1 \dots \alpha_n \cdot T \to T'$ its semantics is a natural transformation $\llbracket E \rrbracket \colon \llbracket T \rrbracket \to \llbracket T' \rrbracket$
- Then for $f_1: X_1 \to Y_1, \ldots, f_n: X_n \to Y_n$:

$$[T](f_1,\ldots,f_n); [E]_{\langle Y_1,\ldots,Y_n\rangle} = [E]_{\langle X_1,\ldots,X_n\rangle}; [T'](f_1,\ldots,f_n)$$

For instance, for $rev: \alpha$ list $\rightarrow \alpha$ list, $even: int \rightarrow bool and <math>l: int$ list: $rev(even^*(l)) = even^*(rev(l))$

Work out the following generalisation of the last two examples:

- for each algebraic type scheme $\forall \alpha_1 \dots \alpha_n \cdot T$, built in Standard ML using at least products and algebraic data types (no function types though), define the corresponding functor $[T]: \mathbf{Set}^n \to \mathbf{Set}$
- argue that in a representative subset of Standard ML, for each polymorphic expression $E \colon \forall \alpha_1 \dots \alpha_n \cdot T \to T'$ its semantics is a natural transformation $\llbracket E \rrbracket \colon \llbracket T \rrbracket \to \llbracket T' \rrbracket$
- Then for $f_1: X_1 \to Y_1, \ldots, f_n: X_n \to Y_n$:

$$[T](f_1,\ldots,f_n); [E]_{\langle Y_1,\ldots,Y_n\rangle} = [E]_{\langle X_1,\ldots,X_n\rangle}; [T'](f_1,\ldots,f_n)$$

For instance, for $rev: \alpha$ list $\rightarrow \alpha$ list, $even: int \rightarrow bool and <math>l: int$ list: $rev(even^*(l)) = even^*(rev(l))$

Theorems for free! (see Wadler 89)

Given a locally small category K, functor $F: K \to \mathbf{Set}$ and object $A \in |K|$:

Given a locally small category K, functor $F: K \to \mathbf{Set}$ and object $A \in |K|$:

$$Nat(\mathbf{Hom}_{\mathbf{K}}(A, _), \mathbf{F}) \cong \mathbf{F}(A)$$

Given a locally small category K, functor $F: K \to \mathbf{Set}$ and object $A \in |K|$:

$$Nat(\mathbf{Hom_K}(A, _), \mathbf{F}) \cong \mathbf{F}(A)$$

natural transformations from $\mathbf{Hom_K}(A, _)$ to \mathbf{F} , between functors from \mathbf{K} to \mathbf{Set} , are given exactly by the elements of the set $\mathbf{F}(A)$

Andrzej Tarlecki: Category Theory, 2025

Given a locally small category K, functor $F: K \to \mathbf{Set}$ and object $A \in |K|$:

$$Nat(\mathbf{Hom_K}(A,_),\mathbf{F}) \cong \mathbf{F}(A)$$

natural transformations from $\mathbf{Hom}_{\mathbf{K}}(A,_)$ to \mathbf{F} , between functors from \mathbf{K} to \mathbf{Set} , are given exactly by the elements of the set $\mathbf{F}(A)$

EXERCISES:

• Dualise: for $G: K^{op} \to Set$,

Andrzej Tarlecki: Category Theory, 2025

Given a locally small category K, functor $F: K \to \mathbf{Set}$ and object $A \in |K|$:

$$Nat(\mathbf{Hom_K}(A, _), \mathbf{F}) \cong \mathbf{F}(A)$$

natural transformations from $\mathbf{Hom_K}(A,_)$ to \mathbf{F} , between functors from \mathbf{K} to \mathbf{Set} , are given exactly by the elements of the set $\mathbf{F}(A)$

EXERCISES:

• Dualise: for $G: \mathbf{K}^{op} \to \mathbf{Set}$,

$$Nat(\mathbf{Hom_K}(_, A), \mathbf{G}) \cong \mathbf{G}(A)$$

.

Given a locally small category K, functor $F: K \to \mathbf{Set}$ and object $A \in |K|$:

$$Nat(\mathbf{Hom_K}(A, _), \mathbf{F}) \cong \mathbf{F}(A)$$

natural transformations from $\mathbf{Hom_K}(A,_)$ to \mathbf{F} , between functors from \mathbf{K} to \mathbf{Set} , are given exactly by the elements of the set $\mathbf{F}(A)$

EXERCISES:

• Dualise: for $G: K^{op} \to Set$,

$$Nat(\mathbf{Hom_K}(_-, A), \mathbf{G}) \cong \mathbf{G}(A)$$

• Characterise all natural transformations from $\mathbf{Hom}_{\mathbf{K}}(A, _)$ to $\mathbf{Hom}_{\mathbf{K}}(B, _)$, for all objects $A, B \in |\mathbf{K}|$.

Proof

• For $a \in \mathbf{F}(A)$, define $\tau^a \colon \mathbf{Hom}_{\mathbf{K}}(A,_) \to \mathbf{F}$, as the family of functions $\tau^a_B \colon \mathbf{K}(A,B) \to \mathbf{F}(B)$, $B \in |\mathbf{K}|$,

Proof

• For $a \in \mathbf{F}(A)$, define $\tau^a \colon \mathbf{Hom}_{\mathbf{K}}(A,_) \to \mathbf{F}$, as the family of functions $\tau^a_B \colon \mathbf{K}(A,B) \to \mathbf{F}(B)$, $B \in |\mathbf{K}|$, given by $\tau^a_B(f) = \mathbf{F}(f)(a)$ for $f \colon A \to B$ in \mathbf{K} . Note: $\mathbf{F}(f) \colon \mathbf{F}(A) \to \mathbf{F}(B)$ in Set, so $\mathbf{F}(f)(a) \in \mathbf{F}(B)$.

• For $a \in \mathbf{F}(A)$, define $\tau^a \colon \mathbf{Hom}_{\mathbf{K}}(A, _) \to \mathbf{F}$, as the family of functions $\tau^a_B \colon \mathbf{K}(A, B) \to \mathbf{F}(B)$, $B \in |\mathbf{K}|$, given by $\tau^a_B(f) = \mathbf{F}(f)(a)$ for $f \colon A \to B$ in \mathbf{K} . This is a natural transformation, since for $g \colon B \to C$ and then $f \colon A \to B$,

 $\mathbf{F}(g)(\tau_B^a(f))$

• For $a \in \mathbf{F}(A)$, define $\tau^a : \mathbf{Hom}_{\mathbf{K}}(A, _) \to \mathbf{F}$, as the family of functions $\tau^a_B : \mathbf{K}(A, B) \to \mathbf{F}(B)$, $B \in |\mathbf{K}|$, given by $\tau^a_B(f) = \mathbf{F}(f)(a)$ for $f : A \to B$ in \mathbf{K} . This is a natural transformation, since for $g : B \to C$ and then $f : A \to B$,

 $\mathbf{F}(g)(\tau_B^a(f)) = \mathbf{F}(g)(\mathbf{F}(f)(a))$

$$\mathbf{F}(g)(\tau_B^a(f)) = \mathbf{F}(g)(\mathbf{F}(f)(a))$$
$$= \mathbf{F}(f;g)(a) = \tau_C^a(f;g)$$

$$\mathbf{F}(g)(\tau_B^a(f)) = \mathbf{F}(g)(\mathbf{F}(f)(a))$$

$$= \mathbf{F}(f;g)(a) = \tau_C^a(f;g)$$

$$= \tau_C^a(\mathbf{Hom}_{\mathbf{K}}(A,g)(f))$$

$$\begin{split} \mathbf{F}(g)(\tau_B^a(f)) &= \mathbf{F}(g)(\mathbf{F}(f)(a)) \\ &= \mathbf{F}(f;g)(a) = \tau_C^a(f;g) \\ &= \tau_C^a(\mathbf{Hom_K}(A,g)(f)) \\ \mathsf{Then} \ \tau_A^a(id_A) &= a, \end{split}$$

• For $a \in \mathbf{F}(A)$, define $\tau^a : \mathbf{Hom}_{\mathbf{K}}(A, _) \to \mathbf{F}$, as the family of functions $\tau_{R}^{a} \colon \mathbf{K}(A,B) \to \mathbf{F}(B), B \in |\mathbf{K}|, \text{ given by } \tau_{R}^{a}(f) = \mathbf{F}(f)(a) \text{ for } f \colon A \to B \text{ in } \mathbf{K}.$ This is a natural transformation, since for $g: B \to C$ and then $f: A \to B$,

$$\mathbf{F}(g)(\tau_B^a(f)) = \mathbf{F}(g)(\mathbf{F}(f)(a)) \qquad \mathbf{K}: \qquad \mathbf{Set}: \\ = \mathbf{F}(f;g)(a) = \tau_C^a(f;g) \qquad B \qquad \mathbf{K}(A,B) \xrightarrow{\tau_B^a} \mathbf{F}(B) \\ = \tau_C^a(\mathbf{Hom}_{\mathbf{K}}(A,g)(f)) \qquad g \qquad (_);g = \mathbf{Hom}_{\mathbf{K}}(A,g) \qquad \mathbf{F}(g) \\ \mathbf{Then} \ \tau_A^a(id_A) = a, \ \text{and so for distinct} \qquad \mathbf{K}(A,C) \xrightarrow{\tau_C^a} \mathbf{F}(C)$$

• If $\tau \colon \mathbf{Hom}_{\mathbf{K}}(A,_) \to \mathbf{F}$ is a natural transformation

• For $a \in \mathbf{F}(A)$, define $\tau^a : \mathbf{Hom}_{\mathbf{K}}(A, _) \to \mathbf{F}$, as the family of functions $\tau_B^a : \mathbf{K}(A,B) \to \mathbf{F}(B), B \in |\mathbf{K}|, \text{ given by } \tau_B^a(f) = \mathbf{F}(f)(a) \text{ for } f : A \to B \text{ in } \mathbf{K}.$ This is a natural transformation, since for $g: B \to C$ and then $f: A \to B$,

$$\mathbf{F}(g)(\tau_B^a(f)) = \mathbf{F}(g)(\mathbf{F}(f)(a)) \qquad \mathbf{K}: \qquad \mathbf{Set}: \\ = \mathbf{F}(f;g)(a) = \tau_C^a(f;g) \qquad B \qquad \mathbf{K}(A,B) \xrightarrow{\tau_B^a} \mathbf{F}(B) \\ = \tau_C^a(\mathbf{Hom}_{\mathbf{K}}(A,g)(f)) \qquad g \qquad (_);g = \mathbf{Hom}_{\mathbf{K}}(A,g) \qquad \mathbf{F}(g) \\ \mathbf{Then} \ \tau_A^a(id_A) = a, \ \text{and so for distinct} \qquad \mathbf{K}(A,C) \xrightarrow{\tau_C^a} \mathbf{F}(C)$$

• If $\tau \colon \mathbf{Hom}_{\mathbf{K}}(A,_) \to \mathbf{F}$ is a natural transformation then $\tau = \tau^a$, where we put $a = \tau_A(id_A)$,

• For $a \in \mathbf{F}(A)$, define $\tau^a : \mathbf{Hom}_{\mathbf{K}}(A, _) \to \mathbf{F}$, as the family of functions $\tau_B^a : \mathbf{K}(A,B) \to \mathbf{F}(B), B \in |\mathbf{K}|, \text{ given by } \tau_B^a(f) = \mathbf{F}(f)(a) \text{ for } f : A \to B \text{ in } \mathbf{K}.$ This is a natural transformation, since for $g: B \to C$ and then $f: A \to B$,

$$\mathbf{F}(g)(\tau_{B}^{a}(f)) = \mathbf{F}(g)(\mathbf{F}(f)(a)) \qquad \mathbf{K}: \qquad \mathbf{Set}:$$

$$= \mathbf{F}(f;g)(a) = \tau_{C}^{a}(f;g) \qquad B \qquad \mathbf{K}(A,B) \xrightarrow{\tau_{B}^{a}} \mathbf{F}(B)$$

$$= \tau_{C}^{a}(\mathbf{Hom_{K}}(A,g)(f)) \qquad g \qquad (_);g = \mathbf{Hom_{K}}(A,g) \qquad \mathbf{F}(g)$$
Then $\tau_{A}^{a}(id_{A}) = a$, and so for distinct $a,a' \in \mathbf{F}(A)$, τ^{a} and $\tau^{a'}$ differ. $C \qquad \mathbf{K}(A,C) \xrightarrow{\tau_{C}^{a}} \mathbf{F}(C)$

• If $\tau \colon \mathbf{Hom}_{\mathbf{K}}(A,_) \to \mathbf{F}$ is a natural transformation then $\tau = \tau^a$, where we put $a = \tau_A(id_A)$, since for $B \in |\mathbf{K}|$ and $f: A \to B, \ \tau_B(f) = \mathbf{F}(f)(\tau_A(id_A))$

• For $a \in \mathbf{F}(A)$, define $\tau^a : \mathbf{Hom}_{\mathbf{K}}(A, _) \to \mathbf{F}$, as the family of functions $\tau_B^a \colon \mathbf{K}(A,B) \to \mathbf{F}(B), B \in |\mathbf{K}|, \text{ given by } \tau_B^a(f) = \mathbf{F}(f)(a) \text{ for } f \colon A \to B \text{ in } \mathbf{K}.$ This is a natural transformation, since for $g: B \to C$ and then $f: A \to B$,

$$\mathbf{F}(g)(\tau_B^a(f)) = \mathbf{F}(g)(\mathbf{F}(f)(a)) \qquad \mathbf{K}: \qquad \mathbf{Set}: \\ = \mathbf{F}(f;g)(a) = \tau_C^a(f;g) \qquad B \qquad \mathbf{K}(A,B) \xrightarrow{\tau_B^a} \mathbf{F}(B) \\ = \tau_C^a(\mathbf{Hom}_{\mathbf{K}}(A,g)(f)) \qquad g \qquad (_);g = \mathbf{Hom}_{\mathbf{K}}(A,g) \qquad \mathbf{F}(g) \\ \mathbf{Then} \ \tau_A^a(id_A) = a, \ \text{and so for distinct} \qquad \mathbf{K}(A,C) \xrightarrow{\tau_C^a} \mathbf{F}(C)$$

• If $\tau \colon \mathbf{Hom}_{\mathbf{K}}(A,_) \to \mathbf{F}$ is a natural transformation then $\tau = \tau^a$, where we A put $a = \tau_A(id_A)$, since for $B \in |\mathbf{K}|$ and $f : A \to B$, $\tau_B(f) = \mathbf{F}(f)(\tau_A(id_A))$ by naturality of τ : $B \qquad \mathbf{K}(A,A) \xrightarrow{\tau_A} \mathbf{F}(A)$ $(-); f = \mathbf{Hom}_{\mathbf{K}}(A,f) \qquad \mathbf{F}(f)$ $\mathbf{K}(A,B) \xrightarrow{\tau_B} \mathbf{F}(B)$

$$\mathbf{K}(A, A) \xrightarrow{\tau_{A}} \mathbf{F}(A)$$

$$(_{-}); f = |\mathbf{Hom_{K}}(A, f)| \mathbf{F}(f)$$

$$\mathbf{K}(A, B) \xrightarrow{\tau_{B}} \mathbf{F}(B)$$

vertical composition:

vertical composition:

vertical composition:

vertical composition:

horizontal composition:

vertical composition:

From: F

horizontal composition:

vertical composition:

horizontal composition:

 $\mathbf{K}^{\prime\prime}$

 \mathbf{K}''

The *vertical composition* of natural transformations $\tau\colon \mathbf{F}\to\mathbf{F}'$ and $\sigma\colon\mathbf{F}'\to\mathbf{F}''$ between parallel functors $\mathbf{F},\mathbf{F}',\mathbf{F}''\colon\mathbf{K}\to\mathbf{K}'$

The *vertical composition* of natural transformations $\tau\colon \mathbf{F}\to\mathbf{F}'$ and $\sigma\colon\mathbf{F}'\to\mathbf{F}''$ between parallel functors $\mathbf{F},\mathbf{F}',\mathbf{F}''\colon\mathbf{K}\to\mathbf{K}'$

 $\tau;\sigma\colon\mathbf{F}\to\mathbf{F''}$

The *vertical composition* of natural transformations $\tau\colon \mathbf{F}\to\mathbf{F}'$ and $\sigma\colon\mathbf{F}'\to\mathbf{F}''$ between parallel functors $\mathbf{F},\mathbf{F}',\mathbf{F}''\colon\mathbf{K}\to\mathbf{K}'$

$$\tau;\sigma\colon\mathbf{F}\to\mathbf{F}''$$

is a natural transformation given by $|(\tau;\sigma)_A = \tau_A;\sigma_A|$ for all $A \in |\mathbf{K}|$.

The *vertical composition* of natural transformations $\tau \colon \mathbf{F} \to \mathbf{F}'$ and $\sigma \colon \mathbf{F}' \to \mathbf{F}''$ between parallel functors $\mathbf{F}, \mathbf{F}', \mathbf{F}'' \colon \mathbf{K} \to \mathbf{K}'$

$$\tau;\sigma\colon\mathbf{F}\to\mathbf{F''}$$

is a natural transformation given by $[(\tau;\sigma)_A = \tau_A;\sigma_A]$ for all $A \in |\mathbf{K}|$.

K:
$$\mathbf{K}'$$
:

 $A \qquad \mathbf{F}(A) \longrightarrow \mathbf{F}'(A) \longrightarrow \mathbf{F}''(A)$
 $f \qquad \mathbf{F}(f) \qquad \qquad \mathbf{F}''(f) \qquad \qquad \mathbf{F}''(f)$
 $B \qquad \mathbf{F}(B) \longrightarrow \mathbf{F}'(B) \longrightarrow \mathbf{F}''(B)$

The horizontal composition of natural transformations $\tau\colon \mathbf{F}\to\mathbf{F}'$ and $\sigma\colon \mathbf{G}\to\mathbf{G}'$ between composable pairs of parallel functors $\mathbf{F},\mathbf{F}'\colon \mathbf{K}\to\mathbf{K}',\ \mathbf{G},\mathbf{G}'\colon \mathbf{K}'\to\mathbf{K}''$

The horizontal composition of natural transformations $\tau\colon\mathbf{F}\to\mathbf{F}'$ and $\sigma\colon\mathbf{G}\to\mathbf{G}'$ between composable pairs of parallel functors $\mathbf{F},\mathbf{F}'\colon\mathbf{K}\to\mathbf{K}',\ \mathbf{G},\mathbf{G}'\colon\mathbf{K}'\to\mathbf{K}''$

 $\tau \cdot \sigma \colon \mathbf{F}; \mathbf{G} \to \mathbf{F}'; \mathbf{G}'$

The horizontal composition of natural transformations $\tau\colon \mathbf{F}\to\mathbf{F}'$ and $\sigma\colon \mathbf{G}\to\mathbf{G}'$ between composable pairs of parallel functors $\mathbf{F},\mathbf{F}'\colon \mathbf{K}\to\mathbf{K}',\ \mathbf{G},\mathbf{G}'\colon \mathbf{K}'\to\mathbf{K}''$

$$\tau \cdot \sigma \colon \mathbf{F}; \mathbf{G} \to \mathbf{F}'; \mathbf{G}'$$

is a natural transformation given by $\boxed{(\tau \cdot \sigma)_A}$ $A \in |\mathbf{K}|.$

 $(au \cdot \sigma)_A$ for all \mathbf{K}'' :

The horizontal composition of natural transformations $\tau\colon \mathbf{F}\to\mathbf{F}'$ and $\sigma\colon \mathbf{G}\to\mathbf{G}'$ between composable pairs of parallel functors $\mathbf{F},\mathbf{F}'\colon \mathbf{K}\to\mathbf{K}',\ \mathbf{G},\mathbf{G}'\colon \mathbf{K}'\to\mathbf{K}''$

$$\tau \cdot \sigma \colon \mathbf{F}; \mathbf{G} \to \mathbf{F}'; \mathbf{G}'$$

is a natural transformation given by $(\tau \cdot \sigma)_A$ $A \in |\mathbf{K}|.$

for all

The horizontal composition of natural transformations $\tau\colon \mathbf{F}\to\mathbf{F}'$ and $\sigma\colon \mathbf{G}\to\mathbf{G}'$ between composable pairs of parallel functors $\mathbf{F},\mathbf{F}'\colon \mathbf{K}\to\mathbf{K}',\ \mathbf{G},\mathbf{G}'\colon \mathbf{K}'\to\mathbf{K}''$

$$\tau \cdot \sigma \colon \mathbf{F}; \mathbf{G} \to \mathbf{F}'; \mathbf{G}'$$

is a natural transformation given by $(\tau \cdot \sigma)_A$ $A \in |\mathbf{K}|$.

for all

The horizontal composition of natural transformations $\tau\colon \mathbf{F}\to\mathbf{F}'$ and $\sigma\colon \mathbf{G}\to\mathbf{G}'$ between composable pairs of parallel functors $\mathbf{F},\mathbf{F}'\colon \mathbf{K}\to\mathbf{K}',\ \mathbf{G},\mathbf{G}'\colon \mathbf{K}'\to\mathbf{K}''$

$$\tau \cdot \sigma \colon \mathbf{F}; \mathbf{G} \to \mathbf{F}'; \mathbf{G}'$$

is a natural transformation given by $(\tau \cdot \sigma)_A$ $A \in |\mathbf{K}|$.

The horizontal composition of natural transformations $\tau\colon \mathbf{F}\to\mathbf{F}'$ and $\sigma\colon \mathbf{G}\to\mathbf{G}'$ between composable pairs of parallel functors $\mathbf{F}, \mathbf{F}' \colon \mathbf{K} \to \mathbf{K}', \ \mathbf{G}, \mathbf{G}' \colon \mathbf{K}' \to \mathbf{K}''$

$$\tau \cdot \sigma \colon \mathbf{F}; \mathbf{G} \to \mathbf{F}'; \mathbf{G}'$$

 $A \in |\mathbf{K}|$.

is a natural transformation given by
$$\boxed{(\tau \cdot \sigma)_A = \mathbf{G}(\tau_A); \sigma_{\mathbf{F}'(A)} = \sigma_{\mathbf{F}(A)}; \mathbf{G}'(\tau_A)}$$
 for all $A \in |\mathbf{K}|$.
$$\mathbf{K}': \qquad \mathbf{K}'': \qquad \mathbf{K}'': \qquad \mathbf{G}(\mathbf{F}(A)) \qquad \sigma_{\mathbf{F}(A)} \sim \mathbf{G}'(\mathbf{F}(A))$$

$$\mathbf{F}(A) \qquad \mathbf{G}(\mathbf{F}(A)) \xrightarrow{\sigma_{\mathbf{F}(A)}} \mathbf{G}'(\mathbf{F}(A))$$

$$\tau_{A} \qquad \mathbf{G}(\tau_{A}) \qquad (\tau \cdot \sigma)_{A} \qquad \mathbf{G}'(\tau_{A})$$

$$\mathbf{F}'(A) \qquad \mathbf{G}(\mathbf{F}'(A)) \xrightarrow{\sigma_{\mathbf{F}'(A)}} \mathbf{G}'(\mathbf{F}'(A))$$

The horizontal composition of natural transformations $\tau\colon \mathbf{F}\to\mathbf{F}'$ and $\sigma\colon \mathbf{G}\to\mathbf{G}'$ between composable pairs of parallel functors $\mathbf{F}, \mathbf{F}' \colon \mathbf{K} \to \mathbf{K}', \ \mathbf{G}, \mathbf{G}' \colon \mathbf{K}' \to \mathbf{K}''$

$$\tau \cdot \sigma \colon \mathbf{F}; \mathbf{G} \to \mathbf{F}'; \mathbf{G}'$$

 $A \in |\mathbf{K}|$.

is a natural transformation given by
$$(\tau \cdot \sigma)_A = \mathbf{G}(\tau_A); \sigma_{\mathbf{F}'(A)} = \sigma_{\mathbf{F}(A)}; \mathbf{G}'(\tau_A)$$
 for all $A \in |\mathbf{K}|$.

Show that indeed, $\tau \cdot \sigma$ is a natural transformation

Show that indeed, $\tau \cdot \sigma$ is a natural transformation

Show that indeed, $\tau \cdot \sigma$ is a natural transformation

 \mathbf{K} :

A

$$\mathbf{G}(\mathbf{F}(A)) \xrightarrow{(\tau \cdot \sigma)_A} \mathbf{G}'(\mathbf{F}'(A))$$

 \mathbf{K} :

A

$$\mathbf{G}(\mathbf{F}(A)) \longrightarrow \mathbf{G}'(\mathbf{F}'(A))$$

$$B \qquad \qquad \mathbf{G}(\mathbf{F}(B)) - - - \mathbf{G}'(\mathbf{F}'(B))$$

The horizontal composition of natural transformations $\tau\colon \mathbf{F}\to\mathbf{F}'$ and $\sigma\colon \mathbf{G}\to\mathbf{G}'$ between composable pairs of parallel functors $\mathbf{F}, \mathbf{F}' \colon \mathbf{K} \to \mathbf{K}', \ \mathbf{G}, \mathbf{G}' \colon \mathbf{K}' \to \mathbf{K}''$

$$\tau \cdot \sigma \colon \mathbf{F}; \mathbf{G} \to \mathbf{F}'; \mathbf{G}'$$

 $A \in |\mathbf{K}|$.

is a natural transformation given by
$$(\tau \cdot \sigma)_A = \mathbf{G}(\tau_A); \sigma_{\mathbf{F}'(A)} = \sigma_{\mathbf{F}(A)}; \mathbf{G}'(\tau_A)$$
 for all $A \in |\mathbf{K}|$.

The horizontal composition of natural transformations $\tau\colon \mathbf{F}\to\mathbf{F}'$ and $\sigma\colon \mathbf{G}\to\mathbf{G}'$ between composable pairs of parallel functors $\mathbf{F},\mathbf{F}'\colon \mathbf{K}\to\mathbf{K}',\ \mathbf{G},\mathbf{G}'\colon \mathbf{K}'\to\mathbf{K}''$

$$\tau \cdot \sigma \colon \mathbf{F}; \mathbf{G} \to \mathbf{F}'; \mathbf{G}'$$

is a natural transformation given by $(\tau \cdot \sigma)_A = \mathbf{G}(\tau_A); \sigma_{\mathbf{F}'(A)} = \sigma_{\mathbf{F}(A)}; \mathbf{G}'(\tau_A)$ $A \in |\mathbf{K}|.$

Multiplication by functor:

$$\mathbf{K}': \qquad \mathbf{K}'': \\ \mathbf{F}(A) \qquad \mathbf{G}(\mathbf{F}(A)) \xrightarrow{\sigma_{\mathbf{F}(A)}} \mathbf{G}'(\mathbf{F}(A)) \\ \tau_{A} \qquad \mathbf{G}(\tau_{A}) \qquad (\tau \cdot \sigma)_{A} \qquad \mathbf{G}'(\tau_{A}) \\ \mathbf{F}'(A) \qquad \mathbf{G}(\mathbf{F}'(A)) \xrightarrow{\sigma_{\mathbf{F}'(A)}} \mathbf{G}'(\mathbf{F}'(A))$$

Show that indeed, $\tau \cdot \sigma$ is a natural transformation

The horizontal composition of natural transformations $\tau\colon \mathbf{F}\to\mathbf{F}'$ and $\sigma\colon \mathbf{G}\to\mathbf{G}'$ between composable pairs of parallel functors $\mathbf{F},\mathbf{F}'\colon \mathbf{K}\to\mathbf{K}',\ \mathbf{G},\mathbf{G}'\colon \mathbf{K}'\to\mathbf{K}''$

$$\tau \cdot \sigma \colon \mathbf{F}; \mathbf{G} \to \mathbf{F}'; \mathbf{G}'$$

is a natural transformation given by $|(\tau \cdot \sigma)_A = \mathbf{G}(\tau_A); \sigma_{\mathbf{F}'(A)} = \sigma_{\mathbf{F}(A)}; \mathbf{G}'(\tau_A)|$

 $A \in |\mathbf{K}|$.

Multiplication by functor:

$$- \tau \cdot \mathbf{G} = \tau \cdot id_{\mathbf{G}} \colon \mathbf{F}; \mathbf{G} \to \mathbf{F}'; \mathbf{G},$$

Show that indeed, $\tau \cdot \sigma$ is a natural transformation

The horizontal composition of natural transformations $\tau\colon \mathbf{F}\to\mathbf{F}'$ and $\sigma\colon \mathbf{G}\to\mathbf{G}'$ between composable pairs of parallel functors $\mathbf{F},\mathbf{F}'\colon \mathbf{K}\to\mathbf{K}',\ \mathbf{G},\mathbf{G}'\colon \mathbf{K}'\to\mathbf{K}''$

$$\tau \cdot \sigma \colon \mathbf{F}; \mathbf{G} \to \mathbf{F}'; \mathbf{G}'$$

is a natural transformation given by $|(\tau \cdot \sigma)_A = \mathbf{G}(\tau_A); \sigma_{\mathbf{F}'(A)} = \sigma_{\mathbf{F}(A)}; \mathbf{G}'(\tau_A)|$

 $A \in |\mathbf{K}|$.

Multiplication by functor:

$$- \tau \cdot \mathbf{G} = \tau \cdot id_{\mathbf{G}} \colon \mathbf{F}; \mathbf{G} \to \mathbf{F}'; \mathbf{G},$$

i.e., $(\tau \cdot \mathbf{G})_A = \mathbf{G}(\tau_A)$

Show that indeed, $\tau \cdot \sigma$ is a natural transformation

The horizontal composition of natural transformations $\tau\colon \mathbf{F}\to\mathbf{F}'$ and $\sigma\colon \mathbf{G}\to\mathbf{G}'$ between composable pairs of parallel functors $\mathbf{F},\mathbf{F}'\colon \mathbf{K}\to\mathbf{K}',\ \mathbf{G},\mathbf{G}'\colon \mathbf{K}'\to\mathbf{K}''$

$$\tau \cdot \sigma \colon \mathbf{F}; \mathbf{G} \to \mathbf{F}'; \mathbf{G}'$$

is a natural transformation given by $|(\tau \cdot \sigma)_A = \mathbf{G}(\tau_A); \sigma_{\mathbf{F}'(A)} = \sigma_{\mathbf{F}(A)}; \mathbf{G}'(\tau_A)|$

 $A \in |\mathbf{K}|$.

Multiplication by functor:

$$- \tau \cdot \mathbf{G} = \tau \cdot id_{\mathbf{G}} \colon \mathbf{F}; \mathbf{G} \to \mathbf{F}'; \mathbf{G},$$
i.e., $(\tau \cdot \mathbf{G})_A = \mathbf{G}(\tau_A)$

$$-\mathbf{F}\cdot\boldsymbol{\sigma}=id_{\mathbf{F}}\cdot\boldsymbol{\sigma}\colon\mathbf{F};\mathbf{G}\to\mathbf{F};\mathbf{G}'$$
,

Show that indeed, $\tau \cdot \sigma$ is a natural transformation

The horizontal composition of natural transformations $\tau\colon \mathbf{F}\to\mathbf{F}'$ and $\sigma\colon \mathbf{G}\to\mathbf{G}'$ between composable pairs of parallel functors $\mathbf{F}, \mathbf{F}' \colon \mathbf{K} \to \mathbf{K}', \ \mathbf{G}, \mathbf{G}' \colon \mathbf{K}' \to \mathbf{K}''$

$$\tau \cdot \sigma \colon \mathbf{F}; \mathbf{G} \to \mathbf{F}'; \mathbf{G}'$$

is a natural transformation given by $|(\tau \cdot \sigma)_A = \mathbf{G}(\tau_A); \sigma_{\mathbf{F}'(A)} = \sigma_{\mathbf{F}(A)}; \mathbf{G}'(\tau_A)|$

for all

 $A \in |\mathbf{K}|$.

Multiplication by functor:

$$- \tau \cdot \mathbf{G} = \tau \cdot id_{\mathbf{G}} \colon \mathbf{F}; \mathbf{G} \to \mathbf{F}'; \mathbf{G},$$

i.e., $(\tau \cdot \mathbf{G})_A = \mathbf{G}(\tau_A)$

$$-\mathbf{F}\cdot\sigma=id_{\mathbf{F}}\cdot\sigma\colon\mathbf{F};\mathbf{G}\to\mathbf{F};\mathbf{G}',$$
 i.e., $(\mathbf{F}\cdot\sigma)_A=\sigma_{\mathbf{F}(A)}$

$$\mathbf{K}': \qquad \mathbf{K}'': \\ \mathbf{F}(A) \qquad \mathbf{G}(\mathbf{F}(A)) \xrightarrow{\sigma_{\mathbf{F}(A)}} \mathbf{G}'(\mathbf{F}(A)) \\ \tau_{A} \qquad \mathbf{G}(\tau_{A}) \qquad (\tau \cdot \sigma)_{A} \qquad \mathbf{G}'(\tau_{A}) \\ \mathbf{F}'(A) \qquad \mathbf{G}(\mathbf{F}'(A)) \xrightarrow{\sigma_{\mathbf{F}'(A)}} \mathbf{G}'(\mathbf{F}'(A))$$

Given two categories K, K', define the *category of functors from* K' *to* $K, K^{K'}$, as follows:

Given two categories K, K', define the *category of functors from* K' *to* $K, K^{K'}$, as follows:

- objects: functors from ${f K}'$ to ${f K}$

Given two categories K, K', define the *category of functors from* K' *to* $K, K^{K'}$, as follows:

- objects: functors from \mathbf{K}' to \mathbf{K}
- morphisms: natural transformations between them

Given two categories K, K', define the *category of functors from* K' *to* $K, K^{K'}$, as follows:

- objects: functors from \mathbf{K}' to \mathbf{K}
- morphisms: natural transformations between them
- composition: vertical composition of the natural transformations

Given two categories K, K', define the *category of functors from* K' *to* $K, K^{K'}$, as follows:

- objects: functors from ${f K}'$ to ${f K}$
- morphisms: natural transformations between them
- composition: vertical composition of the natural transformations

Exercises:

Given two categories K, K', define the *category of functors from* K' *to* $K, K^{K'}$, as follows:

- objects: functors from ${f K}'$ to ${f K}$
- morphisms: natural transformations between them
- composition: vertical composition of the natural transformations

Exercises:

• View the category of S-sorted sets, \mathbf{Set}^S , as a functor category.

Given two categories K, K', define the *category of functors from* K' *to* $K, K^{K'}$, as follows:

- objects: functors from ${f K}'$ to ${f K}$
- morphisms: natural transformations between them
- composition: vertical composition of the natural transformations

Exercises:

- View the category of S-sorted sets, \mathbf{Set}^S , as a functor category.
- Check whether $\mathbf{K}^{\mathbf{K}'}$ is (finitely) (co)complete whenever \mathbf{K} is so.

Proof (idea): Define a terminal object, binary products and equalisers in $\mathbf{K}^{\mathbf{K}'}$:

Proof (idea): Define a terminal object, binary products and equalisers in $\mathbf{K}^{\mathbf{K}'}$:

Terminal object: $C_T \colon \mathbf{K}' \to \mathbf{K}$ is terminal in $\mathbf{K}^{\mathbf{K}'}$, where T is terminal in \mathbf{K} .

Proof (idea): Define a terminal object, binary products and equalisers in $\mathbf{K}^{\mathbf{K}'}$:

Terminal object: $C_T \colon \mathbf{K}' \to \mathbf{K}$ is terminal in $\mathbf{K}^{\mathbf{K}'}$, where T is terminal in \mathbf{K} .

Products: Given $F, G: K' \to K$, their product in $K^{K'}$ is $F \times G: K' \to K$

Proof (idea): Define a terminal object, binary products and equalisers in $\mathbf{K}^{\mathbf{K}'}$:

Terminal object: $C_T \colon \mathbf{K}' \to \mathbf{K}$ is terminal in $\mathbf{K}^{\mathbf{K}'}$, where T is terminal in \mathbf{K} .

- for
$$A' \in |\mathbf{K}'|$$
, $(\mathbf{F} \times \mathbf{G})(A') = \mathbf{F}(A') \times \mathbf{G}(A')$

Proof (idea): Define a terminal object, binary products and equalisers in $\mathbf{K}^{\mathbf{K}'}$:

Terminal object: $C_T \colon \mathbf{K}' \to \mathbf{K}$ is terminal in $\mathbf{K}^{\mathbf{K}'}$, where T is terminal in \mathbf{K} .

- for $A' \in |\mathbf{K}'|$, $(\mathbf{F} \times \mathbf{G})(A') = \mathbf{F}(A') \times \mathbf{G}(A')$
- for $f: A' \to B'$, $(\mathbf{F} \times \mathbf{G})(f) = \langle \pi_{\mathbf{F}(A')}; \mathbf{F}(f), \pi_{\mathbf{G}(A')}; \mathbf{G}(f) \rangle : (\mathbf{F} \times \mathbf{G})(A') \to (\mathbf{F} \times \mathbf{G})(B')$

Proof (idea): Define a terminal object, binary products and equalisers in $\mathbf{K}^{\mathbf{K}'}$:

Terminal object: $C_T \colon \mathbf{K}' \to \mathbf{K}$ is terminal in $\mathbf{K}^{\mathbf{K}'}$, where T is terminal in \mathbf{K} .

$$-$$
 for $A' \in |\mathbf{K}'|$, $(\mathbf{F} \times \mathbf{G})(A') = \mathbf{F}(A') \times \mathbf{G}(A')$

- for
$$f: A' \to B'$$
,

$$(\mathbf{F} \times \mathbf{G})(f) = \langle \pi_{\mathbf{F}(A')}; \mathbf{F}(f), \pi_{\mathbf{G}(A')}; \mathbf{G}(f) \rangle \colon (\mathbf{F} \times \mathbf{G})(A') \to (\mathbf{F} \times \mathbf{G})(B')$$

$$\mathbf{F}(A') \xrightarrow{\mathbf{F}(B')} \mathbf{F}(B')$$

$$\pi_{\mathbf{F}(A')} \times \mathbf{G}(A') \xrightarrow{\pi_{\mathbf{G}(B')}} \mathbf{F}(B') \times \mathbf{G}(B')$$

$$\pi_{\mathbf{G}(A')} \xrightarrow{\pi_{\mathbf{G}(B')}} \mathbf{G}(B')$$

Proof (idea): Define a terminal object, binary products and equalisers in $\mathbf{K}^{\mathbf{K}'}$:

Terminal object: $C_T : \mathbf{K}' \to \mathbf{K}$ is terminal in $\mathbf{K}^{\mathbf{K}'}$, where T is terminal in \mathbf{K} .

$$-$$
 for $A' \in |\mathbf{K}'|$, $(\mathbf{F} \times \mathbf{G})(A') = \mathbf{F}(A') \times \mathbf{G}(A')$

- for
$$f: A' \to B'$$
,
 $(\mathbf{F} \times \mathbf{C})(f) = /\pi$

$$(\mathbf{F} \times \mathbf{G})(f) = \langle \pi_{\mathbf{F}(A')}; \mathbf{F}(f), \pi_{\mathbf{G}(A')}; \mathbf{G}(f) \rangle \colon (\mathbf{F} \times \mathbf{G})(A') \to (\mathbf{F} \times \mathbf{G})(B')$$

$$\mathbf{F}(A') \xrightarrow{\mathbf{F}(B')} \mathbf{F}(B')$$

$$\pi_{\mathbf{F}(A')} \times \mathbf{G}(A') \xrightarrow{\pi_{\mathbf{G}(B')}} \mathbf{F}(B')$$

$$\pi_{\mathbf{G}(A')} \times \mathbf{G}(A') \xrightarrow{\pi_{\mathbf{G}(B')}} \mathbf{G}(B')$$

$$\mathbf{F}(A') \times \mathbf{G}(A') \xrightarrow{\pi_{\mathbf{G}(B')}} \mathbf{G}(B')$$

$$\mathbf{G}(A') \xrightarrow{\mathbf{G}(B')} \mathbf{G}(B')$$

$$(\mathbf{F} \times \mathbf{G})(id_{A'}) = id_{(\mathbf{F} \times \mathbf{G})(A')}$$
, and $(\mathbf{F} \times \mathbf{G})(f;g) = (\mathbf{F} \times \mathbf{G})(f); (\mathbf{F} \times \mathbf{G})(g)$

Proof (idea): Define a terminal object, binary products and equalisers in $\mathbf{K}^{\mathbf{K}'}$:

Terminal object: $C_T : \mathbf{K}' \to \mathbf{K}$ is terminal in $\mathbf{K}^{\mathbf{K}'}$, where T is terminal in \mathbf{K} .

Products: Given $F, G: K' \to K$, their product in $K^{K'}$ is $F \times G: K' \to K$

$$-$$
 for $A' \in |\mathbf{K}'|$, $(\mathbf{F} \times \mathbf{G})(A') = \mathbf{F}(A') \times \mathbf{G}(A')$

- for
$$f: A' \to B'$$
,

$$(\mathbf{F} \times \mathbf{G})(f) = \langle \pi_{\mathbf{F}(A')}; \mathbf{F}(f), \pi_{\mathbf{G}(A')}; \mathbf{G}(f) \rangle \colon (\mathbf{F} \times \mathbf{G})(A') \to (\mathbf{F} \times \mathbf{G})(B')$$

$$\mathbf{F}(A') \longrightarrow \mathbf{F}(B')$$

$$\pi_{\mathbf{F}(A')} / \mathbf{F}(B') / \mathbf{F}(B')$$

$$\pi_{\mathbf{F}(A')} / \mathbf{F}(B') / \mathbf$$

$$(\mathbf{F} \times \mathbf{G})(id_{A'}) = id_{(\mathbf{F} \times \mathbf{G})(A')}, \text{ and}$$

 $(\mathbf{F} \times \mathbf{G})(f;g) = (\mathbf{F} \times \mathbf{G})(f); (\mathbf{F} \times \mathbf{G})(g)$

This yields natural transformations:

$$\pi_{\mathbf{F}} = \langle \pi_{\mathbf{F}(A')} \rangle_{A' \in |\mathbf{K}'|} \colon (\mathbf{F} \times \mathbf{G}) \to \mathbf{F}$$

$$\pi_{\mathbf{G}} = \langle \pi_{\mathbf{G}(A')} \rangle_{A' \in |\mathbf{K}'|} \colon (\mathbf{F} \times \mathbf{G}) \to \mathbf{G}$$

Proof (idea): Define a terminal object, binary products and equalisers in $\mathbf{K}^{\mathbf{K}'}$:

Terminal object: $C_T \colon \mathbf{K}' \to \mathbf{K}$ is terminal in $\mathbf{K}^{\mathbf{K}'}$, where T is terminal in \mathbf{K} .

Products: Given $F, G: K' \to K$, their product in $K^{K'}$ is $F \times G: K' \to K$

with product projections $\pi_{\mathbf{F}} \colon (\mathbf{F} \times \mathbf{G}) \to \mathbf{F}$ and $\pi_{\mathbf{G}} \colon (\mathbf{F} \times \mathbf{G}) \to \mathbf{G}$.

Proof (idea): Define a terminal object, binary products and equalisers in $\mathbf{K}^{\mathbf{K}'}$:

Terminal object: $C_T \colon \mathbf{K}' \to \mathbf{K}$ is terminal in $\mathbf{K}^{\mathbf{K}'}$, where T is terminal in \mathbf{K} .

Products: Given $\mathbf{F}, \mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$, their product in $\mathbf{K}^{\mathbf{K}'}$ is $\mathbf{F} \times \mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ with product projections $\pi_{\mathbf{F}} \colon (\mathbf{F} \times \mathbf{G}) \to \mathbf{F}$ and $\pi_{\mathbf{G}} \colon (\mathbf{F} \times \mathbf{G}) \to \mathbf{G}$.

Equalisers:

Proof (idea): Define a terminal object, binary products and equalisers in $\mathbf{K}^{\mathbf{K}'}$:

Terminal object: $C_T : K' \to K$ is terminal in $K^{K'}$, where T is terminal in K.

Products: Given $\mathbf{F}, \mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$, their product in $\mathbf{K}^{\mathbf{K}'}$ is $\mathbf{F} \times \mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ with product projections $\pi_{\mathbf{F}} \colon (\mathbf{F} \times \mathbf{G}) \to \mathbf{F}$ and $\pi_{\mathbf{G}} \colon (\mathbf{F} \times \mathbf{G}) \to \mathbf{G}$.

Equalisers: Given $\mathbf{F}, \mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$, equaliser of two natural transformations $\tau, \sigma \colon \mathbf{F} \to \mathbf{G}$ is $\delta \colon \mathbf{H} \to \mathbf{F}$, where:

Proof (idea): Define a terminal object, binary products and equalisers in $\mathbf{K}^{\mathbf{K}'}$:

Terminal object: $C_T \colon \mathbf{K}' \to \mathbf{K}$ is terminal in $\mathbf{K}^{\mathbf{K}'}$, where T is terminal in \mathbf{K} .

Products: Given $\mathbf{F}, \mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$, their product in $\mathbf{K}^{\mathbf{K}'}$ is $\mathbf{F} \times \mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ with product projections $\pi_{\mathbf{F}} \colon (\mathbf{F} \times \mathbf{G}) \to \mathbf{F}$ and $\pi_{\mathbf{G}} \colon (\mathbf{F} \times \mathbf{G}) \to \mathbf{G}$.

Equalisers: Given $\mathbf{F}, \mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$, equaliser of two natural transformations $\tau, \sigma \colon \mathbf{F} \to \mathbf{G}$ is $\delta \colon \mathbf{H} \to \mathbf{F}$, where:

- for $A' \in |\mathbf{K}'|$, $\delta_{A'} : \mathbf{H}(A') \to \mathbf{F}(A')$ is equaliser of $\tau_{A'}, \sigma_{A'} : \mathbf{F}(A') \to \mathbf{G}(A')$

Proof (idea): Define a terminal object, binary products and equalisers in $\mathbf{K}^{\mathbf{K}'}$:

Terminal object: $C_T \colon \mathbf{K}' \to \mathbf{K}$ is terminal in $\mathbf{K}^{\mathbf{K}'}$, where T is terminal in \mathbf{K} .

Products: Given $\mathbf{F}, \mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$, their product in $\mathbf{K}^{\mathbf{K}'}$ is $\mathbf{F} \times \mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ with product projections $\pi_{\mathbf{F}} \colon (\mathbf{F} \times \mathbf{G}) \to \mathbf{F}$ and $\pi_{\mathbf{G}} \colon (\mathbf{F} \times \mathbf{G}) \to \mathbf{G}$.

Equalisers: Given $\mathbf{F}, \mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$, equaliser of two natural transformations $\tau, \sigma \colon \mathbf{F} \to \mathbf{G}$ is $\delta \colon \mathbf{H} \to \mathbf{F}$, where:

- for $A' \in |\mathbf{K}'|$, $\delta_{A'} \colon \mathbf{H}(A') \to \mathbf{F}(A')$ is equaliser of $\tau_{A'}, \sigma_{A'} \colon \mathbf{F}(A') \to \mathbf{G}(A')$
- for $f: A' \to B'$, $\mathbf{H}(f): \mathbf{H}(A') \to \mathbf{H}(B')$ is s. t. $\delta_{A'}; \mathbf{H}(f) = \mathbf{G}(f); \delta_{B'}$.

Proof (idea): Define a terminal object, binary products and equalisers in $\mathbf{K}^{\mathbf{K}'}$:

Terminal object: $C_T \colon \mathbf{K}' \to \mathbf{K}$ is terminal in $\mathbf{K}^{\mathbf{K}'}$, where T is terminal in \mathbf{K} .

Products: Given $\mathbf{F}, \mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$, their product in $\mathbf{K}^{\mathbf{K}'}$ is $\mathbf{F} \times \mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ with product projections $\pi_{\mathbf{F}} \colon (\mathbf{F} \times \mathbf{G}) \to \mathbf{F}$ and $\pi_{\mathbf{G}} \colon (\mathbf{F} \times \mathbf{G}) \to \mathbf{G}$.

Equalisers: Given $\mathbf{F}, \mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$, equaliser of two natural transformations $\tau, \sigma \colon \mathbf{F} \to \mathbf{G}$ is $\delta \colon \mathbf{H} \to \mathbf{F}$, where:

Proof (idea): Define a terminal object, binary products and equalisers in $\mathbf{K}^{\mathbf{K}'}$:

Terminal object: $C_T \colon \mathbf{K}' \to \mathbf{K}$ is terminal in $\mathbf{K}^{\mathbf{K}'}$, where T is terminal in \mathbf{K} .

Products: Given $\mathbf{F}, \mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$, their product in $\mathbf{K}^{\mathbf{K}'}$ is $\mathbf{F} \times \mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ with product projections $\pi_{\mathbf{F}} \colon (\mathbf{F} \times \mathbf{G}) \to \mathbf{F}$ and $\pi_{\mathbf{G}} \colon (\mathbf{F} \times \mathbf{G}) \to \mathbf{G}$.

Equalisers: Given $\mathbf{F}, \mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$, equaliser of two natural transformations $\tau, \sigma \colon \mathbf{F} \to \mathbf{G}$ is $\delta \colon \mathbf{H} \to \mathbf{F}$, where:

To be checked:

$$\mathbf{H}(id_{A'}) = id_{\mathbf{H}(A')}$$
, and $\mathbf{H}(f;g) = \mathbf{H}(f); \mathbf{H}(g)$

Proof (idea): Define a terminal object, binary products and equalisers in $\mathbf{K}^{\mathbf{K}'}$:

Terminal object: $C_T \colon \mathbf{K}' \to \mathbf{K}$ is terminal in $\mathbf{K}^{\mathbf{K}'}$, where T is terminal in \mathbf{K} .

Products: Given $\mathbf{F}, \mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$, their product in $\mathbf{K}^{\mathbf{K}'}$ is $\mathbf{F} \times \mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ with product projections $\pi_{\mathbf{F}} \colon (\mathbf{F} \times \mathbf{G}) \to \mathbf{F}$ and $\pi_{\mathbf{G}} \colon (\mathbf{F} \times \mathbf{G}) \to \mathbf{G}$.

Equalisers: Given $\mathbf{F}, \mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$, equaliser of two natural transformations $\tau, \sigma \colon \mathbf{F} \to \mathbf{G}$ is $\delta \colon \mathbf{H} \to \mathbf{F}$, where:

To be checked:

$$\mathbf{H}(id_{A'}) = id_{\mathbf{H}(A')}$$
, and $\mathbf{H}(f;g) = \mathbf{H}(f); \mathbf{H}(g)$

This yields a natural transformation:

$$\delta = \langle \delta_{A'}
angle_{A' \in |\mathbf{K}'|} \colon \mathbf{H} o \mathbf{F}$$

Theorem: If K is complete then $K^{K'}$ is complete as well.

Theorem: If K is complete then $K^{K'}$ is complete as well.

Proof (idea): Define (arbitrary) products and equalisers in $\mathbf{K}^{\mathbf{K}'}$, as for the finite case.

Proof (idea): Or proceed with limit construction for an arbitrary diagram:

• Let **D** be a diagram in $\mathbf{K}^{\mathbf{K}'}$ with nodes $n \in N$ and edges $e \in E$.

Proof (idea): Or proceed with limit construction for an arbitrary diagram:

- Let **D** be a diagram in $\mathbf{K}^{\mathbf{K}'}$ with nodes $n \in N$ and edges $e \in E$.
 - for $A' \in |\mathbf{K}'|$, define $\mathbf{D}(A')$ to be a diagram in \mathbf{K} with $\mathbf{D}(A')_n = \mathbf{D}_n(A')$ and $\mathbf{D}(A')_e = (\mathbf{D}_e)_{A'}$

Andrzej Tarlecki: Category Theory, 2025

- Let **D** be a diagram in $\mathbf{K}^{\mathbf{K}'}$ with nodes $n \in N$ and edges $e \in E$.
 - for $A' \in |\mathbf{K}'|$, define $\mathbf{D}(A')$ to be a diagram in \mathbf{K} with $\mathbf{D}(A')_n = \mathbf{D}_n(A')$ and $\mathbf{D}(A')_e = (\mathbf{D}_e)_{A'}$
 - for $f: A' \to B'$ in \mathbf{K}' , define a diagram morphism $\mathbf{D}(f): \mathbf{D}(A') \to \mathbf{D}(B')$ by $\mathbf{D}(f)_n = \mathbf{D}_n(f)$

Proof (idea): Or proceed with limit construction for an arbitrary diagram:

- Let **D** be a diagram in $\mathbf{K}^{\mathbf{K}'}$ with nodes $n \in N$ and edges $e \in E$.
 - for $A' \in |\mathbf{K}'|$, define $\mathbf{D}(A')$ to be a diagram in \mathbf{K} with $\mathbf{D}(A')_n = \mathbf{D}_n(A')$ and $\mathbf{D}(A')_e = (\mathbf{D}_e)_{A'}$
 - for $f: A' \to B'$ in \mathbf{K}' , define a diagram morphism $\mathbf{D}(f): \mathbf{D}(A') \to \mathbf{D}(B')$ by $\mathbf{D}(f)_n = \mathbf{D}_n(f)$
- Define a functor $X \colon K' \to K$ and natural transformations $\alpha_n \colon X \to D_n$ as follows:

Andrzej Tarlecki: Category Theory, 2025

Proof (idea): Or proceed with limit construction for an arbitrary diagram:

- Let **D** be a diagram in $\mathbf{K}^{\mathbf{K}'}$ with nodes $n \in N$ and edges $e \in E$.
 - for $A' \in |\mathbf{K}'|$, define $\mathbf{D}(A')$ to be a diagram in \mathbf{K} with $\mathbf{D}(A')_n = \mathbf{D}_n(A')$ and $\mathbf{D}(A')_e = (\mathbf{D}_e)_{A'}$
 - for $f: A' \to B'$ in \mathbf{K}' , define a diagram morphism $\mathbf{D}(f): \mathbf{D}(A') \to \mathbf{D}(B')$ by $\mathbf{D}(f)_n = \mathbf{D}_n(f)$
- Define a functor $X \colon K' \to K$ and natural transformations $\alpha_n \colon X \to D_n$ as follows:
 - for $A' \in |\mathbf{K}'|$, let $\alpha^{A'} : \mathbf{X}(A') \to \mathbf{D}(A')$ be the limit of $\mathbf{D}(A')$ in \mathbf{K}

Andrzej Tarlecki: Category Theory, 2025

- Let **D** be a diagram in $\mathbf{K}^{\mathbf{K}'}$ with nodes $n \in N$ and edges $e \in E$.
 - for $A' \in |\mathbf{K}'|$, define $\mathbf{D}(A')$ to be a diagram in \mathbf{K} with $\mathbf{D}(A')_n = \mathbf{D}_n(A')$ and $\mathbf{D}(A')_e = (\mathbf{D}_e)_{A'}$
 - for $f: A' \to B'$ in \mathbf{K}' , define a diagram morphism $\mathbf{D}(f): \mathbf{D}(A') \to \mathbf{D}(B')$ by $\mathbf{D}(f)_n = \mathbf{D}_n(f)$
- Define a functor $X \colon K' \to K$ and natural transformations $\alpha_n \colon X \to D_n$ as follows:
 - for $A' \in |\mathbf{K}'|$, let $\alpha^{A'} : \mathbf{X}(A') \to \mathbf{D}(A')$ be the limit of $\mathbf{D}(A')$ in \mathbf{K}
 - for $f: A' \to B'$ in \mathbf{K}' , let $\mathbf{X}(f): \mathbf{X}(A') \to \mathbf{X}(B')$ be unique such that $\alpha^{A'}; \mathbf{D}(f) = \mathbf{X}(f); \alpha^{B'}$ (given by the limit property of $\alpha^{B'}$)

- Let **D** be a diagram in $\mathbf{K}^{\mathbf{K}'}$ with nodes $n \in N$ and edges $e \in E$.
 - for $A' \in |\mathbf{K}'|$, define $\mathbf{D}(A')$ to be a diagram in \mathbf{K} with $\mathbf{D}(A')_n = \mathbf{D}_n(A')$ and $\mathbf{D}(A')_e = (\mathbf{D}_e)_{A'}$
 - for $f: A' \to B'$ in \mathbf{K}' , define a diagram morphism $\mathbf{D}(f): \mathbf{D}(A') \to \mathbf{D}(B')$ by $\mathbf{D}(f)_n = \mathbf{D}_n(f)$
- Define a functor $X \colon K' \to K$ and natural transformations $\alpha_n \colon X \to D_n$ as follows:
 - for $A' \in |\mathbf{K}'|$, let $\alpha^{A'} : \mathbf{X}(A') \to \mathbf{D}(A')$ be the limit of $\mathbf{D}(A')$ in \mathbf{K}
 - for $f: A' \to B'$ in \mathbf{K}' , let $\mathbf{X}(f): \mathbf{X}(A') \to \mathbf{X}(B')$ be unique such that $\alpha^{A'}; \mathbf{D}(f) = \mathbf{X}(f); \alpha^{B'}$ (given by the limit property of $\alpha^{B'}$)
 - define $\alpha_n \colon \mathbf{X} \to \mathbf{D}_n$ by $(\alpha_n)_{A'} = (\alpha^{A'})_n$, for $A' \in |\mathbf{K}'|$

- Let **D** be a diagram in $\mathbf{K}^{\mathbf{K}'}$ with nodes $n \in N$ and edges $e \in E$.
 - for $A' \in |\mathbf{K}'|$, define $\mathbf{D}(A')$ to be a diagram in \mathbf{K} with $\mathbf{D}(A')_n = \mathbf{D}_n(A')$ and $\mathbf{D}(A')_e = (\mathbf{D}_e)_{A'}$
 - for $f: A' \to B'$ in \mathbf{K}' , define a diagram morphism $\mathbf{D}(f): \mathbf{D}(A') \to \mathbf{D}(B')$ by $\mathbf{D}(f)_n = \mathbf{D}_n(f)$
- Define a functor $X \colon K' \to K$ and natural transformations $\alpha_n \colon X \to D_n$ as follows:
 - for $A' \in |\mathbf{K}'|$, let $\alpha^{A'} : \mathbf{X}(A') \to \mathbf{D}(A')$ be the limit of $\mathbf{D}(A')$ in \mathbf{K}
 - for $f: A' \to B'$ in \mathbf{K}' , let $\mathbf{X}(f): \mathbf{X}(A') \to \mathbf{X}(B')$ be unique such that $\alpha^{A'}; \mathbf{D}(f) = \mathbf{X}(f); \alpha^{B'}$ (given by the limit property of $\alpha^{B'}$)
 - define $\alpha_n \colon \mathbf{X} \to \mathbf{D}_n$ by $(\alpha_n)_{A'} = (\alpha^{A'})_n$, for $A' \in |\mathbf{K}'|$
 - check that $X \colon K' \to K$ is a functor, and $\alpha_n \colon X \to D_n$ are natural transformations

- Let **D** be a diagram in $\mathbf{K}^{\mathbf{K}'}$ with nodes $n \in N$ and edges $e \in E$.
 - for $A' \in |\mathbf{K}'|$, define $\mathbf{D}(A')$ to be a diagram in \mathbf{K} with $\mathbf{D}(A')_n = \mathbf{D}_n(A')$ and $\mathbf{D}(A')_e = (\mathbf{D}_e)_{A'}$
 - for $f: A' \to B'$ in \mathbf{K}' , define a diagram morphism $\mathbf{D}(f): \mathbf{D}(A') \to \mathbf{D}(B')$ by $\mathbf{D}(f)_n = \mathbf{D}_n(f)$
- Define a functor $X \colon K' \to K$ and natural transformations $\alpha_n \colon X \to D_n$ as follows:
 - for $A' \in |\mathbf{K}'|$, let $\alpha^{A'} : \mathbf{X}(A') \to \mathbf{D}(A')$ be the limit of $\mathbf{D}(A')$ in \mathbf{K}
 - for $f: A' \to B'$ in \mathbf{K}' , let $\mathbf{X}(f): \mathbf{X}(A') \to \mathbf{X}(B')$ be unique such that $\alpha^{A'}; \mathbf{D}(f) = \mathbf{X}(f); \alpha^{B'}$ (given by the limit property of $\alpha^{B'}$)
 - define $\alpha_n \colon \mathbf{X} \to \mathbf{D}_n$ by $(\alpha_n)_{A'} = (\alpha^{A'})_n$, for $A' \in |\mathbf{K}'|$
 - check that $X \colon K' \to K$ is a functor, and $\alpha_n \colon X \to D_n$ are natural transformations
- Prove that $\alpha \colon \mathbf{X} \to \mathbf{D}$ is a limit of \mathbf{D} in $\mathbf{K}^{\mathbf{K}'}$.

Given two categories K, K', define the *category of functors from* K' *to* $K, K^{K'}$, as follows:

- objects: functors from ${f K}'$ to ${f K}$
- morphisms: natural transformations between them
- composition: vertical composition of the natural transformations

- View the category of S-sorted sets, \mathbf{Set}^S , as a functor category.
- Check whether $\mathbf{K}^{\mathbf{K}'}$ is (finitely) (co)complete whenever \mathbf{K} is so.
- ullet Show how any functor $F\colon \mathbf{K}'' o \mathbf{K}'$ induces a functor $(F;_)\colon \mathbf{K}^{\mathbf{K}'} o \mathbf{K}^{\mathbf{K}''}$,

Given two categories K, K', define the *category of functors from* K' *to* $K, K^{K'}$, as follows:

- objects: functors from ${f K}'$ to ${f K}$
- morphisms: natural transformations between them
- composition: vertical composition of the natural transformations

- View the category of S-sorted sets, \mathbf{Set}^S , as a functor category.
- Check whether $\mathbf{K}^{\mathbf{K}'}$ is (finitely) (co)complete whenever \mathbf{K} is so.
- Show how any functor $F \colon \mathbf{K}'' \to \mathbf{K}'$ induces a functor $(F;_{-}) \colon \mathbf{K}^{\mathbf{K}'} \to \mathbf{K}^{\mathbf{K}''}$, where for $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$, $(F;_{-})(\mathbf{G}) = F; \mathbf{G} \colon \mathbf{K}'' \to \mathbf{K}$,

Given two categories K, K', define the *category of functors from* K' *to* $K, K^{K'}$, as follows:

- objects: functors from ${f K}'$ to ${f K}$
- morphisms: natural transformations between them
- composition: vertical composition of the natural transformations

- View the category of S-sorted sets, \mathbf{Set}^S , as a functor category.
- Check whether $\mathbf{K}^{\mathbf{K}'}$ is (finitely) (co)complete whenever \mathbf{K} is so.
- Show how any functor $\mathbf{F} \colon \mathbf{K}'' \to \mathbf{K}'$ induces a functor $(\mathbf{F};_{-}) \colon \mathbf{K}^{\mathbf{K}'} \to \mathbf{K}^{\mathbf{K}''}$, where for $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$, $(\mathbf{F};_{-})(\mathbf{G}) = \mathbf{F}; \mathbf{G} \colon \mathbf{K}'' \to \mathbf{K}$, and for $\tau \colon \mathbf{G} \to \mathbf{G}'(\colon \mathbf{K}' \to \mathbf{K})$, $(\mathbf{F};_{-})(\tau) = \mathbf{F} \cdot \tau \colon \mathbf{F}; \mathbf{G} \to \mathbf{F}; \mathbf{G}'$.

Given two categories K, K', define the *category of functors from* K' *to* $K, K^{K'}$, as follows:

- objects: functors from ${f K}'$ to ${f K}$
- morphisms: natural transformations between them
- composition: vertical composition of the natural transformations

- View the category of S-sorted sets, \mathbf{Set}^S , as a functor category.
- Check whether $\mathbf{K}^{\mathbf{K}'}$ is (finitely) (co)complete whenever \mathbf{K} is so.
- Show how any functor $\mathbf{F} \colon \mathbf{K}'' \to \mathbf{K}'$ induces a functor $(\mathbf{F};_{-}) \colon \mathbf{K}^{\mathbf{K}'} \to \mathbf{K}^{\mathbf{K}''}$, where for $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$, $(\mathbf{F};_{-})(\mathbf{G}) = \mathbf{F}; \mathbf{G} \colon \mathbf{K}'' \to \mathbf{K}$, and for $\tau \colon \mathbf{G} \to \mathbf{G}'(\colon \mathbf{K}' \to \mathbf{K})$, $(\mathbf{F};_{-})(\tau) = \mathbf{F} \cdot \tau \colon \mathbf{F}; \mathbf{G} \to \mathbf{F}; \mathbf{G}'$.
- Check if $(\mathbf{F};_{-}) \colon \mathbf{K}^{\mathbf{K}'} \to \mathbf{K}^{\mathbf{K}''}$ is (finitely) (co)continuous, for any $\mathbf{F} \colon \mathbf{K}'' \to \mathbf{K}'$.

Given a locally small category ${\bf K}$, define

$$\mathcal{Y} \colon \mathbf{K} o \mathbf{Set}^{\mathbf{K}^{op}}$$

Given a locally small category \mathbf{K} , define

$$\mathcal{Y} \colon \mathbf{K} o \mathbf{Set}^{\mathbf{K}^{op}}$$

• $\mathcal{Y}(A) = \mathbf{Hom}_{\mathbf{K}}(-,A) \colon \mathbf{K}^{op} \to \mathbf{Set}$, for $A \in |\mathbf{K}|$

Given a locally small category K, define

$$\mathcal{Y} \colon \mathbf{K} o \mathbf{Set}^{\mathbf{K}^{op}}$$

• $\mathcal{Y}(A) = \mathbf{Hom}_{\mathbf{K}}(_, A) \colon \mathbf{K}^{op} \to \mathbf{Set}$, for $A \in |\mathbf{K}|$ - for $X \in |\mathbf{K}|$, $\mathcal{Y}(A)(X) = \mathbf{Hom}_{\mathbf{K}}(X, A)$

Given a locally small category \mathbf{K} , define

$$\mathcal{Y} \colon \mathbf{K} o \mathbf{Set}^{\mathbf{K}^{op}}$$

- $\mathcal{Y}(A) = \mathbf{Hom}_{\mathbf{K}}(-,A) \colon \mathbf{K}^{op} \to \mathbf{Set}$, for $A \in |\mathbf{K}|$
 - for $X \in |\mathbf{K}|$, $\mathcal{Y}(A)(X) = \mathbf{Hom}_{\mathbf{K}}(X, A)$
 - for $h: X \to Y$ in K, $\mathcal{Y}(A)(h) = (h;): \mathbf{Hom}_{\mathbf{K}}(Y, A) \to \mathbf{Hom}_{\mathbf{K}}(X, A)$

Given a locally small category \mathbf{K} , define

$$\mathcal{Y} \colon \mathbf{K} o \mathbf{Set}^{\mathbf{K}^{op}}$$

- $\mathcal{Y}(A) = \mathbf{Hom_K}(_, A) \colon \mathbf{K}^{op} \to \mathbf{Set}$, for $A \in |\mathbf{K}|$ - for $X \in |\mathbf{K}|$, $\mathcal{Y}(A)(X) = \mathbf{Hom_K}(X, A)$ - for $h \colon X \to Y$ in \mathbf{K} , $\mathcal{Y}(A)(h) = (h;_) \colon \mathbf{Hom_K}(Y, A) \to \mathbf{Hom_K}(X, A)$
- $\mathcal{Y}(f)_X = (_; f) \colon \mathbf{Hom}_{\mathbf{K}}(X, A) \to \mathbf{Hom}_{\mathbf{K}}(X, B)$, for $f \colon A \to B$ in \mathbf{K} , $X \in |\mathbf{K}^{op}|$.

Given a locally small category K, define

$$\mathcal{Y} \colon \mathbf{K} o \mathbf{Set}^{\mathbf{K}^{op}}$$

- $\mathcal{Y}(A) = \mathbf{Hom}_{\mathbf{K}}(_, A) \colon \mathbf{K}^{op} \to \mathbf{Set}$, for $A \in |\mathbf{K}|$
 - for $X \in |\mathbf{K}|$, $\mathcal{Y}(A)(X) = \mathbf{Hom}_{\mathbf{K}}(X, A)$
 - for $h: X \to Y$ in K, $\mathcal{Y}(A)(h) = (h;): \mathbf{Hom}_{\mathbf{K}}(Y, A) \to \mathbf{Hom}_{\mathbf{K}}(X, A)$
- $\mathcal{Y}(f)_X = (-;f) \colon \mathbf{Hom}_{\mathbf{K}}(X,A) \to \mathbf{Hom}_{\mathbf{K}}(X,B)$, for $f \colon A \to B$ in \mathbf{K} ,
 - $X \in |\mathbf{K}^{op}|$.
 - $\ \text{ for } f \colon A \to B \text{, } \mathcal{Y}(f) \colon \mathcal{Y}(A) \to \mathcal{Y}(B) (\colon \mathbf{K}^{op} \to \mathbf{Set})$

$$A \xrightarrow{f} B$$

Given a locally small category \mathbf{K} , define

$$\mathcal{Y} \colon \mathbf{K} o \mathbf{Set}^{\mathbf{K}^{op}}$$

- $\mathcal{Y}(A) = \mathbf{Hom}_{\mathbf{K}}(_, A) \colon \mathbf{K}^{op} \to \mathbf{Set}$, for $A \in |\mathbf{K}|$
 - for $X \in |\mathbf{K}|$, $\mathcal{Y}(A)(X) = \mathbf{Hom}_{\mathbf{K}}(X, A)$
 - for $h: X \to Y$ in K, $\mathcal{Y}(A)(h) = (h; -): \mathbf{Hom}_{\mathbf{K}}(Y, A) \to \mathbf{Hom}_{\mathbf{K}}(X, A)$
- $\mathcal{Y}(f)_X = (-;f) \colon \mathbf{Hom}_{\mathbf{K}}(X,A) \to \mathbf{Hom}_{\mathbf{K}}(X,B)$, for $f \colon A \to B$ in \mathbf{K} , $X \in |\mathbf{K}^{op}|$.
 - for $f: A \to B$, $\mathcal{Y}(f): \mathcal{Y}(A) \to \mathcal{Y}(B)(: \mathbf{K}^{op} \to \mathbf{Set})$
 - for $X \in |\mathbf{K}^{op}|$, $\mathcal{Y}(f)_X \colon \mathcal{Y}(A)(X) \to \mathcal{Y}(B)(X)$

$$A \longrightarrow B$$

Given a locally small category \mathbf{K} , define

$$\mathcal{Y} \colon \mathbf{K} o \mathbf{Set}^{\mathbf{K}^{op}}$$

- $\mathcal{Y}(A) = \mathbf{Hom}_{\mathbf{K}}(_, A) \colon \mathbf{K}^{op} \to \mathbf{Set}$, for $A \in |\mathbf{K}|$
 - for $X \in |\mathbf{K}|$, $\mathcal{Y}(A)(X) = \mathbf{Hom}_{\mathbf{K}}(X, A)$
 - for $h: X \to Y$ in K, $\mathcal{Y}(A)(h) = (h; -): \mathbf{Hom}_{\mathbf{K}}(Y, A) \to \mathbf{Hom}_{\mathbf{K}}(X, A)$
- $\mathcal{Y}(f)_X = (_; f) \colon \mathbf{Hom}_{\mathbf{K}}(X, A) \to \mathbf{Hom}_{\mathbf{K}}(X, B)$, for $f \colon A \to B$ in \mathbf{K} , $X \in |\mathbf{K}^{op}|$.
 - for $f:A\to B$, $\mathcal{Y}(f)\colon \mathcal{Y}(A)\to \mathcal{Y}(B)(\colon \mathbf{K}^{op}\to \mathbf{Set})$
 - for $X \in |\mathbf{K}^{op}|$, $\mathcal{Y}(f)_X \colon \mathcal{Y}(A)(X) \to \mathcal{Y}(B)(X)$
 - naturality of $\mathcal{Y}(f)\colon \mathcal{Y}(A) \to \mathcal{Y}(B)\colon$ for $h\colon X \to Y$ in \mathbf{K} , $\mathcal{Y}(A)(h);\mathcal{Y}(f)_X = (h;_);(_;f) = h;_;f = (_;f);(h;_) = \mathcal{Y}(f)_Y;\mathcal{Y}(B)(h)$

Given a locally small category \mathbf{K} , define

$$\mathcal{Y} \colon \mathbf{K} o \mathbf{Set}^{\mathbf{K}^{op}}$$

- $\mathcal{Y}(A) = \mathbf{Hom}_{\mathbf{K}}(-,A) \colon \mathbf{K}^{op} \to \mathbf{Set}$, for $A \in |\mathbf{K}|$
- $\mathcal{Y}(f)_X = (_; f) \colon \mathbf{Hom}_{\mathbf{K}}(X, A) \to \mathbf{Hom}_{\mathbf{K}}(X, B)$, for $f \colon A \to B$ in \mathbf{K} , $X \in |\mathbf{K}^{op}|$.

Theorem: The category of presheaves $\mathbf{Set}^{\mathbf{K}^{op}}$ is complete and cocomplete.

Given a locally small category \mathbf{K} , define

$$\mathcal{Y} \colon \mathbf{K} o \mathbf{Set}^{\mathbf{K}^{op}}$$

- $\mathcal{Y}(A) = \mathbf{Hom}_{\mathbf{K}}(-,A) \colon \mathbf{K}^{op} \to \mathbf{Set}$, for $A \in |\mathbf{K}|$
- $\mathcal{Y}(f)_X = (_; f) \colon \mathbf{Hom}_{\mathbf{K}}(X, A) \to \mathbf{Hom}_{\mathbf{K}}(X, B)$, for $f \colon A \to B$ in \mathbf{K} , $X \in |\mathbf{K}^{op}|$.

Theorem: The category of presheaves $\mathbf{Set}^{\mathbf{K}^{op}}$ is complete and cocomplete.

Theorem: $\mathcal{Y} \colon \mathbf{K} \to \mathbf{Set}^{\mathbf{K}^{op}}$ is full and faithful.

Given a locally small category K, define

$$\mathcal{Y} \colon \mathbf{K} o \mathbf{Set}^{\mathbf{K}^{op}}$$

- $\mathcal{Y}(A) = \mathbf{Hom}_{\mathbf{K}}(_, A) \colon \mathbf{K}^{op} \to \mathbf{Set}$, for $A \in |\mathbf{K}|$
- $\mathcal{Y}(f)_X = (_; f) \colon \mathbf{Hom}_{\mathbf{K}}(X, A) \to \mathbf{Hom}_{\mathbf{K}}(X, B)$, for $f \colon A \to B$ in \mathbf{K} , $X \in |\mathbf{K}^{op}|$.

Theorem: The category of presheaves $\mathbf{Set}^{\mathbf{K}^{op}}$ is complete and cocomplete.

Theorem: $\mathcal{Y} \colon \mathbf{K} \to \mathbf{Set}^{\mathbf{K}^{op}}$ is full and faithful.

 $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ is full and faithful if for all $A, B \in |\mathbf{K}|$,

 $\mathbf{F} \colon \mathbf{K}(A,B) \to \mathbf{K}'(\mathbf{F}(A),\mathbf{F}(B))$ is a bijection

Each diagram D over graph G in category \mathbf{K} yields a functor $\mathbf{F}_D \colon \mathbf{Path}(G) \to \mathbf{K}$

Each diagram D over graph G in category \mathbf{K} yields a functor $\mathbf{F}_D \colon \mathbf{Path}(G) \to \mathbf{K}$ given by:

Each diagram D over graph G in category \mathbf{K} yields a functor $\mathbf{F}_D \colon \mathbf{Path}(G) \to \mathbf{K}$ given by:

- $\mathbf{F}_D(n) = D_n$, for all nodes $n \in |G|_{nodes}$

Each diagram D over graph G in category \mathbf{K} yields a functor $\mathbf{F}_D \colon \mathbf{Path}(G) \to \mathbf{K}$ given by:

- $\mathbf{F}_D(n) = D_n$, for all nodes $n \in |G|_{nodes}$
- $\mathbf{F}_D(n_0e_1n_1...n_{k-1}e_kn_k) = D_{e_1};...;D_{e_k}$, for paths $n_0e_1n_1...n_{k-1}e_kn_k$ in G

Each diagram D over graph G in category \mathbf{K} yields a functor $\mathbf{F}_D \colon \mathbf{Path}(G) \to \mathbf{K}$ given by:

- $\mathbf{F}_D(n) = D_n$, for all nodes $n \in |G|_{nodes}$
- $-\mathbf{F}_{D}(n_{0}e_{1}n_{1}\ldots n_{k-1}e_{k}n_{k})=D_{e_{1}};\ldots;D_{e_{k}}, \text{ for paths } n_{0}e_{1}n_{1}\ldots n_{k-1}e_{k}n_{k} \text{ in } G$

Moreover:

Each diagram D over graph G in category \mathbf{K} yields a functor $\mathbf{F}_D \colon \mathbf{Path}(G) \to \mathbf{K}$ given by:

- $\mathbf{F}_D(n) = D_n$, for all nodes $n \in |G|_{nodes}$
- $-\mathbf{F}_{D}(n_{0}e_{1}n_{1}\ldots n_{k-1}e_{k}n_{k})=D_{e_{1}};\ldots;D_{e_{k}}, \text{ for paths } n_{0}e_{1}n_{1}\ldots n_{k-1}e_{k}n_{k} \text{ in } G$

Moreover:

- for distinct diagrams D and D' of shape G, \mathbf{F}_D and $\mathbf{F}_{D'}$ are different

Each diagram D over graph G in category \mathbf{K} yields a functor $\mathbf{F}_D \colon \mathbf{Path}(G) \to \mathbf{K}$ given by:

- $\mathbf{F}_D(n) = D_n$, for all nodes $n \in |G|_{nodes}$
- $-\mathbf{F}_{D}(n_{0}e_{1}n_{1}\ldots n_{k-1}e_{k}n_{k})=D_{e_{1}};\ldots;D_{e_{k}}, \text{ for paths } n_{0}e_{1}n_{1}\ldots n_{k-1}e_{k}n_{k} \text{ in } G$

Moreover:

- for distinct diagrams D and D' of shape G, \mathbf{F}_D and $\mathbf{F}_{D'}$ are different
- all functors from $\mathbf{Path}(G)$ to $\mathbf K$ are given by diagrams over G

Each diagram D over graph G in category \mathbf{K} yields a functor $\mathbf{F}_D \colon \mathbf{Path}(G) \to \mathbf{K}$ given by:

- $\mathbf{F}_D(n) = D_n$, for all nodes $n \in |G|_{nodes}$
- $\mathbf{F}_D(n_0e_1n_1...n_{k-1}e_kn_k) = D_{e_1};...;D_{e_k}$, for paths $n_0e_1n_1...n_{k-1}e_kn_k$ in G

Moreover:

- for distinct diagrams D and D' of shape G, \mathbf{F}_D and $\mathbf{F}_{D'}$ are different
- all functors from $\mathbf{Path}(G)$ to $\mathbf K$ are given by diagrams over G

Diagram morphisms $\mu \colon D \to D'$ between diagrams of the same shape G are exactly natural transformations $\mu \colon \mathbf{F}_D \to \mathbf{F}_{D'}$.

Each diagram D over graph G in category \mathbf{K} yields a functor $\mathbf{F}_D \colon \mathbf{Path}(G) \to \mathbf{K}$ given by:

- $\mathbf{F}_D(n) = D_n$, for all nodes $n \in |G|_{nodes}$
- $-\mathbf{F}_{D}(n_{0}e_{1}n_{1}\ldots n_{k-1}e_{k}n_{k})=D_{e_{1}};\ldots;D_{e_{k}}, \text{ for paths } n_{0}e_{1}n_{1}\ldots n_{k-1}e_{k}n_{k} \text{ in } G$

Moreover:

- for distinct diagrams D and D' of shape G, \mathbf{F}_D and $\mathbf{F}_{D'}$ are different
- all functors from $\mathbf{Path}(G)$ to $\mathbf K$ are given by diagrams over G

Diagram morphisms $\mu\colon D\to D'$ between diagrams of the same shape G are exactly natural transformations $\mu\colon \mathbf{F}_D\to \mathbf{F}_{D'}$.

 $\mathbf{Diag}_{\mathbf{K}}^G \cong \mathbf{K}^{\mathbf{Path}(G)}$

Each diagram D over graph G in category \mathbf{K} yields a functor $\mathbf{F}_D \colon \mathbf{Path}(G) \to \mathbf{K}$ given by:

- $\mathbf{F}_D(n) = D_n$, for all nodes $n \in |G|_{nodes}$
- $\mathbf{F}_D(n_0e_1n_1...n_{k-1}e_kn_k) = D_{e_1};...;D_{e_k}$, for paths $n_0e_1n_1...n_{k-1}e_kn_k$ in G

Moreover:

- for distinct diagrams D and D' of shape G, \mathbf{F}_D and $\mathbf{F}_{D'}$ are different
- all functors from $\mathbf{Path}(G)$ to $\mathbf K$ are given by diagrams over G

Diagram morphisms $\mu\colon D\to D'$ between diagrams of the same shape G are exactly natural transformations $\mu\colon \mathbf{F}_D\to \mathbf{F}_{D'}$. $\mathbf{Diag}^G_{\mathbf{K}}\cong \mathbf{K}^{\mathbf{Path}(G)}$

Diagrams are functors from small (shape) categories

$$(\tau \cdot \sigma); (\tau' \cdot \sigma') = (\tau; \tau') \cdot (\sigma; \sigma')$$

This holds in **Cat**, which is a paradigmatic example of a two-category.

$$(\tau \cdot \sigma); (\tau' \cdot \sigma') = (\tau; \tau') \cdot (\sigma; \sigma')$$

then:

$$(\tau \cdot \sigma); (\tau' \cdot \sigma') = (\tau; \tau') \cdot (\sigma; \sigma')$$

This holds in **Cat**, which is a paradigmatic example of a two-category.

A category \mathbf{K} is a *two-category* when for all objects $A, B \in |\mathbf{K}|$, $\mathbf{K}(A, B)$ is again a category, with *1-morphisms* (the usual \mathbf{K} -morphisms) as objects and *2-morphisms* between them.

then:

$$(\tau \cdot \sigma); (\tau' \cdot \sigma') = (\tau; \tau') \cdot (\sigma; \sigma')$$

This holds in **Cat**, which is a paradigmatic example of a two-category.

A category \mathbf{K} is a *two-category* when for all objects $A, B \in |\mathbf{K}|$, $\mathbf{K}(A, B)$ is again a category, with *1-morphisms* (the usual \mathbf{K} -morphisms) as objects and *2-morphisms* between them.

Those 2-morphisms compose vertically (in the categories $\mathbf{K}(A,B)$) and horizontally, subject to the double law as stated here.

then:

$$(\tau \cdot \sigma); (\tau' \cdot \sigma') = (\tau; \tau') \cdot (\sigma; \sigma')$$

This holds in **Cat**, which is a paradigmatic example of a two-category.

A category \mathbf{K} is a *two-category* when for all objects $A, B \in |\mathbf{K}|$, $\mathbf{K}(A, B)$ is again a category, with *1-morphisms* (the usual \mathbf{K} -morphisms) as objects and *2-morphisms* between them.

Those 2-morphisms compose vertically (in the categories $\mathbf{K}(A,B)$) and horizontally, subject to the double law as stated here.

In two-category Cat, we have $Cat(K', K) = K^{K'}$.

• Two categories ${\bf K}$ and ${\bf K}'$ are isomorphic if there are functors ${\bf F}\colon {\bf K} \to {\bf K}'$ and ${\bf G}\colon {\bf K}' \to {\bf K}$ such that ${\bf F}; {\bf G} = {\bf Id}_{\bf K}$ and ${\bf G}; {\bf F} = {\bf Id}_{{\bf K}'}$.

- Two categories ${\bf K}$ and ${\bf K}'$ are isomorphic if there are functors ${\bf F}\colon {\bf K} \to {\bf K}'$ and ${\bf G}\colon {\bf K}' \to {\bf K}$ such that ${\bf F}; {\bf G} = {\bf Id}_{\bf K}$ and ${\bf G}; {\bf F} = {\bf Id}_{{\bf K}'}$.
- Two categories K and K' are equivalent if there are functors $F \colon K \to K'$ and $G \colon K' \to K$ and natural isomorphisms $\eta \colon Id_K \to F; G$ and $\epsilon \colon G; F \to Id_{K'}$.

- Two categories ${\bf K}$ and ${\bf K}'$ are *isomorphic* if there are functors ${\bf F}\colon {\bf K} \to {\bf K}'$ and ${\bf G}\colon {\bf K}' \to {\bf K}$ such that ${\bf F}; {\bf G} = {\bf Id}_{\bf K}$ and ${\bf G}; {\bf F} = {\bf Id}_{{\bf K}'}$.
- Two categories \mathbf{K} and \mathbf{K}' are equivalent if there are functors $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ and $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ and natural isomorphisms $\eta \colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F} ; \mathbf{G}$ and $\epsilon \colon \mathbf{G} ; \mathbf{F} \to \mathbf{Id}_{\mathbf{K}'}$.
- A category is skeletal if any two isomorphic objects are identical.

- Two categories ${\bf K}$ and ${\bf K}'$ are *isomorphic* if there are functors ${\bf F}\colon {\bf K} \to {\bf K}'$ and ${\bf G}\colon {\bf K}' \to {\bf K}$ such that ${\bf F}; {\bf G} = {\bf Id}_{\bf K}$ and ${\bf G}; {\bf F} = {\bf Id}_{{\bf K}'}$.
- Two categories \mathbf{K} and \mathbf{K}' are equivalent if there are functors $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ and $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ and natural isomorphisms $\eta \colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F} ; \mathbf{G}$ and $\epsilon \colon \mathbf{G} ; \mathbf{F} \to \mathbf{Id}_{\mathbf{K}'}$.
- A category is skeletal if any two isomorphic objects are identical.
- A skeleton of a category is any of its maximal skeletal subcategory.

- Two categories ${\bf K}$ and ${\bf K}'$ are *isomorphic* if there are functors ${\bf F}\colon {\bf K} \to {\bf K}'$ and ${\bf G}\colon {\bf K}' \to {\bf K}$ such that ${\bf F}; {\bf G} = {\bf Id}_{\bf K}$ and ${\bf G}; {\bf F} = {\bf Id}_{{\bf K}'}$.
- Two categories \mathbf{K} and \mathbf{K}' are *equivalent* if there are functors $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ and $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ and natural isomorphisms $\eta \colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F} ; \mathbf{G}$ and $\epsilon \colon \mathbf{G} ; \mathbf{F} \to \mathbf{Id}_{\mathbf{K}'}$.
- A category is skeletal if any two isomorphic objects are identical.
- A skeleton of a category is any of its maximal skeletal subcategory.

Theorem: Two categories are equivalent iff they have isomorphic skeletons.

- Two categories ${\bf K}$ and ${\bf K}'$ are *isomorphic* if there are functors ${\bf F}\colon {\bf K} \to {\bf K}'$ and ${\bf G}\colon {\bf K}' \to {\bf K}$ such that ${\bf F}; {\bf G} = {\bf Id}_{\bf K}$ and ${\bf G}; {\bf F} = {\bf Id}_{{\bf K}'}$.
- Two categories \mathbf{K} and \mathbf{K}' are *equivalent* if there are functors $\mathbf{F} \colon \mathbf{K} \to \mathbf{K}'$ and $\mathbf{G} \colon \mathbf{K}' \to \mathbf{K}$ and natural isomorphisms $\eta \colon \mathbf{Id}_{\mathbf{K}} \to \mathbf{F} ; \mathbf{G}$ and $\epsilon \colon \mathbf{G} ; \mathbf{F} \to \mathbf{Id}_{\mathbf{K}'}$.
- A category is skeletal if any two isomorphic objects are identical.
- A skeleton of a category is any of its maximal skeletal subcategory.

Theorem: Two categories are equivalent iff they have isomorphic skeletons.

All "categorical" properties are preserved under equivalence of categories