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Chapter 1
Universal algebra

The most basic assumption of work on algebraic specification is that programs are
modelled as algebras. This point of view abstracts from the concrete details of code
and algorithms, and regards the input/output behaviour of functions and the repre-
sentation of data as primary. Representing programs in terms of sets (of data values)
and ordinary mathematical functions over these sets greatly simplifies the task of
reasoning about program correctness. See Section 0.1 for some illustrative exam-
ples and more introductory discussion on this point.

The branch of mathematics that deals with algebras in this general sense (as
opposed to the study of specific classes of algebras, such as groups and rings) is
calleduniversal algebraor sometimesgeneral algebra. However, work on univer-
sal algebra by mathematicians has concentrated almost exclusively on the special
case of single-sorted algebras with first-order total functions. The generalisation to
many-sortedor heterogeneousalgebras is required to model programs that manip-
ulate several kinds orsortsof data; further generalisations are necessary to handle
programs that fail to terminate on some inputs, that generate exceptions during exe-
cution, etc. This chapter summarizes the basic concepts and results of many-sorted
universal algebra that will be required for the rest of this book. Some extensions
useful for modelling more complex programs will be discussed later, in Section 2.7.
In this chapter, all proofs are left as exercises for the reader.

1.1 Many-sorted sets

When using an algebra to model a program which manipulates several sorts of data,
it is natural to partition the underlying set of values in the algebra so that there is one
set of values for each sort of data. It is often convenient to manipulate such a family
of sets as a unit, in such a way that operations on this unit respect the “typing” of
data values.

The following sequence of definitions and notational conventions allow us to ma-
nipulate sorted families of sets (of functions, of relations, . . . ) in just the same way

15



16 1 Universal algebra

as ordinary sets (functions, relations, . . . ). Ordinary sets (functions, relations, . . . )
correspond to the degenerate case in which there is just one sort, so these definitions
also serve to recall the notation and terminology of set theory to be used throughout
this book. LetSbe a set; the notation〈Xs〉s∈S is a standard shorthand for the family
of objectsXs indexed bys∈ S, i.e. the function with domainS which maps each
s∈ S to Xs.

Throughout this section, letSbe a set (of sorts).

Definition 1.1.1 (Many-sorted set).An S-sorted setis anS-indexed family of sets
X = 〈Xs〉s∈S, which isemptyif Xs is empty for alls∈ S. The emptyS-sorted set will
be written (ambiguously) as∅. TheS-sorted setX is finite if Xs is finite for alls∈ S
and there is a finite set̂S⊆ Ssuch thatXs = ∅ for all s∈ S\ Ŝ.

Let X = 〈Xs〉s∈S andY = 〈Ys〉s∈S beS-sorted sets. Union, intersection, Cartesian
product, disjoint union, inclusion (subset) and equality ofX andY are defined com-
ponentwise as follows:

X∪Y = 〈Xs∪Ys〉s∈S

X∩Y = 〈Xs∩Ys〉s∈S

X×Y = 〈Xs×Ys〉s∈S

X]Y = 〈Xs]Ys〉s∈S (whereXs]Ys = ({1}×Xs)∪ ({2}×Ys))
X ⊆Y iff (if and only if) Xs⊆Ys for all s∈ S
X =Y iff X ⊆Y andY⊆X (equivalently, iffX andY are equal as functions).ut

Exercise 1.1.2.Give a formal explanation of the above statement that “Ordinary
sets . . . correspond to the degenerate case [of many-sorted sets] in which there is
just one sort”. How many∅-sorted sets are there? ut

Notation. It will be very convenient to pretend thatX ⊆ X]Y andY ⊆ X]Y. Al-
though this is never actually the case, it allows us to treat disjoint union in the same
way as ordinary union, the difference being that whenX ∩Y 6= ∅, X ]Y contains
two “copies” of the common elements and keeps track of which copy is fromX and
which fromY. To see that this does not cause problems, observe that there are in-
jectiveS-sorted functions (see the next definition)i1:X → X]Y andi2:Y → X]Y
defined byi1s(x) = 〈1,x〉 for all s∈ S andx ∈ Xs and similarly for i2. A pedant
would be able to correct what follows by simply inserting the functionsi1 and/ori2
where appropriate in expressions involving] . ut

Exercise 1.1.3.Extend the above definitions of union, intersection, product and dis-
joint union to operations onI -indexed families ofS-sorted sets, for an arbitrary in-
dex setI . For example, the definition for product is(∏〈Xi〉i∈I )s = { f : I →

⋃
i∈I (Xi)s |

f (i) ∈ (Xi)s for all i ∈ I} for eachs∈ S. ut

Definition 1.1.4 (Many-sorted function).Let X = 〈Xs〉s∈S andY = 〈Ys〉s∈S be S-
sorted sets. AnS-sorted function f:X →Y is anS-indexed family of functionsf =
〈 fs:Xs→Ys〉s∈S; X is called thedomain(orsource) of f , andY is called itscodomain
(or target). An S-sorted functionf :X → Y is an identity (an inclusion, surjective,
injective, bijective, . . . ) if for everys∈ S, the functionfs:Xs→Ys is an identity (an

Page: 16 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47



1.1 Many-sorted sets 17

inclusion, surjective, injective, bijective, . . . ). The identityS-sorted function onX
will be written asidX:X → X.

If f :X →Y andg:Y→ Z areS-sorted functions then theircomposition f;g:X →
Z is theS-sorted function defined byf ;g = 〈 fs;gs〉s∈S. That is, if s∈ S andx ∈ Xs

then( f ;g)s(x) = gs( fs(x)).1

Let f :X →Y be anS-sorted function andX′ ⊆ X, Y′ ⊆Y beS-sorted sets. The
image of X′ under f is theS-sorted setf (X′) = 〈 fs(X′

s)〉s∈S⊆ Y, where fs(X′
s) =

{ fs(x) | x ∈ X′
s} ⊆ Ys for all s∈ S. The coimage of Y′ under f is theS-sorted set

f−1(Y′) = 〈 f−1
s (Y′

s)〉s∈S⊆ X, where f−1
s (Y′

s) = {x ∈ Xs | fs(x) ∈ Y′
s} ⊆ Xs for all

s∈ S. ut

Definition 1.1.5 (Many-sorted binary relation). Let X = 〈Xs〉s∈S andY = 〈Ys〉s∈S

beS-sorted sets. AnS-sorted binary relation between X and Y, writtenR⊆ X×Y,
is anS-indexed family of binary relationsR= 〈Rs⊆ Xs×Ys〉s∈S. For s∈ S, x∈ Xs

andy∈Ys, x Rs y (sometimes writtenx R y) means〈x,y〉 ∈ Rs. ut

The generalisation ton-ary relations, forn≥ 0, is obvious. As usual, many-sorted
functions may be viewed as special many-sorted relations.

Definition 1.1.6 (Kernel of a many-sorted function).Let f :X →Y be anS-sorted
function. Thekernel of f is the S-sorted binary relation ker( f ) = 〈ker( fs)〉s∈S ⊆
X×X where ker( fs) = {〈x,y〉 | x,y∈ Xs and fs(x) = fs(y)} ⊆ Xs×Xs is the kernel
of fs for all s∈ S. ut

Definition 1.1.7 (Many-sorted equivalence).Let X = 〈Xs〉s∈S be anS-sorted set.
An S-sorted binary relationR⊆ X×X is anS-sorted equivalence (relation) on Xif
it is:

• reflexive:xRsx;
• symmetric:xRsy impliesyRsx; and
• transitive:xRsy andyRsz impliesxRsz

for all s∈ Sandx,y,z∈ Xs. The symbol≡ is often used for (S-sorted) equivalence
relations.

Let ≡ be anS-sorted equivalence onX. If s∈ Sandx∈ Xs then theequivalence
class of x modulo≡ is the set[x]≡s = {y∈ Xs | x≡s y}. Thequotient of X modulo
≡ is theS-sorted setX/≡ = 〈Xs/≡s〉s∈S whereXs/≡s = {[x]≡s | x ∈ Xs} for all
s∈ S. ut

Example 1.1.8.Let S= {s1,s2}, and letX andY be twoS-sorted sets defined as
follows:

X = 〈Xs〉s∈S whereXs1 = {2,4} andXs2 = {♣,♥,♠},
Y = 〈Ys〉s∈S whereYs1 = {1,2,3} andYs2 = {1,2,3}.

Let f :X →Y be theS-sorted function such that

1 This “diagrammatic” order of composition and the semicolon notation will be used consistently
throughout this book.
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18 1 Universal algebra

fs1 = {2 7→ 1,4 7→ 3}
fs2 = {♣ 7→ 1,♥ 7→ 2,♠ 7→ 2}.

(i.e., fs1(2) = 1 and fs1(4) = 3; analogously forfs2). Then the kernel off is the
S-sorted equivalence relation ker( f ) = 〈ker( fs)〉s∈S where

ker( fs1) = {〈2,2〉,〈4,4〉}
ker( fs2) = {〈♣,♣〉,〈♥,♥〉,〈♥,♠〉,〈♠,♥〉,〈♠,♠〉}.

The quotient ofX modulo ker( f ) is theS-sorted setX/ker( f ) = 〈Xs/ker( fs)〉s∈S

where

Xs1/ker( fs1) = {{2},{4}}
Xs2/ker( fs2) = {{♣},{♥,♠}}. ut

Exercise 1.1.9.Show that if f :X →Y is anS-sorted function, then ker( f ) is anS-
sorted equivalence onX. ut

Exercise 1.1.10.Show that if≡ is anS-sorted equivalence onX then for alls∈ S
andx,y∈ Xs, [x]≡s = [y]≡s iff x≡s y. ut

Notation. Subscripts selecting components ofS-sorted sets (functions, relations,
. . . ) are often omitted when there is no danger of confusion. Then Exercise 1.1.10
would read: “. . . for alls∈ Sandx,y∈ Xs, [x]≡ = [y]≡ iff x≡ y.” ut

1.2 Signatures and algebras

The functions and data types defined by a program have names. These names are
used to compute with and reason about the program, and to build larger programs
which rely on the functionality the program provides. The connection between a
program and an algebra used to model it is provided by these names, which are at-
tached to the corresponding components of the algebra. The set of names associated
with an algebra is called its signature. The signature of an algebra defines thesyntax
of the algebra by characterising the ways in which its components may legally be
combined; the algebra itself supplies thesemanticsby assigning interpretations to
the names in the signature.

Definition 1.2.1 (Many-sorted signature).A (many-sorted) signatureis a pairΣ =
〈S,Ω〉, where:

• S is a set (of sort names); and
• Ω is anS∗×S-sorted set (of operation names)

whereS∗ is the set of finite (including empty) sequences of elements ofS. We will
sometimes writesorts(Σ) for Sandops(Σ) for Ω . Σ is asubsignatureof a signature
Σ ′ = 〈S′,Ω ′〉 if S⊆ S′ andΩw,s⊆Ω ′

w,s for all w∈ S∗,s∈ S. ut
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1.2 Signatures and algebras 19

Many-sorted signatures will be referred to asalgebraicsignatures when it is neces-
sary to distinguish them from other kinds of signatures to be introduced later.

Notation. Saying thatf :s1×·· ·×sn → s is in Σ = 〈S,Ω〉 means thats1 . . .sn ∈ S∗,
s∈ S and f ∈ Ωs1...sn,s. Then f is said to havearity s1 . . .sn andresult sort s. The
abbreviationf :s will be used forf :ε → s (ε is the empty sequence). ut

This definition of signature does not accommodate programs containing higher-
order functions, or functions returning multiple results. A possible extension to han-
dle higher-order functions is briefly discussed in Section 2.7.6. As for functions with
multiple results, a functionf :s1×·· ·×sn→ t1×·· ·× tm may be viewed as a family
of m functions

f1:s1×·· ·×sn → t1 . . . fm:s1×·· ·×sn → tm.

Generalising the definition of signature to handle such functions in a more di-
rect way is easy but makes subsequent developments somewhat messier in a non-
interesting way.

The definition abovedoespermit overloaded operation names, since it is possible
to have bothf :s1× ·· · × sn → s and f : t1× ·· · × tm → t in a signatureΣ , where
s1 . . .sns 6= t1 . . . tmt. A more restrictive definition of signature, adequate for most
purposes, would have a setΩ of operation names (and a setSof sort names) with
functionsarity:Ω → S∗ andsort:Ω → S. These two definitions are equivalent if
each operation name inΩ is taken to be tagged with its arity and result sort.

In the rest of this section, letΣ = 〈S,Ω〉 be a signature.

Definition 1.2.2 (Many-sorted algebra).A Σ -algebra Aconsists of:

• anS-sorted set|A| of carrier sets(or carriers); and
• for each f :s1× ·· ·× sn → s in Σ , a function (oroperation) ( f :s1× ·· ·× sn →

s)A: |A|s1 ×·· ·× |A|sn → |A|s. ut

If A is a Σ -algebra ands is a sort name inΣ then |A|s, the carrier set of sorts
in A, is the universe of data values of sorts; accordingly, we often refer to the
elements of carrier sets asvalues. If f :s1×·· ·× sn → s is in Σ then the operation
( f :s1×·· ·×sn → s)A is a function on the corresponding carrier sets ofA. If n = 0
(i.e. f :s), then|A|s1×·· ·×|A|sn is a singleton set containing the empty tuple〈〉, and
then( f :s)A may be viewed as a constant denoting the value( f :s)A(〈〉)∈ |A|s. Notice
that ( f :s1×·· ·× sn → s)A is a total function2 so algebras as defined here are only
appropriate for modelling programs containing total functions. See Sections 2.7.3–
2.7.5 for several ways of extending the definitions to cope with partial functions.
Note also that there is no restriction on the cardinality of|A|s; in particular,|A|s may
be empty and need not be countable.

Notation. Let A be aΣ -algebra and letf :s1×·· ·×sn→ sbe inΣ . We always write
fA in place of( f :s1×·· ·× sn → s)A when there is no danger of confusion. When
n = 0 (i.e. f :s), we write( f :s)A or fA in place of( f :s)A(〈〉). ut

2 All functions in this book are total except where they are explicitly designated as partial.
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20 1 Universal algebra

Exercise 1.2.3.If Ωε,s 6= ∅ for somes∈S, then there are no〈S,Ω〉-algebras having
an empty carrier of sorts. Characterise signatures for which all algebras have non-
empty carriers of all sorts. ut

Example 1.2.4.LetS1= {shape,suit} and letΩ1ε,shape= {box}, Ω1ε,suit = {hearts},
Ω1shape,shape= {boxify}, Ω1shapesuit,suit = { f}, andΩ1w,s = ∅ for all other w ∈
S1∗,s∈ S1. ThenΣ1 = 〈S1,Ω1〉 is a signature with sort namesshapeand suit
and operation namesbox:shape, hearts:suit, boxify:shape→ shapeand f :shape×
suit→ suit. We can presentΣ1 in tabular form as follows (this notation will be used
later with the obvious meaning):

Σ1 = sorts shape,suit
ops box:shape

hearts:suit
boxify:shape→ shape
f :shape×suit→ suit

We define aΣ1-algebraA1 as follows:

|A1|shape= {2,4},
|A1|suit = {♣,♥,♠},
boxA1 = 2 ∈ |A1|shape,
heartsA1 =♥ ∈ |A1|suit,
boxifyA1: |A1|shape→ |A1|shape= {2 7→2,4 7→2},

and fA1: |A1|shape×|A1|suit→ |A1|suit is defined by the following table:

fA1 ♣ ♥ ♠
2 ♣ ♠ ♥
4 ♥ ♠ ♠

(NOTE: Reference will be made toΣ1 andA1 in examples throughout the rest of
this chapter.) ut

Definition 1.2.5 (Subalgebra).Let A andB beΣ -algebras.B is asubalgebraof A
if:

• |B| ⊆ |A|; and
• for f :s1 × ·· · × sn → s in Σ and b1 ∈ |B|s1, . . . ,bn ∈ |B|sn, fB(b1, . . . ,bn) =

fA(b1, . . . ,bn).

B is apropersubalgebra ofA if it is a subalgebra ofA and|B| 6= |A|. A subalgebra of
A is determined by anS-sorted subset|B| of |A| which is closed under the operations
of Σ , i.e. such that for eachf :s1×·· ·× sn → s in Σ andb1 ∈ |B|s1, . . . ,bn ∈ |B|sn,
fA(b1, . . . ,bn) ∈ |B|s. ut

If B is a (proper) subalgebra ofA thenB is “smaller” thanA in the sense that it
contains fewerdata valuesthanA. BothA andB areΣ -algebras though, soA andB
contain interpretations for exactly the same sort and operation names.
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1.2 Signatures and algebras 21

Exercise 1.2.6.Let A be aΣ -algebra. Show that the intersection of any family of
(carriers of) subalgebras ofA is a (carrier of a) subalgebra ofA. Use this to show
that for anyX ⊆ |A|, there is a least subalgebra ofA that containsX. This is called
the subalgebra of A generated by X. Give an explicit construction of this algebra.
(HINT : Consider the family ofS-sorted setsXi ⊆ |A|, i ≥ 0, whereX0 = X andXi+1 is
obtained fromXi by adding the results of applying the operations ofA to arguments
in Xi .) ut

Definition 1.2.7 (Reachable algebra).Let A be aΣ -algebra.A is reachableif A has
no proper subalgebra (equivalently, ifA is generated by∅). ut

By Exercise 1.2.6, every algebra has a unique reachable subalgebra.

Example 1.2.8.Let Σ1 = 〈S1,Ω1〉 andA1 be as defined in Example 1.2.4. Define
a Σ1-algebraB1 by

|B1|shape= {2},
|B1|suit = {♥,♠},
boxB1 = 2 ∈ |B1|shape,
heartsB1 =♥ ∈ |B1|suit,
boxifyB1: |B1|shape→ |B1|shape= {2 7→2},
fB1: |B1|shape×|B1|suit→ |B1|suit = {〈2,♥〉 7→ ♠,〈2,♠〉 7→ ♥}.

B1 is the subalgebra ofA1 generated by∅. That is,B1 is the reachable subalgebra
of A1. ut

Definition 1.2.9 (Product algebra).Let A andB beΣ -algebras. Theproduct alge-
bra A×B is theΣ -algebra defined as follows:

• |A×B|= |A|× |B|; and
• for eachf :s1×·· ·×sn → s in Σ and〈a1,b1〉 ∈ |A×B|s1, . . . ,〈an,bn〉 ∈ |A×B|sn,

fA×B(〈a1,b1〉, . . . ,〈an,bn〉) = 〈 fA(a1, . . . ,an), fB(b1, . . . ,bn)〉 ∈ |A×B|s.

This generalises to the product∏〈Ai〉i∈I of a family of Σ -algebras, indexed by an
arbitrary setI (possibly empty), as follows:

• |∏〈Ai〉i∈I |= ∏〈|Ai |〉i∈I ; and
• for each f :s1× ·· · × sn → s in Σ and f1 ∈ |∏〈Ai〉i∈I |s1, . . . , fn ∈ |∏〈Ai〉i∈I |sn,

fΠ 〈Ai〉i∈I
( f1, . . . , fn)(i) = fAi ( f1(i), . . . , fn(i)) for all i ∈ I . ut

Exercise 1.2.10.Definition 1.2.9 shows how twoΣ -algebras can be combined to
form a newΣ -algebra by taking the Cartesian product of their carriers. According
to Exercise 1.2.6, the same thing can be done (with subalgebras of a fixed algebra)
using intersection. Try to formulate definitions ofunionanddisjoint unionof alge-
bras, where|A∪B|= |A|∪ |B| and|A]B|= |A|] |B| respectively. What happens?

ut
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22 1 Universal algebra

1.3 Homomorphisms and congruences

A homomorphism between algebras is the analogue of a function between sets, and
a congruence relation on an algebra is the analogue of an equivalence relation on a
set. An algebra has more structure than a set, so homomorphisms and congruences
are required to respect the additional structure (i.e. the behaviour of the operations).
Homomorphisms and congruences are important basic tools for relating algebras
and constructing new algebras from old ones.

Throughout this section, letΣ = 〈S,Ω〉 be a signature.

Definition 1.3.1 (Homomorphism).LetAandBbeΣ -algebras. AΣ -homomorphism
h:A → B is an S-sorted functionh: |A| → |B| which respects the operations of
Σ , i.e. such that for allf :s1 × ·· · × sn → s in Σ and a1 ∈ |A|s1, . . . ,an ∈ |A|sn,
hs( fA(a1, . . . ,an)) = fB(hs1(a1), . . . ,hsn(an)). A Σ -homomorphismh:A→ B is an
identity (an inclusion, surjective, . . . ) if it is an identity (an inclusion, surjective,
. . . ) when viewed as anS-sorted function. ut

Notation. If h:A→ B is aΣ -homomorphism, then|h|: |A| → |B| denotesh viewed
as anS-sorted function. The only difference betweenh and|h| is that in the case of
|h| we have “forgotten” that the additional condition required of a homomorphism
is satisfied. ut

Informally, the homomorphism condition says that the behaviour of the opera-
tions inA is reflected in that of the operations inB. This condition can be expressed
in the form of a diagram as follows:

|A|s1 ×·· ·× |A|sn

|A|s

-
hs1 ×·· ·×hsn

-
hs

?

fA

|B|s1 ×·· ·× |B|sn

|B|s

?

fB

where(hs1×·· ·×hsn)(as1, . . . ,asn)= (hs1(as1), . . . ,hsn(asn)) for all a1∈ |A|s1, . . . ,an∈
|A|sn. The homomorphism condition amounts to the requirement that this diagram
commutes, i.e. that composing the functions on the top and right-hand arrows gives
the same result as composing the functions on the left-hand and bottom arrows. Such
commuting diagrams will be used heavily in later chapters, particularly in Chapter 3.

Example 1.3.2.Let Σ1 = 〈S1,Ω1〉 andA1 be as defined in Example 1.2.4. Define
a Σ1-algebraC1 by
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1.3 Homomorphisms and congruences 23

|C1|shape= |C1|suit = {1,2,3},
boxC1 = 1∈ |C1|shape,
heartsC1 = 2∈ |C1|suit,
boxifyC1: |C1|shape→ |C1|shape= {1 7→ 1,2 7→ 3,3 7→ 1},

and fC1: |C1|shape×|C1|suit→ |C1|suit is defined by the following table:

fC1 1 2 3
1 1 2 3
2 2 1 2
3 2 2 1

Let h1:|A1| → |C1| be theS1-sorted function such that

h1shape= {2 7→ 1,4 7→ 3},
h1suit = {♣ 7→ 1,♥ 7→ 2,♠ 7→ 2}.

It is easy to verify thath1:A1→C1 is aΣ1-homomorphism by checking the fol-
lowing:

h1shape(boxA1) = boxC1

h1suit(heartsA1) = heartsC1

h1shape(boxifyA1(2)) = boxifyC1(h1shape(2))
h1shape(boxifyA1(4)) = boxifyC1(h1shape(4))

h1suit( fA1(2,♣)) = fC1(h1shape(2),h1suit(♣))
h1suit( fA1(2,♥)) = fC1(h1shape(2),h1suit(♥))
h1suit( fA1(2,♠)) = fC1(h1shape(2),h1suit(♠))
h1suit( fA1(4,♣)) = fC1(h1shape(4),h1suit(♣))
h1suit( fA1(4,♥)) = fC1(h1shape(4),h1suit(♥))
h1suit( fA1(4,♠)) = fC1(h1shape(4),h1suit(♠)). ut

Exercise 1.3.3.Let A be aΣ -algebra. Show thatid|A|:A→ A (the identityS-sorted
function) is aΣ -homomorphism. Leth:A→B andh′:B→C beΣ -homomorphisms.
Show that|h|;|h′|: |A| → |C| is aΣ -homomorphismh;h′:A→C. ut

Exercise 1.3.4.Let h:A→ B be aΣ -homomorphism, and letA′ be a subalgebra of
A. Let theimage of A′ under hbe theΣ -algebrah(A′) defined as follows:

• |h(A′)|= |h|(|A′|); and
• for eachf :s1×·· ·×sn→ s in Σ anda1∈ |A′|s1, . . . ,an∈ |A′|sn, fh(A′)(hs1(a1), . . . ,hsn(an))=

hs( fA′(a1, . . . ,an)).

Show thath(A′) is a well-definedΣ -algebra (in particular, that the functionfh(A′): |h(A′)|s1×
·· ·× |h(A′)|sn → |h(A′)|s is well-defined for eachf :s1×·· ·×sn → s in Σ ) and that
it is a subalgebra ofB. Formulate a definition of thecoimageof a subalgebraB′ of
B underh, and show that it is a subalgebra ofA. ut

Exercise 1.3.5.Let h:A→ B be aΣ -homomorphism, and supposeX ⊆ |A|. Show
that the subalgebra ofB generated by|h|(X) ⊆ |B| is the image of the subalgebra
of A generated byX. Show that it follows that ifh:A→ B is surjective andA is
reachable thenB is reachable. ut
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24 1 Universal algebra

Exercise 1.3.6.LetBbe a reachableΣ -algebra. Show that for anyΣ -algebraA, there
is at most oneΣ -homomorphismh:B→A, and that anyΣ -homomorphismh:A→B
is surjective. ut

Definition 1.3.7 (Isomorphism).Let A andB beΣ -algebras. AΣ -homomorphism
h:A→ B is a Σ -isomorphismif it has an inverse, i.e. there is aΣ -homomorphism
h−1:B→ A such thath;h−1 = id|A| andh−1;h = id|B|. (Exercise:Show that ifh−1

exists then it is unique.) ThenA andB are calledisomorphicand we writeh:A∼= B
or justA∼= B. ut

Exercise 1.3.8.Let h:A∼= B andh′:B∼=C beΣ -isomorphisms. Show that their com-
position is aΣ -isomorphismh;h′:A∼= C. Show that∼= (as a binary relation onΣ -
algebras) is reflexive and symmetric, and is therefore an equivalence relation.ut

Two isomorphic algebras are typically regarded as indistinguishable for all practi-
cal purposes. It is easy to see why: the only way in which they can differ is in the
particular choice of data values in the carriers. The size of the carriers and the way
that the operations behave on the values in the carriers is exactly the same. For this
reason we are often satisfied with a definition of an algebra “up to isomorphism”,
i.e. a description of an isomorphism class of algebras in a context where one would
expect a definition of a single algebra. An example of this is in Fact 1.4.10 below.
The notion of isomorphism can be generalised to other kinds of structures, where
it embodies exactly the same concept of indistinguishability. See Chapter 3 for this
generalisation and for many more examples of definitions of objects “up to isomor-
phism”.

Example 1.3.9.Let Σ1 = 〈S1,Ω1〉 andA1 be as defined in Example 1.2.4. Define
a Σ1-algebraD1 by

|D1|shape= {2,4},
|D1|suit = {1,2,3},
boxD1 =4∈ |D1|shape,
heartsD1 = 2∈ |D1|suit,
boxifyD1: |D1|shape→ |D1|shape= {2 7→ 4,4 7→4},

and fD1: |D1|shape×|D1|suit→ |D1|suit is defined by the following table:

fD1 1 2 3
2 2 3 3
4 1 3 2

Let i1:|A1| → |D1| be theS1-sorted function such that

i1shape= {2 7→ 4,4 7→2}
i1suit = {♣ 7→ 1,♥ 7→ 2,♠ 7→ 3}.

This defines aΣ1-homomorphismi1:A1→D1 which is aΣ1-isomorphism, soA1∼=
D1. ut
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1.3 Homomorphisms and congruences 25

Exercise 1.3.10.Show that a homomorphism is an isomorphism iff it is bijective.
ut

Exercise 1.3.11.Show that there is an injective homomorphismh:A→ B iff A is
isomorphic to a subalgebra ofB. ut

Example 1.3.12.Let Σ = 〈S,Ω〉 be the signature

sorts s
ops a:s

f :s→ s

and defineΣ -algebrasA andB by

|A|s = Nat (the natural numbers),
aA = 0∈ |A|s,
fA: |A|s→ |A|s = {n 7→ n+1 | n∈ Nat},

|B|s = {n∈ Nat | the Turing machine with G̈odel numbern halts on all inputs},
aB = the smallestn∈ |B|s,
fB: |B|s→ |B|s = {n∈ |B|s 7→ the smallestm∈ |B|s such thatm> n}.

Let i: |A| → |B| be theS-sorted function such that

is(n) = the(n+1)st smallest element of|B|s

for all n∈ |A|s. The functionis is well-defined since|B|s is infinite. This defines a
Σ -homomorphismi:A→ B which is an isomorphism.

Although A∼= B, theΣ -algebrasA andB are not “the same” from the point of
view of computability: everything inA is computable, in contrast toB (|B|s is not
recursively enumerable andfB is not computable). Isomorphisms capturestructural
similarity, ignoring what the values in the carriers are and what the operations actu-
ally compute. This example shows that, for some purposes, properties stronger than
structural similarity are important. ut

Definition 1.3.13 (Congruence).Let A be aΣ -algebra. AΣ -congruence on Ais
an (S-sorted) equivalence≡ on |A| which respects the operations ofΣ : for all
f :s1×·· ·×sn→ s in Σ anda1,a′1 ∈ |A|s1, . . . ,an,a′n ∈ |A|sn, if a1≡s1 a′1 and . . . and
an ≡sn a′n then fA(a1, . . . ,an)≡s fA(a′1, . . . ,a

′
n). ut

Exercise 1.3.14.Show that the intersection of any family ofΣ -congruences onA is
aΣ -congruence onA. Use this to show that for anyS-sorted binary relationRon |A|
there is a least (with respect to⊆) Σ -congruence onA which includesR.

Show that the kernel of anyΣ -homomorphismh:A→ B is aΣ -congruence onA.
Show that a surjectiveΣ -homomorphism is an isomorphism iff its kernel is the

identity. ut

Definition 1.3.15 (Quotient algebra).Let A be aΣ -algebra, and let≡ be aΣ -
congruence onA. Thequotient algebra of A modulo≡ is theΣ -algebraA/≡ defined
by:
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26 1 Universal algebra

• |A/≡|= |A|/≡; and
• for eachf :s1×·· ·×sn→ sanda1∈ |A|s1, . . . ,an∈ |A|sn, fA/≡([a1]≡s1

, . . . , [an]≡sn
)=

[ fA(a1, . . . ,an)]≡s. ut

Exercise 1.3.16.Show thatA/≡ in Definition 1.3.15 is a well-definedΣ -algebra.
ut

Example 1.3.17.Let Σ1 = 〈S1,Ω1〉 andA1 be as defined in Example 1.2.4, and let
≡= 〈≡s〉s∈S1 be theS1-sorted binary relation on|A1| defined by

≡shape= {〈2,2〉,〈4,4〉}
≡suit = {〈♣,♣〉,〈♥,♥〉,〈♥,♠〉,〈♠,♥〉,〈♠,♠〉}.

This defines a congruence onA1. A1/≡ is theΣ1-algebra defined by

|A1/≡|shape= {{2},{4}},
|A1/≡|suit = {{♣},{♥,♠}},
boxA1/≡ = {2} ∈ |A1/≡|shape,
heartsA1/≡ = {♥,♠} ∈ |A1/≡|suit,
boxifyA1/≡: |A1/≡|shape→ |A1/≡|shape= {{2} 7→ {2},{4} 7→ {2}},

and fA1/≡: |A1/≡|shape×|A1/≡|suit→ |A1/≡|suit is defined by the following table:

fA1/≡ {♣} {♥,♠}
{2} {♣} {♥,♠}
{4} {♥,♠} {♥,♠} ut

Exercise 1.3.18.Let ≡ be aΣ -congruence onA, and leths(a) = [a]≡s for s∈ S,
a∈ |A|s. Show that〈hs: |A|s→ (|A|/≡)s〉s∈S is aΣ -homomorphismh:A→A/≡with
ker(h) =≡. ut

Exercise 1.3.19.Let h:A→ B be aΣ -homomorphism. Show thatA/ker(h) is iso-
morphic toh(A). (HINT : The isomorphism is given by[a]ker(hs) 7→ hs(a) for s∈ S,
a∈ |A|s.) ut

Exercise 1.3.20.Let≡ be aΣ -congruence onA. Show that for anyΣ -homomorphism
h:A→ B such that≡⊆ ker(h), there exists a uniqueΣ -homomorphismg:A/≡→ B
such thaths(a) = gs([a]≡s) for all s∈ S, a∈ |A|s. ut

Exercise 1.3.21.Show that there is a surjective homomorphismh:A→B iff there is
a congruence≡ onA such thatB is isomorphic toA/≡. ut

Exercise 1.3.22.Let A be aΣ -algebra, let≡ be a congruence onA and letB be a
subalgebra ofA/≡. Show that there is a subalgebraC of A and congruence≡′ on
C such thatB = C/≡′. ut

Exercise 1.3.23.Let h:A→ B be aΣ -homomorphism. Show that there is a unique
Σ -congruence≡ on A and a unique injectiveΣ -homomorphismg:A/≡→ B such
thaths(a) = gs([a]≡s) for all s∈ S, a∈ |A|s. ut
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1.4 Term algebras

For any signatureΣ there is a specialΣ -algebra whose values are just well-formed
terms (i.e. expressions) built from the operation names inΣ . A Σ -algebra of terms
with variables is similarly determined by a signatureΣ = 〈S,Ω〉 and anS-sorted
set of variables. These algebras are rather boring insofar as modelling programs is
concerned — the term algebra models a program which does no real computation.
But the homomorphisms from these algebras toother algebras turn out to be very
useful technical tools, as shown by the definitions below.

Throughout this section, letΣ = 〈S,Ω〉 be a signature and letX be anS-sorted
set (of variables), wherex∈Xs for s∈Smeans that the variablex is of sorts (written
x:s). Note that “overloading” of variable names is permitted here, since there is no
requirement thatXs andXs′ be disjoint fors 6= s′ ∈ S.

Definition 1.4.1 (Term algebra).The Σ -algebra TΣ (X) of terms with variables X
is theΣ -algebra defined as follows:

• |TΣ (X)| is the least (with respect to⊆) S-sorted set of words (sequences) over the
alphabet

S∪
⋃

w∈S∗
s∈S

Ωw,s∪
⋃
s∈S

Xs∪{: ,( , ,,)}

such that:

– the word “x:s” ∈ |TΣ (X)|s for all s∈ Sandx∈ Xs; and
– for all f :s1×·· ·×sn→ s in Σ and all wordst1 ∈ |TΣ (X)|s1, . . . , tn ∈ |TΣ (X)|sn,

the word “f (t1, . . . , tn):s” ∈ |TΣ (X)|s.

• for all f :s1×·· ·× sn → s in Σ and all wordst1 ∈ |TΣ (X)|s1, . . . , tn ∈ |TΣ (X)|sn,
fTΣ (X)(t1, . . . , tn) = (the word) “f (t1, . . . , tn):s” ∈ |TΣ (X)|s.

(Quotation marks are used here solely to emphasize that terms are words, and are
not part of the words they delimit.) Ifs∈ S andt ∈ |TΣ (X)|s thent is a Σ -term of
sort s with variables X; thefree variables of tis the setFV(t)⊆ X of variables that
actually occur int: for s∈ Sandx∈ Xs, x∈ FV(t)s if t contains the subword “x:s”.

The Σ -algebra of ground termsis theΣ -algebraTΣ = TΣ (∅) of terms without
variables. Ifs∈ Sandt ∈ |TΣ |s thent is agroundΣ -term. ut

The values ofTΣ (X) are “fully-typed” terms formed using the variables inX and
the operation names inΣ , and the operations ofTΣ (X) just build complicated terms
from simpler terms. Note that a termt ∈ |TΣ (X)| need not contain all the variables
in X, and that some variables may occur more than once int. TΣ is also called the
Σ -word algebra, and its carriers|TΣ | are sometimes called theHerbrand universe
for Σ .

Example 1.4.2.Let Σ1 = 〈S1,Ω1〉 be as defined in Example 1.2.4. ThenTΣ1 is the
Σ1-algebra defined by
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|TΣ1|shape= { “box():shape” ,
“boxify(box():shape):shape” ,
“boxify(boxify(box():shape):shape):shape” ,
. . . },

|TΣ1|suit = { “hearts():suit” ,
“ f (box():shape,hearts():suit):suit” ,
“ f (boxify(box():shape):shape,hearts():suit):suit” ,
“ f (box():shape, f (box():shape,hearts():suit):suit):suit” ,
. . . }

where the operations ofTΣ1 are the term formation operations

boxTΣ1 = “box():shape” ∈ |TΣ1|shape,
heartsTΣ1 = “hearts():suit” ∈ |TΣ1|suit,
boxifyTΣ1

: |TΣ1|shape→ |TΣ1|shape

= { “box():shape” 7→ “boxify(box():shape):shape” ,
“boxify(box():shape):shape” 7→ “boxify(boxify(box():shape):shape):shape” ,
. . . },

and similarly for f :shape×suit→ suit. ut

Notation. Sort decorations (e.g. “:shape” in “ box():shape”) are often unambigu-
ously determined, and they will usually be omitted when this is the case. When
Ωε,s∩Xs = ∅ for somes∈ S, then variables of sorts cannot be confused with con-
stants (0-ary operations) of sorts and so we will usually drop the parentheses “()”
in the latter. We will omit quotation marks whenever it is clear from the context that
we are dealing with terms. Finally, in examples we will use infix notation for binary
operations when convenient. ut

Example 1.4.2 (revisited).We repeat Example 1.4.2, making use of these nota-
tional conventions.

Let Σ1 = 〈S1,Ω1〉 be as defined in Example 1.2.4. ThenTΣ1 is theΣ1-algebra
defined by

|TΣ1|shape= {box,boxify(box),boxify(boxify(box)), . . .},
|TΣ1|suit = {hearts, f (box,hearts), f (boxify(box),hearts), f (box, f (box,hearts)), . . .}

where the operations ofTΣ1 are the term formation operations

boxTΣ1 = box∈ |TΣ1|shape,
heartsTΣ1 = hearts∈ |TΣ1|suit,
boxifyTΣ1

: |TΣ1|shape→ |TΣ1|shape

= {box 7→ boxify(box),boxify(box) 7→ boxify(boxify(box)), . . .},

and similarly for f :shape×suit→ suit. ut

Example 1.4.3.The notational conventions above will almost always be applicable.
They cannot be adopted from the outset (i.e. in Definition 1.4.1) because of the
relatively rare examples where confusion can arise. For example, letΣ2 = 〈S2,Ω2〉
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be the signature with sortss,s′, t and operationsa:s, a:s′, f :s→ t and f :s′ → t (no
mistakes here, repetition of names is intented).

According to the definition,|TΣ2|t = {“ f (a():s): t” , “ f (a():s′): t”}. If all sort dec-
orations were omitted then both of the terms in this set would become “f (a())” and
so|TΣ2|t would have just this single element. The “outer” decoration can be omitted
but the “inner” decoration is required, thus e.g. “f (a():s)”.

Similarly, if X is anS2-sorted set of variables such thata∈ Xs, then “f (a():s)”
and “f (a:s)” are different terms in|TΣ2(X)|t , so the convention of writing “a():s”
as “a:s” cannot be used.

Since the definitions permit variables and operation names likef (a():s) and even
“ or , or (), the custom of writing terms as sequences of symbols without explicit
separators can cause confusion. Luckily, such names never arise in practice and so
for the purposes of this book this problem can safely be forgotten. ut

Fact 1.4.4.For any Σ -algebra A and S-sorted function v:X → |A| there is exactly
oneΣ -homomorphism v#:TΣ (X)→A that extends v, i.e. such that v#

s(ιX(x)) = vs(x)
for all s∈S, x∈Xs, whereιX:X→|TΣ (X)| is the embedding that maps each variable
in X to its corresponding term.

S-sorted sets Σ -algebras

X |TΣ (X)|

|A|

-⊂ ιX

?

|v#|

@
@

@
@

@
@

@R

v

TΣ (X)

A

?

v#

ut

The existence and uniqueness ofv# follow easily from the requirement thatv# ex-
tendsv (this fixes the value ofv# for any variable as a term in|TΣ (X)|) and thatv#

is a Σ -homomorphism (this determines the value ofv# for any term f (t1, . . . , tn) ∈
|TΣ (X)| as a function of the values ofv# for its immediate subtermst1, . . . , tn ∈
|TΣ (X)|). The homomorphism which results is the function which evaluatesΣ -terms
based on the assignment of values inA to variables inX given byv.

Definition 1.4.5 (Term evaluation).Let A be aΣ -algebraA and letv:X→|A| be an
S-sorted function. By Fact 1.4.4 there is a uniqueΣ -homomorphismv#:TΣ (X)→ A
that extendsv. Let s∈ Sand lett ∈ |TΣ (X)|s be aΣ -term of sorts; thevalue of t in A
under the valuation vis v#(t) ∈ |A|s. Whent ∈ |TΣ |s the value oft does not depend
on v; then thevalue of t in Ais ∅#(t) where∅:∅ → |A| is the empty function.
To make the algebra explicit, we writetA(v) for v#(t), andtA for tA(∅) whent is
ground. ut
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Exercise 1.4.6.Let t ∈ |TΣ (X)| be aΣ -term and letA be aΣ -algebra. Show that if
v:X → |A| andv′:X → |A| coincide onFV(t), thentA(v) = tA(v′). This follows from
another fact: for anyt ∈ |TΣ (X)|, X⊆Y (so thatt ∈ |TΣ (Y)|) andv:Y→|A|, we have
tA(v) = tA(ι ;v), whereι :X ↪→Y is the inclusion (and soι ;v:X → |A|). ut

Exercise 1.4.7.Define evaluation of terms in an inductive fashion. Convince your-
self that the result is the same as that given by Definition 1.4.5. ut

Exercise 1.4.8.Let h:A→ B be aΣ -homomorphism, letv:X → |A| be anS-sorted
function, and lett ∈ |TΣ (X)| be aΣ -term. Using Fact 1.4.4, prove thath(v#(t)) =
(v;h)#(t). Compare this with a proof of the same thing using your inductive defini-
tion of term evaluation from Exercise 1.4.7. ut

Exercise 1.4.9.Functionsθ :X → |TΣ (Y)| are sometimes calledsubstitutions(of
terms inTΣ (Y) for variables inX). Using Fact 1.4.4, define theΣ -termt[θ ] resulting
from applying the substitutionθ to aΣ -termt ∈ |TΣ (X)|. Show thatt[ιX] = t for any
t ∈ |TΣ (X)|, whereιX maps each variable inX to its corresponding term in|TΣ (X)|.
Define the compositionθ ;θ ′ of substitutionsθ :X → |TΣ (Y)| andθ ′:Y → |TΣ (Z)|,
and show that(t[θ ])[θ ′] = t[θ ;θ ′] for anyΣ -termt and substitutionsθ andθ ′. ut

Notation. Supposeu∈ |TΣ (Y)|s for some sorts∈ S. Then[x 7→ u] (when used as a
substitution{x:s}∪X→|TΣ (X∪Y)|) is shorthand for the function{x:s 7→ u}∪{z 7→
z | z∈ X,z 6= x:s}. Fort ∈ |TΣ ({x:s}∪X)|, t[x 7→ u] ∈ |TΣ (X∪Y)| thus stands for the
term obtained by substitutingu for x in t. This notation generalises straightforwardly
to [x1 7→ u1, . . . ,xn 7→ un] andt[x1 7→ u1, . . . ,xn 7→ un] providedx1, . . . ,xn are distinct
variables. ut

Fact 1.4.10.The property of TΣ (X) in Fact 1.4.4 defines TΣ (X) up to isomorphism:
if B is a Σ -algebra andη :X → |B| is an S-sorted function such that for anyΣ -
algebra A and S-sorted function v:X → |A| there is a uniqueΣ -homomorphism
v$:B→ A such thatη ;|v$|= v then B is isomorphic to TΣ (X), whereη#:TΣ (X)→ B
is an isomorphism with inverseι$

X:B→ TΣ (X).
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S-sorted sets Σ -algebras

X

|TΣ (X)|

|B|

|TΣ (X)|

�
�

�
�

�
�

��

ιX

-
η

@
@

@
@

@
@

@R

ιX

?

|η#|

?

|ι$
X|

TΣ (X)

B

TΣ (X)

?

η#

?

ι
$
X

�

��

ι#
X = idTΣ (X)

ut

Fact 1.4.4 says that the definition ofTΣ (X) fixes the definition of the term evalu-
ation function “for free” (see Definition 1.4.5). Fact 1.4.10 says that this property
is unique (up to isomorphism) toTΣ (X), so in fact the explicit definition ofTΣ (X)
is superfluous — it would be enough to defineTΣ (X) as “the” (unique up to iso-
morphism)Σ -algebra for which Definition 1.4.5 makes sense.TΣ (X) is a particular
example of afree object— see Section 3.5 for more on this topic.

Example 1.4.11.Let Σ1 = 〈S1,Ω1〉 be as defined in Example 1.2.4. ThenTΣ1 is
theΣ1-algebra described in Example 1.4.2. LetT1 be theΣ1-algebra defined by

|T1|shape= {box,box boxify,box boxify boxify, . . .},
|T1|suit = {hearts,box hearts f,box boxify hearts f,box box hearts f f, . . .}

where the operations ofT1 are the postfix term formation operations

boxT1 = box∈ |T1|shape,
heartsT1 = hearts∈ |T1|suit,
boxifyT1: |T1|shape→ |T1|shape= {box 7→ box boxify,box boxify7→ box boxify boxify, . . .},

and similarly for f :shape× suit→ suit. ThenT1 satisfies the property ofTΣ1 in
Fact 1.4.4 (the fact thatX = ∅ here makes this easy to check — there is only one
functionv:∅→ |A1| for anyΣ1-algebraA1), so by Fact 1.4.10 (whereη :∅→ |T1|
is the empty function)T1 is isomorphic toTΣ1. The isomorphism∅#:TΣ1 → T1
converts aΣ1-term to its postfix form. ut

Exercise 1.4.12.Prove Facts 1.4.4 and 1.4.10. ut

Exercise 1.4.13.Let A be aΣ -algebra and let∅:∅ → |A| be the empty function.
Show thatA is reachable iff the unique homomorphism∅# : TΣ → A is surjective,
i.e., iff every element in|A| is the value of a groundΣ -term. ut
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Exercise 1.4.14.Show thatTΣ is reachable. Put this fact together with previous re-
sults to show that aΣ -algebra is reachable iff it is isomorphic to a quotient ofTΣ , and
that there is a one-to-one correspondence between isomorphism classes of reachable
Σ -algebras and congruences onTΣ . ut

Exercise 1.4.15.Let G be a context-free grammar over an alphabetT of terminal
symbols. Consider the signatureΣG = 〈SG,ΩG〉, whereSG is the set of non-terminal
symbols ofG and each productionX → Y1 . . .Yn in G corresponds to an operation
in ΩG with result sortX and arity given by the sequence of non-terminal symbols
in Y1 . . .Yn. TheΣG-algebraAG has carriers|AG|X = T∗ for all X ∈ SG, and for any
p:X1× ·· · ×Xn → X in ΣG and a1, . . . ,an ∈ T∗, pAG(a1, . . . ,an) is the sequence
obtained by substitutinga j for the j th non-terminal symbol on the right-hand side
of the production associated withp. Prove the following:

1. For anyX ∈ SG, the carrier of sortX in the reachable subalgebra ofAG is the set
of sequences generated from the non-terminalX in G.

2. The algebraTΣG is isomorphic to the algebra of parse trees ofG.
3. The grammarG is unambiguous iff the reachable subalgebra ofAG is isomorphic

to TΣG. ut

1.5 Changing signatures

A signature morphism defines a mapping from the sort and operation names in one
signature to those in another signature, in such a way that the arity and result sort
of operations are respected. (This requirement is analogous to the requirement that
homomorphisms respect the behaviour of the operations.) Signature morphisms will
be used extensively in later chapters to mediate constructions involving multiple
signatures. The crucial point that makes these constructions work is that a signature
morphism fromΣ to Σ ′ induces translations of syntax (terms — later, also logical
formulae) and semantics (algebras and homomorphisms) betweenΣ andΣ ′.

Two kinds of signature morphisms are introduced in this section. Only the first
kind will be used in the rest of the book. The second kind,derived signature mor-
phisms, are introduced mainly as an example of one way in which a basic definition
could be modified. Such a modification would not affect later definitions and re-
sults, since these depend only on the induced translations of terms, algebras and
homomorphisms.

1.5.1 Signature morphisms

Definition 1.5.1 (Signature morphism).Let Σ = 〈S,Ω〉 andΣ ′ = 〈S′,Ω ′〉 be signa-
tures. Asignature morphismσ :Σ → Σ ′ is a pairσ = 〈σsorts,σops〉 whereσsorts:S→
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S′ and σops is a family of functions respecting the arities and result sorts of op-
eration names inΣ , that is σops = 〈σw,s:Ωw,s→ Ω ′

σ∗
sorts(w),σsorts(s)

〉w∈S∗,s∈S (where

for w = s1 . . .sn ∈ S∗, σ∗
sorts(w) = σsorts(s1) . . .σsorts(sn)). A signature morphism

σ :Σ → Σ ′ is a signature inclusionσ :Σ ↪→ Σ ′ if σsorts is an inclusion andσw,s is
an inclusion for allw∈ S∗,s∈ S. ut

Signature morphisms as defined above will be referred to asalgebraic signature
morphisms when it is necessary to distinguish them from other kinds of signature
morphisms to be introduced later. Note thatσsorts and (the functions constituting)
σops are not required to be either surjective or injective.

Notation. Whenσ :Σ → Σ ′, bothσsorts andσops (and its componentsσw,s for all
w∈ S∗,s∈ S) will be denoted byσ . ut

Example 1.5.2.Let Σ = 〈S,Ω〉 be the signature

sorts polygon,figure, trump
ops square:polygon

boxify:polygon→ polygon
boxify:polygon→ figure
h:figure× trump→ trump

Let Σ1 = 〈S1,Ω1〉 be the signature defined in Example 1.2.4.
Defineσsorts:S→ S1 andσops= 〈σw,s:Ωw,s→ Ω1σ∗

sorts(w),σsorts(s)〉w∈S∗,s∈S by

σsorts= {polygon7→ shape,figure 7→ shape, trump 7→ suit},
σε,polygon= {square7→ box}, σpolygon,polygon= {boxify 7→ boxify},
σpolygon,figure = {boxify 7→ boxify},
σfiguretrump,trump = {h 7→ f},

andσw,s = ∅ for all otherw∈ S∗,s∈ S. Thenσ :Σ → Σ1 is a signature morphism.
ut

Exercise 1.5.3.Let σ :Σ →Σ ′ andσ ′:Σ ′→Σ ′′ be signature morphisms. Let(σ ;σ ′)sorts=
σsorts;σ ′

sorts and (σ ;σ ′)ops = σops;σ ′
ops (or rather, to be more precise:(σ ;σ ′)w,s =

σw,s;σ ′
σ∗

sorts(w),σsorts(s)
for w∈ S∗,s∈ S). Show that this defines a signature morphism

σ ;σ ′:Σ → Σ ′′. ut

In the rest of this section, letσ :Σ → Σ ′ be a signature morphism, where
Σ = 〈S,Ω〉 andΣ ′ = 〈S′,Ω ′〉. As will be defined below, any such signature mor-
phism gives rise to a translation ofΣ -terms toΣ ′-terms, and ofΣ ′-algebras and ho-
momorphisms toΣ -algebras and homomorphisms. Note that the direction of trans-
lation of algebras and homomorphisms is “backwards” with respect to the direction
of the signature morphism, as the following figure indicates.
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Syntax



Semantics



Σ
-σ

Σ ′

Σ -terms -σ
Σ ′-terms

Σ -algebras �
σ

Σ ′-algebras

Σ -homomorphisms�
σ

Σ ′-homomorphisms

Definition 1.5.4 (Reduct algebra).Let A′ be aΣ ′-algebra. Theσ -reduct of A′ is the
Σ -algebraA′ σ defined as follows:

• |A′ σ |s = |A′|σ(s) for all s∈ S; and
• for all f :s1×·· ·×sn → s in Σ ,

fA′ σ
: |A′ σ |s1×·· ·×|A

′
σ |sn →|A′ σ |s= σ( f )A′ : |A′|σ(s1)×·· ·×|A′|σ(sn)→|A′|σ(s).

ut

If Σ is a subsignature ofΣ ′, σ :Σ ↪→ Σ ′ is the signature inclusion, andA′ is a Σ ′-
algebra, thenA′ σ is aΣ -algebra which is justA′ with some carriers and/or opera-
tions removed.

Notation. We sometimes writeA′ Σ for A′ σ whenσ :Σ → Σ ′ is obvious, such as
whenσ is a signature inclusion. ut

Example 1.5.5.Let σ :Σ → Σ1 be the signature morphism defined in Example 1.5.2
and letA1 be theΣ1-algebra defined in Example 1.2.4. ThenA1 σ is theΣ -algebra
such that

|A1 σ |polygon= |A1 σ |figure = {2,4}= |A1|shape,

|A1 σ |trump = {♣,♥,♠}= |A1|suit,

squareA1 σ
= 2 = boxA1,

boxifyA1 σ
: |A1 σ |polygon→ |A1 σ |polygon= {2 7→2,4 7→2}

= boxifyA1: |A1|shape→ |A1|shape,
boxifyA1 σ

: |A1 σ |polygon→ |A1 σ |figure = {2 7→2,4 7→2}
= boxifyA1: |A1|shape→ |A1|shape,

hA1 σ
: |A1 σ |figure×|A1 σ |trump→ |A1 σ |trump = {〈2,♣〉 7→ ♣,〈2,♥〉 7→ ♠, . . .}

= fA1: |A1|shape×|A1|suit→ |A1|suit.
ut

Exercise 1.5.6.A Σ -algebraA can be regarded as a function mapping the names in
Σ to their interpretations; theσ -reduct ofA is then the compositionσ ;A. Spell out
the details. ut

Exercise 1.5.7.Let σ :Σ → Σ ′ be a signature morphism that is surjective on sort
names, and letA′ be aΣ ′-algebra. Show that ifA′ σ is reachable thenA′ is reachable.
Give counterexamples showing that the opposite implication does not hold, and that
the implication itself does not hold if some sort names inΣ ′ are not in the image of
Σ underσ . ut
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Definition 1.5.8 (Reduct homomorphism).Leth′:A′→B′ be aΣ ′-homomorphism.
Theσ -reduct of h′ is theS-sorted functionh′ σ : |A′ σ | → |B′ σ | such that(h′ σ )s =
h′

σ(s) for all s∈ S. (Exercise:Show thath′ σ :A′ σ → B′ σ is aΣ -homomorphism.)
ut

Exercise 1.5.9.Define theσ -reduct≡′
σ of a Σ ′-congruence≡′ on aΣ ′-algebra

A′, and prove that it is aΣ -congruence onA′ σ . Show thatσ -reduct distributes over
quotient, i.e.(A′/≡′) σ = (A′ σ )/(≡′

σ ) for all Σ ′-algebrasA′ andΣ ′-congruences
≡′ onA′. ut

The following definition of the translation of terms along a signature morphism
σ :Σ → Σ ′ may look somewhat daunting, but its simple upshot is to translate each
termt ∈ |TΣ (X)| to theΣ ′-term obtained by replacing each operation name fromΣ

by its image underσ . Some care must be taken in the treatment of variables: since
variables for different sorts are not required to be distinct, to make sure they are not
inadvertently identified by the translation, for each sorts′ in Σ ′ we have to take a
disjoint union of the sets of variables of sorts mapped tos′.

Definition 1.5.10 (Term translation).Let X be anS-sorted set of variables. Define
X′ = 〈X′

s′〉s′∈S′ to be theS′-sorted set such that

X′
s′ =

⊎
σ(s)=s′

Xs for eachs′ ∈ S′.

Then (TΣ ′(X′)) σ is a Σ -algebra. Leti:X → |(TΣ ′(X′)) σ | be the obvious embed-
ding (if not for the disjoint union in the definition ofX′ and explicit decoration of
variables with sorts in terms,i would coincide withιX which maps each variable
to its corresponding term). Then by Fact 1.4.4 there is a uniqueΣ -homomorphism
σ̂ :TΣ (X)→ (TΣ ′(X′)) σ extendingi:

S-sorted sets Σ -algebras

X |TΣ (X)|

|(TΣ ′(X′)) σ |

-⊂ ιX

?

|σ̂ |

@
@

@
@

@
@

@R

i

TΣ (X)

(TΣ ′(X′)) σ

?

σ̂ = i #

The translation of aΣ -term t∈ |TΣ (X)| by σ is theΣ ′-term σ̂(t) ∈ |TΣ ′(X′)|. To
keep the notation simple, we will write justσ(t) for σ̂(t). ut
Example 1.5.11.Let σ :Σ → Σ1 be the signature morphism defined in Exam-
ple 1.5.2, whereΣ = 〈S,Ω〉 andΣ1 = 〈S1,Ω1〉. Let X be theS-sorted set of vari-
ablesx:polygon,x:figure,y:figure,z: trump. TheS1-sorted set of variablesX′ in Def-
inition 1.5.10 is thenx:shape,x′:shape,y:shape,z:suit, and
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σ(h(boxify(x:polygon),h(x:figure,z))) = f (boxify(x), f (x′,z)),

σ(h(x:figure,h(boxify(boxify(square)),z))) = f (x′, f (boxify(boxify(box)),z)),

and so on. ut

Exercise 1.5.12.Let t ∈ |TΣ | be a groundΣ -term and letA′ be aΣ ′-algebra. Show
that the value oft is invariant under change of signature, i.e.σ(t)A′ = tA′ σ

.
Formulate and prove a more general version of this result in whicht may contain

variables. ut

1.5.2 Derived signature morphisms

A derived signature morphism fromΣ to Σ ′ is like an algebraic signature morphism
from Σ to Σ ′ except that operation names inΣ are mapped totermsover Σ ′. This
allows operation names inΣ to be mapped to combinations of operations inΣ ′, and
also handles the case where the order of arguments of the corresponding operations
in Σ andΣ ′ are different.

Definition 1.5.13 (Derived signature).Let Σ = 〈S,Ω〉 be a signature. For any se-
quences1 . . .sn ∈ S∗, let Is1...sn be theS-sorted set 1 :s1, . . . , n :sn. The derived
signature ofΣ is the signatureΣder = 〈S,Ω der〉 where for eachs1 . . .sn ∈ S∗ and
s∈ S, Ω der

s1...sn,s = |TΣ (Is1...sn)|s. ut

In the derived signature ofΣ , a Σ -term t of sort s with variablesIs1...sn represents
an operationt:s1× ·· · × sn → s. The variable i :si in Is1...sn thus stands for the
ith argument oft. Note that a “bare” variablei ∈ |TΣ (Is1...sn)|si is an operation
i:s1×·· ·×sn → si in Σder, corresponding to a projection function.

Definition 1.5.14 (Derived signature morphism).Let Σ andΣ ′ be signatures. A
derived signature morphismδ :Σ → Σ ′ is an algebraic signature morphismδ :Σ →
(Σ ′)der. ut

Definition 1.5.15 (Derived algebra).Let Σ = 〈S,Ω〉 be a signature, and letA be a
Σ -algebra. Thederived algebra of Ais theΣder-algebraAder defined as follows:

• |Ader|= |A|; and
• for eacht:s1×·· ·×sn→ s in Σder anda1∈ |Ader|s1, . . . ,an∈ |Ader|sn, tAder(a1, . . . ,an)=

tA(v) ∈ |Ader|s wherev is theS-sorted function{( 1 :s1) 7→ a1, . . . ,( n :sn) 7→
an}. ut

In the rest of this section, letδ :Σ → Σ ′ be a derived signature morphism. The
following corresponds to Definition 1.5.4 for algebraic signature morphisms; later
exercises correspond to Definitions 1.5.8 and 1.5.10 and related results.

Definition 1.5.16 (Reduct algebra w.r.t. a derived signature morphism).Let A′

be aΣ ′-algebra. Theδ -reduct of A′ is theΣ -algebraA′ δ defined as follows:
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• |A′ δ |s = |A′|δ (s) for all s∈ S; and
• for all f :s1×·· ·×sn→ s in Σ , fA′ δ

: |A′ δ |s1×·· ·×|A′ δ |sn →|A′ δ |s= δ ( f )(A′)der.

Equivalently,A′ δ is theΣ -algebra(A′)der
δ , viewing δ as the algebraic signature

morphismδ :Σ → (Σ ′)der. ut

Exercise 1.5.17 (Reduct homomorphism w.r.t. a derived signature morphism).
What is theδ -reducth′ δ of aΣ ′-homomorphismh′:A′→B′? Prove thath′ δ :A′ δ →
B′ δ is aΣ -homomorphism. ut

Exercise 1.5.18 (Term translation w.r.t. a derived signature morphism).Let
t ∈ |TΣ (X)| be aΣ -term, whereX is anS-sorted set of variables. Defineδ (t), the
translation oft by δ (the result should be aΣ ′-term). ut

Example 1.5.19.Let Σ = 〈S,Ω〉 be the signature defined in Example 1.5.2, and let
Σ1 = 〈S1,Ω1〉 be the signature defined in Example 1.2.4. Letδ :Σ → Σ1 be the
derived signature morphism defined by

δsorts= {polygon7→ shape,figure 7→ shape, trump 7→ suit},
δε,polygon= {square7→ boxify(box)},
δpolygon,polygon= {boxify 7→ 1 :shape},
δpolygon,figure = {boxify 7→ boxify(boxify( 1 :shape))},
δfiguretrump,trump = {h 7→ f (boxify( 1 :shape), f ( 1 :shape, 2 :suit))},

andδw,s = ∅ for all otherw∈ S∗,s∈ S.
Let A1 be theΣ1-algebra defined in Example 1.2.4. ThenA1 δ is theΣ -algebra

such that

|A1 δ |polygon= |A1 δ |figure = {2,4},
|A1 δ |trump = {♣,♥,♠},
squareA1 δ

= 2,

boxifyA1 δ
: |A1 δ |polygon→ |A1 δ |polygon= {2 7→2,4 7→4}

boxifyA1 δ
: |A1 δ |polygon→ |A1 δ |figure = {2 7→2,4 7→2},

andhA1 δ
: |A1 δ |figure×|A1 δ |trump→ |A1 δ |trump is defined by the following table:

hA1 δ
♣ ♥ ♠

2 ♣ ♥ ♠
4 ♠ ♥ ♥

Let X be theS-sorted set of variablesx:polygon,x:figure,y:figure,z: trump. A
correct solution to Exercise 1.5.18 would translateh(boxify(x:polygon),h(x:figure,z))
(a Σ -term with variablesX) to

f (boxify(boxify(boxify(x))︸ ︷︷ ︸
=δ (boxify(x:polygon))

), f (boxify(boxify(x))︸ ︷︷ ︸
=δ (boxify(x:polygon))

, f (boxify(x′), f (x′,z))︸ ︷︷ ︸
=δ (h(x:figure,z))

)).

ut
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Exercise 1.5.20.Repeat Exercise 1.5.12 for the case of derived signature mor-
phisms. ut

Exercise 1.5.21.A more complex definition of derived signature morphismδ :Σ →
Σ ′ would allow a sort names in Σ to be mapped to aCartesian product s′1×·· ·×s′n
of sortss′1, . . . ,s

′
n in Σ ′. Give versions of the above definitions which permit this.ut

Exercise 1.5.22.Another variation on the definition of derived signature morphism
would permit operation names inΣ to be mapped to recursively defined functions
in terms of the operation names inΣ ′. Give versions of the above definitions which
would allow this. (HINT : Look at a book like [Sch86] before attempting this exer-
cise.) ut

1.6 Bibliographical remarks

This chapter presents the basic notions of universal algebra that are required in the
sequel. There is a vast literature on universal algebra as a branch of mathematics,
and the concepts and results we need here are a tiny fraction of this. Applications of
universal algebra in computer science are widespread, going back at least to [BL69].

For much more on universal algebra see e.g. [Grä79] or [Coh65] but note that
both of these handle only the single-sorted case. A presentation of some of this
material for a computer scientist audience is [Wec92], see also [MT92] where ap-
plications to some topics in computer science other than the ones covered in this
book are also indicated.

The style of presentation here is relaxed but it might still be too dense for some
readers, who might prefer the gentler style, with proofs of many of the results which
we omit here, in [GTW76], [EM85], [MG85] or [LEW96].

The generalisation from single-sorted to many-sorted algebras originates with
[Hig63]. First applications to computer science came later [Mai72], becoming
prominent with [GTW76]. The generalisation is straightforward from a purely math-
ematical standpoint, but there are a few subtle issues that will surface in later chap-
ters. For instance, we admit empty carrier sets in Definition 1.2.2, unlike most logic
books and, for instance, [BT87] and [Mos04]. Admitting empty carrier sets requires
more care in the presentation of rules for reasoning, see Exercise 2.4.10 below, but
it also makes some results smoother, see Exercise 2.5.18.

There are different definitions of many-sorted signature in the literature. The one
here is quite general, allowing overloading of operation names etc., and originates
with [GTWW73] and [Gog74]. In some early papers, signatures are called “oper-
ator domains”. Definitions that do not permit overloading are used in [EM85] and
[Wir90], but as remarked after Definition 1.2.1, these definitions are equivalent if
each operation name is taken to be tagged with its arity and result sort.

Signature morphisms emerged around 1978 in the context of early work on the
semantics of parameterised specifications in the style of Definition 6.3.5 below, see
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[Ehr78] and [GB78]; Definition 1.5.1 is from the latter. Various variants and re-
strictions on this notion have been used in the meantime. One possible simplifying
assumption is to restrict attention to injective signature morphisms as in [BHK90],
or to bijective signature morphisms, which are sometimes referred to as “renam-
ings”. The notion of reduct, but only with respect to a signature inclusion, arises
in universal algebra. The generalisation from signature morphisms to derived sig-
nature morphisms originates in [GTW76], and is related to the even more general
notion of (theory) interpretation in logic [End72]. Since the 1970s, derived signa-
ture morphisms have made only sporadic appearances in the algebraic specification
literature, see for instance [SB83] and [HLST00].
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BCH99. Michel Bidoit, Maŕıa Victoria Cengarle, and Rolf Hennicker. Proof systems for struc-
tured specifications and their refinements. In Egidio Astesiano, Hans-Jörg Kreowski,
and Bernd Krieg-Br̈uckner, editors,Algebraic Foundations of Systems Specification,
chapter 11, pages 385–433. Springer, 1999.

BD77. R.M. Burstall and J. Darlington. A transformational system for developing recursive
programs.Journal of the Association for Computing Machinery, 24(1):44–67, 1977.

BDP+79. Manfred Broy, Walter Dosch, Helmut Partsch, Peter Pepper, and Martin Wirsing. Ex-
istential quantifiers in abstract data types. In Hermann A. Maurer, editor,Proceed-
ings of the 6th International Colloquium on Automata, Languages and Programming,
Graz,Lecture Notes in Computer Science, volume 71, pages 73–87. Springer, 1979.

Bén85. Jean B́enabou. Fibred categories and the foundations of naı̈ve category theory.Jour-
nal of Symbolic Logic, 50:10–37, 1985.

Ber87. Gilles Bernot. Good functors . . . are those preserving philosophy! In David H.
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JNW96. Andŕe Joyal, Mogens Nielsen, and Glynn Winskel. Bisimulation from open maps.
Information and Computation, 127(2):164–185, 1996.
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