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Chapter 2
Simple equational specifications

A specification is an unambiguous description of a signatiiend a class of-
algebras. Because we model programs as algebras, a specification amounts to a
characterisation of a class of programs. Each of these programs is regarded as a
correct realisation of the specification.

Given a signatur& (which, if finite, may be presented by simply listing its sort
names and its operation nhames with their arities and result sorts), there are two
basic techniques that may be used for describing a claksabdfebras. The first is
to simply give a list of all the algebras in the class. Unfortunately, we are almost
always interested imfinite classes of algebras, where this technique is useless. The
second is to describe the functional behaviour of the algebras in the class by listing
the properties (axioms) they are to satisfy. This is the fundamental specification
technique used in work on algebraic specification and the one that will be studied in
this chapter. The simplest and most common case is the one in which properties are
expressed in the form of universally quantified equations; in most of this chapter,
we restrict attention to this case. Sectjon 2.7 indicates other forms of axioms that
may be of use, along with some possible variations on the definitions of Chépter 1,
and further possibilities will be discussed in Chapfer 4. Since most of the results in
this chapter are fairly standard and proofs are readily available in the literature, most
proofs are left as exercises for the reader.

Chapter§ b anid 8 will cover additional techniques for describing classes of alge-
bras. All of these involve taking a class of algebras and performing a simple opera-
tion to obtain another class of algebras, often over a different signature. Using such
methods, complex specifications of classes of complex algebras may be built from
small and easily understood units.

2.1 Equations

Any given signature characterises the class of algebras over that signature. Although
this fixes the names of sorts and operations, it is an exceedingly limited form of de-
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42 2 Simple equational specifications

scription since each such class contains a wide diversity of different algebras. Any
two algebras taken from such a class may have carrier sets of different cardinalities
and containing different elements; even if both algebras happen to have “match-
ing” carrier sets, the results produced by applying operations may differ. For most
applications it is necessary to focus on a subclass of algebras, obtained by impos-
ing axiomswhich serve as constraints on the permitted behaviour of operations.
One particularly simple form of axioms are equations, which constrain behaviour
by asserting that the value of two given terms i@ sameEquations have limited
expressive power, but this disadvantage is to some extent balanced by the simplicity
and convenience of reasoning in equational logic (see Sefigns 2.4 and 2.6).
Variables in equations will be taken from a fixed but arbitrary infinite&etWe
require 2" to be closed under finite disjoint union: {X;)i¢ is finite andX; C 2~
foralli eI, thend(X)iel € 2. We use variable names likgy, zin examples, and
so we assume that these are all4n Throughout this section, l&t = (S Q) be a
signature.

Definition 2.1.1 (Equation).A X-equationvXet =t’ consists of:

¢ afiniteS-sorted seX (of variables), such that; C 2 for allse€ S and
e two Z-termst,t’ € |Tx(X)|s for some sors€ S,

A X-equationv@et =t is called aground €-)equation a

Notation. The explicit quantification oveX in aZ-equationvX.t =t is essential,

as will become clear in Secti¢n 2.4. In spite of this fact, it is common in practice to
leave quantification implicit, writing =t’ in place ofVFV(t) UFV(t')«t =t’, and

we will follow this convention in examples when no confusion is possible. O

Definition 2.1.2 (Satisfaction).A X-algebraA satisfies(or, is a model of a X-
equationvX.t =t’, written A =5 VX« t =1/, if for every (S-sorted) functiorv: X —
A, ta(V) = ta(v).

A satisfies (or, is a model of) a s@tof X-equations, writte\ =5 @, if A=y @
for every equationp € ®. A classe’ of X-algebras satisfies®-equationy, written
o =x o, if Al=x ¢ for everyA € 7. Finally, a classe of X-algebras satisfies a
set® of X-equations, written# =5 @, if A=y P for everyA € o/ (equivalently,
if o =5 @ foreveryp € @, i.e. A=y ¢ for everyAc o/ andg € ). O

The definition of satisfaction provides the syntax of equations with the obvious se-
mantics: an algebrA satisfies an equationX « t = t’ if for any given assignment of
values in|A| to the variables iX, the termg andt’ evaluate irA to the same value.

Notation. We sometimes writé= in place of=y whenZX is obvious. O

Exercise 2.1.3Recall X1 andAl from Examplg 1.2]4. Give somEl-equations
(both ground and non-ground) that are satisfieddy Give someX1-equations
(both ground and non-ground) that anet satisfied byAl. O
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2.1 Equations 43

Exercise 2.1.41f X+t =1"is aX-equation an&X C X’ (andX, C Z foralls€ S),

it follows from Definition[2.1.] thatvX’«t = t’ is also aX-equation. Show that
Ay VXet =t implies thatA =5 YX'« t =1'. Give a counterexample showing that
the converse doe®ot hold. (HINT: ConsiderXs = @ and|Ajs = @ for somes € S)
Show that itdoeshold if X has only one sort. ad

Exercise 2.1.5Show that surjectiv&-homomorphisms preserve satisfactiortef
equations: ih: A— Bis a surjectivee-homomorphism theA =5 ¢ impliesB =5 ¢

for any Z-equationg. Show that injectivec-homomorphisms reflect satisfaction of
X-equations: ifh:A — B is an injectiveX-homomorphism theB =5 ¢ implies

A =5 ¢ for any X-equationg. Conclude thaE-isomorphisms preserve and reflect
satisfaction o -equations. O

Exercise 2.1.6Give an alternative definition & |=x VX« t =1’ via the satisfaction

of t =t’ viewed as a ground equation over an enlarged signatune.T(HDefi-
nition[2.1.2 involves quantification over valuations< — |A|. Consider how this
might be replaced by quantification over algebras having a signature obtained from
X by adding a constant for each variablexir) O

It is worth noting in passing the use of the word “class” above to refer to an arbi-
trary collection ofZ-algebras. We use this term since the collectio® @flgebras is
too “large” to form a set. Since the set/class distinction is peripheral to our concerns
here, we will not belabour it, except to mention that it would be possible to avoid the
issue entirely by restricting attention to algebras in which all carrier sets are subsets
of some large but fixed universal set of values.

A signature morphisng: X — X' gives rise to a translation &f-equations ta&’-
equations. This is essentially a simple matter of applying the translation on terms
induced byo to both sides of the equation.

Definition 2.1.7 (Equation translation). Let VXe«t =t’ be aX-equation, and let
0:X — X' be a signature morphism. Recall from Definitjon 1.5.10 that we then
haves(t),o(t') € [Ty (X')| where

Xy= |H X  foreachs €S.
o(s)—8

The translation of VXet =t' by o is then theX’-equationc(¥X«t =t') =
VX'e o(t) = o(t’'). (The fact that2" is closed under finite disjoint union guaran-
tees that this is indeedX{-equation.) O

An important result which brings together some of the main definitions above is the
following:

Lemma 2.1.8 (Satisfaction Lemmal[[BG80))If 6:X — X' is a signature mor-
phism,¢ is a Z-equation and Ais a X’-algebra, then A=y o () iff A"G Ex 0.
O
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44 2 Simple equational specifications

Wheng is a groundX-equation, it is easy to see that this follows directly from the
property established in Exercise 1.5.12. Whers injective (on both sort and op-
eration names), it seems intuitively clear that the Satisfaction Lemma should hold,
since the domain of quantification of variables is unchanged, the only difference
betweenp ando(¢) is the names used for sorts and operations, and the only differ-
ence betweeA andA"g (apart from sort/operation names) is thamight provide
interpretations for sort and operation names which do not appeafgn and so
cannot affect its satisfaction. Whenis non-injective the Satisfaction Lemma still
holds, but this is less intuitively obvious (particularly whenis non-injective on

sort names).

Exercise 2.1.9Take a signature morphisat X — X’ which is non-injective on sort
and operation names2aequation involving the sort and operation names for which
o is not injective, and &’-algebra, and check that the Satisfaction Lemma holds in
this case. O

Exercise 2.1.10Prove the Satisfaction Lemma, using Exer€ise 1]5.12. g

Exercise 2.1.11Define the translation of A-equation by a derived signature mor-
phismé: X — X/, and convince yourself that the Satisfaction Lemma also holds for
this case. O

The Satisfaction Lemma says that the translations of syntax (terms, equations) and
semantics (algebras) induced by signature morphisms are coherent with the defini-
tion of satisfaction. Said another way, the manner in which satisfaction of equations
by algebras varies according to the signature at hand fits exactly with these transla-
tions. Further discussion of the property embodied in the Satisfaction Lemma may
be found in Section 411.

2.2 Flat specifications

A signature together with a set of equations over that signature constitutes a simple
form of specification. We refer to theseftat (meaningunstructured specifications
in order to distinguish them from th&ructuredspecifications to be introduced in
Chaptef b, formed from simpler specifications using specification-building opera-
tions. As we shall see later, it is possible in some (but not all) cases to “flatten”
a structured specification to yield a flat specification describing the same class of
algebras.

Throughout this section, 1ét be a signature.

Definition 2.2.1 (Presentation) A presentatior{(also known as #at specificatioh
is a pair(Z, @) where® is a set off-equations (called thaxiomsof (X, ®)). A
presentatiofX, @) is sometimes referred to asapresentation O

The term “presentation” is chosen to emphasize the syntactic nature of the concept.
The idea is that a presentatialenotes(or presenty a semantic object which is
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2.2 Flat specifications 45

inconvenient to describe directly. A reasonable objection to the definition above is
that it fails to include restrictions to ensure that presentations are truly syntactic
objects, namely thaX and @ arefinite, or at least effectively presentable in some
other sense (e.g. recursive or recursively enumerable). Although it would be possible
to impose such arestriction, we refrain from doing so in order to avoid placing undue
emphasis on issues of this kind.

Definition 2.2.2 (Model of a presentation) A modelof a presentatiofX, @) is a
X-algebraA such thai =y @. Mod[(X, ®)] is the class of all models ¢E, ®). O

Taking (X, @) to denote the semantic objédbd[(X, ®)] is sometimes called taking

its loose semanticsThe word “loose” here refers to the fact that this is not always
(in fact, hardly ever) an isomorphism class of algeba® € Mod[(Z, )] does
notimply thatA = B. In Sectiorf 2.5 we will consider the so-calliitial semantics

of presentations in which a further constraint is imposed on the models of a pre-
sentation, forcing every presentation to denote an isomorphism class of algebras.

Example 2.2.3.Let BooL = (¥BooL, ®BooL) be the presentation bel@v.

specBoor = sorts bool
ops true:bool
false bool
- __:bool— bool
__A__:boolx bool — bool
__=__:bool x bool— bool
Vp, g: bool
« —true = false
« —false= true
o« pPAtrue=p
« pA—-p=Tfalse
s p=q=-(pA—0)

DefineXBootv-algebrasAl, A2 andA3 as follows:

1 Here and in the sequel we follow the notation ok<L and itemize axioms in specifications,
marking them withe and introducing universal quantification over the variables only once for the
rest of the list of axioms. Note though that it may be important to keep some axioms outside of the
scope of quantification over some variables, see Exgrcisg 2.1.4.
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46 2 Simple equational specifications

|AL|bool = {*} |A2]bool = {d, O, &} |A3|bool = {tt,ff }
truea; = * truen, = & trueaz = tt
falsgy = falsgy, = © falsey; = ff
—AL = {x %} a2 ={d— O, —a3 = {tt —ff,
Q= &, ff — tt}
A— A}
AAL* Apz|de| Q| Anz|tt|ff
* % & |(HOCO tt o |tt|ff
VIRIVIIVIIV] ff |ff|ff
& 400
=a1l* =p||0|d = a3 tt|ff
N & (SO tt|tt|ff
Q||| ff |ttt
A (SAS

Each of these algebras is a modelB®bor. (NOTE: Reference will be made to
BooL and to its model#\1, A2 andA3 in later sections of this chapter. The name
BootL has been chosen for the same reasobcad is used for the type of truth
values in programming languages; it is technically a misnomer since this is not a
specification of Boolean algebras, see Exarfiple P.2.4 below.)

Exercise. Show that the models defined and in fact all the modelBobL sat-
isfy Vp:boole —(p A —false) = —p. Define a model oBooL that does not satisfy
Vp:boole ——p=p. O

Example 2.2.4.Let BA = (¥BA, ®BA) be the following presentation.
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2.2 Flat specifications 47

specBA = sorts bool
ops true:bool
false: bool
—=__:bool— bool
__V __:boolx bool— bool
__A__:bool x bool — bool
__=__:boolx bool — bool
vp,q,r:bool
s pV(qQVr)=(pva)Vr
s PA(QAT) = (PAT)AT
e PVg=qVvp
e PAQ=(dADPp
s pV(pAQ) =p
s PA(PVO)=p
s PV(QAT) = (pAT)V (PAT)
s PA(QVT)=(pVa)A(PVT)
e PV P =true
e PA—p="false
e P=0g=-pVvVqQ

Models of BA are calledBoolean algebrasOne such model is the following two-
valued Boolean algebi:

|B|b00| = {ttaﬁ}7
truep = tt,
falsep = ff,

-p = {tt— ff,ff — tt}

and
Vg tt|ff Ag|tt |ff =p|tt|ff
|ttt tt|tt|ff tt|tt|ff
ff |tt|ff ff |ff|ff ff |ttt

This is (essentially) the same A8 in Examplg 2.2]3. Note tha1 can be turned
into a (trivial) Boolean algebra in a similar way, but this is not the case Azth

Exercise.Given a Boolean algebtB, define a relatior<g C |B| x |B| by a <g biff
avpgb=b. Show that<g is a partial order withrueg andfalseg as its greatest and
least elements respectively, and withg b yielding the least upper bound afb
andaAg b yielding their greatest lower bound. (In fa¢iB|, <g) is a distributive
lattice with top and bottom elements and compleme#n) ad

Exercise 2.2.5Show that all Boolean algebras (the model8adf as introduced in
Exercisd 2.2}4) satisfy thae Morgan laws

Vp,g:boole =(pVvQg) = -pA—q
Vp,g:boole —=(pAQ) = —pV—q O
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48 2 Simple equational specifications

The following characterisation of the expressive power of flat equational specifi-
cations is one of the classical theorems of universal algebra.

Definition 2.2.6 (Equationally definable class)A class.«s of X-algebras i®qua-
tionally definablaf &7 = Mod[(Z, ®)] for some setb of Z-equations. O

Definition 2.2.7 (Variety). A class.« of X-algebras islosed under subalgebras
if for any A € o and subalgebr® of A, B € /. Similarly, <7 is closed under
homomorphic imagei§for any A € o7 andX-homomorphisnh: A — B, h(A) € &7,
and< is closed under produci$ for any family (A € <7 )ici, [1(A)iel € 7.

A non-empty class oE-algebras which is closed under subalgebras, homomor-
phic images, and products is calledaxiety. O

Proposition 2.2.8.Any equationally definable clagg of X-algebras is a variety.
O

Exercise 2.2.9Prove Propositiofi 2.2/8: show that for any presentatibnd),
Mod[(X, ®)] is closed under subalgebras, homomorphic images and products. For
example, formalise the following argument to show closure under subalgebras: if
AEx ¢ andB is a subalgebra of thenB =5 ¢ since removing values from the
carriers of an algebra does not affect the truth of universally quantified assertions
about its behaviour. Closure under products and under homomorphic images are not
much more difficult to prove. O

Theorem 2.2.10 (Birkhoff’s Variety Theorem [Bir35]). If X is a signature with a
finite set of sort names then a clagsof X-algebras is a variety ift7 is equationally
definable. O

The “if” part of this theorem is (a special case of) Proposifion 2.2.8. A complete
proof of the “only if” part is beyond the scope of this book; the curious reader
should consult e.g. [Wec92].

Example 2.2.11.Consider the signature

XY =sortss
ops O:s
__X__'SXS—S

and the classy of X-algebras satisfying the familiar cancellation law:
ifaZ0andaxb=axcthenb=c

The X-algebraA such that|Als is the set of natural numbers ang is ordinary
multiplication is in.Z. The X-algebraB such thatB|s = {0, 1, 2,3} and x 4 is mul-
tiplication modulo 4 is not ine7. (Exercise: Why not?) SinceB is a homomorphic
image ofA, this shows that7 is not a variety and hence is not equationally defin-
able. ad
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2.2 Flat specifications 49

Exercise 2.2.12Formulate a definition of what it means for a clas€edlgebras to
be closed under homomaorphic coimages. Are varieties closed under homomorphic
coimages? O

Exercise 2.2.13Formulate definitions of what it means for a clasedlgebras to
be closed under quotients, and under isomorphisms. Show that closure under both
quotients and isomorphisms is equivalent to closure under homomorphic images.

O

The assumption in Theorgm 2.2, 10 that the set of sort namessifinite cannot
easily be omitted:

Exercise 2.2.14A family £ of X-algebras iglirectedif any two algebra®i,B; €
2 are subalgebras of soneec %. Define theunion |J % of such a family to be
the leastX-algebra such that eadh e & is a subalgebra of) % (the carrier of
U is the union of the carriers of all algebras4#, and the values of operations
on arguments are inherited from the algebragginthis is well-defined since? is
directed). Prove that since we consider equations with finite sets of variables only,
then for any presentatioft, @), Mod[(X, ®)] is closed under directed unionthat
is, given anydirectedfamily of algebras’ C Mod[(X, ®)], its union{J £ is also in
Mod[(X, ®)].

A generalisation of Theorefn 2.2]10 that we hint at here without a proof is that
for anysignatureX, a class o -algebras is equationally definable iff it is a variety
that is closed under directed unions. O

Exercise 2.2.15Consider a signature with an infinite set of sort names and no op-
erations. Letwi, be the class of all algebras over this signature that have non-empty
carriers for a finite set of sorts only, and let be the closure af#%;, under products

and subalgebras (this adds algebras where the carrier of each sort is either a single-
ton or empty). Check that’ is a variety. Prove, however, thaf is not definable by

any set of equations. INT: Use Exercisg 2.2.14. 0

Exercise 2.2.16Modify the definition of equation (Definitidn 2.7.1) so that infinite
sets of variables are allowed; it is enough to consider sets of variables that are finite
for each sort, but may be non-empty for infinitely many sorts. Extend the notion
of satisfaction (Definitiof 2.1}2) to such generalised equations in the obvious way.
Check that the class/ defined in Exercisg 2.2.115 is definable by such equations.
HINT: Consider all equations of the forX U {x,y:s} e x =y, for all sortssand sets

X of variables such thaty # @ for infinitely many sortss’.

Another generalisation of Theor¢m 2.7.10 that we want to hint at here is that for
any signatureX a class ofX-algebras is definable by such generalised equations
iff it is a variety. The proof of the “if” part is as easy as for ordinary equations
(Propositior{ 2.28). The proof of the “only if” part is also quite similar as in the
finitary case. O

A final remark to clarify the nuances in the many-sorted versions of Theo-
rem[2.2.ID is that the theorem holds famy signature (also with an infinite set
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of sort names) when we restrict attention to algebras with non-empty carriers of
all sorts: all varieties of such algebras (with closure under subalgebras limited to
subalgebras with non-empty carriers) are definable by equations with a finite set of
variables.

2.3 Theories

Any given equationally definable class of algebras has many different presentations;
in practice the choice of presentation is determined by various factors including the
need for simplicity and understandability and the desire for elegance. On the other
hand, such a class determines a single set of equations which uniquely identifies
it, called its theory. Since this is an infinite set, it is not a useful way of presenting
the class. However, it is a useful set to consider since it contains all axioms in all
presentations of the class, together with all their consequences.
Throughout this section, 1ét be a signature.

Definition 2.3.1 Modsx (®), Thy (<), Clz(®) and Clx(«)). For any setb of X-
equationsMods (@) (themodels ofd) denotes the class of &llalgebras satisfying
all the X-equations ind:

Modx (®) = {A| Ais aX-algebraand\ =y @} (= Mod[(X, D)]).

For any class# of X-algebras;Ths(«7) (thetheory of /) denotes the set of all
X-equations satisfied by eaghalgebra ine:

Thy (o) = {¢ | @ is aZ-equation and? |=x ¢}.

A set® of X-equations ilosedif @ = Thy(Modx(®)). Theclosureof a setd of
X-equations is the (closed) Bty (P) = Thy (Modx (®)). Analogously, a class?
of Z-algebras iglosedif &7 = Mody (Thg()), and theclosureof «7 is Cly (&) =
Mods (Thg(ﬂf)) O

Proposition 2.3.2.For any setsb and ¥ of X-equations and classes’, % of X-
algebras:

1. If & C ¥ then Mod:(®) O Modx (V).

2.1f B 2 o then Th (%) C Thy ().

3. ® C Thy(Mods (®)) and Mod: (Thy (&) 2 .

4. MOdz(Qb) = Mde(ThE(MOd2(¢))) and TI’E(,!Z{) = ThE(MOdE (Thz(%)))
5. Clg(®) and Clz (<) are closed.

Proof. Exercise (HINT: Propertie§ 4 and 5 follow from properties 1-3.) O

For any signature, the functionsThy andModsy constitute what is known in lattice
theory as a Galois connection.
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Definition 2.3.3 (Galois connection)A Galois connectiolis given by two partially
ordered seté&\ andM (in Propositior] 2.3]2A is the set of all sets af-equations,
andM is the “set” of all classes df-algebras, both ordered by inclusion) and maps
__*:A—Mand__":M — A(hereMods andThy) satisfying properties correspond-

ing to[2.3.2(1)F2.3]2{3). An elemeat A (respme M) is calledclosedf a= (a*) "

(resp.m= (m")*). O

Some useful properties — including ones correspondifg to]P]3.2(4) an{l 2.3.2(5) —
hold for any Galois connection.

Exercise 2.3.4For any Galois connection and aayb € A andm € M, show that
the following properties hold:

l.a<amtiff a* >y m
2. If aandb are closed thea <a b iff a* >\ b*. (Show that the “if” part fails ifa
orbis not closed.)

Here,<a and<jy, are the orders oA andM respectively. a

Exercise 2.3.5For any Galois connection such t#eandM have binary least upper
bounds ((Ia, Lim) and greatest lower bounds4, My), and for anya,b € A, show
that the following properties hold:

1. (aI_IA b)* = a* My b*.
2. (anab)* >m a" Um b*.
(HINT: LIa satisfies the following properties for aayb, c € A:

e a<pallabandb<aalipb.
o If a<acandb<cthenalab<ac.

and analogously fofla, Liy andmy.) State and prove analogues[fo 1 &hd 2 for
anym,n € M, and instantiate all these general properties for the Galois connection
between sets of-equations and classes Bfalgebras. d

Definition 2.3.6 (Semantic consequencef X-equationg is a semantic conse-
quenceof a set® of X-equations, writterP =y ¢, if ¢ € Clz(P) (equivalently, if

M0d2(¢) ':Z (p) O
Notation. We will write @ |= ¢ instead ofP =5 ¢ when the signaturE is obvious.
O

The use of the double turnstile=) here is the same as its use in logie}= ¢ if the
equationg is satisfied in every algebra which satisfies all the equatiods iHere,

@ is a set ofassumptionsind ¢ is aconclusionwhich follows from. We refer to
this assemantic(or model-theoretix consequence to distinguish it from a similar
relation defined by means of “syntactic” inference rules in the next section.

Example 2.3.7.Recall Examplé 2.2]3. The exercise there shows:
PBOOL Expoo. Vp:boole =(p A —false) = —p
PBOOL f~xpoor, VP:boole ——p=p
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Then, referring to Examp[e 2.2.4, Exerdise 2.2.5 shows that the de Morgan laws are
semantical consequences of the set of axidiA. O

Exercise 2.3.8Prove that semantic consequence is preserved by translation along
signature morphisms: for any signature morphisni® — X', set® of X-equations,
andX-equationg,

if @ =5 ¢ theno(P) Ex o(@).

Equivalently,c(Cls(®)) C Cls/(o(P)). Show that the reverse inclusion does not
hold. O

Exercise 2.3.9Let 0: X — X’ be a signature morphism and k&t be a closed set
of X’-equations. Show that—1(@’) is a closed set af-equations. O

See Sectiofi 4]2 for some further results on semantic consequence and translation
along signature morphisms, presented in a more general context.

Definition 2.3.10 (Theory).A theoryis a presentatio(r, &) such thatb is closed.
A presentation X, @) (where® need not be closegyesentshe theory X, Clx (P)).
Atheory (X, @) is sometimes referred to agatheory, O

A theory morphism between two theories is a signature morphism between their
signatures that maps the equations in the source theory to equations belonging to
the target theory.

Definition 2.3.11 (Theory morphism).For any theorie$X, @) and(X’, &), athe-
ory morphismo: (£, ®) — (X', @’} is a signature morphisra: X — X’ such that
o (@) € @' for everyp € @; if moreovero is a signature inclusiog: X — X’ then
o (X, ®) — (X', @) is atheory inclusion O

Exercise 2.3.12Let ¢:(X,®) — (X', ®') and ¢': (X', ®') — (X", P") be the-
ory morphisms. Show that;o’:X — X" is a theory morphisnw;c’: (£, ®) —
<2//’ ¢//>. O

Proposition 2.3.13.Let 6:X — X’ be a signature morphismp be a set ofZ-
equations andp’ be a set of’-equations. Then the following conditions are equiv-
alent:

1. o is a theory morphisne: (X,Cls(P)) — (X', Cly/(D')).
2. 6(P) C Cly/ ().
3. For every A€ Mody/(9'), A|s € Modx (D).

Proof. Exercise (HINT: Use the Satisfaction Lemma, Lemfna 2]1.8.) 0

The fact thaf 2.3.73(2) impligs 2.3]13(1) gives a shortcut for checking if a signa-
ture morphism is a theory morphism: one need only check, for each axiom in some
presentatiorof the source theory, that the translation of that axiom is in the target
theory. The equivalence between 2.3.13(1) [and 23.13(3) is similar in spirit to the
Satisfaction Lemma, demonstrating a perfect correspondence between translation
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of syntax (axioms) along a signature morphism and translation of semantics (mod-
els) in the opposite direction. This equivalence shows that there is a model-level
alternative to the axiom-level phrasing of Definition 2.3.11; in fact, we will take
this alternative in the case of structured specifications (Chiapter 5) where there is no
equivalent axiom-level characterisation (Exer¢ise $.5.4).

Example 2.3.14 Let X be the signature

Y = sortss,b
ops ttr:b
ffazb
notb—b
andbxb—b
__<__isxs—b

and recall the presentati@ooL = (£BooL, @BooL) from Exampl¢ 2.2]3. Define
a signature morphismr: X — XBooL by

Osorts = {S+— bool b +— bool},
o p = {ttr — true, ffa— false},
Obb = {not— —},

Obbb = {and»—» A},

Ossh = {<—> =1}

Let @ be the set o£-equations
P = {Vx:Se X < x = ttr, Vp:be and(p,ttr) = p}.

ThenClx () includesX-equations that were not i, such a®/p:b, x:se and(p, x <
x) = p. Similarly, by Examplg 2.3]7Clypoo.(@BooL) includes theXBootr-
equationvp:boole —(p A —false) = —p, but it doesnotincludeVp:boole ——p = p.
The presentation§X, Cls (®)) and (¥B0OL,ClspeoL(PBoOOL)) are theories —
the latter is the theory presentedBypoL. The signature morphisim: ¥ — XBooL
is a theory morphismo: (Z,Cly(®)) — (¥BooOL, Clypoo.(PBOOL)).

Recalling Exampl 2.2]4, the theory presentedlyis (CBA,Clypa (PBA)),
the theory of Boolean algebras, wi@lyg 4 (PBA) including for instance the de
Morgan laws (Exercige 2.3.5). The obvious signature morphigiiBooL — ZBA
is a theory morphism: (ZBooL, Clyg oo (PBOOL)) — (EBA,Clypa (PBA)).

These two theory morphisms can be composed, yielding the theory morphism
ol <2,C|£(€D)> — <2BA,C|EBA(@BA)>. O

Exercise 2.3.15Give presentationsX, @) and (X', &') and a theory morphism
0. (X,Clg(®)) — (X',Cls/(®")) such thaio (D)  &'. Note that this doesot con-

tradict the equivalence betwelen 2.3.13(1) and 2]3.13(2). 0
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2.4 Equational calculus

As we have seen, each presentatibnd®) determines a theorZ, Cly (P)), where

Clz () containsd together with all of its semantic consequences. An obvious ques-
tion at this point is how to determine whether or not a giferquationvXe.t =1’
belongs to the se€lxz(P), i.e. how to decide if® =5 VXot =t'. The defini-
tion of Clz(®) does not provide an effective method: according to this, testing
@ =5 VXt =t’ involves constructing the (infinite!) claddody (®) and check-

ing whether or not/X.t =t’ is satisfied by each of the algebras in this class, that
is, checking for each algebrac Mody (&) and functionv: X — |A| (there may be
infinitely many such functions for a givef) thatta(v) = t,(v). An alternative is

to proceed “syntactically” by means wiference rulesvhich allow the elements of
Clz () to bederivedfrom the axioms in® via a sequence of formal proof steps.

Throughout this section, 1ét be a signature.

Definition 2.4.1 (Equational calculus).A X-equationg is a syntactic(or proof-
theoretig consequencef a set® of X-equations, writter -5 ¢, if this can be
derived by application of the following inference rules:

Axiom: PV =T VXet=t'€ @

Reflexivity: B eI =t Xs C Z for all se Sandt € [Tz (X)|
Symmetry: %

Transitivity: Py vX. t;:; X :f:,,vx' v=t"

Instantiation: PhrvXet="t 0:X — |Tx(Y)]

Dy VYet[0] =t'[0] 0

Exercise 2.4.2 (Admissibility of weakening and cut)Prove that if® -y VXet =t’
and® C @’ then®’ -y ¥Xeot =t'. (HINT: Simple induction on the structure of the
derivation of® k5 VXt =t'.) This shows that the following rule is admissle

. DLy VXet =t
Weakening: o G VX e T =1

2 A rule is admissiblein a formal system of rules if its conclusion is derivable in the system
provided that all its premises are derivable. This holds in particular if the rderigsablein the
system, that is, if it can be obtained by composition of the rules in the system.
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Prove that i’ -x ¢ and{@}U® 5 y thenPU P -5 y. (HINT: Use induction
on the structure of the derivation ¢f} U @ F5 y; for the case of the axiom rule,
use the fact that weakening is admissible.) This shows that the following rule is
admissible:

o Frre {p}udFry

Cu PUDFy v

Check that your proof can be generalised to show théttfy and¥, - ¢ for each
¢ € D thenUyeo ¥ V. O

Exercise 2.4.3 (Consequence is preserved by translatioighow that for any sig-
nature morphisno: X — X', set® of X-equations, and-equatione, if @ 5 @
theno (@) -y o(9). O

Example 2.4.4.Recall the presentatioBooL = (¥BooL,®BooL) from Exam-
ple[2.2.3. The following is a derivation @ BOOL oo, Vp:boole —( pA —false) =

®BOOL FrpooL Vp:boole pAtrue= p
PBOOL Fxpoor, VP:boole —=(p A —false) = ~(pAtrue) PBOOL Fxpoor, Vp:boole =(pAtrue) = —p

PBOOL Fxpoo, Vp:boole —=(pA —false) = —p

whereP is the derivation

PBOOL Fypoo, —false= true
®PBOOL Fypoo, Vp:boole p=p ®BOOL Fypoo,, Vp:boole —false= true

PBOOL Frpoo, Vp:boole pA —false= pAtrue
PBOOL Fxpoor, VP:boole =(p A —false) = ~(pAtrue)

Exercise.Tag each step above with the inference rule being applied. ad

Exercise 2.4.5Give a derivation 0ofPBOOL Fygoo;. Vp:b00le p= p = true.
A considerably more serious challenge is to give derivations for the de Morgan
laws from the axioms of Boolean algebra (see Exarple]2.2.4 and EXercige 2.2.5).
O
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On its own, the equational calculus is nothing more than a game with symbols;
its importance lies in the correspondence between the two reldtigrendtx. As
we shall see, there is an exact correspondengds bothsoundandcompletefor
=x. Soundness® tx ¢ = @ =5 @) is a vital property for any formal system: it
ensures that the inference rules cannot be used to derive an incorrect result.

Theorem 2.4.6 (Soundness of equational calculud)et @ be a set of-equations
and letg be aX-equation. If® -5 ¢ then® =5 ¢. O

Exercise 2.4.7 Prove Theorerp 2.4.6. Use induction on the depth of the derivation
of @ -5 ¢, showing that each rule in the system preserves the indicated property.
O

Example 2.4.8.By Theorenj 2.4]6, the formal derivation in Example 2.4.4 justifies
the claim in Example 2.3|7 th@BoOL =5goo., Vp:boole —(pA —false) = —p. On

the other hand, sinC@BOOL [£xpoor. VP:boole =—p = p, there can be no proof in
the equational calculus f@PBoOL Fypo0:. VP:b0OOle =—p = p. a

Itis a somewhat counter-intuitive fact (see [GM85]) that simplifying the calculus
by omitting explicit quantifiers in equations yields an unsound system. This is due
to the fact that algebras may have empty carrier sets. Any equation that includes a
guantified variablecswill be satisfied by any algebra having an empty carriesfor
even ifx appears on neither side of the equation. The instantiation rule is the only
one that can be used to change the set of quantified variables; it is designed to ensure
that quantified variables are eliminated only when it is sound to do so.

Exercise 2.4.9Formulate a version of the equational calculus without explicit
guantifiers on equations and show that it is unsounah tHConsider the signature
X with sortss, s and operationg:s— s, a:g, b:s, and sed = {f(x) = a, f (X) =
b} of Z-equations.

Show that® -y a = b in your version of the calculus. Then giveXaalgebra
A € Modg () such thatA ~x a = b.) Pinpoint where this proof of unsoundness
breaks down for the version of the equational calculus given in Defirfition| 2.411.

Exercise 2.4.10Show that the equational calculus without explicit quantifiers is
sound when the definition df-algebra is changed to require all carrier sets to be
non-empty, or when either of the following constraints¥is imposed:

1. X has only one sort.
2. All sorts inX arenon-void for each sort namein X, |Tx|s # @. a

Exercise 2.4.11Give an example of a signatulewhich satisfies neithér 2.410(1)
nor[2.4.10(2), for which the equational calculus without explicit quantifiers is sound.
O

Completeness® =5y ¢ = @ 5 ¢) is typically more difficult to achieve than
soundness: it means that the rules in the system are powerful enough to derive all
correct results. It is not as important as soundness, in the sense that a complete
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but unsound system is useless while (as we shall see in the sequel) a sound but
incomplete system is often the best that can be obtained. The equational calculus
happens to be complete fbfy:

Theorem 2.4.12 (Completeness of equational calculud)et ¢ be a set ofx-
equations and lep be aX-equation. If¢ =5 ¢ then® k5 .

Proof sketchSuppose® =5y VXet =t'. Define= C [Ty (X)| x |Tg(X)| by u=

U< ®ty¥Xeu=U; = is aZX-congruence offy(X). Tx(X)/= =5 @ so
T=(X)/=FEr ¥Xet=t',and thug =t i.e. P 5 VXet =t |
Exercise 2.4.13Fill in the gaps in the proof of Theorem 2.4]12. 0

There are several different but equivalent versions of the equational calculus. The
following exercise considers various alternatives to the congruence and instantiation
rules.

Exercise 2.4.14Show that the version of the equational calculus in Defin[tion P.4.1
is equivalent to the system obtained when the congruence and instantiation rules are
replaced by the following single rule:

Dy ¥Xet=t'  foreachxe X, @y VYo O(X) = 6'(X)
Dy VYet[0] =t'[0]

Substitutivity: 6,6":X — [Tx(Y)|

Show that this is equivalent to the system having the following more restricted ver-

sion of the substitutivity rule:

@y VXU{XS}et =t Pty VWeu=U
@ by VXUYet[x— Ul =t'[x— U]

Substitutivity: uu € [Te(Y)ls

(HINT: The equivalence relies on the fact that the set of quantified variables in an
equation is finite.) Finally, show that both of the following rules may be derived in
any of these systems:

Dy VXet =t
Pty VXUYet =t

Dy VXU{XStet =t
D hyVXet =t

A consequence of the soundness and completeness theorems is that the equa-
tional calculus constitutesseemi-decision procedufer |=x: enumerating all deriva-
tions will eventually produce a derivation fab Fx ¢ if @ =5 ¢ holds, but if
@ -5 ¢ then this procedure will never terminate. This turns out to be the best we
can achieve:

Abstraction: YsC Z forallse S

Concretion: t,t' € |Te(X)| and| T (X)|s # @

O

Theorem 2.4.15.There is no decision procedure fgty.

Proof. Follows immediately from the undecidability of the word problem for semi-
groups|[[Pos47]. O
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Mechanised proof search techniques can be applied with considerable success to the
discovery of derivations (and under certain conditions, discussed in Sgcflon 2.6, a
decision proceduris possible) but Theoren 2.4]15 shows that such techniques can
provide no more than a partial solution.

2.5 Initial models

The class of algebras given by the loose semantics¥bpaesentation contains too
many algebras to be very useful in practice. In particular, Birkhoff’s Variety The-
orem guarantees that this class will always include degen&ratigebras having
a single value of each sort i, as well as (nearly alwaygj-algebras that are not
reachable. This unsatisfactory state of affairs is a consequence of the limited power
of equational axioms. A standard way out is to take the so-callgdl semanticsof
presentations, which selects a certain class of “best” models from among all those
satisfying the axioms. Various alternatives to this approach will be presented in the
sequel.

Throughout this section, I€£, @) be a presentation.

Exercise 2.5.1Verify the above claim concerning Birkhoff’s Variety Theorem, be-
ing specific about the meaning of “nearly always”. ad

There are two features that render certain models of presentations unfit for use in
practice. The mnemonic terms “junk” and “confusion” were coined_in [BG81] to
characterise these:

Definition 2.5.2 (Junk and confusion).Let A be a model of X, ®). We say that
A contains junkf it is not reachable, and th& contains confusioff it satisfies a
groundX-equation that is not i€lz (). ad

The intuition behind these terms should be readily apparent: “junk” refers to useless
values which could be discarded without being missed, and “confusion” refers to
the values of two ground terms being unnecessarily identified (confused).

Example 2.5.3.Recall the presentatioBooL = (¥Boor, ®BooL) and its mod-
elsAl, A2 andA3 from Examplé¢ 2.2]3A1 contains confusionAl =rpoo., true =
false & Clypoo.(@BoOL)) but not junk; A2 contains junk (there is no ground
XBooL-termt such thata, = & € |A2]00)) but not confusionA3 contains neither
junk nor confusion. There are modelsi®doL containing both junk and confusion.
(Exercise:Find one.) O

Exercise 2.5.4Consider the following specification of the natural numbers with
addition:
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specNAT = sorts nat
ops O:nat
succhnat— nat
__+__natx nat— nat
vm,n:nate 0+Nn=n
e SUCEM) 4 n = sucgm-+n)

List some of the models aNAT. Which of these contain junk and/or confusion?
(NoTE: For reference later in this sectiaBN AT refers to the signature &f AT and
®dNAT refers to its axioms.) O

Exercise 2.5.5According to Exercise 1.3.5, surjective homomorphisms reflect junk.
Show that injective homomorphisms preserve junk and reflect confusion, and that
all homomorphisms preserve confusion. It follows that isomorphisms preserve and
reflect junk and confusion. a0

Examples like the ones above suggest that often the algebras of interest are those
which contain neither junk nor confusion. Recall Exer¢ise 1]4.14, which charac-
terised reachabl&-algebras as those which are isomorphic to a quotierfzof
Accordingly, the algebras we want are all isomorphic to quotienis:pby Exer-
cisg2.5.b itis enough to consider just these quotient algebras themselves. Of course,
not all quotientsTy /= will be models of(X, &): this will only be the case wher:
identifies enough terms that the equationsbrare satisfied. But if= identifies
“too many” terms,Tx /= will contain confusion. There is exactly odecongruence
that yields a model ofX, &) containing no confusion:

Definition 2.5.6 (Congruence generated by a set of equationsJhe relation
=¢ C |Tx| x |Tx| is defined byt =¢ t/ <= @ 5y Voot =1/, for all t,t’ € |Ty|.
=¢ Is called theX-congruence generated Id. O

Exercise 2.5.7Prove that=4 is aX-congruence oiiy. O

Theorem 2.5.8 (Quotient construction).Tx /=4 is @ model of( X, &) containing
no junk and no confusion. O

Exercise 2.5.9Prove Theorerp 2.5.8. INT: Note thatTy /=¢ contains no junk by
Exercisg 1.4.14. Then show that for any terenTy (X) and substitutio: X — Ty,
tr, /=, (8') = [t[B]]=,, Where8'(x) = [0(x)]=,, for x € X. Use this to show that
Ty /=4 satisfies all the equations &b and contains no confusion. a

Example 2.5.10Recall the presentatidBooL = (XBooL, ®BooL) from Exam-
ple[2.2.3. The Mod€éls oo, /=aB0o. Of BoOL is defined as follows:
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|TZBOOL/E<PB00L ‘bool = {[true] =¢BooL’ [falSdE¢BOOL}
trueTZBOOL/E<PBOOL = [true]E¢BOOL
falseFEBOOL/EQDBOOL = [falqu@Boor_

"TrBooL/=#Boot

- {[true]zthOOL = [falsqubBOOL’ [falSdEIPBOOL = [true]ElPBOOL}

/\T):BOOL/E¢BOOL [true}ELDBooL [falsqquBOOL

[true]E‘PBOOL [true} =®BooL [falqu¢BOOL

[faISchDBOOL [faISdE¢BOOL [faISdE‘PBOOL

:>TEBOOL/E<PBOOL [true]szBOOL [falsqubBOOL

[true]Eqi'BOOL [true] =¢BooL [falSquSBOOL

[falsdzthOOL [true} =®BooL [true]zdeOOL
where

ftruel=, .., = {true,~falsetrueA true, ~(falseA true), ~(falsen —false),false= falsg.. .},
[falsg=, 5., = {false —true trueAfalse —(truetrue), ~(true A —false),true=-false...}.

The carrier setTsygoor/=aBoor|bool has just two elements since the axioms in
@BooL can be used to reduce each groutiBoor-term to true or false and
true Z¢poo. false Note that the “syntactic” nature Ofrp.o. IS preserved in

TsBoo./=®BooL, €.9. for eaclx  [true]

=@BooL’

X' e [falsd =¢BooL

([true]

= " TrBooL/=@BooL Ed>B00L)'

O

Exercise 2.5.11Recall the presentatiotNaT = (¥NaT, ®PNAT) given in Exer-
cisg/2.5.44. Construct the modBlx ur/=anar Of NAT. O

Exercise 2.5.12Show that=¢ is the onlyX-congruence making Theordm 2]5.8

hold.

O

The special properties dfz /=¢ described by Theorefn 2.5.8 can be captured
very succinctly by saying thdls /=¢ is a so-callednitial modelof (X, ®).

Definition 2.5.13 (Initial model of a presentation). A X-algebraA is initial in
a classo/ of X-algebras ifA € & and for everyB € «/ there is a unique:-
homomorphisni: A— B. An initial model of (£, @) is aX-algebra that is initial in
Mod[(Z, ®)]. IMod[(Z, ®)] is the class of all initial models g, @). O

In the next chapter we will see that this definition can be generalised to a much
wider context than that of algebras and homomorphisms.

Theorem 2.5.14 (Initial model theorem).Tx /=4 is an initial model of(X, &).

Proof sketch. ¥/=¢ is amodel of £, @) by Theoren) 2.5]8. GiveB € Mod[(Z, ®)],
let @%: Ty — B be the unique homomorphism from the algebra of grolrerms

to B. SinceB |=5 ®, we have=¢ C K(2*), and by Exercise 1.3.20 there is a homo-
morphismh: Ty /=¢ — B, which is unique by Exercige 1.3.@Xercise:Fill in the
gaps in this proof.)
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2.5 Initial models 61

Example 2.5.15Recall the presentatiddooL = (¥BooL, ®BooL) and its mod-
elsAl, A2 andA3 from Exampl¢ 2.2]3, and its modBlgoor,/=aBoor, from Exam-

ple[2.5.10, which is an initial model by Theorém 2.5.ZBooL-homomorphisms
from TrBooL/=@BoowL 10 Al, A2 andA3 are as follows:

hl:TEBOOL/ECPBOOL — Al h1b00| = {[true]E¢BOOL =%, [faISquPBOOL = *}7
h2:T2BOOL/E¢'BOOL — A2 h2b00| = {[true]EquooL = *’ [faISqE¢BOOL = Q?}v
h3:TZBOOL/Ed’BOOL — A3 h3b00| = {[true] = 17 [falsqzthOOL = O}

=¢BooL

(Exercise:Check uniqueness.)

Al is not an initial model: for examplezh: A1 — A2 and Zh:Al — A3. In
general, models containing confusion cannot be initial since homomorphisms pre-
serve confusion (Exercige 2.5.5). SimilarA? is not an initial model: for exam-
ple, Ah: A2 — A3, since there is no value 3|00 to whichh can map the “ex-
tra” value & € |A2|po0l. On the other handA3 is initial: for exampled!gl:A3 —

Al (whereglpool(1) = 9lpool(0) = ), 3'g2:A3 — A2 (Whereg2poo(1) = & and
020001(0) = V), and3!g: A3 — TrBoor/ =dBoor. (Wheregnol(1) = [truel=, .., and
gboo'(o) = [falsng‘bBOOL)' U

Exercise 2.5.16Recall the model you constructed in Exergise 2)5.11 of the specifi-
cationN At of natural numbers with addition. Show that there is a unique homomor-
phism from this model to each of the models you considered in Ex¢rcis¢ 2.514.

Exercise 2.5.17Using Theorer 2.5.14, show th&t is an initial model of(X, @).
Contemplate how this relates to Fact 114.4 and Definftion[1.4.5. 0

Exercise 2.5.18Note that initial models of X, ®) may have empty carriers for
some sorts. Show that this is necessary: give an example of a preseiiatbh

such that no algebra is initial in the class of its models that have non-empty carriers
of all sorts. Link this with Exercise 1.2.3. O

Taking a presentatiodX, ®) to denote the clastMod[(X, ®)] of its initial
models is called taking it&itial semantics We know from Theorerq 2.5.14 that
IMod[(Z, ®)] is never empty. Although the motivation for wishing to exclude mod-
els containing junk and confusion was merely to weed out certain kinds of degener-
ate cases, the effect of this constraint is to restrict attention to an isomorphism class
of models:

Exercise 2.5.19Show that any two initial models of a presentation are isomorphic.
Conclude that the initial models of a presentation are exactly those containing no
junk and no confusion. O

For some purposes, restricting to an isomorphism class of models is clearly inap-
propriate. The following exercise demonstrates what can go wrong.

Exercise 2.5.20Consider the addition of a subtraction operatiamat x nat— nat
to the specificatioiNAT in Exercis¢ 2.514, with the axiomn:nate m— 0= mand
¥m, n:nate sucgm) — sucgn) = m— n. These axioms do not fix the value wf—n
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62 2 Simple equational specifications

whenn > m; assume that we are willing to accept any value in this case, perhaps
because we are certain for some reason that it will never arise. Construct an initial
model of this specification. Why is this model unsatisfactory? Can you think of
a better model? What is the problem with restricting to an isomorphism class of
models of this specification? O

The phenomenon illustrated here arises in cases where operations are not defined
in a sufficiently completavay. Roughly speaking, a definition of an operation is
sufficiently complete when the value produced by the operation is defined for all
of the possible values of its arguments. See Definition §.1.22 below for a proper
definition of this term in a more general context.

One may argue that Exercise 2.5.20 is unconvincing, since the lack of sufficient
completeness arises there because we do not reallymeed to be defined as
a natural number when > m, and that this can be dealt with using one of the
approaches to partial functions below (Sections 2[7.3,]2.7[4, of 2.7.5). However, the
same phenomenon arises in other cases as well:

Exercise 2.5.21Give a specification of natural numbers with a function that for
each natural number chooses an arbitrary number that is greater thaHINT:
You may first extend the specificatidfaT of Exercisg 2.5}4 with a sotiool with
operations and axioms as BooL in Exampleg 2.2.3, and add a binary operation
__< __:natx nat— boolwith the following axioms:

Vn:nate 0 < sucgn) = true
Ymnate sucgm) < 0= false
Vm, n:nate sucgm) < sucgn) =m< n

The required functiorch: nat — nat may now be constrained by the obvious axiom
Vn:nate n < ch(n) = true.

Clearly, the definition oth cannot be sufficiently complete. Construct the initial
model of the resulting specification and check that it is not satisfactory. Referring
to other algebraic approaches presented in Sedfiong P.7.3, 2.7/4, and 2.7.5 below,
check that none of them offers a satisfactory solution either. ad

The above exercise indicates one of the most compelling reasons for considering
alternatives to initial semantics: requiring specifications to define all operations in
a sufficiently complete way is much too restrictive in many practical cases. Such
a requirement is also undesirable for methodological reasons, since it forces the
specifier of a problem to make decisions which are more appropriately left to the
implementor.

The comments above notwithstanding, there are certain common situations in
which initial semantics is appropriate and useful. In particular, the implicit “no junk”
constraint conveniently captures the “that’s all there is” condition which is needed
e.g. in inductive definitions of syntax.

Example 2.5.22. Consider the following specification of syntax for simple arith-
metic expressions:
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2.5 Initial models 63

specEXPR = sorts expr
ops Xx,y,0:expr
plus minus exprx expr— expr
Ve €:expre pluse €) = plug€,e)

The axiom requires thgyntaxof addition to be commutative. In the initial seman-
tics of ExPR, the “no junk” condition ensures that the only expressions (value of
sortexpt) are those built from Q¢ andy usingplusandminus The “no confusion”
condition ensures that no undesired identification of expressions occurs: for exam-
ple, the syntax of addition is not associative and the syntax of subtraction is not
commutative. O

Exercise 2.5.23Write a specification of (finite) sets of natural numbers. The oper-
ations should includey: set singletonnat — setandU: setx set— set O

The “no junk” condition is more powerful than it might appear to be at first
glance. Imposing the constraint that every value be expressible as a ground term
makes it possible to use induction on the structure of terms to prove properties of all
the values in an algebra. This means that for reasoning about models of specifica-
tions containing no junk, such as initial models, it is sound to add an induction rule
scheme to the equational calculus presented in the previous section. Since the form
of the induction rule scheme varies according to the signature of the specification at
hand, this is best illustrated by means of examples.

Example 2.5.24 Recall the presentatioN AT = (XNAT, ®NAT) of natural num-
bers with addition given in Exerci§e 2.5.4. To simplify notationxlahdy stand for
variable names such thahatandy:natare not inX N AT andx:natdoes not appear
in the sortg XN Art)-sorted set of variableX used below. The following induction
rule scheme is sound for reachable model¥afr (and for reachable models of all
otherX N AT-presentations):

D FrNar P(O) PU {P(X)} l_ENATU{XZnat} P(SUCC{X)) U {P(X)a P(Y)} l_ZNATU{X,YZnat} P(X+ Y)
D FyNar VXNate P(X)

Here, P(x) stands for aZNAT U {x:nat}-equationvXet = t’; think of this as a
ENaAT-equation with free variablg:nat ThenP(0) stands for the&ENAT-equation
VXet[x — 0] = t'[x — 0], P(sucgx)) stands for theENaT U {x:nat}-equation
VXet[x — sucdx)] = t'[x — sucgx)] and analogously foP(y) andP(x+y), and
Vx:nate P(x) stands for theZNar-equationvX U {x:nat}«t = t’. The following
additional inference rule is needed to infer equations &X&nT U {x:nat} and
ENATU {x,y:nat} from N aT-equations:

DFy¥Xet=t'
Dby s VXet =t/

Exercise.Show that adding the two inference rules above to the equational calculus
gives a system that is sound for reachable modelsMNAT-presentations.
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64 2 Simple equational specifications

The inference rule scheme above can be used for proving theorems such as as-
sociativity and commutativity of-. But note that the axioms fof fully define it
in terms of 0 andsucc it is possible to prove by induction on the structure of terms
that for every ground N AT-termt there is a ground N aT-termt’ such that’ does
not contain thet operation andb Fyn.r t =t'. (Exercise: Prove it. Note that this
is a proof at the meta-levelboutl-, not a derivation at the object levesingt.)
This shows that the third premise of the above induction rule scheme is redundant.
Eliminating it gives the following scheme, which is more obviously related to the
usual form of induction for natural numbers:

D FrNar P(O) PU {P(X)} FZNATU{XZnat} P(SUCC(X))
D Fynar VXNate P(X)

Taking P(x) to beVn, p:nate X+ (n+ p) = (x+n) + p, we have the following
derivation, which proves that addition is associative in initial model® af (Ex-
ercise: Supply the derivationB; andP,):

Py

@ U{Vn, p:nate x+ (nN+ p) = (X+n) + p}
@ FxNar VN, p:nate 0+ (n+ p) = (0+ n) +p FZNATU{X:H&I}
Vn, p:nate sucgx) + (n+ p) = (sucgx) +n) + p

@ Fynar VX, N, pinate X+ (N+ p) = (X+N)+p

Note that there are modelsBfaT containing junk which do not satisfix, n, p:nate X+
(n+ p) = (x+n) + p. Hence, this equation is not Iy, (PNAT) and induction
is required for its derivation. O

Exercise 2.5.25Recall the presentatioBooL = (¥BooL, #Bootr) from Exam-
ple[2.2.3. Give an induction rule scheme that is sound for reachable models of
XBooL-presentations. (MT: There will be five premises, one for each operation

in BooL.) Show that three of the premises are redundamnti{iHeliminate one op-
eration at a time), which gives the following rule scheme:

@ Fypoor P(true) D Frpoor. P(false
P Fypoor VX:boole P(X)

Use this to prove thatp:boole ——p = p holds in initial models oBoor. Prove that
the axiomvp:boole pA —p = falseis redundant for the initial semantics BooL,
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2.5 Initial models 65
that is:
®BooL\ {Vp:boole pA—p=Tfalse} Frpoor, VP:boOl pA-p=false O

Adding an induction rule scheme appropriate to the signature at hand to the equa-
tional calculus gives a system that is sound for reasoning about initial models of
specifications, and is more powerful than the equational calculus on its own. How-
ever, the resulting system is not always complete. In fact, it turns out that complete-
ness is unachievable in general: theradsound proof system that is complete for
reasoning about initial models of arbitrary specifications. In order to prove that this
is the case, it is necessary to formalize what we mean by the term “proof system”.
For our purposes it will suffice to assume that any proof system has a recursively
enumerable set of theorems. See [Chu56] for a discussion of the philosophical con-
siderations (e.g. finiteness of proofs, decidability of the correctness of individual
proof steps) underlying this assumption.

Theorem 2.5.26 (Incompleteness for initial semantics)There is a presentation
(X, @) such that there is no proof system which is sound and complete with respect
to satisfaction of equations in the class of initial model$Xf®).

Proof ([MS85]).As a consequence of Matiyasevich’s theorem, the set of equations
which hold in the standard model of the natural numbers (wigubg +, x and—,

such thaim—n = 0 whenn > m) is not recursively enumerable [DMR76, Sect. 8].
Therefore, this cannot be the set of theorems produced by any proof system. It is
easy to construct a (single-sorted) presentation having this as an initial niéxiel. (
ercise: Construct it.) Since all the initial models of a presentation are isomorphic
(Exercisg 2.5.7)9) and since isomorphisms preserve and reflect satisfaction of equa-
tions (Exercis¢ 2.1]5), this completes the proof. O

The fact that completeness cannot be achieved is of no real importance in practice:
the equational calculus together with induction is perfectly adequate for normal use.
But the failure of completeness does mean that care must be taken to distinguish
between satisfactior£) and provability ) in theoretical work. It is important to
recognize that model-theoretic satisfaction is the relation of primary importance,
since it embodiegruth. Provability is merely an approximation to truth, albeit one
that is of great importance for practical use since it is based on mechanical syntactic
manipulation. The failure of completeness means that the approximation cannot be
exact, but by being sound it errs on the side of safety.

Exercise 2.5.27Show that the equational calculus (without added induction rule
schemes) is complete with respect to satisfactiggroafindequations in initial mod-
els of specifications. a0

The additional specification techniques introduced in Chapter 5 will lead to a widen-
ing of the gap between satisfaction and provability. In particular, even completeness
with respect to satisfaction of ground equations will be impossible to retain.

A generalisation of the concept of initial model is needed to give a fully satis-
factory specification of classes of models that are naturally parametric with respect
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66 2 Simple equational specifications

to some basic data. An example is the definition of terms in Setign 1.4, which is
parametric in arS-sorted set of variables. Another is the specification of sets (see
Exercisd 2.5.23): it should be possible to specify sets without building in a specifi-
cation of the kind of values in the sets (in this case, natural numbers).

Exercise 2.5.28Suppose that all information about the natural numbers is removed
from the specification of sets you gave in Exergise 2]5.23, by deleting operations
on natural numbers likeuccand changing the sort namet to elem Construct an
initial model of the resulting specification. Why is this model unsatisfactory?1

The required concept is that offiiee model extending a given algebra, which cap-
tures the idea of initialityelative toa fixed part of the model. See Sect|on|3.5 for
the details, Sectiopn 4.3 for the use of this concept in the context of specifications,
and Chapter]6 for much more on the general topic of parameterisation.

2.6 Term rewriting

Although there is no decision procedure feg (Theorenj 2.4.15), there is a class of
specifications for which consequence can be decided. The idea is similar to the one
behind the strategy used in mathematics for proving that an equation follows from a
set of equational axioms: one applies the axioms in an attempt to reduce both sides
of the equation to a common result, and if this is successful then the equation follows
from the axioms. An essential ingredient of this strategy is the use of equations as
directedsimplificationor rewrite rules

Throughout this section, |&f = (S Q) be a signature, and 1& be anS-sorted
set of variables such thxt C 2 forallse S

Assumption. For simplicity of presentation, we assume throughout this section that
eitherX has only one sort, or all sorts Faare non-void (see Exercise 2.4.10). Under
this assumption, the version of the equational calculus without explicit quantifiers
is sound, and all references to the calculus below are to this version. See Exer-
ciseq 2.6.1]1 ar[d 2.6.26 for hints on how to do away with this assumption. O

Definition 2.6.1 (Context).A X-context for sort & Sis a termC € |Tg(X W O:s)|
containing one occurrence of the distinguished variablg/e writeC[] to suggest
thatC should be viewed as a term with a hole in it. Substitution of a texriTx (X)|s
in C[] gives the ternC[O:s— t] € |Tx(X)|, writtenC|t]. O

Definition 2.6.2 (Rewrite rule). A X-rewrite rule r of sort s= Sconsists of twar-
termst,t’ € |Tx(X)]s, writtent — t’. The Z-equation determined byis Eq(r) =get

t =t’; by the assumption, we can dispense with explicit quantification of variables
in equations. AZ-rewrite ruler =t — t’ of sortsdetermines a set oéduction steps
C[t[6]] — C[t'[6]] for all Z-contextsC[] for sortsand substitutions: X — |Tx (X)];

this defines the relatior-, C |Tx(X)| x |Tx(X)|, the one-step reduction relation
generated by.rThe inverse of one-step reductien, is one-step expansiowritten

r—. O
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2.6 Term rewriting 67

A reduction stepu —; U according to a rewrite rule=t — t’ is an application of
aninstance 18] — t’[6] of r to replace thesubterm {6] of u (corresponding to the
“hole” in C[]) by t’[8]. The subternt[6] of uis called aredex(short for “reducible
expression”).

Definition 2.6.3 (Term rewriting system).A X-term rewriting system i a set of
X-rewrite rules. Theet ofZ-equations determined byiREq(R) = {Eq(r) | r € R}.
Theone-step reduction relation generated bysRhe relation

—r o= U= (©TX)Ix[T(X)).
reR
The inverse of one-step reductionr is one-step expansiomwritten g—. O

Given a setb of X-equations, &-term rewriting systenR will be of greatest rele-
vance to® whenCly(®) = Clz (Eq(R)). One way to obtain such ais to use the
equations themselves as rewrite rules by selectingriamtationfor each equation
t=t": eithert —t' ort’ — t. For reasons that will become clear below, the most use-
ful orientation is the one in which the right-hand side of the rule is “simpler” than
the left-hand side. It is not always obvious how to measure simplicity of terms — in
fact, this is a major issue in the theory of term rewriting — and sometimes there is
no satisfactory orientation, as in the case of an equation sutch-as= m-+n.

In the rest of this section, |&® be aX-term rewriting system.

Definition 2.6.4 (Reduction—§% and convertibility ~g). The reduction relation
—& C T (X)| x [Tz (X)| generated by i the transitive reflexive closure efr. In
other wordst —xt’ if t =t’ or there existterms, ... ,ty € [Tx(X)|,n> 0, such that
t —rt1 —Rr - —rtyp —rt’; then we say thdtreduces to’t The inverse of reduction
—k isexpansionwritten 5« . Theconvertibility relation~gr C |Tx (X)| x | Tz (X)|
generated by ks the symmetric transitive reflexive closure ofg . In other words,
t ~gt’if t =t or there exist termg,...,t, € [Tx(X)|, n > 0, such that —rt; or
tret1, andty —rto ortygre—ty, and ..., and, —rt’ ort, r—t’; then we say that
convertstot O

Exercise 2.6.5Check that~g is aX-congruence ofix (X). m|

Example 2.6.6.Recall the presentatioBoor = (¥Boor, ®#BooL) from Exam-
ple[2.2.3. The followingCBooL-term rewriting systeniR BooL obviously satisfies
ClygooL(@Bo0OL) = Clypoo(Eq(RBoOL)):

RBoor = {—true — false —false— true, pAtrue — p, pAfalse— false
pA-p— false p=q— —~(pA-0q)}.

(Observe that in the rulp = g — —(pA —Qq), the right-hand side is not obviously
simpler than the left-hand side.) We have (for example):
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68 2 Simple equational specifications

—(pA (9= —falsg) —rpoo. ~(PA~(qA——false))
—RBooL ﬁ(p/\ﬁ(Q/\ﬁtrue))
—RBooL _‘(p/\_‘(q/\fa|se))
—RBooL _‘(p/\ ﬂfalse)

—RBoo. "(PAtrue)
—RBooL P

(ateach step, the redex reduced by the step is underlined)yso(q=- —false)) =5 zoo.L
—-p, and

j(p/\ (q = false)) RBooLS ﬁ(p/\ (q = jU'UE))
~—~RBooL _‘( pA ﬂ(q AN ﬂﬂtrue))
—RBooL _‘( pA _‘(q A\ —|false))
RBoo.— ~(PA-((qAtrue) A —false))
—RBoor "(PA-((qAtrue) Atrue))
—RBooL ﬂ(p/\ﬂ(q/\true))
s0—(pA(g=false)) ~rpooL ~(PA-(gAtrue)). O

Exercise 2.6.7 Recall the presentatidRAT = (ENAT, @NAT) given in Exercisg 2.5]4.
Give aXNAT-term rewriting systenRN AT such thaClgn 4r (PNAT) = Clgnar (EQ(RNAT)),
and practice reducing and converting sQB€AT-terms usingR N AT. O

The convertibility relation generated R/coincides with equality provable from
Eq(R). This fact is captured by the following two theorems.

Theorem 2.6.8 (Soundness of convertibility)lf t ~gt’ then EqR) Fx t =t'.

Proof sketchConsider a reduction stefjt[0]] — C[t’[6]]. This corresponds to a
derivation involving: an application of the axiom rule, to derg(R) -t =t’; an
application of instantiation, to derieq(R) - t[6] =t'[6]; and repeated applications
of reflexivity and congruence, to derit&y(R) - C[t[6]] = C[t'[6]]. The definition of
~Rr as the symmetric transitive reflexive closure-ek corresponds directly to
applications of the symmetry, transitivity and reflexivity ruldsxércise:Fill in the
gaps in this proof.) O

Lemma 2.6.9.Suppose,t’ € [Tz (X)|sfor se S. Ift~rt’ then:

1. C[t] ~r C|[t] for any Z-context ¢] for sort s.
2. (6] ~rt'[6] for any substitutior®: X — |Tx(X)].

Proof. Exercise:Do it. a

Theorem 2.6.10 (Completeness of convertibility)f Eq(R) 5 t =t’ then t~gt’.

Proof sketchBy induction on the depth of the derivation Bf(R) -yt =t’. The
most interesting case is when the last step is an application of the congruence rule:

EqR Frti=t) EqR) Frth =t}
EqR) Fx f(t1,...,tn) = f(t1,...,t))

Page: 68 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48



2.6 Term rewriting 69

wheref:s; x -+ x 5, — s. By the inductive assumptioty, ~gt; and ... and, ~gr

ti. Then, by repeated application of Lemina 2[6.9(1), we hiftets... t)) ~r
f(t,to.. ., th) ~r--- ~r f(t3,15. .., 1)) (using first the context (O:sy, to.. . ., tn), then
f(t,0:%,...,th), then ..., therf(t],15,...,0:5,)). When the last step of the deriva-
tion of Eq(R) x t =t’ is an application of the instantiation rule, the result follows
directly by Lemma 2.6]9{2) Exercise: Complete the proof.) O

Exercise 2.6.11Try to get rid of the need for the assumption Bnmade at the
beginning of this section in all the definitions and results above. This will involve
rewriting terms of the forn{X)t using rewrite rules of the formXet — t’, in both
cases with explicit variable declarations. O

Given the exact correspondence between convertibility and provable equality, a
decision procedure fdr~rt’ amounts to a decision procedure bty t =t’, pro-
videdClx(®) = Clz(Eq(R)). The problem with testing~grt’ by simply applying
the definition is that the “path” frorhto t’ may include both reduction steps and
expansion steps, and may be of arbitrary length. But whisatisfies certain condi-
tions, it is sufficient to test just singlepath having the special form—jt" g—t’,
which yields a simple and efficient decision procedure for convertibility.

Definition 2.6.12 (Normal form). A Z-termt € Tx(X) is anormal form (for R)if
there is no ternt’ such that —gt’. O

Definition 2.6.13 (Termination). A X-term rewriting systenR is terminating(or
strongly normalising if there is no infinite reduction sequente—rt; —r---;
that is, whenevet; —rty —gr -+, there is some (finiteh > 1 such that, is a
normal form. a

The usual way to show that a term rewriting systRris terminating is to demon-
strate that each rule iR reduces the complexity of terms according to some
carefully-chosen measure.

Definition 2.6.14 (Confluence)A X-term rewriting systenRis confluen{or Church-
Rosse) if whenevert —t; andt —jto, there is a terntz such that; —5 tz and
o *)E 13. O

Definition 2.6.15 (Completeness)A X-term rewriting systeniR is completdf it is
both terminating and confluent. O

Completeness of a term rewriting system should not be confused with completeness
of a proof system, as in for example Theoffem 2.5.10 above.

Exercise 2.6.16Suppose thaR is a completeZ-term rewriting system, and letc
|Tx(X)| be aX-term. Show that there is a unique normal foNfRr(t) € |Tz(X)|
such that —5 NFg(t).

HINT: An abstract reduction systewpnsists of a se together with a binary
relation — C A x A. A Z-term rewriting systenR is a particular example, where
A= |Tx(X)] and — is —gr. Concepts such as normal form and confluence make
sense in the context of any abstract reduction system, and the required property
holds in this more abstract setting. O
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Example 2.6.17.The term rewriting systenRBooL from Example 2.6J6 is both
terminating and confluent, and is therefore complete. As the reduction sequence in
Examplg 2.66 showNFrpoo.(—(PA (q= —falsg)) = —p.

The term rewriting systel@BooL’ = RBooLU {pAq— A p} is not termi-
nating: PAQ—RBoor’ NP —RBoor’ PAd—RBoor’ ANP —RBoor’ ** -

The term rewriting systef®RBoor” = RBooLU {(pAQ) AT — pA(qAT)}is
not confluent{ pA—=p) AqQ —gpoo. falseAqand(pA—p) Ad —grBoor” PA(=PA
g), and bothfalseAgandp A (—=pAq) are normal forms. O

Exercise 2.6.18Is your term rewriting systenRN At from Exercisg 2.6]7 com-
plete? If not, find an alternative term rewriting system¥ortr that is complete. O

Exercise 2.6.19A X-term rewriting systenR is weakly confluenif whenever

t —rt; andt —rty, there is a terntz such thatt; —5 ts andt, —i t3. Find a

term rewriting system that is weakly confluent but not confluentngH Weak con-
fluence plus termination implies confluence, so don't bother looking at terminating
term rewriting systems.) Weak confluence is a much easier condition to check than
confluence, so the usual way to prove that a term rewriting system is confluent is to
show that it is weakly confluent and terminating. O

In view of the obvious analogy between reduction and computaiég(t) can
be thought of as thealueof t; sinceNFg(t) need not be a ground term, this is a
more general notion of computation than the usual one.

Exercise 2.6.20Convince yourself thailFg: | Tz (X)| — |Tz(X)| is computable for
any finite complete term rewriting systeR— perhaps try to implement it in your
favourite programming language. O

Theorem 2.6.21 (Decision procedure for convertibility).If R is complete, then
t ~ptiff NFR(t) = NFR(t/). O

Exercise 2.6.22Prove Theorerf 2.6.21. (NT: The proof does not depend on the
definition of —g, but only on the assumption thRtis complete.) ad

Sincet ~rt’ iff Eq(R) Fx t =t (by soundness and completeness of convertibility)
iff Eq(R) =xt =1t (by soundness and completeness of the equational calculus),
Theorenj 2.6.21 constitutes a decision procedure for consequence:

Corollary 2.6.23 (Decision procedure forEq(R) =x t =t'). If R is complete, then
EqR) =5 t =t/ iff NFRr(t) = NFR(t'). O

Example 2.6.24 Since the term rewriting syste®BooL from Example[ 2.6]6

is complete (see Examp[e 2.6]17), Corollary 2.6.23 can be used to prove that
EQ(RBOOL) ’:ZBOOL _‘(p/\ (q = —\fa|SE)) =p= (p/\_‘p): NFRBOOL(_‘(p/\ (q =

—falsg)) = —-p=NFgrBooL(P= (PA—P)). SINCEClsR0r.(PBOOL) = Clypeon(Eq(RBOOL)),
this proves thatbBooL Expoo. —(PA (= —false) = p= (pA—p).

Exercise. Give a derivation ofPBOOL Fxpoo. ~(PA (= —falsg) = p= (pA
—p) in the equational calculus. Compare this with the above proof. O
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2.6 Term rewriting 71

Exercise 2.6.25Recall your complete term rewriting system fiSrat from Ex-
ercise[ 2.6.18. Use this to prove th@NAT =yn . sucgsucg0)) + sucgn) =
sucgsucgsucgn))), and that®d NAT Eynar SUCEM) + Sucgn) = sucgsucgm+
n), O

Exercise 2.6.26Lett — t’ be aX-rewrite rule of sorts. The following restrictions
are often imposed:

o t& X and
o FV(') CFV(1).

Show that, if these restrictions are imposed on rewrite rules, then Corollary]2.6.23
holds even without the assumption dhmade at the beginning of this section.
(These restrictions seem harmless since almost no complete term rewriting system
contains rules that violate them.) O

Exercise 2.6.27Equality of terms in the equational theory of a rewriting systems is
also decidable under somewhat weaker requirements than those in Cgrollary 2.6.23.
A term-rewriting systenR is weakly normalisingf for each termt there is a finite
reduction sequence Rleading fromt to a normal formR is semi-completéd it is
weakly normalising and confluent.

Generalising Exercige 2.6]16, show thaRik a semi-complet&-term rewriting
system, then for ang-termt € |Tx(X)| there is a unique normal forfNFg(t) €
[Tz (X)| such thatt —% NFr(t). Moreover, convince yourself that the function
NFg: |Tz(X)| — |Tx(X)]| is then computable. Finally, show that the property cap-
tured by Corollary 2.6.33 holds for all semi-complete term rewriting sysmsJ

By Corollary|2.6.28, the problem of deciding consequesde s ¢ is reduced to
the problem of finding a finite complete term rewriting sys®such thaCly (®) =

Clz(Eq(R)). Clearly, by Theorerh 2.4.15, this is not always possible. Buktfneth-
Bendix completion algorithroan sometimes be used to produce sucR given &
together with an order relation on terms. The algorithm works by pinpointing causes
of failure of (weak) confluence and adding rules to correct them, where the supplied
term ordering is used to orient these new rules. The algorithm is iterative and may
fail to terminate; it may also fail because the ordering supplied is inadequate.

The Knuth-Bendix completion algorithm can also be used to reason about ini-
tial models of specifications, using a method knowrinakictionless inductiorr
proof by consistency his method is based on the observation that an equiatidh
holds in the initial models ofX, @) iff there is no ground equatiasi= s such that
®£s=5 anddU{t =t'} = s=¢. (Exercise: Prove this fact.) Given a com-
plete term rewriting system such thatCly(®) = Clz(Eq(R)) (perhaps produced
using the Knuth-Bendix algorithm), the Knuth-Bendix algorithm is used to produce
a complete term rewriting systeRi for @ U {t =t} by extendingR. It is then pos-
sible to test iR andR have the same normal forms for grouBeterms; if so, then
t =t’ holds in the initial models ofZ, ®).
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2.7 Fiddling with the definitions

In principle, the specification framework presented in the preceding sections is pow-
erful enough for any conceivable computational application. This is made precise
by a theorem in[[BT87] (cf.[[Vra88]) which states that for every reachablmi-
computableX-algebraA there is a presentatiofX’, @’) with finite &' such that

A= A/‘; for some initial modeA € IMod[(X’, @')]. (See[[BT8Y] for the definition

of semi-computable algebra.) In spite of this fact, there are several reasons why this
framework is inconvenient for use in practice.

One deficiency becomes apparent as soon as one attempts to write specifications
that are somewhat larger than the examples we have seen so far. In order to be un-
derstandable and usable, large specifications must be built up incrementally from
smaller specifications. Specification mechanisms designed to cope with such prob-
lems of scale are presented in Chapfer 5. These methods also solve the problem
illustrated by Exercisg 2.5.20, see Exer¢ise 5]1.11.

Another difficulty arises from the relatively low level of equational logic as a
language for describing constraints to be satisfied by the operations of an algebra.
When using equational axioms, it is often necessary to write a dozen equations to
express a property that can be formulated much more clearly using a single ax-
iom in some more powerful logic. Some properties that are easy to express in more
powerful systems are not expressible at all using equations. Similar awkwardness
is caused by the limitations of the type system used here, in comparison with the
polymorphic type systems of modern programming languages such as Standard ML
[Pau96]. Finally, the present framework is only able to cope conveniently with al-
gebras comprised dbtal anddeterministidunctions operating on data values built
by finitary compositions of such functions, a limitation which rules out its use for
very many programs of interest.

All these difficulties can be addressed by making appropriate modifications to the
standard framework presented in the preceding sections. An example was already
given in Section 1.5]2 where it was shown how signature morphisms could be re-
placed by derived signature morphisms. This section is devoted to a sketch of some
other possible modifications. The presentation is very brief and makes no attempt
to be truly comprehensive; the interested reader will find further details (and further
citations) in the cited references.

2.7.1 Conditional equations

The most obvious kind of modification to make is to replace the use of equational
axioms by formulae in a more expressive language. Some care is required since
a number of the results presented above depend on the use of equational axioms.
A relatively unproblematic choice is to use equations that apply only when certain
pre-conditions (expressed as equations) are satisfied.

LetX = (S Q) be a signature.
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Definition 2.7.1 (Conditional equation).A (positive) conditionak-equationyXet; =
ti A... Ath =t = to = t; consists of:

¢ afinite S-sorted seKX (of variables), such thats C 2" for all s€ S and

e for each 0< j < n (wheren > 0), twoZ—termstj,tj IS |T2(X)|sj for some sort
sj €S

A Z-algebraA satisfiesa conditionalZ-equationvXet; =tj A... Ath =t = to =

ty if for every (Ssorted) functionv:X — |A|, if (t1)a(v) = (t})a(v) and ... and

(th)a(v) = (th)a(v) then(to)a(v) = (to)a(V). 0

Note that variables in the condition & t] A ... Aty =1t)) that do not appear in
the consequentd = tj) can be seen as existentially quantified: for example, the
conditional equatioiva,biteax b= 1= axa ! =1 is equivalent to the formula
Vate (3biteax b= 1) = axa ! = 1in ordinary first-order logic.

Exercise 2.7.2Define the translation of conditiondl-equations by a signature
morphismo:X — X’. O

The remaining definitions of Sections .142.5 require only superficial changes, and
most results go through with appropriate modifications.

Let (X,®) be a presentation, wher® is a set of conditional-equations.
Mod[(X, ®)] is not always a variety, as is (almost) shown by Exarfiple 2,2.11; in
this sense, the power of conditional equations is strictly greater than that of ordinary
equations.

Exercise 2.7.3The cancellation law given in Examgle 2.2.11 is not a conditional
equation. Give a version of this example that uses only conditional equations.
(HINT: Equality can be axiomatized as an operagops x s— bool.) O

In spite of this increase in expressive power, there is a proof system that is sound
and complete with respect to conditional equational consequence |[Sel72], and the
quotient construction can be used to construct an initial model gb) [MT92] (cf.
Lemmg 3.3.1R below). Term rewriting with conditional rewrite rules is possible, but
there are some complications, see [KI092] and [MId93].

Exercise 2.7.4[Sel72] gives a proof system that is sound and complete for condi-
tional equational consequence in the single-sorted case. Extend this to the many-
sorted case, where explicit quantifiers are required for the same reason as in the
equational calculus. O

Exercise 2.7.5Recall Exercis¢ 2.5.21 concerning the specification of a function
ch:nat — nat that for each natural numberchooses an arbitrary number that is
greater tham. Modify this, using a conditional equation to madtechoose an arbi-
trary number that igessthann when 0< n. O

Example 2.7.6.LetHA = (*HA,®HA) be the following presentaticﬁ.

3 We use the same symbe} for implication in conditional equations and for an operation in the
presentation below — the usual symbols are used for other propositional connectives as well, as in
Exampld 2.ZJ4. We use extra space around implication in the conditional equations below in order
to make them easier to read.
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74 2 Simple equational specifications

specHA = sorts bool

ops true:bool
false: bool
—__:bool— bool
__V __:boolx bool — bool
__A__:boolx bool — bool
__=__:bool x bool— bool

vp,q,r:bool
s pV(qQVr)=(pvaVr
s PA(QAT) = (PAG)AT
e PVg=0qVvp
e PAQ=0gADP
s pV(pAQ)=p
s PA(PVA)=p
e PV true =true
e pVfalse=p
s (pv(rAg)=p) = ((q=pVr=(Q=p))
«((@q=pVvr=(@=p) = (pv(AQ=p)
o =p=(p=false)

Models of HA are calledHeyting algebras

Exercise.Recall the presentatioR A of Boolean algebras in Examgle 2.4. Show
that every Boolean algebra is a Heyting algebra. Then repeat the exercise in Ex-
amplg[2.2.)4, building for every Heyting algetiaa lattice(|H|, <y) with top and
bottom elements. Check that the conditional axioms concerning the implication
can now be captured by requiring thiat q <y pis equivalent to <y q= p. Show

that the lattice is distributive.

Give an example of a Heyting algebra that is not Boolean. Check which of the
axioms of the presentatiddA do not follow fromHA..

Prove that amquationalpresentation with the same modelsth4 can be given.
HINT: Use Theorenmi 2.2.10. Or consider the following properties of the implica-
tion: p= p=true,qA(q=p) =qAPp, PV (= p) =q=p, andg= (pATr) =
@=pA@=r). O

2.7.2 Reachable semantics

In Sectior] 2., the motivation given for taking a presentatibn®) to denote the
classiMod[(X, ®)] of its initial models was the desire to exclude models containing
junk and confusion. The need to exclude models containing confusion stems mainly
from the use of equational axioms, which make it impossible to rule out degenerate
models having a single value of each sorEinf a more expressive language is used

for axioms, or if degenerate models are ruled out by some other means, then models
containing confusion need not be excluded.
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Example 2.7.7.Consider the following specification of sets of natural numbers (a
variant of the one in Exerci$e 2.5]23):

specSETNAT = sorts bool, nat, set

ops true:bool
false bool
__V __:bool x bool — bool
O:nat
succhnat— nat
eg natx nat — bool
g set
add nat x set— set
__€__:natx set— bool

Vp:bool, m,n:nat, S: set
o pVirue=true
« pvfalse=p
« eq(n,n) = true
« eq(0,sucan)) = false
« eq(sucan),0) = false
« eqg(sucgm),sucgn)) = eq(m,n)
e Nec g ="false
« meaddn,S =eqmn)vmeS

There are many different models 8£TNAT, including algebras having a single
value of each sort. Suppose we restrict attention to algebras that do not satisfy the
equationva . true = false this excludes such degenerate models (see the exercise
below). Consider the following two equations:

Commutativity ofadd Vm, n:nat, Siset add(m,add(n,S)) = add(n,add(m,S))
Idempotency ohdd  Vn:nat, S:set add(n,add(n,S)) = add(n,S)

The models oBSETNAT that do not satisfy@ e true = falsemay be classified ac-
cording to which of these two equations they satisfy.

“List-like” algebras: addis neither commutative nor idempotent.

“Set-like” algebras:addis both commutative and idempotent.

“Multiset-like” algebras: addis commutative but not idempotent.

“List-like” algebras without repeated adjacent entriesld is idempotent but not
commutative.

There are also “hybrid” models &FETNAT, e.g. those in whickadd is commuta-
tive but is only idempotent fon # 0. The initial models oBETN AT are “list-like”

algebras. Adding the commutativity and idempotency requiremeris TN AT as
additional axioms would eliminate all but the “set-like” algebras.

Exercise. Show that restricting attention to modelsSifTN AT that do not satisfy
the equatiorv@ e true = false eliminates all but “sensible” realisations of sets of
natural numbers, by forcineg(sucé”(0), sucé'(0)) = trueiff m= niff succé"(0) =
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sucd'(0), anda € add(a;,add(ay, ...,add(ap, @) ...)) = trueiff eq(a,a;) = trueor
. oreq(a,ap) = true, for m,n, p > 0. Note thatm,n and p are ordinary integers
here,notvalues of the somat, andsucé”(0) meanssucg...succ0)...). O
N———

mtimes

Consideration of examples like the one above suggests various alternatives to
taking the initial semantics of specifications. One choice is to require signatures to
include the sorbool and the constantsue andfalse and to exclude models satis-
fying V@« true = false This might be termed taking tr&andard loose semantics
of specifications. Another choice is to additionally exclude models containing junk:

Definition 2.7.8 (Reachable semantics).et X = (S Q) be a signature such that
bool € S andtrue:bool andfalse bool are in Q. A reachable standard modelf

a presentatiofXZ, @) is a reachable-algebraA such thatA =y & and A }£x
Ve true = false RMod(Z, ®)] is the class of all reachable standard models of
(X, ). Taking (£, ®) to denoteRMod (X, ®)] is called taking itsreachable se-
mantics O

The motivation for excluding models containing junk is the same as in the case of
initial semanticsRMod (X, ®)] is not always an isomorphism class of models, as
Examplg 2.7]7 demonstrates (the classification given there wasl forodels that

do not satisfyv e« true = false but the same applies to the reachable models in this
class). There is still a problem when operations are not defined in a sufficiently com-
plete way, although the problem is less severe than in the case of initial semantics.

Exercise 2.7.9Reconsider the problem posed in Exerdise 2]5.20, by writing a
reachable model specification of natural numbers including a subtraction operation
__— __:natx nat— natwith the axioms/m:nate m— 0= mandvm, n:nate suc¢m) —
sucgn) = m—n. Recall from Exercisg 2.5.20 the assumption that we are willing to
accept any value fam— n whenn > m, which is why the axioms do not constrain

the value ofm—n in this case. List some of the reachable standard models of this
specification, and decide whether the models you considered in EXercisg 2.5.20 are
reachable standard models (ignoring the difference in signatures). From an intuitive
point of view, is this an adequate class of models for this specification? O

Exercise 2.7.10Definition[2.7.8 permits algebrasc RMod (X, ®)] with values of
sortbool other thantruey andfalse,. This is ruled out if all operations delivering
results in sorbool are defined in a sufficiently complete way to yield eittrete or
falseon each argument that is definable by a ground term. Check that the specifi-
cation SETNAT in Examplg 2.7]7 ensures this property and so all of its reachable
models have a two-element carrier of shobl. Give an example of a specification

for which this is not the case. O

The equational calculus is sound for reasoning about the reachable standard models
of presentations, sind@Mod (X, ®)] C Mod[(X, ®)] for any presentatio(X, @). It
is sound to add induction rule schemes such as those given in Seclion 2.5; these are

Page: 76 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48
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sound for any class of reachable models. Completeness is unachievable, for exactly
the same reason as in the case of initial semantics; the proof of Thgoren) 2.5.26 can
be repeated in this context almost without change. Finally, the techniques of term
rewriting presented in Sectipn 2.6 remain sound.

Initial semantics cannot be used for specifications with axioms that are more
expressive than (infinitary) conditional equations [Tar86b], in the sense that initial
models of such specifications are not guaranteed to exist. To illustrate the problem,
the following example shows what can go wrong when the language of axioms is
extended to permit disjunctions of equations.

Example 2.7.11.Consider the following specification:

SPecSTATUS = sorts status
ops single status
married status
widowedstatus
« widowed= singleV widowed= married

where disjunction of equations has the obvious interpretation. There are three kinds
of algebras ilMod[StATUS]:

1. Those satisfyingingle= widowed= married.
2. Those satisfyingingle= widowed# married
3. Those satisfyingingle=# widowed= married.

None of these is an initial model &raTus: there are no homomorphisms from
algebras in the first class to algebras in either of the other two classes, and no homo-
morphisms in either direction between algebras in the second and third classes.

In contrast, reachable semantics can be used for specifications with axioms of any
form (once a definition of satisfaction of such axioms by algebras has been given,
of course). Such flexibility is a distinct advantage of this approach.

Another alternative to initial semantics deserves brief mention.

Definition 2.7.12 (Final semantics)Let X = (S Q) be a signature such thiapol e
Sandtrue: bool andfalse bool are inQ. A X-algebraA € RMod(Z, ®)] is afinal
(or termina) model of (X, @) if for every B € RMod (X, @)] there is a unique-
homomorphisnmh: B — A. Taking (£, ®) to denote the class of its final models is
called taking itdinal semantics O

As in the case of initial semantics, the final models of a presentation form an iso-
morphism class. Recall that a model of a presentation is initial iff it contains no
junk and no confusion (Exercige 2.5/19). We can give a similar characterisation
of final models as the models containing no junk analximal confusiona final
model A satisfies as many ground equations as possible, subject to the restriction
thatA (£ Vs« true = false(imposed on all reachable standard models).

Example 2.7.13 Recall the specificatioSETNAT from Example[2.7]7, and the
classification of models dfETNAT according to the commutativity and idempo-
tence ofadd The final models oS ETNAT are in the class of “set-like” algebras, in
whichaddis both commutative and idempoteriExgrcise: Why?) O
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Not all presentations with equational axioms have final models, but it is possible
to give conditions on the form of presentations that guarantee the existence of final
models|[[BDP 79].

Exercise 2.7.14Find a variation on the specificatid®iraTus in Example[ml
that has no final models.

When reachable or final semantics of presentations is used with equational or
conditional equational axioms, sometimes more operations are required in specifi-
cations than in the case of initial semantics. These additional operations are needed
to provide ways of “observing” values of sorts other thaool, in order to avoid
degenerate models. For example, the presence of the opeggiiv&xamplg 2.7 [7
ensures thasuc¢"(0) = succ'(0) only if m= n in all models that do not satisfy
V& e true = false it would not be needed if we were interested only in the initial
models ofSETNAT. Such operations are not required if inequations are allowed as
axioms.

Exercise 2.7.15Recall the presentatidNaT given in Exercis¢ 2.5|4. Augment this
with the sortbool and constantsrue, false bool (to make reachable and final se-
mantics applicable), and show that final models of the resulting specification have
a single value of somat. Add an operatiorevennat — bool, with the following
axioms:

V&« everf0) = true
V&« everisucg0)) = false
Vn:nate ever{sucgsucgn))) = evergn)

Show that final models of the resulting specification have exactly two values of sort
nat. Replaceevenwith __<__:natx nat— bool, with appropriate axioms, and show
that final models of the resulting specification satsfig¢"(0) = sucé'(0) iff m=n.

(We have already seen that this is the cagsgihat x nat— boolis added in place

of <) O

Although the inclusion of additional operations tends to make specifications longer,
it is not an artificial device. In practice, one would expect each sort to come with
an assortment of operations for creating and manipulating values of that sort, so
specifications such asAT are less natural thaNAT augmented with operations

like < and/oreq

2.7.3 Dealing with partial functions: error algebras

An obvious inadequacy of the framework(s) presented above stems from the use of
total functions in algebras to interpret the operation names in a signature. Since par-
tial functions are not at all uncommon in Computer Science applications — a very
simple example being the predecessor funcpiat nat — nat, which is undefined

on 0 — a great deal of work has gone into ways of lifting this restriction. Three
main approaches are discussed below:
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Error algebras (this subsection): Predecessor is regarded as a total function, with
pred(0) specified to yield aerror value.

Partial algebras (Sectipn 2.7.4): Predecessor is regarded as a partial function.

Order-sorted algebras (Sectfon 2]7.5): Predecessor is regarded as a total function
on a sub-domain that excludes the value 0.

A fourth approach is to use ordinary (total) algebras, leaving the valpeedfO)
unspecified. This is more an attempt to avoid the issue than a solution, and it is
workable only in frameworks that deal adequately with non-sufficiently-complete

definitions; see Exercises 2.5/P0, 217.9,[and 5]1.11.

The most obvious way of adding error values to algebras does not work, as the
following example demonstrates.

Example 2.7.16.Consider the following specification of the natural numbers, where
pred(0) is specified to yield an error:

specNATPRED = sorts nat
ops O:nat
succnat— nat
pred nat— nat
error: nat
__+__:natx nat— nat
__X __natx nat— nat
¥m, n: nat
« pred(sucgn)) =n
« pred(0) = error

¢« 0+n=n
« sucgm) 4+ n = sucgm-+n)
«eOxn=0

e SUCEM) x N= (MxNn)+n

Initial models of NATPRED will have many “non-standard” values of sorat, in
addition to the intended onerfor). For example, the axioms &fATPRED do not

force the ground termgred(error) andpred(error) 4+ 0 to be equal to any “normal”
value, or toerror. (Exercise: Give an initial model ofNATPRED.) A possible so-
lution to this is to add axioms that collapse these non-standard values to a single
point:

specNATPRED = sorts nat
ops
¥Ym, n: nat
e ...
« sucgerror) = error
« pred(error) = error
e €rror +n = error
« N+ error = error
e rror x n= error
« N X error = error
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Unfortunately, NATPRED now has only trivial modelsarror = 0 x error = 0 and
soerror = sucderror) = sucg0), error = sucderror) = suc¢sucg0)), etc. O

The above example suggests that a more delicate treatment is required. A number
of approaches have been proposed; here we follow [GDLE84], which is fairly pow-
erful without sacrificing simplicity and elegance. The main ideas of this approach
are:

Error values are distinguished from non-error (“OK”) values.
In an error signature operations that may produce errors when given OK ar-
guments (nsafeoperations) are distinguished from those that always preserve
OK-ness ¢afeoperations).

¢ In anerror algebra each carrier is partitioned into an error part and an OK part.
Safe operations are required to produce OK results for OK arguments, and ho-
momorphisms are required to preserve OK-ness.

e In equations, variables that can take OK values oséfdvariables) are distin-
guished from variables that can take any values@fevariables). Assignments
of values to variables are required to map safe variables to OK values.

Definition 2.7.17 (Error signature). An error signatureis a tripleX = (S, Q, safe
where:

e (S Q) is an ordinary signature; and
e safeis anS" x S-sorted set of functionésafe, s: Qus — {tt,ff }wes ses.

An operationf:s; x --- x sy — sin L is safeif safg, ¢ ¢(f) = tt; otherwise it is
unsafe O

Example 2.7.16 (revisited).An appropriate error signature fof ATPRED would
be:

YXNATPRED = sorts nat

ops O:nat
succnat— nat
pred nat— nat :unsafe
error: nat :unsafe

__+__:natx nat— nat
__X __.natx nat— nat

Obviously,error is unsafe, angbred is unsafe since it produces an error when ap-
plied to 0O; all the remaining operations are safe. (By convention, the safe operations
are those that are not explicitly marked as unsafe.) ad

In the rest of this section, le&t = (S Q, safeé be an error signature.
Definition 2.7.18 (Error algebra). An error X-algebra Aconsists of:

e an ordinaryX-algebraA; and
e anS-sorted set of function®K = (OKs: |Als — {tt,ff })scs
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such that safe operations preserve OK-ness: for efzesyx - -- x §; — sin X such
thatsafg, ¢ <(f) =ttanda € |Als,...,an € |Als, such thatOKg (a1) = -+ =
OKs,(an) = tt, OKs((f:sy X -+- x Sy — s)a(ay,...,an)) = tt. A valuea € |Als for
se Sis anOK valueif OKg(a) = tt; otherwise it is arerror value O

We employ the usual notational conventions, e.g. wrifin@ place of(f:s; x --- x
Sh— S)A-

Definition 2.7.19 (Error homomorphism). Let A andB be errorX-algebras. An
error Z-homomorphism A — B is anS-sorted functiorh: |A| — |B| with the usual
homomorphism property (for all:s; x --- x sy — sin £ anday € |Als,,...,an €
|Als,, hs(fa(as,...,an)) = fa(hs(a1),...,hs,(an))) such thah preserves OK-ness:
for everys € Sanda € |Als such thaDKg(a) =tt (in A), OKs(hs(a)) =tt (inB). O

Definition 2.7.20 (Error variable set). An error S-sorted variable set Xonsists
of anS-sorted seK such thatXs C 2" for all se€ S, and anS-sorted set of functions
safe= (safe: Xs — {tt,ff })scs. A variablex:sin X is safeif safg(x) = tt; otherwise

it is unsafe An assignmenbf values in an erroE-algebraA to an errorSsorted
variable seX is anS-sorted function: X — |A| assigning OK values to safe vari-
ables: for every:sin X such thasafg(x) = tt, OKs(vs(x)) = tt. O

Definition 2.7.21 (Error algebra of terms).Let X be an errofS-sorted variable set.
Theerror X-algebra ET(X) of terms with variables Xs defined in an analogous
way to the ordinary term algebfia (X), with the following partition of theS-sorted
set of terms into OK and error values:

For all sortss € SandX-termst € |ETs(X)]s, if t contains an unsafe variable
or operation the®K(t) = ff; otherwiseOKg(t) = tt.

We adopt the same notational conventions for terms as before, dropping sort deco-
rations etc. when there is no danger of confusion.EE&t denoteE Ty (&). O

The definitions of term evaluation, error equation, satisfaction of an error equation
by an error algebra, error presentation, model of an error presentation, semantic
consequence, and initial model are analogous to the definitions given earlier in the
standard many-sorted algebraic framework (Definitions 1L[4.5,]12.1.T) P.1.2, 2.2.1,
[2.2.2]2.3p and 2.5.1.3 respectively). Because assignments are required to map safe
variables to OK values, an error equation may be satisfied by an error algebra even
if it is not satisfied when error values are substituted for safe variables.

Exercise 2.7.22Spell out the details of these definitions. O

As before, every error presentation has an isomorphism class of initial models,
and an analogous quotient construction gives an initial model.

Definition 2.7.23 (Congruence generated by a set of equationtpt & be a set of
error X-equations. Th&-congruencesg onETy is defined byt =¢ t' <= & =5
Voet =t for all t,t’ € |ETg|. =¢ is called theX-congruence generated k.
(NOTE: A XZ-congruence on an erra-algebraA is just an ordinary2-congruence
on the ordinanZ-algebra underlying\.) O
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Definition 2.7.24 (Quotient error algebra).Let A be an errorX-algebra, and let
= be aX-congruence or\. The definition ofA/=, the quotient error algebra of
A modulo =, is analogous to that of the ordinary quotient algedfas, with the
following partition of congruence classes into OK and error values:

For all sortsse Sand congruence classgg=, € |A/=|s, if there is somé €
[a]= such thatOKg(b) = tt (in A) thenOKs([a]=,) = tt (in A/=); otherwise
OK([al=,) = ff. 0

Note that if there are both OK and error values in a congruence class, the class is
regarded as an OK value in the quotient.

Theorem 2.7.25 (Initial model theorem).The errorX-algebra ET /=4 is an ini-
tial model of the error presentatioff, ). O

Exercise 2.7.26Sketch a proof of Theorefn 2.7125. it : Take inspiration from
the proof of Theorer 2.5.14.) 0

Exercise 2.7.27Try to find conditions analogous to “no junk” and “no confusion”
that characterise the initial models of an error presentation. O

Example 2.7.16 (revisited).Using the approach outlined above, here is an im-
proved version of the specificatiofaTPRED:

specNATPRED = sorts nat

ops O:nat
succhat— nat
pred nat— nat :unsafe
error: nat :unsafe

__+__inatx nat— nat

__X __Ihatx nat— nat
Ym, n: nat

« pred(sucgn)) =n

« pred(0) = error

«0+n=n
« sucgm) +n=sucgm-+n)
«eOxn=0

e sucEm) x n=(Mxn)+n

(By convention, variables in equations are safe unless otherwise indicated.) In initial
models ofNATPRED, the error values of sortat correspond exactly to “error mes-
sages”, i.e. ground terms containing at least one occurrenegaf These terms

can be regarded as recording the sequence of events that took place since the error
occured. The record is accurate since the initial modeSfPRED do not satisfy
equations like7@« 0 x error = 0, in contrast to the initial models of the earlier ver-

sion. To collapse the error values to a single point without affecting the OK values,
axioms can be added as follows:
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specNATPRED = sorts nat

ops

¥m, n: nat, k: natunsafe
e ...
« pred(error) = error
« sucderror) = error
« error +k = error
« k+error = error
« error x k= error
« kx error = error

It is also possible to specifgrror recoveryusing this approach:

specNATPRED = sorts nat

ops ...

recovernat — nat

v¥m, n: nat, k: natunsafe

e ...

« recoveferror) =0
« recovefn) =n

In initial models of this version oNATPRED, recoveris the identity omat except
thatrecoveferror) gives the OK value 0. O

Although only initial semantics of error presentations has been mentioned above,
the alternatives of reachable and final semantics apply as in the standard case. The
key points of the standard framework not mentioned here (e.g. analogues to the
soundness, completeness and incompleteness theorems) carry over to the present
framework as well.

Exercise 2.7.28Find a definition of error signature morphism which makes the
Satisfaction Lemma hold, taking the natural definition of theeductA"c, of an
errorX’-algebrad’ induced by an error signature morphigmz — X’. a

Although the approach to error specification presented above is quite attractive,
there are examples that cannot be treated in this framework.

Exercise 2.7.29Consider the following specification bbunded natural numbers

specBOUNDEDNAT = sorts nat
ops O:nat
succnat— nat :unsafe
overflownat :unsafe
« sucgsucdsucdgsucgsucgsucd0)))))) = overflow

The intention is to specify a (very) restricted subset of the natural numbers, where an
attempt to compute a number larger than 5 results in overflow. Show that an initial
model of BouNnDEDNAT will have only one OK value. Chand@oUNDEDNAT to

make its initial models have six OK values (corresponding su6c0), .. .,suc(0)).
What if the bound is & rather than 5? i
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2.7.4 Dealing with partial functions: partial algebras

An obvious way to deal with partial functions is to simply change the definition of

algebrato allow operation names to be interpreted as partial functions. But for many

of the basic notions in the framework that depend on the definition of algebra, be-

ginning with the concepts of subalgebra and homomorphism, there are several ways

to extend the usual definition to the partial case. Choosing a coherent combination

of these definitions is a delicate matter. Here we follow the approach of [BW82b].
Throughout this section, &t = (S Q) be a signature.

Definition 2.7.30 (Partial algebra).A partial X-algebra Ais like an ordinaryX-

algebra, except that eadhs; x --- x s, — sin X is interpreted as partial function

(fispx -+ xS — 9)al|Als, X --- X |Als, — |Als. The(total) Z-algebra underlying
Ais theX-algebraA,; defined as follows:

o |A|s=|AlsW{Ls} foreveryse S and
o (fisggx--xs—59)a (as,...,an) =

lg if aj = Ls; forsome 1< j<n

(fispx - x5y —S)a(a,...,an) if this is defined

1s otherwise
foreveryfis; x--- xsy —sanday € |A||s,....an € |A|[s,. O

We employ the same notational conventions as before. Note that according to this
definition, the value of a constant need not be defined: a cors&istassociated in

an algebra with a partial functiorca: {()} — |Als, where{() } is the 0-ary Cartesian
product.

Definition 2.7.31 (Homomorphism).Let A and B be partialX-algebras. Aweak
X-homomorphism A — B is anS-sorted (total) functiom: |A| — |B| such that for
all f:syx---xsy—sinZandag € [Alg,....an € |Als,,

if fa(as,...,an)is defined thenfg(hs, (a1),...,hs,(an)) is definedand
hs( fA(a17 AR an)) = fB(hS:L(al)v L) hSn (an))

If moreoverh satisfies the condition
if fg(hs,(a1),...,hs,(an)) is defined thenfa(ay,...,a,) is defined
thenh is called astrongXZ-homomorphism ad

Other possibilities would be generated by allowing homomorphisms to be partial
functions.

Exercise 2.7.32Consider a partiat-algebraA and its underlying totat-algebra

A, . Given anyX-congruence= on A, removing all pairs involvingl yields a
strongX-congruence on ACheck that such strong congruences are exactly kernels

of strong Z-homomorphisms, cf. Exerciseés 1.3.14 and 1]3.18. Check that strong
congruences are equivalence relations that preserve and reflect definedness of oper-
ations and are closed under defined operations. Kernels of ¥xaknomorphisms
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areweakX-congruencesequivalence relations that are closed under defined oper-
ations. Spell out these definitions in detail. For any paffialgebraA and weak
X-congruence= on A, generalise Definitiof 1.3.15 to define thaotient of A by

=, written A/=. Note that an operation is definedAji= on a tuple of equivalence
classes provided that i it is defined on at least one tuple of their respective ele-

ments. Check which of Exercises 1.3.18-1.B.23 carry over. 0

Definition 2.7.33 (Term evaluation).Let X be anS-sorted set of variables, I&tbe
a partialZ-algebra, and let: X — |A| be a (total)S-sorted function assigning values
in A to variables inX. Since|A| C |A| |, this is anS-sorted functiorv, : X — |A, |,
and by Fact 1.4]4 there is a unique (ordinafiyhomomorphismv/? : Tz (X) — A|
which extends/, . Letse€ Sand lett € [Tx(X)|s be aX-term of sorts; thevalue of t
in A under the valuation is V¥ (t) if V¥ (t) # L, and is undefined otherwise. O

Satisfaction of an equatioviX«t =t’, where the values df and/ort’ may be
undefined, can be defined in several different ways. Following [BW82b], we use
strongequality (also known akKleeneequality) whereby the equality holds if (for
any assignment of values to variables) the valugsanfdt’ are either both defined
and equal, or are both undefined. The usual interpretation of definitional equations in
recursive function definitions (see for instance Exarpiple 4,1.25 below) makes them
hold as strong equations. An alternativeeigstential equalitf{where= is usually
written =), whereby the equality holds only when the value$ ahdt’ are defined
and equal. When strong equality is used, there is a need for an additional form
of axiom called adefinedness formulda’X e def(t) holds if for any assignment of
values to variables, the value bfs defined. These are superfluous with existential
equality sincevX .« def(t) holds iff ¥X+ t =t holds.

Exercise 2.7.34Formalize the definitions of satisfaction of equations (using strong
equality) and of definedness formulae. O

Using both equations and definedness formulae as axioms, the definitions of pre-
sentation, model of a presentation, semantic consequence, isomorphism, and initial
model (with respect taveakhomomorphisms) are analogous to those given earlier.

Exercise 2.7.35Spell out the details of these definitions. O

Theorem 2.7.36 (Initial model theorem).Any presentatioqX, @) has an initial
model I, characterised by the following properties:

e | contains no junk;

¢ |is minimally definedi.e. for allt € |Tx|, t; is defined only ifP |=x V&« def(t);
and

e | contains no confusion, i.e. for allt’ € |Tx|s,s€ S, { and { are defined and
equal only if® =5 Vet =t'.

Proof sketchLet X, be the signature obtained by adding a constapsto X for
each sors € S Define a congruence C [Ty, | x |Tg, | as follows: forty, to € [Ty |s
for somes € S t; ~ ty iff any of the following conditions holds:
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1.t; containslLy andt, containsLy for somes, s’ € S

2.1; contains Ly for somes € S t; € |Tx|s (sot, does not contain_g for any
s’ € § and® £~ def(tp), or vice versa

3.11,t2 € |Tx|s, and eitherd (= def(ty) and @ (- def(ty) or @ =t =to.

I is constructed by taking the quotientf by ~, and then regarding congruence
classes containing the constantsas undefined values. a

Exercise 2.7.37Complete the above proof by showing that:

~ is a congruence of ;

| = &;

| is an initial model of X, &); and

| has the properties promised in Theoifem 2.J7.36.

Show that any model ofZ, ®) satisfying the properties in Theor¢ém 2.7.36 is iso-
morphic tol and is therefore an initial model ¢, &). O

Exercise 2.7.38Suppose that we modify Theordm 2.7.36 by replacing the phrase
“t) andt| are defined and equal” with ‘=5 V&«t =t’". Give a counterexample
showing that this version of the theorem is false. O

Exercise 2.7.39A partial X-algebraA € Mod[(Z, ®)] is astrongly initial model of
(X, @) if for every minimally definedB € Mod[(X, ®)] containing no junk, there
is a unique strong-homomorphismh: A — B. Show thatl is an initial model of
(X, ) iff | is a strongly initial model of X, ®). O

Again, reachable and final semantics are applicable for partial algebras as well
as initial semantics, and the key points of the standard framework carry over with
appropriate changes (for instance, the equational calculus must be modified to deal
with definedness formulae as well as equations).

Example 2.7.16 (revisited).Here is a version of the specificatiddATPRED in
which predis specified to be a partial function:

specNATPRED = sorts nat
ops O:nat
succnat— nat
pred: nat— nat
__+__natx nat— nat
__X __:natx nat— nat
¥Ym, n: nat
« def(0)
« def(sucgn))
« pred(sucgn)) =n

¢« 0+n=n
» sucgm) +n=sucgm-+n)
«eOxn=0

e SUCEmM) x n=(Mxn)+n
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In initial models of NATPRED, all operations behave as expected, and all are total
except forpredwhich is undefined only on 0.

Exercise. Show thatvm, n:nate def(m+ n) andvm, n:nate def(mx n) are conse-
guences of the definedness axioms for 0 sunctand the equations defining and

x, in reachable models &f ATPRED. You will need to use induction, so first for-
mulate an appropriate induction rule scheme and convince yourself that it is sound.

Exercise.Suppose that the axiokz . def(0) were removed frolNATPRED. De-
scribe the initial models of the resulting presentation. O

2.7.5 Partial functions: order-sorted algebras

Any partial function amounts to a total function on a restricted domain. The idea of
order-sorted algebras to avoid partial functions by enabling the domain of each
function to be specified exactly. This is done by introducsdpsorts which cor-
respond to subsets at the level of values, and requiring operations to behave in an
appropriate fashion when applied to a value of a subsort or when expected to deliver
a value of a supersort. A number of different approaches to order-sorted algebra
have been proposed, and their relative merits are still a matter for debate. Here we
follow the approach of [GM92].

Definition 2.7.40 (Order-sorted signature).An order-sorted signaturés a triple

X =(5<,Q) where(S Q) is an ordinary signature and is a partial order on the
setSof sort names, such that wheneves; x --- x s, — sandf:s; x --- x g, — ¢
are operations (having the same name and same number of argumefts)nieh

s <gforall 1<i<n, thens<s.Whens<s forss €S we say thasis a
subsortof &' (or equivalentlys’ is asupersorof s). The subsort ordering is extended
to sequences of sorts of equal length in the usual way:s, <s)...s,if 5 < g
forall1<i<n. O

The restriction o2 ([GM92] calls this conditiormonotonicity is a fairly natural
one, keeping in mind that the subsort ordering corresponds to subset on the value
level: restricting a function to a subset of its domain may diminish, but not enlarge,
its codomain. Note that an effect of this restriction is to rule out overloaded con-
stants.

Throughout the rest of this section, Bt= (S, <, Q) be an order-sorted signature,
and letf = (S Q) be the (ordinary) signature correspondindto

Definition 2.7.41 (Order-sorted algebra).An order-sortedX-algebra Ais an or-
dinary X-algebra, such that:

e foralls<s'inZX, |AsC|Aly; and

e wheneverf:s; x--- x5, — sandf:s; x --- x §, — s are operations (having the
same name and same number of arguments) @ands;...s, <s...s,, then
the function(f:sy x --- x sy — S)al|Als, X --- X |Als, — |Als is the set-theoretic
restriction of the functiorif:s; x -+ x s, — S)a[Alg x -+ x |Alg — [Alg. O
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An effect of the second restriction ([GM92] calls this conditiomonotonicityas
well) is to avoid ambiguity in the evaluation of terms (see below).

Definition 2.7.42 (Order-sorted homomorphism) Let A andB be order-sorted -
algebras. Amorder-sorted-homomorphism:A — Bis an ordinanZ-homomorphism,
such thaths(a) = hy (@) for all a € |Als whenevers < s. Whenh has an inverse, it

is anorder-sortedX-isomorphismand we writeA = B. O

Let X be anS-sorted set (of variables) such thétand Xy are disjoint for any
s#£5¢.

Definition 2.7.43 (Order-sorted term algebra) Theorder-sortedr-algebra T (X)
of terms with variables Xs just like Tz (X), except that for any terme [Ty (X)]s
such thas < &, we also have € [Tz (X)|y. Let Ty = Tx(2). O

Exercise 2.7.44Check thaflx (X) is an order-sorted’-algebra. O

Example 2.7.45.0ne way of reformulatingNATPRED as an order-sorted specifi-
cation (see below) will involve introducing a sarznat(non-zero natural numbers)
such thatnznat< nat, with operations hat andsuccnat — nznat According to
the definition of order-sorted term algebra, the taumd0) has sorhat as well as
nznat which means thasucqsucg0)) is well-formed (and has sortat as well as
nznaj. O

As the above example demonstrates, a given term may appear in more than one
carrier of Tz (X). The following condition onX ensures that this does not lead to
ambiguity.

Definition 2.7.46 (Regular order-sorted signature)X is regularif for any f:s; x
X —sinZands)...s,<s;...5, thereisalead, ...s,s such thas;...s; <
S)...s,andf:s; x---xg, —disinZ. 0

Theorem 2.7.47 (Terms have least sorts)f X is regular, then for every termd
|Tx(X)| there is a least sort s S, written sorft), such that te [Ty (X)|s. O

Exercise 2.7.48Prove Theoreri 2.7.47. What happens wheis anarbitrary S
sorted set, i.e. if we remove the restriction tkgandXy are disjoint for anys # s'?
O

Now the definition of term evaluation is analogous to the usual one.

Fact 2.7.49.Suppose thaX is regular. Then, for any order-sortet--algebra A and
S-sorted function:X — |A|, there is exactly one order-sortetthomomorphism
V¥ Ty (X) — A which extends v, i.e. such thd(x) = vs(x) foralls€ S, xe Xs. O

Exercise 2.7.50Define term evaluation. a
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Definition 2.7.51 (Order-sorted equation; satisfaction).Suppose thak is reg-
ular, and let the equivalence relatios be the symmetric transitive closure of
< . Order-sortedX-equationsvYXet =t are as usual, except that we require
sort(t) = sort(t’) (in other words,sort(t) andsort(t’) are in the sameonnected
componenbdf (S <)) instead ofort(t) = sort(t’). An order-sortecc-algebraA sat-
isfiesan order-sorted-equationVXet =t/, written A =y VXet =t/, if the value
of t in |Alsoryry @and the value of in |Alsq) coincide, for everys-sorted function
v:X — |A]. O

A problem with this definition is that satisfaction of order-soriz@quations is not
preserved by order-sortédisomorphisms (compare Exercjse 2]1.5). The following
condition onX ensures that this anomaly does not arise.

Definition 2.7.52 (Coherent order-sorted signature)(S, <) is filtered if for any
s,§ € Sthere is soma” € Ssuch thas < §’ ands <¢". (S <) is locally filteredif
each of its connected components is filteteds coherenif (S <) is locally filtered
andX is regular. ad

Exercise 2.7.53Find X, A, B and ¢ such that® is regular,A =5 ¢ andA = B but
B 45 ¢. Show that ifX is coherent then this is impossible. a

The definitions of order-sorted presentation, model of an order-sorted presenta-
tion, semantic consequence, and initial model are analogous to those given earlier.
For every order-sorted presentatigh &) such that is coherent, an initial model
may be constructed as a quotienflef[GM92]. There is a version of the equational
calculus that is sound and complete for coherent signatures [GM92], and the use
of term rewriting for proof as discussed in Sectjor] 2.6 is sound, provided that each
rewrite rulet — t’ is sort-decreasingi.e. sort(t’) < sort(t) [KKM88].

Example 2.7.16 (revisited).Here is a version of the specificatiGRATPRED in
which predis specified to be a total function on the non-zero natural numbers:

specNATPRED = sorts nznat< nat
ops O:nat
succnat— nznat
pred: nznat— nat
__+__:natx nat— nat
__X __:natx nat— nat

vYm, n: nat
« pred(sucgn)) =n
¢« 0+n=n
« sucgm) +n=sucdm-+n)
e 0Oxn=0

e sucdm) x n=(mxn)+n

In this version ofNATPRED, there are terms that are not well-formed in spite of the
fact that each operator application seems to be to a value in its domain. For example,
consider the following “term”:
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pred(sucq0) + sucg0)).

According to the signature df ATPRED, sucg0) + sucq0) is a term of sornat,

it is not a term of sorhznatin spite of the fact that its value is non-zero. In the
term algebrapred applies only to terms of sortiznat thus the application gfred

to sucg0) + succO) is not defined. One way of getting around this problem might
be to add additional operators to the signatur&afPRED:

specNATPRED = sorts nznat< nat
ops ...
__+__:nznatx nat— nznat
__+__:natx nznat— nznat
__X __:nznatx nznat— nznat

Thensucq0) +sucdO) is a term of sorhznat as desired. Unfortunately, this signa-
ture is not regular.Exercise: Why not? What can be done to make it regular?)

An alternative is to use a so-callegtract, an additional operation for converting
from a sort to one of its subsorts:

specNATPRED = sorts nznat< nat
ops ...

r:nat— nznat

¥m, n: nat k: nznat

.r(n)=n

Now, the termpred(r (sucg0) + sucq0))) is well-formed, and is equal tsucg0)
in all models of NATPRED. In the words of [GM9P], inserting the retractinto
pred(r (sucg0) + sucg0))) gives it “the benefit of the doubt”, and the term is “vin-
dicated” by the fact that it is equal to a term that does not contaifhe term
pred(r(0)) is also well-formed, but in the initial model @f ATPRED this term is
equal only to other terms containing the retracand can thus be regarded as an
error message. The use of retracts (which can be inserted automatically) is well-
behaved under certain conditions on order-sorted presentétions [GM92].

Another version ofNATPRED is obtained by using aarror supersortfor the
codomain ofpredrather than a subsort for its domain:
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specNATPRED = sorts nat < nat?
ops O:nat
succnat— nat
pred nat— nat?
__+__:natx nat— nat
__X __:natx nat— nat

vm, n: nat
« pred(sucgn)) =n
¢« 0+n=n
 sucgm) +n = sucgm-+n)
e Oxn=0

e sucdm) x n=(mxn)+n

The sortnat? may be thought of asat extended by the addition of an error value
corresponding tpred(0).

Here we have the same problem with ill-formed terms as before; an example is
the termsucgpred(sucg0))). Again, retracts solve the problem. In this case, the
required retract is the operatiomat? — nat, defined by the axiorin:nate r(n) =
n. O

Exercise 2.7.54Try to view the error algebra approach presented in Seftion2.7.3
as a special case of order-sorted algebra. O

2.7.6 Other options

The previous sections have mentioned only a few of the ways in which the standard
framework can be improved to make it more suitable for particular kinds of applica-
tions. A great many other variations are possible; a few of these are sketched below.

Example 2.7.55 (First-order predicate logic) Signatures may be modified to en-
able them to include (typeddredicate namesn addition to operation names,
e.g. ._<__:natx nat Atomic formulae are then formed by applying predicates
to terms; infirst-order predicate logic with equalifythe predicate _=__:sx sis
implicitly available for any sors. Formulae are built from atomic formulae using
logical connectives and quantifiers. Algebras are modified to include relations on
their carriers to interpret predicate names; the interpretation of the built-in equal-
ity predicate (if available) may be forced to be the underlying equality on values,
or it may merely be required to be a congruence relation. Homomorphisms are re-
quired to respect predicates as well as operations. The satisfactisenfencda
formula without free variables) by an algebra is as usual in first-order logic. See Ex-
amplg 4.1.1P for details of the version of first-order predicate logic with equality we
will use. Presentations involving predicates and first-order axioms are appropriate
for the specification of programs Ingic programming languagesuch as Prolog,
where the Horn clause fragment of first-order logic is used for writing the programs
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92 2 Simple equational specifications

themselves. Note that such presentations may have no models at all, but even if they
have some models, they may have no initial models (see Example]2.7.11) or no final
models (see Exercife 2.7]14), or even no reachable moHgkscfse: Give a spec-
ification with first-order axioms having some models but no reachable model.)

Example 2.7.56 (Higher-order functions).Higher-order functions (taking func-
tions as parameters and/or returning functions as results) can be accommodated by
interpreting certain sort names as (subsets of) function spaces. GiverSaket
(base) sorts, €5~ be the closure a&under formation of function type&™ is the
smallest set such th&C S~ and for allsy,...,$,S€S7, S X -+ XS —SE S,
Then ahigher-order signatureX is a pair (S Q) where Q is an S~-indexed
set of operation names. This determines an ordinary signatureomprised of
the sort nameS&~ and the operation names {@ together with operation names
apply.(s1 X ++- X8 — S) XS X -+ X & — s for everysy,...,s,s€ S~. Note
that, except for the various instancesagiply, all the operations irE~ are con-
stants, albeit possibly of “functional” sort. Aigher-order X-algebrais just an
ordinary (total)X—-algebra, and analogously for the definitions of higher-order
X-homomorphism, reachable higher-ordealgebra, higher-ordeX-term, higher-
order X-equation, satisfaction of a higher-ordErequation by a higher-ordex-
algebra, and higher-order presentation. A higher-odatgebraA is extensionaif

for all sortss; x --- x sy — s€ S~ and valuesf,g € |Alg x...xs,—s, T = gwhenever
applya(f,as,...,an) = applys(g,as,...,an) for all a; € |Als,...,an € |Als,. In an
extensional algebra, every carrieffAls, «...xs,—s IS isomorphic to a subset of the
function spacgA|s, x --- x |Als, — |Als. A higher-orderZ-algebraA is amodelof

a presentatiofZ, @) if A=z &, Ais extensional, and is reachable. The reacha-
bility requirement (no junk) means thg|s, ....xs,—s Will almost never be the full
function spacdAls, x --- x |Als, — |Als: only the functions that are denotable by
ground terms will be present id\s, ...xs,—s. Higher-order (equational) presenta-
tions always have initial models [MTW83]. O

Example 2.7.57 (Polymorphic types)Programming languages such as Standard ML
[Pau96] can be used to defipelymorphic typesuch asx list (instances of which
includebool listand(bool list) list) andpolymorphic valuesuch aheadva. alist —

o (which is then applicable to values of types suclbasl list and (bool list) list).

To specify such types and functions, signatures are modified to cdgytncon-
structorsin place of sort names; for examplést is a unary type constructor and
boolis a nullary type constructor. Terms built using these type constructortypad
variables(such asx above) are th@olymorphic type®f the signature. The s&?

of operation names is then indexed by non-empty sequences of polymorphic types,
wheref € Q, 1,+ meansf:VFV(t1)U...UFV(ty) UFV(t)ety x --- xty — t. There

are various choices for algebras over such signatures. Perhaps the most straight-
forward choice is to require each algel#ao incorporate a (single-sortedjge-

bra of carriers Cari(A), having sets interpreting types as values and an operation
to interpret each type constructor. Then, for each operatien<, i+ and for

each instantiation of type variabl&s/ — |Carr(A)|, A has to provide a function
faii#(t1) x -+ x i*(tn) — i*(t). Various conditions may be imposed to ensure that
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the interpretation of polymorphic operationspgrametricin the sense of [Str67],

by requiringfaj and f5 i to be appropriately related for different type variable in-
stantiations, i’. Another choice would be to interpret each type as the set of equiva-
lence classes ofpartial equivalence relatiomn a model of the untypetl-calculus
[BC88]. Axioms contain (universal) quantifiers for type variables in addition to
quantifiers for ordinary variables, as in Systemi_F [Gir89]; alternatively, type vari-
able quantification may be left implicit, as in Extended ML [KST97]. O

Example 2.7.58 (Non-deterministic functions)Non-deterministic functions may

be handled by interpreting operation names in algebras as relations, or equivalently
as set-valued functions. Homomorphisms are required to preserve possible values
of functions: for any homomorphish: A — B and operationf:s; x --- X 3 —

s, if a is a possible value offa(ay,...,a,) then hs(a) is a possible value of
fa(hs,(a1), ..., hs,(an)). Universally quantified inclusions between sets of possible
values may be used as axioms: t’ means that every possible valuet @ a possi-

ble value oft’. O

Example 2.7.59 (Recursive definitions)-ollowing [Sco76], partial functions may

be specified as least solutions of recursive equations, where “least” is with respect
to an ordering on the space of functions of a given type. To accommodate this, we
can usecontinuous algebras.e. ordinary (total)>-algebras with carriers that are
complete partially ordered sets (so-callgzbg and operation names interpreted as
continuous functionsn these sets. See Example 3.8.14. The “bottom” element

of the carrier for a sort, if it exists, represents the completely undefined value of that
sort. The order on carriers induces an order on (continuous) functions in the usual
fashion. A homomorphism between continuous algebras is required to be continu-
ous as a function between cpos. It is possible to define a language of axioms that
allows direct reference to least upper bounds of chains (see Examplg 4.1.22), and/or
to the order relation itself. Such techniques may also be used to specify infinite data
types such astreams a0

2.8 Bibliographical remarks

Much of the material presented here is well known, at least in its single-sorted
version, in universal algebra as a branch of mathematics. Standard references are
[Gra79] and [Coh65]. We approach this material from the direction of computer
science, seé [WecB?2] arnd [MT92], and present the fundamentals of equational spec-
ifications as developed in the 1970s [GTW76], [Gut75], [Zil74], see &lso [EM85]
for an extended monograph-style presentation.

The simplest and most limited form of a specification is a “bare” signature, and
this is what is used to characterise classes of algebras (program modules) in modu-
larisation systems for programming languages — see e.g. Standard ML [MTHM97],
[Pau96], where such characterisations are in fact called signatures.
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94 2 Simple equational specifications

The first appearance of the Satisfaction Lemma (Lefnma]2.1.8) in the algebraic
specification literature was in [BGBO], echoing the semantic consequences of the
definition of (theory) interpretations in logic [End72]. This fundamental link be-
tween syntax and semantics will become one of the cornerstones of later develop-
ment starting in Chaptéf 4.

One topic that is only touched upon here (see e.g. Theprem P.2.10) is the ex-
pressive power of specifications. See [BT87] for a comprehensive survey of what is
known about the expressive power of the framework presented in this chapter. The
main theorem is the one mentioned at the beginning of Sectipn 2.7.

We make a distinction between presentations and theories that is not present in
some other work. This distinction surfaces in the definition of theory morphisms
(Definition [2.3.1]). For two presentations (not necessarily theofEs®) and
(X', @', [Gan83] takes a signature morphigmX — X’ to be a specification mor-
phismo: (X, &) — (X', @) if o(P) C P'. Such ac is referred to as an “axiom-
preserving theory morphism” in_[Mes89]. Exerc[se 2.8.15 shows that this is not
equivalent to our definition of theory morphism between the theories presented by
those presentations. Another possibility is to requite map only thegroundequa-
tions in® to equationsirCly/ (®'), as in [Ehr82]. These alternative definitions seem
unsatisfactory since they make little or no sense on the level of models, in contrast
to the relationship between theory and model levels for theory morphisms given by
Propositior] 2.3.713. We will later (Definitidn 5.5.1) defisecification morphisms
as a generalisation of morphisms between presentations, relying on this relationship.

The many-sorted equational calculus is presented in [GM85] together with a
proof that it is sound and complete. This builds on the standard equational calculus
[Bir35], but the modifications needed to deal with empty carriers in the many-sorted
context came as a surprise at the time. Our choice of rules in Sgctjon 2.4 is different
from this standard version but the two systems are equivalent (Exgrcise| 2.4.14) and
the proofs of soundness and completeness are analogous.

The initial algebra approach to specification (Sedfiof 2.5) is the classical one. It
originated with the seminal papér [GTW?76], and was further developed by Hartmut
Ehrig and his group; see [EMB5] for a comprehensive account.

Example[2.5.24 and Exercige 2.5.25 point at useful ways to make inductive
proofs easier by providing derived induction rule schemes, as possible for instance
in the logics of Larch[[GH93] and &s5L [Mos04] and their proof support systems
(LP [GG89] and H TS [MMLQ7], respectively), see also Chapter 6 of [Far92].

The proof of the incompleteness theorem for initial semantics (Thejorem 2.5.26)
from [MS85] follows [Nou81] where it was used to show that the equational calcu-
lus with a specific induction rule scheme is not complete. An alternative to adding
induction rules to the equational calculus is to restrict attention to so-called
complete presentations; these are presentati@ng) for which the equational
calculus itself yields all of th&-equations that hold in initial models ¢&, @)
[Hee86]. Then the problem becomes one of findingaanomplete presentation
corresponding to a given presentation. By the incompleteness theorem, this is not
always possible.
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There is a substantial body of theory on term rewriting systems; Sectipn 2.6 is
only the tip of the iceberg. For much more on the topic, and for the details of the
Knuth-Bendix completion algorithm [KB70] that have been omitted in Se€tign 2.6,
see [DJ90], [[KIo9P], [[BN9B], [[Kir99] and/[Ter03]. See [KM87] or_[DJ90] for a
discussion of proof by consistency, which originated with [Muis80]. Like most work
in this area, all these restrict attention to the single-sorted case._Seel|[EM85] for a
treatment of the many-sorted case, up to the soundness and completeness theorems
for conversion, without our simplifying assumption (cf. Exer¢ise 2]6.11).

In the case of reachable and final semantics, it is usual to look at reachable or
final extensionof algebras (alternative terminology: hierarchical specifications),
rather than at the reachable or final interpretation of a completed specification. See
[BDP™79] or [WB82Z] for reachable semantics, and [GGM76] [or [Wan79] for fi-
nal semantics. Under appropriate conditions, the reachable models of a presentation
form a complete lattice, with the initial model at one extreme and the final model
at the other; see [GGMY6] and [BWFE84]. For such hierarchical specifications, an
incompleteness theorem that is even stronger than Thgorem|2.5.26 may be proved:
no sound proof system can derive gdbundequational consequences of such spec-
ifications, see [MS85].

The first attempt to specify errors by distinguishing error values from OK values
was [Gog78]. More details of the approach outlined in Se¢tion]2.7.3 can be found in
[GDLEB84]. The final semantics of error presentations is discusseéd in [Gog85]. See
[BBCS86] for an alternative approach which is able to deal with examples like the
one discussed in Exercise 2.1.29.

More details of the approach to partial algebras outlined in Seftion| 2.7.4 can
be found in[[BW82b]. WeakE-homomorphisms are called totBthomomorphisms
there. Alternative approaches to the specification of partial algebras are presented in
[Rei87] and [Kre8¥], and more recently [Mos$04]. See [Bur86] for a comprehensive
analysis of the various alternative definitions of the basic notions.

See [GM9?2], further refined irl_[MesD9], for more on the approach to order-
sorted algebra in Sectign 2.7.5. Alternative approaches include [Gog84]. [Poi90]
and [Smo86] which is sometimes referred to as “universal” order-sorted algebra to
distinguish it from “overloaded” order-sorted algebra as presented here. A universal
order-sorted algebra contains a single universe of values, where a sort corresponds
to a subset of the universe and each operation name identifies a (single) function
on the universe. A compromise is in rewriting logic [Mes92] as implemented in
Maude [CDE 02]. See[[GD94a] and [Mos93] for surveys comparing the differ-
ent approached. [GD944a] discusses how some of the definitions and results in Sec-
tion[2.7.% can be generalised by dropping or weakening the monotonicity require-
ments on order-sorted signatures and order-sorted algebras. Yet a different approach
to subsorting is taken in &L [Mos04] where subsort coercions may be arbitrary
injective functions rather than merely inclusions.

First-order predicate logic has been used as a framework for algebraic specifica-
tion in various approaches, see for instance CIP-L [BB8] and GisL [Mos04].

See [P0i86],[[MTW83], [Mei9P] and [Qia93] for different approaches to the alge-
braic specification of higher-order functions. Frameworks that cater for the spec-
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96 2 Simple equational specifications

ification of polymorphic types and functions are described in [M$S90], [Mos89]
and [KST97]. See [Nip86] for more on algebras with non-deterministic operations;
for a different approach using relation algebra, see [BS93]. See [WM97] for a
comprehensive overview. Soundness and completeness of term rewriting for non-
deterministic specifications is studied in [Hus92]. Continuous algebras and the use
of Scott-style domain-theoretic techniques in algebraic specification were first dis-
cussed in[[GTWW?77]. See [Sch86] ar [G$90] for much more on domain theory
itself. Although these and other extensions to the standard framework have been ex-
plored separately, the few attempts that have been made to combine such extensions
(see e.g/JAC89] and [Mos04]) have tended to reveal new problems.
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