
Donald Sannella and Andrzej Tarlecki

Foundations of Algebraic
Specification and Formal
Software Development

September 29, 2010

Springer

Page: v job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

Page: xiv job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

Contents

0 Introduction . 1
0.1 Modelling software systems as algebras . 1
0.2 Specifications . 5
0.3 Software development . 8
0.4 Generality and abstraction . 10
0.5 Formality . 12
0.6 Outlook . 14

1 Universal algebra . 15
1.1 Many-sorted sets . 15
1.2 Signatures and algebras . 18
1.3 Homomorphisms and congruences . 22
1.4 Term algebras . 27
1.5 Changing signatures . 32

1.5.1 Signature morphisms . 32
1.5.2 Derived signature morphisms . 36

1.6 Bibliographical remarks . 38

2 Simple equational specifications. 41
2.1 Equations . 41
2.2 Flat specifications . 44
2.3 Theories . 50
2.4 Equational calculus . 54
2.5 Initial models . 58
2.6 Term rewriting . 66
2.7 Fiddling with the definitions . 72

2.7.1 Conditional equations . 72
2.7.2 Reachable semantics . 74
2.7.3 Dealing with partial functions: error algebras 78
2.7.4 Dealing with partial functions: partial algebras 84
2.7.5 Partial functions: order-sorted algebras 87

xv

xvi Contents

2.7.6 Other options . 91
2.8 Bibliographical remarks . 93

3 Category theory. 97
3.1 Introducing categories . 99

3.1.1 Categories . 99
3.1.2 Constructing categories . 105
3.1.3 Category-theoretic definitions . 109

3.2 Limits and colimits . 111
3.2.1 Initial and terminal objects . 111
3.2.2 Products and coproducts . 113
3.2.3 Equalisers and coequalisers . 115
3.2.4 Pullbacks and pushouts . 116
3.2.5 The general situation . 119

3.3 Factorisation systems . 123
3.4 Functors and natural transformations . 127

3.4.1 Functors . 128
3.4.2 Natural transformations . 135
3.4.3 Constructing categories, revisited . 139

3.5 Adjoints . 144
3.5.1 Free objects . 144
3.5.2 Left adjoints . 145
3.5.3 Adjunctions . 150

3.6 Bibliographical remarks . 152

4 Working within an arbitrary logical system . 155
4.1 Institutions . 157

4.1.1 Examples of institutions . 161
4.1.2 Constructing institutions . 179

4.2 Flat specifications in an arbitrary institution. 186
4.3 Constraints . 192
4.4 Exact institutions . 197

4.4.1 Abstract model theory . 204
4.4.2 Free variables and quantification . 207

4.5 Institutions with reachability structure . 210
4.5.1 The method of diagrams . 213
4.5.2 Abstract algebraic institutions . 215
4.5.3 Liberal abstract algebraic institutions . 216
4.5.4 Characterising abstract algebraic institutions that admit

reachable initial models . 219
4.6 Bibliographical remarks . 221

Page: xvi job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

Contents xvii

5 Structured specifications. 227
5.1 Specification-building operations . 228
5.2 Towards specification languages . 234
5.3 An example . 238
5.4 A property-oriented semantics of specifications 243
5.5 The category of specifications . 247
5.6 Algebraic laws for structured specifications . 250
5.7 Bibliographical remarks . 255

6 Parameterisation. 257
6.1 Modelling parameterised programs . 258
6.2 Specifying parameterised programs . 268
6.3 Parameterised specifications . 274
6.4 Higher-order parameterisation . 278
6.5 An example . 285
6.6 Bibliographical remarks . 288

7 Formal program development . 291
7.1 Simple implementations . 292
7.2 Constructor implementations . 300
7.3 Modular decomposition . 307
7.4 Example . 314
7.5 Bibliographical remarks . 320

8 Behavioural specifications. 323
8.1 Motivating example . 324
8.2 Behavioural equivalence and abstraction . 327

8.2.1 Behavioural equivalence . 328
8.2.2 Behavioural abstraction . 333
8.2.3 Weak behavioural equivalence . 335

8.3 Behavioural satisfaction . 338
8.3.1 Behavioural satisfaction vs. behavioural abstraction 342

8.4 Behavioural implementations . 346
8.4.1 Implementing specifications up to behavioural equivalence . 347
8.4.2 Stepwise development and stability . 348
8.4.3 Stable and behaviourally trivial constructors 351
8.4.4 Global stability and behavioural correctness 356
8.4.5 Summary . 363

8.5 To partial algebras and beyond . 364
8.5.1 Behavioural specifications inFPL . 364
8.5.2 A larger example . 371
8.5.3 Behavioural specifications in an arbitrary institution 382

8.6 Bibliographical remarks . 394

Page: xvii job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

xviii Contents

9 Proofs for specifications. 399
9.1 Entailment systems . 400
9.2 Proof in structured specifications . 414
9.3 Entailment between specifications . 427
9.4 Correctness of constructor implementations. 435
9.5 Proof and parameterisation . 440
9.6 Proving behavioural properties . 451

9.6.1 Behavioural consequence . 451
9.6.2 Behavioural consequence for specifications 463
9.6.3 Behavioural consequence between specifications 466
9.6.4 Correctness of behavioural implementations 470
9.6.5 A larger example, revisited . 472

9.7 Bibliographical remarks . 479

10 Working with multiple logical systems . 483
10.1 Moving specifications between institutions . 484

10.1.1 Institution semi-morphisms . 485
10.1.2 Duplex institutions . 489
10.1.3 Migrating specifications . 491

10.2 Institution morphisms . 500
10.3 The category of institutions . 509
10.4 Institution comorphisms . 517
10.5 Bibliographical remarks . 528

References. 533

Page: xviii job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

Page: 40 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

Chapter 2
Simple equational specifications

A specification is an unambiguous description of a signatureΣ and a class ofΣ -
algebras. Because we model programs as algebras, a specification amounts to a
characterisation of a class of programs. Each of these programs is regarded as a
correct realisation of the specification.

Given a signatureΣ (which, if finite, may be presented by simply listing its sort
names and its operation names with their arities and result sorts), there are two
basic techniques that may be used for describing a class ofΣ -algebras. The first is
to simply give a list of all the algebras in the class. Unfortunately, we are almost
always interested ininfiniteclasses of algebras, where this technique is useless. The
second is to describe the functional behaviour of the algebras in the class by listing
the properties (axioms) they are to satisfy. This is the fundamental specification
technique used in work on algebraic specification and the one that will be studied in
this chapter. The simplest and most common case is the one in which properties are
expressed in the form of universally quantified equations; in most of this chapter,
we restrict attention to this case. Section 2.7 indicates other forms of axioms that
may be of use, along with some possible variations on the definitions of Chapter 1,
and further possibilities will be discussed in Chapter 4. Since most of the results in
this chapter are fairly standard and proofs are readily available in the literature, most
proofs are left as exercises for the reader.

Chapters 5 and 8 will cover additional techniques for describing classes of alge-
bras. All of these involve taking a class of algebras and performing a simple opera-
tion to obtain another class of algebras, often over a different signature. Using such
methods, complex specifications of classes of complex algebras may be built from
small and easily understood units.

2.1 Equations

Any given signature characterises the class of algebras over that signature. Although
this fixes the names of sorts and operations, it is an exceedingly limited form of de-

41

42 2 Simple equational specifications

scription since each such class contains a wide diversity of different algebras. Any
two algebras taken from such a class may have carrier sets of different cardinalities
and containing different elements; even if both algebras happen to have “match-
ing” carrier sets, the results produced by applying operations may differ. For most
applications it is necessary to focus on a subclass of algebras, obtained by impos-
ing axiomswhich serve as constraints on the permitted behaviour of operations.
One particularly simple form of axioms are equations, which constrain behaviour
by asserting that the value of two given terms arethe same. Equations have limited
expressive power, but this disadvantage is to some extent balanced by the simplicity
and convenience of reasoning in equational logic (see Sections 2.4 and 2.6).

Variables in equations will be taken from a fixed but arbitrary infinite setX . We
requireX to be closed under finite disjoint union: if〈Xi〉i∈I is finite andXi ⊆X
for all i ∈ I , then

⊎
〈Xi〉i∈I ⊆X . We use variable names likex,y,z in examples, and

so we assume that these are all inX . Throughout this section, letΣ = 〈S,Ω〉 be a
signature.

Definition 2.1.1 (Equation).A Σ -equation∀X • t = t ′ consists of:

• a finiteS-sorted setX (of variables), such thatXs⊆X for all s∈ S; and
• two Σ -termst, t ′ ∈ |TΣ (X)|s for some sorts∈ S.

A Σ -equation∀∅• t = t ′ is called aground (Σ -)equation. ut

Notation. The explicit quantification overX in aΣ -equation∀X • t = t ′ is essential,
as will become clear in Section 2.4. In spite of this fact, it is common in practice to
leave quantification implicit, writingt = t ′ in place of∀FV(t)∪FV(t ′)• t = t ′, and
we will follow this convention in examples when no confusion is possible. ut

Definition 2.1.2 (Satisfaction).A Σ -algebraA satisfies(or, is a model of) a Σ -
equation∀X • t = t ′, writtenA |=Σ ∀X • t = t ′, if for every (S-sorted) functionv:X→
|A|, tA(v) = t ′A(v).

A satisfies (or, is a model of) a setΦ of Σ -equations, writtenA |=Σ Φ , if A |=Σ ϕ

for every equationϕ ∈Φ . A classA of Σ -algebras satisfies aΣ -equationϕ, written
A |=Σ ϕ, if A |=Σ ϕ for everyA∈ A . Finally, a classA of Σ -algebras satisfies a
setΦ of Σ -equations, writtenA |=Σ Φ , if A |=Σ Φ for everyA∈A (equivalently,
if A |=Σ ϕ for everyϕ ∈Φ , i.e.A |=Σ ϕ for everyA∈A andϕ ∈Φ). ut

The definition of satisfaction provides the syntax of equations with the obvious se-
mantics: an algebraA satisfies an equation∀X • t = t ′ if for any given assignment of
values in|A| to the variables inX, the termst andt ′ evaluate inA to the same value.

Notation. We sometimes write|= in place of|=Σ whenΣ is obvious. ut

Exercise 2.1.3.Recall Σ1 andA1 from Example 1.2.4. Give someΣ1-equations
(both ground and non-ground) that are satisfied byA1. Give someΣ1-equations
(both ground and non-ground) that arenot satisfied byA1. ut

Page: 42 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

2.1 Equations 43

Exercise 2.1.4.If ∀X • t = t ′ is aΣ -equation andX ⊆ X′ (andX′s⊆X for all s∈ S),
it follows from Definition 2.1.1 that∀X′ • t = t ′ is also aΣ -equation. Show that
A |=Σ ∀X • t = t ′ implies thatA |=Σ ∀X′ • t = t ′. Give a counterexample showing that
the converse doesnot hold. (HINT : ConsiderXs = ∅ and|A|s = ∅ for somes∈ S.)
Show that itdoeshold if Σ has only one sort. ut

Exercise 2.1.5.Show that surjectiveΣ -homomorphisms preserve satisfaction ofΣ -
equations: ifh:A→B is a surjectiveΣ -homomorphism thenA |=Σ ϕ impliesB |=Σ ϕ

for anyΣ -equationϕ. Show that injectiveΣ -homomorphisms reflect satisfaction of
Σ -equations: ifh:A→ B is an injectiveΣ -homomorphism thenB |=Σ ϕ implies
A |=Σ ϕ for anyΣ -equationϕ. Conclude thatΣ -isomorphisms preserve and reflect
satisfaction ofΣ -equations. ut

Exercise 2.1.6.Give an alternative definition ofA |=Σ ∀X • t = t ′ via the satisfaction
of t = t ′ viewed as a ground equation over an enlarged signature. (HINT : Defi-
nition 2.1.2 involves quantification over valuationsv:X → |A|. Consider how this
might be replaced by quantification over algebras having a signature obtained from
Σ by adding a constant for each variable inX.) ut

It is worth noting in passing the use of the word “class” above to refer to an arbi-
trary collection ofΣ -algebras. We use this term since the collection ofΣ -algebras is
too “large” to form a set. Since the set/class distinction is peripheral to our concerns
here, we will not belabour it, except to mention that it would be possible to avoid the
issue entirely by restricting attention to algebras in which all carrier sets are subsets
of some large but fixed universal set of values.

A signature morphismσ :Σ → Σ ′ gives rise to a translation ofΣ -equations toΣ ′-
equations. This is essentially a simple matter of applying the translation on terms
induced byσ to both sides of the equation.

Definition 2.1.7 (Equation translation). Let ∀X • t = t ′ be aΣ -equation, and let
σ :Σ → Σ ′ be a signature morphism. Recall from Definition 1.5.10 that we then
haveσ(t),σ(t ′) ∈ |TΣ ′(X′)| where

X′s′ =
⊎

σ(s)=s′
Xs for eachs′ ∈ S′.

The translation of ∀X • t = t ′ by σ is then theΣ ′-equationσ(∀X • t = t ′) =
∀X′ • σ(t) = σ(t ′). (The fact thatX is closed under finite disjoint union guaran-
tees that this is indeed aΣ ′-equation.) ut

An important result which brings together some of the main definitions above is the
following:

Lemma 2.1.8 (Satisfaction Lemma [BG80]).If σ :Σ → Σ ′ is a signature mor-
phism,ϕ is a Σ -equation and A′ is a Σ ′-algebra, then A′ |=Σ ′ σ(ϕ) iff A′ σ |=Σ ϕ.

ut

Page: 43 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

44 2 Simple equational specifications

Whenϕ is a groundΣ -equation, it is easy to see that this follows directly from the
property established in Exercise 1.5.12. Whenσ is injective (on both sort and op-
eration names), it seems intuitively clear that the Satisfaction Lemma should hold,
since the domain of quantification of variables is unchanged, the only difference
betweenϕ andσ(ϕ) is the names used for sorts and operations, and the only differ-
ence betweenA′ andA′ σ (apart from sort/operation names) is thatA′ might provide
interpretations for sort and operation names which do not appear inσ(ϕ) and so
cannot affect its satisfaction. Whenσ is non-injective the Satisfaction Lemma still
holds, but this is less intuitively obvious (particularly whenσ is non-injective on
sort names).

Exercise 2.1.9.Take a signature morphismσ :Σ→ Σ ′ which is non-injective on sort
and operation names, aΣ -equation involving the sort and operation names for which
σ is not injective, and aΣ ′-algebra, and check that the Satisfaction Lemma holds in
this case. ut

Exercise 2.1.10.Prove the Satisfaction Lemma, using Exercise 1.5.12. ut

Exercise 2.1.11.Define the translation of aΣ -equation by a derived signature mor-
phismδ :Σ → Σ ′, and convince yourself that the Satisfaction Lemma also holds for
this case. ut

The Satisfaction Lemma says that the translations of syntax (terms, equations) and
semantics (algebras) induced by signature morphisms are coherent with the defini-
tion of satisfaction. Said another way, the manner in which satisfaction of equations
by algebras varies according to the signature at hand fits exactly with these transla-
tions. Further discussion of the property embodied in the Satisfaction Lemma may
be found in Section 4.1.

2.2 Flat specifications

A signature together with a set of equations over that signature constitutes a simple
form of specification. We refer to these asflat (meaningunstructured) specifications
in order to distinguish them from thestructuredspecifications to be introduced in
Chapter 5, formed from simpler specifications using specification-building opera-
tions. As we shall see later, it is possible in some (but not all) cases to “flatten”
a structured specification to yield a flat specification describing the same class of
algebras.

Throughout this section, letΣ be a signature.

Definition 2.2.1 (Presentation).A presentation(also known as aflat specification)
is a pair〈Σ ,Φ〉 whereΦ is a set ofΣ -equations (called theaxiomsof 〈Σ ,Φ〉). A
presentation〈Σ ,Φ〉 is sometimes referred to as aΣ -presentation. ut

The term “presentation” is chosen to emphasize the syntactic nature of the concept.
The idea is that a presentationdenotes(or presents) a semantic object which is

Page: 44 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

2.2 Flat specifications 45

inconvenient to describe directly. A reasonable objection to the definition above is
that it fails to include restrictions to ensure that presentations are truly syntactic
objects, namely thatΣ andΦ arefinite, or at least effectively presentable in some
other sense (e.g. recursive or recursively enumerable). Although it would be possible
to impose such a restriction, we refrain from doing so in order to avoid placing undue
emphasis on issues of this kind.

Definition 2.2.2 (Model of a presentation).A modelof a presentation〈Σ ,Φ〉 is a
Σ -algebraA such thatA |=Σ Φ . Mod[〈Σ ,Φ〉] is the class of all models of〈Σ ,Φ〉. ut

Taking〈Σ ,Φ〉 to denote the semantic objectMod[〈Σ ,Φ〉] is sometimes called taking
its loose semantics. The word “loose” here refers to the fact that this is not always
(in fact, hardly ever) an isomorphism class of algebras:A,B ∈ Mod[〈Σ ,Φ〉] does
not imply thatA∼= B. In Section 2.5 we will consider the so-calledinitial semantics
of presentations in which a further constraint is imposed on the models of a pre-
sentation, forcing every presentation to denote an isomorphism class of algebras.

Example 2.2.3.LetBool= 〈ΣBool,ΦBool〉 be the presentation below.1

specBool= sorts bool
ops true:bool

false:bool
¬ :bool→ bool
∧ :bool×bool→ bool
⇒ :bool×bool→ bool

∀p,q:bool
• ¬true= false
• ¬false= true
• p∧ true= p
• p∧¬p = false
• p⇒ q = ¬(p∧¬q)

DefineΣBool-algebrasA1, A2 andA3 as follows:

1 Here and in the sequel we follow the notation of CASL and itemize axioms in specifications,
marking them with• and introducing universal quantification over the variables only once for the
rest of the list of axioms. Note though that it may be important to keep some axioms outside of the
scope of quantification over some variables, see Exercise 2.1.4.

Page: 45 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

46 2 Simple equational specifications

|A1|bool = {?} |A2|bool = {♣,♥,♠} |A3|bool = {tt, ff}
trueA1 = ? trueA2 =♣ trueA3 = tt
falseA1 = ? falseA2 =♥ falseA3 = ff

¬A1 = {? 7→ ?} ¬A2 = {♣ 7→ ♥,
♥ 7→ ♣,
♠ 7→ ♠}

¬A3 = {tt 7→ ff ,
ff 7→ tt}

∧A1 ?

? ?

∧A2 ♣ ♥ ♠
♣ ♣ ♥ ♥
♥ ♥ ♥ ♥
♠ ♠ ♥ ♥

∧A3 tt ff
tt tt ff
ff ff ff

⇒A1 ?
? ?

⇒A2 ♣ ♥ ♠
♣ ♣ ♥ ♣
♥ ♣ ♣ ♣
♠ ♣ ♠ ♣

⇒A3 tt ff
tt tt ff
ff tt tt

Each of these algebras is a model ofBool. (NOTE: Reference will be made to
Bool and to its modelsA1, A2 andA3 in later sections of this chapter. The name
Bool has been chosen for the same reason asbool is used for the type of truth
values in programming languages; it is technically a misnomer since this is not a
specification of Boolean algebras, see Example 2.2.4 below.)

Exercise. Show that the models defined and in fact all the models ofBool sat-
isfy ∀p:bool• ¬(p∧¬false) = ¬p. Define a model ofBool that does not satisfy
∀p:bool• ¬¬p = p. ut

Example 2.2.4.LetBA= 〈ΣBA,ΦBA〉 be the following presentation.

Page: 46 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

2.2 Flat specifications 47

specBA= sorts bool
ops true:bool

false:bool
¬ :bool→ bool
∨ :bool×bool→ bool
∧ :bool×bool→ bool
⇒ :bool×bool→ bool

∀p,q, r:bool
• p∨ (q∨ r) = (p∨q)∨ r
• p∧ (q∧ r) = (p∧q)∧ r
• p∨q = q∨ p
• p∧q = q∧ p
• p∨ (p∧q) = p
• p∧ (p∨q) = p
• p∨ (q∧ r) = (p∧q)∨ (p∧ r)
• p∧ (q∨ r) = (p∨q)∧ (p∨ r)
• p∨¬p = true
• p∧¬p = false
• p⇒ q = ¬p∨q

Models ofBA are calledBoolean algebras. One such model is the following two-
valued Boolean algebraB:

|B|bool = {tt, ff},
trueB = tt,
falseB = ff ,
¬B = {tt 7→ ff , ff 7→ tt}

and
∨B tt ff
tt tt tt
ff tt ff

∧B tt ff
tt tt ff
ff ff ff

⇒B tt ff
tt tt ff
ff tt tt

This is (essentially) the same asA3 in Example 2.2.3. Note thatA1 can be turned
into a (trivial) Boolean algebra in a similar way, but this is not the case withA2.

Exercise.Given a Boolean algebraB, define a relation≤B⊆ |B|× |B| by a≤B b iff
a∨B b = b. Show that≤B is a partial order withtrueB andfalseB as its greatest and
least elements respectively, and witha∨B b yielding the least upper bound ofa,b
anda∧B b yielding their greatest lower bound. (In fact,〈|B|,≤B〉 is a distributive
lattice with top and bottom elements and complement¬B.) ut

Exercise 2.2.5.Show that all Boolean algebras (the models ofBA as introduced in
Exercise 2.2.4) satisfy thede Morgan laws:

∀p,q:bool• ¬(p∨q) = ¬p∧¬q
∀p,q:bool• ¬(p∧q) = ¬p∨¬q ut

Page: 47 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

48 2 Simple equational specifications

The following characterisation of the expressive power of flat equational specifi-
cations is one of the classical theorems of universal algebra.

Definition 2.2.6 (Equationally definable class).A classA of Σ -algebras isequa-
tionally definableif A = Mod[〈Σ ,Φ〉] for some setΦ of Σ -equations. ut

Definition 2.2.7 (Variety). A classA of Σ -algebras isclosed under subalgebras
if for any A ∈ A and subalgebraB of A, B ∈ A . Similarly, A is closed under
homomorphic imagesif for any A∈A andΣ -homomorphismh:A→ B, h(A) ∈A ,
andA is closed under productsif for any family 〈Ai ∈A 〉i∈I , ∏〈Ai〉i∈I ∈A .

A non-empty class ofΣ -algebras which is closed under subalgebras, homomor-
phic images, and products is called avariety. ut

Proposition 2.2.8.Any equationally definable classA of Σ -algebras is a variety.
ut

Exercise 2.2.9.Prove Proposition 2.2.8: show that for any presentation〈Σ ,Φ〉,
Mod[〈Σ ,Φ〉] is closed under subalgebras, homomorphic images and products. For
example, formalise the following argument to show closure under subalgebras: if
A |=Σ ϕ andB is a subalgebra ofA thenB |=Σ ϕ since removing values from the
carriers of an algebra does not affect the truth of universally quantified assertions
about its behaviour. Closure under products and under homomorphic images are not
much more difficult to prove. ut

Theorem 2.2.10 (Birkhoff’s Variety Theorem [Bir35]). If Σ is a signature with a
finite set of sort names then a classA of Σ -algebras is a variety iffA is equationally
definable. ut

The “if” part of this theorem is (a special case of) Proposition 2.2.8. A complete
proof of the “only if” part is beyond the scope of this book; the curious reader
should consult e.g. [Wec92].

Example 2.2.11.Consider the signature

Σ = sorts s
ops 0:s

× :s×s→ s

and the classA of Σ -algebras satisfying the familiar cancellation law:

if a 6= 0 anda×b = a×c thenb = c

The Σ -algebraA such that|A|s is the set of natural numbers and×A is ordinary
multiplication is inA . TheΣ -algebraB such that|B|s = {0,1,2,3} and×A is mul-
tiplication modulo 4 is not inA . (Exercise:Why not?) SinceB is a homomorphic
image ofA, this shows thatA is not a variety and hence is not equationally defin-
able. ut

Page: 48 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

2.2 Flat specifications 49

Exercise 2.2.12.Formulate a definition of what it means for a class ofΣ -algebras to
be closed under homomorphic coimages. Are varieties closed under homomorphic
coimages? ut

Exercise 2.2.13.Formulate definitions of what it means for a class ofΣ -algebras to
be closed under quotients, and under isomorphisms. Show that closure under both
quotients and isomorphisms is equivalent to closure under homomorphic images.

ut

The assumption in Theorem 2.2.10 that the set of sort names inΣ is finite cannot
easily be omitted:

Exercise 2.2.14.A family B of Σ -algebras isdirectedif any two algebrasB1,B2 ∈
B are subalgebras of someB ∈B. Define theunion

⋃
B of such a family to be

the leastΣ -algebra such that eachB ∈ B is a subalgebra of
⋃

B (the carrier of⋃
B is the union of the carriers of all algebras inB, and the values of operations

on arguments are inherited from the algebras inB; this is well-defined sinceB is
directed). Prove that since we consider equations with finite sets of variables only,
then for any presentation〈Σ ,Φ〉, Mod[〈Σ ,Φ〉] is closed under directed unions, that
is, given anydirectedfamily of algebrasB ⊆Mod[〈Σ ,Φ〉], its union

⋃
B is also in

Mod[〈Σ ,Φ〉].
A generalisation of Theorem 2.2.10 that we hint at here without a proof is that

for anysignatureΣ , a class ofΣ -algebras is equationally definable iff it is a variety
that is closed under directed unions. ut

Exercise 2.2.15.Consider a signature with an infinite set of sort names and no op-
erations. LetAfin be the class of all algebras over this signature that have non-empty
carriers for a finite set of sorts only, and letA be the closure ofAfin under products
and subalgebras (this adds algebras where the carrier of each sort is either a single-
ton or empty). Check thatA is a variety. Prove, however, thatA is not definable by
any set of equations. HINT : Use Exercise 2.2.14. ut

Exercise 2.2.16.Modify the definition of equation (Definition 2.1.1) so that infinite
sets of variables are allowed; it is enough to consider sets of variables that are finite
for each sort, but may be non-empty for infinitely many sorts. Extend the notion
of satisfaction (Definition 2.1.2) to such generalised equations in the obvious way.
Check that the classA defined in Exercise 2.2.15 is definable by such equations.
HINT : Consider all equations of the form∀X∪{x,y:s}• x= y, for all sortssand sets
X of variables such thatXs′ 6= ∅ for infinitely many sortss′.

Another generalisation of Theorem 2.2.10 that we want to hint at here is that for
any signatureΣ a class ofΣ -algebras is definable by such generalised equations
iff it is a variety. The proof of the “if” part is as easy as for ordinary equations
(Proposition 2.2.8). The proof of the “only if” part is also quite similar as in the
finitary case. ut

A final remark to clarify the nuances in the many-sorted versions of Theo-
rem 2.2.10 is that the theorem holds forany signature (also with an infinite set

Page: 49 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

50 2 Simple equational specifications

of sort names) when we restrict attention to algebras with non-empty carriers of
all sorts: all varieties of such algebras (with closure under subalgebras limited to
subalgebras with non-empty carriers) are definable by equations with a finite set of
variables.

2.3 Theories

Any given equationally definable class of algebras has many different presentations;
in practice the choice of presentation is determined by various factors including the
need for simplicity and understandability and the desire for elegance. On the other
hand, such a class determines a single set of equations which uniquely identifies
it, called its theory. Since this is an infinite set, it is not a useful way of presenting
the class. However, it is a useful set to consider since it contains all axioms in all
presentations of the class, together with all their consequences.

Throughout this section, letΣ be a signature.

Definition 2.3.1 (ModΣ (Φ), ThΣ (A), ClΣ (Φ) and ClΣ (A)). For any setΦ of Σ -
equations,ModΣ (Φ) (themodels ofΦ) denotes the class of allΣ -algebras satisfying
all theΣ -equations inΦ :

ModΣ (Φ) = {A | A is aΣ -algebra andA |=Σ Φ} (= Mod[〈Σ ,Φ〉]).

For any classA of Σ -algebras,ThΣ (A) (the theory of A) denotes the set of all
Σ -equations satisfied by eachΣ -algebra inA :

ThΣ (A) = {ϕ | ϕ is aΣ -equation andA |=Σ ϕ}.

A setΦ of Σ -equations isclosedif Φ = ThΣ (ModΣ (Φ)). Theclosureof a setΦ of
Σ -equations is the (closed) setClΣ (Φ) = ThΣ (ModΣ (Φ)). Analogously, a classA
of Σ -algebras isclosedif A = ModΣ (ThΣ (A)), and theclosureof A is ClΣ (A) =
ModΣ (ThΣ (A)). ut

Proposition 2.3.2.For any setsΦ andΨ of Σ -equations and classesA ,B of Σ -
algebras:

1. If Φ ⊆Ψ then ModΣ (Φ)⊇ModΣ (Ψ).
2. If B ⊇A then ThΣ (B)⊆ ThΣ (A).
3. Φ ⊆ ThΣ (ModΣ (Φ)) and ModΣ (ThΣ (A))⊇A .
4. ModΣ (Φ) = ModΣ (ThΣ (ModΣ (Φ))) and ThΣ (A) = ThΣ (ModΣ (ThΣ (A))).
5. ClΣ (Φ) and ClΣ (A) are closed.

Proof. Exercise. (HINT : Properties 4 and 5 follow from properties 1–3.) ut

For any signatureΣ , the functionsThΣ andModΣ constitute what is known in lattice
theory as a Galois connection.

Page: 50 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

2.3 Theories 51

Definition 2.3.3 (Galois connection).A Galois connectionis given by two partially
ordered setsA andM (in Proposition 2.3.2,A is the set of all sets ofΣ -equations,
andM is the “set” of all classes ofΣ -algebras, both ordered by inclusion) and maps
∗:A→M and +:M→A (hereModΣ andThΣ) satisfying properties correspond-

ing to 2.3.2(1)–2.3.2(3). An elementa∈A (resp.m∈M) is calledclosedif a= (a∗)+

(resp.m= (m+)∗). ut

Some useful properties — including ones corresponding to 2.3.2(4) and 2.3.2(5) —
hold for any Galois connection.

Exercise 2.3.4.For any Galois connection and anya,b∈ A andm∈M, show that
the following properties hold:

1. a≤A m+ iff a∗ ≥M m.
2. If a andb are closed thena≤A b iff a∗ ≥M b∗. (Show that the “if” part fails ifa

or b is not closed.)

Here,≤A and≤M are the orders onA andM respectively. ut

Exercise 2.3.5.For any Galois connection such thatAandM have binary least upper
bounds (tA, tM) and greatest lower bounds (uA, uM), and for anya,b∈ A, show
that the following properties hold:

1. (atA b)∗ = a∗uM b∗.
2. (auA b)∗ ≥M a∗tM b∗.

(HINT : tA satisfies the following properties for anya,b,c∈ A:

• a≤A atA b andb≤A atA b.
• If a≤A c andb≤A c thenatA b≤A c.

and analogously foruA, tM anduM.) State and prove analogues to 1 and 2 for
anym,n∈M, and instantiate all these general properties for the Galois connection
between sets ofΣ -equations and classes ofΣ -algebras. ut

Definition 2.3.6 (Semantic consequence).A Σ -equationϕ is a semantic conse-
quenceof a setΦ of Σ -equations, writtenΦ |=Σ ϕ, if ϕ ∈ ClΣ (Φ) (equivalently, if
ModΣ (Φ) |=Σ ϕ). ut

Notation. We will write Φ |= ϕ instead ofΦ |=Σ ϕ when the signatureΣ is obvious.
ut

The use of the double turnstile (|=) here is the same as its use in logic:Φ |= ϕ if the
equationϕ is satisfied in every algebra which satisfies all the equations inΦ . Here,
Φ is a set ofassumptionsandϕ is aconclusionwhich follows fromΦ . We refer to
this assemantic(or model-theoretic) consequence to distinguish it from a similar
relation defined by means of “syntactic” inference rules in the next section.

Example 2.3.7.Recall Example 2.2.3. The exercise there shows:

ΦBool |=ΣBool ∀p:bool• ¬(p∧¬false) = ¬p
ΦBool 6|=ΣBool ∀p:bool• ¬¬p = p

Page: 51 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

52 2 Simple equational specifications

Then, referring to Example 2.2.4, Exercise 2.2.5 shows that the de Morgan laws are
semantical consequences of the set of axiomsΦBA. ut

Exercise 2.3.8.Prove that semantic consequence is preserved by translation along
signature morphisms: for any signature morphismσ :Σ → Σ ′, setΦ of Σ -equations,
andΣ -equationϕ,

if Φ |=Σ ϕ thenσ(Φ) |=Σ ′ σ(ϕ).

Equivalently,σ(ClΣ (Φ)) ⊆ ClΣ ′(σ(Φ)). Show that the reverse inclusion does not
hold. ut

Exercise 2.3.9.Let σ :Σ → Σ ′ be a signature morphism and letΦ ′ be a closed set
of Σ ′-equations. Show thatσ−1(Φ ′) is a closed set ofΣ -equations. ut

See Section 4.2 for some further results on semantic consequence and translation
along signature morphisms, presented in a more general context.

Definition 2.3.10 (Theory).A theoryis a presentation〈Σ ,Φ〉 such thatΦ is closed.
A presentation〈Σ ,Φ〉 (whereΦ need not be closed)presentsthe theory〈Σ ,ClΣ (Φ)〉.
A theory〈Σ ,Φ〉 is sometimes referred to as aΣ -theory. ut

A theory morphism between two theories is a signature morphism between their
signatures that maps the equations in the source theory to equations belonging to
the target theory.

Definition 2.3.11 (Theory morphism).For any theories〈Σ ,Φ〉 and〈Σ ′,Φ ′〉, athe-
ory morphismσ :〈Σ ,Φ〉 → 〈Σ ′,Φ ′〉 is a signature morphismσ :Σ → Σ ′ such that
σ(ϕ) ∈Φ ′ for everyϕ ∈Φ ; if moreoverσ is a signature inclusionσ :Σ ↪→ Σ ′ then
σ :〈Σ ,Φ〉 ↪→ 〈Σ ′,Φ ′〉 is atheory inclusion. ut

Exercise 2.3.12.Let σ :〈Σ ,Φ〉 → 〈Σ ′,Φ ′〉 and σ ′:〈Σ ′,Φ ′〉 → 〈Σ ′′,Φ ′′〉 be the-
ory morphisms. Show thatσ ;σ ′:Σ → Σ ′′ is a theory morphismσ ;σ ′:〈Σ ,Φ〉 →
〈Σ ′′,Φ ′′〉. ut

Proposition 2.3.13.Let σ :Σ → Σ ′ be a signature morphism,Φ be a set ofΣ -
equations andΦ ′ be a set ofΣ ′-equations. Then the following conditions are equiv-
alent:

1. σ is a theory morphismσ :〈Σ ,ClΣ (Φ)〉 → 〈Σ ′,ClΣ ′(Φ ′)〉.
2. σ(Φ)⊆ ClΣ ′(Φ ′).
3. For every A′ ∈ModΣ ′(Φ ′), A′ σ ∈ModΣ (Φ).

Proof. Exercise. (HINT : Use the Satisfaction Lemma, Lemma 2.1.8.) ut

The fact that 2.3.13(2) implies 2.3.13(1) gives a shortcut for checking if a signa-
ture morphism is a theory morphism: one need only check, for each axiom in some
presentationof the source theory, that the translation of that axiom is in the target
theory. The equivalence between 2.3.13(1) and 2.3.13(3) is similar in spirit to the
Satisfaction Lemma, demonstrating a perfect correspondence between translation

Page: 52 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

2.3 Theories 53

of syntax (axioms) along a signature morphism and translation of semantics (mod-
els) in the opposite direction. This equivalence shows that there is a model-level
alternative to the axiom-level phrasing of Definition 2.3.11; in fact, we will take
this alternative in the case of structured specifications (Chapter 5) where there is no
equivalent axiom-level characterisation (Exercise 5.5.4).

Example 2.3.14.Let Σ be the signature

Σ = sorts s,b
ops ttr:b

ffa:b
not:b→ b
and:b×b→ b
≤ :s×s→ b

and recall the presentationBool= 〈ΣBool,ΦBool〉 from Example 2.2.3. Define
a signature morphismσ :Σ → ΣBool by

σsorts= {s 7→ bool,b 7→ bool},
σε,b = {ttr 7→ true, ffa 7→ false},
σb,b = {not 7→ ¬},
σbb,b = {and 7→ ∧},
σss,b = {≤ 7→⇒}.

Let Φ be the set ofΣ -equations

Φ = {∀x:s• x≤ x = ttr, ∀p:b• and(p, ttr) = p}.

ThenClΣ (Φ) includesΣ -equations that were not inΦ , such as∀p:b,x:s• and(p,x≤
x) = p. Similarly, by Example 2.3.7,ClΣBool(ΦBool) includes theΣBool-
equation∀p:bool• ¬(p∧¬false) = ¬p, but it doesnot include∀p:bool• ¬¬p = p.
The presentations〈Σ ,ClΣ (Φ)〉 and 〈ΣBool,ClΣBool(ΦBool)〉 are theories —
the latter is the theory presented byBool. The signature morphismσ :Σ→ ΣBool

is a theory morphismσ :〈Σ ,ClΣ (Φ)〉 → 〈ΣBool,ClΣBool(ΦBool)〉.
Recalling Example 2.2.4, the theory presented byBA is 〈ΣBA,ClΣBA(ΦBA)〉,

the theory of Boolean algebras, withClΣBA(ΦBA) including for instance the de
Morgan laws (Exercise 2.2.5). The obvious signature morphismι :ΣBool→ ΣBA

is a theory morphismι :〈ΣBool,ClΣBool(ΦBool)〉 → 〈ΣBA,ClΣBA(ΦBA)〉.
These two theory morphisms can be composed, yielding the theory morphism

σ ;ι :〈Σ ,ClΣ (Φ)〉 → 〈ΣBA,ClΣBA(ΦBA)〉. ut

Exercise 2.3.15.Give presentations〈Σ ,Φ〉 and 〈Σ ′,Φ ′〉 and a theory morphism
σ :〈Σ ,ClΣ (Φ)〉→ 〈Σ ′,ClΣ ′(Φ ′)〉 such thatσ(Φ) 6⊆Φ ′. Note that this doesnotcon-
tradict the equivalence between 2.3.13(1) and 2.3.13(2). ut

Page: 53 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

54 2 Simple equational specifications

2.4 Equational calculus

As we have seen, each presentation〈Σ ,Φ〉 determines a theory〈Σ ,ClΣ (Φ)〉, where
ClΣ (Φ) containsΦ together with all of its semantic consequences. An obvious ques-
tion at this point is how to determine whether or not a givenΣ -equation∀X • t = t ′

belongs to the setClΣ (Φ), i.e. how to decide ifΦ |=Σ ∀X • t = t ′. The defini-
tion of ClΣ (Φ) does not provide an effective method: according to this, testing
Φ |=Σ ∀X • t = t ′ involves constructing the (infinite!) classModΣ (Φ) and check-
ing whether or not∀X • t = t ′ is satisfied by each of the algebras in this class, that
is, checking for each algebraA∈ModΣ (Φ) and functionv:X→ |A| (there may be
infinitely many such functions for a givenA) that tA(v) = t ′A(v). An alternative is
to proceed “syntactically” by means ofinference ruleswhich allow the elements of
ClΣ (Φ) to bederivedfrom the axioms inΦ via a sequence of formal proof steps.

Throughout this section, letΣ be a signature.

Definition 2.4.1 (Equational calculus).A Σ -equationϕ is a syntactic(or proof-
theoretic) consequenceof a setΦ of Σ -equations, writtenΦ `Σ ϕ, if this can be
derived by application of the following inference rules:

Axiom:
Φ `Σ ∀X • t = t ′

∀X • t = t ′ ∈Φ

Reflexivity:
Φ `Σ ∀X • t = t

Xs⊆X for all s∈ Sandt ∈ |TΣ (X)|

Symmetry:
Φ `Σ ∀X • t = t ′

Φ `Σ ∀X • t ′ = t

Transitivity:
Φ `Σ ∀X • t = t ′ Φ `Σ ∀X • t ′ = t ′′

Φ `Σ ∀X • t = t ′′

Congruence:
Φ `Σ ∀X • t1 = t ′1 · · · Φ `Σ ∀X • tn = t ′n

Φ `Σ ∀X • f (t1, . . . , tn) = f (t ′1, . . . , t
′
n)

f :s1×·· ·×sn→ s in Σ and
ti , t ′i ∈ |TΣ (X)|si for all i ≤ n

Instantiation:
Φ `Σ ∀X • t = t ′

Φ `Σ ∀Y• t[θ] = t ′[θ]
θ :X→ |TΣ (Y)| ut

Exercise 2.4.2 (Admissibility of weakening and cut).Prove that ifΦ `Σ ∀X • t = t ′

andΦ ⊆Φ ′ thenΦ ′ `Σ ∀X • t = t ′. (HINT : Simple induction on the structure of the
derivation ofΦ `Σ ∀X • t = t ′.) This shows that the following rule is admissible2:

Weakening:
Φ `Σ ∀X • t = t ′

Φ ∪Φ
′ `Σ ∀X • t = t ′

2 A rule is admissiblein a formal system of rules if its conclusion is derivable in the system
provided that all its premises are derivable. This holds in particular if the rule isderivablein the
system, that is, if it can be obtained by composition of the rules in the system.

Page: 54 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

2.4 Equational calculus 55

Prove that ifΨ `Σ ϕ and{ϕ}∪Φ `Σ ψ thenΨ ∪Φ `Σ ψ. (HINT : Use induction
on the structure of the derivation of{ϕ}∪Φ `Σ ψ; for the case of the axiom rule,
use the fact that weakening is admissible.) This shows that the following rule is
admissible:

Cut:
Ψ `Σ ϕ {ϕ}∪Φ `Σ ψ

Ψ ∪Φ `Σ ψ

Check that your proof can be generalised to show that ifΦ `ψ andΨϕ ` ϕ for each
ϕ ∈Φ then

⋃
ϕ∈Φ Ψϕ ` ψ. ut

Exercise 2.4.3 (Consequence is preserved by translation).Show that for any sig-
nature morphismσ :Σ → Σ ′, setΦ of Σ -equations, andΣ -equationϕ, if Φ `Σ ϕ

thenσ(Φ) `Σ ′ σ(ϕ). ut

Example 2.4.4.Recall the presentationBool = 〈ΣBool,ΦBool〉 from Exam-
ple 2.2.3. The following is a derivation ofΦBool`ΣBool ∀p:bool• ¬(p∧¬false)=
¬p:

A
A
A
A
A
A
A
A
A
A
AA

P

�
�

�
�

�
�

�
�

�
�

��
ΦBool `ΣBool ∀p:bool• ¬(p∧¬false) = ¬(p∧ true)

ΦBool `ΣBool ∀p:bool• p∧ true= p
ΦBool `ΣBool ∀p:bool• ¬(p∧ true) = ¬p

ΦBool `ΣBool ∀p:bool• ¬(p∧¬false) = ¬p

whereP is the derivation

ΦBool `ΣBool ∀p:bool• p = p

ΦBool `ΣBool ¬false= true

ΦBool `ΣBool ∀p:bool• ¬false= true
ΦBool `ΣBool ∀p:bool• p∧¬false= p∧ true

ΦBool `ΣBool ∀p:bool• ¬(p∧¬false) = ¬(p∧ true)

Exercise.Tag each step above with the inference rule being applied. ut

Exercise 2.4.5.Give a derivation ofΦBool `ΣBool ∀p:bool• p⇒ p = true.
A considerably more serious challenge is to give derivations for the de Morgan

laws from the axioms of Boolean algebra (see Example 2.2.4 and Exercise 2.2.5).
ut

Page: 55 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

56 2 Simple equational specifications

On its own, the equational calculus is nothing more than a game with symbols;
its importance lies in the correspondence between the two relations|=Σ and`Σ . As
we shall see, there is an exact correspondence:`Σ is bothsoundandcompletefor
|=Σ . Soundness (Φ `Σ ϕ ⇒ Φ |=Σ ϕ) is a vital property for any formal system: it
ensures that the inference rules cannot be used to derive an incorrect result.

Theorem 2.4.6 (Soundness of equational calculus).LetΦ be a set ofΣ -equations
and letϕ be aΣ -equation. IfΦ `Σ ϕ thenΦ |=Σ ϕ. ut

Exercise 2.4.7.Prove Theorem 2.4.6. Use induction on the depth of the derivation
of Φ `Σ ϕ, showing that each rule in the system preserves the indicated property.

ut

Example 2.4.8.By Theorem 2.4.6, the formal derivation in Example 2.4.4 justifies
the claim in Example 2.3.7 thatΦBool |=ΣBool ∀p:bool• ¬(p∧¬false) = ¬p. On
the other hand, sinceΦBool 6|=ΣBool ∀p:bool• ¬¬p = p, there can be no proof in
the equational calculus forΦBool `ΣBool ∀p:bool• ¬¬p = p. ut

It is a somewhat counter-intuitive fact (see [GM85]) that simplifying the calculus
by omitting explicit quantifiers in equations yields an unsound system. This is due
to the fact that algebras may have empty carrier sets. Any equation that includes a
quantified variablex:swill be satisfied by any algebra having an empty carrier fors,
even ifx appears on neither side of the equation. The instantiation rule is the only
one that can be used to change the set of quantified variables; it is designed to ensure
that quantified variables are eliminated only when it is sound to do so.

Exercise 2.4.9.Formulate a version of the equational calculus without explicit
quantifiers on equations and show that it is unsound. (HINT : Consider the signature
Σ with sortss,s′ and operationsf :s→ s′, a:s′, b:s′, and setΦ = { f (x) = a, f (x) =
b} of Σ -equations.

Show thatΦ `Σ a = b in your version of the calculus. Then give aΣ -algebra
A ∈ ModΣ (Φ) such thatA 6|=Σ a = b.) Pinpoint where this proof of unsoundness
breaks down for the version of the equational calculus given in Definition 2.4.1.ut

Exercise 2.4.10.Show that the equational calculus without explicit quantifiers is
sound when the definition ofΣ -algebra is changed to require all carrier sets to be
non-empty, or when either of the following constraints onΣ is imposed:

1. Σ has only one sort.
2. All sorts inΣ arenon-void: for each sort names in Σ , |TΣ |s 6= ∅. ut

Exercise 2.4.11.Give an example of a signatureΣ which satisfies neither 2.4.10(1)
nor 2.4.10(2), for which the equational calculus without explicit quantifiers is sound.

ut

Completeness (Φ |=Σ ϕ ⇒ Φ `Σ ϕ) is typically more difficult to achieve than
soundness: it means that the rules in the system are powerful enough to derive all
correct results. It is not as important as soundness, in the sense that a complete

Page: 56 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

2.4 Equational calculus 57

but unsound system is useless while (as we shall see in the sequel) a sound but
incomplete system is often the best that can be obtained. The equational calculus
happens to be complete for|=Σ :

Theorem 2.4.12 (Completeness of equational calculus).Let Φ be a set ofΣ -
equations and letϕ be aΣ -equation. IfΦ |=Σ ϕ thenΦ `Σ ϕ.

Proof sketch.SupposeΦ |=Σ ∀X • t = t ′. Define≡ ⊆ |TΣ (X)| × |TΣ (X)| by u ≡
u′ ⇐⇒ Φ `Σ ∀X • u = u′; ≡ is a Σ -congruence onTΣ (X). TΣ (X)/≡ |=Σ Φ so
TΣ (X)/≡ |=Σ ∀X • t = t ′, and thust ≡ t ′, i.e.Φ `Σ ∀X • t = t ′. ut

Exercise 2.4.13.Fill in the gaps in the proof of Theorem 2.4.12. ut

There are several different but equivalent versions of the equational calculus. The
following exercise considers various alternatives to the congruence and instantiation
rules.

Exercise 2.4.14.Show that the version of the equational calculus in Definition 2.4.1
is equivalent to the system obtained when the congruence and instantiation rules are
replaced by the following single rule:

Substitutivity:
Φ `Σ ∀X • t = t ′ for eachx∈ X, Φ `Σ ∀Y• θ(x) = θ ′(x)

Φ `Σ ∀Y• t[θ] = t ′[θ ′]
θ ,θ ′:X→ |TΣ (Y)|

Show that this is equivalent to the system having the following more restricted ver-
sion of the substitutivity rule:

Substitutivity′:
Φ `Σ ∀X∪{x:s}• t = t ′ Φ `Σ ∀Y• u = u′

Φ `Σ ∀X∪Y• t[x 7→ u] = t ′[x 7→ u′]
u,u′ ∈ |TΣ (Y)|s

(HINT : The equivalence relies on the fact that the set of quantified variables in an
equation is finite.) Finally, show that both of the following rules may be derived in
any of these systems:

Abstraction:
Φ `Σ ∀X • t = t ′

Φ `Σ ∀X∪Y• t = t ′
Ys⊆X for all s∈ S

Concretion:
Φ `Σ ∀X∪{x:s}• t = t ′

Φ `Σ ∀X • t = t ′
t, t ′ ∈ |TΣ (X)| and|TΣ (X)|s 6= ∅ ut

A consequence of the soundness and completeness theorems is that the equa-
tional calculus constitutes asemi-decision procedurefor |=Σ : enumerating all deriva-
tions will eventually produce a derivation forΦ `Σ ϕ if Φ |=Σ ϕ holds, but if
Φ 6|=Σ ϕ then this procedure will never terminate. This turns out to be the best we
can achieve:

Theorem 2.4.15.There is no decision procedure for|=Σ .

Proof. Follows immediately from the undecidability of the word problem for semi-
groups [Pos47]. ut

Page: 57 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

58 2 Simple equational specifications

Mechanised proof search techniques can be applied with considerable success to the
discovery of derivations (and under certain conditions, discussed in Section 2.6, a
decision procedureis possible) but Theorem 2.4.15 shows that such techniques can
provide no more than a partial solution.

2.5 Initial models

The class of algebras given by the loose semantics of aΣ -presentation contains too
many algebras to be very useful in practice. In particular, Birkhoff’s Variety The-
orem guarantees that this class will always include degenerateΣ -algebras having
a single value of each sort inΣ , as well as (nearly always)Σ -algebras that are not
reachable. This unsatisfactory state of affairs is a consequence of the limited power
of equational axioms. A standard way out is to take the so-calledinitial semanticsof
presentations, which selects a certain class of “best” models from among all those
satisfying the axioms. Various alternatives to this approach will be presented in the
sequel.

Throughout this section, let〈Σ ,Φ〉 be a presentation.

Exercise 2.5.1.Verify the above claim concerning Birkhoff’s Variety Theorem, be-
ing specific about the meaning of “nearly always”. ut

There are two features that render certain models of presentations unfit for use in
practice. The mnemonic terms “junk” and “confusion” were coined in [BG81] to
characterise these:

Definition 2.5.2 (Junk and confusion).Let A be a model of〈Σ ,Φ〉. We say that
A contains junkif it is not reachable, and thatA contains confusionif it satisfies a
groundΣ -equation that is not inClΣ (Φ). ut

The intuition behind these terms should be readily apparent: “junk” refers to useless
values which could be discarded without being missed, and “confusion” refers to
the values of two ground terms being unnecessarily identified (confused).

Example 2.5.3.Recall the presentationBool = 〈ΣBool,ΦBool〉 and its mod-
elsA1, A2 andA3 from Example 2.2.3.A1 contains confusion (A1 |=ΣBool true=
false 6∈ ClΣBool(ΦBool)) but not junk; A2 contains junk (there is no ground
ΣBool-termt such thattA2 =♠ ∈ |A2|bool) but not confusion;A3 contains neither
junk nor confusion. There are models ofBool containing both junk and confusion.
(Exercise:Find one.) ut

Exercise 2.5.4.Consider the following specification of the natural numbers with
addition:

Page: 58 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

2.5 Initial models 59

specNat= sorts nat
ops 0:nat

succ:nat→ nat
+ :nat×nat→ nat

∀m,n:nat • 0+n = n
• succ(m)+n = succ(m+n)

List some of the models ofNat. Which of these contain junk and/or confusion?
(NOTE: For reference later in this section,ΣNat refers to the signature ofNat and
ΦNat refers to its axioms.) ut

Exercise 2.5.5.According to Exercise 1.3.5, surjective homomorphisms reflect junk.
Show that injective homomorphisms preserve junk and reflect confusion, and that
all homomorphisms preserve confusion. It follows that isomorphisms preserve and
reflect junk and confusion. ut

Examples like the ones above suggest that often the algebras of interest are those
which contain neither junk nor confusion. Recall Exercise 1.4.14, which charac-
terised reachableΣ -algebras as those which are isomorphic to a quotient ofTΣ .
Accordingly, the algebras we want are all isomorphic to quotients ofTΣ ; by Exer-
cise 2.5.5 it is enough to consider just these quotient algebras themselves. Of course,
not all quotientsTΣ /≡ will be models of〈Σ ,Φ〉: this will only be the case when≡
identifies enough terms that the equations inΦ are satisfied. But if≡ identifies
“too many” terms,TΣ /≡ will contain confusion. There is exactly oneΣ -congruence
that yields a model of〈Σ ,Φ〉 containing no confusion:

Definition 2.5.6 (Congruence generated by a set of equations).The relation
≡Φ ⊆ |TΣ | × |TΣ | is defined byt ≡Φ t ′ ⇐⇒ Φ |=Σ ∀∅• t = t ′, for all t, t ′ ∈ |TΣ |.
≡Φ is called theΣ -congruence generated byΦ . ut

Exercise 2.5.7.Prove that≡Φ is aΣ -congruence onTΣ . ut

Theorem 2.5.8 (Quotient construction).TΣ /≡Φ is a model of〈Σ ,Φ〉 containing
no junk and no confusion. ut

Exercise 2.5.9.Prove Theorem 2.5.8. HINT : Note thatTΣ /≡Φ contains no junk by
Exercise 1.4.14. Then show that for any termt ∈ TΣ (X) and substitutionθ :X→ TΣ ,
tTΣ /≡Φ

(θ ′) = [t[θ]]≡Φ
, whereθ ′(x) = [θ(x)]≡Φ

for x ∈ X. Use this to show that
TΣ /≡Φ satisfies all the equations inΦ and contains no confusion. ut

Example 2.5.10.Recall the presentationBool= 〈ΣBool,ΦBool〉 from Exam-
ple 2.2.3. The modelTΣBool/≡ΦBool of Bool is defined as follows:

Page: 59 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

60 2 Simple equational specifications

|TΣBool/≡ΦBool|bool = {[true]≡ΦBool
, [false]≡ΦBool

}
trueTΣBool/≡ΦBool

= [true]≡ΦBool

falseTΣBool/≡ΦBool
= [false]≡ΦBool

¬TΣBool/≡ΦBool
= {[true]≡ΦBool

7→ [false]≡ΦBool
, [false]≡ΦBool

7→ [true]≡ΦBool
}

∧TΣBool/≡ΦBool
[true]≡ΦBool

[false]≡ΦBool

[true]≡ΦBool
[true]≡ΦBool

[false]≡ΦBool

[false]≡ΦBool
[false]≡ΦBool

[false]≡ΦBool

⇒TΣBool/≡ΦBool
[true]≡ΦBool

[false]≡ΦBool

[true]≡ΦBool
[true]≡ΦBool

[false]≡ΦBool

[false]≡ΦBool
[true]≡ΦBool

[true]≡ΦBool

where

[true]≡ΦBool
= {true,¬false, true∧ true,¬(false∧ true),¬(false∧¬false), false⇒ false, . . .},

[false]≡ΦBool
= {false,¬true, true∧ false,¬(true∧ true),¬(true∧¬false), true⇒ false, . . .}.

The carrier set|TΣBool/≡ΦBool|bool has just two elements since the axioms in
ΦBool can be used to reduce each groundΣBool-term to true or false, and
true 6≡ΦBool false. Note that the “syntactic” nature ofTΣBool is preserved in
TΣBool/≡ΦBool, e.g. for eachx∈ [true]≡ΦBool

, “¬x” ∈ [false]≡ΦBool
=¬TΣBool/≡ΦBool

([true]≡ΦBool
).

ut

Exercise 2.5.11.Recall the presentationNat = 〈ΣNat,ΦNat〉 given in Exer-
cise 2.5.4. Construct the modelTΣNat/≡ΦNat of Nat. ut

Exercise 2.5.12.Show that≡Φ is the onlyΣ -congruence making Theorem 2.5.8
hold. ut

The special properties ofTΣ /≡Φ described by Theorem 2.5.8 can be captured
very succinctly by saying thatTΣ /≡Φ is a so-calledinitial modelof 〈Σ ,Φ〉.

Definition 2.5.13 (Initial model of a presentation).A Σ -algebraA is initial in
a classA of Σ -algebras ifA ∈ A and for everyB ∈ A there is a uniqueΣ -
homomorphismh:A→ B. An initial model of 〈Σ ,Φ〉 is aΣ -algebra that is initial in
Mod[〈Σ ,Φ〉]. IMod[〈Σ ,Φ〉] is the class of all initial models of〈Σ ,Φ〉. ut

In the next chapter we will see that this definition can be generalised to a much
wider context than that of algebras and homomorphisms.

Theorem 2.5.14 (Initial model theorem).TΣ /≡Φ is an initial model of〈Σ ,Φ〉.

Proof sketch. TΣ /≡Φ is a model of〈Σ ,Φ〉 by Theorem 2.5.8. GivenB∈Mod[〈Σ ,Φ〉],
let ∅]:TΣ → B be the unique homomorphism from the algebra of groundΣ -terms
to B. SinceB |=Σ Φ , we have≡Φ ⊆ K(∅]), and by Exercise 1.3.20 there is a homo-
morphismh:TΣ /≡Φ → B, which is unique by Exercise 1.3.6. (Exercise:Fill in the
gaps in this proof.) ut

Page: 60 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

2.5 Initial models 61

Example 2.5.15.Recall the presentationBool= 〈ΣBool,ΦBool〉 and its mod-
elsA1, A2 andA3 from Example 2.2.3, and its modelTΣBool/≡ΦBool from Exam-
ple 2.5.10, which is an initial model by Theorem 2.5.14.ΣBool-homomorphisms
from TΣBool/≡ΦBool to A1, A2 andA3 are as follows:

h1:TΣBool/≡ΦBool→ A1 h1bool = {[true]≡ΦBool
7→ ?, [false]≡ΦBool

7→ ?},
h2:TΣBool/≡ΦBool→ A2 h2bool = {[true]≡ΦBool

7→ ♣, [false]≡ΦBool
7→ ♥},

h3:TΣBool/≡ΦBool→ A3 h3bool = {[true]≡ΦBool
7→ 1, [false]≡ΦBool

7→ 0}.

(Exercise:Check uniqueness.)
A1 is not an initial model: for example,6 ∃h:A1→ A2 and 6 ∃h:A1→ A3. In

general, models containing confusion cannot be initial since homomorphisms pre-
serve confusion (Exercise 2.5.5). Similarly,A2 is not an initial model: for exam-
ple, 6 ∃h:A2→ A3, since there is no value in|A3|bool to which h can map the “ex-
tra” value♠ ∈ |A2|bool. On the other hand,A3 is initial: for example,∃!g1:A3→
A1 (whereg1bool(1) = g1bool(0) = ?), ∃!g2:A3→ A2 (whereg2bool(1) = ♣ and
g2bool(0) =♥), and∃!g:A3→ TΣBool/≡ΦBool (wheregbool(1) = [true]≡ΦBool

and
gbool(0) = [false]≡ΦBool

). ut

Exercise 2.5.16.Recall the model you constructed in Exercise 2.5.11 of the specifi-
cationNat of natural numbers with addition. Show that there is a unique homomor-
phism from this model to each of the models you considered in Exercise 2.5.4.ut

Exercise 2.5.17.Using Theorem 2.5.14, show thatTΣ is an initial model of〈Σ ,∅〉.
Contemplate how this relates to Fact 1.4.4 and Definition 1.4.5. ut

Exercise 2.5.18.Note that initial models of〈Σ ,Φ〉 may have empty carriers for
some sorts. Show that this is necessary: give an example of a presentation〈Σ ,Φ〉
such that no algebra is initial in the class of its models that have non-empty carriers
of all sorts. Link this with Exercise 1.2.3. ut

Taking a presentation〈Σ ,Φ〉 to denote the classIMod[〈Σ ,Φ〉] of its initial
models is called taking itsinitial semantics. We know from Theorem 2.5.14 that
IMod[〈Σ ,Φ〉] is never empty. Although the motivation for wishing to exclude mod-
els containing junk and confusion was merely to weed out certain kinds of degener-
ate cases, the effect of this constraint is to restrict attention to an isomorphism class
of models:

Exercise 2.5.19.Show that any two initial models of a presentation are isomorphic.
Conclude that the initial models of a presentation are exactly those containing no
junk and no confusion. ut

For some purposes, restricting to an isomorphism class of models is clearly inap-
propriate. The following exercise demonstrates what can go wrong.

Exercise 2.5.20.Consider the addition of a subtraction operation−:nat×nat→ nat
to the specificationNat in Exercise 2.5.4, with the axioms∀m:nat•m−0 = m and
∀m,n:nat• succ(m)− succ(n) = m−n. These axioms do not fix the value ofm−n

Page: 61 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

62 2 Simple equational specifications

whenn > m; assume that we are willing to accept any value in this case, perhaps
because we are certain for some reason that it will never arise. Construct an initial
model of this specification. Why is this model unsatisfactory? Can you think of
a better model? What is the problem with restricting to an isomorphism class of
models of this specification? ut

The phenomenon illustrated here arises in cases where operations are not defined
in a sufficiently completeway. Roughly speaking, a definition of an operation is
sufficiently complete when the value produced by the operation is defined for all
of the possible values of its arguments. See Definition 6.1.22 below for a proper
definition of this term in a more general context.

One may argue that Exercise 2.5.20 is unconvincing, since the lack of sufficient
completeness arises there because we do not really needm− n to be defined as
a natural number whenn > m, and that this can be dealt with using one of the
approaches to partial functions below (Sections 2.7.3, 2.7.4, or 2.7.5). However, the
same phenomenon arises in other cases as well:

Exercise 2.5.21.Give a specification of natural numbers with a function that for
each natural numbern chooses an arbitrary number that is greater thann. HINT :
You may first extend the specificationNat of Exercise 2.5.4 with a sortbool with
operations and axioms as inBool in Example 2.2.3, and add a binary operation

< :nat×nat→ boolwith the following axioms:

∀n:nat• 0 < succ(n) = true
∀m:nat• succ(m) < 0 = false
∀m,n:nat• succ(m) < succ(n) = m< n

The required functionch:nat→ nat may now be constrained by the obvious axiom
∀n:nat• n < ch(n) = true.

Clearly, the definition ofchcannot be sufficiently complete. Construct the initial
model of the resulting specification and check that it is not satisfactory. Referring
to other algebraic approaches presented in Sections 2.7.3, 2.7.4, and 2.7.5 below,
check that none of them offers a satisfactory solution either. ut

The above exercise indicates one of the most compelling reasons for considering
alternatives to initial semantics: requiring specifications to define all operations in
a sufficiently complete way is much too restrictive in many practical cases. Such
a requirement is also undesirable for methodological reasons, since it forces the
specifier of a problem to make decisions which are more appropriately left to the
implementor.

The comments above notwithstanding, there are certain common situations in
which initial semantics is appropriate and useful. In particular, the implicit “no junk”
constraint conveniently captures the “that’s all there is” condition which is needed
e.g. in inductive definitions of syntax.

Example 2.5.22.Consider the following specification of syntax for simple arith-
metic expressions:

Page: 62 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

2.5 Initial models 63

specExpr= sorts expr
ops x,y,0:expr

plus,minus:expr×expr→ expr
∀e,e′:expr • plus(e,e′) = plus(e′,e)

The axiom requires thesyntaxof addition to be commutative. In the initial seman-
tics ofExpr, the “no junk” condition ensures that the only expressions (value of
sortexpr) are those built from 0,x andy usingplusandminus. The “no confusion”
condition ensures that no undesired identification of expressions occurs: for exam-
ple, the syntax of addition is not associative and the syntax of subtraction is not
commutative. ut

Exercise 2.5.23.Write a specification of (finite) sets of natural numbers. The oper-
ations should include∅:set, singleton:nat→ setand∪:set×set→ set. ut

The “no junk” condition is more powerful than it might appear to be at first
glance. Imposing the constraint that every value be expressible as a ground term
makes it possible to use induction on the structure of terms to prove properties of all
the values in an algebra. This means that for reasoning about models of specifica-
tions containing no junk, such as initial models, it is sound to add an induction rule
scheme to the equational calculus presented in the previous section. Since the form
of the induction rule scheme varies according to the signature of the specification at
hand, this is best illustrated by means of examples.

Example 2.5.24.Recall the presentationNat = 〈ΣNat,ΦNat〉 of natural num-
bers with addition given in Exercise 2.5.4. To simplify notation, letx andy stand for
variable names such thatx:nat andy:nat are not inΣNat andx:nat does not appear
in thesorts(ΣNat)-sorted set of variablesX used below. The following induction
rule scheme is sound for reachable models ofNat (and for reachable models of all
otherΣNat-presentations):

Φ `ΣNat P(0) Φ ∪{P(x)} `ΣNat∪{x:nat} P(succ(x)) Φ ∪{P(x),P(y)} `ΣNat∪{x,y:nat} P(x+y)
Φ `ΣNat ∀x:nat• P(x)

Here, P(x) stands for aΣNat∪ {x:nat}-equation∀X • t = t ′; think of this as a
ΣNat-equation with free variablex:nat. ThenP(0) stands for theΣNat-equation
∀X • t[x 7→ 0] = t ′[x 7→ 0], P(succ(x)) stands for theΣNat ∪ {x:nat}-equation
∀X • t[x 7→ succ(x)] = t ′[x 7→ succ(x)] and analogously forP(y) andP(x+ y), and
∀x:nat• P(x) stands for theΣNat-equation∀X ∪ {x:nat}• t = t ′. The following
additional inference rule is needed to infer equations overΣNat∪ {x:nat} and
ΣNat∪{x,y:nat} from ΣNat-equations:

Φ `Σ ∀X • t = t ′

Φ `Σ∪Σ ′ ∀X • t = t ′

Exercise.Show that adding the two inference rules above to the equational calculus
gives a system that is sound for reachable models ofΣNat-presentations.

Page: 63 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

64 2 Simple equational specifications

The inference rule scheme above can be used for proving theorems such as as-
sociativity and commutativity of+. But note that the axioms for+ fully define it
in terms of 0 andsucc: it is possible to prove by induction on the structure of terms
that for every groundΣNat-termt there is a groundΣNat-termt ′ such thatt ′ does
not contain the+ operation andΦ `ΣNat t = t ′. (Exercise:Prove it. Note that this
is a proof at the meta-levelabout`, not a derivation at the object levelusing`.)
This shows that the third premise of the above induction rule scheme is redundant.
Eliminating it gives the following scheme, which is more obviously related to the
usual form of induction for natural numbers:

Φ `ΣNat P(0) Φ ∪{P(x)} `ΣNat∪{x:nat} P(succ(x))
Φ `ΣNat ∀x:nat• P(x)

Taking P(x) to be∀n, p:nat• x+ (n+ p) = (x+ n) + p, we have the following
derivation, which proves that addition is associative in initial models ofNat (Ex-
ercise:Supply the derivationsP1 andP2):

A
A
A
A
A
A
A
A
A
A
AA

P1

�
�

�
�

�
�

�
�

�
�

��
Φ `ΣNat ∀n, p:nat• 0+(n+ p) = (0+n)+ p

A
A
A
A
A
A
A
A
A
A
AA

P2

�
�

�
�

�
�

�
�

�
�

��
Φ ∪{∀n, p:nat• x+(n+ p) = (x+n)+ p}
`ΣNat∪{x:nat}
∀n, p:nat• succ(x)+(n+ p) = (succ(x)+n)+ p

Φ `ΣNat ∀x,n, p:nat• x+(n+ p) = (x+n)+ p

Note that there are models ofNat containing junk which do not satisfy∀x,n, p:nat• x+
(n+ p) = (x+n)+ p. Hence, this equation is not inClΣNat(ΦNat) and induction
is required for its derivation. ut

Exercise 2.5.25.Recall the presentationBool = 〈ΣBool,ΦBool〉 from Exam-
ple 2.2.3. Give an induction rule scheme that is sound for reachable models of
ΣBool-presentations. (HINT : There will be five premises, one for each operation
in Bool.) Show that three of the premises are redundant (HINT : eliminate one op-
eration at a time), which gives the following rule scheme:

Φ `ΣBool P(true) Φ `ΣBool P(false)
Φ `ΣBool ∀x:bool• P(x)

Use this to prove that∀p:bool• ¬¬p= p holds in initial models ofBool. Prove that
the axiom∀p:bool• p∧¬p = falseis redundant for the initial semantics ofBool,

Page: 64 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

2.5 Initial models 65

that is:

ΦBool\{∀p:bool• p∧¬p = false} `ΣBool ∀p:bool• p∧¬p = false. ut

Adding an induction rule scheme appropriate to the signature at hand to the equa-
tional calculus gives a system that is sound for reasoning about initial models of
specifications, and is more powerful than the equational calculus on its own. How-
ever, the resulting system is not always complete. In fact, it turns out that complete-
ness is unachievable in general: there isno sound proof system that is complete for
reasoning about initial models of arbitrary specifications. In order to prove that this
is the case, it is necessary to formalize what we mean by the term “proof system”.
For our purposes it will suffice to assume that any proof system has a recursively
enumerable set of theorems. See [Chu56] for a discussion of the philosophical con-
siderations (e.g. finiteness of proofs, decidability of the correctness of individual
proof steps) underlying this assumption.

Theorem 2.5.26 (Incompleteness for initial semantics).There is a presentation
〈Σ ,Φ〉 such that there is no proof system which is sound and complete with respect
to satisfaction of equations in the class of initial models of〈Σ ,Φ〉.

Proof ([MS85]).As a consequence of Matiyasevich’s theorem, the set of equations
which hold in the standard model of the natural numbers (with 0,succ, +,× and−,
such thatm−n = 0 whenn≥m) is not recursively enumerable [DMR76, Sect. 8].
Therefore, this cannot be the set of theorems produced by any proof system. It is
easy to construct a (single-sorted) presentation having this as an initial model. (Ex-
ercise: Construct it.) Since all the initial models of a presentation are isomorphic
(Exercise 2.5.19) and since isomorphisms preserve and reflect satisfaction of equa-
tions (Exercise 2.1.5), this completes the proof. ut

The fact that completeness cannot be achieved is of no real importance in practice:
the equational calculus together with induction is perfectly adequate for normal use.
But the failure of completeness does mean that care must be taken to distinguish
between satisfaction (|=) and provability (̀) in theoretical work. It is important to
recognize that model-theoretic satisfaction is the relation of primary importance,
since it embodiestruth. Provability is merely an approximation to truth, albeit one
that is of great importance for practical use since it is based on mechanical syntactic
manipulation. The failure of completeness means that the approximation cannot be
exact, but by being sound it errs on the side of safety.

Exercise 2.5.27.Show that the equational calculus (without added induction rule
schemes) is complete with respect to satisfaction ofgroundequations in initial mod-
els of specifications. ut

The additional specification techniques introduced in Chapter 5 will lead to a widen-
ing of the gap between satisfaction and provability. In particular, even completeness
with respect to satisfaction of ground equations will be impossible to retain.

A generalisation of the concept of initial model is needed to give a fully satis-
factory specification of classes of models that are naturally parametric with respect

Page: 65 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

66 2 Simple equational specifications

to some basic data. An example is the definition of terms in Section 1.4, which is
parametric in anS-sorted set of variables. Another is the specification of sets (see
Exercise 2.5.23): it should be possible to specify sets without building in a specifi-
cation of the kind of values in the sets (in this case, natural numbers).

Exercise 2.5.28.Suppose that all information about the natural numbers is removed
from the specification of sets you gave in Exercise 2.5.23, by deleting operations
on natural numbers likesuccand changing the sort namenat to elem. Construct an
initial model of the resulting specification. Why is this model unsatisfactory?ut

The required concept is that of afreemodel extending a given algebra, which cap-
tures the idea of initialityrelative toa fixed part of the model. See Section 3.5 for
the details, Section 4.3 for the use of this concept in the context of specifications,
and Chapter 6 for much more on the general topic of parameterisation.

2.6 Term rewriting

Although there is no decision procedure for|=Σ (Theorem 2.4.15), there is a class of
specifications for which consequence can be decided. The idea is similar to the one
behind the strategy used in mathematics for proving that an equation follows from a
set of equational axioms: one applies the axioms in an attempt to reduce both sides
of the equation to a common result, and if this is successful then the equation follows
from the axioms. An essential ingredient of this strategy is the use of equations as
directedsimplificationor rewrite rules.

Throughout this section, letΣ = 〈S,Ω〉 be a signature, and letX be anS-sorted
set of variables such thatXs⊆X for all s∈ S.

Assumption. For simplicity of presentation, we assume throughout this section that
eitherΣ has only one sort, or all sorts inΣ are non-void (see Exercise 2.4.10). Under
this assumption, the version of the equational calculus without explicit quantifiers
is sound, and all references to the calculus below are to this version. See Exer-
cises 2.6.11 and 2.6.26 for hints on how to do away with this assumption. ut

Definition 2.6.1 (Context).A Σ -context for sort s∈ S is a termC ∈ |TΣ (X]2:s)|
containing one occurrence of the distinguished variable2. We writeC[] to suggest
thatC should be viewed as a term with a hole in it. Substitution of a termt ∈ |TΣ (X)|s
in C[] gives the termC[2:s 7→ t] ∈ |TΣ (X)|, writtenC[t]. ut

Definition 2.6.2 (Rewrite rule).A Σ -rewrite rule r of sort s∈ Sconsists of twoΣ -
termst, t ′ ∈ |TΣ (X)|s, written t→ t ′. TheΣ -equation determined by ris Eq(r) =def

t = t ′; by the assumption, we can dispense with explicit quantification of variables
in equations. AΣ -rewrite ruler = t→ t ′ of sortsdetermines a set ofreduction steps
C[t[θ]]→r C[t ′[θ]] for all Σ -contextsC[] for sortsand substitutionsθ :X→|TΣ (X)|;
this defines the relation→r ⊆ |TΣ (X)| × |TΣ (X)|, the one-step reduction relation
generated by r. The inverse of one-step reduction→r is one-step expansion, written
r← . ut

Page: 66 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

2.6 Term rewriting 67

A reduction stepu→r u′ according to a rewrite ruler = t → t ′ is an application of
an instance t[θ]→ t ′[θ] of r to replace thesubterm t[θ] of u (corresponding to the
“hole” in C[]) by t ′[θ]. The subtermt[θ] of u is called aredex(short for “reducible
expression”).

Definition 2.6.3 (Term rewriting system).A Σ -term rewriting system Ris a set of
Σ -rewrite rules. Theset ofΣ -equations determined by Ris Eq(R) = {Eq(r) | r ∈R}.
Theone-step reduction relation generated by Ris the relation

→R =
⋃
r∈R

→r (⊆ |TΣ (X)|× |TΣ (X)|).

The inverse of one-step reduction→R is one-step expansion, written R← . ut

Given a setΦ of Σ -equations, aΣ -term rewriting systemR will be of greatest rele-
vance toΦ whenClΣ (Φ) = ClΣ (Eq(R)). One way to obtain such anR is to use the
equations themselves as rewrite rules by selecting anorientationfor each equation
t = t ′: eithert→ t ′ or t ′→ t. For reasons that will become clear below, the most use-
ful orientation is the one in which the right-hand side of the rule is “simpler” than
the left-hand side. It is not always obvious how to measure simplicity of terms — in
fact, this is a major issue in the theory of term rewriting — and sometimes there is
no satisfactory orientation, as in the case of an equation such asn+m= m+n.

In the rest of this section, letRbe aΣ -term rewriting system.

Definition 2.6.4 (Reduction→∗R and convertibility ∼R). The reduction relation
→∗R⊆ |TΣ (X)|×|TΣ (X)| generated by Ris the transitive reflexive closure of→R . In
other words,t→∗R t ′ if t = t ′ or there exist termst1, . . . , tn ∈ |TΣ (X)|, n≥ 0, such that
t→R t1→R · · ·→R tn→R t ′; then we say thatt reduces to t′. The inverse of reduction
→∗R is expansion, written ∗R← . Theconvertibility relation∼R⊆ |TΣ (X)|× |TΣ (X)|
generated by Ris the symmetric transitive reflexive closure of→R . In other words,
t ∼R t ′ if t = t ′ or there exist termst1, . . . , tn ∈ |TΣ (X)|, n≥ 0, such thatt →R t1 or
t R← t1, andt1→R t2 or t1 R← t2, and . . . , andtn→R t ′ or tn R← t ′; then we say thatt
converts to t′. ut

Exercise 2.6.5.Check that∼R is aΣ -congruence onTΣ (X). ut

Example 2.6.6.Recall the presentationBool = 〈ΣBool,ΦBool〉 from Exam-
ple 2.2.3. The followingΣBool-term rewriting systemRBool obviously satisfies
ClΣBool(ΦBool) = ClΣBool(Eq(RBool)):

RBool= {¬true→ false, ¬false→ true, p∧ true→ p, p∧ false→ false,
p∧¬p→ false, p⇒ q→¬(p∧¬q)}.

(Observe that in the rulep⇒ q→¬(p∧¬q), the right-hand side is not obviously
simpler than the left-hand side.) We have (for example):

Page: 67 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

68 2 Simple equational specifications

¬(p∧ (q⇒¬false))→RBool ¬(p∧¬(q∧¬¬false))
→RBool ¬(p∧¬(q∧¬true))
→RBool ¬(p∧¬(q∧ false))
→RBool ¬(p∧¬false)
→RBool ¬(p∧ true)
→RBool ¬p

(at each step, the redex reduced by the step is underlined) so¬(p∧(q⇒¬false))→∗
RBool

¬p, and

¬(p∧ (q⇒ false)) RBool← ¬(p∧ (q⇒¬true))
→RBool ¬(p∧¬(q∧¬¬true))
→RBool ¬(p∧¬(q∧¬false))
RBool← ¬(p∧¬((q∧ true)∧¬false))
→RBool ¬(p∧¬((q∧ true)∧ true))
→RBool ¬(p∧¬(q∧ true))

so¬(p∧ (q⇒ false))∼RBool ¬(p∧¬(q∧ true)). ut

Exercise 2.6.7.Recall the presentationNat= 〈ΣNat,ΦNat〉 given in Exercise 2.5.4.
Give aΣNat-term rewriting systemRNat such thatClΣNat(ΦNat)= ClΣNat(Eq(RNat)),
and practice reducing and converting someΣNat-terms usingRNat. ut

The convertibility relation generated byRcoincides with equality provable from
Eq(R). This fact is captured by the following two theorems.

Theorem 2.6.8 (Soundness of convertibility).If t ∼R t ′ then Eq(R) `Σ t = t ′.

Proof sketch.Consider a reduction stepC[t[θ]]→r C[t ′[θ]]. This corresponds to a
derivation involving: an application of the axiom rule, to deriveEq(R) ` t = t ′; an
application of instantiation, to deriveEq(R) ` t[θ] = t ′[θ]; and repeated applications
of reflexivity and congruence, to deriveEq(R) `C[t[θ]] =C[t ′[θ]]. The definition of
∼R as the symmetric transitive reflexive closure of→R corresponds directly to

applications of the symmetry, transitivity and reflexivity rules. (Exercise:Fill in the
gaps in this proof.) ut

Lemma 2.6.9.Suppose t, t ′ ∈ |TΣ (X)|s for s∈ S. If t∼R t ′ then:

1. C[t]∼R C[t ′] for anyΣ -context C[] for sort s.
2. t[θ]∼R t ′[θ] for any substitutionθ :X→ |TΣ (X)|.

Proof. Exercise:Do it. ut

Theorem 2.6.10 (Completeness of convertibility).If Eq(R) `Σ t = t ′ then t∼R t ′.

Proof sketch.By induction on the depth of the derivation ofEq(R) `Σ t = t ′. The
most interesting case is when the last step is an application of the congruence rule:

Eq(R) `Σ t1 = t ′1 · · · Eq(R) `Σ tn = t ′n
Eq(R) `Σ f (t1, . . . , tn) = f (t ′1, . . . , t

′
n)

Page: 68 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

2.6 Term rewriting 69

where f :s1×·· ·×sn→ s. By the inductive assumption,t1 ∼R t ′1 and . . . andtn ∼R

t ′n. Then, by repeated application of Lemma 2.6.9(1), we havef (t1, t2 . . . , tn) ∼R

f (t ′1, t2 . . . , tn)∼R · · · ∼R f (t ′1, t
′
2 . . . , t ′n) (using first the contextf (2:s1, t2 . . . , tn), then

f (t ′1,2:s2, . . . , tn), then . . . , thenf (t ′1, t
′
2, . . . ,2:sn)). When the last step of the deriva-

tion of Eq(R) `Σ t = t ′ is an application of the instantiation rule, the result follows
directly by Lemma 2.6.9(2). (Exercise:Complete the proof.) ut

Exercise 2.6.11.Try to get rid of the need for the assumption onΣ made at the
beginning of this section in all the definitions and results above. This will involve
rewriting terms of the form(X)t using rewrite rules of the form∀X • t→ t ′, in both
cases with explicit variable declarations. ut

Given the exact correspondence between convertibility and provable equality, a
decision procedure fort ∼R t ′ amounts to a decision procedure forΦ `Σ t = t ′, pro-
videdClΣ (Φ) = ClΣ (Eq(R)). The problem with testingt ∼R t ′ by simply applying
the definition is that the “path” fromt to t ′ may include both reduction steps and
expansion steps, and may be of arbitrary length. But whenRsatisfies certain condi-
tions, it is sufficient to test just asinglepath having the special formt→∗R t ′′ ∗R← t ′,
which yields a simple and efficient decision procedure for convertibility.

Definition 2.6.12 (Normal form). A Σ -term t ∈ TΣ (X) is anormal form (for R)if
there is no termt ′ such thatt→R t ′. ut

Definition 2.6.13 (Termination). A Σ -term rewriting systemR is terminating(or
strongly normalising) if there is no infinite reduction sequencet1→R t2→R · · · ;
that is, whenevert1 →R t2 →R · · · , there is some (finite)n ≥ 1 such thattn is a
normal form. ut

The usual way to show that a term rewriting systemR is terminating is to demon-
strate that each rule inR reduces the complexity of terms according to some
carefully-chosen measure.

Definition 2.6.14 (Confluence).A Σ -term rewriting systemR isconfluent(orChurch-
Rosser) if whenevert →∗R t1 andt →∗R t2, there is a termt3 such thatt1→∗R t3 and
t2→∗R t3. ut

Definition 2.6.15 (Completeness).A Σ -term rewriting systemR is completeif it is
both terminating and confluent. ut

Completeness of a term rewriting system should not be confused with completeness
of a proof system, as in for example Theorem 2.6.10 above.

Exercise 2.6.16.Suppose thatR is a completeΣ -term rewriting system, and lett ∈
|TΣ (X)| be aΣ -term. Show that there is a unique normal formNFR(t) ∈ |TΣ (X)|
such thatt→∗R NFR(t).

HINT : An abstract reduction systemconsists of a setA together with a binary
relation→ ⊆ A×A. A Σ -term rewriting systemR is a particular example, where
A = |TΣ (X)| and → is →R . Concepts such as normal form and confluence make
sense in the context of any abstract reduction system, and the required property
holds in this more abstract setting. ut

Page: 69 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

70 2 Simple equational specifications

Example 2.6.17.The term rewriting systemRBool from Example 2.6.6 is both
terminating and confluent, and is therefore complete. As the reduction sequence in
Example 2.6.6 shows,NFRBool(¬(p∧ (q⇒¬false))) = ¬p.

The term rewriting systemRBool′ = RBool∪{p∧q→ q∧ p} is not termi-
nating:p∧q→RBool′ q∧ p→RBool′ p∧q→RBool′ q∧ p→RBool′ · · · .

The term rewriting systemRBool′′ =RBool∪{(p∧q)∧ r → p∧ (q∧ r)} is
not confluent:(p∧¬p)∧q→RBool′′ false∧q and(p∧¬p)∧q→RBool′′ p∧(¬p∧
q), and bothfalse∧q andp∧ (¬p∧q) are normal forms. ut

Exercise 2.6.18.Is your term rewriting systemRNat from Exercise 2.6.7 com-
plete? If not, find an alternative term rewriting system forNat that is complete. ut

Exercise 2.6.19.A Σ -term rewriting systemR is weakly confluentif whenever
t →R t1 and t →R t2, there is a termt3 such thatt1 →∗R t3 and t2 →∗R t3. Find a
term rewriting system that is weakly confluent but not confluent. (HINT : Weak con-
fluence plus termination implies confluence, so don’t bother looking at terminating
term rewriting systems.) Weak confluence is a much easier condition to check than
confluence, so the usual way to prove that a term rewriting system is confluent is to
show that it is weakly confluent and terminating. ut

In view of the obvious analogy between reduction and computation,NFR(t) can
be thought of as thevalueof t; sinceNFR(t) need not be a ground term, this is a
more general notion of computation than the usual one.

Exercise 2.6.20.Convince yourself thatNFR: |TΣ (X)| → |TΣ (X)| is computable for
any finite complete term rewriting systemR — perhaps try to implement it in your
favourite programming language. ut

Theorem 2.6.21 (Decision procedure for convertibility).If R is complete, then
t ∼R t ′ iff NFR(t) = NFR(t ′). ut

Exercise 2.6.22.Prove Theorem 2.6.21. (HINT : The proof does not depend on the
definition of →R , but only on the assumption thatR is complete.) ut

Sincet ∼R t ′ iff Eq(R) `Σ t = t ′ (by soundness and completeness of convertibility)
iff Eq(R) |=Σ t = t ′ (by soundness and completeness of the equational calculus),
Theorem 2.6.21 constitutes a decision procedure for consequence:

Corollary 2.6.23 (Decision procedure forEq(R) |=Σ t = t ′). If R is complete, then
Eq(R) |=Σ t = t ′ iff NFR(t) = NFR(t ′). ut

Example 2.6.24.Since the term rewriting systemRBool from Example 2.6.6
is complete (see Example 2.6.17), Corollary 2.6.23 can be used to prove that
Eq(RBool) |=ΣBool ¬(p∧ (q⇒¬false)) = p⇒ (p∧¬p): NFRBool(¬(p∧ (q⇒
¬false)))=¬p= NFRBool(p⇒ (p∧¬p)). SinceClΣBool(ΦBool)= ClΣBool(Eq(RBool)),
this proves thatΦBool |=ΣBool ¬(p∧ (q⇒¬false)) = p⇒ (p∧¬p).

Exercise. Give a derivation ofΦBool `ΣBool ¬(p∧ (q⇒ ¬false)) = p⇒ (p∧
¬p) in the equational calculus. Compare this with the above proof. ut

Page: 70 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

2.6 Term rewriting 71

Exercise 2.6.25.Recall your complete term rewriting system forNat from Ex-
ercise 2.6.18. Use this to prove thatΦNat |=ΣNat succ(succ(0)) + succ(n) =
succ(succ(succ(n))), and thatΦNat 6|=ΣNat succ(m)+ succ(n) = succ(succ(m+
n)), ut

Exercise 2.6.26.Let t → t ′ be aΣ -rewrite rule of sorts. The following restrictions
are often imposed:

• t 6∈ Xs; and
• FV(t ′)⊆ FV(t).

Show that, if these restrictions are imposed on rewrite rules, then Corollary 2.6.23
holds even without the assumption onΣ made at the beginning of this section.
(These restrictions seem harmless since almost no complete term rewriting system
contains rules that violate them.) ut

Exercise 2.6.27.Equality of terms in the equational theory of a rewriting systems is
also decidable under somewhat weaker requirements than those in Corollary 2.6.23.
A term-rewriting systemR is weakly normalisingif for each termt there is a finite
reduction sequence inR leading fromt to a normal form.R is semi-completeif it is
weakly normalising and confluent.

Generalising Exercise 2.6.16, show that ifR is a semi-completeΣ -term rewriting
system, then for anyΣ -term t ∈ |TΣ (X)| there is a unique normal formNFR(t) ∈
|TΣ (X)| such thatt →∗R NFR(t). Moreover, convince yourself that the function
NFR: |TΣ (X)| → |TΣ (X)| is then computable. Finally, show that the property cap-
tured by Corollary 2.6.23 holds for all semi-complete term rewriting systemsR. ut

By Corollary 2.6.23, the problem of deciding consequenceΦ |=Σ ϕ is reduced to
the problem of finding a finite complete term rewriting systemRsuch thatClΣ (Φ) =
ClΣ (Eq(R)). Clearly, by Theorem 2.4.15, this is not always possible. But theKnuth-
Bendix completion algorithmcan sometimes be used to produce such anR givenΦ

together with an order relation on terms. The algorithm works by pinpointing causes
of failure of (weak) confluence and adding rules to correct them, where the supplied
term ordering is used to orient these new rules. The algorithm is iterative and may
fail to terminate; it may also fail because the ordering supplied is inadequate.

The Knuth-Bendix completion algorithm can also be used to reason about ini-
tial models of specifications, using a method known asinductionless inductionor
proof by consistency. This method is based on the observation that an equationt = t ′

holds in the initial models of〈Σ ,Φ〉 iff there is no ground equations= s′ such that
Φ 6|= s = s′ andΦ ∪{t = t ′} |= s = s′. (Exercise: Prove this fact.) Given a com-
plete term rewriting systemR such thatClΣ (Φ) = ClΣ (Eq(R)) (perhaps produced
using the Knuth-Bendix algorithm), the Knuth-Bendix algorithm is used to produce
a complete term rewriting systemR′ for Φ ∪{t = t ′} by extendingR. It is then pos-
sible to test ifR andR′ have the same normal forms for groundΣ -terms; if so, then
t = t ′ holds in the initial models of〈Σ ,Φ〉.

Page: 71 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

72 2 Simple equational specifications

2.7 Fiddling with the definitions

In principle, the specification framework presented in the preceding sections is pow-
erful enough for any conceivable computational application. This is made precise
by a theorem in [BT87] (cf. [Vra88]) which states that for every reachablesemi-
computableΣ -algebraA there is a presentation〈Σ ′,Φ ′〉 with finite Φ ′ such that
A = A′ Σ for some initial modelA′ ∈ IMod[〈Σ ′,Φ ′〉]. (See [BT87] for the definition
of semi-computable algebra.) In spite of this fact, there are several reasons why this
framework is inconvenient for use in practice.

One deficiency becomes apparent as soon as one attempts to write specifications
that are somewhat larger than the examples we have seen so far. In order to be un-
derstandable and usable, large specifications must be built up incrementally from
smaller specifications. Specification mechanisms designed to cope with such prob-
lems of scale are presented in Chapter 5. These methods also solve the problem
illustrated by Exercise 2.5.20, see Exercise 5.1.11.

Another difficulty arises from the relatively low level of equational logic as a
language for describing constraints to be satisfied by the operations of an algebra.
When using equational axioms, it is often necessary to write a dozen equations to
express a property that can be formulated much more clearly using a single ax-
iom in some more powerful logic. Some properties that are easy to express in more
powerful systems are not expressible at all using equations. Similar awkwardness
is caused by the limitations of the type system used here, in comparison with the
polymorphic type systems of modern programming languages such as Standard ML
[Pau96]. Finally, the present framework is only able to cope conveniently with al-
gebras comprised oftotal anddeterministicfunctions operating on data values built
by finitary compositions of such functions, a limitation which rules out its use for
very many programs of interest.

All these difficulties can be addressed by making appropriate modifications to the
standard framework presented in the preceding sections. An example was already
given in Section 1.5.2 where it was shown how signature morphisms could be re-
placed by derived signature morphisms. This section is devoted to a sketch of some
other possible modifications. The presentation is very brief and makes no attempt
to be truly comprehensive; the interested reader will find further details (and further
citations) in the cited references.

2.7.1 Conditional equations

The most obvious kind of modification to make is to replace the use of equational
axioms by formulae in a more expressive language. Some care is required since
a number of the results presented above depend on the use of equational axioms.
A relatively unproblematic choice is to use equations that apply only when certain
pre-conditions (expressed as equations) are satisfied.

Let Σ = 〈S,Ω〉 be a signature.

Page: 72 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

2.7 Fiddling with the definitions 73

Definition 2.7.1 (Conditional equation).A (positive) conditionalΣ -equation∀X • t1 =
t ′1∧ . . .∧ tn = t ′n⇒ t0 = t ′0 consists of:

• a finiteS-sorted setX (of variables), such thatXs⊆X for all s∈ S; and
• for each 0≤ j ≤ n (wheren≥ 0), two Σ -termst j , t ′j ∈ |TΣ (X)|sj for some sort

sj ∈ S.

A Σ -algebraA satisfiesa conditionalΣ -equation∀X • t1 = t ′1∧ . . .∧ tn = t ′n⇒ t0 =
t ′0 if for every (S-sorted) functionv:X → |A|, if (t1)A(v) = (t ′1)A(v) and . . . and
(tn)A(v) = (t ′n)A(v) then(t0)A(v) = (t ′0)A(v). ut

Note that variables in the conditions (t1 = t ′1∧ . . .∧ tn = t ′n) that do not appear in
the consequent (t0 = t ′0) can be seen as existentially quantified: for example, the
conditional equation∀a,b:t • a×b = 1⇒ a×a−1 = 1 is equivalent to the formula
∀a:t • (∃b:t • a×b = 1)⇒ a×a−1 = 1 in ordinary first-order logic.

Exercise 2.7.2.Define the translation of conditionalΣ -equations by a signature
morphismσ :Σ → Σ ′. ut
The remaining definitions of Sections 2.1–2.5 require only superficial changes, and
most results go through with appropriate modifications.

Let 〈Σ ,Φ〉 be a presentation, whereΦ is a set of conditionalΣ -equations.
Mod[〈Σ ,Φ〉] is not always a variety, as is (almost) shown by Example 2.2.11; in
this sense, the power of conditional equations is strictly greater than that of ordinary
equations.

Exercise 2.7.3.The cancellation law given in Example 2.2.11 is not a conditional
equation. Give a version of this example that uses only conditional equations.
(HINT : Equality can be axiomatized as an operationeq:s×s→ bool.) ut
In spite of this increase in expressive power, there is a proof system that is sound
and complete with respect to conditional equational consequence [Sel72], and the
quotient construction can be used to construct an initial model of〈Σ ,Φ〉 [MT92] (cf.
Lemma 3.3.12 below). Term rewriting with conditional rewrite rules is possible, but
there are some complications, see [Klo92] and [Mid93].

Exercise 2.7.4.[Sel72] gives a proof system that is sound and complete for condi-
tional equational consequence in the single-sorted case. Extend this to the many-
sorted case, where explicit quantifiers are required for the same reason as in the
equational calculus. ut

Exercise 2.7.5.Recall Exercise 2.5.21 concerning the specification of a function
ch:nat→ nat that for each natural numbern chooses an arbitrary number that is
greater thann. Modify this, using a conditional equation to makechchoose an arbi-
trary number that islessthann when 0< n. ut

Example 2.7.6.LetHA= 〈ΣHA,ΦHA〉 be the following presentation.3

3 We use the same symbol⇒ for implication in conditional equations and for an operation in the
presentation below — the usual symbols are used for other propositional connectives as well, as in
Example 2.2.4. We use extra space around implication in the conditional equations below in order
to make them easier to read.

Page: 73 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

74 2 Simple equational specifications

specHA= sorts bool
ops true:bool

false:bool
¬ :bool→ bool
∨ :bool×bool→ bool
∧ :bool×bool→ bool
⇒ :bool×bool→ bool

∀p,q, r:bool
• p∨ (q∨ r) = (p∨q)∨ r
• p∧ (q∧ r) = (p∧q)∧ r
• p∨q = q∨ p
• p∧q = q∧ p
• p∨ (p∧q) = p
• p∧ (p∨q) = p
• p∨ true = true
• p∨ false = p
• (p∨ (r ∧q) = p) ⇒ ((q⇒ p)∨ r = (q⇒ p))
• ((q⇒ p)∨ r = (q⇒ p)) ⇒ (p∨ (r ∧q) = p)
• ¬p = (p⇒ false)

Models ofHA are calledHeyting algebras.

Exercise.Recall the presentationBA of Boolean algebras in Example 2.2.4. Show
that every Boolean algebra is a Heyting algebra. Then repeat the exercise in Ex-
ample 2.2.4, building for every Heyting algebraH a lattice〈|H|,≤H〉 with top and
bottom elements. Check that the conditional axioms concerning the implication⇒
can now be captured by requiring thatr ∧q≤H p is equivalent tor ≤H q⇒ p. Show
that the lattice is distributive.

Give an example of a Heyting algebra that is not Boolean. Check which of the
axioms of the presentationBA do not follow fromHA.

Prove that anequationalpresentation with the same models asHA can be given.
HINT : Use Theorem 2.2.10. Or consider the following properties of the implica-
tion: p⇒ p = true, q∧ (q⇒ p) = q∧ p, p∨ (q⇒ p) = q⇒ p, andq⇒ (p∧ r) =
(q⇒ p)∧ (q⇒ r). ut

2.7.2 Reachable semantics

In Section 2.5, the motivation given for taking a presentation〈Σ ,Φ〉 to denote the
classIMod[〈Σ ,Φ〉] of its initial models was the desire to exclude models containing
junk and confusion. The need to exclude models containing confusion stems mainly
from the use of equational axioms, which make it impossible to rule out degenerate
models having a single value of each sort inΣ . If a more expressive language is used
for axioms, or if degenerate models are ruled out by some other means, then models
containing confusion need not be excluded.

Page: 74 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

2.7 Fiddling with the definitions 75

Example 2.7.7.Consider the following specification of sets of natural numbers (a
variant of the one in Exercise 2.5.23):

specSetNat= sorts bool,nat,set
ops true:bool

false:bool
∨ :bool×bool→ bool

0:nat
succ:nat→ nat
eq:nat×nat→ bool
∅:set
add:nat×set→ set
∈ :nat×set→ bool

∀p:bool,m,n:nat,S:set
• p∨ true= true
• p∨ false= p
• eq(n,n) = true
• eq(0,succ(n)) = false
• eq(succ(n),0) = false
• eq(succ(m),succ(n)) = eq(m,n)
• n∈∅ = false
• m∈ add(n,S) = eq(m,n)∨m∈ S

There are many different models ofSetNat, including algebras having a single
value of each sort. Suppose we restrict attention to algebras that do not satisfy the
equation∀∅• true= false; this excludes such degenerate models (see the exercise
below). Consider the following two equations:

Commutativity ofadd: ∀m,n:nat,S:set• add(m,add(n,S)) = add(n,add(m,S))
Idempotency ofadd: ∀n:nat,S:set• add(n,add(n,S)) = add(n,S)

The models ofSetNat that do not satisfy∀∅• true= falsemay be classified ac-
cording to which of these two equations they satisfy.

“List-like” algebras: add is neither commutative nor idempotent.
“Set-like” algebras:add is both commutative and idempotent.
“Multiset-like” algebras: add is commutative but not idempotent.
“List-like” algebras without repeated adjacent entries:add is idempotent but not

commutative.

There are also “hybrid” models ofSetNat, e.g. those in whichadd is commuta-
tive but is only idempotent forn 6= 0. The initial models ofSetNat are “list-like”
algebras. Adding the commutativity and idempotency requirements toSetNat as
additional axioms would eliminate all but the “set-like” algebras.

Exercise. Show that restricting attention to models ofSetNat that do not satisfy
the equation∀∅• true = falseeliminates all but “sensible” realisations of sets of
natural numbers, by forcingeq(succm(0),succn(0)) = true iff m= n iff succm(0) =

Page: 75 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

76 2 Simple equational specifications

succn(0), anda∈ add(a1,add(a2, . . . ,add(ap,∅) . . .)) = true iff eq(a,a1) = trueor
. . . or eq(a,ap) = true, for m,n, p≥ 0. Note thatm,n and p are ordinary integers
here,not values of the sortnat, andsuccm(0) meanssucc(. . .succ(︸ ︷︷ ︸

m times

0) . . .). ut

Consideration of examples like the one above suggests various alternatives to
taking the initial semantics of specifications. One choice is to require signatures to
include the sortbool and the constantstrue andfalse, and to exclude models satis-
fying ∀∅• true= false. This might be termed taking thestandard loose semantics
of specifications. Another choice is to additionally exclude models containing junk:

Definition 2.7.8 (Reachable semantics).Let Σ = 〈S,Ω〉 be a signature such that
bool∈ S and true:bool and false:bool are in Ω . A reachable standard modelof
a presentation〈Σ ,Φ〉 is a reachableΣ -algebraA such thatA |=Σ Φ and A 6|=Σ

∀∅• true = false. RMod[〈Σ ,Φ〉] is the class of all reachable standard models of
〈Σ ,Φ〉. Taking 〈Σ ,Φ〉 to denoteRMod[〈Σ ,Φ〉] is called taking itsreachable se-
mantics. ut

The motivation for excluding models containing junk is the same as in the case of
initial semantics.RMod[〈Σ ,Φ〉] is not always an isomorphism class of models, as
Example 2.7.7 demonstrates (the classification given there was forall models that
do not satisfy∀∅• true= false, but the same applies to the reachable models in this
class). There is still a problem when operations are not defined in a sufficiently com-
plete way, although the problem is less severe than in the case of initial semantics.

Exercise 2.7.9.Reconsider the problem posed in Exercise 2.5.20, by writing a
reachable model specification of natural numbers including a subtraction operation
− :nat×nat→natwith the axioms∀m:nat•m−0= mand∀m,n:nat• succ(m)−

succ(n) = m−n. Recall from Exercise 2.5.20 the assumption that we are willing to
accept any value form−n whenn > m, which is why the axioms do not constrain
the value ofm−n in this case. List some of the reachable standard models of this
specification, and decide whether the models you considered in Exercise 2.5.20 are
reachable standard models (ignoring the difference in signatures). From an intuitive
point of view, is this an adequate class of models for this specification? ut

Exercise 2.7.10.Definition 2.7.8 permits algebrasA∈RMod[〈Σ ,Φ〉] with values of
sort bool other thantrueA and falseA. This is ruled out if all operations delivering
results in sortbool are defined in a sufficiently complete way to yield eithertrue or
falseon each argument that is definable by a ground term. Check that the specifi-
cationSetNat in Example 2.7.7 ensures this property and so all of its reachable
models have a two-element carrier of sortbool. Give an example of a specification
for which this is not the case. ut

The equational calculus is sound for reasoning about the reachable standard models
of presentations, sinceRMod[〈Σ ,Φ〉]⊆Mod[〈Σ ,Φ〉] for any presentation〈Σ ,Φ〉. It
is sound to add induction rule schemes such as those given in Section 2.5; these are

Page: 76 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

2.7 Fiddling with the definitions 77

sound for any class of reachable models. Completeness is unachievable, for exactly
the same reason as in the case of initial semantics; the proof of Theorem 2.5.26 can
be repeated in this context almost without change. Finally, the techniques of term
rewriting presented in Section 2.6 remain sound.

Initial semantics cannot be used for specifications with axioms that are more
expressive than (infinitary) conditional equations [Tar86b], in the sense that initial
models of such specifications are not guaranteed to exist. To illustrate the problem,
the following example shows what can go wrong when the language of axioms is
extended to permit disjunctions of equations.

Example 2.7.11.Consider the following specification:

specStatus= sorts status
ops single:status

married:status
widowed:status

• widowed= single∨widowed= married

where disjunction of equations has the obvious interpretation. There are three kinds
of algebras inMod[Status]:

1. Those satisfyingsingle= widowed= married.
2. Those satisfyingsingle= widowed6= married.
3. Those satisfyingsingle6= widowed= married.

None of these is an initial model ofStatus: there are no homomorphisms from
algebras in the first class to algebras in either of the other two classes, and no homo-
morphisms in either direction between algebras in the second and third classes.ut
In contrast, reachable semantics can be used for specifications with axioms of any
form (once a definition of satisfaction of such axioms by algebras has been given,
of course). Such flexibility is a distinct advantage of this approach.

Another alternative to initial semantics deserves brief mention.

Definition 2.7.12 (Final semantics).Let Σ = 〈S,Ω〉 be a signature such thatbool∈
Sandtrue:bool andfalse:bool are inΩ . A Σ -algebraA∈ RMod[〈Σ ,Φ〉] is afinal
(or terminal) model of〈Σ ,Φ〉 if for every B∈ RMod[〈Σ ,Φ〉] there is a uniqueΣ -
homomorphismh:B→ A. Taking 〈Σ ,Φ〉 to denote the class of its final models is
called taking itsfinal semantics. ut
As in the case of initial semantics, the final models of a presentation form an iso-
morphism class. Recall that a model of a presentation is initial iff it contains no
junk and no confusion (Exercise 2.5.19). We can give a similar characterisation
of final models as the models containing no junk andmaximal confusion: a final
modelA satisfies as many ground equations as possible, subject to the restriction
thatA 6|= ∀∅• true= false(imposed on all reachable standard models).

Example 2.7.13.Recall the specificationSetNat from Example 2.7.7, and the
classification of models ofSetNat according to the commutativity and idempo-
tence ofadd. The final models ofSetNat are in the class of “set-like” algebras, in
whichadd is both commutative and idempotent. (Exercise:Why?) ut

Page: 77 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

78 2 Simple equational specifications

Not all presentations with equational axioms have final models, but it is possible
to give conditions on the form of presentations that guarantee the existence of final
models [BDP+79].

Exercise 2.7.14.Find a variation on the specificationStatus in Example 2.7.11
that has no final models. ut

When reachable or final semantics of presentations is used with equational or
conditional equational axioms, sometimes more operations are required in specifi-
cations than in the case of initial semantics. These additional operations are needed
to provide ways of “observing” values of sorts other thanbool, in order to avoid
degenerate models. For example, the presence of the operationeq in Example 2.7.7
ensures thatsuccm(0) = succn(0) only if m = n in all models that do not satisfy
∀∅• true = false; it would not be needed if we were interested only in the initial
models ofSetNat. Such operations are not required if inequations are allowed as
axioms.

Exercise 2.7.15.Recall the presentationNat given in Exercise 2.5.4. Augment this
with the sortbool and constantstrue, false:bool (to make reachable and final se-
mantics applicable), and show that final models of the resulting specification have
a single value of sortnat. Add an operationeven:nat→ bool, with the following
axioms:

∀∅• even(0) = true
∀∅• even(succ(0)) = false
∀n:nat• even(succ(succ(n))) = even(n)

Show that final models of the resulting specification have exactly two values of sort
nat. Replaceevenwith ≤ :nat×nat→ bool, with appropriate axioms, and show
that final models of the resulting specification satisfysuccm(0) = succn(0) iff m= n.
(We have already seen that this is the case ifeq:nat×nat→ bool is added in place
of ≤.) ut
Although the inclusion of additional operations tends to make specifications longer,
it is not an artificial device. In practice, one would expect each sort to come with
an assortment of operations for creating and manipulating values of that sort, so
specifications such asNat are less natural thanNat augmented with operations
like ≤ and/oreq.

2.7.3 Dealing with partial functions: error algebras

An obvious inadequacy of the framework(s) presented above stems from the use of
total functions in algebras to interpret the operation names in a signature. Since par-
tial functions are not at all uncommon in Computer Science applications — a very
simple example being the predecessor functionpred:nat→ nat, which is undefined
on 0 — a great deal of work has gone into ways of lifting this restriction. Three
main approaches are discussed below:

Page: 78 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

2.7 Fiddling with the definitions 79

Error algebras (this subsection): Predecessor is regarded as a total function, with
pred(0) specified to yield anerror value.

Partial algebras (Section 2.7.4): Predecessor is regarded as a partial function.
Order-sorted algebras (Section 2.7.5): Predecessor is regarded as a total function

on a sub-domain that excludes the value 0.

A fourth approach is to use ordinary (total) algebras, leaving the value ofpred(0)
unspecified. This is more an attempt to avoid the issue than a solution, and it is
workable only in frameworks that deal adequately with non-sufficiently-complete
definitions; see Exercises 2.5.20, 2.7.9, and 5.1.11.

The most obvious way of adding error values to algebras does not work, as the
following example demonstrates.

Example 2.7.16.Consider the following specification of the natural numbers, where
pred(0) is specified to yield an error:

specNatPred= sorts nat
ops 0:nat

succ:nat→ nat
pred:nat→ nat
error:nat

+ :nat×nat→ nat
× :nat×nat→ nat

∀m,n:nat
• pred(succ(n)) = n
• pred(0) = error
• 0+n = n
• succ(m)+n = succ(m+n)
• 0×n = 0
• succ(m)×n = (m×n)+n

Initial models ofNatPred will have many “non-standard” values of sortnat, in
addition to the intended one (error). For example, the axioms ofNatPred do not
force the ground termspred(error) andpred(error)+0 to be equal to any “normal”
value, or toerror. (Exercise:Give an initial model ofNatPred.) A possible so-
lution to this is to add axioms that collapse these non-standard values to a single
point:

specNatPred= sorts nat
ops . . .
∀m,n:nat

• . . .
• succ(error) = error
• pred(error) = error
• error +n = error
• n+error = error
• error×n = error
• n×error = error

Page: 79 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

80 2 Simple equational specifications

Unfortunately,NatPred now has only trivial models:error = 0×error = 0 and
soerror = succ(error) = succ(0), error = succ(error) = succ(succ(0)), etc. ut

The above example suggests that a more delicate treatment is required. A number
of approaches have been proposed; here we follow [GDLE84], which is fairly pow-
erful without sacrificing simplicity and elegance. The main ideas of this approach
are:

• Error values are distinguished from non-error (“OK”) values.
• In an error signature, operations that may produce errors when given OK ar-

guments (unsafeoperations) are distinguished from those that always preserve
OK-ness (safeoperations).

• In anerror algebra, each carrier is partitioned into an error part and an OK part.
Safe operations are required to produce OK results for OK arguments, and ho-
momorphisms are required to preserve OK-ness.

• In equations, variables that can take OK values only (safevariables) are distin-
guished from variables that can take any value (unsafevariables). Assignments
of values to variables are required to map safe variables to OK values.

Definition 2.7.17 (Error signature). An error signatureis a tripleΣ = 〈S,Ω ,safe〉
where:

• 〈S,Ω〉 is an ordinary signature; and
• safeis anS∗×S-sorted set of functions〈safew,s:Ωw,s→{tt, ff}〉w∈S∗,s∈S.

An operationf :s1× ·· ·× sn→ s in Σ is safeif safes1...sn,s(f) = tt; otherwise it is
unsafe. ut

Example 2.7.16 (revisited).An appropriate error signature forNatPred would
be:

ΣNatPred = sorts nat
ops 0:nat

succ:nat→ nat
pred:nat→ nat :unsafe
error:nat :unsafe

+ :nat×nat→ nat
× :nat×nat→ nat

Obviously,error is unsafe, andpred is unsafe since it produces an error when ap-
plied to 0; all the remaining operations are safe. (By convention, the safe operations
are those that are not explicitly marked as unsafe.) ut

In the rest of this section, letΣ = 〈S,Ω ,safe〉 be an error signature.

Definition 2.7.18 (Error algebra). An error Σ -algebra Aconsists of:

• an ordinaryΣ -algebraA; and
• anS-sorted set of functionsOK = 〈OKs: |A|s→{tt, ff}〉s∈S

Page: 80 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

2.7 Fiddling with the definitions 81

such that safe operations preserve OK-ness: for everyf :s1×·· ·×sn→ s in Σ such
that safes1...sn,s(f) = tt and a1 ∈ |A|s1, . . . ,an ∈ |A|sn such thatOKs1(a1) = · · · =
OKsn(an) = tt, OKs((f :s1× ·· · × sn→ s)A(a1, . . . ,an)) = tt. A value a ∈ |A|s for
s∈ S is anOK valueif OKs(a) = tt; otherwise it is anerror value. ut

We employ the usual notational conventions, e.g. writingfA in place of(f :s1×·· ·×
sn→ s)A.

Definition 2.7.19 (Error homomorphism). Let A andB be errorΣ -algebras. An
error Σ -homomorphism h:A→ B is anS-sorted functionh: |A| → |B| with the usual
homomorphism property (for allf :s1× ·· ·× sn→ s in Σ anda1 ∈ |A|s1, . . . ,an ∈
|A|sn, hs(fA(a1, . . . ,an)) = fB(hs1(a1), . . . ,hsn(an))) such thath preserves OK-ness:
for everys∈Sanda∈ |A|s such thatOKs(a) = tt (in A), OKs(hs(a)) = tt (in B). ut

Definition 2.7.20 (Error variable set). An error S-sorted variable set Xconsists
of anS-sorted setX such thatXs⊆X for all s∈ S, and anS-sorted set of functions
safe= 〈safes:Xs→{tt, ff}〉s∈S. A variablex:s in X is safeif safes(x) = tt; otherwise
it is unsafe. An assignmentof values in an errorΣ -algebraA to an errorS-sorted
variable setX is anS-sorted functionv:X→ |A| assigning OK values to safe vari-
ables: for everyx:s in X such thatsafes(x) = tt, OKs(vs(x)) = tt. ut

Definition 2.7.21 (Error algebra of terms).Let X be an errorS-sorted variable set.
Theerror Σ -algebra ETΣ (X) of terms with variables Xis defined in an analogous
way to the ordinary term algebraTΣ (X), with the following partition of theS-sorted
set of terms into OK and error values:

For all sortss∈ SandΣ -termst ∈ |ETΣ (X)|s, if t contains an unsafe variable
or operation thenOKs(t) = ff ; otherwiseOKs(t) = tt.

We adopt the same notational conventions for terms as before, dropping sort deco-
rations etc. when there is no danger of confusion. LetETΣ denoteETΣ (∅). ut

The definitions of term evaluation, error equation, satisfaction of an error equation
by an error algebra, error presentation, model of an error presentation, semantic
consequence, and initial model are analogous to the definitions given earlier in the
standard many-sorted algebraic framework (Definitions 1.4.5, 2.1.1, 2.1.2, 2.2.1,
2.2.2, 2.3.6 and 2.5.13 respectively). Because assignments are required to map safe
variables to OK values, an error equation may be satisfied by an error algebra even
if it is not satisfied when error values are substituted for safe variables.

Exercise 2.7.22.Spell out the details of these definitions. ut

As before, every error presentation has an isomorphism class of initial models,
and an analogous quotient construction gives an initial model.

Definition 2.7.23 (Congruence generated by a set of equations).Let Φ be a set of
errorΣ -equations. TheΣ -congruence≡Φ on ETΣ is defined byt ≡Φ t ′⇐⇒Φ |=Σ

∀∅• t = t ′ for all t, t ′ ∈ |ETΣ |. ≡Φ is called theΣ -congruence generated byΦ .
(NOTE: A Σ -congruence on an errorΣ -algebraA is just an ordinaryΣ -congruence
on the ordinaryΣ -algebra underlyingA.) ut

Page: 81 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

82 2 Simple equational specifications

Definition 2.7.24 (Quotient error algebra).Let A be an errorΣ -algebra, and let
≡ be aΣ -congruence onA. The definition ofA/≡, thequotient error algebra of
A modulo≡ , is analogous to that of the ordinary quotient algebraA/≡, with the
following partition of congruence classes into OK and error values:

For all sortss∈ Sand congruence classes[a]≡s ∈ |A/≡|s, if there is someb∈
[a]≡s such thatOKs(b) = tt (in A) thenOKs([a]≡s) = tt (in A/≡); otherwise
OKs([a]≡s) = ff . ut

Note that if there are both OK and error values in a congruence class, the class is
regarded as an OK value in the quotient.

Theorem 2.7.25 (Initial model theorem).The errorΣ -algebra ETΣ /≡Φ is an ini-
tial model of the error presentation〈Σ ,Φ〉. ut

Exercise 2.7.26.Sketch a proof of Theorem 2.7.25. (HINT : Take inspiration from
the proof of Theorem 2.5.14.) ut

Exercise 2.7.27.Try to find conditions analogous to “no junk” and “no confusion”
that characterise the initial models of an error presentation. ut

Example 2.7.16 (revisited).Using the approach outlined above, here is an im-
proved version of the specificationNatPred:

specNatPred= sorts nat
ops 0:nat

succ:nat→ nat
pred:nat→ nat :unsafe
error:nat :unsafe

+ :nat×nat→ nat
× :nat×nat→ nat

∀m,n:nat
• pred(succ(n)) = n
• pred(0) = error
• 0+n = n
• succ(m)+n = succ(m+n)
• 0×n = 0
• succ(m)×n = (m×n)+n

(By convention, variables in equations are safe unless otherwise indicated.) In initial
models ofNatPred, the error values of sortnat correspond exactly to “error mes-
sages”, i.e. ground terms containing at least one occurrence oferror. These terms
can be regarded as recording the sequence of events that took place since the error
occured. The record is accurate since the initial models ofNatPred donot satisfy
equations like∀∅• 0×error = 0, in contrast to the initial models of the earlier ver-
sion. To collapse the error values to a single point without affecting the OK values,
axioms can be added as follows:

Page: 82 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

2.7 Fiddling with the definitions 83

specNatPred= sorts nat
ops . . .
∀m,n:nat,k:nat:unsafe

• . . .
• pred(error) = error
• succ(error) = error
• error +k = error
• k+error = error
• error×k = error
• k×error = error

It is also possible to specifyerror recoveryusing this approach:

specNatPred= sorts nat
ops . . .

recover:nat→ nat
∀m,n:nat,k:nat:unsafe

• . . .
• recover(error) = 0
• recover(n) = n

In initial models of this version ofNatPred, recoveris the identity onnat except
thatrecover(error) gives the OK value 0. ut

Although only initial semantics of error presentations has been mentioned above,
the alternatives of reachable and final semantics apply as in the standard case. The
key points of the standard framework not mentioned here (e.g. analogues to the
soundness, completeness and incompleteness theorems) carry over to the present
framework as well.

Exercise 2.7.28.Find a definition of error signature morphism which makes the
Satisfaction Lemma hold, taking the natural definition of theσ -reductA′ σ of an
errorΣ ′-algebraA′ induced by an error signature morphismσ :Σ → Σ ′. ut

Although the approach to error specification presented above is quite attractive,
there are examples that cannot be treated in this framework.

Exercise 2.7.29.Consider the following specification ofbounded natural numbers:

specBoundedNat= sorts nat
ops 0:nat

succ:nat→ nat :unsafe
overflow:nat :unsafe

• succ(succ(succ(succ(succ(succ(0)))))) = overflow

The intention is to specify a (very) restricted subset of the natural numbers, where an
attempt to compute a number larger than 5 results in overflow. Show that an initial
model ofBoundedNat will have only one OK value. ChangeBoundedNat to
make its initial models have six OK values (corresponding to 0,succ(0), . . . ,succ5(0)).
What if the bound is 232 rather than 5? ut

Page: 83 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

84 2 Simple equational specifications

2.7.4 Dealing with partial functions: partial algebras

An obvious way to deal with partial functions is to simply change the definition of
algebra to allow operation names to be interpreted as partial functions. But for many
of the basic notions in the framework that depend on the definition of algebra, be-
ginning with the concepts of subalgebra and homomorphism, there are several ways
to extend the usual definition to the partial case. Choosing a coherent combination
of these definitions is a delicate matter. Here we follow the approach of [BW82b].

Throughout this section, letΣ = 〈S,Ω〉 be a signature.

Definition 2.7.30 (Partial algebra).A partial Σ -algebra Ais like an ordinaryΣ -
algebra, except that eachf :s1×·· ·×sn→ s in Σ is interpreted as apartial function
(f :s1×·· ·× sn→ s)A: |A|s1×·· ·× |A|sn → |A|s. The (total) Σ -algebra underlying
A is theΣ -algebraA⊥ defined as follows:

• |A⊥|s = |A|s]{⊥s} for everys∈ S; and
• (f :s1×·· ·×sn→ s)A⊥(a1, . . . ,an) =

⊥s if a j =⊥sj for some 1≤ j ≤ n
(f :s1×·· ·×sn→ s)A(a1, . . . ,an) if this is defined
⊥s otherwise

for every f :s1×·· ·×sn→ s anda1 ∈ |A⊥|s1, . . . ,an ∈ |A⊥|sn. ut

We employ the same notational conventions as before. Note that according to this
definition, the value of a constant need not be defined: a constantc:s is associated in
an algebraAwith a partial functioncA:{〈〉}→ |A|s, where{〈〉} is the 0-ary Cartesian
product.

Definition 2.7.31 (Homomorphism).Let A andB be partialΣ -algebras. Aweak
Σ -homomorphism h:A→ B is anS-sorted (total) functionh: |A| → |B| such that for
all f :s1×·· ·×sn→ s in Σ anda1 ∈ |A|s1, . . . ,an ∈ |A|sn,

if fA(a1, . . . ,an) is defined thenfB(hs1(a1), . . . ,hsn(an)) is defined, and
hs(fA(a1, . . . ,an)) = fB(hs1(a1), . . . ,hsn(an)).

If moreoverh satisfies the condition

if fB(hs1(a1), . . . ,hsn(an)) is defined thenfA(a1, . . . ,an) is defined

thenh is called astrongΣ -homomorphism. ut

Other possibilities would be generated by allowing homomorphisms to be partial
functions.

Exercise 2.7.32.Consider a partialΣ -algebraA and its underlying totalΣ -algebra
A⊥. Given anyΣ -congruence≡ on A⊥, removing all pairs involving⊥ yields a
strongΣ -congruence on A. Check that such strong congruences are exactly kernels
of strongΣ -homomorphisms, cf. Exercises 1.3.14 and 1.3.18. Check that strong
congruences are equivalence relations that preserve and reflect definedness of oper-
ations and are closed under defined operations. Kernels of weakΣ -homomorphisms

Page: 84 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

2.7 Fiddling with the definitions 85

areweakΣ -congruences: equivalence relations that are closed under defined oper-
ations. Spell out these definitions in detail. For any partialΣ -algebraA and weak
Σ -congruence≡ on A, generalise Definition 1.3.15 to define thequotient of A by
≡, writtenA/≡. Note that an operation is defined inA/≡ on a tuple of equivalence
classes provided that inA it is defined on at least one tuple of their respective ele-
ments. Check which of Exercises 1.3.18–1.3.23 carry over. ut

Definition 2.7.33 (Term evaluation).Let X be anS-sorted set of variables, letA be
a partialΣ -algebra, and letv:X→ |A| be a (total)S-sorted function assigning values
in A to variables inX. Since|A| ⊆ |A⊥|, this is anS-sorted functionv⊥:X→ |A⊥|,
and by Fact 1.4.4 there is a unique (ordinary)Σ -homomorphismv#

⊥:TΣ (X)→ A⊥
which extendsv⊥. Let s∈ Sand lett ∈ |TΣ (X)|s be aΣ -term of sorts; thevalue of t
in A under the valuation vis v#

⊥(t) if v#
⊥(t) 6=⊥s, and is undefined otherwise. ut

Satisfaction of an equation∀X • t = t ′, where the values oft and/ort ′ may be
undefined, can be defined in several different ways. Following [BW82b], we use
strongequality (also known asKleeneequality) whereby the equality holds if (for
any assignment of values to variables) the values oft andt ′ are either both defined
and equal, or are both undefined. The usual interpretation of definitional equations in
recursive function definitions (see for instance Example 4.1.25 below) makes them
hold as strong equations. An alternative isexistential equality(where= is usually
written

e=), whereby the equality holds only when the values oft andt ′ are defined
and equal. When strong equality is used, there is a need for an additional form
of axiom called adefinedness formula: ∀X • def(t) holds if for any assignment of
values to variables, the value oft is defined. These are superfluous with existential
equality since∀X • def(t) holds iff ∀X • t

e= t holds.

Exercise 2.7.34.Formalize the definitions of satisfaction of equations (using strong
equality) and of definedness formulae. ut

Using both equations and definedness formulae as axioms, the definitions of pre-
sentation, model of a presentation, semantic consequence, isomorphism, and initial
model (with respect toweakhomomorphisms) are analogous to those given earlier.

Exercise 2.7.35.Spell out the details of these definitions. ut

Theorem 2.7.36 (Initial model theorem).Any presentation〈Σ ,Φ〉 has an initial
model I, characterised by the following properties:

• I contains no junk;
• I is minimally defined, i.e. for all t∈ |TΣ |, tI is defined only ifΦ |=Σ ∀∅• def(t);

and
• I contains no confusion, i.e. for all t, t ′ ∈ |TΣ |s,s∈ S, tI and t′I are defined and

equal only ifΦ |=Σ ∀∅• t = t ′.

Proof sketch.Let Σ⊥ be the signature obtained by adding a constant⊥s:s to Σ for
each sorts∈ S. Define a congruence∼⊆ |TΣ⊥ |× |TΣ⊥ | as follows: fort1, t2 ∈ |TΣ⊥ |s
for somes∈ S, t1∼ t2 iff any of the following conditions holds:

Page: 85 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

86 2 Simple equational specifications

1. t1 contains⊥s′ andt2 contains⊥s′′ for somes′,s′′ ∈ S;
2. t1 contains⊥s′ for somes′ ∈ S, t2 ∈ |TΣ |s (so t2 does not contain⊥s′′ for any

s′′ ∈ S) andΦ 6|= def(t2), or vice versa
3. t1, t2 ∈ |TΣ |s, and eitherΦ 6|= def(t1) andΦ 6|= def(t2) or Φ |= t1 = t2.

I is constructed by taking the quotient ofTΣ⊥ by∼, and then regarding congruence
classes containing the constants⊥s as undefined values. ut

Exercise 2.7.37.Complete the above proof by showing that:

• ∼ is a congruence onTΣ⊥ ;
• I |= Φ ;
• I is an initial model of〈Σ ,Φ〉; and
• I has the properties promised in Theorem 2.7.36.

Show that any model of〈Σ ,Φ〉 satisfying the properties in Theorem 2.7.36 is iso-
morphic toI and is therefore an initial model of〈Σ ,Φ〉. ut

Exercise 2.7.38.Suppose that we modify Theorem 2.7.36 by replacing the phrase
“ tI and t ′I are defined and equal” with “I |=Σ ∀∅• t = t ′”. Give a counterexample
showing that this version of the theorem is false. ut

Exercise 2.7.39.A partial Σ -algebraA∈Mod[〈Σ ,Φ〉] is astrongly initial model of
〈Σ ,Φ〉 if for every minimally definedB ∈ Mod[〈Σ ,Φ〉] containing no junk, there
is a unique strongΣ -homomorphismh:A→ B. Show thatI is an initial model of
〈Σ ,Φ〉 iff I is a strongly initial model of〈Σ ,Φ〉. ut

Again, reachable and final semantics are applicable for partial algebras as well
as initial semantics, and the key points of the standard framework carry over with
appropriate changes (for instance, the equational calculus must be modified to deal
with definedness formulae as well as equations).

Example 2.7.16 (revisited).Here is a version of the specificationNatPred in
whichpred is specified to be a partial function:

specNatPred= sorts nat
ops 0:nat

succ:nat→ nat
pred:nat→ nat

+ :nat×nat→ nat
× :nat×nat→ nat

∀m,n:nat
• def(0)
• def(succ(n))
• pred(succ(n)) = n
• 0+n = n
• succ(m)+n = succ(m+n)
• 0×n = 0
• succ(m)×n = (m×n)+n

Page: 86 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

2.7 Fiddling with the definitions 87

In initial models ofNatPred, all operations behave as expected, and all are total
except forpredwhich is undefined only on 0.

Exercise. Show that∀m,n:nat• def(m+ n) and∀m,n:nat• def(m× n) are conse-
quences of the definedness axioms for 0 andsuccand the equations defining+ and
×, in reachable models ofNatPred. You will need to use induction, so first for-
mulate an appropriate induction rule scheme and convince yourself that it is sound.

Exercise.Suppose that the axiom∀∅• def(0) were removed fromNatPred. De-
scribe the initial models of the resulting presentation. ut

2.7.5 Partial functions: order-sorted algebras

Any partial function amounts to a total function on a restricted domain. The idea of
order-sorted algebrais to avoid partial functions by enabling the domain of each
function to be specified exactly. This is done by introducingsubsorts, which cor-
respond to subsets at the level of values, and requiring operations to behave in an
appropriate fashion when applied to a value of a subsort or when expected to deliver
a value of a supersort. A number of different approaches to order-sorted algebra
have been proposed, and their relative merits are still a matter for debate. Here we
follow the approach of [GM92].

Definition 2.7.40 (Order-sorted signature).An order-sorted signatureis a triple
Σ = 〈S,≤,Ω〉 where〈S,Ω〉 is an ordinary signature and≤ is a partial order on the
setSof sort names, such that wheneverf :s1×·· ·×sn→ s and f :s′1×·· ·×s′n→ s′

are operations (having the same name and same number of arguments) inΩ and
si ≤ s′i for all 1≤ i ≤ n, thens≤ s′. Whens≤ s′ for s,s′ ∈ S, we say thats is a
subsortof s′ (or equivalently,s′ is asupersortof s). The subsort ordering is extended
to sequences of sorts of equal length in the usual way:s1 . . .sn ≤ s′1 . . .s′n if si ≤ s′i
for all 1≤ i ≤ n. ut
The restriction onΩ ([GM92] calls this conditionmonotonicity) is a fairly natural
one, keeping in mind that the subsort ordering corresponds to subset on the value
level: restricting a function to a subset of its domain may diminish, but not enlarge,
its codomain. Note that an effect of this restriction is to rule out overloaded con-
stants.

Throughout the rest of this section, letΣ = 〈S,≤,Ω〉 be an order-sorted signature,
and letΣ̂ = 〈S,Ω〉 be the (ordinary) signature corresponding toΣ .

Definition 2.7.41 (Order-sorted algebra).An order-sortedΣ -algebra Ais an or-
dinaryΣ̂ -algebra, such that:

• for all s≤ s′ in Σ , |A|s⊆ |A|s′ ; and
• wheneverf :s1×·· ·×sn→ sand f :s′1×·· ·×s′n→ s′ are operations (having the

same name and same number of arguments) inΩ ands1 . . .sn ≤ s′1 . . .s′n, then
the function(f :s1×·· ·× sn→ s)A: |A|s1×·· ·× |A|sn → |A|s is the set-theoretic
restriction of the function(f :s′1×·· ·×s′n→ s′)A: |A|s′1×·· ·× |A|s′n→ |A|s′ . ut

Page: 87 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

88 2 Simple equational specifications

An effect of the second restriction ([GM92] calls this conditionmonotonicityas
well) is to avoid ambiguity in the evaluation of terms (see below).

Definition 2.7.42 (Order-sorted homomorphism).Let A andB be order-sortedΣ -
algebras. Anorder-sortedΣ -homomorphism h:A→B is an ordinarŷΣ -homomorphism,
such thaths(a) = hs′(a) for all a∈ |A|s whenevers≤ s′. Whenh has an inverse, it
is anorder-sortedΣ -isomorphismand we writeA∼= B. ut

Let X be anS-sorted set (of variables) such thatXs andXs′ are disjoint for any
s 6= s′.

Definition 2.7.43 (Order-sorted term algebra).Theorder-sortedΣ -algebra TΣ (X)
of terms with variables Xis just like T

Σ̂
(X), except that for any termt ∈ |TΣ (X)|s

such thats≤ s′, we also havet ∈ |TΣ (X)|s′ . Let TΣ = TΣ (∅). ut

Exercise 2.7.44.Check thatTΣ (X) is an order-sortedΣ -algebra. ut

Example 2.7.45.One way of reformulatingNatPred as an order-sorted specifi-
cation (see below) will involve introducing a sortnznat(non-zero natural numbers)
such thatnznat≤ nat, with operations 0:nat andsucc:nat→ nznat. According to
the definition of order-sorted term algebra, the termsucc(0) has sortnat as well as
nznat, which means thatsucc(succ(0)) is well-formed (and has sortnat as well as
nznat). ut

As the above example demonstrates, a given term may appear in more than one
carrier ofTΣ (X). The following condition onΣ ensures that this does not lead to
ambiguity.

Definition 2.7.46 (Regular order-sorted signature).Σ is regular if for any f :s1×
·· ·×sn→ s in Σ ands∗1 . . .s∗n≤ s1 . . .sn, there is a leasts′1 . . .s′ns′ such thats∗1 . . .s∗n≤
s′1 . . .s′n and f :s′1×·· ·×s′n→ s′ is in Σ . ut

Theorem 2.7.47 (Terms have least sorts).If Σ is regular, then for every term t∈
|TΣ (X)| there is a least sort s∈ S, written sort(t), such that t∈ |TΣ (X)|s. ut

Exercise 2.7.48.Prove Theorem 2.7.47. What happens whenX is anarbitrary S-
sorted set, i.e. if we remove the restriction thatXs andXs′ are disjoint for anys 6= s′?

ut

Now the definition of term evaluation is analogous to the usual one.

Fact 2.7.49.Suppose thatΣ is regular. Then, for any order-sortedΣ -algebra A and
S-sorted function v:X → |A|, there is exactly one order-sortedΣ -homomorphism
v#:TΣ (X)→ A which extends v, i.e. such that v#

s(x) = vs(x) for all s∈ S, x∈ Xs. ut

Exercise 2.7.50.Define term evaluation. ut

Page: 88 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

2.7 Fiddling with the definitions 89

Definition 2.7.51 (Order-sorted equation; satisfaction).Suppose thatΣ is reg-
ular, and let the equivalence relation≡ be the symmetric transitive closure of
≤ . Order-sortedΣ -equations∀X • t = t ′ are as usual, except that we require

sort(t) ≡ sort(t ′) (in other words,sort(t) and sort(t ′) are in the sameconnected
componentof 〈S,≤〉) instead ofsort(t) = sort(t ′). An order-sortedΣ -algebraA sat-
isfiesan order-sortedΣ -equation∀X • t = t ′, written A |=Σ ∀X • t = t ′, if the value
of t in |A|sort(t) and the value oft ′ in |A|sort(t ′) coincide, for everyS-sorted function
v:X→ |A|. ut

A problem with this definition is that satisfaction of order-sortedΣ -equations is not
preserved by order-sortedΣ -isomorphisms (compare Exercise 2.1.5). The following
condition onΣ ensures that this anomaly does not arise.

Definition 2.7.52 (Coherent order-sorted signature).〈S,≤〉 is filtered if for any
s,s′ ∈ S there is somes′′ ∈ Ssuch thats≤ s′′ ands′ ≤ s′′. 〈S,≤〉 is locally filteredif
each of its connected components is filtered.Σ is coherentif 〈S,≤〉 is locally filtered
andΣ is regular. ut

Exercise 2.7.53.Find Σ , A, B andϕ such thatΣ is regular,A |=Σ ϕ andA∼= B but
B 6|=Σ ϕ. Show that ifΣ is coherent then this is impossible. ut

The definitions of order-sorted presentation, model of an order-sorted presenta-
tion, semantic consequence, and initial model are analogous to those given earlier.
For every order-sorted presentation〈Σ ,Φ〉 such thatΣ is coherent, an initial model
may be constructed as a quotient ofTΣ [GM92]. There is a version of the equational
calculus that is sound and complete for coherent signatures [GM92], and the use
of term rewriting for proof as discussed in Section 2.6 is sound, provided that each
rewrite rulet→ t ′ is sort-decreasing, i.e.sort(t ′)≤ sort(t) [KKM88].

Example 2.7.16 (revisited).Here is a version of the specificationNatPred in
whichpred is specified to be a total function on the non-zero natural numbers:

specNatPred= sorts nznat≤ nat
ops 0:nat

succ:nat→ nznat
pred:nznat→ nat

+ :nat×nat→ nat
× :nat×nat→ nat

∀m,n:nat
• pred(succ(n)) = n
• 0+n = n
• succ(m)+n = succ(m+n)
• 0×n = 0
• succ(m)×n = (m×n)+n

In this version ofNatPred, there are terms that are not well-formed in spite of the
fact that each operator application seems to be to a value in its domain. For example,
consider the following “term”:

Page: 89 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

90 2 Simple equational specifications

pred(succ(0)+succ(0)).

According to the signature ofNatPred, succ(0)+ succ(0) is a term of sortnat;
it is not a term of sortnznat in spite of the fact that its value is non-zero. In the
term algebra,pred applies only to terms of sortnznat, thus the application ofpred
to succ(0)+succ(0) is not defined. One way of getting around this problem might
be to add additional operators to the signature ofNatPred:

specNatPred= sorts nznat≤ nat
ops . . .

+ :nznat×nat→ nznat
+ :nat×nznat→ nznat
× :nznat×nznat→ nznat

. . .

Thensucc(0)+succ(0) is a term of sortnznat, as desired. Unfortunately, this signa-
ture is not regular. (Exercise:Why not? What can be done to make it regular?)

An alternative is to use a so-calledretract, an additional operation for converting
from a sort to one of its subsorts:

specNatPred= sorts nznat≤ nat
ops . . .

r:nat→ nznat
∀m,n:nat,k:nznat

• . . .
• r(n) = n

Now, the termpred(r(succ(0)+ succ(0))) is well-formed, and is equal tosucc(0)
in all models ofNatPred. In the words of [GM92], inserting the retractr into
pred(r(succ(0)+succ(0))) gives it “the benefit of the doubt”, and the term is “vin-
dicated” by the fact that it is equal to a term that does not containr. The term
pred(r(0)) is also well-formed, but in the initial model ofNatPred this term is
equal only to other terms containing the retractr, and can thus be regarded as an
error message. The use of retracts (which can be inserted automatically) is well-
behaved under certain conditions on order-sorted presentations [GM92].

Another version ofNatPred is obtained by using anerror supersortfor the
codomain ofpred rather than a subsort for its domain:

Page: 90 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

2.7 Fiddling with the definitions 91

specNatPred= sorts nat≤ nat?
ops 0:nat

succ:nat→ nat
pred:nat→ nat?

+ :nat×nat→ nat
× :nat×nat→ nat

∀m,n:nat
• pred(succ(n)) = n
• 0+n = n
• succ(m)+n = succ(m+n)
• 0×n = 0
• succ(m)×n = (m×n)+n

The sortnat? may be thought of asnat extended by the addition of an error value
corresponding topred(0).

Here we have the same problem with ill-formed terms as before; an example is
the termsucc(pred(succ(0))). Again, retracts solve the problem. In this case, the
required retract is the operationr:nat?→ nat, defined by the axiom∀n:nat• r(n) =
n. ut

Exercise 2.7.54.Try to view the error algebra approach presented in Section 2.7.3
as a special case of order-sorted algebra. ut

2.7.6 Other options

The previous sections have mentioned only a few of the ways in which the standard
framework can be improved to make it more suitable for particular kinds of applica-
tions. A great many other variations are possible; a few of these are sketched below.

Example 2.7.55 (First-order predicate logic).Signatures may be modified to en-
able them to include (typed)predicate namesin addition to operation names,
e.g. ≤ :nat× nat. Atomic formulae are then formed by applying predicates
to terms; infirst-order predicate logic with equality, the predicate = :s× s is
implicitly available for any sorts. Formulae are built from atomic formulae using
logical connectives and quantifiers. Algebras are modified to include relations on
their carriers to interpret predicate names; the interpretation of the built-in equal-
ity predicate (if available) may be forced to be the underlying equality on values,
or it may merely be required to be a congruence relation. Homomorphisms are re-
quired to respect predicates as well as operations. The satisfaction of asentence(a
formula without free variables) by an algebra is as usual in first-order logic. See Ex-
ample 4.1.12 for details of the version of first-order predicate logic with equality we
will use. Presentations involving predicates and first-order axioms are appropriate
for the specification of programs inlogic programming languagessuch as Prolog,
where the Horn clause fragment of first-order logic is used for writing the programs

Page: 91 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

92 2 Simple equational specifications

themselves. Note that such presentations may have no models at all, but even if they
have some models, they may have no initial models (see Example 2.7.11) or no final
models (see Exercise 2.7.14), or even no reachable models. (Exercise:Give a spec-
ification with first-order axioms having some models but no reachable model.)ut

Example 2.7.56 (Higher-order functions).Higher-order functions (taking func-
tions as parameters and/or returning functions as results) can be accommodated by
interpreting certain sort names as (subsets of) function spaces. Given a setS of
(base) sorts, letS→ be the closure ofSunder formation of function types:S→ is the
smallest set such thatS⊆ S→ and for alls1, . . . ,sn,s∈ S→, s1×·· ·×sn→ s∈ S→.
Then a higher-order signatureΣ is a pair 〈S,Ω〉 where Ω is an S→-indexed
set of operation names. This determines an ordinary signatureΣ→ comprised of
the sort namesS→ and the operation names inΩ together with operation names
apply:(s1× ·· · × sn → s)× s1× ·· · × sn → s for every s1, . . . ,sn,s ∈ S→. Note
that, except for the various instances ofapply, all the operations inΣ→ are con-
stants, albeit possibly of “functional” sort. Ahigher-order Σ -algebra is just an
ordinary (total)Σ→-algebra, and analogously for the definitions of higher-order
Σ -homomorphism, reachable higher-orderΣ -algebra, higher-orderΣ -term, higher-
order Σ -equation, satisfaction of a higher-orderΣ -equation by a higher-orderΣ -
algebra, and higher-order presentation. A higher-orderΣ -algebraA is extensionalif
for all sortss1×·· ·×sn→ s∈ S→ and valuesf ,g∈ |A|s1×···×sn→s, f = g whenever
applyA(f ,a1, . . . ,an) = applyA(g,a1, . . . ,an) for all a1 ∈ |A|s1, . . . ,an ∈ |A|sn. In an
extensional algebraA, every carrier|A|s1×···×sn→s is isomorphic to a subset of the
function space|A|s1×·· ·× |A|sn → |A|s. A higher-orderΣ -algebraA is amodelof
a presentation〈Σ ,Φ〉 if A |=Σ Φ , A is extensional, andA is reachable. The reacha-
bility requirement (no junk) means that|A|s1×···×sn→s will almost never be the full
function space|A|s1 × ·· · × |A|sn → |A|s: only the functions that are denotable by
ground terms will be present in|A|s1×···×sn→s. Higher-order (equational) presenta-
tions always have initial models [MTW88]. ut

Example 2.7.57 (Polymorphic types).Programming languages such as Standard ML
[Pau96] can be used to definepolymorphic typessuch asα list (instances of which
includebool listand(bool list) list) andpolymorphic valuessuch ashead:∀α • α list→
α (which is then applicable to values of types such asbool list and(bool list) list).
To specify such types and functions, signatures are modified to containtype con-
structorsin place of sort names; for example,list is a unary type constructor and
bool is a nullary type constructor. Terms built using these type constructors andtype
variables(such asα above) are thepolymorphic typesof the signature. The setΩ

of operation names is then indexed by non-empty sequences of polymorphic types,
where f ∈Ωt1...tn,t meansf :∀FV(t1)∪ . . .∪FV(tn)∪FV(t)• t1×·· ·× tn→ t. There
are various choices for algebras over such signatures. Perhaps the most straight-
forward choice is to require each algebraA to incorporate a (single-sorted)alge-
bra of carriers Carr(A), having sets interpreting types as values and an operation
to interpret each type constructor. Then, for each operationf ∈ Ωt1...tn,t and for
each instantiation of type variablesi:V → |Carr(A)|, A has to provide a function
fA,i : i#(t1)×·· ·× i#(tn)→ i#(t). Various conditions may be imposed to ensure that

Page: 92 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

2.8 Bibliographical remarks 93

the interpretation of polymorphic operations isparametricin the sense of [Str67],
by requiring fA,i and fA,i′ to be appropriately related for different type variable in-
stantiationsi, i′. Another choice would be to interpret each type as the set of equiva-
lence classes of apartial equivalence relationon a model of the untypedλ -calculus
[BC88]. Axioms contain (universal) quantifiers for type variables in addition to
quantifiers for ordinary variables, as in System F [Gir89]; alternatively, type vari-
able quantification may be left implicit, as in Extended ML [KST97]. ut

Example 2.7.58 (Non-deterministic functions).Non-deterministic functions may
be handled by interpreting operation names in algebras as relations, or equivalently
as set-valued functions. Homomorphisms are required to preserve possible values
of functions: for any homomorphismh:A→ B and operationf :s1× ·· · × sn →
s, if a is a possible value offA(a1, . . . ,an) then hs(a) is a possible value of
fB(hs1(a1), . . . ,hsn(an)). Universally quantified inclusions between sets of possible
values may be used as axioms:t ⊆ t ′ means that every possible value oft is a possi-
ble value oft ′. ut

Example 2.7.59 (Recursive definitions).Following [Sco76], partial functions may
be specified as least solutions of recursive equations, where “least” is with respect
to an ordering on the space of functions of a given type. To accommodate this, we
can usecontinuous algebras, i.e. ordinary (total)Σ -algebras with carriers that are
complete partially ordered sets (so-calledcpos) and operation names interpreted as
continuous functionson these sets. See Example 3.3.14. The “bottom” element⊥
of the carrier for a sort, if it exists, represents the completely undefined value of that
sort. The order on carriers induces an order on (continuous) functions in the usual
fashion. A homomorphism between continuous algebras is required to be continu-
ous as a function between cpos. It is possible to define a language of axioms that
allows direct reference to least upper bounds of chains (see Example 4.1.22), and/or
to the order relation itself. Such techniques may also be used to specify infinite data
types such asstreams. ut

2.8 Bibliographical remarks

Much of the material presented here is well known, at least in its single-sorted
version, in universal algebra as a branch of mathematics. Standard references are
[Grä79] and [Coh65]. We approach this material from the direction of computer
science, see [Wec92] and [MT92], and present the fundamentals of equational spec-
ifications as developed in the 1970s [GTW76], [Gut75], [Zil74], see also [EM85]
for an extended monograph-style presentation.

The simplest and most limited form of a specification is a “bare” signature, and
this is what is used to characterise classes of algebras (program modules) in modu-
larisation systems for programming languages — see e.g. Standard ML [MTHM97],
[Pau96], where such characterisations are in fact called signatures.

Page: 93 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

94 2 Simple equational specifications

The first appearance of the Satisfaction Lemma (Lemma 2.1.8) in the algebraic
specification literature was in [BG80], echoing the semantic consequences of the
definition of (theory) interpretations in logic [End72]. This fundamental link be-
tween syntax and semantics will become one of the cornerstones of later develop-
ment starting in Chapter 4.

One topic that is only touched upon here (see e.g. Theorem 2.2.10) is the ex-
pressive power of specifications. See [BT87] for a comprehensive survey of what is
known about the expressive power of the framework presented in this chapter. The
main theorem is the one mentioned at the beginning of Section 2.7.

We make a distinction between presentations and theories that is not present in
some other work. This distinction surfaces in the definition of theory morphisms
(Definition 2.3.11). For two presentations (not necessarily theories)〈Σ ,Φ〉 and
〈Σ ′,Φ ′〉, [Gan83] takes a signature morphismσ :Σ → Σ ′ to be a specification mor-
phismσ :〈Σ ,Φ〉 → 〈Σ ′,Φ ′〉 if σ(Φ) ⊆ Φ ′. Such aσ is referred to as an “axiom-
preserving theory morphism” in [Mes89]. Exercise 2.3.15 shows that this is not
equivalent to our definition of theory morphism between the theories presented by
those presentations. Another possibility is to requireσ to map only thegroundequa-
tions inΦ to equations inClΣ ′(Φ ′), as in [Ehr82]. These alternative definitions seem
unsatisfactory since they make little or no sense on the level of models, in contrast
to the relationship between theory and model levels for theory morphisms given by
Proposition 2.3.13. We will later (Definition 5.5.1) definespecification morphisms,
as a generalisation of morphisms between presentations, relying on this relationship.

The many-sorted equational calculus is presented in [GM85] together with a
proof that it is sound and complete. This builds on the standard equational calculus
[Bir35], but the modifications needed to deal with empty carriers in the many-sorted
context came as a surprise at the time. Our choice of rules in Section 2.4 is different
from this standard version but the two systems are equivalent (Exercise 2.4.14) and
the proofs of soundness and completeness are analogous.

The initial algebra approach to specification (Section 2.5) is the classical one. It
originated with the seminal paper [GTW76], and was further developed by Hartmut
Ehrig and his group; see [EM85] for a comprehensive account.

Example 2.5.24 and Exercise 2.5.25 point at useful ways to make inductive
proofs easier by providing derived induction rule schemes, as possible for instance
in the logics of Larch [GH93] and CASL [Mos04] and their proof support systems
(LP [GG89] and HETS [MML07], respectively), see also Chapter 6 of [Far92].

The proof of the incompleteness theorem for initial semantics (Theorem 2.5.26)
from [MS85] follows [Nou81] where it was used to show that the equational calcu-
lus with a specific induction rule scheme is not complete. An alternative to adding
induction rules to the equational calculus is to restrict attention to so-calledω-
complete presentations; these are presentations〈Σ ,Φ〉 for which the equational
calculus itself yields all of theΣ -equations that hold in initial models of〈Σ ,Φ〉
[Hee86]. Then the problem becomes one of finding anω-complete presentation
corresponding to a given presentation. By the incompleteness theorem, this is not
always possible.

Page: 94 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

2.8 Bibliographical remarks 95

There is a substantial body of theory on term rewriting systems; Section 2.6 is
only the tip of the iceberg. For much more on the topic, and for the details of the
Knuth-Bendix completion algorithm [KB70] that have been omitted in Section 2.6,
see [DJ90], [Klo92], [BN98], [Kir99] and [Ter03]. See [KM87] or [DJ90] for a
discussion of proof by consistency, which originated with [Mus80]. Like most work
in this area, all these restrict attention to the single-sorted case. See [EM85] for a
treatment of the many-sorted case, up to the soundness and completeness theorems
for conversion, without our simplifying assumption (cf. Exercise 2.6.11).

In the case of reachable and final semantics, it is usual to look at reachable or
final extensionsof algebras (alternative terminology: hierarchical specifications),
rather than at the reachable or final interpretation of a completed specification. See
[BDP+79] or [WB82] for reachable semantics, and [GGM76] or [Wan79] for fi-
nal semantics. Under appropriate conditions, the reachable models of a presentation
form a complete lattice, with the initial model at one extreme and the final model
at the other; see [GGM76] and [BWP84]. For such hierarchical specifications, an
incompleteness theorem that is even stronger than Theorem 2.5.26 may be proved:
no sound proof system can derive allgroundequational consequences of such spec-
ifications, see [MS85].

The first attempt to specify errors by distinguishing error values from OK values
was [Gog78]. More details of the approach outlined in Section 2.7.3 can be found in
[GDLE84]. The final semantics of error presentations is discussed in [Gog85]. See
[BBC86] for an alternative approach which is able to deal with examples like the
one discussed in Exercise 2.7.29.

More details of the approach to partial algebras outlined in Section 2.7.4 can
be found in [BW82b]. WeakΣ -homomorphisms are called totalΣ -homomorphisms
there. Alternative approaches to the specification of partial algebras are presented in
[Rei87] and [Kre87], and more recently [Mos04]. See [Bur86] for a comprehensive
analysis of the various alternative definitions of the basic notions.

See [GM92], further refined in [Mes09], for more on the approach to order-
sorted algebra in Section 2.7.5. Alternative approaches include [Gog84], [Poi90]
and [Smo86] which is sometimes referred to as “universal” order-sorted algebra to
distinguish it from “overloaded” order-sorted algebra as presented here. A universal
order-sorted algebra contains a single universe of values, where a sort corresponds
to a subset of the universe and each operation name identifies a (single) function
on the universe. A compromise is in rewriting logic [Mes92] as implemented in
Maude [CDE+02]. See [GD94a] and [Mos93] for surveys comparing the differ-
ent approaches. [GD94a] discusses how some of the definitions and results in Sec-
tion 2.7.5 can be generalised by dropping or weakening the monotonicity require-
ments on order-sorted signatures and order-sorted algebras. Yet a different approach
to subsorting is taken in CASL [Mos04] where subsort coercions may be arbitrary
injective functions rather than merely inclusions.

First-order predicate logic has been used as a framework for algebraic specifica-
tion in various approaches, see for instance CIP-L [BBB+85] and CASL [Mos04].
See [Poi86], [MTW88], [Mei92] and [Qia93] for different approaches to the alge-
braic specification of higher-order functions. Frameworks that cater for the spec-

Page: 95 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

96 2 Simple equational specifications

ification of polymorphic types and functions are described in [MSS90], [Mos89]
and [KST97]. See [Nip86] for more on algebras with non-deterministic operations;
for a different approach using relation algebra, see [BS93]. See [WM97] for a
comprehensive overview. Soundness and completeness of term rewriting for non-
deterministic specifications is studied in [Hus92]. Continuous algebras and the use
of Scott-style domain-theoretic techniques in algebraic specification were first dis-
cussed in [GTWW77]. See [Sch86] or [GS90] for much more on domain theory
itself. Although these and other extensions to the standard framework have been ex-
plored separately, the few attempts that have been made to combine such extensions
(see e.g. [AC89] and [Mos04]) have tended to reveal new problems.

Page: 96 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

Page: 532 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

References

AC89. Egidio Astesiano and Maura Cerioli. On the existence of initial models for partial
(higher-order) conditional specifications. In Josep Dı́az and Fernando Orejas, editors,
Proceedings of the International Joint Conference on Theory and Practice of Software
Development, TAPSOFT’89, Barcelona,Lecture Notes in Computer Science, volume
351, pages 74–88. Springer, 1989.

AC01. David Aspinall and Adriana B. Compagnoni. Subtyping dependent types.Theoretical
Computer Science, 266(1–2):273–309, 2001.

ACEGG91. Jaume Agustı́-Cullell, Francesc Esteva, Pere Garcia, and Lluis Godo. Formalizing
multiple-valued logics as institutions. In Bernadette Bouchon-Meunier, Ronald R.
Yager, and Lotfi A. Zadeh, editors,Proceedings of the 3rd International Conference
on Information Processing and Management of Uncertainty in Knowledge-Based Sys-
tems, IPMU’90, Paris,Lecture Notes in Computer Science, volume 521, pages 269–
278. Springer, 1991.

AF96. Mário Arrais and Jośe Luiz Fiadeiro. Unifying theories in different institutions. In
Magne Haveraaen, Olaf Owe, and Ole-Johan Dahl, editors,Recent Trends in Data
Type Specification. Selected Papers from the 11th Workshop on Specification of Ab-
stract Data Types, Oslo, Lecture Notes in Computer Science, volume 1130, pages
81–101. Springer, 1996.

AG97. Robert Allen and David Garlan. A formal basis for architectural connection.ACM
Transactions on Software Engineering and Methodology, 6(3):213–249, 1997.

AH05. David Aspinall and Martin Hofmann. Dependent types. In Benjamin Pierce, editor,
Advanced Topics in Types and Programming Languages, chapter 2, pages 45–86. MIT
Press, 2005.

AHS90. Jǐri Adámek, Horst Herrlich, and George Strecker.Abstract and Concrete Categories:
The Joy of Cats. Wiley, 1990.

Ala02. Suad Alagic. Institutions: Integrating objects, XML and databases.Information and
Software Technology, 44(4):207–216, 2002.

AM75. Michael A. Arbib and Ernest G. Manes.Arrows, Structures and Functors: The Cate-
gorical Imperative. Academic Press, 1975.

Asp95. David Aspinall. Subtyping with singleton types. In Leszek Pacholski and Jerzy
Tiuryn, editors,Proceedings of the 8th International Workshop on Computer Science
Logic, CSL’94, Kazimierz,Lecture Notes in Computer Science, volume 933, pages
1–15. Springer, 1995.

Asp97. David Aspinall. Type Systems for Modular Programming and Specification. PhD
thesis, University of Edinburgh, Department of Computer Science, 1997.

Asp00. David Aspinall. Subtyping with power types. In Peter Clote and Helmut Schwichten-
berg, editors,Proceedings of the 14th International Workshop on Computer Science

533

534 References

Logic, Fischbachau,Lecture Notes in Computer Science, volume 1862, pages 156–
171. Springer, 2000.

Avr91. Arnon Avron. Simple consequence relations.Information and Computation, 92:105–
139, 1991.

Awo06. Steve Awodey.Category Theory. Oxford University Press, 2006.
Bar74. Jon Barwise. Axioms for abstract model theory.Annals of Mathematical Logic,

7:221–265, 1974.
BBB+85. Friedrich L. Bauer, Rudolf Berghammer, Manfred Broy, Walter Dosch, Franz Geisel-

brechtinger, Rupert Gnatz, E. Hangel, Wolfgang Hesse, Bernd Krieg-Brückner, Al-
fred Laut, Thomas Matzner, Bernd M̈oller, Friederike Nickl, Helmut Partsch, Peter
Pepper, Klaus Samelson, Martin Wirsing, and Hans Wössner. The Munich Project
CIP: Volume 1: The Wide Spectrum Language CIP-L, Lecture Notes in Computer
Science, volume 183. Springer, 1985.

BBC86. Gilles Bernot, Michel Bidoit, and Christine Choppy. Abstract data types with ex-
ception handling: An initial approach based on a distinction between exceptions and
errors.Theoretical Computer Science, 46(1):13–45, 1986.

BC88. Val Breazu-Tannen and Thierry Coquand. Extensional models for polymorphism.
Theoretical Computer Science, 59(1–2):85–114, 1988.

BCH99. Michel Bidoit, Maŕıa Victoria Cengarle, and Rolf Hennicker. Proof systems for struc-
tured specifications and their refinements. In Egidio Astesiano, Hans-Jörg Kreowski,
and Bernd Krieg-Br̈uckner, editors,Algebraic Foundations of Systems Specification,
chapter 11, pages 385–433. Springer, 1999.

BD77. R.M. Burstall and J. Darlington. A transformational system for developing recursive
programs.Journal of the Association for Computing Machinery, 24(1):44–67, 1977.

BDP+79. Manfred Broy, Walter Dosch, Helmut Partsch, Peter Pepper, and Martin Wirsing. Ex-
istential quantifiers in abstract data types. In Hermann A. Maurer, editor,Proceed-
ings of the 6th International Colloquium on Automata, Languages and Programming,
Graz,Lecture Notes in Computer Science, volume 71, pages 73–87. Springer, 1979.

Bén85. Jean B́enabou. Fibred categories and the foundations of naı̈ve category theory.Jour-
nal of Symbolic Logic, 50:10–37, 1985.

Ber87. Gilles Bernot. Good functors . . . are those preserving philosophy! In David H.
Pitt, Axel Poigńe, and David E. Rydeheard, editors,Proceedings of the 2nd Summer
Conference on Category Theory and Computer Science, Edinburgh,Lecture Notes in
Computer Science, volume 283, pages 182–195. Springer, 1987.

BF85. Jon Barwise and Solomon Feferman, editors.Model-Theoretic Logics. Springer,
1985.

BG77. R.M. Burstall and J.A. Goguen. Putting theories together to make specifications.
In Fifth International Joint Conference on Artificial Intelligence, pages 1045–1058,
Boston, 1977.

BG80. R.M. Burstall and J.A. Goguen. The semantics of Clear, a specification language.
In Dines Bjørner, editor,Proceedings of the 1979 Copenhagen Winter School on Ab-
stract Software Specification, Lecture Notes in Computer Science, volume 86, pages
292–332. Springer, 1980.

BG81. R.M. Burstall and J.A. Goguen. An informal introduction to specifications using
Clear. In R.S. Boyer and J.S. Moore, editors,The Correctness Problem in Computer
Science, pages 185–213. Academic Press, 1981. Also in:Software Specification Tech-
niques(eds. N. Gehani and A.D. McGettrick), Addison-Wesley, 1986.

BG01. Leo Bachmair and Harald Ganzinger. Resolution theorem proving. In John Alan
Robinson and Andrei Voronkov, editors,Handbook of Automated Reasoning, pages
19–99. Elsevier and MIT Press, 2001.

BH96. Michel Bidoit and Rolf Hennicker. Behavioural theories and the proof of behavioural
properties.Theoretical Computer Science, 165(1):3–55, 1996.

BH98. Michel Bidoit and Rolf Hennicker. Modular correctness proofs of behavioural imple-
mentations.Acta Informatica, 35(11):951–1005, 1998.

Page: 534 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

References 535

BH06a. Michel Bidoit and Rolf Hennicker. Constructor-based observational logic.Journal of
Logic and Algebraic Programming, 67(1–2):3–51, 2006.

BH06b. Michel Bidoit and Rolf Hennicker. Proving behavioral refinements of COL-
specifications. In Kokichi Futatsugi, Jean-Pierre Jouannaud, and José Meseguer, edi-
tors,Algebra, Meaning and Computation: Essays Dedicated to Joseph A. Goguen on
the Occasion of His 65th Birthday, Lecture Notes in Computer Science, volume 4060,
pages 333–354. Springer, 2006.

BHK90. Jan Bergstra, Jan Heering, and Paul Klint. Module algebra.Journal of the Association
for Computing Machinery, 37(2):335–372, 1990.

BHW94. Michel Bidoit, Rolf Hennicker, and Martin Wirsing. Characterizing behavioural se-
mantics and abstractor semantics. In Donald Sannella, editor,Proceedings of the
5th European Symposium on Programming, Edinburgh,Lecture Notes in Computer
Science, volume 788, pages 105–119. Springer, 1994.

BHW95. Michel Bidoit, Rolf Hennicker, and Martin Wirsing. Behavioural and abstractor spec-
ifications.Science of Computer Programming, 25(2-3):149–186, 1995.

Bir35. Garrett Birkhoff. On the structure of abstract algebras.Proceedings of the Cambridge
Philosophical Society, 31:433–454, 1935.

BL69. R.M. Burstall and P.J. Landin. Programs and their proofs: an algebraic approach. In
B. Meltzer and D. Michie, editors,Machine Intelligence 4, pages 17–43. Edinburgh
University Press, 1969.

BM04. Michel Bidoit and Peter D. Mosses, editors. CASL User Manual. Number 2900 in
Lecture Notes in Computer Science. Springer, 2004.

BN98. Franz Baader and Tobias Nipkow.Term Rewriting and All That. Cambridge Univer-
sity Press, 1998.

Bor94. Francis Borceaux.Handbook of Categorical Algebra. Cambridge University Press,
1994.

Bor00. Tomasz Borzyszkowski. Higher-order logic and theorem proving for structured spec-
ifications. In Didier Bert, Christine Choppy, and Peter D. Mosses, editors,Recent
Trends in Algebraic Development Techniques. Selected Papers from the 14th Interna-
tional Workshop on Algebraic Development Techniques, Cĥateau de Bonas,Lecture
Notes in Computer Science, volume 1827, pages 401–418. Springer, 2000.

Bor02. Tomasz Borzyszkowski. Logical systems for structured specifications.Theoretical
Computer Science, 286(2):197–245, 2002.

Bor05. Tomasz Borzyszkowski. Generalized interpolation in first order logic.Fundamenta
Informaticae, 66(3):199–219, 2005.

BPP85. Edward K. Blum and Francesco Parisi-Presicce. The semantics of shared submod-
ules specifications. In Hartmut Ehrig, Christiane Floyd, Maurice Nivat, and James W.
Thatcher, editors,Mathematical Foundations of Software Development. Proceedings
of the International Joint Conference on Theory and Practice of Software Develop-
ment. Volume 1: Colloquium on Trees in Algebra and Programming, Lecture Notes in
Computer Science, volume 185, pages 359–373. Springer, 1985.

BRJ98. Grady Booch, James Rumbaugh, and Ivar Jacobson.The Unified Modeling Language
User Guide. Addison-Wesley, 1998.

BS93. Rudolf Berghammer and Gunther Schmidt. Relational specifications. In C. Rauszer,
editor,Proc. XXXVIII Banach Center Semester on Algebraic Methods in Logic and
their Computer Science Applications, Banach Center Publications, volume 28, pages
167–190, Warszawa, 1993. Institute of Mathematics, Polish Academy of Sciences.

BST02. Michel Bidoit, Donald Sannella, and Andrzej Tarlecki. Architectural specifications
in CASL. Formal Aspects of Computing, 13:252–273, 2002.

BST08. Michel Bidoit, Donald Sannella, and Andrzej Tarlecki. Observational interpretation
of CASL specifications.Mathematical Structures in Computer Science, 18:325–371,
2008.

BT87. Jan Bergstra and John Tucker. Algebraic specifications of computable and semicom-
putable data types.Theoretical Computer Science, 50(2):137–181, 1987.

Page: 535 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

536 References

BT96. Michel Bidoit and Andrzej Tarlecki. Behavioural satisfaction and equivalence in con-
crete model categories. In Hélène Kirchner, editor,Proceedings of the 21st Interna-
tional Colloquium on Trees in Algebra and Programming, Linköping,Lecture Notes
in Computer Science, volume 1059, pages 241–256. Springer, 1996.

Bur86. Peter Burmeister. A Model Theoretic Oriented Approach to Partial Algebras.
Akademie-Verlag, 1986.

BW82a. Friedrich L. Bauer and Hans Wössner.Algorithmic Language and Program Develop-
ment. Springer, 1982.

BW82b. Manfred Broy and Martin Wirsing. Partial abstract data types.Acta Informatica,
18(1):47–64, 1982.

BW85. Michael Barr and Charles Wells.Toposes, Triples and Theories. Number 278 in
Grundlehren der mathematischen Wissenschaften. Springer, 1985.

BW95. Michael Barr and Charles Wells.Category Theory for Computing Science. Prentice
Hall, second edition, 1995.

BWP84. Manfred Broy, Martin Wirsing, and Claude Pair. A systematic study of models of
abstract data types.Theoretical Computer Science, 33(2–3):139–174, 1984.

Car88. Luca Cardelli. Structural subtyping and the notion of power type. InProceedings
of the 15th ACM Symposium on Principles of Programming Languages, San Diego,
pages 70–79, 1988.

CDE+02. Manuel Clavela, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martı́-Oliet,
Jośe Meseguer, and José F. Quesada. Maude: Specification and programming in
rewriting logic. Theoretical Computer Science, 285(2):187–243, 2002. See also
http://maude.cs.uiuc.edu/ .

Cen94. Maŕıa Victoria Cengarle.Formal Specifications with Higher-Order Parameterization.
PhD thesis, Ludwig-Maximilians-Universität München, Institut f̈ur Informatik, 1994.

CF92. Robin Cockett and Tom Fukushima. About Charity. Technical Report No. 92/480/18,
Department of Computer Science, University of Calgary, 1992.

CGR03. Carlos Caleiro, Paula Gouveia, and Jaime Ramos. Completeness results for fibred
parchments: Beyond the propositional base. In Martin Wirsing, Dirk Pattinson, and
Rolf Hennicker, editors,Recent Trends in Algebraic Development Techniques. Se-
lected Papers from the 16th International Workshop on Algebraic Development Tech-
niques, Frauenchiemsee,Lecture Notes in Computer Science, volume 2755, pages
185–200. Springer, 2003.

Chu56. Alonzo Church.Introduction to Mathematical Logic, Volume 1. Princeton University
Press, 1956.

Cı̂r02. Corina Ĉırstea. On specification logics for algebra-coalgebra structures: Reconciling
reachability and observability. InProceedings of the 5th International Conference on
Foundations of Software Science and Computation Structures. European Joint Con-
ferences on Theory and Practice of Software (ETAPS 2002), Grenoble,Lecture Notes
in Computer Science, volume 2303, pages 82–97. Springer, 2002.

CJ95. Aurelio Carboni and Peter Johnstone. Connected limits, familial representability and
Artin glueing. Mathematical Structures in Computer Science, 5(4):441–459, 1995.

CK90. Chen-Chung Chang and H. Jerome Keisler.Model Theory. North-Holland, third
edition, 1990.

CK08a. Maŕıa Victoria Cengarle and Alexander Knapp. An institution for OCL 2.0. Techni-
cal Report I0801, Institut f̈ur Informatik, Ludwig-Maximilians-Universiẗat München,
2008.

CK08b. Maŕıa Victoria Cengarle and Alexander Knapp. An institution for UML 2.0 in-
teractions. Technical Report I0808, Institut für Informatik, Ludwig-Maximilians-
Universiẗat München, 2008.

CK08c. Maŕıa Victoria Cengarle and Alexander Knapp. An institution for UML 2.0 static
structures. Technical Report I0807, Institut für Informatik, Ludwig-Maximilians-
Universiẗat München, 2008.

Page: 536 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

http://maude.cs.uiuc.edu/

References 537

CKTW08. Maria-Victoria Cengarle, Alexander Knapp, Andrzej Tarlecki, and Martin Wirsing. A
heterogeneous approach to UML semantics. In Pierpaolo Degano, Rocco de Nicola,
and Jośe Meseguer, editors,Concurrency, Graphs and Models, Essays Dedicated to
Ugo Montanari on the Occasion of His 65th Birthday, Lecture Notes in Computer
Science, volume 5065, pages 383–402. Springer, 2008.

CM97. Maura Cerioli and José Meseguer. May I borrow your logic? (Transporting logical
structures along maps).Theoretical Computer Science, 173(2):311–347, 1997.

CMRM10. Mihai Codescu, Till Mossakowski, Adrı́an Riesco, and Christian Maeder. Integrat-
ing Maude into Hets. In Mike Johnson and Dusko Pavlovic, editors,AMAST 2010,
Lecture Notes in Computer Science. Springer, 2010.

CMRS01. Carlos Caleiro, Paulo Mateus, Jaime Ramos, and Amı́lcar Sernadas. Combining log-
ics: Parchments revisited. In Maura Cerioli and Gianna Reggio, editors,Recent Trends
in Algebraic Development Techniques. Selected Papers from the 15th Workshop on Al-
gebraic Development Techniques joint with the CoFI WG Meeting, Genova,Lecture
Notes in Computer Science, volume 2267, pages 48–70. Springer, 2001.

Coh65. Paul M. Cohn.Universal Algebra. Harper and Row, 1965.
CS92. Robin Cockett and Dwight Spencer. Strong categorical datatypes I. In R.A.G. Seely,

editor,International Meeting on Category Theory 1991, Canadian Mathematical So-
ciety Proceedings. American Mathematical Society, 1992.

CSS05. Carlos Caleiro, Aḿılcar Sernadas, and Cristina Sernadas. Fibring logics: Past, present
and future. In Sergei N. Artemov, Howard Barringer, Artur S. d’Avila Garcez, Luı́s C.
Lamb, and John Woods, editors,We Will Show Them! Essays in Honour of Dov Gab-
bay, Volume One, pages 363–388. College Publications, 2005.

DF98. R̆azvan Diaconescu and Kokichi Futatsugi.CafeOBJ Report: The Language, Proof
Techniques, and Methodologies for Object-Oriented Algebraic Specification, AMAST
Series in Computing, volume 6. World Scientific, 1998.

DF02. R̆azvan Diaconescu and Kokichi Futatsugi. Logical foundations ofCafeOBJ. Theo-
retical Computer Science, 285:289–318, 2002.

DGS93. Řazvan Diaconescu, Joseph Goguen, and Petros Stefaneas. Logical support for mod-
ularisation. In Ǵerard Huet and Gordon Plotkin, editors,Logical Environments, pages
83–130. Cambridge University Press, 1993.

Dia00. R̆azvan Diaconescu. Category-based constraint logic.Mathematical Structures in
Computer Science, 10(3):373–407, 2000.

Dia02. R̆azvan Diaconescu. Grothendieck institutions.Applied Categorical Structures,
10(4):383–402, 2002.

Dia08. Řazvan Diaconescu.Institution-independent Model Theory. Birkhäuser, 2008.
DJ90. Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In Jan van

Leeuwen, editor,Handbook of Theoretical Computer Science. Volume B (Formal
Models and Semantics), pages 244–320. North-Holland and MIT Press, 1990.

DLL62. Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-proving.Communications of the ACM, 5(7):394–397, 1962.

DM00. Theodosis Dimitrakos and Tom Maibaum. On a generalised modularisation theorem.
Information Processing Letters, 74(1–2):65–71, 2000.

DMR76. Martin Davis, Yuri Matiyasevich, and Julia Robinson. Hilbert’s tenth problem. Dio-
phantine equations: Positive aspects of a negative solution. InMathematical Develop-
ments Arising from Hilbert Problems, Proceedings of Symposia in Pure Mathematics,
volume 28, pages 323–378, Providence, Rhode Island, 1976. American Mathematical
Society.

DP90. B.A. Davey and H.A. Priestley.Introduction to Lattices and Order. Cambridge Uni-
versity Press, 1990.

Ehr78. Hans-Dieter Ehrich. Extensions and implementations of abstract data type specifica-
tions. In J́ozef Winkowski, editor,Proceedings of the 7th Symposium on Mathemati-
cal Foundations of Computer Science, Zakopane,Lecture Notes in Computer Science,
volume 64, pages 155–164. Springer, 1978.

Page: 537 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

538 References

Ehr81. Hans-Dieter Ehrich. On realization and implementation. In Jozef Gruska and Michal
Chytil, editors,Proceedings of the 10th Symposium on Mathematical Foundations of
Computer Science, Štrbsḱe Pleso,Lecture Notes in Computer Science, volume 118,
pages 271–280. Springer, 1981.

Ehr82. Hans-Dieter Ehrich. On the theory of specification, implementation and parametriza-
tion of abstract data types.Journal of the Association for Computing Machinery,
29(1):206–227, 1982.

EKMP82. Hartmut Ehrig, Hans-Jörg Kreowski, Bernd Mahr, and Peter Padawitz. Algebraic
implementation of abstract data types.Theoretical Computer Science, 20:209–263,
1982.

EKT+80. Hartmut Ehrig, Hans-Jörg Kreowski, James Thatcher, Eric Wagner, and Jesse Wright.
Parameter passing in algebraic specification languages. Technical report, Technische
Universiẗat Berlin, 1980.

EKT+83. Hartmut Ehrig, Hans-Jörg Kreowski, James Thatcher, Eric Wagner, and Jesse Wright.
Parameter passing in algebraic specification languages.Theoretical Computer Sci-
ence, 28(1–2):45–81, 1983.

EM85. Hartmut Ehrig and Bernd Mahr.Fundamentals of Algebraic Specification 1, EATCS
Monographs on Theoretical Computer Science, volume 6. Springer, 1985.

Eme90. E. Allen Emerson. Temporal and modal logic. In Jan van Leeuwen, editor,Handbook
of Theoretical Computer Science. Volume B (Formal Models and Semantics), pages
995–1072. North-Holland and MIT Press, 1990.

End72. Herbert B. Enderton.A Mathematical Introduction to Logic. Academic Press, 1972.
EPO89. Hartmut Ehrig, Peter Pepper, and Fernando Orejas. On recent trends in algebraic

specification. In Giorgio Ausiello, Mariangiola Dezani-Ciancaglini, and Simona
Ronchi Della Rocca, editors,Proceeding of the 16th International Colloquium on
Automata, Languages and Programming, Stresa,Lecture Notes in Computer Science,
volume 372, pages 263–288. Springer, 1989.

EWT83. Hartmut Ehrig, Eric G. Wagner, and James W. Thatcher. Algebraic specifications
with generating constraints. InProceeding of the 10th International Colloquium on
Automata, Languages and Programming, Barcelona,Lecture Notes in Computer Sci-
ence, volume 154, pages 188–202. Springer, 1983.

Far89. Jordi Farŕes-Casals. Proving correctness of constructor implementations. In Antoni
Kreczmar and Grazyna Mirkowska, editors,Proceedings of the 14th Symposium on
Mathematical Foundations of Computer Science, Porabka-Kozubnik,Lecture Notes
in Computer Science, volume 379, pages 225–235. Springer, 1989.

Far90. Jordi Farŕes-Casals. Proving correctness wrt specifications with hidden parts. In
Hélène Kirchner and Wolfgang Wechler, editors,Proceedings of the 2nd International
Conference on Algebraic and Logic Programming, Nancy,Lecture Notes in Computer
Science, volume 463, pages 25–39. Springer, 1990.

Far92. Jordi Farŕes-Casals.Verification in ASL and Related Specification Languages. PhD
thesis, University of Edinburgh, Department of Computer Science, 1992.

FC96. Jośe Luiz Fiadeiro and José F́elix Costa. Mirror, mirror in my hand: A duality be-
tween specifications and models of process behaviour.Mathematical Structures in
Computer Science, 6(4):353–373, 1996.

Fei89. Loe M. G. Feijs. The calculusλπ. In Martin Wirsing and Jan A. Bergstra, editors,
Proceedings of the Workshop on Algebraic Methods: Theory, Tools and Applications,
Lecture Notes in Computer Science, volume 394, pages 307–328. Springer, 1989.

FGT92. William M. Farmer, Joshua D. Guttman, and F. Javier Thayer. Little theories. In
Deepak Kapur, editor,Proceedings of the 11th International Conference on Auto-
mated Deduction, Lecture Notes in Artificial Intelligence, volume 607, pages 567–
581, Saratoga Springs, 1992. Springer.

Fia05. Jośe Luiz Fiadeiro.Categories for Software Engineering. Springer, 2005.
Fit08. John S. Fitzgerald. The typed logic of partial functions and the Vienna Develop-

ment Method. In Dines Bjørner and Martin Henson, editors,Logics of Specification
Languages, pages 453–487. Springer, 2008.

Page: 538 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

References 539

FJ90. J. Fitzgerald and C.B. Jones. Modularizing the formal description of a database sys-
tem. InProceedings of the 3rd International Symposium of VDM Europe: VDM and
Z, Formal Methods in Software Development, Kiel, Lecture Notes in Computer Sci-
ence, volume 428, pages 189–210. Springer, 1990.

FS88. Jośe Luiz Fiadeiro and Aḿılcar Sernadas. Structuring theories on consequence. In
Donald Sannella and Andrzej Tarlecki, editors,Recent Trends in Data Type Specifica-
tion. Selected Papers from the 5th Workshop on Specification of Abstract Data Types,
Gullane,Lecture Notes in Computer Science, volume 332, pages 44–72. Springer,
1988.

Gab98. Dov M. Gabbay.Fibring Logics, Oxford Logic Guides, volume 38. Oxford University
Press, 1998.

Gan83. Harald Ganzinger. Parameterized specifications: Parameter passing and implemen-
tation with respect to observability.ACM Transactions on Programming Languages
and Systems, 5(3):318–354, 1983.

GB78. J.A. Goguen and R.M. Burstall. Some fundamental properties of algebraic theories:
a tool for semantics of computation. Technical Report 53, Department of Artificial
Intelligence, University of Edinburgh, 1978. Revised version appeared as [GB84b]
and [GB84c].

GB80. J.A. Goguen and R.M. Burstall. CAT, a system for the structured elaboration of cor-
rect programs from structured specifications. Technical Report CSL-118, Computer
Science Laboratory, SRI International, 1980.

GB84a. J.A. Goguen and R.M. Burstall. Introducing institutions. In Edmund Clarke and Dex-
ter Kozen, editors,Proceedings of the Workshop on Logics of Programs, Pittsburgh,
Lecture Notes in Computer Science, volume 164, pages 221–256. Springer, 1984.

GB84b. J.A. Goguen and R.M. Burstall. Some fundamental algebraic tools for the semantics
of computation. Part 1: Comma categories, colimits, signatures and theories.Theo-
retical Computer Science, 31:175–209, 1984.

GB84c. J.A. Goguen and R.M. Burstall. Some fundamental algebraic tools for the semantics
of computation. Part 2: Signed and abstract theories.Theoretical Computer Science,
31:263–295, 1984.

GB86. Joseph A. Goguen and Rod M. Burstall. A study in the functions of programming
methodology: Specifications, institutions, charters and parchments. In David H. Pitt,
Samson Abramsky, Axel Poigné, and David E. Rydeheard, editors,Proceedings of the
Tutorial and Workshop on Category Theory and Computer Programming, Guildford,
Lecture Notes in Computer Science, volume 240, pages 313–333. Springer, 1986.

GB92. J.A. Goguen and R.M. Burstall. Institutions: Abstract model theory for specification
and programming.Journal of the Association for Computing Machinery, 39(1):95–
146, 1992.

GD94a. Joseph Goguen and Răzvan Diaconescu. An Oxford survey of order sorted algebra.
Mathematical Structures in Computer Science, 4(3):363–392, 1994.

GD94b. Joseph A. Goguen and Rǎzvan Diaconescu. Towards an algebraic semantics for the
object paradigm. In Hartmut Ehrig and Fernando Orejas, editors,Recent Trends in
Data Type Specification. Selected Papers from the 9th Workshop on Specification of
Abstract Data Types joint with the 4thCOMPASS Workshop, Caldes de Malavella,
Lecture Notes in Computer Science, volume 785, pages 1–29. Springer, 1994.

GDLE84. Martin Gogolla, Klaus Drosten, Udo Lipeck, and Hans-Dieter Ehrich. Algebraic and
operational semantics of specifications allowing exceptions and errors.Theoretical
Computer Science, 34(3):289–313, 1984.

GG89. Stephen J. Garland and John V. Guttag. An overview of LP, the Larch Prover. InThird
International Conference on Rewriting Techniques and Applications, Chapel Hill,
Lecture Notes in Computer Science, volume 355, pages 137–151. Springer, 1989.
See alsohttp://nms.lcs.mit.edu/larch/LP/all.html .

GGM76. V. Giarratana, F. Gimona, and Ugo Montanari. Observability concepts in abstract data
type specifications. In Antoni Mazurkiewicz, editor,Proceedings of the 5th Sympo-

Page: 539 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

http://nms.lcs.mit.edu/larch/LP/all.html

540 References

sium on Mathematical Foundations of Computer Science, Gdánsk,Lecture Notes in
Computer Science, volume 45, pages 567–578. Springer, 1976.

GH78. John Guttag and James Horning. The algebraic specification of abstract data types.
Acta Informatica, 10:27–52, 1978.

GH93. John V. Guttag and James J. Horning.Larch: Languages and Tools for Formal Spec-
ification. Springer, 1993.

Gin68. Abraham Ginzburg.Algebraic Theory of Automata. Academic Press, 1968.
Gir87. Jean-Yves Girard. Linear logic.Theoretical Computer Science, 50:1–102, 1987.
Gir89. Jean-Yves Girard.Proofs and Types, Cambridge Tracts in Theoretical Computer Sci-

ence, volume 7. Cambridge University Press, 1989. Translated and with appendices
by Paul Taylor and Yves Lafont.

GLR00. Joseph Goguen, Kai Lin, and Grigore Roşu. Circular coinductive rewriting. InPro-
ceedings of the 15th International Conference on Automated Software Engineering,
Grenoble. IEEE Computer Society, 2000.

GM82. Joseph A. Goguen and José Meseguer. Universal realization, persistent interconnec-
tion and implementation of abstract modules. In Mogens Nielsen and Erik Meineche
Schmidt, editors,Proceeding of the 9th International Colloquium on Automata, Lan-
guages and Programming, Aarhus,Lecture Notes in Computer Science, volume 140,
pages 265–281. Springer, 1982.

GM85. Joseph Goguen and José Meseguer. Completeness of many sorted equational deduc-
tion. Houston Journal of Mathematics, 11(3):307–334, 1985.

GM92. Joseph Goguen and José Meseguer. Order-sorted algebra I: Equational deduction
for multiple inheritance, overloading, exceptions and partial operations.Theoretical
Computer Science, 105(2):217–273, 1992.

GM00. Joseph A. Goguen and Grant Malcolm. A hidden agenda.Theoretical Computer
Science, 245(1):55–101, 2000.

Gog73. Joseph Goguen. Categorical foundations for general systems theory. In F. Pichler and
R. Trappl, editors,Advances in Cybernetics and Systems Research, London, pages
121–130. Transcripta Books, 1973.

Gog74. J.A. Goguen. Semantics of computation. In Ernest G. Manes, editor,Proceedings
of the 1st International Symposium on Category Theory Applied to Computation and
Control, San Francisco,Lecture Notes in Computer Science, volume 25, pages 151–
163. Springer, 1974.

Gog78. Joseph Goguen. Abstract errors for abstract data types. In Erich Neuhold, editor,
Formal Description of Programming Concepts, pages 491–526. North-Holland, 1978.

Gog84. Martin Gogolla. Partially ordered sorts in algebraic specifications. InProceedings
of the 9th Colloquium on Trees in Algebra and Programming, pages 139–153. Cam-
bridge University Press, 1984.

Gog85. Martin Gogolla. A final algebra semantics for errors and exceptions. In Hans-
Jörg Kreowski, editor,Recent Trends in Data Type Specification. Selected Papers
from the 3rd Workshop on Theory and Applications of Abstract Data Types, Bremen,
Informatik-Fachberichte, volume 116, pages 89–103. Springer, 1985.

Gog91a. Joseph Goguen. Types as theories. In G.M. Reed, A.W. Roscoe, and R.F. Wachter,
editors,Topology and Category Theory in Computer Science, Oxford, pages 357–390.
Oxford University Press, 1991.

Gog91b. Joseph A. Goguen. A categorical manifesto.Mathematical Structures in Computer
Science, 1(1):49–67, 1991.

Gog96. Joseph A. Goguen. Parameterized programming and software architecture. In Murali
Sitaraman, editor,Proceedings of the Fourth International Conference on Software
Reuse, pages 2–11. IEEE Computer Society Press, 1996.

Gog10. Joseph Goguen. Information integration in institutions. In Larry Moss, editor,Think-
ing Logically: a Volume in Memory of Jon Barwise. CSLI, Stanford University, 2010.
To appear.

Gol06. Robert Goldblatt.Topoi: The Categorial Analysis of Logic. Dover, revised edition,
2006.

Page: 540 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

References 541

Gor95. Andrew D. Gordon. Bisimilarity as a theory of functional programming. InProceed-
ings of the 11th Annual Conference on Mathematical Foundations of Programming
Semantics. Electronic Notes in Theoretical Computer Science, 1:232–252, 1995.

GR02. Joseph A. Goguen and Grigore Roşu. Institution morphisms.Formal Aspects of
Computing, 13(3-5):274–307, 2002.

GR04. Joseph A. Goguen and Grigore Roşu. Composing hidden information modules over
inclusive institutions. InFrom Object-Orientation to Formal Methods. Essays in
Memory of Ole-Johan Dahl, Lecture Notes in Computer Science, volume 2635, pages
96–123. Springer, 2004.

Grä79. George A. Grätzer.Universal Algebra. Springer, second edition, 1979.
GS90. Carl Gunter and Dana Scott. Semantic domains. In Jan van Leeuwen, editor,Hand-

book of Theoretical Computer Science. Volume B (Formal Models and Semantics),
pages 633–674. North-Holland and MIT Press, 1990.

GTW76. Joseph Goguen, James Thatcher, and Eric Wagner. An initial algebra approach to
the specification, correctness and implementation of abstract data types. Technical
Report RC 6487, IBM Watson Research Center, Yorktown Heights NY, 1976. Also
in: Current Trends in Programming Methodology. Volume IV (Data Structuring)(ed.
R.T. Yeh), Prentice-Hall, 80–149, 1978.

GTWW73. Joseph Goguen, James Thatcher, Eric Wagner, and Jesse Wright. A junction between
computer science and category theory, I: Basic concepts and examples (part 1). Tech-
nical Report RC 4526, IBM Watson Research Center, Yorktown Heights NY, 1973.

GTWW75. Joseph Goguen, James Thatcher, Eric Wagner, and Jesse Wright. An introduction to
categories, algebraic theories and algebras. Technical Report RC 5369, IBM Watson
Research Center, Yorktown Heights NY, 1975.

GTWW77. Joseph Goguen, James Thatcher, Eric Wagner, and Jesse Wright. Initial algebra se-
mantics and continuous algebras.Journal of the Association for Computing Machin-
ery, 24(1):68–95, 1977.

Gut75. John Guttag.The Specification and Application to Programming of Abstract Data
Types. PhD thesis, University of Toronto, Department of Computer Science, 1975.

Hag87. Tatsuya Hagino.A Categorical Programming Language. PhD thesis, University of
Edinburgh, Department of Computer Science, 1987.

Häh01. Reiner Ḧahnle. Tableaux and related methods. In John Alan Robinson and Andrei
Voronkov, editors,Handbook of Automated Reasoning, pages 100–178. Elsevier and
MIT Press, 2001.

Hal70. Paul R. Halmos.Naive Set Theory. Undergraduate Texts in Mathematics. Springer,
1970.

Hat82. William Hatcher.The Logical Foundations of Mathematics. Foundations and Philos-
ophy of Science and Technology. Pergamon Press, 1982.

Hay94. Susumu Hayashi. Singleton, union and intersection types for program extraction.
Information and Computation, 109(1/2):174–210, 1994.

Hee86. Jan Heering. Partial evaluation andω-completeness of algebraic specifications.The-
oretical Computer Science, 43:149–167, 1986.

Hen91. Rolf Hennicker. Context induction: A proof principle for behavioural abstractions
and algebraic implementations.Formal Aspects of Computing, 3(4):326–345, 1991.

HHP93. Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
Journal of the Association for Computing Machinery, 40(1):143–184, January 1993.

HHWT97. Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HYTECH: A model
checker for hybrid systems.Software Tools for Technology Transfer, 1(1–2):110–
122, 1997.

Hig63. Phillip J. Higgins. Algebras with a scheme of operators.Mathematische Nachrichten,
27:115–132, 1963.

HLST00. Furio Honsell, John Longley, Donald Sannella, and Andrzej Tarlecki. Constructive
data refinement in typed lambda calculus. InProceedings of the 3rd International
Conference on Foundations of Software Science and Computation Structures. Euro-
pean Joint Conferences on Theory and Practice of Software (ETAPS 2000), Berlin,
Lecture Notes in Computer Science, volume 1784, pages 161–176. Springer, 2000.

Page: 541 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

542 References

Hoa72. C. A. R. Hoare. Proof of correctness of data representations.Acta Informatica,
1:271–281, 1972.

HS73. Horst Herrlich and George E. Strecker.Category Theory: An Introduction. Allyn and
Bacon, 1973.

HS96. Martin Hofmann and Donald Sannella. On behavioural abstraction and behavioural
satisfaction in higher-order logic.Theoretical Computer Science, 167:3–45, 1996.

HS02. Furio Honsell and Donald Sannella. Prelogical relations.Information and Computa-
tion, 178:23–43, 2002.

HST94. Robert Harper, Donald Sannella, and Andrzej Tarlecki. Structured presentations and
logic representations.Annals of Pure and Applied Logic, 67:113–160, 1994.

Hus92. Heinrich Hussmann. Nondeterministic algebraic specifications and nonconfluent term
rewriting. Journal of Logic Programming, 12(1–4):237–255, 1992.

HWB97. Rolf Hennicker, Martin Wirsing, and Michel Bidoit. Proof systems for struc-
tured specifications with observability operators.Theoretical Computer Science,
173(2):393–443, 1997.

Jac99. Bart Jacobs.Categorical Logic and Type Theory. Number 141 in Studies in Logic
and the Foundations of Mathematics. Elsevier Science, 1999.

JL87. Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. InProceedings of
the 14th ACM Symposium on Principles of Programming Languages, Munich, pages
111–119, 1987.

JNW96. Andŕe Joyal, Mogens Nielsen, and Glynn Winskel. Bisimulation from open maps.
Information and Computation, 127(2):164–185, 1996.

JOE95. Rosa M. Jiḿenez, Fernando Orejas, and Hartmut Ehrig. Compositionality and com-
patibility of parameterization and parameter passing in specification languages.Math-
ematical Structures in Computer Science, 5(2):283–314, 1995.

Joh02. Peter T. Johnstone.Sketches of an Elephant: A Topos Theory Compendium. Oxford
Logic Guides Series. Clarendon Press, 2002.

Jon80. Cliff B. Jones.Software Development: A Rigorous Approach. Prentice-Hall, 1980.
Jon89. Hans B.M. Jonkers. An introduction to COLD-K. In Martin Wirsing and Jan A.

Bergstra, editors,Proceedings of the Workshop on Algebraic Methods: Theory, Tools
and Applications, Lecture Notes in Computer Science, volume 394, pages 139–205.
Springer, 1989.

JR97. Bart Jacobs and Jan Rutten. A tutorial on (co)algebras and (co)induction.Bulletin of
the European Association for Theoretical Computer Science, 62:222–259, 1997.

KB70. Donald E. Knuth and Peter B. Bendix. Simple word problems in universal algebras.
In J. Leech, editor,Computational Problems in Abstract Algebra, pages 263–297.
Pergamon Press, 1970.

Kir99. Hélène Kirchner. Term rewriting. In Egidio Astesiano, Hans-Jörg Kreowski, and
Bernd Krieg-Br̈uckner, editors,Algebraic Foundations of Systems Specification, chap-
ter 9, pages 273–320. Springer, 1999.

KKM88. Claude Kirchner, H́elène Kirchner, and José Meseguer. Operational semantics of
OBJ-3. In Timo Lepisẗo and Arto Salomaa, editors,Proceedings of the 15th Inter-
national Colloquium on Automata, Languages and Programming, Tampere,Lecture
Notes in Computer Science, volume 317, pages 287–301. Springer, 1988.

Klo92. Jan Klop. Term rewriting systems. In Samson Abramsky, Dov Gabbay, and Tom
Maibaum, editors,Handbook of Logic in Computer Science. Volume 2 (Background:
Computational Structures), pages 1–116. Oxford University Press, 1992.

KM87. Deepak Kapur and David R. Musser. Proof by consistency.Artificial Intelligence,
31(2):125–157, 1987.

KR71. Heinz Kaphengst and Horst Reichel. Algebraische Algorithmentheorie. Technical
Report WIB 1, VEB Robotron, Zentrum für Forschung und Technik, Dresden, 1971.

Kre87. Hans-J̈org Kreowski. Partial algebras flow from algebraic specifications. In
T. Ottmann, editor,Proceedings of the 14th International Colloquium on Automata,
Languages and Programming, Karlsruhe,Lecture Notes in Computer Science, vol-
ume 267, pages 521–530. Springer, 1987.

Page: 542 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

References 543

KST97. Stefan Kahrs, Donald Sannella, and Andrzej Tarlecki. The definition of Extended
ML: A gentle introduction.Theoretical Computer Science, 173:445–484, 1997.

KTB91. Beata Konikowska, Andrzej Tarlecki, and Andrzej Blikle. A three-valued logic for
software specification and validation.Fundamenta Informaticae, 14(4):411–453,
1991.

Las98. Sławomir Lasota. Open maps as a bridge between algebraic observational equivalence
and bisimilarity. In Francesco Parisi-Presicce, editor,Recent Trends in Data Type
Specification. Selected Papers from the 12th International Workshop on Specification
of Abstract Data Types, Tarquinia,Lecture Notes in Computer Science, volume 1376,
pages 285–299. Springer, 1998.

Law63. F. William Lawvere. Functorial Semantics of Algebraic Theories. PhD thesis,
Columbia University, 1963.

LB88. Butler Lampson and Rod Burstall. Pebble, a kernel language for modules and abstract
data types.Information and Computation, 76(2/3):278–346, 1988.

LEW96. Jacques Loeckx, Hans-Dieter Ehrich, and Markus Wolf.Specification of Abstract
Data Types. John Wiley and Sons, 1996.

Lin03. Kai Lin. Machine Support for Behavioral Algebraic Specification and Verification.
PhD thesis, University of California, San Diego, 2003.

Lip83. Udo Lipeck. Ein algebraischer Kalk̈ul für einen strukturierten Entwurf von Daten-
abstraktionen. PhD thesis, Universität Dortmund, 1983.

LLD06. Dorel Lucanu, Yuan-Fang Li, and Jin Song Dong. Semantic Web languages—towards
an institutional perspective. In Kokichi Futatsugi, Jean-Pierre Jouannaud, and José
Meseguer, editors,Algebra, Meaning and Computation: Essays Dedicated to Joseph
A. Goguen on the Occasion of His 65th Birthday, Lecture Notes in Computer Science,
volume 4060, pages 99–123. Springer, 2006.

LS86. Joachim Lambek and Philip J. Scott.Introduction to Higher-Order Categorical Logic.
Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1986.

LS00. Hugo Lourenço and Aḿılcar Sernadas. An institution of hybrid systems. In Didier
Bert, Christine Choppy, and Peter D. Mosses, editors,Recent Trends in Algebraic
Development Techniques. Selected Papers from the 14th International Workshop on
Algebraic Development Techniques, Château de Bonas,Lecture Notes in Computer
Science, volume 1827, pages 219–236. Springer, 2000.

Luo93. Zhaohui Luo. Program specification and data refinement in type theory.Mathematical
Structures in Computer Science, 3(3):333–363, 1993.

Mac71. Saunders Mac Lane.Categories for the Working Mathematician. Springer, 1971.
Mac84. David B. MacQueen. Modules for Standard ML. InProceedings of the 1984 ACM

Conference on LISP and Functional Programming, pages 198–207, 1984.
MAH06. Till Mossakowski, Serge Autexier, and Dieter Hutter. Development graphs — proof

management for structured specifications.Journal of Logic and Algebraic Program-
ming, 67(1–2):114–145, 2006.

Mai72. Tom Maibaum. The characterization of the derivation trees of context free sets of
terms as regular sets. InProceedings of the 13th Annual IEEE Symposium on Switch-
ing and Automata Theory, pages 224–230, 1972.

Maj77. Mila E. Majster. Limits of the “algebraic” specification of abstract data types.ACM
SIGPLAN Notices, 12(10):37–42, 1977.

Mal71. Anatoly Malcev. Quasiprimitive classes of abstract algebras in the metamathematics
of algebraic systems. InMathematics of Algebraic Systems: Collected Papers, 1936-
67, number 66 in Studies in Logic and Mathematics, pages 27–31. North-Holland,
1971.

Man76. Ernest G. Manes.Algebraic Theories. Springer, 1976.
May85. Brian Mayoh. Galleries and institutions. Technical Report DAIMI PB-191, Aarhus

University, 1985.
Mei92. Karl Meinke. Universal algebra in higher types.Theoretical Computer Science,

100:385–417, 1992.

Page: 543 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

544 References

Mes89. Jośe Meseguer. General logics. In H.-D. Ebbinghaus, editor,Logic Colloquium ’87,
Granada, pages 275–329. North-Holland, 1989.

Mes92. Jośe Meseguer. Conditional rewriting logic as a unified model of concurrency.Theo-
retical Computer Science, 96(1):73–155, 1992.

Mes98. Jośe Meseguer. Membership algebra as a logical framework for equational specifica-
tion. In Francesco Parisi-Presicce, editor,Recent Trends in Data Type Specification.
Selected Papers from the 12th International Workshop on Specification of Abstract
Data Types, Tarquinia,Lecture Notes in Computer Science, volume 1376, pages 18–
61. Springer, 1998.

Mes09. Jośe Meseguer. Order-sorted parameterization and induction. In Jens Palsberg, editor,
Semantics and Algebraic Specification: Essays Dedicated to Peter D. Mosses on the
Occasion of His 60th Birthday, Lecture Notes in Computer Science, volume 5700,
pages 43–80. Springer, 2009.

MG85. Jośe Meseguer and Joseph Goguen. Initiality, induction and computability. In Mau-
rice Nivat and John C. Reynolds, editors,Algebraic Methods in Semantics, pages
459–541. Cambridge, 1985.

MGDT07. Till Mossakowski, Joseph Goguen, Rǎzvan Diaconescu, and Andrzej Tarlecki. What
is a logic? In Jean-Yves Beziau, editor,Logica Universalis: Towards a General The-
ory of Logic, pages 111–135. Birkhäuser, 2007.

MHST08. Till Mossakowski, Anne Haxthausen, Donald Sannella, and Andrzej Tarlecki. CASL
— the common algebraic specification language. In Dines Bjørner and Martin Hen-
son, editors,Logics of Specification Languages, pages 241–298. Springer, 2008.

Mid93. Aart Middeldorp. Modular properties of conditional term rewriting systems.Infor-
mation and Computation, 104(1):110–158, 1993.

Mil71. Robin Milner. An algebraic definition of simulation between programs. InPro-
ceedings of the 2nd International Joint Conference on Artificial Intelligence, pages
481–489, 1971.

Mil77. Robin Milner. Fully abstract models of typedλ -calculi. Theoretical Computer Sci-
ence, 4(1):1–22, 1977.

Mil89. Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.
Mit96. John C. Mitchell.Foundations of Programming Languages. MIT Press, 1996.
MM84. Bernd Mahr and Johann Makowsky. Characterizing specification languages which

admit initial semantics.Theoretical Computer Science, 31:49–60, 1984.
MML07. Till Mossakowski, Christian Maeder, and Klaus Lüttich. The heterogeneous tool set,

HETS. In Orna Grumberg and Michael Huth, editors,Proceedings of the 13th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems. European Joint Conferences on Theory and Practice of Software (ETAPS 2007),
Braga,Lecture Notes in Computer Science, volume 4424, pages 519–522. Springer,
2007. See alsohttp://www.informatik.uni-bremen.de/cofi/hets/ .

Mog91. Eugenio Moggi. Notions of computation and monads.Information and Computation,
93:55–92, 1991.

Moo56. Edward F. Moore. Gedanken-experiments on sequential machines. In Claude E.
Shannon and John McCarthy, editors,Annals of Mathematics Studies 34, Automata
Studies, pages 129–153. Princeton University Press, 1956.

Mos89. Peter D. Mosses. Unified algebras and modules. InProceedings of the 16th ACM
Symposium on Principles of Programming Languages, Austin, pages 329–343, 1989.

Mos93. Peter Mosses. The use of sorts in algebraic specifications. In Michel Bidoit and Chris-
tine Choppy, editors,Recent Trends in Data Type Specification. Selected Papers from
the 8th Workshop on Specification of Abstract Data Types joint with the 3rdCOM-
PASS Workshop, Dourdan,Lecture Notes in Computer Science, volume 655, pages
66–91. Springer, 1993.

Mos96a. Till Mossakowski. Different types of arrow between logical frameworks. In Fried-
helm Meyer auf der Heide and Burkhard Monien, editors,Proceedings of the 23rd
International Colloquium Automata, Languages and Programming, Paderborn,Lec-
ture Notes in Computer Science, volume 1099, pages 158–169. Springer, 1996.

Page: 544 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

http://www.informatik.uni-bremen.de/cofi/hets/

References 545

Mos96b. Till Mossakowski.Representations, Hierarchies and Graphs of Institutions. PhD
thesis, Universiẗat Bremen, 1996.

Mos00. Till Mossakowski. Specification in an arbitrary institution with symbols. In Didier
Bert, Christine Choppy, and Peter D. Mosses, editors,Recent Trends in Algebraic
Development Techniques. Selected Papers from the 14th International Workshop on
Algebraic Development Techniques, Château de Bonas,Lecture Notes in Computer
Science, volume 1827, pages 252–270. Springer, 2000.

Mos02. Till Mossakowski. Comorphism-based Grothendieck logics. In Krzysztof Diks and
Wojciech Rytter, editors,Proceedings of the 27th Symposium on Mathematical Foun-
dations of Computer Science, Warsaw,Lecture Notes in Computer Science, volume
2420, pages 593–604. Springer, 2002.

Mos03. Till Mossakowski. Foundations of heterogeneous specification. In Martin Wirsing,
Dirk Pattinson, and Rolf Hennicker, editors,Recent Trends in Algebraic Development
Techniques.. Selected Papers from the 16th International Workshop on Algebraic De-
velopment Techniques, Frauenchiemsee,Lecture Notes in Computer Science, volume
2755, pages 359–375. Springer, 2003.

Mos04. Peter D. Mosses, editor. CASL Reference Manual. Number 2960 in Lecture Notes in
Computer Science. Springer, 2004.

Mos05. Till Mossakowski. Heterogeneous Specification and the Heterogeneous Tool Set.
Habilitation thesis, Universität Bremen, 2005.

MS85. David MacQueen and Donald Sannella. Completeness of proof systems for equa-
tional specifications.IEEE Transactions on Software Engineering, SE-11(5):454–
461, 1985.

MSRR06. Till Mossakowski, Lutz Schröder, Markus Roggenbach, and Horst Reichel.
Algebraic-coalgebraic specification in COCASL. Journal of Logic and Algebraic Pro-
gramming, 67(1–2):146–197, 2006.

MSS90. Vincenzo Manca, Antonino Salibra, and Giuseppe Scollo. Equational type logic.
Theoretical Computer Science, 77(1–2):131–159, 1990.

MST04. Till Mossakowski, Donald Sannella, and Andrzej Tarlecki. A simple refinement lan-
guage for CASL. In Jośe Fiadeiro, editor,Recent Trends in Algebraic Development
Techniques.. Selected Papers from the 17th International Workshop on Algebraic De-
velopment Techniques, Barcelona,Lecture Notes in Computer Science, volume 3423,
pages 162–185. Springer, 2004.

MT92. Karl Meinke and John Tucker. Universal algebra. In Samson Abramsky, Dov Gab-
bay, and Tom Maibaum, editors,Handbook of Logic in Computer Science. Volume
1 (Background: Mathematical Structures), pages 189–409. Oxford University Press,
1992.

MT93. V. Wiktor Marek and Mirosław Truszczyński. Nonmonotonic Logics: Context-
Dependent Reasoning. Springer, 1993.

MT94. David B. MacQueen and Mads Tofte. A semantics for higher-order functors. In
Donald Sannella, editor,Proceedings of the 5th European Symposium on Program-
ming, Edinburgh,Lecture Notes in Computer Science, volume 788, pages 409–423.
Springer, 1994.

MT09. Till Mossakowski and Andrzej Tarlecki. Heterogeneous logical environments for
distributed specifications. In Andrea Corradini and Ugo Montanari, editors,Recent
Trends in Algebraic Development Techniques.. Selected Papers from the 19th Interna-
tional Workshop on Algebraic Development Techniques, Pisa,Lecture Notes in Com-
puter Science, volume 5486, pages 266–289. Springer, 2009.

MTD09. Till Mossakowski, Andrzej Tarlecki, and Răzvan Diaconescu. What is a logic trans-
lation?Logica Universalis, 3(1):95–124, 2009.

MTHM97. Robin Milner, Mads Tofte, Robert Harper, and David MacQueen.The Definition of
Standard ML (Revised). MIT Press, 1997.

MTP97. Till Mossakowski, Andrzej Tarlecki, and Wiesław Pawłowski. Combining and repre-
senting logical systems. In Eugenio Moggi and Giuseppe Rosolini, editors,Proceed-
ings of the 7th International Conference on Category Theory and Computer Science,

Page: 545 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

546 References

Santa Margherita Ligure,Lecture Notes in Computer Science, volume 1290, pages
177–196. Springer, 1997.

MTP98. Till Mossakowski, Andrzej Tarlecki, and Wiesław Pawłowski. Combining and rep-
resenting logical systems using model-theoretic parchments. In Francesco Parisi-
Presicce, editor,Recent Trends in Data Type Specification. Selected Papers from the
12th International Workshop on Specification of Abstract Data Types, Tarquinia,Lec-
ture Notes in Computer Science, volume 1376, pages 349–364. Springer, 1998.

MTW88. Bernhard M̈oller, Andrzej Tarlecki, and Martin Wirsing. Algebraic specifications of
reachable higher-order algebras. In Donald Sannella and Andrzej Tarlecki, editors,
Recent Trends in Data Type Specification. Selected Papers from the 5th Workshop on
Specification of Abstract Data Types, Gullane,Lecture Notes in Computer Science,
volume 332, pages 154–169. Springer, 1988.

Mus80. David Musser. On proving inductive properties of abstract data types. InProceedings
of the 7th ACM Symposium on Principles of Programming Languages, Las Vegas,
pages 154–162, 1980.

MW98. Alfio Martini and Uwe Wolter. A single perspective on arrows between institutions.
In Armando Haeberer, editor,Proceedings of the 7th International Conference on Al-
gebraic Methodology and Software Technology, Manaus,Lecture Notes in Computer
Science, volume 1548, pages 486–501. Springer, 1998.

Nel91. Greg Nelson, editor.Systems Programming in Modula-3. Prentice-Hall, 1991.
Nip86. Tobias Nipkow. Non-deterministic data types: Models and implementations.Acta

Informatica, 22(6):629–661, 1986.
NO88. Pilar Nivela and Fernando Orejas. Initial behaviour semantics for algebraic speci-

fications. In Donald Sannella and Andrzej Tarlecki, editors,Recent Trends in Data
Type Specification. Selected Papers from the 5th Workshop on Specification of Ab-
stract Data Types, Gullane,Lecture Notes in Computer Science, volume 332, pages
184–207. Springer, 1988.

Nou81. Farshid Nourani. On induction for programming logic: Syntax, semantics, and induc-
tive closure.Bulletin of the European Association for Theoretical Computer Science,
13:51–64, 1981.

Oka98. Chris Okasaki.Purely Functional Data Structures. Cambridge University Press,
1998.

ONS93. Fernando Orejas, Marisa Navarro, and Ana Sánchez. Implementation and behavioural
equivalence: A survey. In Michel Bidoit and Christine Choppy, editors,Recent Trends
in Data Type Specification. Selected Papers from the 8th Workshop on Specification of
Abstract Data Types joint with the 3rdCOMPASSWorkshop, Dourdan,Lecture Notes
in Computer Science, volume 655, pages 93–125. Springer, 1993.

Ore83. Fernando Orejas. Characterizing composability of abstract implementations. In
Marek Karpinski, editor,Proceedings of the 1983 International Conference on Foun-
dations of Computation Theory, Borgholm,Lecture Notes in Computer Science, vol-
ume 158, pages 335–346. Springer, 1983.

Pad85. Peter Padawitz. Parameter preserving data type specifications. In Hartmut Ehrig,
Christiane Floyd, Maurice Nivat, and James Thatcher, editors,TAPSOFT’85: Pro-
ceedings of the International Joint Conference on Theory and Practice of Software
Development. Volume 2: Colloquium on Software Engineering, Berlin,Lecture Notes
in Computer Science, volume 186, pages 323–341. Springer, 1985.

Pad99. Peter Padawitz. Proof in flat specifications. In Egidio Astesiano, Hans-Jörg Kreowski,
and Bernd Krieg-Br̈uckner, editors,Algebraic Foundations of Systems Specification,
chapter 10, pages 321–384. Springer, 1999.

Pau87. Laurence Paulson.Logic and Computation: Interactive Proof with Cambridge LCF.
Cambridge University Press, 1987.

Pau96. Laurence Paulson.ML for the Working Programmer. Cambridge University Press,
second edition, 1996.

Paw96. Wiesław Pawłowski. Context institutions. In Magne Haveraaen, Olaf Owe, and Ole-
Johan Dahl, editors,Recent Trends in Data Type Specification. Selected Papers from

Page: 546 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

References 547

the 11th Workshop on Specification of Abstract Data Types, Oslo,Lecture Notes in
Computer Science, volume 1130, pages 436–457. Springer, 1996.

Pet10. Marius Petria.Generic Refinements for Behavioural Specifications. PhD thesis, Uni-
versity of Edinburgh, School of Informatics, 2010.

Pey03. Simon Peyton Jones, editor.Haskell 98 Language and Libraries: The Revised Report.
Cambridge University Press, 2003.

Pho92. Wesley Phoa. An introduction to fibrations, topos theory, the effective topos and
modest sets. Technical Report ECS-LFCS-92-208, LFCS, Department of Computer
Science, University of Edinburgh, 1992.

Pie91. Benjamin C. Pierce.Basic Category Theory for Computer Scientists. MIT Press,
1991.

Plo77. Gordon D. Plotkin. LCF considered as a programming language.Theoretical Com-
puter Science, 5(3):223–255, 1977.

Poi86. Axel Poigńe. On specifications, theories, and models with higher types.Information
and Control, 68(1–3):1–46, 1986.

Poi88. Axel Poigńe. Foundations are rich institutions, but institutions are poor foundations.
In Hartmut Ehrig, Horst Herrlich, Hans-Jörg Kreowski, and Gerhard Preuß, editors,
Proceedings of the International Workshop on Categorical Methods in Computer Sci-
ence with Aspects from Topology, Berlin,Lecture Notes in Computer Science, volume
393, pages 82–101. Springer, 1988.

Poi90. Axel Poigńe. Parametrization for order-sorted algebraic specification.Journal of
Computer and System Sciences, 40:229–268, 1990.

Poi92. Axel Poigńe. Basic category theory. In Samson Abramsky, Dov Gabbay, and Tom
Maibaum, editors,Handbook of Logic in Computer Science. Volume 1 (Background:
Mathematical Structures), pages 413–640. Oxford University Press, 1992.

Pos47. Emil Post. Recursive unsolvability of a problem of Thue.Journal of Symbolic Logic,
12:1–11, 1947.

PS83. Helmuth Partsch and Ralf Steinbrüggen. Program transformation systems.ACM
Computing Surveys, 15(3):199–236, 1983.

PŞR09. Andrei Popescu, Traian Florin Şerbănuţ̆a, and Grigore Roşu. A semantic approach to
interpolation.Theoretical Computer Science, 410(12–13):1109–1128, 2009.

QG93. Xiaolei Qian and Allen Goldberg. Referential opacity in nondeterministic data re-
finement. ACM Letters on Programming Languages and Systems, 2(1–4):233–241,
1993.

Qia93. Zhenyu Qian. An algebraic semantics of higher-order types with subtypes.Acta
Informatica, 30(6):569–607, 1993.

RAC99. Gianna Reggio, Egidio Astesiano, and Christine Choppy. CASL-LTL: a CASL ex-
tension for dynamic systems — summary. Technical Report DISI-TR-99-34, DISI,
Universit̀a di Genova, 1999.

RB88. David Rydeheard and Rod Burstall.Computational Category Theory. Prentice Hall
International Series in Computer Science. Prentice Hall, 1988.

Rei80. Horst Reichel. Initially-restricting algebraic theories. In Piotr Dembiński, editor,
Proceedings of the 9th Symposium on Mathematical Foundations of Computer Sci-
ence, Lecture Notes in Computer Science, volume 88, pages 504–514, Rydzyna, 1980.
Springer.

Rei81. Horst Reichel. Behavioural equivalence — a unifying concept for initial and final
specification methods. InProceedings of the 3rd Hungarian Computer Science Con-
ference, pages 27–39, 1981.

Rei85. Horst Reichel. Behavioural validity of equations in abstract data types. InProceed-
ings of the Vienna Conference on Contributions to General Algebra, pages 301–324.
Teubner-Verlag, 1985.

Rei87. Horst Reichel.Initial Computability, Algebraic Specifications, and Partial Algebras.
Oxford University Press, 1987.

Page: 547 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

548 References

RG98. Grigore Roşu and Joseph A. Goguen. Hidden congruent deduction. In Ricardo Ca-
ferra and Gernot Salzer, editors,Proceedings of the 1998 Workshop on First-Order
Theorem Proving, Vienna, Lecture Notes in Artificial Intelligence, volume 1761,
pages 251–266. Springer, 1998.

RG00. Grigore Roşu and Joseph A. Goguen. On equational Craig interpolation.Journal of
Universal Computer Science, 6(1):194–200, 2000.

Rod91. Pieter Hendrik Rodenburg. A simple algebraic proof of the equational interpolation
theorem.Algebra Universalis, 28:48–51, 1991.

Rog06. Markus Roggenbach. CSP-CASL — a new integration of process algebra and alge-
braic specification.Theoretical Computer Science, 354(1):42–71, 2006.

Roş94. Grigore Roşu. The institution of order-sorted equational logic.Bulletin of the Euro-
pean Association for Theoretical Computer Science, 53:250–255, 1994.

Roş00. Grigore Roşu.Hidden Logic. PhD thesis, University of California at San Diego,
2000.

RRS00. Sergei Romanenko, Claudio Russo, and Peter Sestoft. Moscow ML owner’s manual.
Technical report, Royal Veterinary and Agricultural University, Copenhagen, 2000.
Available fromhttp://www.itu.dk/people/sestoft/mosml/manual.
pdf .

RS63. Helena Rasiowa and Roman Sikorski.The Mathematics of Metamathematics. Num-
ber 41 in Monografie Matematyczne. Polish Scientific Publishers, 1963.

Rus98. Claudio Russo.Types for Modules. PhD thesis, University of Edinburgh, Depart-
ment of Computer Science, 1998. Also in:Electronic Notes in Theoretical Computer
Science, 60, 2003.

Rut00. Jan J.M.M. Rutten. Universal coalgebra: A theory of systems.Theoretical Computer
Science, 249(1):3–80, 2000.

San82. Donald Sannella.Semantics, Implementation and Pragmatics of Clear, a Program
Specification Language. PhD thesis, University of Edinburgh, Department of Com-
puter Science, 1982.

SB83. Donald Sannella and Rod Burstall. Structured theories in LCF. In Giorgio Ausiello
and Marco Protasi, editors,Proceedings of the 8th Colloquium on Trees in Algebra
and Programming, L’Aquila, Lecture Notes in Computer Science, volume 159, pages
377–391. Springer, 1983.

Sch86. David Schmidt.Denotational Semantics: A Methodology for Language Development.
Allyn and Bacon, 1986.

Sch87. Oliver Schoett.Data Abstraction and the Correctness of Modular Programs. PhD
thesis, University of Edinburgh, Department of Computer Science, 1987.

Sch90. Oliver Schoett. Behavioural correctness of data representations.Science of Computer
Programming, 14(1):43–57, 1990.

Sch92. Oliver Schoett. Two impossibility theorems on behaviour specification of abstract
data types.Acta Informatica, 29(6/7):595–621, 1992.

Sco76. Dana Scott. Data types as lattices.SIAM Journal of Computing, 5(3):522–587, 1976.
Sco04. Giuseppe Scollo. An institution isomorphism for planar graph colouring. In Rudolf

Berghammer, Bernhard M̈oller, and Georg Struth, editors,Relational and Kleene-
Algebraic Methods in Computer Science. Selected Papers from the 7th International
Seminar on Relational Methods in Computer Science and 2nd International Workshop
on Applications of Kleene Algebra, Bad Malente,Lecture Notes in Computer Science,
volume 3051, pages 252–264. Springer, 2004.

SCS94. Aḿılcar Sernadas, José F́elix Costa, and Cristina Sernadas. An institution of ob-
ject behaviour. In Hartmut Ehrig and Fernando Orejas, editors,Recent Trends in
Data Type Specification. Selected Papers from the 9th Workshop on Specification of
Abstract Data Types joint with the 4thCOMPASS Workshop, Caldes de Malavella,
Lecture Notes in Computer Science, volume 785, pages 337–350. Springer, 1994.

Sel72. Alan Selman. Completeness of calculi for axiomatically defined classes of algebras.
Algebra Universalis, 2:20–32, 1972.

Page: 548 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

http://www.itu.dk/people/sestoft/mosml/manual.pdf
http://www.itu.dk/people/sestoft/mosml/manual.pdf

References 549

SH00. Christopher A. Stone and Robert Harper. Deciding type equivalence in a language
with singleton kinds. InProceedings of the 27th ACM Symposium on Principles of
Programming Languages, Boston, pages 214–227, 2000.

Sha08. Stewart Shapiro. Classical logic. In Edward N. Zalta, editor,The Stan-
ford Encyclopedia of Philosophy. CSLI, Stanford University, fall 2008 edi-
tion, 2008. Available fromhttp://plato.stanford.edu/archives/
fall2008/entries/logic-classical/ .

SM09. Lutz Schr̈oder and Till Mossakowski. HASCASL: Integrated higher-order specifica-
tion and program development.Theoretical Computer Science, 410(12–13):1217–
1260, 2009.

Smi93. Douglas R. Smith. Constructing specification morphisms.Journal of Symbolic Com-
putation, 15(5/6):571–606, 1993.

Smi06. Douglas R. Smith. Composition by colimit and formal software development. In Ko-
kichi Futatsugi, Jean-Pierre Jouannaud, and José Meseguer, editors,Algebra, Mean-
ing, and Computation, Essays Dedicated to Joseph A. Goguen on the Occasion of His
65th Birthday, Lecture Notes in Computer Science, volume 4060, pages 317–332.
Springer, 2006.

SML05. Lutz Schr̈oder, Till Mossakowski, and Christoph Lüth. Type class polymorphism
in an institutional framework. In José Fiadeiro, editor,Recent Trends in Algebraic
Development Techniques.. Selected Papers from the 17th International Workshop on
Algebraic Development Techniques, Barcelona,Lecture Notes in Computer Science,
volume 3423, pages 234–248. Springer, 2005.

Smo86. Gert Smolka. Order-sorted Horn logic: Semantics and deduction. Technical Report
SR-86-17, Universiẗat Kaiserslautern, Fachbereich Informatik, 1986.

SMT+05. Lutz Schr̈oder, Till Mossakowski, Andrzej Tarlecki, Bartek Klin, and Piotr Hoffman.
Amalgamation in the semantics of CASL. Theoretical Computer Science, 331(1):215–
247, 2005.

Spi92. J. Michael Spivey.The Z Notation: A Reference Manual. Prentice Hall International
Series in Computer Science, second edition, 1992.

SS93. Antonino Salibra and Guiseppe Scollo. A soft stairway to institutions. In Michel
Bidoit and Christine Choppy, editors,Recent Trends in Data Type Specification. Se-
lected Papers from the 8th Workshop on Specification of Abstract Data Types joint
with the 3rdCOMPASSWorkshop, Dourdan,Lecture Notes in Computer Science, vol-
ume 655, pages 310–329. Springer, 1993.

SS96. Antonino Salibra and Giuseppe Scollo. Interpolation and compactness in categories
of pre-institutions. Mathematical Structures in Computer Science, 6(3):261–286,
1996.

SST92. Donald Sannella, Stefan Sokołowski, and Andrzej Tarlecki. Toward formal devel-
opment of programs from algebraic specifications: Parameterisation revisited.Acta
Informatica, 29(8):689–736, 1992.

ST85. Donald Sannella and Andrzej Tarlecki. Program specification and development in
Standard ML. InProceedings of the 12th ACM Symposium on Principles of Pro-
gramming Languages, New Orleans, pages 67–77, 1985.

ST86. Donald Sannella and Andrzej Tarlecki. Extended ML: An institution-independent
framework for formal program development. In David H. Pitt, Samson Abramsky,
Axel Poigńe, and David E. Rydeheard, editors,Proceedings of the Tutorial and Work-
shop on Category Theory and Computer Programming, Guildford,Lecture Notes in
Computer Science, volume 240, pages 364–389. Springer, 1986.

ST87. Donald Sannella and Andrzej Tarlecki. On observational equivalence and algebraic
specification.Journal of Computer and System Sciences, 34:150–178, 1987.

ST88a. Donald Sannella and Andrzej Tarlecki. Specifications in an arbitrary institution.In-
formation and Computation, 76(2/3):165–210, 1988.

ST88b. Donald Sannella and Andrzej Tarlecki. Toward formal development of programs from
algebraic specifications: Implementations revisited.Acta Informatica, 25:233–281,
1988.

Page: 549 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

http://plato.stanford.edu/archives/fall2008/entries/logic-classical/
http://plato.stanford.edu/archives/fall2008/entries/logic-classical/

550 References

ST89. Donald Sannella and Andrzej Tarlecki. Toward formal development of ML programs:
Foundations and methodology. In Josep Dı́az and Fernando Orejas, editors,TAP-
SOFT’89: Proceedings of the International Joint Conference on Theory and Practice
of Software Development. Volume 2: Advanced Seminar on Foundations of Innovative
Software Development II and Colloquium on Current Issues in Programming Lan-
guages, Barcelona,Lecture Notes in Computer Science, volume 352, pages 375–389.
Springer, 1989.

ST97. Donald Sannella and Andrzej Tarlecki. Essential concepts of algebraic specification
and program development.Formal Aspects of Computing, 9:229–269, 1997.

ST04. Donald Sannella and Andrzej Tarlecki, editors. CASL semantics. In[Mos04]. 2004.
ST06. Donald Sannella and Andrzej Tarlecki. Horizontal composability revisited. In Ko-

kichi Futatsugi, Jean-Pierre Jouannaud, and José Meseguer, editors,Algebra, Mean-
ing and Computation: Essays Dedicated to Joseph A. Goguen on the Occasion of His
65th Birthday, Lecture Notes in Computer Science, volume 4060, pages 296–316.
Springer, 2006.

ST08. Donald Sannella and Andrzej Tarlecki. Observability concepts in abstract data
type specification, 30 years later. In Pierpaolo Degano, Rocco de Nicola, and José
Meseguer, editors,Concurrency, Graphs and Models: Essays Dedicated to Ugo Mon-
tanari on the Occasion of his 65th Birthday, Lecture Notes in Computer Science.
Springer, 2008.

Str67. Christopher Strachey. Fundamental concepts in programming languages. InNATO
Summer School in Programming, Copenhagen. 1967. Also in:Higher-Order and
Symbolic Computation13(1–2):11–49, 2000.

SU06. Morten H. Sørensen and Paweł Urzyczyn.Lectures on the Curry-Howard Isomor-
phism. Number 149 in Studies in Logic and the Foundations of Mathematics. Elsevier
Science, 2006.

SW82. Donald Sannella and Martin Wirsing. Implementation of parameterised specifica-
tions. In Mogens Nielsen and Erik Meineche Schmidt, editors,Proceeding of the
9th International Colloquium on Automata, Languages and Programming, Aarhus,
Lecture Notes in Computer Science, volume 140, pages 473–488. Springer, 1982.

SW83. Donald Sannella and Martin Wirsing. A kernel language for algebraic specification
and implementation. In Marek Karpinski, editor,Proceedings of the 1983 Interna-
tional Conference on Foundations of Computation Theory, Borgholm,Lecture Notes
in Computer Science, volume 158, pages 413–427. Springer, 1983.

SW99. Donald Sannella and Martin Wirsing. Specification languages. In Egidio Astesiano,
Hans-J̈org Kreowski, and Bernd Krieg-Brückner, editors,Algebraic Foundations of
Systems Specification, chapter 8, pages 243–272. Springer, 1999.

Tar85. Andrzej Tarlecki. On the existence of free models in abstract algebraic institutions.
Theoretical Computer Science, 37(3):269–304, 1985.

Tar86a. Andrzej Tarlecki. Bits and pieces of the theory of institutions. In David H. Pitt,
Samson Abramsky, Axel Poigné, and David E. Rydeheard, editors,Proceedings of the
Tutorial and Workshop on Category Theory and Computer Programming, Guildford,
Lecture Notes in Computer Science, volume 240, pages 334–360. Springer, 1986.

Tar86b. Andrzej Tarlecki. Quasi-varieties in abstract algebraic institutions.Journal of Com-
puter and System Sciences, 33(3):333–360, 1986.

Tar87. Andrzej Tarlecki. Institution representation. Unpublished note, Dept. of Computer
Science, University of Edinburgh, 1987.

Tar96. Andrzej Tarlecki. Moving between logical systems. In Magne Haveraaen, Olaf Owe,
and Ole-Johan Dahl, editors,Recent Trends in Data Type Specification. Selected Pa-
pers from the 11th Workshop on Specification of Abstract Data Types, Oslo,Lecture
Notes in Computer Science, volume 1130, pages 478–502. Springer, 1996.

Tar99. Andrzej Tarlecki. Institutions: An abstract framework for formal specification. In
Egidio Astesiano, Hans-Jörg Kreowski, and Bernd Krieg-Brückner, editors,Algebraic
Foundations of Systems Specification, chapter 4, pages 105–130. Springer, 1999.

Page: 550 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

References 551

Tar00. Andrzej Tarlecki. Towards heterogeneous specifications. In Dov Gabbay and Maarten
de Rijke, editors,Frontiers of Combining Systems 2, Studies in Logic and Computa-
tion, pages 337–360. Research Studies Press, 2000.

TBG91. Andrzej Tarlecki, Rod M. Burstall, and Joseph A. Goguen. Some fundamental alge-
braic tools for the semantics of computation. Part 3: Indexed categories.Theoretical
Computer Science, 91(2):239–264, 1991.

Ter03. Terese.Term Rewriting Systems, Cambridge Tracts in Theoretical Computer Science,
volume 55. Cambridge University Press, 2003.

Tho89. Simon Thompson. A logic for Miranda.Formal Aspects of Computing, 1(4):339–365,
1989.

TM87. Władysław M. Turski and Thomas S.E. Maibaum.Specification of Computer Pro-
grams. Addison-Wesley, 1987.

Tra93. Will Tracz. Parametrized programming in LILEANNA. InProceedings of the 1993
ACM/SIGAPP Symposium on Applied Computing, Indianapolis, pages 77–86, 1993.

TWW82. James Thatcher, Eric Wagner, and Jesse Wright. Data type specification: Parameteri-
zation and the power of specification techniques.ACM Transactions on Programming
Languages and Systems, 4(4):711–732, 1982.

Vra88. Jos L.M. Vrancken. The algebraic specification of semi-computable data types. In
Donald Sannella and Andrzej Tarlecki, editors,Recent Trends in Data Type Specifica-
tion. Selected Papers from the 5th Workshop on Specification of Abstract Data Types,
Gullane,Lecture Notes in Computer Science, volume 332, pages 249–259. Springer,
1988.

Wad89. Philip Wadler. Theorems for free! InProceedings of the 4th International ACM Con-
ference on Functional Programming Languages and Computer Architecture, London,
pages 347–359, 1989.

Wan79. Mitchell Wand. Final algebra semantics and data type extensions.Journal of Com-
puter and System Sciences, 19:27–44, 1979.

Wan82. Mitchell Wand. Specifications, models, and implementations of data abstractions.
Theoretical Computer Science, 20(1):3–32, 1982.

WB82. Martin Wirsing and Manfred Broy. An analysis of semantic models for algebraic
specifications. In Manfred Broy and Gunther Schmidt, editors,Theoretical Foun-
dations of Programming Methodology: Lecture Notes of an International Summer
School, Marktoberdorf 1981, pages 351–416. Reidel, 1982.

WB89. Martin Wirsing and Manfred Broy. A modular framework for specification and imple-
mentation. In Josep D́ıaz and Fernando Orejas, editors,TAPSOFT’89: Proceedings of
the International Joint Conference on Theory and Practice of Software Development.
Volume 1: Advanced Seminar on Foundations of Innovative Software Development I
and Colloquium on Trees in Algebra and Programming, Barcelona,Lecture Notes in
Computer Science, volume 351, pages 42–73. Springer, 1989.

WE87. Eric G. Wagner and Hartmut Ehrig. Canonical constraints for parameterized data
types.Theoretical Computer Science, 50:323–349, 1987.

Wec92. Wolfgang Wechler.Universal Algebra for Computer Scientists, EATCS Monographs
on Theoretical Computer Science, volume 25. Springer, 1992.

Wik. Wikipedia. Hash table. Available fromhttp://en.wikipedia.org/wiki/
Hash_table .

Wir82. Martin Wirsing. Structured algebraic specifications. InProceedings of the AFCET
Symposium on Mathematics for Computer Science, Paris, pages 93–107, 1982.

Wir86. Martin Wirsing. Structured algebraic specifications: A kernel language.Theoretical
Computer Science, 42(2):123–249, 1986.

Wir90. Martin Wirsing. Algebraic specification. In Jan van Leeuwen, editor,Handbook
of Theoretical Computer Science. Volume B (Formal Models and Semantics), pages
675–788. North-Holland and MIT Press, 1990.

Wir93. Martin Wirsing. Structured specifications: Syntax, semantics and proof calculus. In
Friedrich L. Bauer, Wilfried Brauer, and Helmut Schwichtenberg, editors,Logic and

Page: 551 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

http://en.wikipedia.org/wiki/Hash_table
http://en.wikipedia.org/wiki/Hash_table

552 References

Algebra of Specification: Proceedings of the NATO Advanced Study Institute, Mark-
toberdorf 1991, pages 411–442. Springer, 1993.

WM97. Michal Walicki and Sigurd Meldal. Algebraic approches to nondeterminism: An
overview.ACM Computing Surveys, 29(1):30–81, 1997.

Zil74. Steven Zilles. Abstract specification of data types. Technical Report 119, Computa-
tion Structures Group, Massachusetts Institute of Technology, 1974.

Zuc99. Elena Zucca. From static to dynamic abstract data-types: An institution transforma-
tion. Theoretical Computer Science, 216(1–2):109–157, 1999.

Page: 552 job: root macro: svmono.cls date/time: 29-Sep-2010/17:48

	Simple equational specifications
	Equations
	Flat specifications
	Theories
	Equational calculus
	Initial models
	Term rewriting
	Fiddling with the definitions
	Conditional equations
	Reachable semantics
	Dealing with partial functions: error algebras
	Dealing with partial functions: partial algebras
	Partial functions: order-sorted algebras
	Other options

	Bibliographical remarks

	References

