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Chapter 1
Universal algebra

The most basic assumption of work on algebraic specification is that programs are
modelled as algebras. This point of view abstracts from the concrete details of code
and algorithms, and regards the input/output behaviour of functions and the repre-
sentation of data as primary. Representing programs in terms of sets (of data values)
and ordinary mathematical functions over these sets greatly simplifies the task of
reasoning about program correctness. See S€ctipn 0.1 for some illustrative exam-
ples and more introductory discussion on this point.

The branch of mathematics that deals with algebras in this general sense (as
opposed to the study of specific classes of algebras, such as groups and rings) is
calleduniversal algebraor sometimegeneral algebraHowever, work on univer-
sal algebra by mathematicians has concentrated almost exclusively on the special
case of single-sorted algebras with first-order total functions. The generalisation to
many-sortecbr heterogeneoualgebras is required to model programs that manip-
ulate several kinds asortsof data; further generalisations are necessary to handle
programs that fail to terminate on some inputs, that generate exceptions during exe-
cution, etc. This chapter summarizes the basic concepts and results of many-sorted
universal algebra that will be required for the rest of this book. Some extensions
useful for modelling more complex programs will be discussed later, in S¢ctipn 2.7.
In this chapter, all proofs are left as exercises for the reader.

1.1 Many-sorted sets

When using an algebra to model a program which manipulates several sorts of data,
it is natural to partition the underlying set of values in the algebra so that there is one
set of values for each sort of data. It is often convenient to manipulate such a family
of sets as a unit, in such a way that operations on this unit respect the “typing” of
data values.

The following sequence of definitions and notational conventions allow us to ma-
nipulate sorted families of sets (of functions, of relations, ...) in just the same way

15



16 1 Universal algebra

as ordinary sets (functions, relations, ...). Ordinary sets (functions, relations, ...)
correspond to the degenerate case in which there is just one sort, so these definitions
also serve to recall the notation and terminology of set theory to be used throughout
this book. LetShe a set; the notatiofKs)scs is a standard shorthand for the family
of objectsXs indexed bys € S, i.e. the function with domaifs which maps each
se Sto Xs.

Throughout this section, |I&be a set (of sorts).

Definition 1.1.1 (Many-sorted set)An S-sorted seis anS-indexed family of sets
X = (Xs)ses, Which isemptyif Xs is empty for alls € S. The emptyS-sorted set will
be written (ambiguously) ag. TheS-sorted seX is finiteif Xs is finite for alls€ S
and there is a finite s&C Ssuch thatXs = @ for all s S\ S

Let X = (Xs)ses andY = (Ys)scs be Ssorted sets. Union, intersection, Cartesian
product, disjoint union, inclusion (subset) and equalitXaindY are defined com-
ponentwise as follows:

XUY = (XsUYs)ses

XNY = (XsNVYs)scs

X XY = (Xs X Ys)ses

XY = (XsWVYs)ses (WhereXswYs = ({1} x Xs) U ({2} x Ys))

X CYiff (ifand only if) XsC Ysforallse S

X =Y iff XCY andY C X (equivalently, iffX andY are equal as functions).d0

Exercise 1.1.2Give a formal explanation of the above statement that “Ordinary
sets ... correspond to the degenerate case [of many-sorted sets] in which there is
just one sort”. How many-sorted sets are there? ad

Notation. It will be very convenient to pretend th&tC X wY andY C XwY. Al-
though this is never actually the case, it allows us to treat disjoint union in the same
way as ordinary union, the difference being that wikenY # @, XwY contains

two “copies” of the common elements and keeps track of which copy is ¥@nd

which fromY. To see that this does not cause problems, observe that there are in-
jective S-sorted functions (see the next definitioh)X — XwY andi2:Y — XWY
defined byils(x) = (1,x) for all s€ Sandx € Xs and similarly fori2. A pedant
would be able to correct what follows by simply inserting the functidnand/ori 2

where appropriate in expressions involvisg O

Exercise 1.1.3Extend the above definitions of union, intersection, product and dis-
joint union to operations ohindexed families ofS-sorted sets, for an arbitrary in-
dex set. For example, the definition for product(ig] (X )ici)s= { f:1 — Ui (Xi)s ]|

f(i) e (X)sforalliel} foreachse S O

Definition 1.1.4 (Many-sorted function).Let X = (Xs)ses andY = (Ys)scs be S
sorted sets. Ais-sorted function X — Y is anSindexed family of functiond =
(fs: Xs — Ys)ses; X is called thedomain(or sourcg of f, andY is called itscodomain
(or targed). An S-sorted functionf: X — Y is anidentity (aninclusion surjective
injective bijective . ..) if for everys € S the functionfs: Xs — Ys is an identity (an
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1.1 Many-sorted sets 17

inclusion, surjective, injective, bijective, ...). The identfysorted function orX
will be written asidy: X — X.

If f:X —Y andg:Y — Z areS-sorted functions then thesomposition fg: X —
Z is the S-sorted function defined by;g = (fs;gs)ses. That is, ifs€ Sandx € Xs
then(f;g)s(x) = gs(fs(x)) [

Let f:X — Y be anS-sorted function an&’ C X, Y’ CY beSsorted sets. The
image of X under fis the S-sorted seff (X') = (fs(X{))ses C Y, wherefs(X{) =
{fs(x) | x € X;} C Ys for all s€ S. The coimage of Y under fis the Ssorted set
f7LY') = (fg1(Y))ses € X, where f5(Y]) = {x € Xs| fs(X) € Y!} C Xs for all
sesS a

Definition 1.1.5 (Many-sorted binary relation). Let X = (Xs)ses and¥Y = (Ys)ses
be S-sorted sets. Ais-sorted binary relation between X angdwrittenRC X x Y,
is anS-indexed family of binary relationB = (Rs C Xs x Ys)scs. FOrse S x € X
andy €Ys, X Rsy (sometimes writtexx R y) means(x,y) € R.. O

The generalisation to-ary relations, fom > 0, is obvious. As usual, many-sorted
functions may be viewed as special many-sorted relations.

Definition 1.1.6 (Kernel of a many-sorted function).Let f: X — Y be anS-sorted
function. Thekernel of fis the S-sorted binary relation kéf) = (ker(fs))ses C
X x X where keffs) = {(x,y) | X,y € Xsand fs(x) = fs(y)} C Xs x Xs is the kernel
of fsforallse S O

Definition 1.1.7 (Many-sorted equivalence)Let X = (Xs)scs be anS-sorted set.
An S-sorted binary relatioR C X x X is anS-sorted equivalence (relation) oniiX
itis:

o reflexive:xRsX;

e symmetric:xRsy impliesyRsx; and

e transitive:xRyy andyRszimpliesxRsz

for all se Sandx,y,z e Xs. The symbol= is often used forgsorted) equivalence
relations.

Let = be anS-sorted equivalence oX. If s€ Sandx € Xs then theequivalence
class of x modulo= is the sefx]=, = {y € Xs | Xx=sy}. Thequotient of X modulo
= is theSsorted seiX/= = (Xs/=s)secs WhereXs/=s = {[X|=, | X € Xs} for all
sesS O

Example 1.1.8.Let S= {s1,%}, and letX andY be two S-sorted sets defined as
follows:

X = (Xs)scsWhereXs, = {0,A} andXs, = {&,0, &},

Y = (Ys)ses WhereYs, = {1,2,3} andYs, = {1,2,3}.

Let f: X — Y be theS-sorted function such that

1 This “diagrammatic” order of composition and the semicolon notation will be used consistently
throughout this book.
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18 1 Universal algebra

f={0—1A—3}
f, ={&—10—2 &— 2}

(i.e., fs (O) = 1 andfs, (A) = 3; analogously forfs,). Then the kernel of is the
S-sorted equivalence relation Kéj = (ker(fs))scs where

ker(fsl) = {<D7D>7 <A7A>}
ker(fs,) = { (., %), (0, Q). (0. 4),(4,0), (N, 4)}.

The quotient ofX modulo ke(f) is the S-sorted seiX/ker(f) = (Xs/ker(fs))scs
where

X /ker(fy) = {{O},{A}}

Xs, /ker(fs,) = {{&}, {©, #}}. 0
Exercise 1.1.9Show that iff: X — Y is anS-sorted function, then kéf) is anS
sorted equivalence oX. O

Exercise 1.1.10Show that if = is anS-sorted equivalence oX then for allse S
andx,y € Xs, [X|=, = [Y]= iff X=sV. O

=s

Notation. Subscripts selecting components ®§orted sets (functions, relations,
...) are often omitted when there is no danger of confusion. Then Exg¢rcise|1.1.10
would read: “... for als € Sandx,y € Xs, [X= = [yl= iff x=y.” 0

1.2 Signatures and algebras

The functions and data types defined by a program have names. These names are
used to compute with and reason about the program, and to build larger programs
which rely on the functionality the program provides. The connection between a
program and an algebra used to model it is provided by these names, which are at-
tached to the corresponding components of the algebra. The set of names associated
with an algebra is called its signature. The signature of an algebra defirgsmth®

of the algebra by characterising the ways in which its components may legally be
combined; the algebra itself supplies themanticdy assigning interpretations to

the names in the signature.

Definition 1.2.1 (Many-sorted signature) A (many-sorted) signaturie a pairX =
(S Q), where:

e Sis a set (of sort names); and
e QisanS' x Ssorted set (of operation names)

whereS' is the set of finite (including empty) sequences of elemeng e will
sometimes writsorty X) for Sandopg X) for Q. X is asubsignaturef a signature
I'=(8,Q)if SC S andQys C Q) forallwe S',;se S O
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1.2 Signatures and algebras 19

Many-sorted signatures will be referred toagebraicsignatures when it is neces-
sary to distinguish them from other kinds of signatures to be introduced later.

Notation. Sayingthatf:s; x--- x §; — sisinX = (S Q) means thas;...s; € S,
seSandf € Qg s, s Thenf is said to haveurity s;...s, andresult sort s The
abbreviationf: swill be used forf: e — s (e is the empty sequence). a

This definition of signature does not accommodate programs containing higher-
order functions, or functions returning multiple results. A possible extension to han-
dle higher-order functions is briefly discussed in Sedtion P.7.6. As for functions with
multiple results, a functioffi:s; x - -- x &, — t1 X - -« X try may be viewed as a family
of mfunctions

flisgx--xsy—tg fmist X -+ X S — t.

Generalising the definition of signature to handle such functions in a more di-
rect way is easy but makes subsequent developments somewhat messier in a non-
interesting way.

The definition aboveoespermit overloaded operation names, since itis possible
to have bothf:s; x --- x5y — sand f:t; x --- xty; — t in a signatureX, where
S1...SS# t1...tmt. A more restrictive definition of signature, adequate for most
purposes, would have a s@tof operation names (and a seof sort names) with
functionsarity: Q — S* andsort Q — S These two definitions are equivalent if
each operation name 1 is taken to be tagged with its arity and result sort.

In the rest of this section, I&l = (S Q) be a signature.

Definition 1.2.2 (Many-sorted algebra). A X-algebra Aconsists of:

e anS-sorted sefA| of carrier sets(or carriers); and
e for eachf:s; x --- x5, — sin X, a function (oroperation (f:s; x -+ x s —
S)a:|Als X -+ x |Alg, — [Als. O

If Ais aZXZ-algebra ands is a sort name irE then|A|s, the carrier set of sor$

in A, is the universe of data values of sartaccordingly, we often refer to the
elements of carrier sets a&alues If f:s; x --- x §, — sis in X then the operation
(fis1 x -+ x5 — s)a is a function on the corresponding carrier seté\off n=0

(i.e. f:9), then|Als, x --- x |Alg, is a singleton set containing the empty tugleand
then(f:s)a may be viewed as a constant denoting the vafus)a(()) € |Als. Notice
that(f:s x -+ x sy — s)a IS atotal functiorﬂ so algebras as defined here are only
appropriate for modelling programs containing total functions. See Seftionp 2.7.3—
[2.7.3 for several ways of extending the definitions to cope with partial functions.
Note also that there is no restriction on the cardinalitydf; in particular,|Ajs may

be empty and need not be countable.

Notation. LetAbe aX-algebraandlef:s; x--- x s, — sbeinX. We always write
fa in place of(f:s; x --- x 59 — s)a When there is no danger of confusion. When
n=20 (i.e. f:s), we write(f:s)a or fa in place of(f:s)a(()). O

2 All functions in this book are total except where they are explicitly designated as partial.
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20 1 Universal algebra

Exercise 1.2.31f Q. s # @ for somes e S, then there are n¢5, ©2)-algebras having
an empty carrier of so. Characterise signatures for which all algebras have non-
empty carriers of all sorts. O

Example 1.2.4.LetS1 = {shapesuit} and letQ 1¢ shape= {bOX}, Q21 suit= {hearts,
Q1shapeshape= {POXify}, Q1shapesuisuit = { T}, andQ1ys = @ for all otherw €
Sl*;se Sl. ThenX1 = (S1,Q21) is a signature with sort nameshapeand suit
and operation namdmx shape hearts suit, boxify: shape— shapeand f: shapex
suit— suit We can preser1 in tabular form as follows (this notation will be used
later with the obvious meaning):

X1 = sorts shapesuit
ops box shape
hearts suit
boxify. shape— shape
f:shapex suit — suit

We define a£1-algebraAl as follows:

|Al|shape: {DaA}7

|Al|SUit - {*7 Qv ‘}a

boxas = O € |Al|shape

heartsy = Q € |AL]suit,

boxifys: |AL|shape— [Al|shape= {0 — O, A — O},

and fa1: [Al|shapex |Al|suit — |Allsuit is defined by the following table:

far|d|O|d
O |de|#|Q
NN

(NoTE: Reference will be made t81 andAl in examples throughout the rest of
this chapter.) O

Definition 1.2.5 (Subalgebra)Let A andB be X-algebrasB is asubalgebraof A

if:

e |B| C|AJ; and

o for fisy x---xsy —sin X andby € Blg,...,bnh € |Bls,, fa(b1,...,bn) =
fA(bl7' . 'abn)'

Bis apropersubalgebra oA if it is a subalgebra ofA and|B| # |A|. A subalgebra of
Ais determined by aB-sorted subsdB| of |A| which is closed under the operations
of Z, i.e. such that for each:sy x --- x sy — sin £ andby € |Bs;,...,bn € |B|s,,
fA(blv'“abn) € |B|S g

If B is a (proper) subalgebra @f thenB is “smaller” thanA in the sense that it
contains fewerdata valueghanA. Both A andB areX-algebras though, séandB
contain interpretations for exactly the same sort and operation names.
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1.2 Signatures and algebras 21

Exercise 1.2.6Let A be aX-algebra. Show that the intersection of any family of
(carriers of) subalgebras #éfis a (carrier of a) subalgebra &f Use this to show
that for anyX C |A|, there is a least subalgebrasthat contains<. This is called
the subalgebra of A generated by. %ive an explicit construction of this algebra.
(HINT: Consider the family o&-sorted set¥; C |A|,i > 0, whereXp = X andX;1 is
obtained fromX; by adding the results of applying the operationé&\aé arguments

in X.) a
Definition 1.2.7 (Reachable algebra).et A be aX-algebraAis reachabldf Ahas
no proper subalgebra (equivalentlyAis generated by). O

By Exercis¢ 1.2)6, every algebra has a unique reachable subalgebra.

Example 1.2.8.Let £1 = (S1,21) andAl be as defined in Examfle 1.p.4. Define
aXl-algebraBl by

|Bl|shape: {O},

|Bl|suit: {@7‘}7

boXg1 = O € |Bl|shape

heartg; = Q € |B|suit,

boxifys; : |B1|shape— |Bl|shape= {0 — O},

fpi: |B:|-|shape>< |B1|suit — |B1|suit = {<D,@> — &, (0,8) — QQ}-

Bl is the subalgebra &1 generated by. That is,B1 is the reachable subalgebra
of AL. O

Definition 1.2.9 (Product algebra).Let A andB be X-algebras. Th@roduct alge-
bra Ax B is theX-algebra defined as follows:

e |AXxB|=|A| x|BJ;and
o foreachf:s; x--- x s —sin X and(ag,b1) € |[AxBlsy, ..., (@n,bn) € |[AX Blg,,
fAX5(<a1,b1>,...,<an,bn>) = (fA(al,...,an), fB(bl,n-,bn» € |A>< B|S.

This generalises to the produyg{Ai)ici of a family of X-algebras, indexed by an
arbitrary set (possibly empty), as follows:

o [[1{AYier] = [T{|A])ier; and
e for eachfisy x--- x5 —sin Z and f1 € [[1{(A)iellsys-- -, Tn € [[1{ADiel sy
fH<Ai>ie|(f1""’fn)(i): fAi(fl(i),...,fn(i)) foralliel. O

Exercise 1.2.10Definition[1.2.9 shows how tw&-algebras can be combined to
form a newX-algebra by taking the Cartesian product of their carriers. According
to Exercisg 1.2]6, the same thing can be done (with subalgebras of a fixed algebra)
using intersection. Try to formulate definitionswfionanddisjoint unionof alge-
bras, wheréAUB| = |A|U |B| and|Aw B| = |A| W |B| respectively. What happens?

O
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22 1 Universal algebra

1.3 Homomorphisms and congruences

A homomorphism between algebras is the analogue of a function between sets, and
a congruence relation on an algebra is the analogue of an equivalence relation on a
set. An algebra has more structure than a set, so homomorphisms and congruences
are required to respect the additional structure (i.e. the behaviour of the operations).
Homomorphisms and congruences are important basic tools for relating algebras
and constructing new algebras from old ones.

Throughout this section, &t = (S Q) be a signature.

Definition 1.3.1 (Homomorphism).Let AandB be X-algebras. AZ-homomorphism
h:A — B is an Ssorted functionh:|A] — |B| which respects the operations of
X, i.e. such that for allf:s; x --- x sy — sin X anday € |Als;,...,an € |Als,,
hs(fa(as,...,an)) = fa(hs,(a1),...,hs,(an)). A Z-homomorphismh: A — B is an
identity (an inclusion surjective ...) if it is an identity (an inclusion, surjective,
...) when viewed as a&sorted function. O

Notation. If h: A — B is aX-homomorphism, thefh|: |A| — |B| denotesh viewed

as anS-sorted function. The only difference betweeand|h| is that in the case of

|h| we have “forgotten” that the additional condition required of a homomorphism
is satisfied. O

Informally, the homomorphism condition says that the behaviour of the opera-
tions inAis reflected in that of the operationsBn This condition can be expressed
in the form of a diagram as follows:

hs X"'th,]
|Alsy X -+ x |Alg, - Bls, X -+ x [Bls,

fa fs

A ~ |B
Al . B;

where(hs x---x hg)(as,,...,8s,) = (hs (as)), ..., hs,(as,)) forallag € |Als,...,an €

|Als,- The homomorphism condition amounts to the requirement that this diagram
commutesi.e. that composing the functions on the top and right-hand arrows gives
the same result as composing the functions on the left-hand and bottom arrows. Such
commuting diagrams will be used heavily in later chapters, particularly in CHgpter 3.

Example 1.3.2.Let £1 = (S1,21) andAl be as defined in Examgle 1.p.4. Define
aX1l-algebraCl by
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1.3 Homomorphisms and congruences 23

|Cl|shape: |C1‘Suit = {17 2, 3}7

boxc1 = 1 € |Clshape

heartg; = 2 € |Cl]suit,

boxifye;: |Cl|shape— |Cl|shape= {1— 1,2— 3,3+— 1},

and fc1:[Cl1|shapex |C1|suit — |Clsuit is defined by the following table:

ool\.)l—‘ah

P
NIEININ
PN W[ w

NN P~

Let hl:]Al| — |C1| be theSl-sorted function such that
hlshape= {0 — 1, A+ 3},
hlgyit={— 1,0 — 2 & — 2}.
It is easy to verify thahl:Al — C1 is aX1-homomorphism by checking the fol-
lowing:
hlshapdboxa1) = boxc:

) =
hlgui(hearts;) = heartg:

hlshapd bOXifya (O)) = boxify; (hlshapd O))
hlshapd bOXifya1 (A)) = boxifyes (hlshapd 2))

hlsuit(far (0, ) = fc (hlshape(D) hlgyit(db))

h]-suit( fAl(D7@>) = f (hlshapém)»hlsult(@))

hlsuit(far (0, M) = fCl(hlshap&D)>hlsU|t(‘))

hlsuit(f 1(A,*)) = fCl(hlshape(A),hlsun( ))

hlsuit(f l(Aa@)) = fc (hlshape{A);hlsun( ))

hlsuit( fAl( )) fCl(hlshape(A)ahlsun( )) |

Exercise 1.3.3Let A be aZ—aIgebra. Show thatl 5 : A — A (the identityS-sorted
function) is aX-homomorphism. Leli: A— B andh’: B — C be X-homomorphisms.
Show thath|;|'|:|A] — |C| is aX-homomorphisnh;h’: A — C. O

Exercise 1.3.4Let h: A — B be aX-homomorphism, and le&¥’ be a subalgebra of
A. Let theimage of Aunder hbe theX-algebrah(A') defined as follows:
o [h(A)| =]h|(|A]); and
o foreachfis;x---xs—sinXandas €|Als,...,an € |As,, faa)(hs (@1), .-, hs,(an)) =
hS( fA’(aL 7an))
Showthah(A’) is a well-defined-algebra (in particular, thatthefuncudp(A/ |h(A)]s, %
x |h(A)|s, — |h(A)|s is well-defined for eachi:s; x --- x  — sin X) and that
it is a subalgebra dB. Formulate a definition of theoimageof a subalgebr&’ of
B underh, and show that it is a subalgebra/af O

Exercise 1.3.5Let h: A — B be aX-homomorphism, and suppo¥eC |A|. Show
that the subalgebra d&8 generated byh|(X) C |B| is the image of the subalgebra
of A generated by. Show that it follows that ifi: A — B is surjective andA is
reachable theB is reachable. O
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24 1 Universal algebra

Exercise 1.3.6LetB be areachablE-algebra. Show that for ary-algebraA, there
is at most on&-homomorphisnh: B — A, and that any-homomorphisni: A— B
is surjective. O

Definition 1.3.7 (Isomorphism).Let A andB be X-algebras. AX-homomorphism
h: A — B is aZ-isomorphismif it has an inverse, i.e. there isX&homomorphism
h~':B — A such thath;h~! = id|5 andh~*;h = id 5. (Exercise: Show that ifh~*
exists then it is unique.) ThelandB are calledsomorphicand we writeh: A= B
or justA= B. O

Exercise 1.3.8Leth: A=~ Bandh’: B C beX-isomorphisms. Show that their com-
position is aX-isomorphismh;': A= C. Show that= (as a binary relation o-
algebras) is reflexive and symmetric, and is therefore an equivalence relatian.

Two isomorphic algebras are typically regarded as indistinguishable for all practi-
cal purposes. It is easy to see why: the only way in which they can differ is in the
particular choice of data values in the carriers. The size of the carriers and the way
that the operations behave on the values in the carriers is exactly the same. For this
reason we are often satisfied with a definition of an algebra “up to isomorphism”,
i.e. a description of an isomorphism class of algebras in a context where one would
expect a definition of a single algebra. An example of this is in Fact 1.4.10 below.
The notion of isomorphism can be generalised to other kinds of structures, where
it embodies exactly the same concept of indistinguishability. See Chapter 3 for this
generalisation and for many more examples of definitions of objects “up to isomor-
phism”.

Example 1.3.9.Let £1 = (S1,21) andAl be as defined in Examfle 1.p.4. Define
aX1l-algebraD1 by

|D1|shape: {O,A},

|D1|suit: {17273}a

boxp1 = A € |D1|shape

heart$; = 2 € |D1]suit,

boxifyh;: |[D1|shape— |D1|shape= {0 — A, A = A},

and fp1:|D1|shapex |D1|suit — |D1|suit is defined by the following table:

fp1[1]2|3
o (233
A 11)3(12

Letil:|Al| — |D1] be theSl-sorted function such that

i1shape= {0~ A, A0}
i Lsuit = {*'—’ 1LO—24 '—>3}~

This defines & 1-homomorphisnil: Al — D1 which is aX 1-isomorphism, sé\1 =
D1. a

Page: 24 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47



1.3 Homomorphisms and congruences 25

Exercise 1.3.10Show that a homomorphism is an isomorphism iff it is bijective.
O

Exercise 1.3.11Show that there is an injective homomorphism — B iff A is
isomorphic to a subalgebra Bf O

Example 1.3.12Let X = (S Q) be the signature

sorts s
ops as
fis—s

and defineZ-algebrasA andB by

|Als = Nat (the natural numbers)
an=0¢€|Als,
fal|Als — |Als= {n—n+1|ne Nat},

|B|s = {n € Nat| the Turing machine with Gdel numben halts on all input},
ag = the smallesh € |B|s,
fg:|B|s — |B|s = {n € |B|s — the smallesim € |B|s such tham > n}.

Leti: |A] — |B| be theS-sorted function such that
is(n) = the (n+ 1)St smallest element dB|s

for all n € |Als. The functionis is well-defined sincéB|s is infinite. This defines a
X-homomorphisni: A — B which is an isomorphism.

Although A = B, the X-algebrasA andB are not “the same” from the point of
view of computability: everything i\ is computable, in contrast 8 (|B|s is not
recursively enumerable arfg is not computable). Isomorphisms captateictural
similarity, ignoring what the values in the carriers are and what the operations actu-
ally compute. This example shows that, for some purposes, properties stronger than
structural similarity are important. O

Definition 1.3.13 (Congruence)Let A be aX-algebra. AX-congruence on As
an (S-sorted) equivalence= on |A| which respects the operations Bf for all
fisix---xsy—sinZanday, &) € [Als,,...,an,a, € |Als,, if a1 =5 & and ... and
an =s, ay thenfa(ay,...,an) =s fa(ay,...,an). O

Exercise 1.3.14Show that the intersection of any family Bfcongruences oA is
aX-congruence oA. Use this to show that for arfyrsorted binary relatioR on |A|
there is a least (with respect €9 X-congruence o& which includesR.
Show that the kernel of any-homomorphisnmh: A — B is aX-congruence oA.
Show that a surjectiv&-homomorphism is an isomorphism iff its kernel is the
identity. O

Definition 1.3.15 (Quotient algebra).Let A be aX-algebra, and let= be aX-
congruence oA. Thequotient algebra of A modules is theX-algebraA/= defined
by:
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26 1 Universal algebra

e |A/=|=|Al/=; and

o foreachf:s;x---xsy—sanda; € [Als;,....an € [Als,, fa/=([a1]= . [an]=g,) =
[fA(al,...,an)}Es. O
Exercise 1.3.16 Show thatA/= in Definition[1.3.15 is a well-defined-algebra.
O

Example 1.3.17Let £1 = (S1,Q1) andAl be as defined in Examgle 1.p.4, and let
= = (=q)secs1 be theSl-sorted binary relation of\1| defined by

=shape™ {<Dv D>’ <A’ A>}
=it = { (%, 8), (D, 0), (0, &), (4,9, (4, 4)}.

This defines a congruence #d. Al/= is theX1-algebra defined by

|AL/=|shape= {{O}. {A}},

|AL/=]suit = {{®},{O, #}},

boxai /= = {0} € |AL/=|shape

heartsy /= = {©, #} € |AL/=|suit,

bOXifYAl/z: |AL/=|shape— |Al/=|shape= {{O} — {O},{A} — {O}},

andfay/=: |ALl/=|shapex |Al/=|suit — |Al/=|suit is defined by the following table:

fa=| {%} {O M}
{0} | {%} {0}
{A} O, 6}H{O. a} O

Exercise 1.3.18Let = be aX-congruence o, and leths(a) = [a]=, for s€ S
ac |Als. Show thaths: |Als — (|A|/=)s)sesis aX-homomorphisni: A— A/= with
ker(h) = =. O

Exercise 1.3.19Let h: A — B be aX-homomorphism. Show tha/ker(h) is iso-
morphic toh(A). (HINT: The isomorphism is given bjajiern) — hs(a) for s€ S,
ac|As) O

Exercise 1.3.20Let= be aX-congruence oA. Show that for anyE-homomorphism
h: A — B such thate C ker(h), there exists a uniquB-homomorphisng: A/= — B
such thats(a) = gs([al=,) forallse S ac |Als. O

Exercise 1.3.21Show that there is a surjective homomorphisA — B iff there is
a congruence= on A such thaB is isomorphic toA/=. O

Exercise 1.3.22Let A be aX-algebra, let= be a congruence oftand letB be a
subalgebra oA/=. Show that there is a subalgel@af A and congruence=" on
CsuchthaB=C/='. O

Exercise 1.3.23Let h: A — B be aX-homomorphism. Show that there is a unique
X-congruence= on A and a unique injectiv&-homomorphisnmg: A/= — B such
thaths(a) = gs([al=,) forallse S, ac |Als. O
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1.4 Term algebras 27

1.4 Term algebras

For any signatur& there is a specia-algebra whose values are just well-formed
terms (i.e. expressions) built from the operation names.iA X-algebra of terms
with variables is similarly determined by a signatle= (S Q) and anSsorted
set of variables. These algebras are rather boring insofar as modelling programs is
concerned — the term algebra models a program which does no real computation.
But the homomorphisms from these algebrastteer algebras turn out to be very
useful technical tools, as shown by the definitions below.

Throughout this section, I&€ = (S Q) be a signature and let be anS-sorted
set (of variables), whenec Xs for s€ Smeans that the variables of sorts (written
x:s). Note that “overloading” of variable names is permitted here, since there is no
requirement thaXs andXy be disjoint fors#<s € S.

Definition 1.4.1 (Term algebra). The Z-algebra T (X) of terms with variables X
is theX-algebra defined as follows:

e |Tx(X)] is the least (with respect t0) S-sorted set of words (sequences) over the

alphabet
SuU U QWSUUXSU{:u(7'7)}
weSk s€S
s€S
such that:

— theword %:s" € [Tz (X)|s for all s€ Sandx € Xs; and
— forall f:s; x--- x5y —sin X and all wordd € |Ts (X)|s,;...,th € [Tz (X)]sn,
the word “f (ty,...,th):S" € |Tx(X)]s.

o forall fisy x--- x5 —sin X and all wordst; € [Tx(X)]s;,---,th € [Te(X)]sn,
o0 (t1; - -, ta) = (the word) “f (ty, ... ,tq):S" € [T (X)]s.

(Quotation marks are used here solely to emphasize that terms are words, and are
not part of the words they delimit.) < Sandt € [Tz (X)|s thent is a Z-term of
sort s with variables Xthefree variables of s the seFV(t) C X of variables that
actually occur irt: for s€ Sandx € X, x € FV(t)s if t contains the subwordk's”.

The Z-algebra of ground termss the X-algebraTy = Ty (&) of terms without
variables. Ifse Sandt € |Tx|s thent is agroundX-term m|

The values ofTx(X) are “fully-typed” terms formed using the variablesXnand
the operation names i, and the operations df (X) just build complicated terms
from simpler terms. Note that a terne | Ty (X)| need not contain all the variables
in X, and that some variables may occur more than on¢eTp is also called the
X-word algebra and its carriergTy| are sometimes called théerbrand universe
for X.

Example 1.4.2.Let X1 = (S1,Q1) be as defined in Examgle 1..4. THBn is the
X 1-algebra defined by
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28 1 Universal algebra

|T21|3hape: { “ bOX(). Shapé,
“boxify(box): shape: shapé,
“boxify(boxify(box): shapg: shape: shapé,

| Tx1|suit = { “heartg): suit’,
“f(box): shapeheartg): suit): suit’,
“ f (boxify(box): shapg: shapehearts): suit): suit’,
“f(box):shape f (box): shapehearts): suit): suit): suit”,
o}

where the operations @k are the term formation operations

boxr,, = “box):shapé € |Ts1|shape
hearts;,, = “heartg):suit’ € |Tx1|suit,
bOXifyl'El: | Tx1|shape— | Tx1/shape
= {“box):shapé — “boxify(box): shape: shapé,
“boxify(box): shapg: shapé — “boxify(boxify(box): shapg: shapé: shapé,

b

and similarly forf:shapex suit— suit d

Notation. Sort decorations (e.g. $hapé in “box):shapé) are often unambigu-
ously determined, and they will usually be omitted when this is the case. When
Q. sNXs = & for somes € S, then variables of sogcannot be confused with con-
stants (0-ary operations) of sarind so we will usually drop the parentheses “()”

in the latter. We will omit quotation marks whenever it is clear from the context that
we are dealing with terms. Finally, in examples we will use infix notation for binary
operations when convenient. O

Example 1.4.2 (revisited).We repeat Examplg 1.4.2, making use of these nota-
tional conventions.

Let 1= (S1,Q1) be as defined in Exampe 1.p.4. Thén is theX1-algebra
defined by

|Ts1|shape= {box boxify(box), boxify(boxify(box)), ...},
|Tx1|suit = {hearts f (box hearts, f (boxify(box), hearts, f (box f(box hearts),...}

where the operations @k are the term formation operations

boxr,, = boXe |Tx1|shape
hearts;,, = heartse [Tz1|suit,

boxify . : | Tx1|shape— | Tx1lshape
= {box— boxify(box), boxify(box) — boxify(boxify(box)),...},

and similarly forf:shapex suit— suit O

Example 1.4.3.The notational conventions above will almost always be applicable.
They cannot be adopted from the outset (i.e. in Definifion [L.4.1) because of the
relatively rare examples where confusion can arise. For exampE2let(S2, Q2)
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be the signature with sortss',t and operations:s, a:s, f:s—tandf:s —t (no
mistakes here, repetition of names is intented).

According to the definitionTxo|; = {“ f(a():s):t",“ f(a():§):t" }. If all sort dec-
orations were omitted then both of the terms in this set would becdta))” and
so|Tx2|t would have just this single element. The “outer” decoration can be omitted
but the “inner” decoration is required, thus e.§(&():s)".

Similarly, if X is anS2-sorted set of variables such tlat X, then “f(a():s)”
and “f(a:s)” are different terms ifTx2(X)|t, so the convention of writingd(): s’
as ‘a:s’ cannot be used.

Since the definitions permit variables and operation names (&@: s) and even
“or , or (), the custom of writing terms as sequences of symbols without explicit
separators can cause confusion. Luckily, such names never arise in practice and so
for the purposes of this book this problem can safely be forgotten. O

Fact 1.4.4.For any XZ-algebra A and S-sorted functionX — |A| there is exactly
oneX-homomorphism* Tx (X) — A that extends v, i.e. such thdi(w (x)) = vs(X)
forallse S, xe Xs, whereix: X — | Tz (X)| is the embedding that maps each variable
in X to its corresponding term.

S-sorted sets X-algebras
L
X e [Te(X) T=(X)

\ \
\ \
\ \

v v %
\ \
' '
A A O

The existence and uniquenessvbffollow easily from the requirement that ex-
tendsv (this fixes the value of for any variable as a term iffx (X)|) and that/*
is a X-homomorphism (this determines the value/bffor any termf (ty,...,tn) €
|Ts(X)| as a function of the values of for its immediate subterms,....t, €
|Tx (X)[). The homomorphism which results is the function which evaluBtesrms
based on the assignment of valued\ito variables inX given byv.

Definition 1.4.5 (Term evaluation).Let A be aX-algebraA and letv: X — |A| be an
S-sorted function. By Fa.4 there is a unigiaomomorphisnv”: Ty (X) — A
that extends. Letse Sand lett € |Tx(X)|s be aX-term of sorts; thevalue of t in A
under the valuation s V¥(t) € |Als. Whent € |Tx|s the value ot does not depend
onv; then thevalue of t in Ais @*(t) where: @ — |A| is the empty function.
To make the algebra explicit, we writg(v) for V#(t), andta for ta(@) whent is
ground. O
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Exercise 1.4.6Lett € |Tx(X)| be aX-term and letA be aX-algebra. Show that if
v:X — |A] andv: X — |A| coincide onFV(t), thenta(v) = ta(V). This follows from
another fact: forany e |Ts (X)], X CY (so that € |Tz(Y)[|) andv:Y — |A|, we have
ta(v) =ta(1;v), wheret: X — Y is the inclusion (and sov: X — |A|). O

Exercise 1.4.7Define evaluation of terms in an inductive fashion. Convince your-
self that the result is the same as that given by Definftion]1.4.5. O

Exercise 1.4.8Let h: A — B be aX-homomorphism, le¥: X — |A| be anS-sorted
function, and let € |Tx(X)| be aZ-term. Using Fadt 1.4}4, prove thatv*(t)) =
(v;h)#(t). Compare this with a proof of the same thing using your inductive defini-
tion of term evaluation from Exercise 1.1.7. O

Exercise 1.4.9Functions6:X — |Tz(Y)| are sometimes callegubstitutions(of
terms inTx (Y) for variables inX). Using Facf 1.4]4, define thetermt[6] resulting
from applying the substitutiofi to aX-termt € | Tz (X)|. Show that[ix] =t for any
t € |Tx(X)|, whereix maps each variable X to its corresponding term ifTz (X)|.
Define the compositio®;6’ of substitutionsd: X — [Tx(Y)| and6”:Y — |Tx(Z)],
and show thatt[6])[6’] =t]|6;0’] for any Z-termt and substitution® and6’. O

Notation. Supposeu € |Tx(Y)|s for some sors € S Then[x+— u] (when used as a
substitution{x:s} UX — | Tz (XUY)|) is shorthand for the functiofx:s— u}U{z—
z|ze X,z#x:s}. Fort € [Tg({x:s}UX)|, t[x+— u] € [Tz (XUY)| thus stands for the
term obtained by substitutingfor xin t. This notation generalises straightforwardly
to [Xg — Ug,...,Xn — Up] @ndt[xg — U1, ..., Xn — Up] providedx, ..., X, are distinct
variables. O

Fact 1.4.10.The property of ¥(X) in Fact[1.4.4 definess{X) up to isomorphism:
if B is a Z-algebra andn:X — |B| is an S-sorted function such that for ady
algebra A and S-sorted functionX — |A| there is a uniqueZ-homomorphism
v¥:B — A such that;|v¥| = v then B is isomorphic tos[X), wheren®: Ty (X) — B
is an isomorphism with inversé: B — Tz (X).
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S-sorted sets X-algebras

Fact[1.4.4 says that the definition ©f (X) fixes the definition of the term evalu-
ation function “for free” (see Definition 1.4.5). Fdct 1.4.10 says that this property
is unique (up to isomorphism) f6: (X), so in fact the explicit definition oy (X)

is superfluous — it would be enough to defifieX) as “the” (unique up to iso-
morphism)X-algebra for which Definiti05 makes sengg(X) is a particular
example of dree object— see Sectioh 3|5 for more on this topic.

Example 1.4.111et X1 = (S1,Q1) be as defined in Example 1.p.4. Thén is
the X1-algebra described in Example 1]4.2. [Tdtbe theX1-algebra defined by

|T1|shape= {bOX box boxifybox boxify boxify. . .},
|T1suit = {heartsbox hearts fbox boxify hearts foox box hearts f f...}

where the operations dfl are the postfix term formation operations

boxr1 = boxe |T1|shape
hearts; = heartse |T1|syit,
boxifyr1:|T1|shape— |T1|shape= {bOx— box boxifybox boxify— box boxify boxify. ..},

and similarly for f:shapex suit — suit. ThenT1 satisfies the property dfys in
Facf1.4.4 (the fact that = @ here makes this easy to check — there is only one
functionv: @ — |Al| for any Z1-algebraAl), so by Fadt 1.4.30 (wherg @ — [T1]|
is the empty function)I 1 is isomorphic toTy1. The isomorphismz®: Ty, — T1
converts & 1-term to its postfix form. ad

Exercise 1.4.12Prove Factg 1.414 afd 1.4110. O

Exercise 1.4.13Let A be aX-algebra and lep: & — |A| be the empty function.
Show thatA is reachable iff the unique homomorphisaf : Tx — A is surjective,
i.e., iff every element inA| is the value of a groun&-term. O
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32 1 Universal algebra

Exercise 1.4.14Show thafTy is reachable. Put this fact together with previous re-
sults to show that &-algebra is reachable iff it is isomorphic to a quotienTefand

that there is a one-to-one correspondence between isomorphism classes of reachable
X-algebras and congruencesBn O

Exercise 1.4.15L et G be a context-free grammar over an alphabeif terminal
symbols. Consider the signatufe = (Sg, Qg), whereSs is the set of non-terminal
symbols ofG and each productioX — Y;...Y; in G corresponds to an operation
in Qg with result sortX and arity given by the sequence of non-terminal symbols
inY1...Yn. The Zg-algebraAg has carriergAg|x = T* for all X € S, and for any
P:Xy X oo X Xp — X in Zg andag,...,an € T, pag(as,...,an) is the sequence
obtained by substituting; for the it non-terminal symbol on the right-hand side
of the production associated with Prove the following:

1. For anyX € S, the carrier of sorX in the reachable subalgebraf is the set
of sequences generated from the non-termihad G.

2. The algebrdy, is isomorphic to the algebra of parse tree€sof

3. The grammag is unambiguous iff the reachable subalgebragfs isomorphic
to TZG- O

1.5 Changing signatures

A signature morphism defines a mapping from the sort and operation names in one
signature to those in another signature, in such a way that the arity and result sort
of operations are respected. (This requirement is analogous to the requirement that
homomorphisms respect the behaviour of the operations.) Signature morphisms will
be used extensively in later chapters to mediate constructions involving multiple
signatures. The crucial point that makes these constructions work is that a signature
morphism fromX to X’ induces translations of syntax (terms — later, also logical
formulae) and semantics (algebras and homomorphisms) befivardX’.

Two kinds of signature morphisms are introduced in this section. Only the first
kind will be used in the rest of the book. The second kitetived signature mor-
phismsare introduced mainly as an example of one way in which a basic definition
could be modified. Such a modification would not affect later definitions and re-
sults, since these depend only on the induced translations of terms, algebras and
homomorphisms.

1.5.1 Signature morphisms

Definition 1.5.1 (Signature morphism)LetX = (S Q) andX’ = (S, Q') be signa-
tures. Asignature morphisns: £ — X' is a pairc = (Osorts, Oops) Whereosors S—
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S and ogps is a family of functions respecting the arities and result sorts of op-
eration names irE, that is Gops = (Gws: Qus — Q. () oios) wes' ses (Where

for w=s1...5 € S, 0211s(W) = Osorts(S1) - - - Osorts(Sn)). A signature morphism
0:X — X’ is asignature inclusions: X < X’ if osorts is an inclusion ands is

an inclusion for alw e Sf,se S O

Signature morphisms as defined above will be referred talgabraic signature
morphisms when it is necessary to distinguish them from other kinds of signature
morphisms to be introduced later. Note tlmgts and (the functions constituting)
Oopsare not required to be either surjective or injective.

Notation. Wheno:X — X', both osorts and ops (@nd its componentsys for all
w e S, se 9 will be denoted by. ad

Example 1.5.2.Let X = (S Q) be the signature

sorts polygonfigure trump

ops squarepolygon
boxify. polygon— polygon
boxify. polygon— figure
h: figure x trump— trump

Let X1 = (SL, Q1) be the signature defined in Example 1]2.4.
Deﬁnecsorts: S—> Sl andcopsz <GW,S: QW,S — Q1G§ort5(w)«,csorts<5)>W€9736S by

Osorts= {polygon— shapefigure— shapetrump+— suit},

O polygon= {Square— box},  polygonpolygon= {boxify— boxify},
Opolygonfigure = {POXify— boxify},

Ofigure trumptrump = {h— f},

andoys = @ for all otherw € S*,s€ S Theno: X — X1 is a signature morphism.
O

Exercise 1.5.3Leto: X — X’ ando’: X' — X" be signature morphisms. Let;0")sors=
Osorts Ogorts @Nd (0,0 )ops = Oops Ggps (OF rather, to be more precis¢s;o’)ws =
Ows 0. for we Sf,;se §). Show that this defines a signature morphism
5™ 630rts(W), Osorts(S)

o0 X —Xx", |

In the rest of this section, let:X — X’ be a signature morphism, where
¥ =(SQ)andX’ = (S,Q'). As will be defined below, any such signature mor-
phism gives rise to a translation bfterms toX’-terms, and of’-algebras and ho-
momorphisms t&-algebras and homomorphisms. Note that the direction of trans-
lation of algebras and homomorphisms is “backwards” with respect to the direction
of the signature morphism, as the following figure indicates.
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c
) i
Syntax o
rterms ———————————— — X'-terms
X-algebras~—————————— X'-algebras
Semantics 7\0
X-homomorphisms+———————— X’-homomorphisms

Definition 1.5.4 (Reduct algebra)Let A’ be aX’-algebra. Thes-reduct of Ais the
Z-algebraA"c defined as follows:

o |Nols=|A]q forallse S and
o forall fis; x - x5 —sinZX,

ot 1 olsy X+ % Aoy = (] ols= O F)at gy % -+ X [ L5y — & |-
O
If X is a subsignature of’, 0:X — X' is the signature inclusion, arml is a X’'-
algebra, them"c is a X-algebra which is jus&’ with some carriers and/or opera-
tions removed.

Notation. We sometimes writeé\"; for A"g wheno: X — X' is obvious, such as
wheno is a signature inclusion. O

Example 1.5.5.Let5: X — X1 be the signature morphism defined in Exarfiple 1.5.2
and letAl be theX1-algebra defined in Exam.4. Thatis is the Z-algebra
such that

|Al‘c|polygon: ‘A1‘6|figure: {D’A} = |A1‘shape

|A1‘c|trump: {*707‘} - |A1|suit7

squargy, =0 = boxa1,

boxifyAl‘G: |A1‘G|po|ygon—> |A1‘G|po|ygon: {0~ 0,A 0O}

= boxifyp,: |A1|shape_> |A1‘shape
bOXifyAl‘gi |Al‘6|polygon_’ |Al‘6|ﬁgure: {o~0,A— 0O}
= boxifyp,: [Al|shape— [Al|shape
hAl\G: |A1‘c‘figure>< ‘Al‘cr|trump—> |A1‘0'|trump: {O,%) — &, (0,0)—&,...}
= fa1: |'A\:|-|shape>< |A1|suit - ‘A1|s|%it«

Exercise 1.5.6 A X-algebraA can be regarded as a function mapping the names in
X to their interpretations; the-reduct ofA is then the compositiowr;A. Spell out
the details. O

Exercise 1.5.7Let 6:X — X’ be a signature morphism that is surjective on sort
names, and le¥' be aX’-algebra. Show that A"G is reachable theA' is reachable.

Give counterexamples showing that the opposite implication does not hold, and that
the implication itself does not hold if some sort name&irare not in the image of

X undero. O
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Definition 1.5.8 (Reduct homomorphism)Leth': A’ — B’ be aX’-homomorphism.

The o-reduct of K is the Ssorted functiom"c: \A"G\ — \B"G| such that(h"c,)S =

h’a(s) for all se S. (Exercise: Show thalh"(,:A"(y — B/‘c is aX-homomorphism.)
O

Exercise 1.5.9Define thec-reductz"c of a X’-congruence=' on aX’-algebra

A, and prove that it is Z-congruence OIA"G. Show thato-reduct distributes over
quotient, i.e.(A’/z’)‘cy = (A"G)/(z"c) for all X'-algebras’h and X’-congruences
=’ onA. O

The following definition of the translation of terms along a signature morphism
0:X — X’ may look somewhat daunting, but its simple upshot is to translate each
termt € |Tx(X)| to theZ’-term obtained by replacing each operation name ffbm
by its image undes. Some care must be taken in the treatment of variables: since
variables for different sorts are not required to be distinct, to make sure they are not
inadvertently identified by the translation, for each sbitt X’ we have to take a
disjoint union of the sets of variables of sorts mappes.to

Definition 1.5.10 (Term translation). Let X be anS-sorted set of variables. Define
X' = (X})geg to be theS-sorted set such that

Xy= | X  foreachs €S.
o(s)=¢

Then (TZ,(X’))‘G is a Z-algebra. Leti: X — |(T£,(X’))‘G| be the obvious embed-
ding (if not for the disjoint union in the definition of’ and explicit decoration of
variables with sorts in term$,would coincide withix which maps each variable
to its corresponding term). Then by Fact 1]4.4 there is a unitthemomorphism

6:Tx(X) — (T (X))o extending:

S-sorted sets X-algebras
C 5%
X Te (X)] Tx(X)
\ \
\ \
\ \ \
. 5 =i
\ \
' '
[Tz (X))o (T (X))o
The translation of aX-term te |Tx(X)| by ¢ is the X/-term &(t) € [Tz/(X')|. To
keep the notation simple, we will write just(t) for & (t). O

Example 1.5.11let 0:X — X1 be the signature morphism defined in Exam-
ple[1.5.2, wher& = (S 2) andX1 = (S1,Q21). Let X be theS-sorted set of vari-
ablesx: polygonx: figure, y: figure, z trump. TheSl-sorted set of variablé§' in Def-

inition[1.5.10Q is therx: shapex': shapey: shapez suit, and
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o (h(boxify(x: polygon, h(x:figure 2))) = f (boxify(x), f(X,2)),

o (h(x: figure, h(boxify(boxify(square), z))) = f (X, f (boxify(boxify(box)), z)),
and so on. O

Exercise 1.5.12Lett € |Tx| be a groundE-term and letA’ be aX’-algebra. Show

that the value of is invariant under change of signature, oét), = tA,‘U.
Formulate and prove a more general version of this result in whitcdy contain

variables. O

1.5.2 Derived signature morphisms

A derived signature morphism fromto X’ is like an algebraic signature morphism

from X to X’ except that operation namesihare mapped téermsover X’. This

allows operation names iti to be mapped to combinations of operationginand

also handles the case where the order of arguments of the corresponding operations
in X andX’ are different.

Definition 1.5.13 (Derived signature)Let X = (S Q) be a signature. For any se-
guences;...s, € S, let g, s, be theS-sorted se:sl,...,@:sn. The derived
signature ofZ is the signatureL®e’ = (S Q9" where for eacts;...s, € S and
seS ng.r.sn,s = |TZ(IS1~-~Sn)|S- u

In the derived signature df, a X-termt of sorts with variablesls, . s, represents
an operatiort:s; X --- x § — S. The variable@:s in ls,..s, thus stands for the
ith argument ot. Note that a “bare” variabl¢i | € [Tx(Is,_s,)|s iS an operation
i:S1 % --- X &y — § in £9€7, corresponding to a projection function.

Definition 1.5.14 (Derived signature morphism).Let £ andX’ be signatures. A
derived signature morphisi#: X — X' is an algebraic signature morphisin —
(2/)der_ 0

Definition 1.5.15 (Derived algebra)Let X = (S Q) be a signature, and létbe a
X-algebra. Thelerived algebra of As the £9€"-algebraA%¢" defined as follows:
e |A%T = |A|; and
o foreacht:s; x - x s —sin L% anda € |A%"|g ... a0 € |[A%|g  tader(ar, ..., 80) =
ta(v) € |A%"|g wherev is the S-sorted function{([1]:5) — ay,...,([n]:s) —
an}. O

In the rest of this section, lef:X — X’ be a derived signature morphism. The
following corresponds to Definition 1.5.4 for algebraic signature morphisms; later
exercises correspond to Definitigns 1]5.8 and 1]5.10 and related resullts.

Definition 1.5.16 (Reduct algebra w.r.t. a derived signature morphism)Let A’
be aX’-algebra. TheS-reduct of Ais theE—aIgebraA"(; defined as follows:
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o |Asls=|A5( forallse S and
o forall fis;x---xsy—sinX, fA’\a: ‘A,‘5|Sl XX |A/\5|sn—> |A’\5\s=3(f)(A/)aer.

Equivalently,A",; is the Z-algebra(A')%'|5, viewing § as the algebraic signature
morphismé: £ — (X7)%er, O

Exercise 1.5.17 (Reduct homomorphism w.r.t. a derived signature morphism).
What is theﬁ—reducth"(; of aX’-homomaorphisnt’: A' — B'? Prove thah"(;:A"a —
B"(; is aX-homomorphism. O

Exercise 1.5.18 (Term translation w.r.t. a derived signature morphism).Let
t € |Tx(X)| be aZ-term, whereX is anS-sorted set of variables. Defirit), the
translation ot by & (the result should be &'-term). O

Example 1.5.19Let X = (S Q) be the signature defined in Example 1]5.2, and let
X1 =(S1,21) be the signature defined in Example 1}2.4. BeE — X1 be the
derived signature morphism defined by

Jsorts = { polygon— shapefigure— shapetrump— suit},

O¢ polygon= {Square— boxify(box)},

5polygonp0|ygon: {bO_XifY’_’ : Shap_@a

Spolygonfigure = {boxify— boxify(boxify([ 1]: shapé)},

5figuretrumptrump = {h = f(bOXifY(ZShaIDF), f(:Shape:SUit))}a
andé,s = @ for all otherw e S*,se S

Let Al be theX1-algebra defined in Exam.4. Thati;s is the Z-algebra
such that

|A1‘6‘polygon: |A1‘5|figure: {O,A},

|A1‘6‘trump = {*7 @a ‘},

squarey, = 0,

bOXifyAl‘SZ |A1‘6|polygon—> ‘A1‘5|polygon= {I:! — D,A — A}

bOXifyAl‘(;: |A1‘5|polygon_> ‘A1‘6|figure: {O0—~0,A— 0O},

andhAl‘g: \A1‘5|ﬁgu,e X |A1‘5|t,ump — |A1‘5 ltrump is defined by the following table:

haij; |||
O |(&|Dd
AN VIV

Let X be theSsorted set of variables: polygonx:figure y:figure z.trump. A
correct solution to Exerci$e 1.5]18 would transt(tgoxify(x: polygon, h(x: figure, z))
(aX-term with variablex) to

f (boxify( boxify(boxify(x)) ), f ( boxify(boxify(x)), f(boxify(X), f(X,2)))).

=4 (boxify(x:polygon) =4 (boxify(x:polygon) =6 (h(xfigurez))
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Exercise 1.5.20Repeat Exercisg 1.5/12 for the case of derived signature mor-
phisms. O

Exercise 1.5.21A more complex definition of derived signature morphi§nt —
X’ would allow a sort namein X to be mapped to &artesian product’sx - -- x s,
of sortss),...,s,in Z’. Give versions of the above definitions which permit thisl

Exercise 1.5.22 Another variation on the definition of derived signature morphism
would permit operation names K to be mapped to recursively defined functions
in terms of the operation namesh. Give versions of the above definitions which
would allow this. (HNT: Look at a book like[[Sch&6] before attempting this exer-
cise.) O

1.6 Bibliographical remarks

This chapter presents the basic notions of universal algebra that are required in the
sequel. There is a vast literature on universal algebra as a branch of mathematics,
and the concepts and results we need here are a tiny fraction of this. Applications of
universal algebra in computer science are widespread, going back at Iéast to [BL69].

For much more on universal algebra see ¢.gal®i or [Coh65] but note that
both of these handle only the single-sorted case. A presentation of some of this
material for a computer scientist audiencelis [Wec92], see lalso [MT92] where ap-
plications to some topics in computer science other than the ones covered in this
book are also indicated.

The style of presentation here is relaxed but it might still be too dense for some
readers, who might prefer the gentler style, with proofs of many of the results which
we omit here, in[[GTW76]/[EM85]/IMG85] or [LEWS6].

The generalisation from single-sorted to many-sorted algebras originates with
[Hig63]. First applications to computer science came later [Mai72], becoming
prominent with[GTW76]. The generalisation is straightforward from a purely math-
ematical standpoint, but there are a few subtle issues that will surface in later chap-
ters. For instance, we admit empty carrier sets in Definftion[1.2.2, unlike most logic
books and, for instance, [BTB7] arid [Mo$04]. Admitting empty carrier sets requires
more care in the presentation of rules for reasoning, see Exgrcise|2.4.10 below, but
it also makes some results smoother, see Exdrcise P.5.18.

There are different definitions of many-sorted signature in the literature. The one
here is quite general, allowing overloading of operation names etc., and originates
with [GTWW?73] and [Gog74]. In some early papers, signatures are called “oper-
ator domains”. Definitions that do not permit overloading are used in [EM85] and
[Wir9Q], but as remarked after Definitign 1.P.1, these definitions are equivalent if
each operation name is taken to be tagged with its arity and result sort.

Signature morphisms emerged around 1978 in the context of early work on the
semantics of parameterised specifications in the style of Defifiitior] 6.3.5 below, see
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1.6 Bibliographical remarks 39

[Ehr7€] and [GB78]; Definitioi 1.5]1 is from the latter. Various variants and re-
strictions on this notion have been used in the meantime. One possible simplifying
assumption is to restrict attention to injective signature morphisms as in [BHK90],
or to bijective signature morphisms, which are sometimes referred to as “renam-
ings”. The notion of reduct, but only with respect to a signature inclusion, arises
in universal algebra. The generalisation from signature morphisms to derived sig-
nature morphisms originates in [GTW?76], and is related to the even more general
notion of (theory) interpretation in logi¢ [End72]. Since the 1970s, derived signa-
ture morphisms have made only sporadic appearances in the algebraic specification
literature, see for instance [SB83] and [HLSTOQ].
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