Donald Sannella and Andrzej Tarlecki

Foundations of Algebraic
Specification and Formal
Software Development

September 29, 2010

Springer

Page: v job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

Page: xiv job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

Contents

0 INtrodUucCtion oo e 1
[0.1 Modelling software systems as algebras........................ 1
0.2 SPECIICAIONS - - - -+« + v e e e et e e e e e 5
[0.3 Sottware developmeéntol 8
0.4 Generality and abstraction, 10
... 12
0.6 _Outlook. 14

I1 Universalalgebra........... i i 15
1.1 Many-sortedsgts 15
[[2_SIgNatures and IgeDFaSvvuereenreeeeaaaaaeeenns. 18
[T-37 " Homomorphisms and CONGIUENACESveeeeeeeeiiieennn.. 22
1.4 Termalgebraso i 27

ging SIg DS it e e 32

[[5.1_ SIgNature MOrPRISINS vveeeeeeeeeeenens. 32

S e 36
e T 38

2 Simple equational specifications.o i 41
L _EQUATIONS vvvvveeeee e e e et 41
2.2 FIAt SPECITICATIOMS .« .+ v v e e et e e e e e e e 44
2.3 TheorEs 50
2.4 Equationalcalculiso i 54
25 TNl mMOTEI5 - . . e ove et e e e et e 58
26 Termrewritingooo i 66
2.7 Fiddling With the JERMHONS « .« .« e v oeveee e 72

[2.7.1 Conditionalequations, 72
74

2.7.3 Dealing with partial functions: error algeras 78
.4 Dealing with partial functions: partial algefgras. 84

. artial functions: order-sorted algebras 87

XV

Xvi Contents

[2.7.6 _Otheroptions ..., 91
[2.8 BIDNOGraphiCal TEMATKS . . .« ..o et e e e e 93
[Categorytheory........ ... 97
3.1 Introducing CategoriBS.ot 99
BLL CalCQOTI®S - ..ttt e e e ens 99
3.1.2 Constructing categor|es ... 105
B1.3 Category-theoretic GeNMANSovvoeeeeeeeennnns. 109
3.2 Limitsand ColimIts oot e e e 111
[3.2.1 Initial and terminalobjeqgts 111
B.2.2_ProGuCts and COPrOGUCESvveenneeeennns. 113
3.2.3 Equalisersandcoequalisers............................ 115
B.2.4 PUNDACKS aNd PUSNOULS .+« e evveeee e e, 116

[3.4.3 Constructing categories, revisjted 139
.. 144
B5T Freeobjegtsovviiiiii i 144
B52 Teftadjoinsooviviniiii i 145
3.5.3 AdUNCliONS 150
[3:6 Bibliographical remarksooviiiiiiiiiiiiennnns 152
|4 Working within an arbitrary logical system| 155
BT INSHIUONE . . . o ov oottt 157
[4.1.1 Examplesofinstitutions i, 161
[4.1.2 Constructing Institutions 179
[4:2 Flat specifications in an arbitrary institufion. 186
ONSTTAINES . . . oo et 192
44 EXact INSHIULIONS .« o oot vt 197
[4.4.1 Abstractmodelthedry i 204
4.4.2 Free variables and quantification 207
A5 Tnstitutions With reachability STUCHIIe 210
451 Themethodofdiagraiscoovivinnnnn. 213
452 Abstract algebraic institufignsoovviiiiia, 215
0. Iberal abstract algebraic institutipns.. 216
45.4 Characterising abstract algebraic insfitutions that admit |
| reachable initlalmodelso 219
4.6 Bibliographicalremarks L 221

Page: xvi job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

Contents Xvii

[Structured SPEcCITICAtIONS.ttt 227
[5.1 Specification-building operatigns 228
5.2 Towards specificationTanguapesccoviiion... 234
B3 AN EXample ... 238
[5.4 A property-oriented semantics of specifications 243
ns 247

.6 Algebraic Taws for structured specificatibns 250
[B.7 Bibliographicalremarks i, 255

[6___Parametersation.t 257
6.1 Modelling parameterisedprogrdms............................. 258
6.2 Specifying parameterised programsc..coiiii.... 268
[6-3 Parameterised specificalibnscoiiiiiiiiiiiii... 274
6.4 Higher-order parameterisaion 278
0.0 Anexample e 285
[6:6 Bibliographical remarkscouuiirinrinnnnnn.. 288

/ Formal programdevelopment. i i 291
S 292
ns 300
7.3 Modular decompositionco it 307
7.4 EXaMIE ... e e 314
[75 Bibliographicalremarksoiiiiiiinneeanin. 320

8 Behavioural specifications o i 323
8.1 Motivatingexample. i e 324
[8.2 Behavioural equivalence and abstragtion 327

8.2.1 Behaviouralequivalence, 328

[8.4 Behaviouralimplementatigns. 346
3.4.1 Implementing specifications up to behavioural equivalence . 347

[8.4.2_Stepwise development and stafjlity 348

3.4. table and behaviourally trivial constructors. 351

4. obal stability and behavioural correctfiess.............. 356

3.4 12 363

[85 Topartialalgebras andbeypnd 364
...................... 364

8.5.2 ATargerexample 371

[8.5.3" Behavioural specifications in an arbitrary instittion 382

[8.6 Bibliographicalremarks L 394

Page: xvii job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

xviii Contents

9 Proofs for SpeciiCatiONS oottt e 399
9.1 Entallmentsystemns 400
[0.2_Proof in SEUCEUred SPECHICAHONS . . .+\ v eeeeeeenns 414
0.3 Entalment DEIWEEN SPECITICATONS . « .+« v e e e e e e, 427
[9.4 Correctness of constructor Iimplementagons. 435
9.5 Proof and parameterisation. i i 440
9.6 Proving behavioural properties 451

9.6. Behavioural consequence 451
[0.6.2_Behavioural CONSeqUeNCe Tor SPECiCa}ions 463
0.6.3 Behavioural Consequence between Specifications 466
9.6.4 Correctness of behavioural implementations.............. 470
[0.65_ Alarger example, FeVISTEA . - . -« -~ .eoeeneeeannns.. 472
[0-7 _BIDNOGrAPRICAI TEMATKS - - -+« v et ettt ee et e 479

10 Working with multiple logical systems. 483

[10.L Moving specifications between INSEUHDNS 484

S e 485

0 Dup S e e 489

[0.1.3 Migrating SPECHICATONS . « « « + « e v e eeee e 491

[10.2 Institution MOrpNISMSo 500

. e category Of INSHItULIONSot e e e 509

4 Tnsfitution COMOrpRISMS vt 517

[T0.5 BIDNOGIAPAICAI TEMATKS -« + « e v vt e e et e 528
Referenceb 533

Page: xviii job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

Chapter 1
Universal algebra

The most basic assumption of work on algebraic specification is that programs are
modelled as algebras. This point of view abstracts from the concrete details of code
and algorithms, and regards the input/output behaviour of functions and the repre-
sentation of data as primary. Representing programs in terms of sets (of data values)
and ordinary mathematical functions over these sets greatly simplifies the task of
reasoning about program correctness. See S€ctipn 0.1 for some illustrative exam-
ples and more introductory discussion on this point.

The branch of mathematics that deals with algebras in this general sense (as
opposed to the study of specific classes of algebras, such as groups and rings) is
calleduniversal algebraor sometimegeneral algebraHowever, work on univer-
sal algebra by mathematicians has concentrated almost exclusively on the special
case of single-sorted algebras with first-order total functions. The generalisation to
many-sortecbr heterogeneoualgebras is required to model programs that manip-
ulate several kinds asortsof data; further generalisations are necessary to handle
programs that fail to terminate on some inputs, that generate exceptions during exe-
cution, etc. This chapter summarizes the basic concepts and results of many-sorted
universal algebra that will be required for the rest of this book. Some extensions
useful for modelling more complex programs will be discussed later, in S¢ctipn 2.7.
In this chapter, all proofs are left as exercises for the reader.

1.1 Many-sorted sets

When using an algebra to model a program which manipulates several sorts of data,
it is natural to partition the underlying set of values in the algebra so that there is one
set of values for each sort of data. It is often convenient to manipulate such a family
of sets as a unit, in such a way that operations on this unit respect the “typing” of
data values.

The following sequence of definitions and notational conventions allow us to ma-
nipulate sorted families of sets (of functions, of relations, ...) in just the same way

15

16 1 Universal algebra

as ordinary sets (functions, relations, ...). Ordinary sets (functions, relations, ...)
correspond to the degenerate case in which there is just one sort, so these definitions
also serve to recall the notation and terminology of set theory to be used throughout
this book. LetShe a set; the notatiofKs)scs is a standard shorthand for the family
of objectsXs indexed bys € S, i.e. the function with domaifs which maps each
se Sto Xs.

Throughout this section, |I&be a set (of sorts).

Definition 1.1.1 (Many-sorted set)An S-sorted seis anS-indexed family of sets
X = (Xs)ses, Which isemptyif Xs is empty for alls € S. The emptyS-sorted set will
be written (ambiguously) ag. TheS-sorted seX is finiteif Xs is finite for alls€ S
and there is a finite s&C Ssuch thatXs = @ for all s S\ S

Let X = (Xs)ses andY = (Ys)scs be Ssorted sets. Union, intersection, Cartesian
product, disjoint union, inclusion (subset) and equalitXaindY are defined com-
ponentwise as follows:

XUY = (XsUYs)ses

XNY = (XsNVYs)scs

X XY = (Xs X Ys)ses

XY = (XsWVYs)ses (WhereXswYs = ({1} x Xs) U ({2} x Ys))

X CYiff (ifand only if) XsC Ysforallse S

X =Y iff XCY andY C X (equivalently, iffX andY are equal as functions).d0

Exercise 1.1.2Give a formal explanation of the above statement that “Ordinary
sets ... correspond to the degenerate case [of many-sorted sets] in which there is
just one sort”. How many-sorted sets are there? ad

Notation. It will be very convenient to pretend th&tC X wY andY C XwY. Al-
though this is never actually the case, it allows us to treat disjoint union in the same
way as ordinary union, the difference being that wikenY # @, XwY contains

two “copies” of the common elements and keeps track of which copy is ¥@nd

which fromY. To see that this does not cause problems, observe that there are in-
jective S-sorted functions (see the next definitioh)X — XwY andi2:Y — XWY
defined byils(x) = (1,x) for all s€ Sandx € Xs and similarly fori2. A pedant
would be able to correct what follows by simply inserting the functidnand/ori 2

where appropriate in expressions involvisg O

Exercise 1.1.3Extend the above definitions of union, intersection, product and dis-
joint union to operations ohindexed families ofS-sorted sets, for an arbitrary in-
dex set. For example, the definition for product(ig] (X)ici)s= { f:1 — Ui (Xi)s]|

f(i) e (X)sforalliel} foreachse S O

Definition 1.1.4 (Many-sorted function).Let X = (Xs)ses andY = (Ys)scs be S
sorted sets. Ais-sorted function X — Y is anSindexed family of functiond =
(fs: Xs — Ys)ses; X is called thedomain(or sourcg of f, andY is called itscodomain
(or targed). An S-sorted functionf: X — Y is anidentity (aninclusion surjective
injective bijective . ..) if for everys € S the functionfs: Xs — Ys is an identity (an

Page: 16 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

1.1 Many-sorted sets 17

inclusion, surjective, injective, bijective, ...). The identfysorted function orX
will be written asidy: X — X.

If f:X —Y andg:Y — Z areS-sorted functions then thesomposition fg: X —
Z is the S-sorted function defined by;g = (fs;gs)ses. That is, ifs€ Sandx € Xs
then(f;g)s(x) = gs(fs(x)) [

Let f:X — Y be anS-sorted function an&’ C X, Y’ CY beSsorted sets. The
image of X under fis the S-sorted seff (X') = (fs(X{))ses C Y, wherefs(X{) =
{fs(x) | x € X;} C Ys for all s€ S. The coimage of Y under fis the Ssorted set
f7LY') = (fg1(Y))ses € X, where f5(Y]) = {x € Xs| fs(X) € Y!} C Xs for all
sesS a

Definition 1.1.5 (Many-sorted binary relation). Let X = (Xs)ses and¥Y = (Ys)ses
be S-sorted sets. Ais-sorted binary relation between X angdwrittenRC X x Y,
is anS-indexed family of binary relationB = (Rs C Xs x Ys)scs. FOrse S x € X
andy €Ys, X Rsy (sometimes writtexx R y) means(x,y) € R.. O

The generalisation to-ary relations, fom > 0, is obvious. As usual, many-sorted
functions may be viewed as special many-sorted relations.

Definition 1.1.6 (Kernel of a many-sorted function).Let f: X — Y be anS-sorted
function. Thekernel of fis the S-sorted binary relation kéf) = (ker(fs))ses C
X x X where keffs) = {(x,y) | X,y € Xsand fs(x) = fs(y)} C Xs x Xs is the kernel
of fsforallse S O

Definition 1.1.7 (Many-sorted equivalence)Let X = (Xs)scs be anS-sorted set.
An S-sorted binary relatioR C X x X is anS-sorted equivalence (relation) oniiX
itis:

o reflexive:xRsX;

e symmetric:xRsy impliesyRsx; and

e transitive:xRyy andyRszimpliesxRsz

for all se Sandx,y,z e Xs. The symbol= is often used forgsorted) equivalence
relations.

Let = be anS-sorted equivalence oX. If s€ Sandx € Xs then theequivalence
class of x modulo= is the sefx]=, = {y € Xs | Xx=sy}. Thequotient of X modulo
= is theSsorted seiX/= = (Xs/=s)secs WhereXs/=s = {[X|=, | X € Xs} for all
sesS O

Example 1.1.8.Let S= {s1,%}, and letX andY be two S-sorted sets defined as
follows:

X = (Xs)scsWhereXs, = {0,A} andXs, = {&,0, &},

Y = (Ys)ses WhereYs, = {1,2,3} andYs, = {1,2,3}.

Let f: X — Y be theS-sorted function such that

1 This “diagrammatic” order of composition and the semicolon notation will be used consistently
throughout this book.

Page: 17 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

18 1 Universal algebra

f={0—1A—3}
f, ={&—10—2 &— 2}

(i.e., fs (O) = 1 andfs, (A) = 3; analogously forfs,). Then the kernel of is the
S-sorted equivalence relation Kéj = (ker(fs))scs where

ker(fsl) = {<D7D>7 <A7A>}
ker(fs,) = { (., %), (0, Q). (0. 4),(4,0), (N, 4)}.

The quotient ofX modulo ke(f) is the S-sorted seiX/ker(f) = (Xs/ker(fs))scs
where

X /ker(fy) = {{O},{A}}

Xs, /ker(fs,) = {{&}, {©, #}}. 0
Exercise 1.1.9Show that iff: X — Y is anS-sorted function, then kéf) is anS
sorted equivalence oX. O

Exercise 1.1.10Show that if = is anS-sorted equivalence oX then for allse S
andx,y € Xs, [X|=, = [Y]= iff X=sV. O

=s

Notation. Subscripts selecting components ®§orted sets (functions, relations,
...) are often omitted when there is no danger of confusion. Then Exg¢rcise|1.1.10
would read: “... for als € Sandx,y € Xs, [X= = [yl= iff x=y.” 0

1.2 Signatures and algebras

The functions and data types defined by a program have names. These names are
used to compute with and reason about the program, and to build larger programs
which rely on the functionality the program provides. The connection between a
program and an algebra used to model it is provided by these names, which are at-
tached to the corresponding components of the algebra. The set of names associated
with an algebra is called its signature. The signature of an algebra defirgsmth®

of the algebra by characterising the ways in which its components may legally be
combined; the algebra itself supplies themanticdy assigning interpretations to

the names in the signature.

Definition 1.2.1 (Many-sorted signature) A (many-sorted) signaturie a pairX =
(S Q), where:

e Sis a set (of sort names); and
e QisanS' x Ssorted set (of operation names)

whereS' is the set of finite (including empty) sequences of elemeng e will
sometimes writsorty X) for Sandopg X) for Q. X is asubsignaturef a signature
I'=(8,Q)if SC S andQys C Q) forallwe S',;se S O

Page: 18 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

1.2 Signatures and algebras 19

Many-sorted signatures will be referred toagebraicsignatures when it is neces-
sary to distinguish them from other kinds of signatures to be introduced later.

Notation. Sayingthatf:s; x--- x §; — sisinX = (S Q) means thas;...s; € S,
seSandf € Qg s, s Thenf is said to haveurity s;...s, andresult sort s The
abbreviationf: swill be used forf: e — s (e is the empty sequence). a

This definition of signature does not accommodate programs containing higher-
order functions, or functions returning multiple results. A possible extension to han-
dle higher-order functions is briefly discussed in Sedtion P.7.6. As for functions with
multiple results, a functioffi:s; x - -- x &, — t1 X - -« X try may be viewed as a family
of mfunctions

flisgx--xsy—tg fmist X -+ X S — t.

Generalising the definition of signature to handle such functions in a more di-
rect way is easy but makes subsequent developments somewhat messier in a non-
interesting way.

The definition aboveoespermit overloaded operation names, since itis possible
to have bothf:s; x --- x5y — sand f:t; x --- xty; — t in a signatureX, where
S1...SS# t1...tmt. A more restrictive definition of signature, adequate for most
purposes, would have a s@tof operation names (and a seof sort names) with
functionsarity: Q — S* andsort Q — S These two definitions are equivalent if
each operation name 1 is taken to be tagged with its arity and result sort.

In the rest of this section, I&l = (S Q) be a signature.

Definition 1.2.2 (Many-sorted algebra). A X-algebra Aconsists of:

e anS-sorted sefA| of carrier sets(or carriers); and
e for eachf:s; x --- x5, — sin X, a function (oroperation (f:s; x -+ x s —
S)a:|Als X -+ x |Alg, — [Als. O

If Ais aZXZ-algebra ands is a sort name irE then|A|s, the carrier set of sor$

in A, is the universe of data values of sartaccordingly, we often refer to the
elements of carrier sets a&alues If f:s; x --- x §, — sis in X then the operation
(fis1 x -+ x5 — s)a is a function on the corresponding carrier seté\off n=0

(i.e. f:9), then|Als, x --- x |Alg, is a singleton set containing the empty tugleand
then(f:s)a may be viewed as a constant denoting the vafus)a(()) € |Als. Notice
that(f:s x -+ x sy — s)a IS atotal functiorﬂ so algebras as defined here are only
appropriate for modelling programs containing total functions. See Seftionp 2.7.3—
[2.7.3 for several ways of extending the definitions to cope with partial functions.
Note also that there is no restriction on the cardinalitydf; in particular,|Ajs may

be empty and need not be countable.

Notation. LetAbe aX-algebraandlef:s; x--- x s, — sbeinX. We always write
fa in place of(f:s; x --- x 59 — s)a When there is no danger of confusion. When
n=20 (i.e. f:s), we write(f:s)a or fa in place of(f:s)a(()). O

2 All functions in this book are total except where they are explicitly designated as partial.

Page: 19 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

20 1 Universal algebra

Exercise 1.2.31f Q. s # @ for somes e S, then there are n¢5, ©2)-algebras having
an empty carrier of so. Characterise signatures for which all algebras have non-
empty carriers of all sorts. O

Example 1.2.4.LetS1 = {shapesuit} and letQ 1¢ shape= {bOX}, Q21 suit= {hearts,
Q1shapeshape= {POXify}, Q1shapesuisuit = { T}, andQ1ys = @ for all otherw €
Sl*;se Sl. ThenX1 = (S1,Q21) is a signature with sort nameshapeand suit
and operation namdmx shape hearts suit, boxify: shape— shapeand f: shapex
suit— suit We can preser1 in tabular form as follows (this notation will be used
later with the obvious meaning):

X1 = sorts shapesuit
ops box shape
hearts suit
boxify. shape— shape
f:shapex suit — suit

We define a£1-algebraAl as follows:

|Al|shape: {DaA}7

|Al|SUit - {*7 Qv ‘}a

boxas = O € |Al|shape

heartsy = Q € |AL]suit,

boxifys: |AL|shape— [Al|shape= {0 — O, A — O},

and fa1: [Al|shapex |Al|suit — |Allsuit is defined by the following table:

far|d|O|d
O |de|#|Q
NN

(NoTE: Reference will be made t81 andAl in examples throughout the rest of
this chapter.) O

Definition 1.2.5 (Subalgebra)Let A andB be X-algebrasB is asubalgebraof A

if:

e |B| C|AJ; and

o for fisy x---xsy —sin X andby € Blg,...,bnh € |Bls,, fa(b1,...,bn) =
fA(bl7' . 'abn)'

Bis apropersubalgebra oA if it is a subalgebra ofA and|B| # |A|. A subalgebra of
Ais determined by aB-sorted subsdB| of |A| which is closed under the operations
of Z, i.e. such that for each:sy x --- x sy — sin £ andby € |Bs;,...,bn € |B|s,,
fA(blv'“abn) € |B|S g

If B is a (proper) subalgebra @f thenB is “smaller” thanA in the sense that it
contains fewerdata valueghanA. Both A andB areX-algebras though, séandB
contain interpretations for exactly the same sort and operation names.

Page: 20 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

1.2 Signatures and algebras 21

Exercise 1.2.6Let A be aX-algebra. Show that the intersection of any family of
(carriers of) subalgebras #éfis a (carrier of a) subalgebra &f Use this to show
that for anyX C |A|, there is a least subalgebrasthat contains<. This is called
the subalgebra of A generated by. %ive an explicit construction of this algebra.
(HINT: Consider the family o&-sorted set¥; C |A|,i > 0, whereXp = X andX;1 is
obtained fromX; by adding the results of applying the operationé&\aé arguments

in X.) a
Definition 1.2.7 (Reachable algebra).et A be aX-algebraAis reachabldf Ahas
no proper subalgebra (equivalentlyAis generated by). O

By Exercis¢ 1.2)6, every algebra has a unique reachable subalgebra.

Example 1.2.8.Let £1 = (S1,21) andAl be as defined in Examfle 1.p.4. Define
aXl-algebraBl by

|Bl|shape: {O},

|Bl|suit: {@7‘}7

boXg1 = O € |Bl|shape

heartg; = Q € |B|suit,

boxifys; : |B1|shape— |Bl|shape= {0 — O},

fpi: |B:|-|shape>< |B1|suit — |B1|suit = {<D,@> — &, (0,8) — QQ}-

Bl is the subalgebra &1 generated by. That is,B1 is the reachable subalgebra
of AL. O

Definition 1.2.9 (Product algebra).Let A andB be X-algebras. Th@roduct alge-
bra Ax B is theX-algebra defined as follows:

e |AXxB|=|A| x|BJ;and
o foreachf:s; x--- x s —sin X and(ag,b1) € |[AxBlsy, ..., (@n,bn) € |[AX Blg,,
fAX5(<a1,b1>,...,<an,bn>) = (fA(al,...,an), fB(bl,n-,bn» € |A>< B|S.

This generalises to the produyg{Ai)ici of a family of X-algebras, indexed by an
arbitrary set (possibly empty), as follows:

o [[1{AYier] = [T{|A])ier; and
e for eachfisy x--- x5 —sin Z and f1 € [[1{(A)iellsys-- -, Tn € [[1{ADiel sy
fH<Ai>ie|(f1""’fn)(i): fAi(fl(i),...,fn(i)) foralliel. O

Exercise 1.2.10Definition[1.2.9 shows how tw&-algebras can be combined to
form a newX-algebra by taking the Cartesian product of their carriers. According
to Exercisg 1.2]6, the same thing can be done (with subalgebras of a fixed algebra)
using intersection. Try to formulate definitionswfionanddisjoint unionof alge-
bras, wheréAUB| = |A|U |B| and|Aw B| = |A| W |B| respectively. What happens?

O

Page: 21 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

22 1 Universal algebra

1.3 Homomorphisms and congruences

A homomorphism between algebras is the analogue of a function between sets, and
a congruence relation on an algebra is the analogue of an equivalence relation on a
set. An algebra has more structure than a set, so homomorphisms and congruences
are required to respect the additional structure (i.e. the behaviour of the operations).
Homomorphisms and congruences are important basic tools for relating algebras
and constructing new algebras from old ones.

Throughout this section, &t = (S Q) be a signature.

Definition 1.3.1 (Homomorphism).Let AandB be X-algebras. AZ-homomorphism
h:A — B is an Ssorted functionh:|A] — |B| which respects the operations of
X, i.e. such that for allf:s; x --- x sy — sin X anday € |Als;,...,an € |Als,,
hs(fa(as,...,an)) = fa(hs,(a1),...,hs,(an)). A Z-homomorphismh: A — B is an
identity (an inclusion surjective ...) if it is an identity (an inclusion, surjective,
...) when viewed as a&sorted function. O

Notation. If h: A — B is aX-homomorphism, thefh|: |A| — |B| denotesh viewed

as anS-sorted function. The only difference betweeand|h| is that in the case of

|h| we have “forgotten” that the additional condition required of a homomorphism
is satisfied. O

Informally, the homomorphism condition says that the behaviour of the opera-
tions inAis reflected in that of the operationsBn This condition can be expressed
in the form of a diagram as follows:

hs X"'th,]
|Alsy X -+ x |Alg, - Bls, X -+ x [Bls,

fa fs

A ~ |B
Al . B;

where(hs x---x hg)(as,,...,8s,) = (hs (as)), ..., hs,(as,)) forallag € |Als,...,an €

|Als,- The homomorphism condition amounts to the requirement that this diagram
commutesi.e. that composing the functions on the top and right-hand arrows gives
the same result as composing the functions on the left-hand and bottom arrows. Such
commuting diagrams will be used heavily in later chapters, particularly in CHgpter 3.

Example 1.3.2.Let £1 = (S1,21) andAl be as defined in Examgle 1.p.4. Define
aX1l-algebraCl by

Page: 22 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

1.3 Homomorphisms and congruences 23

|Cl|shape: |C1‘Suit = {17 2, 3}7

boxc1 = 1 € |Clshape

heartg; = 2 € |Cl]suit,

boxifye;: |Cl|shape— |Cl|shape= {1— 1,2— 3,3+— 1},

and fc1:[Cl1|shapex |C1|suit — |Clsuit is defined by the following table:

ool\.)l—‘ah

P
NIEININ
PN W[w

NN P~

Let hl:]Al| — |C1| be theSl-sorted function such that
hlshape= {0 — 1, A+ 3},
hlgyit={— 1,0 — 2 & — 2}.
It is easy to verify thahl:Al — C1 is aX1-homomorphism by checking the fol-
lowing:
hlshapdboxa1) = boxc:

) =
hlgui(hearts;) = heartg:

hlshapd bOXifya (O)) = boxify; (hlshapd O))
hlshapd bOXifya1 (A)) = boxifyes (hlshapd 2))

hlsuit(far (0,) = fc (hlshape(D) hlgyit(db))

h]-suit(fAl(D7@>) = f (hlshapém)»hlsult(@))

hlsuit(far (0, M) = fCl(hlshap&D)>hlsU|t(‘))

hlsuit(f 1(A,*)) = fCl(hlshape(A),hlsun())

hlsuit(f l(Aa@)) = fc (hlshape{A);hlsun())

hlsuit(fAl()) fCl(hlshape(A)ahlsun()) |

Exercise 1.3.3Let A be aZ—aIgebra. Show thatl 5 : A — A (the identityS-sorted
function) is aX-homomorphism. Leli: A— B andh’: B — C be X-homomorphisms.
Show thath|;|'|:|A] — |C| is aX-homomorphisnh;h’: A — C. O

Exercise 1.3.4Let h: A — B be aX-homomorphism, and le&¥’ be a subalgebra of
A. Let theimage of Aunder hbe theX-algebrah(A') defined as follows:
o [h(A)| =]h|(|A]); and
o foreachfis;x---xs—sinXandas €|Als,...,an € |As,, faa)(hs (@1), .-, hs,(an)) =
hS(fA’(aL 7an))
Showthah(A’) is a well-defined-algebra (in particular, thatthefuncudp(A/ |h(A)]s, %
x |h(A)|s, — |h(A)|s is well-defined for eachi:s; x --- x — sin X) and that
it is a subalgebra dB. Formulate a definition of theoimageof a subalgebr&’ of
B underh, and show that it is a subalgebra/af O

Exercise 1.3.5Let h: A — B be aX-homomorphism, and suppo¥eC |A|. Show
that the subalgebra d&8 generated byh|(X) C |B| is the image of the subalgebra
of A generated by. Show that it follows that ifi: A — B is surjective andA is
reachable theB is reachable. O

Page: 23 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

24 1 Universal algebra

Exercise 1.3.6LetB be areachablE-algebra. Show that for ary-algebraA, there
is at most on&-homomorphisnh: B — A, and that any-homomorphisni: A— B
is surjective. O

Definition 1.3.7 (Isomorphism).Let A andB be X-algebras. AX-homomorphism
h: A — B is aZ-isomorphismif it has an inverse, i.e. there isX&homomorphism
h~':B — A such thath;h~! = id|5 andh~*;h = id 5. (Exercise: Show that ifh~*
exists then it is unique.) ThelandB are calledsomorphicand we writeh: A= B
or justA= B. O

Exercise 1.3.8Leth: A=~ Bandh’: B C beX-isomorphisms. Show that their com-
position is aX-isomorphismh;': A= C. Show that= (as a binary relation o-
algebras) is reflexive and symmetric, and is therefore an equivalence relatian.

Two isomorphic algebras are typically regarded as indistinguishable for all practi-
cal purposes. It is easy to see why: the only way in which they can differ is in the
particular choice of data values in the carriers. The size of the carriers and the way
that the operations behave on the values in the carriers is exactly the same. For this
reason we are often satisfied with a definition of an algebra “up to isomorphism”,
i.e. a description of an isomorphism class of algebras in a context where one would
expect a definition of a single algebra. An example of this is in Fact 1.4.10 below.
The notion of isomorphism can be generalised to other kinds of structures, where
it embodies exactly the same concept of indistinguishability. See Chapter 3 for this
generalisation and for many more examples of definitions of objects “up to isomor-
phism”.

Example 1.3.9.Let £1 = (S1,21) andAl be as defined in Examfle 1.p.4. Define
aX1l-algebraD1 by

|D1|shape: {O,A},

|D1|suit: {17273}a

boxp1 = A € |D1|shape

heart$; = 2 € |D1]suit,

boxifyh;: |[D1|shape— |D1|shape= {0 — A, A = A},

and fp1:|D1|shapex |D1|suit — |D1|suit is defined by the following table:

fp1[1]2|3
o (233
A 11)3(12

Letil:|Al| — |D1] be theSl-sorted function such that

i1shape= {0~ A, A0}
i Lsuit = {*'—’ 1LO—24 '—>3}~

This defines & 1-homomorphisnil: Al — D1 which is aX 1-isomorphism, sé\1 =
D1. a

Page: 24 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

1.3 Homomorphisms and congruences 25

Exercise 1.3.10Show that a homomorphism is an isomorphism iff it is bijective.
O

Exercise 1.3.11Show that there is an injective homomorphism — B iff A is
isomorphic to a subalgebra Bf O

Example 1.3.12Let X = (S Q) be the signature

sorts s
ops as
fis—s

and defineZ-algebrasA andB by

|Als = Nat (the natural numbers)
an=0¢€|Als,
fal|Als — |Als= {n—n+1|ne Nat},

|B|s = {n € Nat| the Turing machine with Gdel numben halts on all input},
ag = the smallesh € |B|s,
fg:|B|s — |B|s = {n € |B|s — the smallesim € |B|s such tham > n}.

Leti: |A] — |B| be theS-sorted function such that
is(n) = the (n+ 1)St smallest element dB|s

for all n € |Als. The functionis is well-defined sincéB|s is infinite. This defines a
X-homomorphisni: A — B which is an isomorphism.

Although A = B, the X-algebrasA andB are not “the same” from the point of
view of computability: everything i\ is computable, in contrast 8 (|B|s is not
recursively enumerable arfg is not computable). Isomorphisms captateictural
similarity, ignoring what the values in the carriers are and what the operations actu-
ally compute. This example shows that, for some purposes, properties stronger than
structural similarity are important. O

Definition 1.3.13 (Congruence)Let A be aX-algebra. AX-congruence on As
an (S-sorted) equivalence= on |A| which respects the operations Bf for all
fisix---xsy—sinZanday, &) € [Als,,...,an,a, € |Als,, if a1 =5 & and ... and
an =s, ay thenfa(ay,...,an) =s fa(ay,...,an). O

Exercise 1.3.14Show that the intersection of any family Bfcongruences oA is
aX-congruence oA. Use this to show that for arfyrsorted binary relatioR on |A|
there is a least (with respect €9 X-congruence o& which includesR.
Show that the kernel of any-homomorphisnmh: A — B is aX-congruence oA.
Show that a surjectiv&-homomorphism is an isomorphism iff its kernel is the
identity. O

Definition 1.3.15 (Quotient algebra).Let A be aX-algebra, and let= be aX-
congruence oA. Thequotient algebra of A modules is theX-algebraA/= defined
by:

Page: 25 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

26 1 Universal algebra

e |A/=|=|Al/=; and

o foreachf:s;x---xsy—sanda; € [Als;,....an € [Als,, fa/=([a1]= . [an]=g,) =
[fA(al,...,an)}Es. O
Exercise 1.3.16 Show thatA/= in Definition[1.3.15 is a well-defined-algebra.
O

Example 1.3.17Let £1 = (S1,Q1) andAl be as defined in Examgle 1.p.4, and let
= = (=q)secs1 be theSl-sorted binary relation of\1| defined by

=shape™ {<Dv D>’ <A’ A>}
=it = { (%, 8), (D, 0), (0, &), (4,9, (4, 4)}.

This defines a congruence #d. Al/= is theX1-algebra defined by

|AL/=|shape= {{O}. {A}},

|AL/=]suit = {{®},{O, #}},

boxai /= = {0} € |AL/=|shape

heartsy /= = {©, #} € |AL/=|suit,

bOXifYAl/z: |AL/=|shape— |Al/=|shape= {{O} — {O},{A} — {O}},

andfay/=: |ALl/=|shapex |Al/=|suit — |Al/=|suit is defined by the following table:

fa=| {%} {O M}
{0} | {%} {0}
{A} O, 6}H{O. a} O

Exercise 1.3.18Let = be aX-congruence o, and leths(a) = [a]=, for s€ S
ac |Als. Show thaths: |Als — (|A|/=)s)sesis aX-homomorphisni: A— A/= with
ker(h) = =. O

Exercise 1.3.19Let h: A — B be aX-homomorphism. Show tha/ker(h) is iso-
morphic toh(A). (HINT: The isomorphism is given bjajiern) — hs(a) for s€ S,
ac|As) O

Exercise 1.3.20Let= be aX-congruence oA. Show that for anyE-homomorphism
h: A — B such thate C ker(h), there exists a uniquB-homomorphisng: A/= — B
such thats(a) = gs([al=,) forallse S ac |Als. O

Exercise 1.3.21Show that there is a surjective homomorphisA — B iff there is
a congruence= on A such thaB is isomorphic toA/=. O

Exercise 1.3.22Let A be aX-algebra, let= be a congruence oftand letB be a
subalgebra oA/=. Show that there is a subalgel@af A and congruence=" on
CsuchthaB=C/='. O

Exercise 1.3.23Let h: A — B be aX-homomorphism. Show that there is a unique
X-congruence= on A and a unique injectiv&-homomorphisnmg: A/= — B such
thaths(a) = gs([al=,) forallse S, ac |Als. O

Page: 26 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

1.4 Term algebras 27

1.4 Term algebras

For any signatur& there is a specia-algebra whose values are just well-formed
terms (i.e. expressions) built from the operation names.iA X-algebra of terms
with variables is similarly determined by a signatle= (S Q) and anSsorted
set of variables. These algebras are rather boring insofar as modelling programs is
concerned — the term algebra models a program which does no real computation.
But the homomorphisms from these algebrastteer algebras turn out to be very
useful technical tools, as shown by the definitions below.

Throughout this section, I&€ = (S Q) be a signature and let be anS-sorted
set (of variables), whenec Xs for s€ Smeans that the variables of sorts (written
x:s). Note that “overloading” of variable names is permitted here, since there is no
requirement thaXs andXy be disjoint fors#<s € S.

Definition 1.4.1 (Term algebra). The Z-algebra T (X) of terms with variables X
is theX-algebra defined as follows:

e |Tx(X)] is the least (with respect t0) S-sorted set of words (sequences) over the

alphabet
SuU U QWSUUXSU{:u(7'7)}
weSk s€S
s€S
such that:

— theword %:s" € [Tz (X)|s for all s€ Sandx € Xs; and
— forall f:s; x--- x5y —sin X and all wordd € |Ts (X)|s,;...,th € [Tz (X)]sn,
the word “f (ty,...,th):S" € |Tx(X)]s.

o forall fisy x--- x5 —sin X and all wordst; € [Tx(X)]s;,---,th € [Te(X)]sn,
o0 (t1; - -, ta) = (the word) “f (ty, ... ,tq):S" € [T (X)]s.

(Quotation marks are used here solely to emphasize that terms are words, and are
not part of the words they delimit.) < Sandt € [Tz (X)|s thent is a Z-term of
sort s with variables Xthefree variables of s the seFV(t) C X of variables that
actually occur irt: for s€ Sandx € X, x € FV(t)s if t contains the subwordk's”.

The Z-algebra of ground termss the X-algebraTy = Ty (&) of terms without
variables. Ifse Sandt € |Tx|s thent is agroundX-term m|

The values ofTx(X) are “fully-typed” terms formed using the variablesXnand
the operation names i, and the operations df (X) just build complicated terms
from simpler terms. Note that a terne | Ty (X)| need not contain all the variables
in X, and that some variables may occur more than on¢eTp is also called the
X-word algebra and its carriergTy| are sometimes called théerbrand universe
for X.

Example 1.4.2.Let X1 = (S1,Q1) be as defined in Examgle 1..4. THBn is the
X 1-algebra defined by

Page: 27 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

28 1 Universal algebra

|T21|3hape: { “ bOX(). Shapé,
“boxify(box): shape: shapé,
“boxify(boxify(box): shapg: shape: shapé,

| Tx1|suit = { “heartg): suit’,
“f(box): shapeheartg): suit): suit’,
“ f (boxify(box): shapg: shapehearts): suit): suit’,
“f(box):shape f (box): shapehearts): suit): suit): suit”,
o}

where the operations @k are the term formation operations

boxr,, = “box):shapé € |Ts1|shape
hearts;,, = “heartg):suit’ € |Tx1|suit,
bOXifyl'El: | Tx1|shape— | Tx1/shape
= {“box):shapé — “boxify(box): shape: shapé,
“boxify(box): shapg: shapé — “boxify(boxify(box): shapg: shapé: shapé,

b

and similarly forf:shapex suit— suit d

Notation. Sort decorations (e.g. $hapé in “box):shapé) are often unambigu-
ously determined, and they will usually be omitted when this is the case. When
Q. sNXs = & for somes € S, then variables of sogcannot be confused with con-
stants (0-ary operations) of sarind so we will usually drop the parentheses “()”

in the latter. We will omit quotation marks whenever it is clear from the context that
we are dealing with terms. Finally, in examples we will use infix notation for binary
operations when convenient. O

Example 1.4.2 (revisited).We repeat Examplg 1.4.2, making use of these nota-
tional conventions.

Let 1= (S1,Q1) be as defined in Exampe 1.p.4. Thén is theX1-algebra
defined by

|Ts1|shape= {box boxify(box), boxify(boxify(box)), ...},
|Tx1|suit = {hearts f (box hearts, f (boxify(box), hearts, f (box f(box hearts),...}

where the operations @k are the term formation operations

boxr,, = boXe |Tx1|shape
hearts;,, = heartse [Tz1|suit,

boxify . : | Tx1|shape— | Tx1lshape
= {box— boxify(box), boxify(box) — boxify(boxify(box)),...},

and similarly forf:shapex suit— suit O

Example 1.4.3.The notational conventions above will almost always be applicable.
They cannot be adopted from the outset (i.e. in Definifion [L.4.1) because of the
relatively rare examples where confusion can arise. For exampE2let(S2, Q2)

Page: 28 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

1.4 Term algebras 29

be the signature with sortss',t and operations:s, a:s, f:s—tandf:s —t (no
mistakes here, repetition of names is intented).

According to the definitionTxo|; = {“ f(a():s):t",“ f(a():§):t" }. If all sort dec-
orations were omitted then both of the terms in this set would becdta))” and
so|Tx2|t would have just this single element. The “outer” decoration can be omitted
but the “inner” decoration is required, thus e.§(&():s)".

Similarly, if X is anS2-sorted set of variables such tlat X, then “f(a():s)”
and “f(a:s)” are different terms ifTx2(X)|t, so the convention of writingd(): s’
as ‘a:s’ cannot be used.

Since the definitions permit variables and operation names (&@: s) and even
“or , or (), the custom of writing terms as sequences of symbols without explicit
separators can cause confusion. Luckily, such names never arise in practice and so
for the purposes of this book this problem can safely be forgotten. O

Fact 1.4.4.For any XZ-algebra A and S-sorted functionX — |A| there is exactly
oneX-homomorphism* Tx (X) — A that extends v, i.e. such thdi(w (x)) = vs(X)
forallse S, xe Xs, whereix: X — | Tz (X)| is the embedding that maps each variable
in X to its corresponding term.

S-sorted sets X-algebras
L
X e [Te(X) T=(X)

\ \
\ \
\ \

v v %
\ \
' '
A A O

The existence and uniquenessvbffollow easily from the requirement that ex-
tendsv (this fixes the value of for any variable as a term iffx (X)|) and that/*
is a X-homomorphism (this determines the value/bffor any termf (ty,...,tn) €
|Ts(X)| as a function of the values of for its immediate subterms,....t, €
|Tx (X)[). The homomorphism which results is the function which evaluBtesrms
based on the assignment of valued\ito variables inX given byv.

Definition 1.4.5 (Term evaluation).Let A be aX-algebraA and letv: X — |A| be an
S-sorted function. By Fa.4 there is a unigiaomomorphisnv”: Ty (X) — A
that extends. Letse Sand lett € |Tx(X)|s be aX-term of sorts; thevalue of t in A
under the valuation s V¥(t) € |Als. Whent € |Tx|s the value ot does not depend
onv; then thevalue of t in Ais @*(t) where: @ — |A| is the empty function.
To make the algebra explicit, we writg(v) for V#(t), andta for ta(@) whent is
ground. O

Page: 29 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

30 1 Universal algebra

Exercise 1.4.6Lett € |Tx(X)| be aX-term and letA be aX-algebra. Show that if
v:X — |A] andv: X — |A| coincide onFV(t), thenta(v) = ta(V). This follows from
another fact: forany e |Ts (X)], X CY (so that € |Tz(Y)[|) andv:Y — |A|, we have
ta(v) =ta(1;v), wheret: X — Y is the inclusion (and sov: X — |A|). O

Exercise 1.4.7Define evaluation of terms in an inductive fashion. Convince your-
self that the result is the same as that given by Definftion]1.4.5. O

Exercise 1.4.8Let h: A — B be aX-homomorphism, le¥: X — |A| be anS-sorted
function, and let € |Tx(X)| be aZ-term. Using Fadt 1.4}4, prove thatv*(t)) =
(v;h)#(t). Compare this with a proof of the same thing using your inductive defini-
tion of term evaluation from Exercise 1.1.7. O

Exercise 1.4.9Functions6:X — |Tz(Y)| are sometimes callegubstitutions(of
terms inTx (Y) for variables inX). Using Facf 1.4]4, define thetermt[6] resulting
from applying the substitutiofi to aX-termt € | Tz (X)|. Show that[ix] =t for any
t € |Tx(X)|, whereix maps each variable X to its corresponding term ifTz (X)|.
Define the compositio®;6’ of substitutionsd: X — [Tx(Y)| and6”:Y — |Tx(Z)],
and show thatt[6])[6’] =t]|6;0’] for any Z-termt and substitution® and6’. O

Notation. Supposeu € |Tx(Y)|s for some sors € S Then[x+— u] (when used as a
substitution{x:s} UX — | Tz (XUY)|) is shorthand for the functiofx:s— u}U{z—
z|ze X,z#x:s}. Fort € [Tg({x:s}UX)|, t[x+— u] € [Tz (XUY)| thus stands for the
term obtained by substitutingfor xin t. This notation generalises straightforwardly
to [Xg — Ug,...,Xn — Up] @ndt[xg — U1, ..., Xn — Up] providedx, ..., X, are distinct
variables. O

Fact 1.4.10.The property of ¥(X) in Fact[1.4.4 definess{X) up to isomorphism:
if B is a Z-algebra andn:X — |B| is an S-sorted function such that for ady
algebra A and S-sorted functionX — |A| there is a uniqueZ-homomorphism
v¥:B — A such that;|v¥| = v then B is isomorphic tos[X), wheren®: Ty (X) — B
is an isomorphism with inversé: B — Tz (X).

Page: 30 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

1.4 Term algebras 31

S-sorted sets X-algebras

Fact[1.4.4 says that the definition ©f (X) fixes the definition of the term evalu-
ation function “for free” (see Definition 1.4.5). Fdct 1.4.10 says that this property
is unique (up to isomorphism) f6: (X), so in fact the explicit definition oy (X)

is superfluous — it would be enough to defifieX) as “the” (unique up to iso-
morphism)X-algebra for which Definiti05 makes sengg(X) is a particular
example of dree object— see Sectioh 3|5 for more on this topic.

Example 1.4.111et X1 = (S1,Q1) be as defined in Example 1.p.4. Thén is
the X1-algebra described in Example 1]4.2. [Tdtbe theX1-algebra defined by

|T1|shape= {bOX box boxifybox boxify boxify. . .},
|T1suit = {heartsbox hearts fbox boxify hearts foox box hearts f f...}

where the operations dfl are the postfix term formation operations

boxr1 = boxe |T1|shape
hearts; = heartse |T1|syit,
boxifyr1:|T1|shape— |T1|shape= {bOx— box boxifybox boxify— box boxify boxify. ..},

and similarly for f:shapex suit — suit. ThenT1 satisfies the property dfys in
Facf1.4.4 (the fact that = @ here makes this easy to check — there is only one
functionv: @ — |Al| for any Z1-algebraAl), so by Fadt 1.4.30 (wherg @ — [T1]|
is the empty function)I 1 is isomorphic toTy1. The isomorphismz®: Ty, — T1
converts & 1-term to its postfix form. ad

Exercise 1.4.12Prove Factg 1.414 afd 1.4110. O

Exercise 1.4.13Let A be aX-algebra and lep: & — |A| be the empty function.
Show thatA is reachable iff the unique homomorphisaf : Tx — A is surjective,
i.e., iff every element inA| is the value of a groun&-term. O

Page: 31 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

32 1 Universal algebra

Exercise 1.4.14Show thafTy is reachable. Put this fact together with previous re-
sults to show that &-algebra is reachable iff it is isomorphic to a quotienTefand

that there is a one-to-one correspondence between isomorphism classes of reachable
X-algebras and congruencesBn O

Exercise 1.4.15L et G be a context-free grammar over an alphabeif terminal
symbols. Consider the signatufe = (Sg, Qg), whereSs is the set of non-terminal
symbols ofG and each productioX — Y;...Y; in G corresponds to an operation
in Qg with result sortX and arity given by the sequence of non-terminal symbols
inY1...Yn. The Zg-algebraAg has carriergAg|x = T* for all X € S, and for any
P:Xy X oo X Xp — X in Zg andag,...,an € T, pag(as,...,an) is the sequence
obtained by substituting; for the it non-terminal symbol on the right-hand side
of the production associated with Prove the following:

1. For anyX € S, the carrier of sorX in the reachable subalgebraf is the set
of sequences generated from the non-termihad G.

2. The algebrdy, is isomorphic to the algebra of parse tree€sof

3. The grammag is unambiguous iff the reachable subalgebragfs isomorphic
to TZG- O

1.5 Changing signatures

A signature morphism defines a mapping from the sort and operation names in one
signature to those in another signature, in such a way that the arity and result sort
of operations are respected. (This requirement is analogous to the requirement that
homomorphisms respect the behaviour of the operations.) Signature morphisms will
be used extensively in later chapters to mediate constructions involving multiple
signatures. The crucial point that makes these constructions work is that a signature
morphism fromX to X’ induces translations of syntax (terms — later, also logical
formulae) and semantics (algebras and homomorphisms) befivardX’.

Two kinds of signature morphisms are introduced in this section. Only the first
kind will be used in the rest of the book. The second kitetived signature mor-
phismsare introduced mainly as an example of one way in which a basic definition
could be modified. Such a modification would not affect later definitions and re-
sults, since these depend only on the induced translations of terms, algebras and
homomorphisms.

1.5.1 Signature morphisms

Definition 1.5.1 (Signature morphism)LetX = (S Q) andX’ = (S, Q') be signa-
tures. Asignature morphisns: £ — X' is a pairc = (Osorts, Oops) Whereosors S—

Page: 32 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

1.5 Changing signatures 33

S and ogps is a family of functions respecting the arities and result sorts of op-
eration names irE, that is Gops = (Gws: Qus — Q. () oios) wes' ses (Where

for w=s1...5 € S, 0211s(W) = Osorts(S1) - - - Osorts(Sn)). A signature morphism
0:X — X’ is asignature inclusions: X < X’ if osorts is an inclusion ands is

an inclusion for alw e Sf,se S O

Signature morphisms as defined above will be referred talgabraic signature
morphisms when it is necessary to distinguish them from other kinds of signature
morphisms to be introduced later. Note tlmgts and (the functions constituting)
Oopsare not required to be either surjective or injective.

Notation. Wheno:X — X', both osorts and ops (@nd its componentsys for all
w e S, se 9 will be denoted by. ad

Example 1.5.2.Let X = (S Q) be the signature

sorts polygonfigure trump

ops squarepolygon
boxify. polygon— polygon
boxify. polygon— figure
h: figure x trump— trump

Let X1 = (SL, Q1) be the signature defined in Example 1]2.4.
Deﬁnecsorts: S—> Sl andcopsz <GW,S: QW,S — Q1G§ort5(w)«,csorts<5)>W€9736S by

Osorts= {polygon— shapefigure— shapetrump+— suit},

O polygon= {Square— box}, polygonpolygon= {boxify— boxify},
Opolygonfigure = {POXify— boxify},

Ofigure trumptrump = {h— f},

andoys = @ for all otherw € S*,s€ S Theno: X — X1 is a signature morphism.
O

Exercise 1.5.3Leto: X — X’ ando’: X' — X" be signature morphisms. Let;0")sors=
Osorts Ogorts @Nd (0,0)ops = Oops Ggps (OF rather, to be more precis¢s;o’)ws =
Ows 0. for we Sf,;se §). Show that this defines a signature morphism
5™ 630rts(W), Osorts(S)

o0 X —Xx", |

In the rest of this section, let:X — X’ be a signature morphism, where
¥ =(SQ)andX’ = (S,Q'). As will be defined below, any such signature mor-
phism gives rise to a translation bfterms toX’-terms, and of’-algebras and ho-
momorphisms t&-algebras and homomorphisms. Note that the direction of trans-
lation of algebras and homomorphisms is “backwards” with respect to the direction
of the signature morphism, as the following figure indicates.

Page: 33 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

34 1 Universal algebra

c
) i
Syntax o
rterms ———————————— — X'-terms
X-algebras~—————————— X'-algebras
Semantics 7\0
X-homomorphisms+———————— X’-homomorphisms

Definition 1.5.4 (Reduct algebra)Let A’ be aX’-algebra. Thes-reduct of Ais the
Z-algebraA"c defined as follows:

o |Nols=|A]q forallse S and
o forall fis; x - x5 —sinZX,

ot 1 olsy X+ % Aoy = (] ols= O F)at gy % -+ X [L5y — & |-
O
If X is a subsignature of’, 0:X — X' is the signature inclusion, arml is a X’'-
algebra, them"c is a X-algebra which is jus&’ with some carriers and/or opera-
tions removed.

Notation. We sometimes writeé\"; for A"g wheno: X — X' is obvious, such as
wheno is a signature inclusion. O

Example 1.5.5.Let5: X — X1 be the signature morphism defined in Exarfiple 1.5.2
and letAl be theX1-algebra defined in Exam.4. Thatis is the Z-algebra
such that

|Al‘c|polygon: ‘A1‘6|figure: {D’A} = |A1‘shape

|A1‘c|trump: {*707‘} - |A1|suit7

squargy, =0 = boxa1,

boxifyAl‘G: |A1‘G|po|ygon—> |A1‘G|po|ygon: {0~ 0,A 0O}

= boxifyp,: |A1|shape_> |A1‘shape
bOXifyAl‘gi |Al‘6|polygon_’ |Al‘6|ﬁgure: {o~0,A— 0O}
= boxifyp,: [Al|shape— [Al|shape
hAl\G: |A1‘c‘figure>< ‘Al‘cr|trump—> |A1‘0'|trump: {O,%) — &, (0,0)—&,...}
= fa1: |'A\:|-|shape>< |A1|suit - ‘A1|s|%it«

Exercise 1.5.6 A X-algebraA can be regarded as a function mapping the names in
X to their interpretations; the-reduct ofA is then the compositiowr;A. Spell out
the details. O

Exercise 1.5.7Let 6:X — X’ be a signature morphism that is surjective on sort
names, and le¥' be aX’-algebra. Show that A"G is reachable theA' is reachable.

Give counterexamples showing that the opposite implication does not hold, and that
the implication itself does not hold if some sort name&irare not in the image of

X undero. O

Page: 34 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

1.5 Changing signatures 35

Definition 1.5.8 (Reduct homomorphism)Leth': A’ — B’ be aX’-homomorphism.

The o-reduct of K is the Ssorted functiom"c: \A"G\ — \B"G| such that(h"c,)S =

h’a(s) for all se S. (Exercise: Show thalh"(,:A"(y — B/‘c is aX-homomorphism.)
O

Exercise 1.5.9Define thec-reductz"c of a X’-congruence=' on aX’-algebra

A, and prove that it is Z-congruence OIA"G. Show thato-reduct distributes over
quotient, i.e.(A’/z’)‘cy = (A"G)/(z"c) for all X'-algebras’h and X’-congruences
=’ onA. O

The following definition of the translation of terms along a signature morphism
0:X — X’ may look somewhat daunting, but its simple upshot is to translate each
termt € |Tx(X)| to theZ’-term obtained by replacing each operation name ffbm
by its image undes. Some care must be taken in the treatment of variables: since
variables for different sorts are not required to be distinct, to make sure they are not
inadvertently identified by the translation, for each sbitt X’ we have to take a
disjoint union of the sets of variables of sorts mappes.to

Definition 1.5.10 (Term translation). Let X be anS-sorted set of variables. Define
X' = (X})geg to be theS-sorted set such that

Xy= | X foreachs €S.
o(s)=¢

Then (TZ,(X’))‘G is a Z-algebra. Leti: X — |(T£,(X’))‘G| be the obvious embed-
ding (if not for the disjoint union in the definition of’ and explicit decoration of
variables with sorts in term$,would coincide withix which maps each variable
to its corresponding term). Then by Fact 1]4.4 there is a unitthemomorphism

6:Tx(X) — (T (X))o extending:

S-sorted sets X-algebras
C 5%
X Te (X)] Tx(X)
\ \
\ \
\ \ \
. 5 =i
\ \
' '
[Tz (X))o (T (X))o
The translation of aX-term te |Tx(X)| by ¢ is the X/-term &(t) € [Tz/(X')|. To
keep the notation simple, we will write just(t) for & (t). O

Example 1.5.11let 0:X — X1 be the signature morphism defined in Exam-
ple[1.5.2, wher& = (S 2) andX1 = (S1,Q21). Let X be theS-sorted set of vari-
ablesx: polygonx: figure, y: figure, z trump. TheSl-sorted set of variablé§' in Def-

inition[1.5.10Q is therx: shapex': shapey: shapez suit, and

Page: 35 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

36 1 Universal algebra
o (h(boxify(x: polygon, h(x:figure 2))) = f (boxify(x), f(X,2)),

o (h(x: figure, h(boxify(boxify(square), z))) = f (X, f (boxify(boxify(box)), z)),
and so on. O

Exercise 1.5.12Lett € |Tx| be a groundE-term and letA’ be aX’-algebra. Show

that the value of is invariant under change of signature, oét), = tA,‘U.
Formulate and prove a more general version of this result in whitcdy contain

variables. O

1.5.2 Derived signature morphisms

A derived signature morphism fromto X’ is like an algebraic signature morphism

from X to X’ except that operation namesihare mapped téermsover X’. This

allows operation names iti to be mapped to combinations of operationginand

also handles the case where the order of arguments of the corresponding operations
in X andX’ are different.

Definition 1.5.13 (Derived signature)Let X = (S Q) be a signature. For any se-
guences;...s, € S, let g, s, be theS-sorted se:sl,...,@:sn. The derived
signature ofZ is the signatureL®e’ = (S Q9" where for eacts;...s, € S and
seS ng.r.sn,s = |TZ(IS1~-~Sn)|S- u

In the derived signature df, a X-termt of sorts with variablesls, . s, represents
an operatiort:s; X --- x § — S. The variable@:s in ls,..s, thus stands for the
ith argument ot. Note that a “bare” variabl¢i | € [Tx(Is,_s,)|s iS an operation
i:S1 % --- X &y — § in £9€7, corresponding to a projection function.

Definition 1.5.14 (Derived signature morphism).Let £ andX’ be signatures. A
derived signature morphisi#: X — X' is an algebraic signature morphisin —
(2/)der_ 0

Definition 1.5.15 (Derived algebra)Let X = (S Q) be a signature, and létbe a
X-algebra. Thelerived algebra of As the £9€"-algebraA%¢" defined as follows:
e |A%T = |A|; and
o foreacht:s; x - x s —sin L% anda € |A%"|g ... a0 € |[A%|g tader(ar, ..., 80) =
ta(v) € |A%"|g wherev is the S-sorted function{([1]:5) — ay,...,([n]:s) —
an}. O

In the rest of this section, lef:X — X’ be a derived signature morphism. The
following corresponds to Definition 1.5.4 for algebraic signature morphisms; later
exercises correspond to Definitigns 1]5.8 and 1]5.10 and related resullts.

Definition 1.5.16 (Reduct algebra w.r.t. a derived signature morphism)Let A’
be aX’-algebra. TheS-reduct of Ais theE—aIgebraA"(; defined as follows:

Page: 36 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

1.5 Changing signatures 37

o |Asls=|A5(forallse S and
o forall fis;x---xsy—sinX, fA’\a: ‘A,‘5|Sl XX |A/\5|sn—> |A’\5\s=3(f)(A/)aer.

Equivalently,A",; is the Z-algebra(A')%'|5, viewing § as the algebraic signature
morphismé: £ — (X7)%er, O

Exercise 1.5.17 (Reduct homomorphism w.r.t. a derived signature morphism).
What is theﬁ—reducth"(; of aX’-homomaorphisnt’: A' — B'? Prove thah"(;:A"a —
B"(; is aX-homomorphism. O

Exercise 1.5.18 (Term translation w.r.t. a derived signature morphism).Let
t € |Tx(X)| be aZ-term, whereX is anS-sorted set of variables. Defirit), the
translation ot by & (the result should be &'-term). O

Example 1.5.19Let X = (S Q) be the signature defined in Example 1]5.2, and let
X1 =(S1,21) be the signature defined in Example 1}2.4. BeE — X1 be the
derived signature morphism defined by

Jsorts = { polygon— shapefigure— shapetrump— suit},

O¢ polygon= {Square— boxify(box)},

5polygonp0|ygon: {bO_XifY’_’ : Shap_@a

Spolygonfigure = {boxify— boxify(boxify([1]: shapé)},

5figuretrumptrump = {h = f(bOXifY(ZShaIDF), f(:Shape:SUit))}a
andé,s = @ for all otherw e S*,se S

Let Al be theX1-algebra defined in Exam.4. Thati;s is the Z-algebra
such that

|A1‘6‘polygon: |A1‘5|figure: {O,A},

|A1‘6‘trump = {*7 @a ‘},

squarey, = 0,

bOXifyAl‘SZ |A1‘6|polygon—> ‘A1‘5|polygon= {I:! — D,A — A}

bOXifyAl‘(;: |A1‘5|polygon_> ‘A1‘6|figure: {O0—~0,A— 0O},

andhAl‘g: \A1‘5|ﬁgu,e X |A1‘5|t,ump — |A1‘5 ltrump is defined by the following table:

haij; |||
O |(&|Dd
AN VIV

Let X be theSsorted set of variables: polygonx:figure y:figure z.trump. A
correct solution to Exerci$e 1.5]18 would transt(tgoxify(x: polygon, h(x: figure, z))
(aX-term with variablex) to

f (boxify(boxify(boxify(x))), f (boxify(boxify(x)), f(boxify(X), f(X,2)))).

=4 (boxify(x:polygon) =4 (boxify(x:polygon) =6 (h(xfigurez))

Page: 37 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

38 1 Universal algebra

Exercise 1.5.20Repeat Exercisg 1.5/12 for the case of derived signature mor-
phisms. O

Exercise 1.5.21A more complex definition of derived signature morphi§nt —
X’ would allow a sort namein X to be mapped to &artesian product’sx - -- x s,
of sortss),...,s,in Z’. Give versions of the above definitions which permit thisl

Exercise 1.5.22 Another variation on the definition of derived signature morphism
would permit operation names K to be mapped to recursively defined functions
in terms of the operation namesh. Give versions of the above definitions which
would allow this. (HNT: Look at a book like[[Sch&6] before attempting this exer-
cise.) O

1.6 Bibliographical remarks

This chapter presents the basic notions of universal algebra that are required in the
sequel. There is a vast literature on universal algebra as a branch of mathematics,
and the concepts and results we need here are a tiny fraction of this. Applications of
universal algebra in computer science are widespread, going back at Iéast to [BL69].

For much more on universal algebra see ¢.gal®i or [Coh65] but note that
both of these handle only the single-sorted case. A presentation of some of this
material for a computer scientist audiencelis [Wec92], see lalso [MT92] where ap-
plications to some topics in computer science other than the ones covered in this
book are also indicated.

The style of presentation here is relaxed but it might still be too dense for some
readers, who might prefer the gentler style, with proofs of many of the results which
we omit here, in[[GTW76]/[EM85]/IMG85] or [LEWS6].

The generalisation from single-sorted to many-sorted algebras originates with
[Hig63]. First applications to computer science came later [Mai72], becoming
prominent with[GTW76]. The generalisation is straightforward from a purely math-
ematical standpoint, but there are a few subtle issues that will surface in later chap-
ters. For instance, we admit empty carrier sets in Definftion[1.2.2, unlike most logic
books and, for instance, [BTB7] arid [Mo$04]. Admitting empty carrier sets requires
more care in the presentation of rules for reasoning, see Exgrcise|2.4.10 below, but
it also makes some results smoother, see Exdrcise P.5.18.

There are different definitions of many-sorted signature in the literature. The one
here is quite general, allowing overloading of operation names etc., and originates
with [GTWW?73] and [Gog74]. In some early papers, signatures are called “oper-
ator domains”. Definitions that do not permit overloading are used in [EM85] and
[Wir9Q], but as remarked after Definitign 1.P.1, these definitions are equivalent if
each operation name is taken to be tagged with its arity and result sort.

Signature morphisms emerged around 1978 in the context of early work on the
semantics of parameterised specifications in the style of Defifiitior] 6.3.5 below, see

Page: 38 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

1.6 Bibliographical remarks 39

[Ehr7€] and [GB78]; Definitioi 1.5]1 is from the latter. Various variants and re-
strictions on this notion have been used in the meantime. One possible simplifying
assumption is to restrict attention to injective signature morphisms as in [BHK90],
or to bijective signature morphisms, which are sometimes referred to as “renam-
ings”. The notion of reduct, but only with respect to a signature inclusion, arises
in universal algebra. The generalisation from signature morphisms to derived sig-
nature morphisms originates in [GTW?76], and is related to the even more general
notion of (theory) interpretation in logi¢ [End72]. Since the 1970s, derived signa-
ture morphisms have made only sporadic appearances in the algebraic specification
literature, see for instance [SB83] and [HLSTOQ].

Page: 39 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

Page: 532 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

References

AC89.

ACO1.

ACEGG91.

AF96.

AG97.

AHO5.

AHS90.
Ala02.
AM75.

Asp95.

Asp97.

Asp00.

Egidio Astesiano and Maura Cerioli. On the existence of initial models for partial
(higher-order) conditional specifications. In Josépdand Fernando Orejas, editors,
Proceedings of the International Joint Conference on Theory and Practice of Software
Development, TAPSOFT'8Barcelonal.ecture Notes in Computer Sciengelume

351, pages 74-88. Springer, 1989.

David Aspinall and Adriana B. Compagnoni. Subtyping dependent tfjpesretical
Computer Scien¢@66(1-2):273-309, 2001.

Jaume Aguis€Cullell, Francesc Esteva, Pere Garcia, and Lluis Godo. Formalizing
multiple-valued logics as institutions. In Bernadette Bouchon-Meunier, Ronald R.
Yager, and Lotfi A. Zadeh, editorBroceedings of the 3rd International Conference
on Information Processing and Management of Uncertainty in Knowledge-Based Sys-
tems, IPMU’90 Paris,Lecture Notes in Computer Scieneelume 521, pages 269—
278. Springer, 1991.

Mario Arrais and Jas Luiz Fiadeiro. Unifying theories in different institutions. In
Magne Haveraaen, Olaf Owe, and Ole-Johan Dahl, ediResent Trends in Data
Type Specification. Selected Papers from the 11th Workshop on Specification of Ab-
stract Data TypesOslo, Lecture Notes in Computer Sciena®lume 1130, pages
81-101. Springer, 1996.

Robert Allen and David Garlan. A formal basis for architectural connec#@i
Transactions on Software Engineering and Methodol6¢9):213-249, 1997.

David Aspinall and Martin Hofmann. Dependent types. In Benjamin Pierce, editor,
Advanced Topics in Types and Programming Languadespter 2, pages 45-86. MIT
Press, 2005.

Jii Adamek, Horst Herrlich, and George Streckiostract and Concrete Categories:
The Joy of CatsWiley, 1990.

Suad Alagic. Institutions: Integrating objects, XML and databalsgsrmation and
Software Technologyl4(4):207-216, 2002.

Michael A. Arbib and Ernest G. Maneérrows, Structures and Functors: The Cate-
gorical Imperative Academic Press, 1975.

David Aspinall. Subtyping with singleton types. In Leszek Pacholski and Jerzy
Tiuryn, editors Proceedings of the 8th International Workshop on Computer Science
Logic, CSL'94 Kazimierz,Lecture Notes in Computer Sciene®lume 933, pages
1-15. Springer, 1995.

David Aspinall. Type Systems for Modular Programming and SpecificatiBhD
thesis, University of Edinburgh, Department of Computer Science, 1997.

David Aspinall. Subtyping with power types. In Peter Clote and Helmut Schwichten-
berg, editorsProceedings of the 14th International Workshop on Computer Science

533

534

Avrol.

Awo006.
Bar74.

BBB*85.

BBC86.

BC88.

BCH99.

BD77.

BDP*79.

Bén85.

Ber87.

BF85.

BG77.

BG80.

BG81.

BGO1.

BH96.

BHO98.

Page: 534

References

Logic, Fischbachaul ecture Notes in Computer Sciene®lume 1862, pages 156—
171. Springer, 2000.

Arnon Avron. Simple consequence relatiolmormation and Computatiqr92:105—

139, 1991.

Steve AwodeyCategory TheoryOxford University Press, 2006.

Jon Barwise. Axioms for abstract model theoAnnals of Mathematical Logic
7:221-265, 1974.

Friedrich L. Bauer, Rudolf Berghammer, Manfred Broy, Walter Dosch, Franz Geisel-
brechtinger, Rupert Gnatz, E. Hangel, Wolfgang Hesse, Bernd KriggkBer, Al-

fred Laut, Thomas Matzner, Berndd\ler, Friederike Nickl, Helmut Partsch, Peter
Pepper, Klaus Samelson, Martin Wirsing, and Hangsgver. The Munich Project
CIP: Volume 1: The Wide Spectrum Language ClR-&cture Notes in Computer
Sciencevolume 183. Springer, 1985.

Gilles Bernot, Michel Bidoit, and Christine Choppy. Abstract data types with ex-
ception handling: An initial approach based on a distinction between exceptions and
errors. Theoretical Computer Scienc#6(1):13-45, 1986.

Val Breazu-Tannen and Thierry Coquand. Extensional models for polymorphism.
Theoretical Computer Scienc®d(1-2):85-114, 1988.

Michel Bidoit, Mafa Victoria Cengarle, and Rolf Hennicker. Proof systems for struc-
tured specifications and their refinements. In Egidio Astesiano, Hagskieowski,

and Bernd Krieg-Biickner, editorsAlgebraic Foundations of Systems Specification
chapter 11, pages 385—-433. Springer, 1999.

R.M. Burstall and J. Darlington. A transformational system for developing recursive
programs.Journal of the Association for Computing Maching2y(1):44-67, 1977.
Manfred Broy, Walter Dosch, Helmut Partsch, Peter Pepper, and Martin Wirsing. Ex-
istential quantifiers in abstract data types. In Hermann A. Maurer, e&itoceed-

ings of the 6th International Colloquium on Automata, Languages and Programming
Graz,Lecture Notes in Computer Sciengelume 71, pages 73-87. Springer, 1979.
Jean Bnabou. Fibred categories and the foundations iveneategory theorydour-

nal of Symbolic Logic50:10-37, 1985.

Gilles Bernot. Good functors ... are those preserving philosophy! In David H.
Pitt, Axel Poigreé, and David E. Rydeheard, editoBpceedings of the 2nd Summer
Conference on Category Theory and Computer Scigidmburgh Lecture Notes in
Computer Scien¢erolume 283, pages 182-195. Springer, 1987.

Jon Barwise and Solomon Feferman, editokéodel-Theoretic Logics Springer,
1985.

R.M. Burstall and J.A. Goguen. Putting theories together to make specifications.
In Fifth International Joint Conference on Artificial Intelligencgages 1045—-1058,
Boston, 1977.

R.M. Burstall and J.A. Goguen. The semantics of Clear, a specification language.
In Dines Bjgrner, editoiProceedings of the 1979 Copenhagen Winter School on Ab-
stract Software Specificatiphecture Notes in Computer Scieneelume 86, pages
292-332. Springer, 1980.

R.M. Burstall and J.A. Goguen. An informal introduction to specifications using
Clear. In R.S. Boyer and J.S. Moore, editdrhe Correctness Problem in Computer
Sciencepages 185-213. Academic Press, 1981. Als8aiftware Specification Tech-
nigues(eds. N. Gehani and A.D. McGettrick), Addison-Wesley, 1986.

Leo Bachmair and Harald Ganzinger. Resolution theorem proving. In John Alan
Robinson and Andrei Voronkov, editoidandbook of Automated Reasonjmpgges
19-99. Elsevier and MIT Press, 2001.

Michel Bidoit and Rolf Hennicker. Behavioural theories and the proof of behavioural
properties.Theoretical Computer Scienck65(1):3-55, 1996.

Michel Bidoit and Rolf Hennicker. Modular correctness proofs of behavioural imple-
mentations Acta Informatica 35(11):951-1005, 1998.

job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

References

BHO6a.

BHO6b.

BHK90.

BHW94.

BHW95.

Bir35.

BL69.

BMO04.

BN98.

Bor94.

Bor00.

Bor02.

Bor05.

BPP85.

BRJ98.

BS93.

BSTO2.

BSTO8.

BT87.

Page: 535

535

Michel Bidoit and Rolf Hennicker. Constructor-based observational Idgignal of
Logic and Algebraic Programming7(1-2):3-51, 2006.

Michel Bidoit and Rolf Hennicker. Proving behavioral refinements afL.-C
specifications. In Kokichi Futatsugi, Jean-Pierre Jouannaud, agdVeseguer, edi-
tors,Algebra, Meaning and Computation: Essays Dedicated to Joseph A. Goguen on
the Occasion of His 65th Birthdalecture Notes in Computer Sciengelume 4060,
pages 333-354. Springer, 2006.

Jan Bergstra, Jan Heering, and Paul Klint. Module algelmarnal of the Association
for Computing Machinery37(2):335-372, 1990.

Michel Bidoit, Rolf Hennicker, and Martin Wirsing. Characterizing behavioural se-
mantics and abstractor semantics. In Donald Sannella, e®itoceedings of the
5th European Symposium on Programmifglinburgh,Lecture Notes in Computer
Sciencevolume 788, pages 105-119. Springer, 1994.

Michel Bidoit, Rolf Hennicker, and Martin Wirsing. Behavioural and abstractor spec-
ifications. Science of Computer Programmirzh(2-3):149-186, 1995.

Garrett Birkhoff. On the structure of abstract algebRasceedings of the Cambridge
Philosophical Society31:433-454, 1935.

R.M. Burstall and P.J. Landin. Programs and their proofs: an algebraic approach. In
B. Meltzer and D. Michie, editordyiachine Intelligence 4pages 17—-43. Edinburgh
University Press, 1969.

Michel Bidoit and Peter D. Mosses, editorsA<L User Manual Number 2900 in
Lecture Notes in Computer Science. Springer, 2004.

Franz Baader and Tobias Nipkowerm Rewriting and All ThatCambridge Univer-
sity Press, 1998.

Francis Borceaux-andbook of Categorical AlgebraCambridge University Press,
1994.

Tomasz Borzyszkowski. Higher-order logic and theorem proving for structured spec-
ifications. In Didier Bert, Christine Choppy, and Peter D. Mosses, ediResent
Trends in Algebraic Development Techniques. Selected Papers from the 14th Interna-
tional Workshop on Algebraic Development Technig@steau de Bonad,ecture
Notes in Computer Scienceolume 1827, pages 401-418. Springer, 2000.

Tomasz Borzyszkowski. Logical systems for structured specificatibmsoretical
Computer Scien¢®86(2):197-245, 2002.

Tomasz Borzyszkowski. Generalized interpolation in first order Idgimdamenta
Informaticag 66(3):199-219, 2005.

Edward K. Blum and Francesco Parisi-Presicce. The semantics of shared submod-
ules specifications. In Hartmut Ehrig, Christiane Floyd, Maurice Nivat, and James W.
Thatcher, editordMathematical Foundations of Software Development. Proceedings
of the International Joint Conference on Theory and Practice of Software Develop-
ment. Volume 1: Colloquium on Trees in Algebra and Programpiiagture Notes in
Computer Scien¢e&olume 185, pages 359-373. Springer, 1985.

Grady Booch, James Rumbaugh, and Ivar Jacobserlnified Modeling Language
User Guide Addison-Wesley, 1998.

Rudolf Berghammer and Gunther Schmidt. Relational specifications. In C. Rauszer,
editor, Proc. XXXVIII Banach Center Semester on Algebraic Methods in Logic and
their Computer Science ApplicatiarBanach Center Publicationsolume 28, pages
167-190, Warszawa, 1993. Institute of Mathematics, Polish Academy of Sciences.
Michel Bidoit, Donald Sannella, and Andrzej Tarlecki. Architectural specifications
in CAsL. Formal Aspects of Computing3:252-273, 2002.

Michel Bidoit, Donald Sannella, and Andrzej Tarlecki. Observational interpretation
of CAsL specificationsMathematical Structures in Computer Scient®:325-371,
2008.

Jan Bergstra and John Tucker. Algebraic specifications of computable and semicom-
putable data typeslheoretical Computer Science0(2):137-181, 1987.

job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

536

BT96.

Bur86.

BW82a.

BW82b.

BWS8S5.

BWO5.

BWP84.

Car88.

CDE'02.

Cen94.

CF92.

CGRO3.

Chub56.

Cir02.

CJ95.

CK90.

CKO08a.

CKO8b.

CKO8c.

Page: 536

References

Michel Bidoit and Andrzej Tarlecki. Behavioural satisfaction and equivalence in con-
crete model categories. Indiéne Kirchner, editoProceedings of the 21st Interna-
tional Colloquium on Trees in Algebra and Programmihgnkoping, Lecture Notes

in Computer Sciencerolume 1059, pages 241-256. Springer, 1996.

Peter Burmeister. A Model Theoretic Oriented Approach to Partial Algehras
Akademie-Verlag, 1986.

Friedrich L. Bauer and HansdasnerAlgorithmic Language and Program Develop-
ment Springer, 1982,

Manfred Broy and Martin Wirsing. Partial abstract data typasta Informatica
18(1):47-64, 1982.

Michael Barr and Charles WellsToposes, Triples and TheoriedNumber 278 in
Grundlehren der mathematischen Wissenschaften. Springer, 1985.

Michael Barr and Charles Well€ategory Theory for Computing Scienderentice

Hall, second edition, 1995.

Manfred Broy, Martin Wirsing, and Claude Pair. A systematic study of models of
abstract data typeJ.heoretical Computer Sciencg3(2—3):139-174, 1984.

Luca Cardelli. Structural subtyping and the notion of power typeRrdoeedings

of the 15th ACM Symposium on Principles of Programming Langy&gs Diego,
pages 70-79, 1988.

Manuel Clavela, Francisco Cam, Steven Eker, Patrick Lincoln, Narciso Ma@iliet,
Jog Meseguer, and JesF. Quesada. Maude: Specification and programming in
rewriting logic. Theoretical Computer Scienc285(2):187—-243, 2002. See also
http://maude.cs.uiuc.edu/

Maia Victoria CengarleFormal Specifications with Higher-Order Parameterization
PhD thesis, Ludwig-Maximilians-Universit Minchen, Institutiir Informatik, 1994.
Robin Cockett and Tom Fukushima. About Charity. Technical Report No. 92/480/18,
Department of Computer Science, University of Calgary, 1992.

Carlos Caleiro, Paula Gouveia, and Jaime Ramos. Completeness results for fibred
parchments: Beyond the propositional base. In Martin Wirsing, Dirk Pattinson, and
Rolf Hennicker, editorsRecent Trends in Algebraic Development Techniques. Se-
lected Papers from the 16th International Workshop on Algebraic Development Tech-
niques Frauenchiemsee,ecture Notes in Computer Sciena®lume 2755, pages
185-200. Springer, 2003.

Alonzo Churchintroduction to Mathematical Logic, Volume Brinceton University
Press, 1956.

Corina Grstea. On specification logics for algebra-coalgebra structures: Reconciling
reachability and observability. IRroceedings of the 5th International Conference on
Foundations of Software Science and Computation Structures. European Joint Con-
ferences on Theory and Practice of Software (ETAPS 2@2noblelecture Notes

in Computer Sciengevolume 2303, pages 82-97. Springer, 2002.

Aurelio Carboni and Peter Johnstone. Connected limits, familial representability and
Artin glueing. Mathematical Structures in Computer Sciens@!):441-459, 1995.
Chen-Chung Chang and H. Jerome Keislstodel Theory North-Holland, third
edition, 1990.

Mara Victoria Cengarle and Alexander Knapp. An institution for OCL 2.0. Techni-
cal Report 10801, Institutifr Informatik, Ludwig-Maximilians-Universét Minchen,
2008.

Maia Victoria Cengarle and Alexander Knapp. An institution for UML 2.0 in-
teractions. Technical Report 10808, Institiir finformatik, Ludwig-Maximilians-
Universitt Munchen, 2008.

Maia Victoria Cengarle and Alexander Knapp. An institution for UML 2.0 static
structures. Technical Report 10807, Institiitr finformatik, Ludwig-Maximilians-
Universitat Munchen, 2008.

job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

http://maude.cs.uiuc.edu/

References 537

CKTWO08. Maria-Victoria Cengarle, Alexander Knapp, Andrzej Tarlecki, and Martin Wirsing. A
heterogeneous approach to UML semantics. In Pierpaolo Degano, Rocco de Nicola,
and Joé Meseguer, editor€oncurrency, Graphs and Models, Essays Dedicated to
Ugo Montanari on the Occasion of His 65th Birthddyecture Notes in Computer
Sciencevolume 5065, pages 383-402. Springer, 2008.

CM97. Maura Cerioli and Jé&sMeseguer. May | borrow your logic? (Transporting logical
structures along mapsJheoretical Computer SciencE73(2):311-347, 1997.

CMRM10. Mihai Codescu, Till Mossakowski, Adn Riesco, and Christian Maeder. Integrat-
ing Maude into Hets. In Mike Johnson and Dusko Pavlovic, editdk$AST 2010
Lecture Notes in Computer Science. Springer, 2010.

CMRSO01. Carlos Caleiro, Paulo Mateus, Jaime Ramos, arittAnSernadas. Combining log-
ics: Parchments revisited. In Maura Cerioli and Gianna Reggio, edRecgnt Trends
in Algebraic Development Techniques. Selected Papers from the 15th Workshop on Al-
gebraic Development Techniques joint with the CoFl WG Meg@enoval ecture
Notes in Computer Scienceolume 2267, pages 48-70. Springer, 2001.

Coh65. Paul M. CohnUniversal Algebra Harper and Row, 1965.

CS92. Robin Cockett and Dwight Spencer. Strong categorical datatypes I. In R.A.G. Seely,
editor, International Meeting on Category Theory 19%@lanadian Mathematical So-
ciety Proceedings. American Mathematical Society, 1992.

CSSO05. Carlos Caleiro, Alcar Sernadas, and Cristina Sernadas. Fibring logics: Past, present
and future. In Sergei N. Artemov, Howard Barringer, Artur S. d’Avila Garceis1Gi
Lamb, and John Woods, editok&/e Will Show Them! Essays in Honour of Dov Gab-
bay, Volume Ongpages 363—-388. College Publications, 2005.

DF98. Razvan Diaconescu and Kokichi Futatsu@iafeOBJ Report: The Language, Proof
Techniques, and Methodologies for Object-Oriented Algebraic SpecificAMAST
Series in Computing/olume 6. World Scientific, 1998.

DFO02. Razvan Diaconescu and Kokichi Futatsugi. Logical foundatiorGajféOBJ. Theo-
retical Computer Scien¢@85:289-318, 2002.

DGS93. Razvan Diaconescu, Joseph Goguen, and Petros Stefaneas. Logical support for mod-
ularisation. In @rard Huet and Gordon Plotkin, editoksgical Environmentpages
83-130. Cambridge University Press, 1993.

Dia00. Razvan Diaconescu. Category-based constraint lojlethematical Structures in
Computer Scien¢d 0(3):373-407, 2000.

Dia02. Razvan Diaconescu. Grothendieck institutions\pplied Categorical Structures
10(4):383-402, 2002.

Dia08. Razvan Diaconescunstitution-independent Model Theorgirkhauser, 2008.

DJ90. Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In Jan van

Leeuwen, editorHandbook of Theoretical Computer Science. Volume B (Formal
Models and Semanticg)ages 244-320. North-Holland and MIT Press, 1990.

DLL62. Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-provingCommunications of the ACN6(7):394-397, 1962.
DMOO. Theodosis Dimitrakos and Tom Maibaum. On a generalised modularisation theorem.

Information Processing Letterg4(1-2):65-71, 2000.

DMR76. Martin Davis, Yuri Matiyasevich, and Julia Robinson. Hilbert’s tenth problem. Dio-
phantine equations: Positive aspects of a negative solutidviathematical Develop-
ments Arising from Hilbert ProblemBroceedings of Symposia in Pure Mathematics
volume 28, pages 323-378, Providence, Rhode Island, 1976. American Mathematical

Society.

DP90. B.A. Davey and H.A. Priestleintroduction to Lattices and OrdeiCambridge Uni-
versity Press, 1990.

Ehr78. Hans-Dieter Ehrich. Extensions and implementations of abstract data type specifica-

tions. In bzef Winkowski, editorProceedings of the 7th Symposium on Mathemati-
cal Foundations of Computer Scien@akopanel.ecture Notes in Computer Science
volume 64, pages 155-164. Springer, 1978.

Page: 537 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

538 References

Ehr81. Hans-Dieter Ehrich. On realization and implementation. In Jozef Gruska and Michal
Chuytil, editors,Proceedings of the 10th Symposium on Mathematical Foundations of
Computer SciengeStrbsié Plesolecture Notes in Computer Scieneelume 118,
pages 271-280. Springer, 1981.

Ehr82. Hans-Dieter Ehrich. On the theory of specification, implementation and parametriza-
tion of abstract data typesJournal of the Association for Computing Machinery
29(1):206-227, 1982.

EKMP82. Hartmut Ehrig, Hansddg Kreowski, Bernd Mahr, and Peter Padawitz. Algebraic
implementation of abstract data typeBheoretical Computer Scienc20:209-263,
1982.

EKT*80. Hartmut Ehrig, Hansélg Kreowski, James Thatcher, Eric Wagner, and Jesse Wright.
Parameter passing in algebraic specification languages. Technical report, Technische
Universitt Berlin, 1980.

EKT*83. Hartmut Ehrig, Hansédg Kreowski, James Thatcher, Eric Wagner, and Jesse Wright.
Parameter passing in algebraic specification languagbsoretical Computer Sci-
ence 28(1-2):45-81, 1983.

EM85. Hartmut Ehrig and Bernd MahFundamentals of Algebraic SpecificationBIATCS
Monographs on Theoretical Computer Scienadume 6. Springer, 1985.
Eme90. E. Allen Emerson. Temporal and modal logic. In Jan van Leeuwen, étitotbook

of Theoretical Computer Science. Volume B (Formal Models and Semapscgs
995-1072. North-Holland and MIT Press, 1990.

End72. Herbert B. Enderto Mathematical Introduction to LogicAcademic Press, 1972.

EPO89. Hartmut Ehrig, Peter Pepper, and Fernando Orejas. On recent trends in algebraic
specification. In Giorgio Ausiello, Mariangiola Dezani-Ciancaglini, and Simona
Ronchi Della Rocca, editor®roceeding of the 16th International Colloquium on
Automata, Languages and Programmigresal ecture Notes in Computer Science
volume 372, pages 263-288. Springer, 1989.

EWT83. Hartmut Ehrig, Eric G. Wagner, and James W. Thatcher. Algebraic specifications
with generating constraints. Proceeding of the 10th International Colloquium on
Automata, Languages and ProgrammiBgrcelonal ecture Notes in Computer Sci-
ence volume 154, pages 188-202. Springer, 1983.

Far89. Jordi Fafs-Casals. Proving correctness of constructor implementations. In Antoni
Kreczmar and Grazyna Mirkowska, editoProceedings of the 14th Symposium on
Mathematical Foundations of Computer Scigneerabka-Kozubnikl.ecture Notes
in Computer Sciengerolume 379, pages 225-235. Springer, 1989.

Far90. Jordi Fafs-Casals. Proving correctness wrt specifications with hidden parts. In
Heélene Kirchner and Wolfgang Wechler, editdPsoceedings of the 2nd International
Conference on Algebraic and Logic Programmii@ncy,Lecture Notes in Computer
Sciencevolume 463, pages 25-39. Springer, 1990.

Far92. Jordi Fags-CasalsVerification in ASL and Related Specification LanguadesD
thesis, University of Edinburgh, Department of Computer Science, 1992.
FC96. Joé Luiz Fiadeiro and JésFelix Costa. Mirror, mirror in my hand: A duality be-

tween specifications and models of process behaviMathematical Structures in
Computer Scien¢é(4):353-373, 1996.

Fei89. Loe M. G. Feijs. The calculusz. In Martin Wirsing and Jan A. Bergstra, editors,
Proceedings of the Workshop on Algebraic Methods: Theory, Tools and Applications
Lecture Notes in Computer Sciengelume 394, pages 307—328. Springer, 1989.

FGT92. William M. Farmer, Joshua D. Guttman, and F. Javier Thayer. Little theories. In
Deepak Kapur, editoroceedings of the 11th International Conference on Auto-
mated DeductionLecture Notes in Artificial Intelligencesolume 607, pages 567—
581, Saratoga Springs, 1992. Springer.

Fia05. Joé Luiz Fiadeiro.Categories for Software Engineerin§pringer, 2005.

Fit08. John S. Fitzgerald. The typed logic of partial functions and the Vienna Develop-
ment Method. In Dines Bjgrner and Martin Henson, editbogics of Specification
Languagespages 453—-487. Springer, 2008.

Page: 538 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

References 539

FJ90. J. Fitzgerald and C.B. Jones. Modularizing the formal description of a database sys-
tem. InProceedings of the 3rd International Symposium of VDM Europe: VDM and
Z, Formal Methods in Software Developmekiel, Lecture Notes in Computer Sci-
ence volume 428, pages 189-210. Springer, 1990.

FS88. Jos Luiz Fiadeiro and Ariicar Sernadas. Structuring theories on consequence. In
Donald Sannella and Andrzej Tarlecki, editdRgcent Trends in Data Type Specifica-
tion. Selected Papers from the 5th Workshop on Specification of Abstract Data Types
Gullane,Lecture Notes in Computer Sciena®lume 332, pages 44-72. Springer,

1988.
Gab9s. Dov M. Gabbayibring Logics Oxford Logic Guidesvolume 38. Oxford University
Press, 1998.
Gan83. Harald Ganzinger. Parameterized specifications: Parameter passing and implemen-

tation with respect to observabilitACM Transactions on Programming Languages
and System$(3):318—-354, 1983.

GB78. J.A. Goguen and R.M. Burstall. Some fundamental properties of algebraic theories:
a tool for semantics of computation. Technical Report 53, Department of Atrtificial
Intelligence, University of Edinburgh, 1978. Revised version appeared as [GB84b]
and [GB84c].

GB80. J.A. Goguen and R.M. Burstall.AC, a system for the structured elaboration of cor-
rect programs from structured specifications. Technical Report CSL-118, Computer
Science Laboratory, SRI International, 1980.

GB84a. J.A. Goguen and R.M. Burstall. Introducing institutions. In Edmund Clarke and Dex-
ter Kozen, editorsProceedings of the Workshop on Logics of PrograRiisburgh,
Lecture Notes in Computer Sciengelume 164, pages 221-256. Springer, 1984.

GB84b. J.A. Goguen and R.M. Burstall. Some fundamental algebraic tools for the semantics
of computation. Part 1: Comma categories, colimits, signatures and thedhes-
retical Computer Scien¢@1:175-209, 1984.

GB84c. J.A. Goguen and R.M. Burstall. Some fundamental algebraic tools for the semantics
of computation. Part 2: Signed and abstract theoflésoretical Computer Science
31:263-295, 1984.

GB86. Joseph A. Goguen and Rod M. Burstall. A study in the functions of programming
methodology: Specifications, institutions, charters and parchments. In David H. Pitt,
Samson Abramsky, Axel Poig@nand David E. Rydeheard, editoPspceedings of the
Tutorial and Workshop on Category Theory and Computer Programn@ngdford,
Lecture Notes in Computer Sciengelume 240, pages 313-333. Springer, 1986.

GB92. J.A. Goguen and R.M. Burstall. Institutions: Abstract model theory for specification
and programmingJournal of the Association for Computing Machine®®(1):95—
146, 1992.

GD9%4a. Joseph Goguen and#¥an Diaconescu. An Oxford survey of order sorted algebra.
Mathematical Structures in Computer Sciend(3):363—-392, 1994.

GD94b. Joseph A. Goguen an@®/an Diaconescu. Towards an algebraic semantics for the

object paradigm. In Hartmut Ehrig and Fernando Orejas, ediResent Trends in
Data Type Specification. Selected Papers from the 9th Workshop on Specification of
Abstract Data Types joint with the 4BompPAss Workshop Caldes de Malavella,
Lecture Notes in Computer Scienpgelume 785, pages 1-29. Springer, 1994.

GDLE84. Martin Gogolla, Klaus Drosten, Udo Lipeck, and Hans-Dieter Ehrich. Algebraic and
operational semantics of specifications allowing exceptions and erfdrwsoretical
Computer Scien¢e84(3):289-313, 1984.

GG89. Stephen J. Garland and John V. Guttag. An overview of LP, the Larch Proveirdn
International Conference on Rewriting Techniques and Applicati@tspel Hill,
Lecture Notes in Computer Sciena®lume 355, pages 137-151. Springer, 1989.
See alsthttp://nms.lcs.mit.edu/larch/LP/all.html !

GGM76. V. Giarratana, F. Gimona, and Ugo Montanari. Observability concepts in abstract data
type specifications. In Antoni Mazurkiewicz, edit®toceedings of the 5th Sympo-

Page: 539 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

http://nms.lcs.mit.edu/larch/LP/all.html

540

GH78.
GH93.

Gin68.
Gir87.
Gir89.

GLROO.

GM82.

GM85.

GM92.

GMO00.

Gog73.

Gog74.

Gog7s.

Gog84.

Gog85.

Gog91la.

Gog91b.

Gog96.

Gog10.

Gol06.

Page: 540

References

sium on Mathematical Foundations of Computer Scie@mgsk, Lecture Notes in
Computer Science&olume 45, pages 567-578. Springer, 1976.

John Guttag and James Horning. The algebraic specification of abstract data types.
Acta Informatica 10:27-52, 1978.

John V. Guttag and James J. Hornibgrch: Languages and Tools for Formal Spec-
ification. Springer, 1993.

Abraham GinzburgAlgebraic Theory of AutomataAcademic Press, 1968.

Jean-Yves Girard. Linear logi€heoretical Computer Sciencg0:1-102, 1987.
Jean-Yves Girard?roofs and TypeCambridge Tracts in Theoretical Computer Sci-
ence volume 7. Cambridge University Press, 1989. Translated and with appendices
by Paul Taylor and Yves Lafont.

Joseph Goguen, Kai Lin, and Grigore Rosu. Circular coinductive rewritingroin
ceedings of the 15th International Conference on Automated Software Engineering
Grenoble. IEEE Computer Society, 2000.

Joseph A. Goguen and &ddleseguer. Universal realization, persistent interconnec-
tion and implementation of abstract modules. In Mogens Nielsen and Erik Meineche
Schmidt, editorsProceeding of the 9th International Colloquium on Automata, Lan-
guages and Programmindarhus,Lecture Notes in Computer Sciengelume 140,
pages 265-281. Springer, 1982.

Joseph Goguen and &ddeseguer. Completeness of many sorted equational deduc-
tion. Houston Journal of Mathematic$1(3):307-334, 1985.

Joseph Goguen and &okleseguer. Order-sorted algebra I: Equational deduction
for multiple inheritance, overloading, exceptions and partial operatidhsoretical
Computer Sciencd 05(2):217-273, 1992.

Joseph A. Goguen and Grant Malcolm. A hidden agerttaeoretical Computer
Science245(1):55-101, 2000.

Joseph Goguen. Categorical foundations for general systems theory. In F. Pichler and
R. Trappl, editorsAdvances in Cybernetics and Systems Resgamidon, pages
121-130. Transcripta Books, 1973.

J.A. Goguen. Semantics of computation. In Ernest G. Manes, &ibogedings
of the 1st International Symposium on Category Theory Applied to Computation and
Control, San Franciscd,ecture Notes in Computer Scieneelume 25, pages 151—
163. Springer, 1974.

Joseph Goguen. Abstract errors for abstract data types. In Erich Neuhold, editor,
Formal Description of Programming Concepggages 491-526. North-Holland, 1978.

Martin Gogolla. Partially ordered sorts in algebraic specification®rdeeedings
of the 9th Colloquium on Trees in Algebra and Programmipages 139-153. Cam-
bridge University Press, 1984.

Martin Gogolla. A final algebra semantics for errors and exceptions. In Hans-
Jorg Kreowski, editorRecent Trends in Data Type Specification. Selected Papers
from the 3rd Workshop on Theory and Applications of Abstract Data Tgresen,
Informatik-Fachberichtevolume 116, pages 89-103. Springer, 1985.

Joseph Goguen. Types as theories. In G.M. Reed, A.W. Roscoe, and R.F. Wachter,
editors,Topology and Category Theory in Computer Scie@dord, pages 357-390.
Oxford University Press, 1991.

Joseph A. Goguen. A categorical manifesfathematical Structures in Computer
Sciencel(1):49-67, 1991.

Joseph A. Goguen. Parameterized programming and software architecture. In Murali
Sitaraman, editorProceedings of the Fourth International Conference on Software
Reusepages 2—-11. IEEE Computer Society Press, 1996.

Joseph Goguen. Information integration in institutions. In Larry Moss, etiitior-
ing Logically: a Volume in Memory of Jon BarwiseSLlI, Stanford University, 2010.

To appear.

Robert GoldblattTopoi: The Categorial Analysis of Logidover, revised edition,

2006.

job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

References 541

Gor95. Andrew D. Gordon. Bisimilarity as a theory of functional programmingrbteed-
ings of the 11th Annual Conference on Mathematical Foundations of Programming
SemanticsElectronic Notes in Theoretical Computer Scient@32-252, 1995.

GRO2. Joseph A. Goguen and Grigore Rosu. Institution morphishesmal Aspects of
Computing 13(3-5):274-307, 2002.
GRO4. Joseph A. Goguen and Grigore Rosu. Composing hidden information modules over

inclusive institutions. InFrom Object-Orientation to Formal Methods. Essays in
Memory of Ole-Johan DahLecture Notes in Computer Sciengelume 2635, pages
96-123. Springer, 2004.

Grar9. George A. Gatzer.Universal Algebra Springer, second edition, 1979.

GS90. Carl Gunter and Dana Scott. Semantic domains. In Jan van Leeuwen Haifithr,
book of Theoretical Computer Science. Volume B (Formal Models and Semantics)
pages 633-674. North-Holland and MIT Press, 1990.

GTW76. Joseph Goguen, James Thatcher, and Eric Wagner. An initial algebra approach to
the specification, correctness and implementation of abstract data types. Technical
Report RC 6487, IBM Watson Research Center, Yorktown Heights NY, 1976. Also
in: Current Trends in Programming Methodology. Volume IV (Data Structuried)
R.T. Yeh), Prentice-Hall, 80-149, 1978.

GTWW?73. Joseph Goguen, James Thatcher, Eric Wagner, and Jesse Wright. A junction between
computer science and category theory, I: Basic concepts and examples (part 1). Tech-
nical Report RC 4526, IBM Watson Research Center, Yorktown Heights NY, 1973.

GTWW?75. Joseph Goguen, James Thatcher, Eric Wagner, and Jesse Wright. An introduction to
categories, algebraic theories and algebras. Technical Report RC 5369, IBM Watson
Research Center, Yorktown Heights NY, 1975.

GTWW?77. Joseph Goguen, James Thatcher, Eric Wagner, and Jesse Wright. Initial algebra se-
mantics and continuous algebrasurnal of the Association for Computing Machin-
ery, 24(1):68-95, 1977.

Gut75. John GuttagThe Specification and Application to Programming of Abstract Data
Types PhD thesis, University of Toronto, Department of Computer Science, 1975.

Hag87. Tatsuya HaginoA Categorical Programming Languagé>hD thesis, University of
Edinburgh, Department of Computer Science, 1987.

Haho1. Reiner Ehnle. Tableaux and related methods. In John Alan Robinson and Andrei
Voronkov, editorsHandbook of Automated Reasonipgges 100-178. Elsevier and
MIT Press, 2001.

Hal70. Paul R. HalmosNaive Set TheoryUndergraduate Texts in Mathematics. Springer,
1970.

Hat82. William HatcherThe Logical Foundations of Mathematidsoundations and Philos-
ophy of Science and Technology. Pergamon Press, 1982.

Hay94. Susumu Hayashi. Singleton, union and intersection types for program extraction.
Information and Computatiqri09(1/2):174-210, 1994.

Hee86. Jan Heering. Partial evaluation amdompleteness of algebraic specificatiombe-
oretical Computer Sciencd3:149-167, 1986.

Hen9l. Rolf Hennicker. Context induction: A proof principle for behavioural abstractions

and algebraic implementationSormal Aspects of Computing(4):326-345, 1991.

HHP93. Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
Journal of the Association for Computing Machine49(1):143-184, January 1993.

HHWT97. Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toiy THCH: A model
checker for hybrid systemsSoftware Tools for Technology Transféi(1-2):110-
122, 1997.

Hig63. Phillip J. Higgins. Algebras with a scheme of operatitathematische Nachrichten
27:115-132, 1963.

HLSTO00. Furio Honsell, John Longley, Donald Sannella, and Andrzej Tarlecki. Constructive
data refinement in typed lambda calculus. Proceedings of the 3rd International
Conference on Foundations of Software Science and Computation Structures. Euro-
pean Joint Conferences on Theory and Practice of Software (ETAPS, B&j,
Lecture Notes in Computer Sciengelume 1784, pages 161-176. Springer, 2000.

Page: 541 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

542

Hoa72.

HS73.

HS96.

HS02.

HST94.

Hus92.

HWB97.

Jac99.

JL87.

JNW96.

JOE9S.

Joh02.

Jon80.
Jon89.

JR97.

KB70.

Kir99.

KKM88.

Klo92.

KM87.

KR71.

Kre87.

Page: 542

References

C. A. R. Hoare. Proof of correctness of data representatiéiota Informatica
1:271-281, 1972.

Horst Herrlich and George E. Streckeategory Theory: An IntroductiorAllyn and
Bacon, 1973.

Martin Hofmann and Donald Sannella. On behavioural abstraction and behavioural
satisfaction in higher-order logi@-heoretical Computer Scienct67:3-45, 1996.

Furio Honsell and Donald Sannella. Prelogical relatiomfermation and Computa-
tion, 178:23-43, 2002.

Robert Harper, Donald Sannella, and Andrzej Tarlecki. Structured presentations and
logic representationgAnnals of Pure and Applied Logi67:113-160, 1994,

Heinrich Hussmann. Nondeterministic algebraic specifications and nonconfluent term
rewriting. Journal of Logic Programmingl2(1-4):237-255, 1992.

Rolf Hennicker, Martin Wirsing, and Michel Bidoit. Proof systems for struc-
tured specifications with observability operator3heoretical Computer Science
173(2):393-443, 1997.

Bart Jacob<Categorical Logic and Type ThearyNumber 141 in Studies in Logic
and the Foundations of Mathematics. Elsevier Science, 1999.

Joxan Jaffar and Jean-Louis Lassez. Constraint logic programmipgadeedings of
the 14th ACM Symposium on Principles of Programming Langyadesich, pages
111-119, 1987.

Andeé Joyal, Mogens Nielsen, and Glynn Winskel. Bisimulation from open maps.
Information and Computatiqri27(2):164—-185, 1996.

Rosa M. Jigmez, Fernando Orejas, and Hartmut Ehrig. Compositionality and com-
patibility of parameterization and parameter passing in specification langats.
ematical Structures in Computer Scien6€2):283-314, 1995.

Peter T. Johnston8ketches of an Elephant: A Topos Theory Compend@xfiord
Logic Guides Series. Clarendon Press, 2002.

Cliff B. JonesSoftware Development: A Rigorous ApproaEtmentice-Hall, 1980.

Hans B.M. Jonkers. An introduction t@KD-K. In Martin Wirsing and Jan A.
Bergstra, editorRroceedings of the Workshop on Algebraic Methods: Theory, Tools
and ApplicationsLecture Notes in Computer Sciene®lume 394, pages 139-205.
Springer, 1989.

Bart Jacobs and Jan Rutten. A tutorial on (co)algebras and (co)induBidetin of
the European Association for Theoretical Computer Scigd2e222—-259, 1997.

Donald E. Knuth and Peter B. Bendix. Simple word problems in universal algebras.
In J. Leech, editorComputational Problems in Abstract Algebreages 263-297.
Pergamon Press, 1970.

Hélene Kirchner. Term rewriting. In Egidio Astesiano, HatsglKreowski, and
Bernd Krieg-Biickner, editorsAlgebraic Foundations of Systems Specificatabap-

ter 9, pages 273-320. Springer, 1999.

Claude Kirchner, ilene Kirchner, and JésMeseguer. Operational semantics of
OBJ-3. In Timo Lepisht and Arto Salomaa, editorBroceedings of the 15th Inter-
national Colloquium on Automata, Languages and Programinliagnperel ecture
Notes in Computer Scienoceolume 317, pages 287-301. Springer, 1988.

Jan Klop. Term rewriting systems. In Samson Abramsky, Dov Gabbay, and Tom
Maibaum, editorsiHandbook of Logic in Computer Science. Volume 2 (Background:
Computational Structurespages 1-116. Oxford University Press, 1992.

Deepak Kapur and David R. Musser. Proof by consisterfayificial Intelligence
31(2):125-157, 1987.

Heinz Kaphengst and Horst Reichel. Algebraische Algorithmentheorie. Technical
Report WIB 1, VEB Robotron, Zentruniif Forschung und Technik, Dresden, 1971.
Hans-drg Kreowski. Partial algebras flow from algebraic specifications. In
T. Ottmann, editorProceedings of the 14th International Colloquium on Automata,
Languages and Programmingarlsruhe,Lecture Notes in Computer Scienc®l-
ume 267, pages 521-530. Springer, 1987.

job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

References

KST97.

KTB91.

Las98.

Law63.
LB88.
LEWO96.
Lin03.
Lip83.

LLDOG.

LS86.

LS00.

Luo93.

Mac71.
Mac84.

MAHO06.

Mai72.

Maj77.

Mal71.

Man76.
May85.

Mei92.

Page: 543

543

Stefan Kahrs, Donald Sannella, and Andrzej Tarlecki. The definition of Extended
ML: A gentle introduction.Theoretical Computer Scienck73:445-484, 1997.

Beata Konikowska, Andrzej Tarlecki, and Andrzej Blikle. A three-valued logic for
software specification and validationFundamenta Informaticael4(4):411-453,
1991.

Stawomir Lasota. Open maps as a bridge between algebraic observational equivalence
and bisimilarity. In Francesco Parisi-Presicce, ediRecent Trends in Data Type
Specification. Selected Papers from the 12th International Workshop on Specification
of Abstract Data Typedarquinia,Lecture Notes in Computer Sciengelume 1376,
pages 285-299. Springer, 1998.

F. William Lawvere. Functorial Semantics of Algebraic TheoriesPhD thesis,
Columbia University, 1963.

Butler Lampson and Rod Burstall. Pebble, a kernel language for modules and abstract
data typesinformation and Computatiqry6(2/3):278-346, 1988.

Jacques Loeckx, Hans-Dieter Ehrich, and Markus W&pecification of Abstract
Data Types John Wiley and Sons, 1996.

Kai Lin. Machine Support for Behavioral Algebraic Specification and Verification
PhD thesis, University of California, San Diego, 2003.

Udo Lipeck. Ein algebraischer Kaliél fur einen strukturierten Entwurf von Daten-
abstraktionen PhD thesis, Universit Dortmund, 1983.

Dorel Lucanu, Yuan-Fang Li, and Jin Song Dong. Semantic Web languages—towards
an institutional perspective. In Kokichi Futatsugi, Jean-Pierre Jouannaud, and Jos
Meseguer, editorsdlgebra, Meaning and Computation: Essays Dedicated to Joseph
A. Goguen on the Occasion of His 65th Birthdagcture Notes in Computer Science
volume 4060, pages 99-123. Springer, 2006.

Joachim Lambek and Philip J. Sctritroduction to Higher-Order Categorical Logic
Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1986.
Hugo Lourenco and Ailcar Sernadas. An institution of hybrid systems. In Didier
Bert, Christine Choppy, and Peter D. Mosses, editBesent Trends in Algebraic
Development Techniques. Selected Papers from the 14th International Workshop on
Algebraic Development Techniquéshateau de Bonad,ecture Notes in Computer
Sciencevolume 1827, pages 219-236. Springer, 2000.

Zhaohui Luo. Program specification and data refinement in type tivattyematical
Structures in Computer Scien&(3):333-363, 1993.

Saunders Mac Lan€ategories for the Working Mathematicia8pringer, 1971.

David B. MacQueen. Modules for Standard ML.Pimceedings of the 1984 ACM
Conference on LISP and Functional Programmipgges 198-207, 1984.

Till Mossakowski, Serge Autexier, and Dieter Hutter. Development graphs — proof
management for structured specificatiodsurnal of Logic and Algebraic Program-

ming 67(1-2):114-145, 2006.

Tom Maibaum. The characterization of the derivation trees of context free sets of
terms as regular sets. Rroceedings of the 13th Annual IEEE Symposium on Switch-
ing and Automata Theorpages 224-230, 1972.

Mila E. Majster. Limits of the “algebraic” specification of abstract data typ&M
SIGPLAN Noticesl2(10):37-42, 1977.

Anatoly Malcev. Quasiprimitive classes of abstract algebras in the metamathematics
of algebraic systems. IMathematics of Algebraic Systems: Collected Papers, 1936-
67, number 66 in Studies in Logic and Mathematics, pages 27-31. North-Holland,
1971.

Ernest G. Maneg\lgebraic TheoriesSpringer, 1976.

Brian Mayoh. Galleries and institutions. Technical Report DAIMI PB-191, Aarhus
University, 1985.

Karl Meinke. Universal algebra in higher type3heoretical Computer Science
100:385-417, 1992.

job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

544

Mes89.

Mes92.

Mes98.

Mes09.

MG85.

MGDTO7.

MHSTO08.

Mid93.

Mil71.

Mil77.
Mil89.
Mit96.
MM84.

MMLO7.

Mog91.

Moo056.

Mos89.

Mos93.

Mos96a.

Page: 544

References

Jos Meseguer. General logics. In H.-D. Ebbinghaus, editogic Colloquium '87
Granada, pages 275-329. North-Holland, 1989.

Jos Meseguer. Conditional rewriting logic as a unified model of concurrertugo-
retical Computer Scienc®6(1):73-155, 1992.

Jos Meseguer. Membership algebra as a logical framework for equational specifica-
tion. In Francesco Parisi-Presicce, edif®ecent Trends in Data Type Specification.
Selected Papers from the 12th International Workshop on Specification of Abstract
Data TypesTarquinia,Lecture Notes in Computer Scienpgelume 1376, pages 18—

61. Springer, 1998.

Jos Meseguer. Order-sorted parameterization and induction. In Jens Palsberg, editor,
Semantics and Algebraic Specification: Essays Dedicated to Peter D. Mosses on the
Occasion of His 60th Birthday_ecture Notes in Computer Sciena®lume 5700,
pages 43-80. Springer, 2009.

Jo& Meseguer and Joseph Goguen. Initiality, induction and computability. In Mau-
rice Nivat and John C. Reynolds, editogebraic Methods in Semantjcpages
459-541. Cambridge, 1985.

Till Mossakowski, Joseph Goguera®an Diaconescu, and Andrzej Tarlecki. What

is a logic? In Jean-Yves Beziau, editbggica Universalis: Towards a General The-

ory of Logic pages 111-135. Birktuser, 2007.

Till Mossakowski, Anne Haxthausen, Donald Sannella, and Andrzej Tarlecki. CASL
— the common algebraic specification language. In Dines Bjgrner and Martin Hen-
son, editorslogics of Specification Languaggmges 241-298. Springer, 2008.

Aart Middeldorp. Modular properties of conditional term rewriting systeimgor-
mation and Computatiqri04(1):110-158, 1993.

Robin Milner. An algebraic definition of simulation between programs. Pto-
ceedings of the 2nd International Joint Conference on Artificial Intelligepages
481-489, 1971.

Robin Milner. Fully abstract models of typedcalculi. Theoretical Computer Sci-
ence 4(1):1-22, 1977.

Robin Milner. Communication and Concurrencirentice-Hall, 1989.

John C. Mitchell.Foundations of Programming LanguagedIT Press, 1996.

Bernd Mahr and Johann Makowsky. Characterizing specification languages which
admit initial semanticsTheoretical Computer Scienc#l:49-60, 1984.

Till Mossakowski, Christian Maeder, and Klaugittich. The heterogeneous tool set,
HETSs. In Orna Grumberg and Michael Huth, editoPspceedings of the 13th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems. European Joint Conferences on Theory and Practice of Software (ETAPS 2007)
Braga,Lecture Notes in Computer Scienelume 4424, pages 519-522. Springer,
2007. See alsbttp://www.informatik.uni-bremen.de/cofi/hets/

Eugenio Moggi. Notions of computation and mondafrmation and Computatlon
93:55-92, 1991.

Edward F. Moore. Gedanken-experiments on sequential machines. In Claude E.
Shannon and John McCarthy, editafginals of Mathematics Studies 34, Automata
Studiespages 129-153. Princeton University Press, 1956.

Peter D. Mosses. Unified algebras and module?rdoeedings of the 16th ACM
Symposium on Principles of Programming Languadgesstin, pages 329-343, 1989.
Peter Mosses. The use of sorts in algebraic specifications. In Michel Bidoit and Chris-
tine Choppy, editorsRecent Trends in Data Type Specification. Selected Papers from
the 8th Workshop on Specification of Abstract Data Types joint with theC8nd-

PASs Workshop Dourdan,Lecture Notes in Computer Sciena®lume 655, pages
66-91. Springer, 1993.

Till Mossakowski. Different types of arrow between logical frameworks. In Fried-
helm Meyer auf der Heide and Burkhard Monien, editétsceedings of the 23rd
International Colloguium Automata, Languages and Programmiagerbornl.ec-

ture Notes in Computer Sciena®lume 1099, pages 158-169. Springer, 1996.

job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

http://www.informatik.uni-bremen.de/cofi/hets/

References 545

Mos96b. Till Mossakowski. Representations, Hierarchies and Graphs of InstitutiofhD
thesis, Universit Bremen, 1996.

Mos00. Till Mossakowski. Specification in an arbitrary institution with symbols. In Didier
Bert, Christine Choppy, and Peter D. Mosses, editBesent Trends in Algebraic
Development Techniques. Selected Papers from the 14th International Workshop on
Algebraic Development Techniqué3hateau de Bonad,ecture Notes in Computer
Sciencevolume 1827, pages 252-270. Springer, 2000.

Mos02. Till Mossakowski. Comorphism-based Grothendieck logics. In Krzysztof Diks and
Woijciech Rytter, editors?roceedings of the 27th Symposium on Mathematical Foun-
dations of Computer Scienc@/arsaw,Lecture Notes in Computer Sciene®lume
2420, pages 593-604. Springer, 2002.

Mos03. Till Mossakowski. Foundations of heterogeneous specification. In Martin Wirsing,
Dirk Pattinson, and Rolf Hennicker, editoRecent Trends in Algebraic Development
Techniques.. Selected Papers from the 16th International Workshop on Algebraic De-
velopment TechniqueBrauenchiemseg&gecture Notes in Computer Sciengelume
2755, pages 359-375. Springer, 2003.

Mos04. Peter D. Mosses, editora€L Reference ManuaNumber 2960 in Lecture Notes in
Computer Science. Springer, 2004.

Mos05. Till Mossakowski. Heterogeneous Specification and the Heterogeneous Tool Set.
Habilitation thesis, Universitt Bremen, 2005.

MS85. David MacQueen and Donald Sannella. Completeness of proof systems for equa-
tional specifications.IEEE Transactions on Software Engineerif®E-11(5):454—

461, 1985.

MSRRO06. Till Mossakowski, Lutz Scbder, Markus Roggenbach, and Horst Reichel.
Algebraic-coalgebraic specification iroCAsL. Journal of Logic and Algebraic Pro-
gramming 67(1-2):146-197, 2006.

MSS90. Vincenzo Manca, Antonino Salibra, and Giuseppe Scollo. Equational type logic.
Theoretical Computer Sciencé7(1-2):131-159, 1990.

MSTO04. Till Mossakowski, Donald Sannella, and Andrzej Tarlecki. A simple refinement lan-
guage for CASL. In JdsFiadeiro, editorRecent Trends in Algebraic Development
Techniques.. Selected Papers from the 17th International Workshop on Algebraic De-
velopment TechniqueBarcelonalecture Notes in Computer Sciengelume 3423,
pages 162-185. Springer, 2004.

MT92. Karl Meinke and John Tucker. Universal algebra. In Samson Abramsky, Dov Gab-
bay, and Tom Maibaum, editorklandbook of Logic in Computer Science. Volume
1 (Background: Mathematical Structureglages 189-409. Oxford University Press,

1992.

MT93. V. Wiktor Marek and Mirostaw Truszchgki. Nonmonotonic Logics: Context-
Dependent Reasoninpringer, 1993.

MT94. David B. MacQueen and Mads Tofte. A semantics for higher-order functors. In

Donald Sannella, editoRroceedings of the 5th European Symposium on Program-
ming Edinburgh Lecture Notes in Computer Sciene®lume 788, pages 409-423.
Springer, 1994.

MTO09. Till Mossakowski and Andrzej Tarlecki. Heterogeneous logical environments for
distributed specifications. In Andrea Corradini and Ugo Montanari, ediResent
Trends in Algebraic Development Techniques.. Selected Papers from the 19th Interna-
tional Workshop on Algebraic Development Technig&ésa,Lecture Notes in Com-
puter Sciencevolume 5486, pages 266—289. Springer, 2009.

MTDO09. Till Mossakowski, Andrzej Tarlecki, and&®van Diaconescu. What is a logic trans-
lation? Logica Universalis3(1):95-124, 2009.

MTHM97. Robin Milner, Mads Tofte, Robert Harper, and David MacQue€he Definition of
Standard ML (RevisedMIT Press, 1997.

MTP97. Till Mossakowski, Andrzej Tarlecki, and Wiestaw Pawtowski. Combining and repre-
senting logical systems. In Eugenio Moggi and Giuseppe Rosolini, edtooseed-
ings of the 7th International Conference on Category Theory and Computer Science

Page: 545 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

546

MTP98.

MTW88.

Mus80.

MW098.

Nel91.
Nip86.

NO88.

Nou81.

Oka98.

ONS93.

Ore83.

Pad85.

Pad99.

Pau87.
Pau96.

Paw96.

Page: 546

References

Santa Margherita Ligurd,ecture Notes in Computer Sciene®lume 1290, pages
177-196. Springer, 1997.

Till Mossakowski, Andrzej Tarlecki, and Wiestaw Pawtowski. Combining and rep-
resenting logical systems using model-theoretic parchments. In Francesco Parisi-
Presicce, editoiRecent Trends in Data Type Specification. Selected Papers from the
12th International Workshop on Specification of Abstract Data Typasjuinia,Lec-
ture Notes in Computer Scienamlume 1376, pages 349-364. Springer, 1998.
Bernhard Mller, Andrzej Tarlecki, and Martin Wirsing. Algebraic specifications of
reachable higher-order algebras. In Donald Sannella and Andrzej Tarlecki, editors,
Recent Trends in Data Type Specification. Selected Papers from the 5th Workshop on
Specification of Abstract Data TypeSullane,Lecture Notes in Computer Science
volume 332, pages 154-169. Springer, 1988.

David Musser. On proving inductive properties of abstract data typEsodeedings
of the 7th ACM Symposium on Principles of Programming Langydges Vegas,
pages 154-162, 1980.

Alfio Martini and Uwe Wolter. A single perspective on arrows between institutions.
In Armando Haeberer, editdProceedings of the 7th International Conference on Al-
gebraic Methodology and Software Technologhanaus]ecture Notes in Computer
Sciencevolume 1548, pages 486-501. Springer, 1998.

Greg Nelson, editoBystems Programming in Modula-Brentice-Hall, 1991.

Tobias Nipkow. Non-deterministic data types: Models and implementatidota
Informatica 22(6):629-661, 1986.

Pilar Nivela and Fernando Orejas. Initial behaviour semantics for algebraic speci-
fications. In Donald Sannella and Andrzej Tarlecki, edit®scent Trends in Data
Type Specification. Selected Papers from the 5th Workshop on Specification of Ab-
stract Data TypesGullane,Lecture Notes in Computer Sciene®lume 332, pages
184-207. Springer, 1988.

Farshid Nourani. On induction for programming logic: Syntax, semantics, and induc-
tive closure.Bulletin of the European Association for Theoretical Computer Science
13:51-64, 1981.

Chris Okasaki.Purely Functional Data Structures Cambridge University Press,
1998.

Fernando Orejas, Marisa Navarro, and AfmacBez. Implementation and behavioural
equivalence: A survey. In Michel Bidoit and Christine Choppy, editRexent Trends
in Data Type Specification. Selected Papers from the 8th Workshop on Specification of
Abstract Data Types joint with the 3@ompPAssWorkshopDourdan Lecture Notes
in Computer Sciencerolume 655, pages 93-125. Springer, 1993.

Fernando Orejas. Characterizing composability of abstract implementations. In
Marek Karpinski, editorProceedings of the 1983 International Conference on Foun-
dations of Computation Thearorgholm,Lecture Notes in Computer Scieneel-
ume 158, pages 335—-346. Springer, 1983.

Peter Padawitz. Parameter preserving data type specifications. In Hartmut Ehrig,
Christiane Floyd, Maurice Nivat, and James Thatcher, ediiA8®,SOFT'85: Pro-
ceedings of the International Joint Conference on Theory and Practice of Software
Development. Volume 2: Colloquium on Software Engineegeglin, Lecture Notes
in Computer Sciencerolume 186, pages 323-341. Springer, 1985.

Peter Padawitz. Proof in flat specifications. In Egidio Astesiano, iBegn&i&owski,
and Bernd Krieg-Biickner, editorsAlgebraic Foundations of Systems Specification
chapter 10, pages 321-384. Springer, 1999.

Laurence Paulsobogic and Computation: Interactive Proof with Cambridge LCF
Cambridge University Press, 1987.

Laurence PaulsoML for the Working ProgrammerCambridge University Press,
second edition, 1996.

Wiestaw Pawtowski. Context institutions. In Magne Haveraaen, Olaf Owe, and Ole-
Johan Dabhl, editorgRecent Trends in Data Type Specification. Selected Papers from

job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

References 547

the 11th Workshop on Specification of Abstract Data Tyfeso, Lecture Notes in
Computer Science&olume 1130, pages 436—457. Springer, 1996.

Pet10. Marius PetriaGeneric Refinements for Behavioural Specificatid?tsD thesis, Uni-
versity of Edinburgh, School of Informatics, 2010.

Pey03. Simon Peyton Jones, editdaskell 98 Language and Libraries: The Revised Report
Cambridge University Press, 2003.

Pho92. Wesley Phoa. An introduction to fibrations, topos theory, the effective topos and

modest sets. Technical Report ECS-LFCS-92-208, LFCS, Department of Computer
Science, University of Edinburgh, 1992.

Pie9l. Benjamin C. PierceBasic Category Theory for Computer ScientistdIT Press,
1991.

Plo77. Gordon D. Plotkin. LCF considered as a programming languBgeoretical Com-
puter Sciences(3):223-255, 1977.

P0i86. Axel Poigl. On specifications, theories, and models with higher tylpdsrmation
and Contro| 68(1-3):1-46, 1986.

Po0i88. Axel Poiglk. Foundations are rich institutions, but institutions are poor foundations.

In Hartmut Ehrig, Horst Herrlich, Hans3dy Kreowski, and Gerhard Preuf3, editors,
Proceedings of the International Workshop on Categorical Methods in Computer Sci-
ence with Aspects from Topoloderlin, Lecture Notes in Computer Sciengelume

393, pages 82-101. Springer, 1988.

P0i90. Axel Poige. Parametrization for order-sorted algebraic specificatidournal of
Computer and System Sciencé3:229-268, 1990.
P0i92. Axel Poige. Basic category theory. In Samson Abramsky, Dov Gabbay, and Tom

Maibaum, editorstHandbook of Logic in Computer Science. Volume 1 (Background:
Mathematical Structurespages 413-640. Oxford University Press, 1992.

Pos47. Emil Post. Recursive unsolvability of a problem of Thieeirnal of Symbolic Logic
12:1-11, 1947.
PS83. Helmuth Partsch and Ralf Steiidpgen. Program transformation system&CM

Computing Survey45(3):199-236, 1983.
PSRO09. Andrei Popescu, Traian Florin S&tbg, and Grigore Rosu. A semantic approach to
interpolation.Theoretical Computer Scienc$10(12-13):1109-1128, 2009.

QG93. Xiaolei Qian and Allen Goldberg. Referential opacity in nondeterministic data re-
finement. ACM Letters on Programming Languages and Syst&@tis-4):233-241,
1993.

Qia93. Zhenyu Qian. An algebraic semantics of higher-order types with subtyjets.

Informatica 30(6):569—-607, 1993.

RAC99. Gianna Reggio, Egidio Astesiano, and Christine ChoppysLELTL: a CASL ex-
tension for dynamic systems — summary. Technical Report DISI-TR-99-34, DISI,
Universit di Genova, 1999.

RB88. David Rydeheard and Rod Burstallomputational Category Thearyrentice Hall
International Series in Computer Science. Prentice Hall, 1988.
Rei80. Horst Reichel. Initially-restricting algebraic theories. In Piotr Déskii editor,

Proceedings of the 9th Symposium on Mathematical Foundations of Computer Sci-
ence Lecture Notes in Computer Sciengelume 88, pages 504-514, Rydzyna, 1980.
Springer.

Rei81. Horst Reichel. Behavioural equivalence — a unifying concept for initial and final
specification methods. IRroceedings of the 3rd Hungarian Computer Science Con-
ference pages 27-39, 1981.

Rei85. Horst Reichel. Behavioural validity of equations in abstract data typdoteed-
ings of the Vienna Conference on Contributions to General Alggiages 301-324.
Teubner-Verlag, 1985.

Rei87. Horst Reichellnitial Computability, Algebraic Specifications, and Partial Algehras
Oxford University Press, 1987.

Page: 547 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

548

RG98.

RGOO.

Rod91.
Rog06.
Ros94.
Ros00.

RRSO00.

RS63.

Rus98.

Rut00.

San82.

SB83.

Sch8é.

Sch87.

Sch9o.

Sch92.

Sco76.
Sco04.

SCS94.

Sel72.

Page: 548

References

Grigore Rosu and Joseph A. Goguen. Hidden congruent deduction. In Ricardo Ca-
ferra and Gernot Salzer, editoRroceedings of the 1998 Workshop on First-Order
Theorem Proving Vienna, Lecture Notes in Artificial Intelligencevolume 1761,
pages 251-266. Springer, 1998.

Grigore Rosu and Joseph A. Goguen. On equational Craig interpolddiomal of
Universal Computer Scienc(1):194-200, 2000.

Pieter Hendrik Rodenburg. A simple algebraic proof of the equational interpolation
theorem.Algebra Universalis28:48-51, 1991.

Markus Roggenbach.s€CAsL — a new integration of process algebra and alge-
braic specificationTheoretical Computer Sciencgs4(1):42-71, 2006.

Grigore Rosu. The institution of order-sorted equational Id&idetin of the Euro-
pean Association for Theoretical Computer Sciem@250-255, 1994.

Grigore RosuHidden Logic PhD thesis, University of California at San Diego,
2000.

Sergei Romanenko, Claudio Russo, and Peter Sestoft. Moscow ML owner’s manual.
Technical report, Royal Veterinary and Agricultural University, Copenhagen, 2000.
Available fromhttp://www.itu.dk/people/sestoft/mosmli/manual.
pdf |

Helena Rasiowa and Roman Sikorglie Mathematics of Metamathematidéum-
ber 41 in Monografie Matematyczne. Polish Scientific Publishers, 1963.

Claudio RussoTypes for Modules PhD thesis, University of Edinburgh, Depart-
ment of Computer Science, 1998. Also Electronic Notes in Theoretical Computer
Science60, 2003.

Jan J.M.M. Rutten. Universal coalgebra: A theory of systdimsoretical Computer
Science249(1):3-80, 2000.

Donald SannellaSemantics, Implementation and Pragmatics of Clear, a Program
Specification LanguagePhD thesis, University of Edinburgh, Department of Com-
puter Science, 1982.

Donald Sannella and Rod Burstall. Structured theories in LCF. In Giorgio Ausiello
and Marco Protasi, editor®roceedings of the 8th Colloquium on Trees in Algebra
and ProgrammingL’Aquila, Lecture Notes in Computer Sciengelume 159, pages
377-391. Springer, 1983.

David SchmidDenotational Semantics: A Methodology for Language Development
Allyn and Bacon, 1986.

Oliver SchoettData Abstraction and the Correctness of Modular Prograr®hD
thesis, University of Edinburgh, Department of Computer Science, 1987.

Oliver Schoett. Behavioural correctness of data represent&@mance of Computer
Programming 14(1):43-57, 1990.

Oliver Schoett. Two impossibility theorems on behaviour specification of abstract
data typesActa Informatica 29(6/7):595-621, 1992.

Dana Scott. Data types as lattic®®\M Journal of Computing(3):522-587, 1976.

Giuseppe Scollo. An institution isomorphism for planar graph colouring. In Rudolf
Berghammer, Bernhard ®er, and Georg Struth, editorRelational and Kleene-
Algebraic Methods in Computer Science. Selected Papers from the 7th International
Seminar on Relational Methods in Computer Science and 2nd International Workshop
on Applications of Kleene AlgebrBad Malentel ecture Notes in Computer Science
volume 3051, pages 252-264. Springer, 2004.

Anficar Sernadas, Jésrelix Costa, and Cristina Sernadas. An institution of ob-
ject behaviour. In Hartmut Ehrig and Fernando Orejas, edif®esent Trends in
Data Type Specification. Selected Papers from the 9th Workshop on Specification of
Abstract Data Types joint with the 4@ompPAss Workshop Caldes de Malavella,
Lecture Notes in Computer Sciengelume 785, pages 337—350. Springer, 1994.

Alan Selman. Completeness of calculi for axiomatically defined classes of algebras.
Algebra Universalis2:20-32, 1972.

job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

http://www.itu.dk/people/sestoft/mosml/manual.pdf
http://www.itu.dk/people/sestoft/mosml/manual.pdf

References 549

SHOO. Christopher A. Stone and Robert Harper. Deciding type equivalence in a language
with singleton kinds. IrProceedings of the 27th ACM Symposium on Principles of
Programming Language8oston, pages 214—-227, 2000.

Sha08. Stewart Shapiro. Classical logic. In Edward N. Zalta, edifbe Stan-
ford Encyclopedia of PhilosophyCSLI, Stanford University, fall 2008 edi-
tion, 2008. Available fromhttp://plato.stanford.edu/archives/
fall2008/entries/logic-classical/

SMO09. Lutz Schoder and Till Mossakowski. KWSCAsSL: Integrated higher-order specifica-
tion and program developmeniTheoretical Computer Sciencé10(12-13):1217—
1260, 2009.

Smig3. Douglas R. Smith. Constructing specification morphistosrnal of Symbolic Com-
putation 15(5/6):571-606, 1993.

Smi06. Douglas R. Smith. Composition by colimit and formal software development. In Ko-

kichi Futatsugi, Jean-Pierre Jouannaud, ané ddsseguer, editorglgebra, Mean-
ing, and Computation, Essays Dedicated to Joseph A. Goguen on the Occasion of His
65th Birthday Lecture Notes in Computer Sciena®lume 4060, pages 317-332.
Springer, 2006.

SMLO5. Lutz Schoder, Till Mossakowski, and Christophiith. Type class polymorphism
in an institutional framework. In JésFiadeiro, editorRecent Trends in Algebraic
Development Techniques.. Selected Papers from the 17th International Workshop on
Algebraic Development Technigué&arcelonalecture Notes in Computer Science
volume 3423, pages 234-248. Springer, 2005.

Smo86. Gert Smolka. Order-sorted Horn logic: Semantics and deduction. Technical Report
SR-86-17, Universit Kaiserslautern, Fachbereich Informatik, 1986.

SMT*05. Lutz Schéder, Till Mossakowski, Andrzej Tarlecki, Bartek Klin, and Piotr Hoffman.
Amalgamation in the semantics oAGL. Theoretical Computer Scienc231(1):215—

247, 2005.

Spi92. J. Michael SpiveyThe Z Notation: A Reference Manu#rentice Hall International
Series in Computer Science, second edition, 1992.

SS93. Antonino Salibra and Guiseppe Scollo. A soft stairway to institutions. In Michel

Bidoit and Christine Choppy, editorRecent Trends in Data Type Specification. Se-
lected Papers from the 8th Workshop on Specification of Abstract Data Types joint
with the 3rdCompAssWorkshopDourdan Lecture Notes in Computer Sciengel-

ume 655, pages 310-329. Springer, 1993.

SS96. Antonino Salibra and Giuseppe Scollo. Interpolation and compactness in categories
of pre-institutions. Mathematical Structures in Computer Scien6é¢€3):261-286,
1996.

SST92. Donald Sannella, Stefan Sokotowski, and Andrzej Tarlecki. Toward formal devel-

opment of programs from algebraic specifications: Parameterisation revigittd.
Informatica 29(8):689-736, 1992.

ST85. Donald Sannella and Andrzej Tarlecki. Program specification and development in
Standard ML. InProceedings of the 12th ACM Symposium on Principles of Pro-
gramming LanguageNew Orleans, pages 67-77, 1985.

ST86. Donald Sannella and Andrzej Tarlecki. Extended ML: An institution-independent
framework for formal program development. In David H. Pitt, Samson Abramsky,
Axel Poigre, and David E. Rydeheard, editoPspceedings of the Tutorial and Work-
shop on Category Theory and Computer Programm(Bgildford, Lecture Notes in
Computer Scienga&rolume 240, pages 364—389. Springer, 1986.

ST87. Donald Sannella and Andrzej Tarlecki. On observational equivalence and algebraic
specification.Journal of Computer and System Scien@&s150-178, 1987.

ST88a. Donald Sannella and Andrzej Tarlecki. Specifications in an arbitrary institirion.
formation and Computatiqry6(2/3):165-210, 1988.

ST88b. Donald Sannella and Andrzej Tarlecki. Toward formal development of programs from
algebraic specifications: Implementations revisitédta Informatica 25:233-281,
1988.

Page: 549 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

http://plato.stanford.edu/archives/fall2008/entries/logic-classical/
http://plato.stanford.edu/archives/fall2008/entries/logic-classical/

550

ST89.

ST97.

STOA4.
STO6.

STO8.

Str67.

SU06.

SW82.

SW83.

SW909.

Tar85.

Tar86a.

Tar86b.

Tar87.

Tar96.

Tar99.

Page: 550

References

Donald Sannella and Andrzej Tarlecki. Toward formal development of ML programs:

Foundations and methodology. In Jose@dDand Fernando Orejas, editof#P-
SOFT'89: Proceedings of the International Joint Conference on Theory and Practice
of Software Development. Volume 2: Advanced Seminar on Foundations of Innovative
Software Development Il and Colloquium on Current Issues in Programming Lan-
guagesBarcelonalecture Notes in Computer Sciengelume 352, pages 375-389.
Springer, 1989.

Donald Sannella and Andrzej Tarlecki. Essential concepts of algebraic specification
and program developmerftformal Aspects of Computing:229-269, 1997.

Donald Sannella and Andrzej Tarlecki, editora.sCsemantics. 1fiMos04]. 2004.

Donald Sannella and Andrzej Tarlecki. Horizontal composability revisited. In Ko-
kichi Futatsugi, Jean-Pierre Jouannaud, ané dsseguer, editorglgebra, Mean-
ing and Computation: Essays Dedicated to Joseph A. Goguen on the Occasion of His
65th Birthday Lecture Notes in Computer Sciena®lume 4060, pages 296—316.
Springer, 2006.

Donald Sannella and Andrzej Tarlecki. Observability concepts in abstract data
type specification, 30 years later. In Pierpaolo Degano, Rocco de Nicola, and Jos
Meseguer, editor€;oncurrency, Graphs and Models: Essays Dedicated to Ugo Mon-
tanari on the Occasion of his 65th Birthdalyecture Notes in Computer Science.
Springer, 2008.

Christopher Strachey. Fundamental concepts in programming languad¢sTOn
Summer School in Programming, Copenhage®67. Also in:Higher-Order and
Symbolic Computatioh3(1-2):11-49, 2000.

Morten H. Sgrensen and Pawet Urzyczyectures on the Curry-Howard Isomor-
phism Number 149 in Studies in Logic and the Foundations of Mathematics. Elsevier
Science, 2006.

Donald Sannella and Martin Wirsing. Implementation of parameterised specifica-
tions. In Mogens Nielsen and Erik Meineche Schmidt, editBrsceeding of the
9th International Colloguium on Automata, Languages and Programnfaghus,
Lecture Notes in Computer Sciengelume 140, pages 473-488. Springer, 1982.
Donald Sannella and Martin Wirsing. A kernel language for algebraic specification
and implementation. In Marek Karpinski, editéttoceedings of the 1983 Interna-
tional Conference on Foundations of Computation TheBgrgholm,Lecture Notes
in Computer Sciencevolume 158, pages 413-427. Springer, 1983.

Donald Sannella and Martin Wirsing. Specification languages. In Egidio Astesiano,
Hans-&rg Kreowski, and Bernd Krieg-Bickner, editorsAlgebraic Foundations of
Systems Specificatipchapter 8, pages 243-272. Springer, 1999.

Andrzej Tarlecki. On the existence of free models in abstract algebraic institutions.
Theoretical Computer Sciencg7(3):269-304, 1985.

Andrzej Tarlecki. Bits and pieces of the theory of institutions. In David H. Pitt,
Samson Abramsky, Axel Poig@nand David E. Rydeheard, editoPspceedings of the
Tutorial and Workshop on Category Theory and Computer Programn@addford,
Lecture Notes in Computer Sciengelume 240, pages 334—360. Springer, 1986.
Andrzej Tarlecki. Quasi-varieties in abstract algebraic institutidmstnal of Com-
puter and System Scien¢88(3):333-360, 1986.

Andrzej Tarlecki. Institution representation. Unpublished note, Dept. of Computer
Science, University of Edinburgh, 1987.

Andrzej Tarlecki. Moving between logical systems. In Magne Haveraaen, Olaf Owe,
and Ole-Johan Dahl, editorRecent Trends in Data Type Specification. Selected Pa-
pers from the 11th Workshop on Specification of Abstract Data T¥psde, Lecture
Notes in Computer Scienceolume 1130, pages 478-502. Springer, 1996.

Andrzej Tarlecki. Institutions: An abstract framework for formal specification. In
Egidio Astesiano, Hansadg Kreowski, and Bernd Krieg-Bickner, editorsAlgebraic
Foundations of Systems Specificatiohapter 4, pages 105-130. Springer, 1999.

job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

References 551

Tar00. Andrzej Tarlecki. Towards heterogeneous specifications. In Dov Gabbay and Maarten
de Rijke, editorsFrontiers of Combining Systems Qtudies in Logic and Computa-
tion, pages 337-360. Research Studies Press, 2000.

TBGI1. Andrzej Tarlecki, Rod M. Burstall, and Joseph A. Goguen. Some fundamental alge-
braic tools for the semantics of computation. Part 3: Indexed categditesretical
Computer Scien¢®1(2):239-264, 1991.

Ter03. TereseTerm Rewriting System@ambridge Tracts in Theoretical Computer Scignce
volume 55. Cambridge University Press, 2003.

Tho89. Simon Thompson. A logic for MirandBormal Aspects of Computing(4):339-365,

1989.

T™M87. Wiadystaw M. Turski and Thomas S.E. Maibau@pecification of Computer Pro-
grams Addison-Wesley, 1987.

Tra93. Will Tracz. Parametrized programming in LILEANNA. Rroceedings of the 1993

ACM/SIGAPP Symposium on Applied Computingianapolis, pages 77-86, 1993.

TWW82. James Thatcher, Eric Wagner, and Jesse Wright. Data type specification: Parameteri-
zation and the power of specification technigu&SM Transactions on Programming
Languages and Systena44):711-732, 1982.

Vra88. Jos L.M. Vrancken. The algebraic specification of semi-computable data types. In
Donald Sannella and Andrzej Tarlecki, editdRgcent Trends in Data Type Specifica-
tion. Selected Papers from the 5th Workshop on Specification of Abstract Data Types
Gullane,Lecture Notes in Computer Scieneelume 332, pages 249-259. Springer,
1988.

Wad89. Philip Wadler. Theorems for free! Rioceedings of the 4th International ACM Con-
ference on Functional Programming Languages and Computer Architettomelon,
pages 347-359, 1989.

Wan79. Mitchell Wand. Final algebra semantics and data type extenslonmal of Com-
puter and System Sciencé9:27-44, 1979.

Wan82. Mitchell Wand. Specifications, models, and implementations of data abstractions.
Theoretical Computer Scienc20(1):3-32, 1982.

WBS82. Martin Wirsing and Manfred Broy. An analysis of semantic models for algebraic

specifications. In Manfred Broy and Gunther Schmidt, editdteoretical Foun-
dations of Programming Methodology: Lecture Notes of an International Summer
School, Marktoberdorf 198 pages 351-416. Reidel, 1982.

WB89. Martin Wirsing and Manfred Broy. A modular framework for specification and imple-
mentation. In Josepi@z and Fernando Orejas, editof8PSOFT'89: Proceedings of
the International Joint Conference on Theory and Practice of Software Development.
Volume 1: Advanced Seminar on Foundations of Innovative Software Development |
and Colloquium on Trees in Algebra and ProgrammiBgrcelonal_ecture Notes in
Computer Science&olume 351, pages 42—-73. Springer, 1989.

WES8?7. Eric G. Wagner and Hartmut Ehrig. Canonical constraints for parameterized data
types. Theoretical Computer Science0:323-349, 1987.

Wec92. Wolfgang WechletJniversal Algebra for Computer ScientisBATCS Monographs
on Theoretical Computer Sciena®lume 25. Springer, 1992.

Wik. Wikipedia. Hash table. Available froihttp://en.wikipedia.org/wiki/
Hash table

Wir82. Martin Wirsing. Structured algebraic specifications.Phoceedings of the AFCET
Symposium on Mathematics for Computer ScigReeis, pages 93—-107, 1982.

Wir86. Martin Wirsing. Structured algebraic specifications: A kernel languageoretical
Computer Scien¢é?2(2):123-249, 1986.

Wir90. Martin Wirsing. Algebraic specification. In Jan van Leeuwen, ediandbook

of Theoretical Computer Science. Volume B (Formal Models and Semapscgs
675-788. North-Holland and MIT Press, 1990.

Wir93. Martin Wirsing. Structured specifications: Syntax, semantics and proof calculus. In
Friedrich L. Bauer, Wilfried Brauer, and Helmut Schwichtenberg, editargjc and

Page: 551 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

http://en.wikipedia.org/wiki/Hash_table
http://en.wikipedia.org/wiki/Hash_table

552 References

Algebra of Specification: Proceedings of the NATO Advanced Study Institute, Mark-
toberdorf 1991 pages 411-442. Springer, 1993.

WM97. Michal Walicki and Sigurd Meldal. Algebraic approches to nondeterminism: An
overview. ACM Computing Survey29(1):30-81, 1997.

Zil74. Steven Zilles. Abstract specification of data types. Technical Report 119, Computa-
tion Structures Group, Massachusetts Institute of Technology, 1974.
Zuc99. Elena Zucca. From static to dynamic abstract data-types: An institution transforma-

tion. Theoretical Computer Scienc216(1-2):109-157, 1999.

Page: 552 job: root macro: svmono.cls date/time: 29-Sep-2010/17:47

	Universal algebra
	Many-sorted sets
	Signatures and algebras
	Homomorphisms and congruences
	Term algebras
	Changing signatures
	Signature morphisms
	Derived signature morphisms

	Bibliographical remarks

	References

