
Donald Sannella and Andrzej Tarlecki

Foundations of Algebraic
Specification and Formal
Software Development

September 29, 2010

Springer

Page: v job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

Page: xiv job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

Contents

0 Introduction . 1
0.1 Modelling software systems as algebras . 1
0.2 Specifications . 5
0.3 Software development . 8
0.4 Generality and abstraction . 10
0.5 Formality . 12
0.6 Outlook . 14

1 Universal algebra . 15
1.1 Many-sorted sets . 15
1.2 Signatures and algebras . 18
1.3 Homomorphisms and congruences . 22
1.4 Term algebras . 27
1.5 Changing signatures . 32

1.5.1 Signature morphisms . 32
1.5.2 Derived signature morphisms . 36

1.6 Bibliographical remarks . 38

2 Simple equational specifications. 41
2.1 Equations . 41
2.2 Flat specifications . 44
2.3 Theories . 50
2.4 Equational calculus . 54
2.5 Initial models . 58
2.6 Term rewriting . 66
2.7 Fiddling with the definitions . 72

2.7.1 Conditional equations . 72
2.7.2 Reachable semantics . 74
2.7.3 Dealing with partial functions: error algebras 78
2.7.4 Dealing with partial functions: partial algebras 84
2.7.5 Partial functions: order-sorted algebras 87

xv

xvi Contents

2.7.6 Other options . 91
2.8 Bibliographical remarks . 93

3 Category theory. 97
3.1 Introducing categories . 99

3.1.1 Categories . 99
3.1.2 Constructing categories . 105
3.1.3 Category-theoretic definitions . 109

3.2 Limits and colimits . 111
3.2.1 Initial and terminal objects . 111
3.2.2 Products and coproducts . 113
3.2.3 Equalisers and coequalisers . 115
3.2.4 Pullbacks and pushouts . 116
3.2.5 The general situation . 119

3.3 Factorisation systems . 123
3.4 Functors and natural transformations . 127

3.4.1 Functors . 128
3.4.2 Natural transformations . 135
3.4.3 Constructing categories, revisited . 139

3.5 Adjoints . 144
3.5.1 Free objects . 144
3.5.2 Left adjoints . 145
3.5.3 Adjunctions . 150

3.6 Bibliographical remarks . 152

4 Working within an arbitrary logical system . 155
4.1 Institutions . 157

4.1.1 Examples of institutions . 161
4.1.2 Constructing institutions . 179

4.2 Flat specifications in an arbitrary institution. 186
4.3 Constraints . 192
4.4 Exact institutions . 197

4.4.1 Abstract model theory . 204
4.4.2 Free variables and quantification . 207

4.5 Institutions with reachability structure . 210
4.5.1 The method of diagrams . 213
4.5.2 Abstract algebraic institutions . 215
4.5.3 Liberal abstract algebraic institutions . 216
4.5.4 Characterising abstract algebraic institutions that admit

reachable initial models . 219
4.6 Bibliographical remarks . 221

Page: xvi job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

Contents xvii

5 Structured specifications. 227
5.1 Specification-building operations . 228
5.2 Towards specification languages . 234
5.3 An example . 238
5.4 A property-oriented semantics of specifications 243
5.5 The category of specifications . 247
5.6 Algebraic laws for structured specifications . 250
5.7 Bibliographical remarks . 255

6 Parameterisation. 257
6.1 Modelling parameterised programs . 258
6.2 Specifying parameterised programs . 268
6.3 Parameterised specifications . 274
6.4 Higher-order parameterisation . 278
6.5 An example . 285
6.6 Bibliographical remarks . 288

7 Formal program development . 291
7.1 Simple implementations . 292
7.2 Constructor implementations . 300
7.3 Modular decomposition . 307
7.4 Example . 314
7.5 Bibliographical remarks . 320

8 Behavioural specifications. 323
8.1 Motivating example . 324
8.2 Behavioural equivalence and abstraction . 327

8.2.1 Behavioural equivalence . 328
8.2.2 Behavioural abstraction . 333
8.2.3 Weak behavioural equivalence . 335

8.3 Behavioural satisfaction . 338
8.3.1 Behavioural satisfaction vs. behavioural abstraction 342

8.4 Behavioural implementations . 346
8.4.1 Implementing specifications up to behavioural equivalence . 347
8.4.2 Stepwise development and stability . 348
8.4.3 Stable and behaviourally trivial constructors 351
8.4.4 Global stability and behavioural correctness 356
8.4.5 Summary . 363

8.5 To partial algebras and beyond . 364
8.5.1 Behavioural specifications inFPL . 364
8.5.2 A larger example . 371
8.5.3 Behavioural specifications in an arbitrary institution 382

8.6 Bibliographical remarks . 394

Page: xvii job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

xviii Contents

9 Proofs for specifications. 399
9.1 Entailment systems . 400
9.2 Proof in structured specifications . 414
9.3 Entailment between specifications . 427
9.4 Correctness of constructor implementations. 435
9.5 Proof and parameterisation . 440
9.6 Proving behavioural properties . 451

9.6.1 Behavioural consequence . 451
9.6.2 Behavioural consequence for specifications 463
9.6.3 Behavioural consequence between specifications 466
9.6.4 Correctness of behavioural implementations 470
9.6.5 A larger example, revisited . 472

9.7 Bibliographical remarks . 479

10 Working with multiple logical systems . 483
10.1 Moving specifications between institutions . 484

10.1.1 Institution semi-morphisms . 485
10.1.2 Duplex institutions . 489
10.1.3 Migrating specifications . 491

10.2 Institution morphisms . 500
10.3 The category of institutions . 509
10.4 Institution comorphisms . 517
10.5 Bibliographical remarks . 528

References. 533

Page: xviii job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

Chapter 1
Universal algebra

The most basic assumption of work on algebraic specification is that programs are
modelled as algebras. This point of view abstracts from the concrete details of code
and algorithms, and regards the input/output behaviour of functions and the repre-
sentation of data as primary. Representing programs in terms of sets (of data values)
and ordinary mathematical functions over these sets greatly simplifies the task of
reasoning about program correctness. See Section 0.1 for some illustrative exam-
ples and more introductory discussion on this point.

The branch of mathematics that deals with algebras in this general sense (as
opposed to the study of specific classes of algebras, such as groups and rings) is
calleduniversal algebraor sometimesgeneral algebra. However, work on univer-
sal algebra by mathematicians has concentrated almost exclusively on the special
case of single-sorted algebras with first-order total functions. The generalisation to
many-sortedor heterogeneousalgebras is required to model programs that manip-
ulate several kinds orsortsof data; further generalisations are necessary to handle
programs that fail to terminate on some inputs, that generate exceptions during exe-
cution, etc. This chapter summarizes the basic concepts and results of many-sorted
universal algebra that will be required for the rest of this book. Some extensions
useful for modelling more complex programs will be discussed later, in Section 2.7.
In this chapter, all proofs are left as exercises for the reader.

1.1 Many-sorted sets

When using an algebra to model a program which manipulates several sorts of data,
it is natural to partition the underlying set of values in the algebra so that there is one
set of values for each sort of data. It is often convenient to manipulate such a family
of sets as a unit, in such a way that operations on this unit respect the “typing” of
data values.

The following sequence of definitions and notational conventions allow us to ma-
nipulate sorted families of sets (of functions, of relations, . . .) in just the same way

15

16 1 Universal algebra

as ordinary sets (functions, relations, . . .). Ordinary sets (functions, relations, . . .)
correspond to the degenerate case in which there is just one sort, so these definitions
also serve to recall the notation and terminology of set theory to be used throughout
this book. LetSbe a set; the notation〈Xs〉s∈S is a standard shorthand for the family
of objectsXs indexed bys∈ S, i.e. the function with domainS which maps each
s∈ S to Xs.

Throughout this section, letSbe a set (of sorts).

Definition 1.1.1 (Many-sorted set).An S-sorted setis anS-indexed family of sets
X = 〈Xs〉s∈S, which isemptyif Xs is empty for alls∈ S. The emptyS-sorted set will
be written (ambiguously) as∅. TheS-sorted setX is finite if Xs is finite for alls∈ S
and there is a finite set̂S⊆ Ssuch thatXs = ∅ for all s∈ S\ Ŝ.

Let X = 〈Xs〉s∈S andY = 〈Ys〉s∈S beS-sorted sets. Union, intersection, Cartesian
product, disjoint union, inclusion (subset) and equality ofX andY are defined com-
ponentwise as follows:

X∪Y = 〈Xs∪Ys〉s∈S

X∩Y = 〈Xs∩Ys〉s∈S

X×Y = 〈Xs×Ys〉s∈S

X]Y = 〈Xs]Ys〉s∈S (whereXs]Ys = ({1}×Xs)∪ ({2}×Ys))
X ⊆Y iff (if and only if) Xs⊆Ys for all s∈ S
X =Y iff X ⊆Y andY⊆X (equivalently, iffX andY are equal as functions).ut

Exercise 1.1.2.Give a formal explanation of the above statement that “Ordinary
sets . . . correspond to the degenerate case [of many-sorted sets] in which there is
just one sort”. How many∅-sorted sets are there? ut

Notation. It will be very convenient to pretend thatX ⊆ X]Y andY ⊆ X]Y. Al-
though this is never actually the case, it allows us to treat disjoint union in the same
way as ordinary union, the difference being that whenX ∩Y 6= ∅, X]Y contains
two “copies” of the common elements and keeps track of which copy is fromX and
which fromY. To see that this does not cause problems, observe that there are in-
jectiveS-sorted functions (see the next definition)i1:X → X]Y andi2:Y → X]Y
defined byi1s(x) = 〈1,x〉 for all s∈ S andx ∈ Xs and similarly for i2. A pedant
would be able to correct what follows by simply inserting the functionsi1 and/ori2
where appropriate in expressions involving] . ut

Exercise 1.1.3.Extend the above definitions of union, intersection, product and dis-
joint union to operations onI -indexed families ofS-sorted sets, for an arbitrary in-
dex setI . For example, the definition for product is(∏〈Xi〉i∈I)s = { f : I →

⋃
i∈I (Xi)s |

f (i) ∈ (Xi)s for all i ∈ I} for eachs∈ S. ut

Definition 1.1.4 (Many-sorted function).Let X = 〈Xs〉s∈S andY = 〈Ys〉s∈S be S-
sorted sets. AnS-sorted function f:X →Y is anS-indexed family of functionsf =
〈 fs:Xs→Ys〉s∈S; X is called thedomain(orsource) of f , andY is called itscodomain
(or target). An S-sorted functionf :X → Y is an identity (an inclusion, surjective,
injective, bijective, . . .) if for everys∈ S, the functionfs:Xs→Ys is an identity (an

Page: 16 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

1.1 Many-sorted sets 17

inclusion, surjective, injective, bijective, . . .). The identityS-sorted function onX
will be written asidX:X → X.

If f :X →Y andg:Y→ Z areS-sorted functions then theircomposition f;g:X →
Z is theS-sorted function defined byf ;g = 〈 fs;gs〉s∈S. That is, if s∈ S andx ∈ Xs

then(f ;g)s(x) = gs(fs(x)).1

Let f :X →Y be anS-sorted function andX′ ⊆ X, Y′ ⊆Y beS-sorted sets. The
image of X′ under f is theS-sorted setf (X′) = 〈 fs(X′

s)〉s∈S⊆ Y, where fs(X′
s) =

{ fs(x) | x ∈ X′
s} ⊆ Ys for all s∈ S. The coimage of Y′ under f is theS-sorted set

f−1(Y′) = 〈 f−1
s (Y′

s)〉s∈S⊆ X, where f−1
s (Y′

s) = {x ∈ Xs | fs(x) ∈ Y′
s} ⊆ Xs for all

s∈ S. ut

Definition 1.1.5 (Many-sorted binary relation). Let X = 〈Xs〉s∈S andY = 〈Ys〉s∈S

beS-sorted sets. AnS-sorted binary relation between X and Y, writtenR⊆ X×Y,
is anS-indexed family of binary relationsR= 〈Rs⊆ Xs×Ys〉s∈S. For s∈ S, x∈ Xs

andy∈Ys, x Rs y (sometimes writtenx R y) means〈x,y〉 ∈ Rs. ut

The generalisation ton-ary relations, forn≥ 0, is obvious. As usual, many-sorted
functions may be viewed as special many-sorted relations.

Definition 1.1.6 (Kernel of a many-sorted function).Let f :X →Y be anS-sorted
function. Thekernel of f is the S-sorted binary relation ker(f) = 〈ker(fs)〉s∈S ⊆
X×X where ker(fs) = {〈x,y〉 | x,y∈ Xs and fs(x) = fs(y)} ⊆ Xs×Xs is the kernel
of fs for all s∈ S. ut

Definition 1.1.7 (Many-sorted equivalence).Let X = 〈Xs〉s∈S be anS-sorted set.
An S-sorted binary relationR⊆ X×X is anS-sorted equivalence (relation) on Xif
it is:

• reflexive:xRsx;
• symmetric:xRsy impliesyRsx; and
• transitive:xRsy andyRsz impliesxRsz

for all s∈ Sandx,y,z∈ Xs. The symbol≡ is often used for (S-sorted) equivalence
relations.

Let ≡ be anS-sorted equivalence onX. If s∈ Sandx∈ Xs then theequivalence
class of x modulo≡ is the set[x]≡s = {y∈ Xs | x≡s y}. Thequotient of X modulo
≡ is theS-sorted setX/≡ = 〈Xs/≡s〉s∈S whereXs/≡s = {[x]≡s | x ∈ Xs} for all
s∈ S. ut

Example 1.1.8.Let S= {s1,s2}, and letX andY be twoS-sorted sets defined as
follows:

X = 〈Xs〉s∈S whereXs1 = {2,4} andXs2 = {♣,♥,♠},
Y = 〈Ys〉s∈S whereYs1 = {1,2,3} andYs2 = {1,2,3}.

Let f :X →Y be theS-sorted function such that

1 This “diagrammatic” order of composition and the semicolon notation will be used consistently
throughout this book.

Page: 17 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

18 1 Universal algebra

fs1 = {2 7→ 1,4 7→ 3}
fs2 = {♣ 7→ 1,♥ 7→ 2,♠ 7→ 2}.

(i.e., fs1(2) = 1 and fs1(4) = 3; analogously forfs2). Then the kernel off is the
S-sorted equivalence relation ker(f) = 〈ker(fs)〉s∈S where

ker(fs1) = {〈2,2〉,〈4,4〉}
ker(fs2) = {〈♣,♣〉,〈♥,♥〉,〈♥,♠〉,〈♠,♥〉,〈♠,♠〉}.

The quotient ofX modulo ker(f) is theS-sorted setX/ker(f) = 〈Xs/ker(fs)〉s∈S

where

Xs1/ker(fs1) = {{2},{4}}
Xs2/ker(fs2) = {{♣},{♥,♠}}. ut

Exercise 1.1.9.Show that if f :X →Y is anS-sorted function, then ker(f) is anS-
sorted equivalence onX. ut

Exercise 1.1.10.Show that if≡ is anS-sorted equivalence onX then for alls∈ S
andx,y∈ Xs, [x]≡s = [y]≡s iff x≡s y. ut

Notation. Subscripts selecting components ofS-sorted sets (functions, relations,
. . .) are often omitted when there is no danger of confusion. Then Exercise 1.1.10
would read: “. . . for alls∈ Sandx,y∈ Xs, [x]≡ = [y]≡ iff x≡ y.” ut

1.2 Signatures and algebras

The functions and data types defined by a program have names. These names are
used to compute with and reason about the program, and to build larger programs
which rely on the functionality the program provides. The connection between a
program and an algebra used to model it is provided by these names, which are at-
tached to the corresponding components of the algebra. The set of names associated
with an algebra is called its signature. The signature of an algebra defines thesyntax
of the algebra by characterising the ways in which its components may legally be
combined; the algebra itself supplies thesemanticsby assigning interpretations to
the names in the signature.

Definition 1.2.1 (Many-sorted signature).A (many-sorted) signatureis a pairΣ =
〈S,Ω〉, where:

• S is a set (of sort names); and
• Ω is anS∗×S-sorted set (of operation names)

whereS∗ is the set of finite (including empty) sequences of elements ofS. We will
sometimes writesorts(Σ) for Sandops(Σ) for Ω . Σ is asubsignatureof a signature
Σ ′ = 〈S′,Ω ′〉 if S⊆ S′ andΩw,s⊆Ω ′

w,s for all w∈ S∗,s∈ S. ut

Page: 18 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

1.2 Signatures and algebras 19

Many-sorted signatures will be referred to asalgebraicsignatures when it is neces-
sary to distinguish them from other kinds of signatures to be introduced later.

Notation. Saying thatf :s1×·· ·×sn → s is in Σ = 〈S,Ω〉 means thats1 . . .sn ∈ S∗,
s∈ S and f ∈ Ωs1...sn,s. Then f is said to havearity s1 . . .sn andresult sort s. The
abbreviationf :s will be used forf :ε → s (ε is the empty sequence). ut

This definition of signature does not accommodate programs containing higher-
order functions, or functions returning multiple results. A possible extension to han-
dle higher-order functions is briefly discussed in Section 2.7.6. As for functions with
multiple results, a functionf :s1×·· ·×sn→ t1×·· ·× tm may be viewed as a family
of m functions

f1:s1×·· ·×sn → t1 . . . fm:s1×·· ·×sn → tm.

Generalising the definition of signature to handle such functions in a more di-
rect way is easy but makes subsequent developments somewhat messier in a non-
interesting way.

The definition abovedoespermit overloaded operation names, since it is possible
to have bothf :s1× ·· · × sn → s and f : t1× ·· · × tm → t in a signatureΣ , where
s1 . . .sns 6= t1 . . . tmt. A more restrictive definition of signature, adequate for most
purposes, would have a setΩ of operation names (and a setSof sort names) with
functionsarity:Ω → S∗ andsort:Ω → S. These two definitions are equivalent if
each operation name inΩ is taken to be tagged with its arity and result sort.

In the rest of this section, letΣ = 〈S,Ω〉 be a signature.

Definition 1.2.2 (Many-sorted algebra).A Σ -algebra Aconsists of:

• anS-sorted set|A| of carrier sets(or carriers); and
• for each f :s1× ·· ·× sn → s in Σ , a function (oroperation) (f :s1× ·· ·× sn →

s)A: |A|s1 ×·· ·× |A|sn → |A|s. ut

If A is a Σ -algebra ands is a sort name inΣ then |A|s, the carrier set of sorts
in A, is the universe of data values of sorts; accordingly, we often refer to the
elements of carrier sets asvalues. If f :s1×·· ·× sn → s is in Σ then the operation
(f :s1×·· ·×sn → s)A is a function on the corresponding carrier sets ofA. If n = 0
(i.e. f :s), then|A|s1×·· ·×|A|sn is a singleton set containing the empty tuple〈〉, and
then(f :s)A may be viewed as a constant denoting the value(f :s)A(〈〉)∈ |A|s. Notice
that (f :s1×·· ·× sn → s)A is a total function2 so algebras as defined here are only
appropriate for modelling programs containing total functions. See Sections 2.7.3–
2.7.5 for several ways of extending the definitions to cope with partial functions.
Note also that there is no restriction on the cardinality of|A|s; in particular,|A|s may
be empty and need not be countable.

Notation. Let A be aΣ -algebra and letf :s1×·· ·×sn→ sbe inΣ . We always write
fA in place of(f :s1×·· ·× sn → s)A when there is no danger of confusion. When
n = 0 (i.e. f :s), we write(f :s)A or fA in place of(f :s)A(〈〉). ut

2 All functions in this book are total except where they are explicitly designated as partial.

Page: 19 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

20 1 Universal algebra

Exercise 1.2.3.If Ωε,s 6= ∅ for somes∈S, then there are no〈S,Ω〉-algebras having
an empty carrier of sorts. Characterise signatures for which all algebras have non-
empty carriers of all sorts. ut

Example 1.2.4.LetS1= {shape,suit} and letΩ1ε,shape= {box}, Ω1ε,suit = {hearts},
Ω1shape,shape= {boxify}, Ω1shapesuit,suit = { f}, andΩ1w,s = ∅ for all other w ∈
S1∗,s∈ S1. ThenΣ1 = 〈S1,Ω1〉 is a signature with sort namesshapeand suit
and operation namesbox:shape, hearts:suit, boxify:shape→ shapeand f :shape×
suit→ suit. We can presentΣ1 in tabular form as follows (this notation will be used
later with the obvious meaning):

Σ1 = sorts shape,suit
ops box:shape

hearts:suit
boxify:shape→ shape
f :shape×suit→ suit

We define aΣ1-algebraA1 as follows:

|A1|shape= {2,4},
|A1|suit = {♣,♥,♠},
boxA1 = 2 ∈ |A1|shape,
heartsA1 =♥ ∈ |A1|suit,
boxifyA1: |A1|shape→ |A1|shape= {2 7→2,4 7→2},

and fA1: |A1|shape×|A1|suit→ |A1|suit is defined by the following table:

fA1 ♣ ♥ ♠
2 ♣ ♠ ♥
4 ♥ ♠ ♠

(NOTE: Reference will be made toΣ1 andA1 in examples throughout the rest of
this chapter.) ut

Definition 1.2.5 (Subalgebra).Let A andB beΣ -algebras.B is asubalgebraof A
if:

• |B| ⊆ |A|; and
• for f :s1 × ·· · × sn → s in Σ and b1 ∈ |B|s1, . . . ,bn ∈ |B|sn, fB(b1, . . . ,bn) =

fA(b1, . . . ,bn).

B is apropersubalgebra ofA if it is a subalgebra ofA and|B| 6= |A|. A subalgebra of
A is determined by anS-sorted subset|B| of |A| which is closed under the operations
of Σ , i.e. such that for eachf :s1×·· ·× sn → s in Σ andb1 ∈ |B|s1, . . . ,bn ∈ |B|sn,
fA(b1, . . . ,bn) ∈ |B|s. ut

If B is a (proper) subalgebra ofA thenB is “smaller” thanA in the sense that it
contains fewerdata valuesthanA. BothA andB areΣ -algebras though, soA andB
contain interpretations for exactly the same sort and operation names.

Page: 20 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

1.2 Signatures and algebras 21

Exercise 1.2.6.Let A be aΣ -algebra. Show that the intersection of any family of
(carriers of) subalgebras ofA is a (carrier of a) subalgebra ofA. Use this to show
that for anyX ⊆ |A|, there is a least subalgebra ofA that containsX. This is called
the subalgebra of A generated by X. Give an explicit construction of this algebra.
(HINT : Consider the family ofS-sorted setsXi ⊆ |A|, i ≥ 0, whereX0 = X andXi+1 is
obtained fromXi by adding the results of applying the operations ofA to arguments
in Xi .) ut

Definition 1.2.7 (Reachable algebra).Let A be aΣ -algebra.A is reachableif A has
no proper subalgebra (equivalently, ifA is generated by∅). ut

By Exercise 1.2.6, every algebra has a unique reachable subalgebra.

Example 1.2.8.Let Σ1 = 〈S1,Ω1〉 andA1 be as defined in Example 1.2.4. Define
a Σ1-algebraB1 by

|B1|shape= {2},
|B1|suit = {♥,♠},
boxB1 = 2 ∈ |B1|shape,
heartsB1 =♥ ∈ |B1|suit,
boxifyB1: |B1|shape→ |B1|shape= {2 7→2},
fB1: |B1|shape×|B1|suit→ |B1|suit = {〈2,♥〉 7→ ♠,〈2,♠〉 7→ ♥}.

B1 is the subalgebra ofA1 generated by∅. That is,B1 is the reachable subalgebra
of A1. ut

Definition 1.2.9 (Product algebra).Let A andB beΣ -algebras. Theproduct alge-
bra A×B is theΣ -algebra defined as follows:

• |A×B|= |A|× |B|; and
• for eachf :s1×·· ·×sn → s in Σ and〈a1,b1〉 ∈ |A×B|s1, . . . ,〈an,bn〉 ∈ |A×B|sn,

fA×B(〈a1,b1〉, . . . ,〈an,bn〉) = 〈 fA(a1, . . . ,an), fB(b1, . . . ,bn)〉 ∈ |A×B|s.

This generalises to the product∏〈Ai〉i∈I of a family of Σ -algebras, indexed by an
arbitrary setI (possibly empty), as follows:

• |∏〈Ai〉i∈I |= ∏〈|Ai |〉i∈I ; and
• for each f :s1× ·· · × sn → s in Σ and f1 ∈ |∏〈Ai〉i∈I |s1, . . . , fn ∈ |∏〈Ai〉i∈I |sn,

fΠ 〈Ai〉i∈I
(f1, . . . , fn)(i) = fAi (f1(i), . . . , fn(i)) for all i ∈ I . ut

Exercise 1.2.10.Definition 1.2.9 shows how twoΣ -algebras can be combined to
form a newΣ -algebra by taking the Cartesian product of their carriers. According
to Exercise 1.2.6, the same thing can be done (with subalgebras of a fixed algebra)
using intersection. Try to formulate definitions ofunionanddisjoint unionof alge-
bras, where|A∪B|= |A|∪ |B| and|A]B|= |A|] |B| respectively. What happens?

ut

Page: 21 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

22 1 Universal algebra

1.3 Homomorphisms and congruences

A homomorphism between algebras is the analogue of a function between sets, and
a congruence relation on an algebra is the analogue of an equivalence relation on a
set. An algebra has more structure than a set, so homomorphisms and congruences
are required to respect the additional structure (i.e. the behaviour of the operations).
Homomorphisms and congruences are important basic tools for relating algebras
and constructing new algebras from old ones.

Throughout this section, letΣ = 〈S,Ω〉 be a signature.

Definition 1.3.1 (Homomorphism).LetAandBbeΣ -algebras. AΣ -homomorphism
h:A → B is an S-sorted functionh: |A| → |B| which respects the operations of
Σ , i.e. such that for allf :s1 × ·· · × sn → s in Σ and a1 ∈ |A|s1, . . . ,an ∈ |A|sn,
hs(fA(a1, . . . ,an)) = fB(hs1(a1), . . . ,hsn(an)). A Σ -homomorphismh:A→ B is an
identity (an inclusion, surjective, . . .) if it is an identity (an inclusion, surjective,
. . .) when viewed as anS-sorted function. ut

Notation. If h:A→ B is aΣ -homomorphism, then|h|: |A| → |B| denotesh viewed
as anS-sorted function. The only difference betweenh and|h| is that in the case of
|h| we have “forgotten” that the additional condition required of a homomorphism
is satisfied. ut

Informally, the homomorphism condition says that the behaviour of the opera-
tions inA is reflected in that of the operations inB. This condition can be expressed
in the form of a diagram as follows:

|A|s1 ×·· ·× |A|sn

|A|s

-
hs1 ×·· ·×hsn

-
hs

?

fA

|B|s1 ×·· ·× |B|sn

|B|s

?

fB

where(hs1×·· ·×hsn)(as1, . . . ,asn)= (hs1(as1), . . . ,hsn(asn)) for all a1∈ |A|s1, . . . ,an∈
|A|sn. The homomorphism condition amounts to the requirement that this diagram
commutes, i.e. that composing the functions on the top and right-hand arrows gives
the same result as composing the functions on the left-hand and bottom arrows. Such
commuting diagrams will be used heavily in later chapters, particularly in Chapter 3.

Example 1.3.2.Let Σ1 = 〈S1,Ω1〉 andA1 be as defined in Example 1.2.4. Define
a Σ1-algebraC1 by

Page: 22 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

1.3 Homomorphisms and congruences 23

|C1|shape= |C1|suit = {1,2,3},
boxC1 = 1∈ |C1|shape,
heartsC1 = 2∈ |C1|suit,
boxifyC1: |C1|shape→ |C1|shape= {1 7→ 1,2 7→ 3,3 7→ 1},

and fC1: |C1|shape×|C1|suit→ |C1|suit is defined by the following table:

fC1 1 2 3
1 1 2 3
2 2 1 2
3 2 2 1

Let h1:|A1| → |C1| be theS1-sorted function such that

h1shape= {2 7→ 1,4 7→ 3},
h1suit = {♣ 7→ 1,♥ 7→ 2,♠ 7→ 2}.

It is easy to verify thath1:A1→C1 is aΣ1-homomorphism by checking the fol-
lowing:

h1shape(boxA1) = boxC1

h1suit(heartsA1) = heartsC1

h1shape(boxifyA1(2)) = boxifyC1(h1shape(2))
h1shape(boxifyA1(4)) = boxifyC1(h1shape(4))

h1suit(fA1(2,♣)) = fC1(h1shape(2),h1suit(♣))
h1suit(fA1(2,♥)) = fC1(h1shape(2),h1suit(♥))
h1suit(fA1(2,♠)) = fC1(h1shape(2),h1suit(♠))
h1suit(fA1(4,♣)) = fC1(h1shape(4),h1suit(♣))
h1suit(fA1(4,♥)) = fC1(h1shape(4),h1suit(♥))
h1suit(fA1(4,♠)) = fC1(h1shape(4),h1suit(♠)). ut

Exercise 1.3.3.Let A be aΣ -algebra. Show thatid|A|:A→ A (the identityS-sorted
function) is aΣ -homomorphism. Leth:A→B andh′:B→C beΣ -homomorphisms.
Show that|h|;|h′|: |A| → |C| is aΣ -homomorphismh;h′:A→C. ut

Exercise 1.3.4.Let h:A→ B be aΣ -homomorphism, and letA′ be a subalgebra of
A. Let theimage of A′ under hbe theΣ -algebrah(A′) defined as follows:

• |h(A′)|= |h|(|A′|); and
• for eachf :s1×·· ·×sn→ s in Σ anda1∈ |A′|s1, . . . ,an∈ |A′|sn, fh(A′)(hs1(a1), . . . ,hsn(an))=

hs(fA′(a1, . . . ,an)).

Show thath(A′) is a well-definedΣ -algebra (in particular, that the functionfh(A′): |h(A′)|s1×
·· ·× |h(A′)|sn → |h(A′)|s is well-defined for eachf :s1×·· ·×sn → s in Σ) and that
it is a subalgebra ofB. Formulate a definition of thecoimageof a subalgebraB′ of
B underh, and show that it is a subalgebra ofA. ut

Exercise 1.3.5.Let h:A→ B be aΣ -homomorphism, and supposeX ⊆ |A|. Show
that the subalgebra ofB generated by|h|(X) ⊆ |B| is the image of the subalgebra
of A generated byX. Show that it follows that ifh:A→ B is surjective andA is
reachable thenB is reachable. ut

Page: 23 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

24 1 Universal algebra

Exercise 1.3.6.LetBbe a reachableΣ -algebra. Show that for anyΣ -algebraA, there
is at most oneΣ -homomorphismh:B→A, and that anyΣ -homomorphismh:A→B
is surjective. ut

Definition 1.3.7 (Isomorphism).Let A andB beΣ -algebras. AΣ -homomorphism
h:A→ B is a Σ -isomorphismif it has an inverse, i.e. there is aΣ -homomorphism
h−1:B→ A such thath;h−1 = id|A| andh−1;h = id|B|. (Exercise:Show that ifh−1

exists then it is unique.) ThenA andB are calledisomorphicand we writeh:A∼= B
or justA∼= B. ut

Exercise 1.3.8.Let h:A∼= B andh′:B∼=C beΣ -isomorphisms. Show that their com-
position is aΣ -isomorphismh;h′:A∼= C. Show that∼= (as a binary relation onΣ -
algebras) is reflexive and symmetric, and is therefore an equivalence relation.ut

Two isomorphic algebras are typically regarded as indistinguishable for all practi-
cal purposes. It is easy to see why: the only way in which they can differ is in the
particular choice of data values in the carriers. The size of the carriers and the way
that the operations behave on the values in the carriers is exactly the same. For this
reason we are often satisfied with a definition of an algebra “up to isomorphism”,
i.e. a description of an isomorphism class of algebras in a context where one would
expect a definition of a single algebra. An example of this is in Fact 1.4.10 below.
The notion of isomorphism can be generalised to other kinds of structures, where
it embodies exactly the same concept of indistinguishability. See Chapter 3 for this
generalisation and for many more examples of definitions of objects “up to isomor-
phism”.

Example 1.3.9.Let Σ1 = 〈S1,Ω1〉 andA1 be as defined in Example 1.2.4. Define
a Σ1-algebraD1 by

|D1|shape= {2,4},
|D1|suit = {1,2,3},
boxD1 =4∈ |D1|shape,
heartsD1 = 2∈ |D1|suit,
boxifyD1: |D1|shape→ |D1|shape= {2 7→ 4,4 7→4},

and fD1: |D1|shape×|D1|suit→ |D1|suit is defined by the following table:

fD1 1 2 3
2 2 3 3
4 1 3 2

Let i1:|A1| → |D1| be theS1-sorted function such that

i1shape= {2 7→ 4,4 7→2}
i1suit = {♣ 7→ 1,♥ 7→ 2,♠ 7→ 3}.

This defines aΣ1-homomorphismi1:A1→D1 which is aΣ1-isomorphism, soA1∼=
D1. ut

Page: 24 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

1.3 Homomorphisms and congruences 25

Exercise 1.3.10.Show that a homomorphism is an isomorphism iff it is bijective.
ut

Exercise 1.3.11.Show that there is an injective homomorphismh:A→ B iff A is
isomorphic to a subalgebra ofB. ut

Example 1.3.12.Let Σ = 〈S,Ω〉 be the signature

sorts s
ops a:s

f :s→ s

and defineΣ -algebrasA andB by

|A|s = Nat (the natural numbers),
aA = 0∈ |A|s,
fA: |A|s→ |A|s = {n 7→ n+1 | n∈ Nat},

|B|s = {n∈ Nat | the Turing machine with G̈odel numbern halts on all inputs},
aB = the smallestn∈ |B|s,
fB: |B|s→ |B|s = {n∈ |B|s 7→ the smallestm∈ |B|s such thatm> n}.

Let i: |A| → |B| be theS-sorted function such that

is(n) = the(n+1)st smallest element of|B|s

for all n∈ |A|s. The functionis is well-defined since|B|s is infinite. This defines a
Σ -homomorphismi:A→ B which is an isomorphism.

Although A∼= B, theΣ -algebrasA andB are not “the same” from the point of
view of computability: everything inA is computable, in contrast toB (|B|s is not
recursively enumerable andfB is not computable). Isomorphisms capturestructural
similarity, ignoring what the values in the carriers are and what the operations actu-
ally compute. This example shows that, for some purposes, properties stronger than
structural similarity are important. ut

Definition 1.3.13 (Congruence).Let A be aΣ -algebra. AΣ -congruence on Ais
an (S-sorted) equivalence≡ on |A| which respects the operations ofΣ : for all
f :s1×·· ·×sn→ s in Σ anda1,a′1 ∈ |A|s1, . . . ,an,a′n ∈ |A|sn, if a1≡s1 a′1 and . . . and
an ≡sn a′n then fA(a1, . . . ,an)≡s fA(a′1, . . . ,a

′
n). ut

Exercise 1.3.14.Show that the intersection of any family ofΣ -congruences onA is
aΣ -congruence onA. Use this to show that for anyS-sorted binary relationRon |A|
there is a least (with respect to⊆) Σ -congruence onA which includesR.

Show that the kernel of anyΣ -homomorphismh:A→ B is aΣ -congruence onA.
Show that a surjectiveΣ -homomorphism is an isomorphism iff its kernel is the

identity. ut

Definition 1.3.15 (Quotient algebra).Let A be aΣ -algebra, and let≡ be aΣ -
congruence onA. Thequotient algebra of A modulo≡ is theΣ -algebraA/≡ defined
by:

Page: 25 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

26 1 Universal algebra

• |A/≡|= |A|/≡; and
• for eachf :s1×·· ·×sn→ sanda1∈ |A|s1, . . . ,an∈ |A|sn, fA/≡([a1]≡s1

, . . . , [an]≡sn
)=

[fA(a1, . . . ,an)]≡s. ut

Exercise 1.3.16.Show thatA/≡ in Definition 1.3.15 is a well-definedΣ -algebra.
ut

Example 1.3.17.Let Σ1 = 〈S1,Ω1〉 andA1 be as defined in Example 1.2.4, and let
≡= 〈≡s〉s∈S1 be theS1-sorted binary relation on|A1| defined by

≡shape= {〈2,2〉,〈4,4〉}
≡suit = {〈♣,♣〉,〈♥,♥〉,〈♥,♠〉,〈♠,♥〉,〈♠,♠〉}.

This defines a congruence onA1. A1/≡ is theΣ1-algebra defined by

|A1/≡|shape= {{2},{4}},
|A1/≡|suit = {{♣},{♥,♠}},
boxA1/≡ = {2} ∈ |A1/≡|shape,
heartsA1/≡ = {♥,♠} ∈ |A1/≡|suit,
boxifyA1/≡: |A1/≡|shape→ |A1/≡|shape= {{2} 7→ {2},{4} 7→ {2}},

and fA1/≡: |A1/≡|shape×|A1/≡|suit→ |A1/≡|suit is defined by the following table:

fA1/≡ {♣} {♥,♠}
{2} {♣} {♥,♠}
{4} {♥,♠} {♥,♠} ut

Exercise 1.3.18.Let ≡ be aΣ -congruence onA, and leths(a) = [a]≡s for s∈ S,
a∈ |A|s. Show that〈hs: |A|s→ (|A|/≡)s〉s∈S is aΣ -homomorphismh:A→A/≡with
ker(h) =≡. ut

Exercise 1.3.19.Let h:A→ B be aΣ -homomorphism. Show thatA/ker(h) is iso-
morphic toh(A). (HINT : The isomorphism is given by[a]ker(hs) 7→ hs(a) for s∈ S,
a∈ |A|s.) ut

Exercise 1.3.20.Let≡ be aΣ -congruence onA. Show that for anyΣ -homomorphism
h:A→ B such that≡⊆ ker(h), there exists a uniqueΣ -homomorphismg:A/≡→ B
such thaths(a) = gs([a]≡s) for all s∈ S, a∈ |A|s. ut

Exercise 1.3.21.Show that there is a surjective homomorphismh:A→B iff there is
a congruence≡ onA such thatB is isomorphic toA/≡. ut

Exercise 1.3.22.Let A be aΣ -algebra, let≡ be a congruence onA and letB be a
subalgebra ofA/≡. Show that there is a subalgebraC of A and congruence≡′ on
C such thatB = C/≡′. ut

Exercise 1.3.23.Let h:A→ B be aΣ -homomorphism. Show that there is a unique
Σ -congruence≡ on A and a unique injectiveΣ -homomorphismg:A/≡→ B such
thaths(a) = gs([a]≡s) for all s∈ S, a∈ |A|s. ut

Page: 26 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

1.4 Term algebras 27

1.4 Term algebras

For any signatureΣ there is a specialΣ -algebra whose values are just well-formed
terms (i.e. expressions) built from the operation names inΣ . A Σ -algebra of terms
with variables is similarly determined by a signatureΣ = 〈S,Ω〉 and anS-sorted
set of variables. These algebras are rather boring insofar as modelling programs is
concerned — the term algebra models a program which does no real computation.
But the homomorphisms from these algebras toother algebras turn out to be very
useful technical tools, as shown by the definitions below.

Throughout this section, letΣ = 〈S,Ω〉 be a signature and letX be anS-sorted
set (of variables), wherex∈Xs for s∈Smeans that the variablex is of sorts (written
x:s). Note that “overloading” of variable names is permitted here, since there is no
requirement thatXs andXs′ be disjoint fors 6= s′ ∈ S.

Definition 1.4.1 (Term algebra).The Σ -algebra TΣ (X) of terms with variables X
is theΣ -algebra defined as follows:

• |TΣ (X)| is the least (with respect to⊆) S-sorted set of words (sequences) over the
alphabet

S∪
⋃

w∈S∗
s∈S

Ωw,s∪
⋃
s∈S

Xs∪{: ,(, ,,)}

such that:

– the word “x:s” ∈ |TΣ (X)|s for all s∈ Sandx∈ Xs; and
– for all f :s1×·· ·×sn→ s in Σ and all wordst1 ∈ |TΣ (X)|s1, . . . , tn ∈ |TΣ (X)|sn,

the word “f (t1, . . . , tn):s” ∈ |TΣ (X)|s.

• for all f :s1×·· ·× sn → s in Σ and all wordst1 ∈ |TΣ (X)|s1, . . . , tn ∈ |TΣ (X)|sn,
fTΣ (X)(t1, . . . , tn) = (the word) “f (t1, . . . , tn):s” ∈ |TΣ (X)|s.

(Quotation marks are used here solely to emphasize that terms are words, and are
not part of the words they delimit.) Ifs∈ S andt ∈ |TΣ (X)|s thent is a Σ -term of
sort s with variables X; thefree variables of tis the setFV(t)⊆ X of variables that
actually occur int: for s∈ Sandx∈ Xs, x∈ FV(t)s if t contains the subword “x:s”.

The Σ -algebra of ground termsis theΣ -algebraTΣ = TΣ (∅) of terms without
variables. Ifs∈ Sandt ∈ |TΣ |s thent is agroundΣ -term. ut

The values ofTΣ (X) are “fully-typed” terms formed using the variables inX and
the operation names inΣ , and the operations ofTΣ (X) just build complicated terms
from simpler terms. Note that a termt ∈ |TΣ (X)| need not contain all the variables
in X, and that some variables may occur more than once int. TΣ is also called the
Σ -word algebra, and its carriers|TΣ | are sometimes called theHerbrand universe
for Σ .

Example 1.4.2.Let Σ1 = 〈S1,Ω1〉 be as defined in Example 1.2.4. ThenTΣ1 is the
Σ1-algebra defined by

Page: 27 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

28 1 Universal algebra

|TΣ1|shape= { “box():shape” ,
“boxify(box():shape):shape” ,
“boxify(boxify(box():shape):shape):shape” ,
. . . },

|TΣ1|suit = { “hearts():suit” ,
“ f (box():shape,hearts():suit):suit” ,
“ f (boxify(box():shape):shape,hearts():suit):suit” ,
“ f (box():shape, f (box():shape,hearts():suit):suit):suit” ,
. . . }

where the operations ofTΣ1 are the term formation operations

boxTΣ1 = “box():shape” ∈ |TΣ1|shape,
heartsTΣ1 = “hearts():suit” ∈ |TΣ1|suit,
boxifyTΣ1

: |TΣ1|shape→ |TΣ1|shape

= { “box():shape” 7→ “boxify(box():shape):shape” ,
“boxify(box():shape):shape” 7→ “boxify(boxify(box():shape):shape):shape” ,
. . . },

and similarly for f :shape×suit→ suit. ut

Notation. Sort decorations (e.g. “:shape” in “ box():shape”) are often unambigu-
ously determined, and they will usually be omitted when this is the case. When
Ωε,s∩Xs = ∅ for somes∈ S, then variables of sorts cannot be confused with con-
stants (0-ary operations) of sorts and so we will usually drop the parentheses “()”
in the latter. We will omit quotation marks whenever it is clear from the context that
we are dealing with terms. Finally, in examples we will use infix notation for binary
operations when convenient. ut

Example 1.4.2 (revisited).We repeat Example 1.4.2, making use of these nota-
tional conventions.

Let Σ1 = 〈S1,Ω1〉 be as defined in Example 1.2.4. ThenTΣ1 is theΣ1-algebra
defined by

|TΣ1|shape= {box,boxify(box),boxify(boxify(box)), . . .},
|TΣ1|suit = {hearts, f (box,hearts), f (boxify(box),hearts), f (box, f (box,hearts)), . . .}

where the operations ofTΣ1 are the term formation operations

boxTΣ1 = box∈ |TΣ1|shape,
heartsTΣ1 = hearts∈ |TΣ1|suit,
boxifyTΣ1

: |TΣ1|shape→ |TΣ1|shape

= {box 7→ boxify(box),boxify(box) 7→ boxify(boxify(box)), . . .},

and similarly for f :shape×suit→ suit. ut

Example 1.4.3.The notational conventions above will almost always be applicable.
They cannot be adopted from the outset (i.e. in Definition 1.4.1) because of the
relatively rare examples where confusion can arise. For example, letΣ2 = 〈S2,Ω2〉

Page: 28 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

1.4 Term algebras 29

be the signature with sortss,s′, t and operationsa:s, a:s′, f :s→ t and f :s′ → t (no
mistakes here, repetition of names is intented).

According to the definition,|TΣ2|t = {“ f (a():s): t” , “ f (a():s′): t”}. If all sort dec-
orations were omitted then both of the terms in this set would become “f (a())” and
so|TΣ2|t would have just this single element. The “outer” decoration can be omitted
but the “inner” decoration is required, thus e.g. “f (a():s)”.

Similarly, if X is anS2-sorted set of variables such thata∈ Xs, then “f (a():s)”
and “f (a:s)” are different terms in|TΣ2(X)|t , so the convention of writing “a():s”
as “a:s” cannot be used.

Since the definitions permit variables and operation names likef (a():s) and even
“ or , or (), the custom of writing terms as sequences of symbols without explicit
separators can cause confusion. Luckily, such names never arise in practice and so
for the purposes of this book this problem can safely be forgotten. ut

Fact 1.4.4.For any Σ -algebra A and S-sorted function v:X → |A| there is exactly
oneΣ -homomorphism v#:TΣ (X)→A that extends v, i.e. such that v#

s(ιX(x)) = vs(x)
for all s∈S, x∈Xs, whereιX:X→|TΣ (X)| is the embedding that maps each variable
in X to its corresponding term.

S-sorted sets Σ -algebras

X |TΣ (X)|

|A|

-⊂ ιX

?

|v#|

@
@

@
@

@
@

@R

v

TΣ (X)

A

?

v#

ut

The existence and uniqueness ofv# follow easily from the requirement thatv# ex-
tendsv (this fixes the value ofv# for any variable as a term in|TΣ (X)|) and thatv#

is a Σ -homomorphism (this determines the value ofv# for any term f (t1, . . . , tn) ∈
|TΣ (X)| as a function of the values ofv# for its immediate subtermst1, . . . , tn ∈
|TΣ (X)|). The homomorphism which results is the function which evaluatesΣ -terms
based on the assignment of values inA to variables inX given byv.

Definition 1.4.5 (Term evaluation).Let A be aΣ -algebraA and letv:X→|A| be an
S-sorted function. By Fact 1.4.4 there is a uniqueΣ -homomorphismv#:TΣ (X)→ A
that extendsv. Let s∈ Sand lett ∈ |TΣ (X)|s be aΣ -term of sorts; thevalue of t in A
under the valuation vis v#(t) ∈ |A|s. Whent ∈ |TΣ |s the value oft does not depend
on v; then thevalue of t in Ais ∅#(t) where∅:∅ → |A| is the empty function.
To make the algebra explicit, we writetA(v) for v#(t), andtA for tA(∅) whent is
ground. ut

Page: 29 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

30 1 Universal algebra

Exercise 1.4.6.Let t ∈ |TΣ (X)| be aΣ -term and letA be aΣ -algebra. Show that if
v:X → |A| andv′:X → |A| coincide onFV(t), thentA(v) = tA(v′). This follows from
another fact: for anyt ∈ |TΣ (X)|, X⊆Y (so thatt ∈ |TΣ (Y)|) andv:Y→|A|, we have
tA(v) = tA(ι ;v), whereι :X ↪→Y is the inclusion (and soι ;v:X → |A|). ut

Exercise 1.4.7.Define evaluation of terms in an inductive fashion. Convince your-
self that the result is the same as that given by Definition 1.4.5. ut

Exercise 1.4.8.Let h:A→ B be aΣ -homomorphism, letv:X → |A| be anS-sorted
function, and lett ∈ |TΣ (X)| be aΣ -term. Using Fact 1.4.4, prove thath(v#(t)) =
(v;h)#(t). Compare this with a proof of the same thing using your inductive defini-
tion of term evaluation from Exercise 1.4.7. ut

Exercise 1.4.9.Functionsθ :X → |TΣ (Y)| are sometimes calledsubstitutions(of
terms inTΣ (Y) for variables inX). Using Fact 1.4.4, define theΣ -termt[θ] resulting
from applying the substitutionθ to aΣ -termt ∈ |TΣ (X)|. Show thatt[ιX] = t for any
t ∈ |TΣ (X)|, whereιX maps each variable inX to its corresponding term in|TΣ (X)|.
Define the compositionθ ;θ ′ of substitutionsθ :X → |TΣ (Y)| andθ ′:Y → |TΣ (Z)|,
and show that(t[θ])[θ ′] = t[θ ;θ ′] for anyΣ -termt and substitutionsθ andθ ′. ut

Notation. Supposeu∈ |TΣ (Y)|s for some sorts∈ S. Then[x 7→ u] (when used as a
substitution{x:s}∪X→|TΣ (X∪Y)|) is shorthand for the function{x:s 7→ u}∪{z 7→
z | z∈ X,z 6= x:s}. Fort ∈ |TΣ ({x:s}∪X)|, t[x 7→ u] ∈ |TΣ (X∪Y)| thus stands for the
term obtained by substitutingu for x in t. This notation generalises straightforwardly
to [x1 7→ u1, . . . ,xn 7→ un] andt[x1 7→ u1, . . . ,xn 7→ un] providedx1, . . . ,xn are distinct
variables. ut

Fact 1.4.10.The property of TΣ (X) in Fact 1.4.4 defines TΣ (X) up to isomorphism:
if B is a Σ -algebra andη :X → |B| is an S-sorted function such that for anyΣ -
algebra A and S-sorted function v:X → |A| there is a uniqueΣ -homomorphism
v$:B→ A such thatη ;|v$|= v then B is isomorphic to TΣ (X), whereη#:TΣ (X)→ B
is an isomorphism with inverseι$

X:B→ TΣ (X).

Page: 30 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

1.4 Term algebras 31

S-sorted sets Σ -algebras

X

|TΣ (X)|

|B|

|TΣ (X)|

�
�

�
�

�
�

��

ιX

-
η

@
@

@
@

@
@

@R

ιX

?

|η#|

?

|ι$
X|

TΣ (X)

B

TΣ (X)

?

η#

?

ι
$
X

�

��

ι#
X = idTΣ (X)

ut

Fact 1.4.4 says that the definition ofTΣ (X) fixes the definition of the term evalu-
ation function “for free” (see Definition 1.4.5). Fact 1.4.10 says that this property
is unique (up to isomorphism) toTΣ (X), so in fact the explicit definition ofTΣ (X)
is superfluous — it would be enough to defineTΣ (X) as “the” (unique up to iso-
morphism)Σ -algebra for which Definition 1.4.5 makes sense.TΣ (X) is a particular
example of afree object— see Section 3.5 for more on this topic.

Example 1.4.11.Let Σ1 = 〈S1,Ω1〉 be as defined in Example 1.2.4. ThenTΣ1 is
theΣ1-algebra described in Example 1.4.2. LetT1 be theΣ1-algebra defined by

|T1|shape= {box,box boxify,box boxify boxify, . . .},
|T1|suit = {hearts,box hearts f,box boxify hearts f,box box hearts f f, . . .}

where the operations ofT1 are the postfix term formation operations

boxT1 = box∈ |T1|shape,
heartsT1 = hearts∈ |T1|suit,
boxifyT1: |T1|shape→ |T1|shape= {box 7→ box boxify,box boxify7→ box boxify boxify, . . .},

and similarly for f :shape× suit→ suit. ThenT1 satisfies the property ofTΣ1 in
Fact 1.4.4 (the fact thatX = ∅ here makes this easy to check — there is only one
functionv:∅→ |A1| for anyΣ1-algebraA1), so by Fact 1.4.10 (whereη :∅→ |T1|
is the empty function)T1 is isomorphic toTΣ1. The isomorphism∅#:TΣ1 → T1
converts aΣ1-term to its postfix form. ut

Exercise 1.4.12.Prove Facts 1.4.4 and 1.4.10. ut

Exercise 1.4.13.Let A be aΣ -algebra and let∅:∅ → |A| be the empty function.
Show thatA is reachable iff the unique homomorphism∅# : TΣ → A is surjective,
i.e., iff every element in|A| is the value of a groundΣ -term. ut

Page: 31 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

32 1 Universal algebra

Exercise 1.4.14.Show thatTΣ is reachable. Put this fact together with previous re-
sults to show that aΣ -algebra is reachable iff it is isomorphic to a quotient ofTΣ , and
that there is a one-to-one correspondence between isomorphism classes of reachable
Σ -algebras and congruences onTΣ . ut

Exercise 1.4.15.Let G be a context-free grammar over an alphabetT of terminal
symbols. Consider the signatureΣG = 〈SG,ΩG〉, whereSG is the set of non-terminal
symbols ofG and each productionX → Y1 . . .Yn in G corresponds to an operation
in ΩG with result sortX and arity given by the sequence of non-terminal symbols
in Y1 . . .Yn. TheΣG-algebraAG has carriers|AG|X = T∗ for all X ∈ SG, and for any
p:X1× ·· · ×Xn → X in ΣG and a1, . . . ,an ∈ T∗, pAG(a1, . . . ,an) is the sequence
obtained by substitutinga j for the j th non-terminal symbol on the right-hand side
of the production associated withp. Prove the following:

1. For anyX ∈ SG, the carrier of sortX in the reachable subalgebra ofAG is the set
of sequences generated from the non-terminalX in G.

2. The algebraTΣG is isomorphic to the algebra of parse trees ofG.
3. The grammarG is unambiguous iff the reachable subalgebra ofAG is isomorphic

to TΣG. ut

1.5 Changing signatures

A signature morphism defines a mapping from the sort and operation names in one
signature to those in another signature, in such a way that the arity and result sort
of operations are respected. (This requirement is analogous to the requirement that
homomorphisms respect the behaviour of the operations.) Signature morphisms will
be used extensively in later chapters to mediate constructions involving multiple
signatures. The crucial point that makes these constructions work is that a signature
morphism fromΣ to Σ ′ induces translations of syntax (terms — later, also logical
formulae) and semantics (algebras and homomorphisms) betweenΣ andΣ ′.

Two kinds of signature morphisms are introduced in this section. Only the first
kind will be used in the rest of the book. The second kind,derived signature mor-
phisms, are introduced mainly as an example of one way in which a basic definition
could be modified. Such a modification would not affect later definitions and re-
sults, since these depend only on the induced translations of terms, algebras and
homomorphisms.

1.5.1 Signature morphisms

Definition 1.5.1 (Signature morphism).Let Σ = 〈S,Ω〉 andΣ ′ = 〈S′,Ω ′〉 be signa-
tures. Asignature morphismσ :Σ → Σ ′ is a pairσ = 〈σsorts,σops〉 whereσsorts:S→

Page: 32 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

1.5 Changing signatures 33

S′ and σops is a family of functions respecting the arities and result sorts of op-
eration names inΣ , that is σops = 〈σw,s:Ωw,s→ Ω ′

σ∗
sorts(w),σsorts(s)

〉w∈S∗,s∈S (where

for w = s1 . . .sn ∈ S∗, σ∗
sorts(w) = σsorts(s1) . . .σsorts(sn)). A signature morphism

σ :Σ → Σ ′ is a signature inclusionσ :Σ ↪→ Σ ′ if σsorts is an inclusion andσw,s is
an inclusion for allw∈ S∗,s∈ S. ut

Signature morphisms as defined above will be referred to asalgebraic signature
morphisms when it is necessary to distinguish them from other kinds of signature
morphisms to be introduced later. Note thatσsorts and (the functions constituting)
σops are not required to be either surjective or injective.

Notation. Whenσ :Σ → Σ ′, bothσsorts andσops (and its componentsσw,s for all
w∈ S∗,s∈ S) will be denoted byσ . ut

Example 1.5.2.Let Σ = 〈S,Ω〉 be the signature

sorts polygon,figure, trump
ops square:polygon

boxify:polygon→ polygon
boxify:polygon→ figure
h:figure× trump→ trump

Let Σ1 = 〈S1,Ω1〉 be the signature defined in Example 1.2.4.
Defineσsorts:S→ S1 andσops= 〈σw,s:Ωw,s→ Ω1σ∗

sorts(w),σsorts(s)〉w∈S∗,s∈S by

σsorts= {polygon7→ shape,figure 7→ shape, trump 7→ suit},
σε,polygon= {square7→ box}, σpolygon,polygon= {boxify 7→ boxify},
σpolygon,figure = {boxify 7→ boxify},
σfiguretrump,trump = {h 7→ f},

andσw,s = ∅ for all otherw∈ S∗,s∈ S. Thenσ :Σ → Σ1 is a signature morphism.
ut

Exercise 1.5.3.Let σ :Σ →Σ ′ andσ ′:Σ ′→Σ ′′ be signature morphisms. Let(σ ;σ ′)sorts=
σsorts;σ ′

sorts and (σ ;σ ′)ops = σops;σ ′
ops (or rather, to be more precise:(σ ;σ ′)w,s =

σw,s;σ ′
σ∗

sorts(w),σsorts(s)
for w∈ S∗,s∈ S). Show that this defines a signature morphism

σ ;σ ′:Σ → Σ ′′. ut

In the rest of this section, letσ :Σ → Σ ′ be a signature morphism, where
Σ = 〈S,Ω〉 andΣ ′ = 〈S′,Ω ′〉. As will be defined below, any such signature mor-
phism gives rise to a translation ofΣ -terms toΣ ′-terms, and ofΣ ′-algebras and ho-
momorphisms toΣ -algebras and homomorphisms. Note that the direction of trans-
lation of algebras and homomorphisms is “backwards” with respect to the direction
of the signature morphism, as the following figure indicates.

Page: 33 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

34 1 Universal algebra

Syntax



Semantics



Σ
-σ

Σ ′

Σ -terms -σ
Σ ′-terms

Σ -algebras �
σ

Σ ′-algebras

Σ -homomorphisms�
σ

Σ ′-homomorphisms

Definition 1.5.4 (Reduct algebra).Let A′ be aΣ ′-algebra. Theσ -reduct of A′ is the
Σ -algebraA′ σ defined as follows:

• |A′ σ |s = |A′|σ(s) for all s∈ S; and
• for all f :s1×·· ·×sn → s in Σ ,

fA′ σ
: |A′ σ |s1×·· ·×|A

′
σ |sn →|A′ σ |s= σ(f)A′ : |A′|σ(s1)×·· ·×|A′|σ(sn)→|A′|σ(s).

ut

If Σ is a subsignature ofΣ ′, σ :Σ ↪→ Σ ′ is the signature inclusion, andA′ is a Σ ′-
algebra, thenA′ σ is aΣ -algebra which is justA′ with some carriers and/or opera-
tions removed.

Notation. We sometimes writeA′ Σ for A′ σ whenσ :Σ → Σ ′ is obvious, such as
whenσ is a signature inclusion. ut

Example 1.5.5.Let σ :Σ → Σ1 be the signature morphism defined in Example 1.5.2
and letA1 be theΣ1-algebra defined in Example 1.2.4. ThenA1 σ is theΣ -algebra
such that

|A1 σ |polygon= |A1 σ |figure = {2,4}= |A1|shape,

|A1 σ |trump = {♣,♥,♠}= |A1|suit,

squareA1 σ
= 2 = boxA1,

boxifyA1 σ
: |A1 σ |polygon→ |A1 σ |polygon= {2 7→2,4 7→2}

= boxifyA1: |A1|shape→ |A1|shape,
boxifyA1 σ

: |A1 σ |polygon→ |A1 σ |figure = {2 7→2,4 7→2}
= boxifyA1: |A1|shape→ |A1|shape,

hA1 σ
: |A1 σ |figure×|A1 σ |trump→ |A1 σ |trump = {〈2,♣〉 7→ ♣,〈2,♥〉 7→ ♠, . . .}

= fA1: |A1|shape×|A1|suit→ |A1|suit.
ut

Exercise 1.5.6.A Σ -algebraA can be regarded as a function mapping the names in
Σ to their interpretations; theσ -reduct ofA is then the compositionσ ;A. Spell out
the details. ut

Exercise 1.5.7.Let σ :Σ → Σ ′ be a signature morphism that is surjective on sort
names, and letA′ be aΣ ′-algebra. Show that ifA′ σ is reachable thenA′ is reachable.
Give counterexamples showing that the opposite implication does not hold, and that
the implication itself does not hold if some sort names inΣ ′ are not in the image of
Σ underσ . ut

Page: 34 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

1.5 Changing signatures 35

Definition 1.5.8 (Reduct homomorphism).Leth′:A′→B′ be aΣ ′-homomorphism.
Theσ -reduct of h′ is theS-sorted functionh′ σ : |A′ σ | → |B′ σ | such that(h′ σ)s =
h′

σ(s) for all s∈ S. (Exercise:Show thath′ σ :A′ σ → B′ σ is aΣ -homomorphism.)
ut

Exercise 1.5.9.Define theσ -reduct≡′
σ of a Σ ′-congruence≡′ on aΣ ′-algebra

A′, and prove that it is aΣ -congruence onA′ σ . Show thatσ -reduct distributes over
quotient, i.e.(A′/≡′) σ = (A′ σ)/(≡′

σ) for all Σ ′-algebrasA′ andΣ ′-congruences
≡′ onA′. ut

The following definition of the translation of terms along a signature morphism
σ :Σ → Σ ′ may look somewhat daunting, but its simple upshot is to translate each
termt ∈ |TΣ (X)| to theΣ ′-term obtained by replacing each operation name fromΣ

by its image underσ . Some care must be taken in the treatment of variables: since
variables for different sorts are not required to be distinct, to make sure they are not
inadvertently identified by the translation, for each sorts′ in Σ ′ we have to take a
disjoint union of the sets of variables of sorts mapped tos′.

Definition 1.5.10 (Term translation).Let X be anS-sorted set of variables. Define
X′ = 〈X′

s′〉s′∈S′ to be theS′-sorted set such that

X′
s′ =

⊎
σ(s)=s′

Xs for eachs′ ∈ S′.

Then (TΣ ′(X′)) σ is a Σ -algebra. Leti:X → |(TΣ ′(X′)) σ | be the obvious embed-
ding (if not for the disjoint union in the definition ofX′ and explicit decoration of
variables with sorts in terms,i would coincide withιX which maps each variable
to its corresponding term). Then by Fact 1.4.4 there is a uniqueΣ -homomorphism
σ̂ :TΣ (X)→ (TΣ ′(X′)) σ extendingi:

S-sorted sets Σ -algebras

X |TΣ (X)|

|(TΣ ′(X′)) σ |

-⊂ ιX

?

|σ̂ |

@
@

@
@

@
@

@R

i

TΣ (X)

(TΣ ′(X′)) σ

?

σ̂ = i #

The translation of aΣ -term t∈ |TΣ (X)| by σ is theΣ ′-term σ̂(t) ∈ |TΣ ′(X′)|. To
keep the notation simple, we will write justσ(t) for σ̂(t). ut
Example 1.5.11.Let σ :Σ → Σ1 be the signature morphism defined in Exam-
ple 1.5.2, whereΣ = 〈S,Ω〉 andΣ1 = 〈S1,Ω1〉. Let X be theS-sorted set of vari-
ablesx:polygon,x:figure,y:figure,z: trump. TheS1-sorted set of variablesX′ in Def-
inition 1.5.10 is thenx:shape,x′:shape,y:shape,z:suit, and

Page: 35 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

36 1 Universal algebra

σ(h(boxify(x:polygon),h(x:figure,z))) = f (boxify(x), f (x′,z)),

σ(h(x:figure,h(boxify(boxify(square)),z))) = f (x′, f (boxify(boxify(box)),z)),

and so on. ut

Exercise 1.5.12.Let t ∈ |TΣ | be a groundΣ -term and letA′ be aΣ ′-algebra. Show
that the value oft is invariant under change of signature, i.e.σ(t)A′ = tA′ σ

.
Formulate and prove a more general version of this result in whicht may contain

variables. ut

1.5.2 Derived signature morphisms

A derived signature morphism fromΣ to Σ ′ is like an algebraic signature morphism
from Σ to Σ ′ except that operation names inΣ are mapped totermsover Σ ′. This
allows operation names inΣ to be mapped to combinations of operations inΣ ′, and
also handles the case where the order of arguments of the corresponding operations
in Σ andΣ ′ are different.

Definition 1.5.13 (Derived signature).Let Σ = 〈S,Ω〉 be a signature. For any se-
quences1 . . .sn ∈ S∗, let Is1...sn be theS-sorted set 1 :s1, . . . , n :sn. The derived
signature ofΣ is the signatureΣder = 〈S,Ω der〉 where for eachs1 . . .sn ∈ S∗ and
s∈ S, Ω der

s1...sn,s = |TΣ (Is1...sn)|s. ut

In the derived signature ofΣ , a Σ -term t of sort s with variablesIs1...sn represents
an operationt:s1× ·· · × sn → s. The variable i :si in Is1...sn thus stands for the
ith argument oft. Note that a “bare” variablei ∈ |TΣ (Is1...sn)|si is an operation
i:s1×·· ·×sn → si in Σder, corresponding to a projection function.

Definition 1.5.14 (Derived signature morphism).Let Σ andΣ ′ be signatures. A
derived signature morphismδ :Σ → Σ ′ is an algebraic signature morphismδ :Σ →
(Σ ′)der. ut

Definition 1.5.15 (Derived algebra).Let Σ = 〈S,Ω〉 be a signature, and letA be a
Σ -algebra. Thederived algebra of Ais theΣder-algebraAder defined as follows:

• |Ader|= |A|; and
• for eacht:s1×·· ·×sn→ s in Σder anda1∈ |Ader|s1, . . . ,an∈ |Ader|sn, tAder(a1, . . . ,an)=

tA(v) ∈ |Ader|s wherev is theS-sorted function{(1 :s1) 7→ a1, . . . ,(n :sn) 7→
an}. ut

In the rest of this section, letδ :Σ → Σ ′ be a derived signature morphism. The
following corresponds to Definition 1.5.4 for algebraic signature morphisms; later
exercises correspond to Definitions 1.5.8 and 1.5.10 and related results.

Definition 1.5.16 (Reduct algebra w.r.t. a derived signature morphism).Let A′

be aΣ ′-algebra. Theδ -reduct of A′ is theΣ -algebraA′ δ defined as follows:

Page: 36 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

1.5 Changing signatures 37

• |A′ δ |s = |A′|δ (s) for all s∈ S; and
• for all f :s1×·· ·×sn→ s in Σ , fA′ δ

: |A′ δ |s1×·· ·×|A′ δ |sn →|A′ δ |s= δ (f)(A′)der.

Equivalently,A′ δ is theΣ -algebra(A′)der
δ , viewing δ as the algebraic signature

morphismδ :Σ → (Σ ′)der. ut

Exercise 1.5.17 (Reduct homomorphism w.r.t. a derived signature morphism).
What is theδ -reducth′ δ of aΣ ′-homomorphismh′:A′→B′? Prove thath′ δ :A′ δ →
B′ δ is aΣ -homomorphism. ut

Exercise 1.5.18 (Term translation w.r.t. a derived signature morphism).Let
t ∈ |TΣ (X)| be aΣ -term, whereX is anS-sorted set of variables. Defineδ (t), the
translation oft by δ (the result should be aΣ ′-term). ut

Example 1.5.19.Let Σ = 〈S,Ω〉 be the signature defined in Example 1.5.2, and let
Σ1 = 〈S1,Ω1〉 be the signature defined in Example 1.2.4. Letδ :Σ → Σ1 be the
derived signature morphism defined by

δsorts= {polygon7→ shape,figure 7→ shape, trump 7→ suit},
δε,polygon= {square7→ boxify(box)},
δpolygon,polygon= {boxify 7→ 1 :shape},
δpolygon,figure = {boxify 7→ boxify(boxify(1 :shape))},
δfiguretrump,trump = {h 7→ f (boxify(1 :shape), f (1 :shape, 2 :suit))},

andδw,s = ∅ for all otherw∈ S∗,s∈ S.
Let A1 be theΣ1-algebra defined in Example 1.2.4. ThenA1 δ is theΣ -algebra

such that

|A1 δ |polygon= |A1 δ |figure = {2,4},
|A1 δ |trump = {♣,♥,♠},
squareA1 δ

= 2,

boxifyA1 δ
: |A1 δ |polygon→ |A1 δ |polygon= {2 7→2,4 7→4}

boxifyA1 δ
: |A1 δ |polygon→ |A1 δ |figure = {2 7→2,4 7→2},

andhA1 δ
: |A1 δ |figure×|A1 δ |trump→ |A1 δ |trump is defined by the following table:

hA1 δ
♣ ♥ ♠

2 ♣ ♥ ♠
4 ♠ ♥ ♥

Let X be theS-sorted set of variablesx:polygon,x:figure,y:figure,z: trump. A
correct solution to Exercise 1.5.18 would translateh(boxify(x:polygon),h(x:figure,z))
(a Σ -term with variablesX) to

f (boxify(boxify(boxify(x))︸ ︷︷ ︸
=δ (boxify(x:polygon))

), f (boxify(boxify(x))︸ ︷︷ ︸
=δ (boxify(x:polygon))

, f (boxify(x′), f (x′,z))︸ ︷︷ ︸
=δ (h(x:figure,z))

)).

ut

Page: 37 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

38 1 Universal algebra

Exercise 1.5.20.Repeat Exercise 1.5.12 for the case of derived signature mor-
phisms. ut

Exercise 1.5.21.A more complex definition of derived signature morphismδ :Σ →
Σ ′ would allow a sort names in Σ to be mapped to aCartesian product s′1×·· ·×s′n
of sortss′1, . . . ,s

′
n in Σ ′. Give versions of the above definitions which permit this.ut

Exercise 1.5.22.Another variation on the definition of derived signature morphism
would permit operation names inΣ to be mapped to recursively defined functions
in terms of the operation names inΣ ′. Give versions of the above definitions which
would allow this. (HINT : Look at a book like [Sch86] before attempting this exer-
cise.) ut

1.6 Bibliographical remarks

This chapter presents the basic notions of universal algebra that are required in the
sequel. There is a vast literature on universal algebra as a branch of mathematics,
and the concepts and results we need here are a tiny fraction of this. Applications of
universal algebra in computer science are widespread, going back at least to [BL69].

For much more on universal algebra see e.g. [Grä79] or [Coh65] but note that
both of these handle only the single-sorted case. A presentation of some of this
material for a computer scientist audience is [Wec92], see also [MT92] where ap-
plications to some topics in computer science other than the ones covered in this
book are also indicated.

The style of presentation here is relaxed but it might still be too dense for some
readers, who might prefer the gentler style, with proofs of many of the results which
we omit here, in [GTW76], [EM85], [MG85] or [LEW96].

The generalisation from single-sorted to many-sorted algebras originates with
[Hig63]. First applications to computer science came later [Mai72], becoming
prominent with [GTW76]. The generalisation is straightforward from a purely math-
ematical standpoint, but there are a few subtle issues that will surface in later chap-
ters. For instance, we admit empty carrier sets in Definition 1.2.2, unlike most logic
books and, for instance, [BT87] and [Mos04]. Admitting empty carrier sets requires
more care in the presentation of rules for reasoning, see Exercise 2.4.10 below, but
it also makes some results smoother, see Exercise 2.5.18.

There are different definitions of many-sorted signature in the literature. The one
here is quite general, allowing overloading of operation names etc., and originates
with [GTWW73] and [Gog74]. In some early papers, signatures are called “oper-
ator domains”. Definitions that do not permit overloading are used in [EM85] and
[Wir90], but as remarked after Definition 1.2.1, these definitions are equivalent if
each operation name is taken to be tagged with its arity and result sort.

Signature morphisms emerged around 1978 in the context of early work on the
semantics of parameterised specifications in the style of Definition 6.3.5 below, see

Page: 38 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

1.6 Bibliographical remarks 39

[Ehr78] and [GB78]; Definition 1.5.1 is from the latter. Various variants and re-
strictions on this notion have been used in the meantime. One possible simplifying
assumption is to restrict attention to injective signature morphisms as in [BHK90],
or to bijective signature morphisms, which are sometimes referred to as “renam-
ings”. The notion of reduct, but only with respect to a signature inclusion, arises
in universal algebra. The generalisation from signature morphisms to derived sig-
nature morphisms originates in [GTW76], and is related to the even more general
notion of (theory) interpretation in logic [End72]. Since the 1970s, derived signa-
ture morphisms have made only sporadic appearances in the algebraic specification
literature, see for instance [SB83] and [HLST00].

Page: 39 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

Page: 532 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

References

AC89. Egidio Astesiano and Maura Cerioli. On the existence of initial models for partial
(higher-order) conditional specifications. In Josep Dı́az and Fernando Orejas, editors,
Proceedings of the International Joint Conference on Theory and Practice of Software
Development, TAPSOFT’89, Barcelona,Lecture Notes in Computer Science, volume
351, pages 74–88. Springer, 1989.

AC01. David Aspinall and Adriana B. Compagnoni. Subtyping dependent types.Theoretical
Computer Science, 266(1–2):273–309, 2001.

ACEGG91. Jaume Agustı́-Cullell, Francesc Esteva, Pere Garcia, and Lluis Godo. Formalizing
multiple-valued logics as institutions. In Bernadette Bouchon-Meunier, Ronald R.
Yager, and Lotfi A. Zadeh, editors,Proceedings of the 3rd International Conference
on Information Processing and Management of Uncertainty in Knowledge-Based Sys-
tems, IPMU’90, Paris,Lecture Notes in Computer Science, volume 521, pages 269–
278. Springer, 1991.

AF96. Mário Arrais and Jośe Luiz Fiadeiro. Unifying theories in different institutions. In
Magne Haveraaen, Olaf Owe, and Ole-Johan Dahl, editors,Recent Trends in Data
Type Specification. Selected Papers from the 11th Workshop on Specification of Ab-
stract Data Types, Oslo, Lecture Notes in Computer Science, volume 1130, pages
81–101. Springer, 1996.

AG97. Robert Allen and David Garlan. A formal basis for architectural connection.ACM
Transactions on Software Engineering and Methodology, 6(3):213–249, 1997.

AH05. David Aspinall and Martin Hofmann. Dependent types. In Benjamin Pierce, editor,
Advanced Topics in Types and Programming Languages, chapter 2, pages 45–86. MIT
Press, 2005.

AHS90. Jǐri Adámek, Horst Herrlich, and George Strecker.Abstract and Concrete Categories:
The Joy of Cats. Wiley, 1990.

Ala02. Suad Alagic. Institutions: Integrating objects, XML and databases.Information and
Software Technology, 44(4):207–216, 2002.

AM75. Michael A. Arbib and Ernest G. Manes.Arrows, Structures and Functors: The Cate-
gorical Imperative. Academic Press, 1975.

Asp95. David Aspinall. Subtyping with singleton types. In Leszek Pacholski and Jerzy
Tiuryn, editors,Proceedings of the 8th International Workshop on Computer Science
Logic, CSL’94, Kazimierz,Lecture Notes in Computer Science, volume 933, pages
1–15. Springer, 1995.

Asp97. David Aspinall. Type Systems for Modular Programming and Specification. PhD
thesis, University of Edinburgh, Department of Computer Science, 1997.

Asp00. David Aspinall. Subtyping with power types. In Peter Clote and Helmut Schwichten-
berg, editors,Proceedings of the 14th International Workshop on Computer Science

533

534 References

Logic, Fischbachau,Lecture Notes in Computer Science, volume 1862, pages 156–
171. Springer, 2000.

Avr91. Arnon Avron. Simple consequence relations.Information and Computation, 92:105–
139, 1991.

Awo06. Steve Awodey.Category Theory. Oxford University Press, 2006.
Bar74. Jon Barwise. Axioms for abstract model theory.Annals of Mathematical Logic,

7:221–265, 1974.
BBB+85. Friedrich L. Bauer, Rudolf Berghammer, Manfred Broy, Walter Dosch, Franz Geisel-

brechtinger, Rupert Gnatz, E. Hangel, Wolfgang Hesse, Bernd Krieg-Brückner, Al-
fred Laut, Thomas Matzner, Bernd M̈oller, Friederike Nickl, Helmut Partsch, Peter
Pepper, Klaus Samelson, Martin Wirsing, and Hans Wössner. The Munich Project
CIP: Volume 1: The Wide Spectrum Language CIP-L, Lecture Notes in Computer
Science, volume 183. Springer, 1985.

BBC86. Gilles Bernot, Michel Bidoit, and Christine Choppy. Abstract data types with ex-
ception handling: An initial approach based on a distinction between exceptions and
errors.Theoretical Computer Science, 46(1):13–45, 1986.

BC88. Val Breazu-Tannen and Thierry Coquand. Extensional models for polymorphism.
Theoretical Computer Science, 59(1–2):85–114, 1988.

BCH99. Michel Bidoit, Maŕıa Victoria Cengarle, and Rolf Hennicker. Proof systems for struc-
tured specifications and their refinements. In Egidio Astesiano, Hans-Jörg Kreowski,
and Bernd Krieg-Br̈uckner, editors,Algebraic Foundations of Systems Specification,
chapter 11, pages 385–433. Springer, 1999.

BD77. R.M. Burstall and J. Darlington. A transformational system for developing recursive
programs.Journal of the Association for Computing Machinery, 24(1):44–67, 1977.

BDP+79. Manfred Broy, Walter Dosch, Helmut Partsch, Peter Pepper, and Martin Wirsing. Ex-
istential quantifiers in abstract data types. In Hermann A. Maurer, editor,Proceed-
ings of the 6th International Colloquium on Automata, Languages and Programming,
Graz,Lecture Notes in Computer Science, volume 71, pages 73–87. Springer, 1979.

Bén85. Jean B́enabou. Fibred categories and the foundations of naı̈ve category theory.Jour-
nal of Symbolic Logic, 50:10–37, 1985.

Ber87. Gilles Bernot. Good functors . . . are those preserving philosophy! In David H.
Pitt, Axel Poigńe, and David E. Rydeheard, editors,Proceedings of the 2nd Summer
Conference on Category Theory and Computer Science, Edinburgh,Lecture Notes in
Computer Science, volume 283, pages 182–195. Springer, 1987.

BF85. Jon Barwise and Solomon Feferman, editors.Model-Theoretic Logics. Springer,
1985.

BG77. R.M. Burstall and J.A. Goguen. Putting theories together to make specifications.
In Fifth International Joint Conference on Artificial Intelligence, pages 1045–1058,
Boston, 1977.

BG80. R.M. Burstall and J.A. Goguen. The semantics of Clear, a specification language.
In Dines Bjørner, editor,Proceedings of the 1979 Copenhagen Winter School on Ab-
stract Software Specification, Lecture Notes in Computer Science, volume 86, pages
292–332. Springer, 1980.

BG81. R.M. Burstall and J.A. Goguen. An informal introduction to specifications using
Clear. In R.S. Boyer and J.S. Moore, editors,The Correctness Problem in Computer
Science, pages 185–213. Academic Press, 1981. Also in:Software Specification Tech-
niques(eds. N. Gehani and A.D. McGettrick), Addison-Wesley, 1986.

BG01. Leo Bachmair and Harald Ganzinger. Resolution theorem proving. In John Alan
Robinson and Andrei Voronkov, editors,Handbook of Automated Reasoning, pages
19–99. Elsevier and MIT Press, 2001.

BH96. Michel Bidoit and Rolf Hennicker. Behavioural theories and the proof of behavioural
properties.Theoretical Computer Science, 165(1):3–55, 1996.

BH98. Michel Bidoit and Rolf Hennicker. Modular correctness proofs of behavioural imple-
mentations.Acta Informatica, 35(11):951–1005, 1998.

Page: 534 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

References 535

BH06a. Michel Bidoit and Rolf Hennicker. Constructor-based observational logic.Journal of
Logic and Algebraic Programming, 67(1–2):3–51, 2006.

BH06b. Michel Bidoit and Rolf Hennicker. Proving behavioral refinements of COL-
specifications. In Kokichi Futatsugi, Jean-Pierre Jouannaud, and José Meseguer, edi-
tors,Algebra, Meaning and Computation: Essays Dedicated to Joseph A. Goguen on
the Occasion of His 65th Birthday, Lecture Notes in Computer Science, volume 4060,
pages 333–354. Springer, 2006.

BHK90. Jan Bergstra, Jan Heering, and Paul Klint. Module algebra.Journal of the Association
for Computing Machinery, 37(2):335–372, 1990.

BHW94. Michel Bidoit, Rolf Hennicker, and Martin Wirsing. Characterizing behavioural se-
mantics and abstractor semantics. In Donald Sannella, editor,Proceedings of the
5th European Symposium on Programming, Edinburgh,Lecture Notes in Computer
Science, volume 788, pages 105–119. Springer, 1994.

BHW95. Michel Bidoit, Rolf Hennicker, and Martin Wirsing. Behavioural and abstractor spec-
ifications.Science of Computer Programming, 25(2-3):149–186, 1995.

Bir35. Garrett Birkhoff. On the structure of abstract algebras.Proceedings of the Cambridge
Philosophical Society, 31:433–454, 1935.

BL69. R.M. Burstall and P.J. Landin. Programs and their proofs: an algebraic approach. In
B. Meltzer and D. Michie, editors,Machine Intelligence 4, pages 17–43. Edinburgh
University Press, 1969.

BM04. Michel Bidoit and Peter D. Mosses, editors. CASL User Manual. Number 2900 in
Lecture Notes in Computer Science. Springer, 2004.

BN98. Franz Baader and Tobias Nipkow.Term Rewriting and All That. Cambridge Univer-
sity Press, 1998.

Bor94. Francis Borceaux.Handbook of Categorical Algebra. Cambridge University Press,
1994.

Bor00. Tomasz Borzyszkowski. Higher-order logic and theorem proving for structured spec-
ifications. In Didier Bert, Christine Choppy, and Peter D. Mosses, editors,Recent
Trends in Algebraic Development Techniques. Selected Papers from the 14th Interna-
tional Workshop on Algebraic Development Techniques, Cĥateau de Bonas,Lecture
Notes in Computer Science, volume 1827, pages 401–418. Springer, 2000.

Bor02. Tomasz Borzyszkowski. Logical systems for structured specifications.Theoretical
Computer Science, 286(2):197–245, 2002.

Bor05. Tomasz Borzyszkowski. Generalized interpolation in first order logic.Fundamenta
Informaticae, 66(3):199–219, 2005.

BPP85. Edward K. Blum and Francesco Parisi-Presicce. The semantics of shared submod-
ules specifications. In Hartmut Ehrig, Christiane Floyd, Maurice Nivat, and James W.
Thatcher, editors,Mathematical Foundations of Software Development. Proceedings
of the International Joint Conference on Theory and Practice of Software Develop-
ment. Volume 1: Colloquium on Trees in Algebra and Programming, Lecture Notes in
Computer Science, volume 185, pages 359–373. Springer, 1985.

BRJ98. Grady Booch, James Rumbaugh, and Ivar Jacobson.The Unified Modeling Language
User Guide. Addison-Wesley, 1998.

BS93. Rudolf Berghammer and Gunther Schmidt. Relational specifications. In C. Rauszer,
editor,Proc. XXXVIII Banach Center Semester on Algebraic Methods in Logic and
their Computer Science Applications, Banach Center Publications, volume 28, pages
167–190, Warszawa, 1993. Institute of Mathematics, Polish Academy of Sciences.

BST02. Michel Bidoit, Donald Sannella, and Andrzej Tarlecki. Architectural specifications
in CASL. Formal Aspects of Computing, 13:252–273, 2002.

BST08. Michel Bidoit, Donald Sannella, and Andrzej Tarlecki. Observational interpretation
of CASL specifications.Mathematical Structures in Computer Science, 18:325–371,
2008.

BT87. Jan Bergstra and John Tucker. Algebraic specifications of computable and semicom-
putable data types.Theoretical Computer Science, 50(2):137–181, 1987.

Page: 535 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

536 References

BT96. Michel Bidoit and Andrzej Tarlecki. Behavioural satisfaction and equivalence in con-
crete model categories. In Hélène Kirchner, editor,Proceedings of the 21st Interna-
tional Colloquium on Trees in Algebra and Programming, Linköping,Lecture Notes
in Computer Science, volume 1059, pages 241–256. Springer, 1996.

Bur86. Peter Burmeister. A Model Theoretic Oriented Approach to Partial Algebras.
Akademie-Verlag, 1986.

BW82a. Friedrich L. Bauer and Hans Wössner.Algorithmic Language and Program Develop-
ment. Springer, 1982.

BW82b. Manfred Broy and Martin Wirsing. Partial abstract data types.Acta Informatica,
18(1):47–64, 1982.

BW85. Michael Barr and Charles Wells.Toposes, Triples and Theories. Number 278 in
Grundlehren der mathematischen Wissenschaften. Springer, 1985.

BW95. Michael Barr and Charles Wells.Category Theory for Computing Science. Prentice
Hall, second edition, 1995.

BWP84. Manfred Broy, Martin Wirsing, and Claude Pair. A systematic study of models of
abstract data types.Theoretical Computer Science, 33(2–3):139–174, 1984.

Car88. Luca Cardelli. Structural subtyping and the notion of power type. InProceedings
of the 15th ACM Symposium on Principles of Programming Languages, San Diego,
pages 70–79, 1988.

CDE+02. Manuel Clavela, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martı́-Oliet,
Jośe Meseguer, and José F. Quesada. Maude: Specification and programming in
rewriting logic. Theoretical Computer Science, 285(2):187–243, 2002. See also
http://maude.cs.uiuc.edu/ .

Cen94. Maŕıa Victoria Cengarle.Formal Specifications with Higher-Order Parameterization.
PhD thesis, Ludwig-Maximilians-Universität München, Institut f̈ur Informatik, 1994.

CF92. Robin Cockett and Tom Fukushima. About Charity. Technical Report No. 92/480/18,
Department of Computer Science, University of Calgary, 1992.

CGR03. Carlos Caleiro, Paula Gouveia, and Jaime Ramos. Completeness results for fibred
parchments: Beyond the propositional base. In Martin Wirsing, Dirk Pattinson, and
Rolf Hennicker, editors,Recent Trends in Algebraic Development Techniques. Se-
lected Papers from the 16th International Workshop on Algebraic Development Tech-
niques, Frauenchiemsee,Lecture Notes in Computer Science, volume 2755, pages
185–200. Springer, 2003.

Chu56. Alonzo Church.Introduction to Mathematical Logic, Volume 1. Princeton University
Press, 1956.

Cı̂r02. Corina Ĉırstea. On specification logics for algebra-coalgebra structures: Reconciling
reachability and observability. InProceedings of the 5th International Conference on
Foundations of Software Science and Computation Structures. European Joint Con-
ferences on Theory and Practice of Software (ETAPS 2002), Grenoble,Lecture Notes
in Computer Science, volume 2303, pages 82–97. Springer, 2002.

CJ95. Aurelio Carboni and Peter Johnstone. Connected limits, familial representability and
Artin glueing. Mathematical Structures in Computer Science, 5(4):441–459, 1995.

CK90. Chen-Chung Chang and H. Jerome Keisler.Model Theory. North-Holland, third
edition, 1990.

CK08a. Maŕıa Victoria Cengarle and Alexander Knapp. An institution for OCL 2.0. Techni-
cal Report I0801, Institut f̈ur Informatik, Ludwig-Maximilians-Universiẗat München,
2008.

CK08b. Maŕıa Victoria Cengarle and Alexander Knapp. An institution for UML 2.0 in-
teractions. Technical Report I0808, Institut für Informatik, Ludwig-Maximilians-
Universiẗat München, 2008.

CK08c. Maŕıa Victoria Cengarle and Alexander Knapp. An institution for UML 2.0 static
structures. Technical Report I0807, Institut für Informatik, Ludwig-Maximilians-
Universiẗat München, 2008.

Page: 536 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

http://maude.cs.uiuc.edu/

References 537

CKTW08. Maria-Victoria Cengarle, Alexander Knapp, Andrzej Tarlecki, and Martin Wirsing. A
heterogeneous approach to UML semantics. In Pierpaolo Degano, Rocco de Nicola,
and Jośe Meseguer, editors,Concurrency, Graphs and Models, Essays Dedicated to
Ugo Montanari on the Occasion of His 65th Birthday, Lecture Notes in Computer
Science, volume 5065, pages 383–402. Springer, 2008.

CM97. Maura Cerioli and José Meseguer. May I borrow your logic? (Transporting logical
structures along maps).Theoretical Computer Science, 173(2):311–347, 1997.

CMRM10. Mihai Codescu, Till Mossakowski, Adrı́an Riesco, and Christian Maeder. Integrat-
ing Maude into Hets. In Mike Johnson and Dusko Pavlovic, editors,AMAST 2010,
Lecture Notes in Computer Science. Springer, 2010.

CMRS01. Carlos Caleiro, Paulo Mateus, Jaime Ramos, and Amı́lcar Sernadas. Combining log-
ics: Parchments revisited. In Maura Cerioli and Gianna Reggio, editors,Recent Trends
in Algebraic Development Techniques. Selected Papers from the 15th Workshop on Al-
gebraic Development Techniques joint with the CoFI WG Meeting, Genova,Lecture
Notes in Computer Science, volume 2267, pages 48–70. Springer, 2001.

Coh65. Paul M. Cohn.Universal Algebra. Harper and Row, 1965.
CS92. Robin Cockett and Dwight Spencer. Strong categorical datatypes I. In R.A.G. Seely,

editor,International Meeting on Category Theory 1991, Canadian Mathematical So-
ciety Proceedings. American Mathematical Society, 1992.

CSS05. Carlos Caleiro, Aḿılcar Sernadas, and Cristina Sernadas. Fibring logics: Past, present
and future. In Sergei N. Artemov, Howard Barringer, Artur S. d’Avila Garcez, Luı́s C.
Lamb, and John Woods, editors,We Will Show Them! Essays in Honour of Dov Gab-
bay, Volume One, pages 363–388. College Publications, 2005.

DF98. R̆azvan Diaconescu and Kokichi Futatsugi.CafeOBJ Report: The Language, Proof
Techniques, and Methodologies for Object-Oriented Algebraic Specification, AMAST
Series in Computing, volume 6. World Scientific, 1998.

DF02. R̆azvan Diaconescu and Kokichi Futatsugi. Logical foundations ofCafeOBJ. Theo-
retical Computer Science, 285:289–318, 2002.

DGS93. Řazvan Diaconescu, Joseph Goguen, and Petros Stefaneas. Logical support for mod-
ularisation. In Ǵerard Huet and Gordon Plotkin, editors,Logical Environments, pages
83–130. Cambridge University Press, 1993.

Dia00. R̆azvan Diaconescu. Category-based constraint logic.Mathematical Structures in
Computer Science, 10(3):373–407, 2000.

Dia02. R̆azvan Diaconescu. Grothendieck institutions.Applied Categorical Structures,
10(4):383–402, 2002.

Dia08. Řazvan Diaconescu.Institution-independent Model Theory. Birkhäuser, 2008.
DJ90. Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In Jan van

Leeuwen, editor,Handbook of Theoretical Computer Science. Volume B (Formal
Models and Semantics), pages 244–320. North-Holland and MIT Press, 1990.

DLL62. Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-proving.Communications of the ACM, 5(7):394–397, 1962.

DM00. Theodosis Dimitrakos and Tom Maibaum. On a generalised modularisation theorem.
Information Processing Letters, 74(1–2):65–71, 2000.

DMR76. Martin Davis, Yuri Matiyasevich, and Julia Robinson. Hilbert’s tenth problem. Dio-
phantine equations: Positive aspects of a negative solution. InMathematical Develop-
ments Arising from Hilbert Problems, Proceedings of Symposia in Pure Mathematics,
volume 28, pages 323–378, Providence, Rhode Island, 1976. American Mathematical
Society.

DP90. B.A. Davey and H.A. Priestley.Introduction to Lattices and Order. Cambridge Uni-
versity Press, 1990.

Ehr78. Hans-Dieter Ehrich. Extensions and implementations of abstract data type specifica-
tions. In J́ozef Winkowski, editor,Proceedings of the 7th Symposium on Mathemati-
cal Foundations of Computer Science, Zakopane,Lecture Notes in Computer Science,
volume 64, pages 155–164. Springer, 1978.

Page: 537 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

538 References

Ehr81. Hans-Dieter Ehrich. On realization and implementation. In Jozef Gruska and Michal
Chytil, editors,Proceedings of the 10th Symposium on Mathematical Foundations of
Computer Science, Štrbsḱe Pleso,Lecture Notes in Computer Science, volume 118,
pages 271–280. Springer, 1981.

Ehr82. Hans-Dieter Ehrich. On the theory of specification, implementation and parametriza-
tion of abstract data types.Journal of the Association for Computing Machinery,
29(1):206–227, 1982.

EKMP82. Hartmut Ehrig, Hans-Jörg Kreowski, Bernd Mahr, and Peter Padawitz. Algebraic
implementation of abstract data types.Theoretical Computer Science, 20:209–263,
1982.

EKT+80. Hartmut Ehrig, Hans-Jörg Kreowski, James Thatcher, Eric Wagner, and Jesse Wright.
Parameter passing in algebraic specification languages. Technical report, Technische
Universiẗat Berlin, 1980.

EKT+83. Hartmut Ehrig, Hans-Jörg Kreowski, James Thatcher, Eric Wagner, and Jesse Wright.
Parameter passing in algebraic specification languages.Theoretical Computer Sci-
ence, 28(1–2):45–81, 1983.

EM85. Hartmut Ehrig and Bernd Mahr.Fundamentals of Algebraic Specification 1, EATCS
Monographs on Theoretical Computer Science, volume 6. Springer, 1985.

Eme90. E. Allen Emerson. Temporal and modal logic. In Jan van Leeuwen, editor,Handbook
of Theoretical Computer Science. Volume B (Formal Models and Semantics), pages
995–1072. North-Holland and MIT Press, 1990.

End72. Herbert B. Enderton.A Mathematical Introduction to Logic. Academic Press, 1972.
EPO89. Hartmut Ehrig, Peter Pepper, and Fernando Orejas. On recent trends in algebraic

specification. In Giorgio Ausiello, Mariangiola Dezani-Ciancaglini, and Simona
Ronchi Della Rocca, editors,Proceeding of the 16th International Colloquium on
Automata, Languages and Programming, Stresa,Lecture Notes in Computer Science,
volume 372, pages 263–288. Springer, 1989.

EWT83. Hartmut Ehrig, Eric G. Wagner, and James W. Thatcher. Algebraic specifications
with generating constraints. InProceeding of the 10th International Colloquium on
Automata, Languages and Programming, Barcelona,Lecture Notes in Computer Sci-
ence, volume 154, pages 188–202. Springer, 1983.

Far89. Jordi Farŕes-Casals. Proving correctness of constructor implementations. In Antoni
Kreczmar and Grazyna Mirkowska, editors,Proceedings of the 14th Symposium on
Mathematical Foundations of Computer Science, Porabka-Kozubnik,Lecture Notes
in Computer Science, volume 379, pages 225–235. Springer, 1989.

Far90. Jordi Farŕes-Casals. Proving correctness wrt specifications with hidden parts. In
Hélène Kirchner and Wolfgang Wechler, editors,Proceedings of the 2nd International
Conference on Algebraic and Logic Programming, Nancy,Lecture Notes in Computer
Science, volume 463, pages 25–39. Springer, 1990.

Far92. Jordi Farŕes-Casals.Verification in ASL and Related Specification Languages. PhD
thesis, University of Edinburgh, Department of Computer Science, 1992.

FC96. Jośe Luiz Fiadeiro and José F́elix Costa. Mirror, mirror in my hand: A duality be-
tween specifications and models of process behaviour.Mathematical Structures in
Computer Science, 6(4):353–373, 1996.

Fei89. Loe M. G. Feijs. The calculusλπ. In Martin Wirsing and Jan A. Bergstra, editors,
Proceedings of the Workshop on Algebraic Methods: Theory, Tools and Applications,
Lecture Notes in Computer Science, volume 394, pages 307–328. Springer, 1989.

FGT92. William M. Farmer, Joshua D. Guttman, and F. Javier Thayer. Little theories. In
Deepak Kapur, editor,Proceedings of the 11th International Conference on Auto-
mated Deduction, Lecture Notes in Artificial Intelligence, volume 607, pages 567–
581, Saratoga Springs, 1992. Springer.

Fia05. Jośe Luiz Fiadeiro.Categories for Software Engineering. Springer, 2005.
Fit08. John S. Fitzgerald. The typed logic of partial functions and the Vienna Develop-

ment Method. In Dines Bjørner and Martin Henson, editors,Logics of Specification
Languages, pages 453–487. Springer, 2008.

Page: 538 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

References 539

FJ90. J. Fitzgerald and C.B. Jones. Modularizing the formal description of a database sys-
tem. InProceedings of the 3rd International Symposium of VDM Europe: VDM and
Z, Formal Methods in Software Development, Kiel, Lecture Notes in Computer Sci-
ence, volume 428, pages 189–210. Springer, 1990.

FS88. Jośe Luiz Fiadeiro and Aḿılcar Sernadas. Structuring theories on consequence. In
Donald Sannella and Andrzej Tarlecki, editors,Recent Trends in Data Type Specifica-
tion. Selected Papers from the 5th Workshop on Specification of Abstract Data Types,
Gullane,Lecture Notes in Computer Science, volume 332, pages 44–72. Springer,
1988.

Gab98. Dov M. Gabbay.Fibring Logics, Oxford Logic Guides, volume 38. Oxford University
Press, 1998.

Gan83. Harald Ganzinger. Parameterized specifications: Parameter passing and implemen-
tation with respect to observability.ACM Transactions on Programming Languages
and Systems, 5(3):318–354, 1983.

GB78. J.A. Goguen and R.M. Burstall. Some fundamental properties of algebraic theories:
a tool for semantics of computation. Technical Report 53, Department of Artificial
Intelligence, University of Edinburgh, 1978. Revised version appeared as [GB84b]
and [GB84c].

GB80. J.A. Goguen and R.M. Burstall. CAT, a system for the structured elaboration of cor-
rect programs from structured specifications. Technical Report CSL-118, Computer
Science Laboratory, SRI International, 1980.

GB84a. J.A. Goguen and R.M. Burstall. Introducing institutions. In Edmund Clarke and Dex-
ter Kozen, editors,Proceedings of the Workshop on Logics of Programs, Pittsburgh,
Lecture Notes in Computer Science, volume 164, pages 221–256. Springer, 1984.

GB84b. J.A. Goguen and R.M. Burstall. Some fundamental algebraic tools for the semantics
of computation. Part 1: Comma categories, colimits, signatures and theories.Theo-
retical Computer Science, 31:175–209, 1984.

GB84c. J.A. Goguen and R.M. Burstall. Some fundamental algebraic tools for the semantics
of computation. Part 2: Signed and abstract theories.Theoretical Computer Science,
31:263–295, 1984.

GB86. Joseph A. Goguen and Rod M. Burstall. A study in the functions of programming
methodology: Specifications, institutions, charters and parchments. In David H. Pitt,
Samson Abramsky, Axel Poigné, and David E. Rydeheard, editors,Proceedings of the
Tutorial and Workshop on Category Theory and Computer Programming, Guildford,
Lecture Notes in Computer Science, volume 240, pages 313–333. Springer, 1986.

GB92. J.A. Goguen and R.M. Burstall. Institutions: Abstract model theory for specification
and programming.Journal of the Association for Computing Machinery, 39(1):95–
146, 1992.

GD94a. Joseph Goguen and Răzvan Diaconescu. An Oxford survey of order sorted algebra.
Mathematical Structures in Computer Science, 4(3):363–392, 1994.

GD94b. Joseph A. Goguen and Rǎzvan Diaconescu. Towards an algebraic semantics for the
object paradigm. In Hartmut Ehrig and Fernando Orejas, editors,Recent Trends in
Data Type Specification. Selected Papers from the 9th Workshop on Specification of
Abstract Data Types joint with the 4thCOMPASS Workshop, Caldes de Malavella,
Lecture Notes in Computer Science, volume 785, pages 1–29. Springer, 1994.

GDLE84. Martin Gogolla, Klaus Drosten, Udo Lipeck, and Hans-Dieter Ehrich. Algebraic and
operational semantics of specifications allowing exceptions and errors.Theoretical
Computer Science, 34(3):289–313, 1984.

GG89. Stephen J. Garland and John V. Guttag. An overview of LP, the Larch Prover. InThird
International Conference on Rewriting Techniques and Applications, Chapel Hill,
Lecture Notes in Computer Science, volume 355, pages 137–151. Springer, 1989.
See alsohttp://nms.lcs.mit.edu/larch/LP/all.html .

GGM76. V. Giarratana, F. Gimona, and Ugo Montanari. Observability concepts in abstract data
type specifications. In Antoni Mazurkiewicz, editor,Proceedings of the 5th Sympo-

Page: 539 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

http://nms.lcs.mit.edu/larch/LP/all.html

540 References

sium on Mathematical Foundations of Computer Science, Gdánsk,Lecture Notes in
Computer Science, volume 45, pages 567–578. Springer, 1976.

GH78. John Guttag and James Horning. The algebraic specification of abstract data types.
Acta Informatica, 10:27–52, 1978.

GH93. John V. Guttag and James J. Horning.Larch: Languages and Tools for Formal Spec-
ification. Springer, 1993.

Gin68. Abraham Ginzburg.Algebraic Theory of Automata. Academic Press, 1968.
Gir87. Jean-Yves Girard. Linear logic.Theoretical Computer Science, 50:1–102, 1987.
Gir89. Jean-Yves Girard.Proofs and Types, Cambridge Tracts in Theoretical Computer Sci-

ence, volume 7. Cambridge University Press, 1989. Translated and with appendices
by Paul Taylor and Yves Lafont.

GLR00. Joseph Goguen, Kai Lin, and Grigore Roşu. Circular coinductive rewriting. InPro-
ceedings of the 15th International Conference on Automated Software Engineering,
Grenoble. IEEE Computer Society, 2000.

GM82. Joseph A. Goguen and José Meseguer. Universal realization, persistent interconnec-
tion and implementation of abstract modules. In Mogens Nielsen and Erik Meineche
Schmidt, editors,Proceeding of the 9th International Colloquium on Automata, Lan-
guages and Programming, Aarhus,Lecture Notes in Computer Science, volume 140,
pages 265–281. Springer, 1982.

GM85. Joseph Goguen and José Meseguer. Completeness of many sorted equational deduc-
tion. Houston Journal of Mathematics, 11(3):307–334, 1985.

GM92. Joseph Goguen and José Meseguer. Order-sorted algebra I: Equational deduction
for multiple inheritance, overloading, exceptions and partial operations.Theoretical
Computer Science, 105(2):217–273, 1992.

GM00. Joseph A. Goguen and Grant Malcolm. A hidden agenda.Theoretical Computer
Science, 245(1):55–101, 2000.

Gog73. Joseph Goguen. Categorical foundations for general systems theory. In F. Pichler and
R. Trappl, editors,Advances in Cybernetics and Systems Research, London, pages
121–130. Transcripta Books, 1973.

Gog74. J.A. Goguen. Semantics of computation. In Ernest G. Manes, editor,Proceedings
of the 1st International Symposium on Category Theory Applied to Computation and
Control, San Francisco,Lecture Notes in Computer Science, volume 25, pages 151–
163. Springer, 1974.

Gog78. Joseph Goguen. Abstract errors for abstract data types. In Erich Neuhold, editor,
Formal Description of Programming Concepts, pages 491–526. North-Holland, 1978.

Gog84. Martin Gogolla. Partially ordered sorts in algebraic specifications. InProceedings
of the 9th Colloquium on Trees in Algebra and Programming, pages 139–153. Cam-
bridge University Press, 1984.

Gog85. Martin Gogolla. A final algebra semantics for errors and exceptions. In Hans-
Jörg Kreowski, editor,Recent Trends in Data Type Specification. Selected Papers
from the 3rd Workshop on Theory and Applications of Abstract Data Types, Bremen,
Informatik-Fachberichte, volume 116, pages 89–103. Springer, 1985.

Gog91a. Joseph Goguen. Types as theories. In G.M. Reed, A.W. Roscoe, and R.F. Wachter,
editors,Topology and Category Theory in Computer Science, Oxford, pages 357–390.
Oxford University Press, 1991.

Gog91b. Joseph A. Goguen. A categorical manifesto.Mathematical Structures in Computer
Science, 1(1):49–67, 1991.

Gog96. Joseph A. Goguen. Parameterized programming and software architecture. In Murali
Sitaraman, editor,Proceedings of the Fourth International Conference on Software
Reuse, pages 2–11. IEEE Computer Society Press, 1996.

Gog10. Joseph Goguen. Information integration in institutions. In Larry Moss, editor,Think-
ing Logically: a Volume in Memory of Jon Barwise. CSLI, Stanford University, 2010.
To appear.

Gol06. Robert Goldblatt.Topoi: The Categorial Analysis of Logic. Dover, revised edition,
2006.

Page: 540 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

References 541

Gor95. Andrew D. Gordon. Bisimilarity as a theory of functional programming. InProceed-
ings of the 11th Annual Conference on Mathematical Foundations of Programming
Semantics. Electronic Notes in Theoretical Computer Science, 1:232–252, 1995.

GR02. Joseph A. Goguen and Grigore Roşu. Institution morphisms.Formal Aspects of
Computing, 13(3-5):274–307, 2002.

GR04. Joseph A. Goguen and Grigore Roşu. Composing hidden information modules over
inclusive institutions. InFrom Object-Orientation to Formal Methods. Essays in
Memory of Ole-Johan Dahl, Lecture Notes in Computer Science, volume 2635, pages
96–123. Springer, 2004.

Grä79. George A. Grätzer.Universal Algebra. Springer, second edition, 1979.
GS90. Carl Gunter and Dana Scott. Semantic domains. In Jan van Leeuwen, editor,Hand-

book of Theoretical Computer Science. Volume B (Formal Models and Semantics),
pages 633–674. North-Holland and MIT Press, 1990.

GTW76. Joseph Goguen, James Thatcher, and Eric Wagner. An initial algebra approach to
the specification, correctness and implementation of abstract data types. Technical
Report RC 6487, IBM Watson Research Center, Yorktown Heights NY, 1976. Also
in: Current Trends in Programming Methodology. Volume IV (Data Structuring)(ed.
R.T. Yeh), Prentice-Hall, 80–149, 1978.

GTWW73. Joseph Goguen, James Thatcher, Eric Wagner, and Jesse Wright. A junction between
computer science and category theory, I: Basic concepts and examples (part 1). Tech-
nical Report RC 4526, IBM Watson Research Center, Yorktown Heights NY, 1973.

GTWW75. Joseph Goguen, James Thatcher, Eric Wagner, and Jesse Wright. An introduction to
categories, algebraic theories and algebras. Technical Report RC 5369, IBM Watson
Research Center, Yorktown Heights NY, 1975.

GTWW77. Joseph Goguen, James Thatcher, Eric Wagner, and Jesse Wright. Initial algebra se-
mantics and continuous algebras.Journal of the Association for Computing Machin-
ery, 24(1):68–95, 1977.

Gut75. John Guttag.The Specification and Application to Programming of Abstract Data
Types. PhD thesis, University of Toronto, Department of Computer Science, 1975.

Hag87. Tatsuya Hagino.A Categorical Programming Language. PhD thesis, University of
Edinburgh, Department of Computer Science, 1987.

Häh01. Reiner Ḧahnle. Tableaux and related methods. In John Alan Robinson and Andrei
Voronkov, editors,Handbook of Automated Reasoning, pages 100–178. Elsevier and
MIT Press, 2001.

Hal70. Paul R. Halmos.Naive Set Theory. Undergraduate Texts in Mathematics. Springer,
1970.

Hat82. William Hatcher.The Logical Foundations of Mathematics. Foundations and Philos-
ophy of Science and Technology. Pergamon Press, 1982.

Hay94. Susumu Hayashi. Singleton, union and intersection types for program extraction.
Information and Computation, 109(1/2):174–210, 1994.

Hee86. Jan Heering. Partial evaluation andω-completeness of algebraic specifications.The-
oretical Computer Science, 43:149–167, 1986.

Hen91. Rolf Hennicker. Context induction: A proof principle for behavioural abstractions
and algebraic implementations.Formal Aspects of Computing, 3(4):326–345, 1991.

HHP93. Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
Journal of the Association for Computing Machinery, 40(1):143–184, January 1993.

HHWT97. Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HYTECH: A model
checker for hybrid systems.Software Tools for Technology Transfer, 1(1–2):110–
122, 1997.

Hig63. Phillip J. Higgins. Algebras with a scheme of operators.Mathematische Nachrichten,
27:115–132, 1963.

HLST00. Furio Honsell, John Longley, Donald Sannella, and Andrzej Tarlecki. Constructive
data refinement in typed lambda calculus. InProceedings of the 3rd International
Conference on Foundations of Software Science and Computation Structures. Euro-
pean Joint Conferences on Theory and Practice of Software (ETAPS 2000), Berlin,
Lecture Notes in Computer Science, volume 1784, pages 161–176. Springer, 2000.

Page: 541 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

542 References

Hoa72. C. A. R. Hoare. Proof of correctness of data representations.Acta Informatica,
1:271–281, 1972.

HS73. Horst Herrlich and George E. Strecker.Category Theory: An Introduction. Allyn and
Bacon, 1973.

HS96. Martin Hofmann and Donald Sannella. On behavioural abstraction and behavioural
satisfaction in higher-order logic.Theoretical Computer Science, 167:3–45, 1996.

HS02. Furio Honsell and Donald Sannella. Prelogical relations.Information and Computa-
tion, 178:23–43, 2002.

HST94. Robert Harper, Donald Sannella, and Andrzej Tarlecki. Structured presentations and
logic representations.Annals of Pure and Applied Logic, 67:113–160, 1994.

Hus92. Heinrich Hussmann. Nondeterministic algebraic specifications and nonconfluent term
rewriting. Journal of Logic Programming, 12(1–4):237–255, 1992.

HWB97. Rolf Hennicker, Martin Wirsing, and Michel Bidoit. Proof systems for struc-
tured specifications with observability operators.Theoretical Computer Science,
173(2):393–443, 1997.

Jac99. Bart Jacobs.Categorical Logic and Type Theory. Number 141 in Studies in Logic
and the Foundations of Mathematics. Elsevier Science, 1999.

JL87. Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. InProceedings of
the 14th ACM Symposium on Principles of Programming Languages, Munich, pages
111–119, 1987.

JNW96. Andŕe Joyal, Mogens Nielsen, and Glynn Winskel. Bisimulation from open maps.
Information and Computation, 127(2):164–185, 1996.

JOE95. Rosa M. Jiḿenez, Fernando Orejas, and Hartmut Ehrig. Compositionality and com-
patibility of parameterization and parameter passing in specification languages.Math-
ematical Structures in Computer Science, 5(2):283–314, 1995.

Joh02. Peter T. Johnstone.Sketches of an Elephant: A Topos Theory Compendium. Oxford
Logic Guides Series. Clarendon Press, 2002.

Jon80. Cliff B. Jones.Software Development: A Rigorous Approach. Prentice-Hall, 1980.
Jon89. Hans B.M. Jonkers. An introduction to COLD-K. In Martin Wirsing and Jan A.

Bergstra, editors,Proceedings of the Workshop on Algebraic Methods: Theory, Tools
and Applications, Lecture Notes in Computer Science, volume 394, pages 139–205.
Springer, 1989.

JR97. Bart Jacobs and Jan Rutten. A tutorial on (co)algebras and (co)induction.Bulletin of
the European Association for Theoretical Computer Science, 62:222–259, 1997.

KB70. Donald E. Knuth and Peter B. Bendix. Simple word problems in universal algebras.
In J. Leech, editor,Computational Problems in Abstract Algebra, pages 263–297.
Pergamon Press, 1970.

Kir99. Hélène Kirchner. Term rewriting. In Egidio Astesiano, Hans-Jörg Kreowski, and
Bernd Krieg-Br̈uckner, editors,Algebraic Foundations of Systems Specification, chap-
ter 9, pages 273–320. Springer, 1999.

KKM88. Claude Kirchner, H́elène Kirchner, and José Meseguer. Operational semantics of
OBJ-3. In Timo Lepisẗo and Arto Salomaa, editors,Proceedings of the 15th Inter-
national Colloquium on Automata, Languages and Programming, Tampere,Lecture
Notes in Computer Science, volume 317, pages 287–301. Springer, 1988.

Klo92. Jan Klop. Term rewriting systems. In Samson Abramsky, Dov Gabbay, and Tom
Maibaum, editors,Handbook of Logic in Computer Science. Volume 2 (Background:
Computational Structures), pages 1–116. Oxford University Press, 1992.

KM87. Deepak Kapur and David R. Musser. Proof by consistency.Artificial Intelligence,
31(2):125–157, 1987.

KR71. Heinz Kaphengst and Horst Reichel. Algebraische Algorithmentheorie. Technical
Report WIB 1, VEB Robotron, Zentrum für Forschung und Technik, Dresden, 1971.

Kre87. Hans-J̈org Kreowski. Partial algebras flow from algebraic specifications. In
T. Ottmann, editor,Proceedings of the 14th International Colloquium on Automata,
Languages and Programming, Karlsruhe,Lecture Notes in Computer Science, vol-
ume 267, pages 521–530. Springer, 1987.

Page: 542 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

References 543

KST97. Stefan Kahrs, Donald Sannella, and Andrzej Tarlecki. The definition of Extended
ML: A gentle introduction.Theoretical Computer Science, 173:445–484, 1997.

KTB91. Beata Konikowska, Andrzej Tarlecki, and Andrzej Blikle. A three-valued logic for
software specification and validation.Fundamenta Informaticae, 14(4):411–453,
1991.

Las98. Sławomir Lasota. Open maps as a bridge between algebraic observational equivalence
and bisimilarity. In Francesco Parisi-Presicce, editor,Recent Trends in Data Type
Specification. Selected Papers from the 12th International Workshop on Specification
of Abstract Data Types, Tarquinia,Lecture Notes in Computer Science, volume 1376,
pages 285–299. Springer, 1998.

Law63. F. William Lawvere. Functorial Semantics of Algebraic Theories. PhD thesis,
Columbia University, 1963.

LB88. Butler Lampson and Rod Burstall. Pebble, a kernel language for modules and abstract
data types.Information and Computation, 76(2/3):278–346, 1988.

LEW96. Jacques Loeckx, Hans-Dieter Ehrich, and Markus Wolf.Specification of Abstract
Data Types. John Wiley and Sons, 1996.

Lin03. Kai Lin. Machine Support for Behavioral Algebraic Specification and Verification.
PhD thesis, University of California, San Diego, 2003.

Lip83. Udo Lipeck. Ein algebraischer Kalk̈ul für einen strukturierten Entwurf von Daten-
abstraktionen. PhD thesis, Universität Dortmund, 1983.

LLD06. Dorel Lucanu, Yuan-Fang Li, and Jin Song Dong. Semantic Web languages—towards
an institutional perspective. In Kokichi Futatsugi, Jean-Pierre Jouannaud, and José
Meseguer, editors,Algebra, Meaning and Computation: Essays Dedicated to Joseph
A. Goguen on the Occasion of His 65th Birthday, Lecture Notes in Computer Science,
volume 4060, pages 99–123. Springer, 2006.

LS86. Joachim Lambek and Philip J. Scott.Introduction to Higher-Order Categorical Logic.
Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1986.

LS00. Hugo Lourenço and Aḿılcar Sernadas. An institution of hybrid systems. In Didier
Bert, Christine Choppy, and Peter D. Mosses, editors,Recent Trends in Algebraic
Development Techniques. Selected Papers from the 14th International Workshop on
Algebraic Development Techniques, Château de Bonas,Lecture Notes in Computer
Science, volume 1827, pages 219–236. Springer, 2000.

Luo93. Zhaohui Luo. Program specification and data refinement in type theory.Mathematical
Structures in Computer Science, 3(3):333–363, 1993.

Mac71. Saunders Mac Lane.Categories for the Working Mathematician. Springer, 1971.
Mac84. David B. MacQueen. Modules for Standard ML. InProceedings of the 1984 ACM

Conference on LISP and Functional Programming, pages 198–207, 1984.
MAH06. Till Mossakowski, Serge Autexier, and Dieter Hutter. Development graphs — proof

management for structured specifications.Journal of Logic and Algebraic Program-
ming, 67(1–2):114–145, 2006.

Mai72. Tom Maibaum. The characterization of the derivation trees of context free sets of
terms as regular sets. InProceedings of the 13th Annual IEEE Symposium on Switch-
ing and Automata Theory, pages 224–230, 1972.

Maj77. Mila E. Majster. Limits of the “algebraic” specification of abstract data types.ACM
SIGPLAN Notices, 12(10):37–42, 1977.

Mal71. Anatoly Malcev. Quasiprimitive classes of abstract algebras in the metamathematics
of algebraic systems. InMathematics of Algebraic Systems: Collected Papers, 1936-
67, number 66 in Studies in Logic and Mathematics, pages 27–31. North-Holland,
1971.

Man76. Ernest G. Manes.Algebraic Theories. Springer, 1976.
May85. Brian Mayoh. Galleries and institutions. Technical Report DAIMI PB-191, Aarhus

University, 1985.
Mei92. Karl Meinke. Universal algebra in higher types.Theoretical Computer Science,

100:385–417, 1992.

Page: 543 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

544 References

Mes89. Jośe Meseguer. General logics. In H.-D. Ebbinghaus, editor,Logic Colloquium ’87,
Granada, pages 275–329. North-Holland, 1989.

Mes92. Jośe Meseguer. Conditional rewriting logic as a unified model of concurrency.Theo-
retical Computer Science, 96(1):73–155, 1992.

Mes98. Jośe Meseguer. Membership algebra as a logical framework for equational specifica-
tion. In Francesco Parisi-Presicce, editor,Recent Trends in Data Type Specification.
Selected Papers from the 12th International Workshop on Specification of Abstract
Data Types, Tarquinia,Lecture Notes in Computer Science, volume 1376, pages 18–
61. Springer, 1998.

Mes09. Jośe Meseguer. Order-sorted parameterization and induction. In Jens Palsberg, editor,
Semantics and Algebraic Specification: Essays Dedicated to Peter D. Mosses on the
Occasion of His 60th Birthday, Lecture Notes in Computer Science, volume 5700,
pages 43–80. Springer, 2009.

MG85. Jośe Meseguer and Joseph Goguen. Initiality, induction and computability. In Mau-
rice Nivat and John C. Reynolds, editors,Algebraic Methods in Semantics, pages
459–541. Cambridge, 1985.

MGDT07. Till Mossakowski, Joseph Goguen, Rǎzvan Diaconescu, and Andrzej Tarlecki. What
is a logic? In Jean-Yves Beziau, editor,Logica Universalis: Towards a General The-
ory of Logic, pages 111–135. Birkhäuser, 2007.

MHST08. Till Mossakowski, Anne Haxthausen, Donald Sannella, and Andrzej Tarlecki. CASL
— the common algebraic specification language. In Dines Bjørner and Martin Hen-
son, editors,Logics of Specification Languages, pages 241–298. Springer, 2008.

Mid93. Aart Middeldorp. Modular properties of conditional term rewriting systems.Infor-
mation and Computation, 104(1):110–158, 1993.

Mil71. Robin Milner. An algebraic definition of simulation between programs. InPro-
ceedings of the 2nd International Joint Conference on Artificial Intelligence, pages
481–489, 1971.

Mil77. Robin Milner. Fully abstract models of typedλ -calculi. Theoretical Computer Sci-
ence, 4(1):1–22, 1977.

Mil89. Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.
Mit96. John C. Mitchell.Foundations of Programming Languages. MIT Press, 1996.
MM84. Bernd Mahr and Johann Makowsky. Characterizing specification languages which

admit initial semantics.Theoretical Computer Science, 31:49–60, 1984.
MML07. Till Mossakowski, Christian Maeder, and Klaus Lüttich. The heterogeneous tool set,

HETS. In Orna Grumberg and Michael Huth, editors,Proceedings of the 13th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems. European Joint Conferences on Theory and Practice of Software (ETAPS 2007),
Braga,Lecture Notes in Computer Science, volume 4424, pages 519–522. Springer,
2007. See alsohttp://www.informatik.uni-bremen.de/cofi/hets/ .

Mog91. Eugenio Moggi. Notions of computation and monads.Information and Computation,
93:55–92, 1991.

Moo56. Edward F. Moore. Gedanken-experiments on sequential machines. In Claude E.
Shannon and John McCarthy, editors,Annals of Mathematics Studies 34, Automata
Studies, pages 129–153. Princeton University Press, 1956.

Mos89. Peter D. Mosses. Unified algebras and modules. InProceedings of the 16th ACM
Symposium on Principles of Programming Languages, Austin, pages 329–343, 1989.

Mos93. Peter Mosses. The use of sorts in algebraic specifications. In Michel Bidoit and Chris-
tine Choppy, editors,Recent Trends in Data Type Specification. Selected Papers from
the 8th Workshop on Specification of Abstract Data Types joint with the 3rdCOM-
PASS Workshop, Dourdan,Lecture Notes in Computer Science, volume 655, pages
66–91. Springer, 1993.

Mos96a. Till Mossakowski. Different types of arrow between logical frameworks. In Fried-
helm Meyer auf der Heide and Burkhard Monien, editors,Proceedings of the 23rd
International Colloquium Automata, Languages and Programming, Paderborn,Lec-
ture Notes in Computer Science, volume 1099, pages 158–169. Springer, 1996.

Page: 544 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

http://www.informatik.uni-bremen.de/cofi/hets/

References 545

Mos96b. Till Mossakowski.Representations, Hierarchies and Graphs of Institutions. PhD
thesis, Universiẗat Bremen, 1996.

Mos00. Till Mossakowski. Specification in an arbitrary institution with symbols. In Didier
Bert, Christine Choppy, and Peter D. Mosses, editors,Recent Trends in Algebraic
Development Techniques. Selected Papers from the 14th International Workshop on
Algebraic Development Techniques, Château de Bonas,Lecture Notes in Computer
Science, volume 1827, pages 252–270. Springer, 2000.

Mos02. Till Mossakowski. Comorphism-based Grothendieck logics. In Krzysztof Diks and
Wojciech Rytter, editors,Proceedings of the 27th Symposium on Mathematical Foun-
dations of Computer Science, Warsaw,Lecture Notes in Computer Science, volume
2420, pages 593–604. Springer, 2002.

Mos03. Till Mossakowski. Foundations of heterogeneous specification. In Martin Wirsing,
Dirk Pattinson, and Rolf Hennicker, editors,Recent Trends in Algebraic Development
Techniques.. Selected Papers from the 16th International Workshop on Algebraic De-
velopment Techniques, Frauenchiemsee,Lecture Notes in Computer Science, volume
2755, pages 359–375. Springer, 2003.

Mos04. Peter D. Mosses, editor. CASL Reference Manual. Number 2960 in Lecture Notes in
Computer Science. Springer, 2004.

Mos05. Till Mossakowski. Heterogeneous Specification and the Heterogeneous Tool Set.
Habilitation thesis, Universität Bremen, 2005.

MS85. David MacQueen and Donald Sannella. Completeness of proof systems for equa-
tional specifications.IEEE Transactions on Software Engineering, SE-11(5):454–
461, 1985.

MSRR06. Till Mossakowski, Lutz Schröder, Markus Roggenbach, and Horst Reichel.
Algebraic-coalgebraic specification in COCASL. Journal of Logic and Algebraic Pro-
gramming, 67(1–2):146–197, 2006.

MSS90. Vincenzo Manca, Antonino Salibra, and Giuseppe Scollo. Equational type logic.
Theoretical Computer Science, 77(1–2):131–159, 1990.

MST04. Till Mossakowski, Donald Sannella, and Andrzej Tarlecki. A simple refinement lan-
guage for CASL. In Jośe Fiadeiro, editor,Recent Trends in Algebraic Development
Techniques.. Selected Papers from the 17th International Workshop on Algebraic De-
velopment Techniques, Barcelona,Lecture Notes in Computer Science, volume 3423,
pages 162–185. Springer, 2004.

MT92. Karl Meinke and John Tucker. Universal algebra. In Samson Abramsky, Dov Gab-
bay, and Tom Maibaum, editors,Handbook of Logic in Computer Science. Volume
1 (Background: Mathematical Structures), pages 189–409. Oxford University Press,
1992.

MT93. V. Wiktor Marek and Mirosław Truszczyński. Nonmonotonic Logics: Context-
Dependent Reasoning. Springer, 1993.

MT94. David B. MacQueen and Mads Tofte. A semantics for higher-order functors. In
Donald Sannella, editor,Proceedings of the 5th European Symposium on Program-
ming, Edinburgh,Lecture Notes in Computer Science, volume 788, pages 409–423.
Springer, 1994.

MT09. Till Mossakowski and Andrzej Tarlecki. Heterogeneous logical environments for
distributed specifications. In Andrea Corradini and Ugo Montanari, editors,Recent
Trends in Algebraic Development Techniques.. Selected Papers from the 19th Interna-
tional Workshop on Algebraic Development Techniques, Pisa,Lecture Notes in Com-
puter Science, volume 5486, pages 266–289. Springer, 2009.

MTD09. Till Mossakowski, Andrzej Tarlecki, and Răzvan Diaconescu. What is a logic trans-
lation?Logica Universalis, 3(1):95–124, 2009.

MTHM97. Robin Milner, Mads Tofte, Robert Harper, and David MacQueen.The Definition of
Standard ML (Revised). MIT Press, 1997.

MTP97. Till Mossakowski, Andrzej Tarlecki, and Wiesław Pawłowski. Combining and repre-
senting logical systems. In Eugenio Moggi and Giuseppe Rosolini, editors,Proceed-
ings of the 7th International Conference on Category Theory and Computer Science,

Page: 545 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

546 References

Santa Margherita Ligure,Lecture Notes in Computer Science, volume 1290, pages
177–196. Springer, 1997.

MTP98. Till Mossakowski, Andrzej Tarlecki, and Wiesław Pawłowski. Combining and rep-
resenting logical systems using model-theoretic parchments. In Francesco Parisi-
Presicce, editor,Recent Trends in Data Type Specification. Selected Papers from the
12th International Workshop on Specification of Abstract Data Types, Tarquinia,Lec-
ture Notes in Computer Science, volume 1376, pages 349–364. Springer, 1998.

MTW88. Bernhard M̈oller, Andrzej Tarlecki, and Martin Wirsing. Algebraic specifications of
reachable higher-order algebras. In Donald Sannella and Andrzej Tarlecki, editors,
Recent Trends in Data Type Specification. Selected Papers from the 5th Workshop on
Specification of Abstract Data Types, Gullane,Lecture Notes in Computer Science,
volume 332, pages 154–169. Springer, 1988.

Mus80. David Musser. On proving inductive properties of abstract data types. InProceedings
of the 7th ACM Symposium on Principles of Programming Languages, Las Vegas,
pages 154–162, 1980.

MW98. Alfio Martini and Uwe Wolter. A single perspective on arrows between institutions.
In Armando Haeberer, editor,Proceedings of the 7th International Conference on Al-
gebraic Methodology and Software Technology, Manaus,Lecture Notes in Computer
Science, volume 1548, pages 486–501. Springer, 1998.

Nel91. Greg Nelson, editor.Systems Programming in Modula-3. Prentice-Hall, 1991.
Nip86. Tobias Nipkow. Non-deterministic data types: Models and implementations.Acta

Informatica, 22(6):629–661, 1986.
NO88. Pilar Nivela and Fernando Orejas. Initial behaviour semantics for algebraic speci-

fications. In Donald Sannella and Andrzej Tarlecki, editors,Recent Trends in Data
Type Specification. Selected Papers from the 5th Workshop on Specification of Ab-
stract Data Types, Gullane,Lecture Notes in Computer Science, volume 332, pages
184–207. Springer, 1988.

Nou81. Farshid Nourani. On induction for programming logic: Syntax, semantics, and induc-
tive closure.Bulletin of the European Association for Theoretical Computer Science,
13:51–64, 1981.

Oka98. Chris Okasaki.Purely Functional Data Structures. Cambridge University Press,
1998.

ONS93. Fernando Orejas, Marisa Navarro, and Ana Sánchez. Implementation and behavioural
equivalence: A survey. In Michel Bidoit and Christine Choppy, editors,Recent Trends
in Data Type Specification. Selected Papers from the 8th Workshop on Specification of
Abstract Data Types joint with the 3rdCOMPASSWorkshop, Dourdan,Lecture Notes
in Computer Science, volume 655, pages 93–125. Springer, 1993.

Ore83. Fernando Orejas. Characterizing composability of abstract implementations. In
Marek Karpinski, editor,Proceedings of the 1983 International Conference on Foun-
dations of Computation Theory, Borgholm,Lecture Notes in Computer Science, vol-
ume 158, pages 335–346. Springer, 1983.

Pad85. Peter Padawitz. Parameter preserving data type specifications. In Hartmut Ehrig,
Christiane Floyd, Maurice Nivat, and James Thatcher, editors,TAPSOFT’85: Pro-
ceedings of the International Joint Conference on Theory and Practice of Software
Development. Volume 2: Colloquium on Software Engineering, Berlin,Lecture Notes
in Computer Science, volume 186, pages 323–341. Springer, 1985.

Pad99. Peter Padawitz. Proof in flat specifications. In Egidio Astesiano, Hans-Jörg Kreowski,
and Bernd Krieg-Br̈uckner, editors,Algebraic Foundations of Systems Specification,
chapter 10, pages 321–384. Springer, 1999.

Pau87. Laurence Paulson.Logic and Computation: Interactive Proof with Cambridge LCF.
Cambridge University Press, 1987.

Pau96. Laurence Paulson.ML for the Working Programmer. Cambridge University Press,
second edition, 1996.

Paw96. Wiesław Pawłowski. Context institutions. In Magne Haveraaen, Olaf Owe, and Ole-
Johan Dahl, editors,Recent Trends in Data Type Specification. Selected Papers from

Page: 546 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

References 547

the 11th Workshop on Specification of Abstract Data Types, Oslo,Lecture Notes in
Computer Science, volume 1130, pages 436–457. Springer, 1996.

Pet10. Marius Petria.Generic Refinements for Behavioural Specifications. PhD thesis, Uni-
versity of Edinburgh, School of Informatics, 2010.

Pey03. Simon Peyton Jones, editor.Haskell 98 Language and Libraries: The Revised Report.
Cambridge University Press, 2003.

Pho92. Wesley Phoa. An introduction to fibrations, topos theory, the effective topos and
modest sets. Technical Report ECS-LFCS-92-208, LFCS, Department of Computer
Science, University of Edinburgh, 1992.

Pie91. Benjamin C. Pierce.Basic Category Theory for Computer Scientists. MIT Press,
1991.

Plo77. Gordon D. Plotkin. LCF considered as a programming language.Theoretical Com-
puter Science, 5(3):223–255, 1977.

Poi86. Axel Poigńe. On specifications, theories, and models with higher types.Information
and Control, 68(1–3):1–46, 1986.

Poi88. Axel Poigńe. Foundations are rich institutions, but institutions are poor foundations.
In Hartmut Ehrig, Horst Herrlich, Hans-Jörg Kreowski, and Gerhard Preuß, editors,
Proceedings of the International Workshop on Categorical Methods in Computer Sci-
ence with Aspects from Topology, Berlin,Lecture Notes in Computer Science, volume
393, pages 82–101. Springer, 1988.

Poi90. Axel Poigńe. Parametrization for order-sorted algebraic specification.Journal of
Computer and System Sciences, 40:229–268, 1990.

Poi92. Axel Poigńe. Basic category theory. In Samson Abramsky, Dov Gabbay, and Tom
Maibaum, editors,Handbook of Logic in Computer Science. Volume 1 (Background:
Mathematical Structures), pages 413–640. Oxford University Press, 1992.

Pos47. Emil Post. Recursive unsolvability of a problem of Thue.Journal of Symbolic Logic,
12:1–11, 1947.

PS83. Helmuth Partsch and Ralf Steinbrüggen. Program transformation systems.ACM
Computing Surveys, 15(3):199–236, 1983.

PŞR09. Andrei Popescu, Traian Florin Şerbănuţ̆a, and Grigore Roşu. A semantic approach to
interpolation.Theoretical Computer Science, 410(12–13):1109–1128, 2009.

QG93. Xiaolei Qian and Allen Goldberg. Referential opacity in nondeterministic data re-
finement. ACM Letters on Programming Languages and Systems, 2(1–4):233–241,
1993.

Qia93. Zhenyu Qian. An algebraic semantics of higher-order types with subtypes.Acta
Informatica, 30(6):569–607, 1993.

RAC99. Gianna Reggio, Egidio Astesiano, and Christine Choppy. CASL-LTL: a CASL ex-
tension for dynamic systems — summary. Technical Report DISI-TR-99-34, DISI,
Universit̀a di Genova, 1999.

RB88. David Rydeheard and Rod Burstall.Computational Category Theory. Prentice Hall
International Series in Computer Science. Prentice Hall, 1988.

Rei80. Horst Reichel. Initially-restricting algebraic theories. In Piotr Dembiński, editor,
Proceedings of the 9th Symposium on Mathematical Foundations of Computer Sci-
ence, Lecture Notes in Computer Science, volume 88, pages 504–514, Rydzyna, 1980.
Springer.

Rei81. Horst Reichel. Behavioural equivalence — a unifying concept for initial and final
specification methods. InProceedings of the 3rd Hungarian Computer Science Con-
ference, pages 27–39, 1981.

Rei85. Horst Reichel. Behavioural validity of equations in abstract data types. InProceed-
ings of the Vienna Conference on Contributions to General Algebra, pages 301–324.
Teubner-Verlag, 1985.

Rei87. Horst Reichel.Initial Computability, Algebraic Specifications, and Partial Algebras.
Oxford University Press, 1987.

Page: 547 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

548 References

RG98. Grigore Roşu and Joseph A. Goguen. Hidden congruent deduction. In Ricardo Ca-
ferra and Gernot Salzer, editors,Proceedings of the 1998 Workshop on First-Order
Theorem Proving, Vienna, Lecture Notes in Artificial Intelligence, volume 1761,
pages 251–266. Springer, 1998.

RG00. Grigore Roşu and Joseph A. Goguen. On equational Craig interpolation.Journal of
Universal Computer Science, 6(1):194–200, 2000.

Rod91. Pieter Hendrik Rodenburg. A simple algebraic proof of the equational interpolation
theorem.Algebra Universalis, 28:48–51, 1991.

Rog06. Markus Roggenbach. CSP-CASL — a new integration of process algebra and alge-
braic specification.Theoretical Computer Science, 354(1):42–71, 2006.

Roş94. Grigore Roşu. The institution of order-sorted equational logic.Bulletin of the Euro-
pean Association for Theoretical Computer Science, 53:250–255, 1994.

Roş00. Grigore Roşu.Hidden Logic. PhD thesis, University of California at San Diego,
2000.

RRS00. Sergei Romanenko, Claudio Russo, and Peter Sestoft. Moscow ML owner’s manual.
Technical report, Royal Veterinary and Agricultural University, Copenhagen, 2000.
Available fromhttp://www.itu.dk/people/sestoft/mosml/manual.
pdf .

RS63. Helena Rasiowa and Roman Sikorski.The Mathematics of Metamathematics. Num-
ber 41 in Monografie Matematyczne. Polish Scientific Publishers, 1963.

Rus98. Claudio Russo.Types for Modules. PhD thesis, University of Edinburgh, Depart-
ment of Computer Science, 1998. Also in:Electronic Notes in Theoretical Computer
Science, 60, 2003.

Rut00. Jan J.M.M. Rutten. Universal coalgebra: A theory of systems.Theoretical Computer
Science, 249(1):3–80, 2000.

San82. Donald Sannella.Semantics, Implementation and Pragmatics of Clear, a Program
Specification Language. PhD thesis, University of Edinburgh, Department of Com-
puter Science, 1982.

SB83. Donald Sannella and Rod Burstall. Structured theories in LCF. In Giorgio Ausiello
and Marco Protasi, editors,Proceedings of the 8th Colloquium on Trees in Algebra
and Programming, L’Aquila, Lecture Notes in Computer Science, volume 159, pages
377–391. Springer, 1983.

Sch86. David Schmidt.Denotational Semantics: A Methodology for Language Development.
Allyn and Bacon, 1986.

Sch87. Oliver Schoett.Data Abstraction and the Correctness of Modular Programs. PhD
thesis, University of Edinburgh, Department of Computer Science, 1987.

Sch90. Oliver Schoett. Behavioural correctness of data representations.Science of Computer
Programming, 14(1):43–57, 1990.

Sch92. Oliver Schoett. Two impossibility theorems on behaviour specification of abstract
data types.Acta Informatica, 29(6/7):595–621, 1992.

Sco76. Dana Scott. Data types as lattices.SIAM Journal of Computing, 5(3):522–587, 1976.
Sco04. Giuseppe Scollo. An institution isomorphism for planar graph colouring. In Rudolf

Berghammer, Bernhard M̈oller, and Georg Struth, editors,Relational and Kleene-
Algebraic Methods in Computer Science. Selected Papers from the 7th International
Seminar on Relational Methods in Computer Science and 2nd International Workshop
on Applications of Kleene Algebra, Bad Malente,Lecture Notes in Computer Science,
volume 3051, pages 252–264. Springer, 2004.

SCS94. Aḿılcar Sernadas, José F́elix Costa, and Cristina Sernadas. An institution of ob-
ject behaviour. In Hartmut Ehrig and Fernando Orejas, editors,Recent Trends in
Data Type Specification. Selected Papers from the 9th Workshop on Specification of
Abstract Data Types joint with the 4thCOMPASS Workshop, Caldes de Malavella,
Lecture Notes in Computer Science, volume 785, pages 337–350. Springer, 1994.

Sel72. Alan Selman. Completeness of calculi for axiomatically defined classes of algebras.
Algebra Universalis, 2:20–32, 1972.

Page: 548 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

http://www.itu.dk/people/sestoft/mosml/manual.pdf
http://www.itu.dk/people/sestoft/mosml/manual.pdf

References 549

SH00. Christopher A. Stone and Robert Harper. Deciding type equivalence in a language
with singleton kinds. InProceedings of the 27th ACM Symposium on Principles of
Programming Languages, Boston, pages 214–227, 2000.

Sha08. Stewart Shapiro. Classical logic. In Edward N. Zalta, editor,The Stan-
ford Encyclopedia of Philosophy. CSLI, Stanford University, fall 2008 edi-
tion, 2008. Available fromhttp://plato.stanford.edu/archives/
fall2008/entries/logic-classical/ .

SM09. Lutz Schr̈oder and Till Mossakowski. HASCASL: Integrated higher-order specifica-
tion and program development.Theoretical Computer Science, 410(12–13):1217–
1260, 2009.

Smi93. Douglas R. Smith. Constructing specification morphisms.Journal of Symbolic Com-
putation, 15(5/6):571–606, 1993.

Smi06. Douglas R. Smith. Composition by colimit and formal software development. In Ko-
kichi Futatsugi, Jean-Pierre Jouannaud, and José Meseguer, editors,Algebra, Mean-
ing, and Computation, Essays Dedicated to Joseph A. Goguen on the Occasion of His
65th Birthday, Lecture Notes in Computer Science, volume 4060, pages 317–332.
Springer, 2006.

SML05. Lutz Schr̈oder, Till Mossakowski, and Christoph Lüth. Type class polymorphism
in an institutional framework. In José Fiadeiro, editor,Recent Trends in Algebraic
Development Techniques.. Selected Papers from the 17th International Workshop on
Algebraic Development Techniques, Barcelona,Lecture Notes in Computer Science,
volume 3423, pages 234–248. Springer, 2005.

Smo86. Gert Smolka. Order-sorted Horn logic: Semantics and deduction. Technical Report
SR-86-17, Universiẗat Kaiserslautern, Fachbereich Informatik, 1986.

SMT+05. Lutz Schr̈oder, Till Mossakowski, Andrzej Tarlecki, Bartek Klin, and Piotr Hoffman.
Amalgamation in the semantics of CASL. Theoretical Computer Science, 331(1):215–
247, 2005.

Spi92. J. Michael Spivey.The Z Notation: A Reference Manual. Prentice Hall International
Series in Computer Science, second edition, 1992.

SS93. Antonino Salibra and Guiseppe Scollo. A soft stairway to institutions. In Michel
Bidoit and Christine Choppy, editors,Recent Trends in Data Type Specification. Se-
lected Papers from the 8th Workshop on Specification of Abstract Data Types joint
with the 3rdCOMPASSWorkshop, Dourdan,Lecture Notes in Computer Science, vol-
ume 655, pages 310–329. Springer, 1993.

SS96. Antonino Salibra and Giuseppe Scollo. Interpolation and compactness in categories
of pre-institutions. Mathematical Structures in Computer Science, 6(3):261–286,
1996.

SST92. Donald Sannella, Stefan Sokołowski, and Andrzej Tarlecki. Toward formal devel-
opment of programs from algebraic specifications: Parameterisation revisited.Acta
Informatica, 29(8):689–736, 1992.

ST85. Donald Sannella and Andrzej Tarlecki. Program specification and development in
Standard ML. InProceedings of the 12th ACM Symposium on Principles of Pro-
gramming Languages, New Orleans, pages 67–77, 1985.

ST86. Donald Sannella and Andrzej Tarlecki. Extended ML: An institution-independent
framework for formal program development. In David H. Pitt, Samson Abramsky,
Axel Poigńe, and David E. Rydeheard, editors,Proceedings of the Tutorial and Work-
shop on Category Theory and Computer Programming, Guildford,Lecture Notes in
Computer Science, volume 240, pages 364–389. Springer, 1986.

ST87. Donald Sannella and Andrzej Tarlecki. On observational equivalence and algebraic
specification.Journal of Computer and System Sciences, 34:150–178, 1987.

ST88a. Donald Sannella and Andrzej Tarlecki. Specifications in an arbitrary institution.In-
formation and Computation, 76(2/3):165–210, 1988.

ST88b. Donald Sannella and Andrzej Tarlecki. Toward formal development of programs from
algebraic specifications: Implementations revisited.Acta Informatica, 25:233–281,
1988.

Page: 549 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

http://plato.stanford.edu/archives/fall2008/entries/logic-classical/
http://plato.stanford.edu/archives/fall2008/entries/logic-classical/

550 References

ST89. Donald Sannella and Andrzej Tarlecki. Toward formal development of ML programs:
Foundations and methodology. In Josep Dı́az and Fernando Orejas, editors,TAP-
SOFT’89: Proceedings of the International Joint Conference on Theory and Practice
of Software Development. Volume 2: Advanced Seminar on Foundations of Innovative
Software Development II and Colloquium on Current Issues in Programming Lan-
guages, Barcelona,Lecture Notes in Computer Science, volume 352, pages 375–389.
Springer, 1989.

ST97. Donald Sannella and Andrzej Tarlecki. Essential concepts of algebraic specification
and program development.Formal Aspects of Computing, 9:229–269, 1997.

ST04. Donald Sannella and Andrzej Tarlecki, editors. CASL semantics. In[Mos04]. 2004.
ST06. Donald Sannella and Andrzej Tarlecki. Horizontal composability revisited. In Ko-

kichi Futatsugi, Jean-Pierre Jouannaud, and José Meseguer, editors,Algebra, Mean-
ing and Computation: Essays Dedicated to Joseph A. Goguen on the Occasion of His
65th Birthday, Lecture Notes in Computer Science, volume 4060, pages 296–316.
Springer, 2006.

ST08. Donald Sannella and Andrzej Tarlecki. Observability concepts in abstract data
type specification, 30 years later. In Pierpaolo Degano, Rocco de Nicola, and José
Meseguer, editors,Concurrency, Graphs and Models: Essays Dedicated to Ugo Mon-
tanari on the Occasion of his 65th Birthday, Lecture Notes in Computer Science.
Springer, 2008.

Str67. Christopher Strachey. Fundamental concepts in programming languages. InNATO
Summer School in Programming, Copenhagen. 1967. Also in:Higher-Order and
Symbolic Computation13(1–2):11–49, 2000.

SU06. Morten H. Sørensen and Paweł Urzyczyn.Lectures on the Curry-Howard Isomor-
phism. Number 149 in Studies in Logic and the Foundations of Mathematics. Elsevier
Science, 2006.

SW82. Donald Sannella and Martin Wirsing. Implementation of parameterised specifica-
tions. In Mogens Nielsen and Erik Meineche Schmidt, editors,Proceeding of the
9th International Colloquium on Automata, Languages and Programming, Aarhus,
Lecture Notes in Computer Science, volume 140, pages 473–488. Springer, 1982.

SW83. Donald Sannella and Martin Wirsing. A kernel language for algebraic specification
and implementation. In Marek Karpinski, editor,Proceedings of the 1983 Interna-
tional Conference on Foundations of Computation Theory, Borgholm,Lecture Notes
in Computer Science, volume 158, pages 413–427. Springer, 1983.

SW99. Donald Sannella and Martin Wirsing. Specification languages. In Egidio Astesiano,
Hans-J̈org Kreowski, and Bernd Krieg-Brückner, editors,Algebraic Foundations of
Systems Specification, chapter 8, pages 243–272. Springer, 1999.

Tar85. Andrzej Tarlecki. On the existence of free models in abstract algebraic institutions.
Theoretical Computer Science, 37(3):269–304, 1985.

Tar86a. Andrzej Tarlecki. Bits and pieces of the theory of institutions. In David H. Pitt,
Samson Abramsky, Axel Poigné, and David E. Rydeheard, editors,Proceedings of the
Tutorial and Workshop on Category Theory and Computer Programming, Guildford,
Lecture Notes in Computer Science, volume 240, pages 334–360. Springer, 1986.

Tar86b. Andrzej Tarlecki. Quasi-varieties in abstract algebraic institutions.Journal of Com-
puter and System Sciences, 33(3):333–360, 1986.

Tar87. Andrzej Tarlecki. Institution representation. Unpublished note, Dept. of Computer
Science, University of Edinburgh, 1987.

Tar96. Andrzej Tarlecki. Moving between logical systems. In Magne Haveraaen, Olaf Owe,
and Ole-Johan Dahl, editors,Recent Trends in Data Type Specification. Selected Pa-
pers from the 11th Workshop on Specification of Abstract Data Types, Oslo,Lecture
Notes in Computer Science, volume 1130, pages 478–502. Springer, 1996.

Tar99. Andrzej Tarlecki. Institutions: An abstract framework for formal specification. In
Egidio Astesiano, Hans-Jörg Kreowski, and Bernd Krieg-Brückner, editors,Algebraic
Foundations of Systems Specification, chapter 4, pages 105–130. Springer, 1999.

Page: 550 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

References 551

Tar00. Andrzej Tarlecki. Towards heterogeneous specifications. In Dov Gabbay and Maarten
de Rijke, editors,Frontiers of Combining Systems 2, Studies in Logic and Computa-
tion, pages 337–360. Research Studies Press, 2000.

TBG91. Andrzej Tarlecki, Rod M. Burstall, and Joseph A. Goguen. Some fundamental alge-
braic tools for the semantics of computation. Part 3: Indexed categories.Theoretical
Computer Science, 91(2):239–264, 1991.

Ter03. Terese.Term Rewriting Systems, Cambridge Tracts in Theoretical Computer Science,
volume 55. Cambridge University Press, 2003.

Tho89. Simon Thompson. A logic for Miranda.Formal Aspects of Computing, 1(4):339–365,
1989.

TM87. Władysław M. Turski and Thomas S.E. Maibaum.Specification of Computer Pro-
grams. Addison-Wesley, 1987.

Tra93. Will Tracz. Parametrized programming in LILEANNA. InProceedings of the 1993
ACM/SIGAPP Symposium on Applied Computing, Indianapolis, pages 77–86, 1993.

TWW82. James Thatcher, Eric Wagner, and Jesse Wright. Data type specification: Parameteri-
zation and the power of specification techniques.ACM Transactions on Programming
Languages and Systems, 4(4):711–732, 1982.

Vra88. Jos L.M. Vrancken. The algebraic specification of semi-computable data types. In
Donald Sannella and Andrzej Tarlecki, editors,Recent Trends in Data Type Specifica-
tion. Selected Papers from the 5th Workshop on Specification of Abstract Data Types,
Gullane,Lecture Notes in Computer Science, volume 332, pages 249–259. Springer,
1988.

Wad89. Philip Wadler. Theorems for free! InProceedings of the 4th International ACM Con-
ference on Functional Programming Languages and Computer Architecture, London,
pages 347–359, 1989.

Wan79. Mitchell Wand. Final algebra semantics and data type extensions.Journal of Com-
puter and System Sciences, 19:27–44, 1979.

Wan82. Mitchell Wand. Specifications, models, and implementations of data abstractions.
Theoretical Computer Science, 20(1):3–32, 1982.

WB82. Martin Wirsing and Manfred Broy. An analysis of semantic models for algebraic
specifications. In Manfred Broy and Gunther Schmidt, editors,Theoretical Foun-
dations of Programming Methodology: Lecture Notes of an International Summer
School, Marktoberdorf 1981, pages 351–416. Reidel, 1982.

WB89. Martin Wirsing and Manfred Broy. A modular framework for specification and imple-
mentation. In Josep D́ıaz and Fernando Orejas, editors,TAPSOFT’89: Proceedings of
the International Joint Conference on Theory and Practice of Software Development.
Volume 1: Advanced Seminar on Foundations of Innovative Software Development I
and Colloquium on Trees in Algebra and Programming, Barcelona,Lecture Notes in
Computer Science, volume 351, pages 42–73. Springer, 1989.

WE87. Eric G. Wagner and Hartmut Ehrig. Canonical constraints for parameterized data
types.Theoretical Computer Science, 50:323–349, 1987.

Wec92. Wolfgang Wechler.Universal Algebra for Computer Scientists, EATCS Monographs
on Theoretical Computer Science, volume 25. Springer, 1992.

Wik. Wikipedia. Hash table. Available fromhttp://en.wikipedia.org/wiki/
Hash_table .

Wir82. Martin Wirsing. Structured algebraic specifications. InProceedings of the AFCET
Symposium on Mathematics for Computer Science, Paris, pages 93–107, 1982.

Wir86. Martin Wirsing. Structured algebraic specifications: A kernel language.Theoretical
Computer Science, 42(2):123–249, 1986.

Wir90. Martin Wirsing. Algebraic specification. In Jan van Leeuwen, editor,Handbook
of Theoretical Computer Science. Volume B (Formal Models and Semantics), pages
675–788. North-Holland and MIT Press, 1990.

Wir93. Martin Wirsing. Structured specifications: Syntax, semantics and proof calculus. In
Friedrich L. Bauer, Wilfried Brauer, and Helmut Schwichtenberg, editors,Logic and

Page: 551 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

http://en.wikipedia.org/wiki/Hash_table
http://en.wikipedia.org/wiki/Hash_table

552 References

Algebra of Specification: Proceedings of the NATO Advanced Study Institute, Mark-
toberdorf 1991, pages 411–442. Springer, 1993.

WM97. Michal Walicki and Sigurd Meldal. Algebraic approches to nondeterminism: An
overview.ACM Computing Surveys, 29(1):30–81, 1997.

Zil74. Steven Zilles. Abstract specification of data types. Technical Report 119, Computa-
tion Structures Group, Massachusetts Institute of Technology, 1974.

Zuc99. Elena Zucca. From static to dynamic abstract data-types: An institution transforma-
tion. Theoretical Computer Science, 216(1–2):109–157, 1999.

Page: 552 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

	Universal algebra
	Many-sorted sets
	Signatures and algebras
	Homomorphisms and congruences
	Term algebras
	Changing signatures
	Signature morphisms
	Derived signature morphisms

	Bibliographical remarks

	References

