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Chapter 3
Category theory

One of the main purposes of this book is to present a general, abstract theory of
specifications, which is independent from the exact details of the semantic struc-
tures (algebras) used to model particular aspects of program behaviour. Appropriate
mathematical tools are required to support the development of such a theory. The
basics of category theory provide us with just what we need: a simple, yet pow-
erful language that allows definitions and results to be formulated at a sufficiently
general, abstract level.

The most fundamental “categorical dogma” is that for many purposes it does not
really matter exactly what the objects we study are; more important are their mutual
relationships. Hence, objects should never be considered on their own, they should
always come equipped with an appropriate notion ofaphismbetween them. In
many typical examples, the objects are sets with some additional structure imposed
on them, and their morphisms are maps that preserve this structure. “Categorical
dogma” states that the interesting properties of objects may be formulated purely in
terms of morphisms, without referring to the internal structure of objects at all. As
a very simple example, consider the following two definitions.

Definition. Given two setsA and B, the Cartesian producbf A andB is the set
A x B that consists of all the pairs of elements frénandB, respectivelyA x B =
{(a,b) |ac AbeB} O

Definition. Given two set#\ andB, aproductof AandBis a seP together with two
functionsri: P — A andm,: P — B such that for any se with functionsf:C — A
andg: C — Bthere exists a unique functidnC — P such thah;m; = f andh;m, = g.

C

Jth 9

\
\
\
\
\
\
,
1 P o
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98 3 Category theﬁry

It is easy to see that the Cartesian product of any two sets is a product in the
sense of the latter definition, where the functiensand ; are the projections on
the first and second components respectivelyi(t Defineh:C — Ax Bby h(c) =
(f(c),0(c)) for all c € C). Moreover, although a produBtof two setsA andB does
not have to be their Cartesian prodéck B since the elements & do not have to
be pairs of objects from andB, P is always isomorphic té x B (there is a one-to-
one correspondence between elemen afd ofA x B). Thus, the two definitions
may be viewed as equivalent for many purposes.

The reader may feel that the former definition (of the Cartesian product) is far
simpler than the latter (of a product). Indeed, to most of us, brought up to consider
set-theoretic concepts as the basis of all mathematics, this is in fact the case. How-
ever, the former definition suffers from a serious deficiency: it is formulated in terms
of elements and the membership relation for sets (which constitute the specific inter-
nal structure of sets). Consequently, it is very specifically oriented towards defining
the Cartesian product of sets and of sets only. If we now wanted to define the Carte-
sian product of, say, algebras (cf. Definitjon 1]2.9) we would have to reformulate
this definition substantially (in this case, by adding definitions of operations for
product algebras). To define the Cartesian product of structures of yet another kind,
yet another different version of this definition would have to be explicitly stated. Itis
obviously desirable to avoid such repetition of the same story for different specific
kinds of objects whenever possible.

The latter definition (of a product) is quite different from this point of view. It
does not make reference to the internal structure of sets at all; it defines a product
of two sets entirely in terms of its relationships with these sets and with other sets.
To obtain a definition of a product of two algebras, it is enough to replace “set”
by “algebra” and “function” by “homomorphism”. The same would apply to other
kinds of structures, as long as there is an appropriate notion of a morphism between
them.

The conclusion we draw from this example is that, first of all, objects of any kind
should be considered together with an appropriate notion of a morphism between
them, and then, that the structure imposed on the collection of objects by these
morphisms should be exploited to formulate definitions at an appropriate level of
generality and abstraction.

Let us have a look at another example:

Definition. A function f: A — B is surjectiveif for every b € B there exista € A
such thab = f(a). O

Definition. A function f: A— Bis anepimorphisnif for any two functionsy,g': B —
C, f;g=f;d impliesg=¢d. O

Definition. A function f: A — B is aretractionif there exists a functiog:B — A
such thag; f = idg. O

All the three definitions above are equivalent: a function is surjective if and only
ifitis an epimorphism, if and only if it is a retraction. As with the previous example,
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3.1 Introducing categories 99

one may argue that the first of these definitions is very much specific to sets, and so
not abstract and not general enough. The two other definitions lack this deficiency:
they do not refer to the internal structure of sets, but use functions (set morphisms)
to define the concept. However, the two definitions when applied to other kinds of
objects (and their morphisms) may well turn out not to be equivalent. We cannot
say that one of them is “right” and the other is “wrong”; they simply incorporate
different aspects of what for sets is the property of “being surjective”. The lesson to
draw from this is that one has to be cautious when generalising a certain property to
a more abstract setting. An attempt to formulate a definition at a more general level
should provide us with a better understanding of the essence of the property being
defined; it may well turn out, however, that there is more than one essence in it,
giving several non-equivalent ways to reformulate the definition in a more abstract
way.

Finding an adequate generalisation is not always easy. Sometimes even very sim-
ple notions we are accustomed to viewing as fundamental are difficult to formulate
in categorical terms, as they depend in an essential way on the internal structure of
the objects under consideration, which is exactly what we want to abstract from.
The usual set-theoretic union operation is an example of such a notion.

Once we succeed in providing a more general version of a certain notion, it may
be instantiated in many different ways. It is interesting to observe how often an
adequate generalisation of an important specific concept leads to interesting instan-
tiations in the context of objects (and morphisms between them) different from the
ones we started with. Indeed, interesting instantiations in other contexts may be
regarded as a test of the adequacy of the generalisation.

A more wide-ranging polemic on the advantages of category theory presented at
a rather intuitive level may be found in [Gog91b].

With these remarks in mind, this chapter introduces the basic concepts and results
of category theory. It is not our intention to provide a full-blown introductory text
on category theory; although a few concepts are introduced which will not be used
elsewhere in this book, we consciously refrain from discussing many important but
more involved concepts and results. Our aim in this chapter is to provide a brief but
comprehensive overview of the basics of category theory, both in order to make this
book self-contained and to provide a handy reference.

3.1 Introducing categories

3.1.1 Categories
Definition 3.1.1 (Category).A categoryK consists of:

e acollection|K| of K-objects
o for eachA B ¢ |K|, a collectionK (A, B) of K-morphismgrom A to B; and
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100 3 Category theory

o foreachA, B,C € K|, acomposition operatidh; : K (A,B) x K (B,C) — K(A,C)
such that:

1. forallA,B,A',B € |K|, if (A,B) # (A',B’) thenK(A,B)NK(A,B') = ;

2. (existence of identitigdor eachA € |K|, there is a morphisnita € K(A,A) such
thatida;g = g for all morphismsg € K(A,B) and f;ida = f for all morphisms
f e K(B,A); and

3. (associativity of compositigror any f € K(A,B), g € K(B,C) andh € K(C,D),
f(g:h) = (f;9);h. O

Notation. We refer toobjectsandmorphismsnstead oK -objects and -morphisms
when K is clear from the context. We writé:A — B (in K) for A/B € |K|,
f € K(A,B). For any f: A — B, we will refer to A as thesourceor domain and
to B as thetarget or codomainof f. The collection of all morphisms & will be
(ambigously) denoted big as well, i.e.K = Uagek| K(A,B). O

The above is just one of several possible equivalent definitions of a category.
For example, the identities, the existence of which is requirgd in (2), are sometimes
considered as part of the structure of a category.

Exercise 3.1.2Prove that in any category, identities are unique. d

The notion of a category is very general. Accepting the categorical dogma that
objects of any kind come equipped with a notion of morphism between them, it is
difficult to think of a collection of objects and accompanying morphisms that do
not form a category. Almost always there is a natural operation of morphism com-
position, which obeys two of the basic requirements above: it has identities and is
associative. Perhaps requiremént (1), which allows us to unambigously identify the
source and target of any morphism, is the most technical and hence least intuitively
appealing. But even in cases where the same entity may be viewed as a morphism
between different objects, this entity can always be equipped with an explicit indi-
cation of the source and target of the morphism (cf. Exainple]3.1.6), thus satisfying
requirement{(f1).

In the rest of this subsection we give a humber of examples of categories. We
start with some rather trivial examples, mainly of formal interest, and only then de-
fine some more typically considered categories. Further examples, which are often
more complex, may be found in the following sections of this chapter (and in later
chapters, see e.g. Sect[on 0.3 for somewhat more complex examples).

Example 3.1.3 (Preorder categories)A binary relation< C X x X is apreorder
on Xif:

e x<xforallxe X; and
o X<yAny<z=x<zforallxy,zeX.

1 We will use semicolon ; to denote composition of morphisms in any category, just as we used
it for composition of functions and homomorphisms in the preceding chapters. Composition will
always be written in diagrammatic orddryg is to be read asf‘followed byg".
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3.1 Introducing categories 101

A preordercategory is a category that has at most one morphism with any given
source and target.

Every preordex C X x X gives rise to a preorder categdfy: where|K<| =X
andK < (x,y) has exactly one elementif< y and is empty otherwise.

This definition does not identify the categdfy unambigously, since different
elements may be used as morphism&ina(x,y) for x <'y. However, we will not
worry here about the exact nature of morphisms (nor objects) in a category, and we
will treat this and similar definitions below as sufficient. More formally, all cate-
gories satisfying the above requirements are isomorphic in the technical sense to be
discussed in Sectign 3.4 (cf. Definitipn 3.4.68).

Here are some trivial examples of preorder categories:

(0 (the empty category)
1

id
2

id id

3: \ ' ' (+ identities)
\_ j

(+ identities)

\
S

Exercise.How many morphisms doeshave? O

Example 3.1.4 (Discrete category)A categoryK is discrete whenever for all
A Be [K|,K(A, B) is empty ifA+# B and contains exactly one element (the identity)
otherwise.
Any collection of objectX gives rise to a discrete categdfy where|Kx| = X.
O
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102 3 Category theory

Example 3.1.5 (Monoid category)A categoryK is amonoidif K has exactly one
object.

A set X together with a function ; X x X — X and a distinguished element
id € X isamonoid(X,;,id) if (x;y);z=x;(y;z) andid;x = x;id = x for all x,y,z€ X.
Every monoid(X,;,id) gives rise to a monoid (category) having morphisénand
composition ;. O

Example 3.1.6 (Set, the category of setsfhe categongSetof sets with functions
as morphisms is defined as follows:

Objects ofSet sets;

Morphisms ofSet functions; however, to ensure that the requirements stated in
Definition[3.1.] are satisfied (disregarding the particular mathematical represen-
tation of the concept of a function one uses), we will always consider functions
with explicitly given domain and codomain. Thus, a morphism in the category
Setwith sourceA and targeB is a triple (A, f,B), wheref: A — Bis a function.

O

Example 3.1.7 (Set, the category ofS-sorted sets).For any setS, the category
Sef> of Ssorted sets is defined as follows:

Obijects ofSef>: S-sorted sets;
Morphisms ofSef: S-sorted functions (with explicitly given domain and codomain).
0

Example 3.1.8 (AlgX), the category ofX-algebras).For any signaturg&, the cat-
egoryAlg(X) of Z-algebras is defined as follows:

Objects ofAlg(X): X-algebras;
Morphisms ofAlg(X): X-homomorphisms (with explicitly given domain and codomain).
O

Example 3.1.9 (CPO, the category of complete partial orders)The category
CPO of complete partial ordefand continuous functions between them is defined
as follows:

Objects of CPO: complete partial orders, i.e., partially ordered sgfs<) such
that any countable chaig < x; <...in (X, <) has a least upper boud}- o ;;
Morphisms ofCPO: continuous functions, i.e., functions that preserve least upper
bounds of countable chains. ad

Exercise 3.1.10Complete the above examples by formalising composition in the
obvious way. Indicate identities and prove associativity of composition. O

Example 3.1.11 (AlgSig, the category of algebraic signatures)he category
AlgsSig of (algebraic) signatures is defined as follows:

2 Cpos and continuous functions as defined here are often referreatemss ando-continuous
functions, respectively.
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3.1 Introducing categories 103

Objects ofAlgSig: signatures;

Morphisms ofAlgSig: signature morphisms;

Composition inAlgSig: for any 6:X — X’ and ¢’: X’ — X”, their composition
0;0:Z — X" is given by (0;0")sorts = Osorts Osorts @aNd (00" )ops = oops;cr{)ps,
cf. Exercis¢_1.5]3. ad

Exercise 3.1.12 (AlgSitf", the category of signatures with derived morphisms).
Recall the concept of a derived signature morphism from Defir{ition 1.5.14. Define
the categonAlgSig®® of algebraic signatures with derived signature morphisms.
Use Exercisg 1.5.18 to define composition of derived signature morphismst

Example 3.1.13 (T, the category of substitutions over a signatureX). Recall
(cf. Sectior] 1.}4) that for any signatuke= (S Q) andS-sorted set of variableX,
Ty (X) is the algebra of terms over with variablesX. Ty (X) is characterised up to
isomorphism by the property that for allyalgebraA, anyS-sorted may: X — |A|
uniquely extends to &-homomorphismv*: Ty (X) — A (Fact§ 1.4}4 and 1.4.1L0).

For any algebraic signatupg, the categoryl » of substitutions oveE is defined
as follows (cf. Exercisg 1.4.9):

Objects of Tx: Ssorted sets (of variables);

Morphisms ofTx: for any setsX andY, a morphismé from X to Y is a sub-
stitution of terms with variable¥ for variablesX, i.e., anSsorted function
0:X — [T=(Y)];

Composition inTy: given any setsX, Y and Z, and morphism®:X — Y and
0":Y — Zin Ty, i.e., functionsd: X — |Tx(Y)| and6:Y — |Tx(Z)], their com-
position6;6’: X — Z is the functiond;0": X — |Tx(Z)| defined by(8;0)s(x) =
(6")%(6s(x)) forallse S x € Xs. 0

Exercise 3.1.14 (E/®, the category of substitutions over modulo equations

®). Generalise the above definition of the category of substitutions by consider-
ing terms up to an equivalence generated by a set of equations. That is, for any
algebraic signatur&€ = (S Q) and setd of XZ-equations, for anys-sorted set of
variablesX define two termg,t; € |Tx (X)|s (for any sorts € S) to be equivalent,
written t; = tp, if @ by VXety =t (cf. Section 2.4). Now, by analogy with the
category of substitutions, define the categ®ry/® to haveS-sorted sets as ob-
jects and substitutions modutb as morphisms. A substitution of terms moddio

with variablesy for variablesX is anS-sorted functiord: X — (|Tg(Y)|/=). Com-
position inTx /&P is defined analogously as ihy, by choosing a representative

of each of the equivalence classes assigned to variables: given- (|Tz(Y)|/=)
ando”:Y — (|Tx(2)|/=), 6;8": X — (|Tx(Z)| /=) maps ank € X to (8")¥(t), where

0(x) = [t]= (show that the result does not depend on the choice of the representative
t € 6(x)). O

Exercise 3.1.15 (E,, the algebraic (X, ®)-theory). Building on the definition

of the category of substitutions modulo a set of equations sketched above, abstract
away from the actual names of variables used in the objedts 6P by listing them

in some particular order, as in derived signatures (cf. Definjition 7.5.13). That is, for
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104 3 Category theory

any algebraic signaturE = (S Q) and set® of X-equations, define the category
Tx ¢ With sequences; ...s, € S* of sort names as objects. A morphismTig ¢

froms;...s,€ S tos; ... g, € S isann-tuple([t1]=, ..., [ta]=) of terms moduloib,
where the equivalences is sketched in Exercige 3.1]14 above, and ferl, .
ti € [Te(lg. g )ls, With Iy ¢ = = {[1]d,,...,[m]:g,}. The composition mT; D |s

given by substitution on representatlves of equivalence classes (the position of a
term in a tuple identifies the variable it is to be substituted fd5).o is usually
referred to as thalgebraic theoryoverX generated by@ﬁ a0

3.1.1.1 Foundations

In the above, and in the definition of a category in particular, we have very cau-
tiously used the non-technical tercollection and talked otcollectionsof objects

and morphisms. This allowed us to gloss over the issue of the choice of appropriate
set-theoretical foundations for category theory. Even a brief look at the examples
above indicates that we could not have been talking here justts{in the sense

of Zermelo-Fraenkel set theory): we want to consider categoriesSétewhere

the collection of objects consists of all sets, and so cannot be a set itself. Using
classeqcollections of sets that are possibly too “large” to be sets themselves, as in
Bernays-@del set theory) might seem more promising, since if we replace the term
“collection” by “class” in Definitio 3.1.]L then at least examples of categories like
Setwould be covered. However, this is not enough either, since even in this sim-
ple presentation of the basics of category theory we will encounter some categories
(like Cat, the category of “all” categories, and functor categories defined later in
this chapter) where objects themselves are proper classes and the collection of ob-
jects forms a “conglomerate” (a collection of classes that is too “large” to be a class,
cf. [HS73]). We refer to[[Bn8%] for a careful analysis of the basic requirements
imposed on a set theory underlying category theory.

Perhaps the most traditional solution to the problem of set-theoretic foundations
for category theory is sketched [n [Mac¢71]. The idea is to work within a hierarchy of
set universesUn)n>0, Where each univerdg,, n > 0, is closed under the standard
set-theoretic operations, and is an element of the next universe in the hierarchy,
Un € Unt1. Then there is a notion of category corresponding to each level of the
hierarchy, and one is required to indicate at which level of the hierarchy one is
working at any given moment.

However, in our view such pedantry would hide the intuitive appeal of “naive”
category theory. We will therefore ignore the issue of set-theoretic foundations for
category theory in the sequel, with just one exception: we define what it means for
a category to be (locally) small and use this to occasionally warn the reader about
potential foundational hazards.

3 In the literature, the algebraic theory ovmenerated byb is often defined with substitutions
considered as morphisms in the opposite direction, i.e., as the catﬁ%wpposite toTx ¢

(cf. Definition@ below).
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3.1 Introducing categories 105

Definition 3.1.16 (Small category)A categoryK is locally smallif for any A,B
K|, K(A,B) is a set (an element of the lowest-level univelgg; K is smallif in
addition|K| is a set as well. O

3.1.2 Constructing categories

In the examples of the previous subsection, each category was constructed “from
scratch” by explicitly defining its objects and morphisms and their composition.
Category theory also provides numerous ways of modifying a given category to
yield a different one, and of putting together two or more categories to obtain a
more complicated one. Some of the simplest examples are given in this subsection.

3.1.2.1 Subcategories

Definition 3.1.17 (Subcategory)A categoryK1 is asubcategorpf a categonk?2
if |K1| C |K2| andK1(A,B) C K2(A,B) for all objectsA,B € |K1|, with compo-
sition and identities irK1 the same as iK2. K1 is afull subcategory oK2 if
additionallyK1(A,B) = K2(A,B) for all A,B € |[K1|. K1 is awide subcategory of
K2 if [K1| =|K2|. O

For any categorK, any collectionX C |K| of objects ofK determines a full
subcategory(‘x of K, defined bylK \xl = X. Whenever convenient, K is evident
from the context, we will identify collections C |K| with K \x-

Example 3.1.18 (FinSet, the category of finite setsyhe categoryinSet of finite
sets is defined as follows:

Objects ofFinSet finite sets;
Morphisms and composition ifinSet as inSet

FinSetis a full subcategory oet O

Example 3.1.19.The category of single-sorted signatures is a full subcategory of
the categonAlgSig of (many-sorted) signatures.

The discrete category of sets is a subcategory of the category of sets with inclu-
sions as morphisms, which is a subcategory of the category of sets with injective
functions as morphisms, which is a subcategoreff

For any signatur& and setb of X-equations, the clasdody (P) of X-algebras
that satisfy® determines a full subcategory @flg(X), which we denote by
Mod (X, @). O

Exercise 3.1.20Give an example of two categori&d, K2 such thatK1| C |K2]|,

K1(A,B) C K2(A,B) for all objectsA,B € |[K1|, with composition inK1 the same
as inK2, but such thak1 is nota subcategory df2. O
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3.1.2.2 Opposite categories and duality

One of the fundamental theorems of lattice theory (cf. €.a. [DP90]) is the so-called
duality principle Any statement in the language of lattice theory has a dual, obtained
by systematically replacing greatest lower bounds by least upper bounds and vice
versa. The duality principle states that the dual of any theorem of lattice theory is
a theorem as well. In a sense, this allows the number of proofs in lattice theory to
be cut by half: proving a fact gives its dual “for free”. A very similar phenomenon
occurs in category theory; in fact, the duality principle of lattice theory may be
viewed as a consequence of a more general duality principle of category theory.
Replacing greatest lower bounds by least upper bounds and vice versa is generalised
here to the process of “reversing morphisms”.

Definition 3.1.21 (Opposite category)The opposite categorpf a categonK is
the categorK °P where:

Objects ofK°P: |K%| = [K];

Morphisms ofK°P: K°P(A,B) = K(B,A) for all A,B € |K°|;

Composition irK°P: for f € K°P(A B) (i.e., f € K(B,A)) andg € K°?(B,C) (i.e.,
g€ K(C,B)), f;ge K®P(AC)isg;f € K(C,A).

K ©P: K:
" f” 1 g" f g
A - B - C A = B C
“frrgi="gf" o f =

Exercise 3.1.22Check that:
1. K°P s a category.
2. (KOP)oP — K,
3. Identities inK°P are the same as K. O

If W is a categorical concept (property, statement, ...) thedutd, co-W, is
obtained by reversing all the morphisms\ih This idea may be formalised in two
ways. The first is to introduce a formal language of category theory, and then de-
fine the operation of forming a dual as an operation on formal statements in this
language. The other is to formally interpe-W in a categoryK asW in the cat-
egoryK°P, Since formalising the language of category theory is beyond the scope
of this book (but cf.[[Mac7/1] or [Hat82]), we take the second option here and will
rely on an intuitive understanding of duality in the sequel. For example, consider the
following property of objects in a category:

P(X) : for any objecty there is a morphisnfi:Y — X.
Then:
co-P(X) : for any objecty there is a morphisnfi: X — Y.
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Note that indeedo-P(X) in any categorK amounts td?(X) in K°P.
Since any category is the opposite of a certain category (namely, of its opposite),
the following fact holds:

Fact 3.1.23 (Duality principle). If W holds for all categories theaoW holds for
all categories as well. O

3.1.2.3 Product categories

Definition 3.1.24 (Product category)For any two categorid§1 andK2, theprod-
uct categonK1 x K2 is defined by:

Objects ofK1 x K2: |K1 x K2| = |[K1]| x |K2| (the Cartesian product);
Morphisms ofK1 x K2: forall A/A’ € |K1| andB,B' € |[K2],
K1 x K2((A,B),(A,B)) = K1(AA) x K2(B,B');
Composition irK1 x K2: for f:A — A and f":A' — A” in K1, g:B — B’ and
g:B' —B"inK2, (f,g);(f',d) = (f;f,g4d). 0

Exercise 3.1.25ldentify the category to which each semicolon in the above defini-
tion of composition irK1 x K2 refers. Then show th#tl x K2 is indeed a category.
O

Exercise 3.1.26Define K", whereK is a category anah > 1. What would you
suggest fon = 0? O

3.1.2.4 Morphism categories

Definition 3.1.27 (Morphism category).For any categorK, the categoryK — of
K-morphismgs defined by:

Objects ofK™: K-morphisms;

Morphisms ofK —: a morphismirkK —~ from f:A— A’ (inK)tog:B — B (inK) is
apair(k, k') of K-morphisms wherk: A— Bandk': A’ — B’ such thak;g= f;K;

Composition irK ~: (k,K');{I,1") = (k;I,K;I"). O

The requirement in the definition of a morphismKn” may be more illustra-
tively restated as the requirement that the following diagram commutes in the cate-
goryK:

A k

B

A/
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For now, we will rely on an intuitive understanding of the concept of a diagram in
a category; see Sectipn 3.5 for a formal definition. We say that a diagram in a
categorycommutegor, is commutativeif for any two paths with the same source
and target nodes, the composition of morphisms along each of the two paths yields
the same result.

Drawing diagrams anchasinga diagram in order to prove that it is commutative
is one of the standard and intuitively most appealing techniques used in category
theory. For example, to justify Definitidn 3.1]27 above it is essential to show that
the composition of two morphisms i~ as defined there yields a morphism in
K. This may be done bpasting togethetwo diagrams like the one above along
a common edge, obtaining the following diagram:

A k ~ B ! ~C

A/ k/ B/ I/ > C/
A simple argument may now be used to show that if the two simpler diagrams are
commutative then the above diagram obtained by pasting them together along the
edge labelled bg commutes as well:

£ (K1) = (£:K)1" = (kg);l" =k;(g;l") = k;(1;h) = (k1);h

Definition 3.1.28 (Slice category)LetK be a category withh € |K|. Thecategory
K | A of K-objects over Aor, theslice ofK over A is defined by:

Objects ofK |A: pairs(X, f) whereX € |[K| andf € K(X,A);
Morphisms ofK |A: a morphism from(X, f) to (Y,qg) is aK-morphismk: X — Y
such thak;g = f:
K

X Y

Composition irK |A: as inK. O

Exercise 3.1.29Show thatk | A may be constructed as a subcategorKof. Is it
full? O

Exercise 3.1.30DefineK 1A, the category oK -objectsunder A CompareK | A)°P,
K°P| A and (K °P| A)°P with K TA. 0
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3.1.3 Category-theoretic definitions

In this section we will give a few simple examples of how certain special morphisms
may be characterised in a style that is typical for category-theoretic definitions. As
indicated in the introduction to this chapter, the idea is to abstract away from the “in-
ternal” properties of objects and morphisms, characterising them entirely in categor-
ical language by referring only to arbitrary objects and morphisms of the category
under consideration. Such definitions may be formulated for an arbitrary category,
and then instantiated to a particular one when necessary. We will also indicate a few
basic properties of the concepts we introduce that hold in any category.

Throughout this section, l&t be an arbitrary but fixed category. Morphisms and
objects we refer to below are thoselof unless explicitly qualified otherwise.

3.1.3.1 Epimorphisms and monomorphisms

Definition 3.1.31 (Epimorphism).A morphismf: A — B is anepimorphisnior is
epi) if for all g:B — C andh:B — C, f;g= f;himpliesg=h.

fig
/ f g \
A B C
\_ "
f:h
O
Example 3.1.32In Set f is epi iff f is surjective. ad

There are “natural” categories in which epimorphisms need not be surjective. For
example:

Exercise 3.1.33Recall the categor€PO of complete partial orders and continu-
ous functions introduced in Examgjle 3]1.9. Give an example of a continuous func-
tion that is an epimorphism iBPO even though it is not surjective. Try to charac-
terise epimorphisms in this category. O

Definition 3.1.34 (Monomorphism).A morphismf: B — Ais amonomorphisnfor
is mong if for all g:C — Bandh:C — B, g;f = h;f impliesg = h.

o f

K g f \

C

\_

NS

h; f
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110 3 Category theory

Example 3.1.35.In Set f is mono iff f is injective. O
Note that mono means the same as co-epi,fi.s.mono inK iff f is epiinK°P.

Fact 3.1.36.

1. If f:A— B and gB — C are mono then;f: A— C is mono.
2. Forany fA—Band gB— C, if f;g:A— C is mono then f is mono.

Proof. The proof is rather straightforward, and significantly more complex proofs
will be omitted in the rest of this chapter. We present it here explicitly only as a
simple example of the style of argument, very common in category-theoretic proofs,
exploiting the most basic properties of composition in an arbitrary category.

1. According to Definitior] 3.1.34, we have to show that for dm':D — A if
h;(f;g) = H;(f;g) thenh=h'. So, supposk;(f;g) =h';(f;g). Then, since com-
position is associative(h; f);g = (h';f);g. Consequently, sincg is mono, by
Definition|3.1.34h; f = h'; f. Thus, using the fact thdtis mono, we can indeed
deriveh=H'.

2. Similarly as in the previous case: suppose that for saimeD — A, h;f = H;f.
Then alsah; f);g = (h';f);g, and sdh;(f;g) = I;(f;g). Now, sincef ;g is mono,
it follows directly from the definition that indedu= h'.

O

Exercise 3.1.37Dualise both parts of Faft 3.1|36. Formulate the dual proofs and
check that they are indeed sound. O

3.1.3.2 Isomorphic objects

Definition 3.1.38 (Isomorphism).A morphismf: A — B is anisomorphisim(or is

iso) if there is a morphisnf ~1:B — A such thatf; f~1 =ida and f ~1;f = idg. The
morphismf~1:B — Alis called thenverseof f, and the object andB are called
isomorphic We write f: A= B or justA = B.

O
Exercise 3.1.39Show that the inverse of a morphism, if it exists, is unique. O

Note that iso means the same as co-iso, that is, isomorphisrsei-dualcon-
cept.

Exercise 3.1.40Check that iff: A— B andg: B — C are iso therf;g: A— Cis iso
as well. O

In Set a morphism is iso iff it is both epi and mono. However, this property does
not carry over to an arbitrary category:
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Exercise 3.1.41Show that iff is iso thenf is both epi and mono. The converse is
not true in general; give a counterexample. O

Exercise 3.1.42We say that a morphisrfi: A — B is aretractionif there is a mor-
phismg: B — A such thag; f = idg. Dually, a morphismf: A — B is acoretraction
if there is a morphisng: B — A such thatf;g = ida. Show that:

1. A morphism is iso iff it is both a retraction and a coretraction.
2. Every retraction is epi.
3. Amorphism is iso iff it is an epi coretraction.

Dualise the above facts. a

Itis easy to see that any two isomorphic objects have the same “categorical prop-
erties”. Intuitively, such objects have abstractly the same structure and so are indis-
tinguishable within the given category (which does not mean that isomorphic objects
cannot have different “non-categorical” properties, cf. Exarpiple 1.3.12). Indeed, an
isomorphism and its inverse determine one-to-one mappings between morphisms
going into and coming out of isomorphic objects. Hence, categorical definitions of
objects define them only “up to isomorphism”. The following section provides typ-
ical examples of this phenomenon.

3.2 Limits and colimits

In this section we show how certain special objects in an arbitrary category together
with their “characteristic” morphisms may be defined in purely categorical terms by
so-calleduniversal propertieswe hope that the reader will recognise the pattern in
the example definitions below. Sectigns 3,2.1-3.2.4 present some typical instances
of this, introducing the most commonly used cases of the geli@iatonstruction
and its dual, which are then presented in their full generality in Seftion|3.2.5. In
most of the cases in this section we will explicitly spell out the duals of the con-
cepts introduced, since many of them have interesting instances in some common
categories (and are traditionally given independent names).

Throughout this section, l&t be an arbitrary but fixed category. Morphisms and
objects we refer to are those I§f unless explicitly qualified otherwise.

3.2.1 Initial and terminal objects

Definition 3.2.1 (Initial object). An objectl € |K|isinitial in K if for eachA € |K|
there is exactly one morphism frohto A. O

Example 3.2.2.The empty se® is initial in Set The algebrdy of groundX-terms
is initial in Alg(X), for any signature € |AlgSig.
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Recall the definition of an initial model of an equational specification (Defini-
tion [2.5.13). For any signaturE and a setd of Z-equations, the initial model
of (X,®) (which exists by Theoreth 2.5]14) is an initial object in the category

Mod (X, ®) (as defined in Examp|e 3.1]19). 0
Exercise 3.2.3What is an initial object irAlgSig? Look for initial objects in other
categories. O
Fact 3.2.4.

1. Any two initial objects ik are isomorphic.
2. If lisinitial in K and I is isomorphic to | then’lis initial in K as well.

Proof. The proof is rather straightforward. We present it here explicitly only as a
simple example of the style of argument, very common in category-theoretic proofs,
which exploits universality (a special case of which is the property used in the def-
inition of an initial object). The requirement that therdstsa morphism satisfying

a certain property is used to construct some diagrams, and themitdpgenes®f

this morphism is used to show that the diagrams constructed commute.

1. Suppose thdt |’ € |[K| are two initial objects irK. Then, by the initiality ofl,
there exists a morphisrf| — I’. Similarly, by the initiality ofl’, there exists a
morphismg:1” — I. Thus, we have constructed the following diagram:

f
id|<>| — |/<>id,,
g

Now, by the initiality ofl, there is auniquemorphism froml to I, and sad, =
f;g. Similarly,id,, = g; f. Thusf is an isomorphism (with inversg) andl and!’
are indeed isomorphic.

2. Suppose that € |K| is initial in K, and leti:l — |’ be an isomorphism with
inversei~1:1’ — |. Consider an arbitrary objegtc |K|. By the “existence part”
of the initiality property ofl, we know that there exists a morphisinl — A.
Hence, there exists a morphism frofio A as well, namely~1;f:1’ — A. Then,
let f':1” — A be an arbitrary morphism fro{ to A. By the “uniqueness part”
of the initiality property ofl, f =i;f’, and soi—1;f =i7%;(i;f") = (i %i);f' =
id,/;f/ = f’. This shows thait; f is the only morphism front to A, and so that
I”is indeed initial inK.

a

The last fact indicates that the initiality property identifies an object up to iso-
morphism. As argued in Secti¢n 3.1]3.2, in category theory this is the most exact
characterisation of an object we may expect. In the following we will speak of “the”
initial object meaning an initial object identified up to isomorphism. We adopt the
same convention in the many similar cases introduced in the sequel.
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3.2.1.1 Dually:

Definition 3.2.5 (Terminal object). An object1 € |K]| is terminal inK if for each
A€ |K| there is exactly one morphism froAuto 1. O

Note that terminal means the same as co-initial.

Exercise 3.2.6 Are there any terminal objects ifiet Alg(X) or AlgSig? What
about terminal objects iAlgSigi®'?
Recall the definition of a terminal (final) model of an equational specification
(Definition[2.7.12). Restate it using the notion of a terminal object as defined above.
O

Exercise 3.2.7Dualise Fadi 3.2]4. O

3.2.2 Products and coproducts

Definition 3.2.8 (Product).A productof two objectsA, B € |K| is an objecAx B €
|K| together with a pair of morphisnms.: A x B — A andng: A x B — B such that
for any objecC € |K | and pair of morphism$:C — A andg:C — Bthere is exactly
one morphism{f,g):C — A x B such that the following diagram commutes:

¢
|
f (1.9 N\
\
}
A A AxB = B

O

Example 3.2.9.In Set the Cartesian product é andB is a productA x B, where
7a, mg are the projection functions. For any signatdreproducts inAlg(X) are
defined analogously (cf. Definition 1.2.9). O

Exercise 3.2.10What is the product of two objects in a preorder category? O
Exercise 3.2.11Show that any two products & B < |K| are isomorphic. O

Exercise 3.2.12Suppose thah, B € |K| have a product. Giveh:C — Aandg:C —
B, and hencéf,g):C — A x B, show that for any: D — C, h;(f,g) = (h; f,h;g).
O

Exercise 3.2.13Prove that:
1. AxB=BxAforanyA Be |K]|.
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2. (AxB)xC=Ax (BxC) foranyA,B,C € |[K|. HINT: The following diagram
might be helpful:

A B C O
Exercise 3.2.14Define the product of an arbitrary family &f-objects. What is the
product of the empty family? O
3.2.2.1 Dually:

Definition 3.2.15 (Coproduct).A coproductof two objectsA, B € |K| is an object
A+B € |K| together with a pair of morphismg: A— A+ Bandiz:B— A+ B such
that for any objec€ € |[K| and pair of morphismé$:A — C andg:B — C there is
exactly one morphisti,g]: A+ B — C such that the following diagram commutes:

A B
O

Example 3.2.16.In Set the disjoint union of setd andB is their coproducA+ B,
whereia, 1g are the injections. Similarly, iklgSig, the (componentwise) disjoint
union of algebraic signatures andX’ is their coproduc + X', wheretia, 1 are
the obvious injections. a0

Note that coproduct means the same as co-product.

Exercise 3.2.17Dualise the exercises for products. a
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Exercise 3.2.18For any algebraic signatu® = (S Q) and twoS-sorted setX
andY, show that their disjoint unioilX WY is the coproduct oX andY in the
categoryT s of substitutions oveE (recall Examplé¢ 3.1.13), where the coproduct
injections are the identity substitutions (of the corresponding variables Xrent

for variables inX and inY, respectively). Generalise this to the categdgy/ & of
substitutions oveZ modulo a setp of X-equations (cf. Exercide 3.1]14). Finally,
characterise coproducts in the categdsys, the algebraic theory over generated

by @ (Exercisd 3.1.15). g

3.2.3 Equalisers and coequalisers

We have defined above products and coproducts for arbitrary pairs of objects in a
category. In this section we deal with constructions for pairs of morphisms con-
strained to beparallel, i.e., pairs of morphisms that have the same source and the
same target.

Definition 3.2.19 (Equaliser).An equaliserof two parallel morphisms:A — B

andg:A — B is an objectE € |K| together with a morphisrh:E — A such that
h; f = h;g, and such that for any objeEt € |K| and morphisniY: E’ — A satisfying
W;f = h';g there is exactly one morphiskaE’ — E such thak;h =h':

E/
/
k / H
/
/ f
E A B
h g O
Exercise 3.2.20Show that an equaliser df A — B andg: A — B is unique up to
isomorphism. O

Exercise 3.2.21Show that every equaliser (to be more precise: its morphism part)
is mono, and every epi equaliser is iso. O

Exercise 3.2.22Construct equalisers of pairs of parallel morphism$&éat Then,
for any signatureZ, construct equalisers of pairs of parallel morphismAlim(X).
HINT: For any two functiond,g: A — B consider the setac A| f(a) =g(a)} C A

O

3.2.3.1 Dually:

Definition 3.2.23 (Coequaliser).The dual notion to equaliser equaliser The
diagram now looks as follows:
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f \
g h

A

Exercise. Formulate explicitly the definition of a coequaliser. Then dualise the ex-
ercises for equalisers. O

Exercise 3.2.24What is the coequaliser of two morphisms3et? What is the co-
equaliser of two morphisms iAlgSig? What is the coequaliser of two morphisms
in Alg(X)? HINT: Given two functionsf, g: A — B consider the quotient & by the
least equivalence relatios on B such that for ala € A, f(a) = g(a). O

Exercise 3.2.25What is the coequaliser of two morphisms in the category of sub-
stitutionsT 5 ? a

3.2.4 Pullbacks and pushouts

Definition 3.2.26 (Pullback).A pullbackof two morphismsf: A — C andg:B — C
having the same codomain is an objBot |K| together with a pair of morphisms
j:P— Aandk:P — B such thatj; f = k;g, and such that for any objeBt € |K| and
pair of morphisms’:P’ — A andk’: P’ — B satisfyingj’;f = k’;g there is exactly
one morphisnh: P — P such that the following diagram commutes:

O

VAN
N

Exercise 3.2.27Show that a pullback of:A — C andg:B — C is unique up to
isomorphism. O

k/

T~ ——

O
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Exercise 3.2.28Show that ifK has products (of all pairs of objects) and equalisers
(of all pairs of parallel morphisms) than it has pullbacks as well (i.e., all pairs of
morphisms with common target have pullback&in

HINT: To construct a pullback of: A— C andg: B — C, first construct the prod-
uct A x B with projectionsma: A x B— Aandzrg: A x B— B and then the equaliser
h:P — AxBof ma; f:Ax B— Candng;g:Ax B— C. O

Exercise 3.2.29Construct the pullback of two morphisms $et, then inAlg(X),
and inAlgSig. O

Exercise 3.2.30Prove that ifK has a terminal object and all pullbacks (i.e., any
pair of K-morphisms with common target has a pullbackinthen:

1. K has all (binary) products.
2. K has all equalisers. INT: Get the equaliser of, g: A — B from the pullback of
(ida, ), (ida,9):A— Ax B. O

Exercise 3.2.31Prove that pullbacks translate monomorphisms to monomorphisms:
if
f

-

g
is a pullback square arglis mono, thenf is mono as well. O

Exercise 3.2.32Consider the following diagram:

Prove that:

1. If the two squares are pullbacks then the outer rectangle is a pullback.
2. If the diagram commutes and the outer rectangle and right-hand square are both
pullbacks then so is the left-hand square. O

3.2.4.1 Dually:

Definition 3.2.33 (Pushout).The dual notion to pullback isushout The diagram
now looks as follows:
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k/

Exercise.Spell out the definition of a pushout explicitly. Then dualise the exercises
for pullbacks. O

Pushouts provide a basic tool for “putting together” structures of different kinds.
Given two objectA andB, a pair of morphismg:C — A andg:C — B indicates
a common source from which some “parts” dfand B come. The pushout of
andg puts togetheA and B while identifying the parts coming from the common
source as indicated bl andg, but keeping the new parts disjoint (cf. the dual of

Exercisq 3.2.28).
Example 3.2.34 Working in Set, consider:

A={1,23}
B={34,5}
C={&}

f={®#—2} :C—A
g={%—4} C—B

Then the pushout objeétis (up to isomorphism) given as follows:

P: {1/7{2/:4//}73/’3//75//}
j={1—1,2—{2=4"},3—-3} :A—P
k={3—3"4— {2=4"} 5—~5'} B—>P O

Example 3.2.35.The general comments above about the use of pushouts for putting
together objects in categories apply in particular when one wants to combine alge-
braic signatures, as we will frequently do throughout the rest of the book. As a very
simple example of a pushout in the categédgSig of algebraic signatures, con-
sider the signatur&Nat of natural numbers defined in Exerc[se 2\5.4. Then, let
XNATs, be its extension by a new operation nafitienat — nat and XN ATy

its extension by another operation namalt nat x nat — nat We then have two
signature inclusions:
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X NATfp «— ENAT —— ENATmuit

Their pushout irAlgSig yields a signatur& N ATip myie Which (up to isomorphism)
consists of the shared signatWB& AT (once, no repetitions!) together with each of
the operations added by the two extensions.

This is deceptively simple though, involving only single-sorted signature inclu-
sions that introduce different operation names.

Exercise. Give examples of pushouts ilgSig with signatures involving more
than one sort, operation names that coincide, and signature morphisms that are not
injective on sorts and/or on operation names. O

3.2.5 The general situation

The definitions introduced in the previous subsections followed a common, more
general pattern. As an example, let's have another look at the definition of a pullback
(Definition[3.2.26; the notation below refers to the diagram there). Given a diagram
in the category at hand (the two morphisrhsand g of which we construct the
pullback), we consider an objektin this category together with morphisms going
from this object to the nodes of the diagramK and an anonymous P — C) such

that all the resulting paths starting frafhcommute (;f = ¢ = k;g — hencec may
remain anonymous). Moreover, from among all such objects we choose the one that
is in a sense “closest” to the diagram: for any obatith morphisms from it to the
diagram nodesj(, k' and an anonymous) satisfying the required commutativity
property (’;f = ¢ = K;g), P may be uniquely projected onto the chosen obfect
(via a morphisnh) so that all the resulting paths starting fréthcommute f;j = j’
andh;k =K, which also implieh;c = ). This is usually referred to as thmiversal
propertyof pullbacks and, more generally, of arbitrdirpits as defined below. The
(dual) universal property of pushouts and, more generally, of arbitralignits as
defined below, may be described by looking at objects with morphisms going from
the nodes of a diagram into them. We will formalise this in the rest of this section.

Definition 3.2.36 (Graph).Let Xg be the following signature:

sorts node edge
ops sourceedge— node
target edge— node

A Xg-algebra is called graph (Note that these graphs may have multiple edges be-
tween any two nodes; such graphs are sometimes aallétijraphs) The category
Graph of graphs isAlg(Xg). Given a grapl, we writee:n — mas an abbreviation

for n,me |G|node € € |Gledge SOUrCe;(€) = n andtargeig(e) = m. O

Exercise 3.2.37Construct an initial object, coproducts, coequalisers and pushouts
in Graph. O
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Exercise 3.2.38Define formally the categorfath(G) of paths in a graplG,
where:

Objects ofPath(G): |G|node

Morphisms ofPath(G): paths inG, i.e., finite sequences; ...e, of elements of
|Gledge SUch thatsources(e 1) = targeig(e) for i < n. Notice that we have to
allow forn=0. O

A diagram inK is a graph having nodes labelled withobjects and edges la-
belled withK-morphisms with the appropriate source and target. Formally:

Definition 3.2.39 (Diagram).A diagram Din K consists of:

e agraphG(D);
e for each node € |G(D)|node an objecD,, € [K|; and
e for each edge:n — min G(D), a morphisnDe: Dy — D

A diagramD is connectedf its graphG(D) is connected (that is, any two nodes
in G(D) are linked by a sequence of edges disregarding their direction, or fully
formally: if the total relation on the set of nodes G{D) is the only equivalence
between the nodes that links all nodes having an edge between them). O

Exercise 3.2.40Show how every small categoK gives rise to a grap®(K) and
a diagranD(K). O

Definition 3.2.41 (Cone and cocone)A conea over a diagram D inK is aK-
objectX together with a family oK -morphisms{on: X — Dn)ne|G(D)[y0q SUCH that
for every edge:n — min the graphG(D) the following diagram commutes:

X

On Om

Dn

De Drm

Dually: A coconea over a diagram D inK is a K-objectX together with a
family of K-morphisms({an:Dn — X)ne|(D))0q SUCh that for every edgen — m
in the graphG(D) the following diagram commutes:

X

O Olm

Dn

D
De " O
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In the following we will write cones simply as famili€®t: X — Dn)ne|G(D)noger
omitting any explicit mention of the apeg, and similarly for cocones. The notation
is not quite justified only in the case when the diagram (and hence the family) is
empty; this will not lead to any misunderstanding.

Let D be a diagram ik with [G(D)|node= N and|G(D)|edge= E.

Definition 3.2.42 (Limit and colimit). A limit of D in K is a cong/on: X — Dp)nen
such that for any coné;,: X’ — Dp)nen there is exactly one morphismX’ — X
such that for every € N the following diagram commutes:

o Qn

Dn

If (on: X — Dn)nen is a limit of D, we will refer to X as thelimit objectof D (or
sometimes just thiémit of D), and to the morphisma,,, n € N, as the limitprojec-
tions

Dually: A colimit of D in K is a cocone{on: Dy — X)nen such that for any
cocone(ay;: D — X' nen there is exactly one morphisimn X — X’ such that for
everyn € N the following diagram commutes:

oy n

Dn

If {atn:Dn — X)nen is @ colimit of D, we will refer toX as thecolimit objectof D
(or sometimes just theolimit of D), and to the morphismg;,, n € N, as the colimit
injections O

Definition 3.2.43 (Completeness and cocompleteness8)categoryK is (finitely)
completdf every (finite) diagram irkK has a limit. DuallyK is (finitely) cocomplete
if every (finite) diagram irK has a colimit. ad

Exercise 3.2.44Define formally the categor@oneD) of cones over a diagrai,
where:

Objects ofCong(D): cones oveD;
Morphisms ofCone(D): amorphism fromo = (0n: X — Dp)nen to o = (ot: X’ — Dp)nen
is aK-morphismh: X — X’ such that, = h;ey, forn € N.
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Prove that the limit oD is a terminal object ifCone(D). Note that this implies that
a limit of any diagram is unique up to isomorphism.

Present the category of objects over an object (cf. Defirfiion 3.1.28) as the cate-
gory of cones over a certain diagram. O

Exercise 3.2.45Show that products, terminal objects, equalisers and pullbacks in
K are limits of simple diagrams iK. O

Exercise 3.2.46Construct inSeta limit of the diagram

fo f]_ f2 f3
Ag A A = Az = 0
Exercise 3.2.47Show that limiting cones ageintly mona if (on: X — Dn)ne|G(D)|noge
is a limit of D, thenf = g whenever for alh € |G(D)|node f;0n = g;0n. O

Exercise 3.2.48Show that ifK has a terminal object, binary products and all
equalisers then it is finitely completeinr: Given a finite diagram i, first build
the product of all its objects, and then gradually turn it into a limit by “equalising”
the triangles formed by product projections and morphisms in the diagram.

Use Exercisg 3.2.30 to conclude thaKithas a terminal object and all pullbacks
then it is finitely complete. O

Exercise 3.2.49Show that ifK has products of arbitrary families of objects and
all equalisers then it is complete.ikir: Proceed as in Exercige 3.2]48, but no-
tice that all the triangles involved may be “equalised” simultaneously in one step,
cf. [Mac71], Theorem V.2.1. ad

Exercise 3.2.50A wide pullbackis the limit of a non-empty family of morphisms
with a common target. Show that if a category has a terminal object and all wide
pullbacks then it has products of arbitrary families of objects, and then conclude
that it is complete. KNT: Generalise Exercige 3.2]30 and use Exeicise 3.2.4Q.

Exercise 3.2.51Recall that for any categoiy and objeci € |[K|, K |Ais the slice
category of objects ovek (Definition[3.1.28).

Notice thatk | A has a terminal object. Then show that binary producksjiA are
essentially given by the pullbacks k (of morphisms teA) and similarly, arbitrary
non-empty products i |A are essentially given by wide pullbacks kh Check
also that any (wide) pullback ik | A is given by the corresponding (wide) pullback
in K (no morphisms té\ added).

Conclude thaK | A is finitely complete ifK has all pullbacks, anH{ | A is com-
plete ifK has all wide pullbacks. ad

Exercise 3.2.52Dualise the above exercises. a

Exercise 3.2.53Show that:

1. Setis complete and cocomplete.
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2. FinSetis finitely complete and finitely cocomplete, but is neither complete nor
cocomplete.

3. Alg(X) is complete for any signatut®. (It is also cocomplete, but the proof is
harder — give it a try!)

4. AlgSig is cocomplete. (Is it complete?)

HINT: Use Exercisg 3.2.49 and its dual, and the standard constructions of (co)products
and (co)equalisers in these categories hinted at in Exarnple$[3.2.9] 3.2.16 and Ex-
ercise$ 3.2.32, 3.2.p4. Check that, given a diagbawith nodesN and edge€ in

Set its limit is (up to isomorphism) the set of familiéd,)nen that are compati-

ble with D in the sense that, € Dy, for eachn € N anddy, = De(dy) for each edge

e:n— m, with the obvious projections. Check that its colimit is (up to isomorphism)

the quotient of the disjoint uniol,.y Dn by the least equivalence relation that is
generated by all pair&,, De(dn)) for en — min E andd,, € Dy, O

Exercise 3.2.54Show tha’rAIgSigder is not finitely cocomplete. (HiT: Consider

a morphism mapping a binary operation to the projection on the first argument and
another morphism mapping the same operation to the projection on the second ar-
gument. Can such a pair of morphisms have a coequaliser?) O

Exercise 3.2.55When is a preorder category (finitely) complete and cocomplete?
O

3.3 Factorisation systems

In this section we will interrupt our presentation of the basic concepts of category
theory and try to illustrate how they can be used to formulate some well-known
ideas at a level of generality and abstraction that ensures their applicability in many
specific contexts.

The concept on which we concentrate here is thegathability(cf. Sectior 1.p).
Recall that the original definition of a reachable algebra used the notion of a subalge-
bra (cf. Definitior] 1.2.]7). Keeping in mind that in the categorical framework we deal
with objects identified up to isomorphism, we slightly generalise the standard for-
mulation and, for any signatuge < |AlgSig|, say that &-algebraB is a subalgebra
of A if there exists arnjectiveX-homomorphism fronB to A. A dual notion is that
of aquotient a X-algebraB is a quotient of &-algebraA if there exists &urjective
X-homomorphism fronAA to B. Now, aX-algebraA is reachablef it has no proper
subalgebra (i.e., every subalgebrafois isomorphic toA), or equivalently, if it is
a quotient of the algebrg: of groundX-terms (cf. Exercisp 1.4.14). In this formu-
lation, the above definitions may be used to introduce a notion of reachability in an
arbitrary category. However, we need an appropriate generalisation of the concept
of injective and surjective homomorphisms. A first attempt might be to use arbitrary
epimorphisms and monomorphisms for this purpose, but it soon turns out that these
concepts are not “fine enough” to ensure the properties we are after. An appropriate
refinement of these is given if the category is equipped witictorisation system
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Definition 3.3.1 (Factorisation system)Let K be an arbitrary category. factori-
sation systenfor K is a pair(E,M), where:

e E is a collection of epimorphisms & andM is a collection of monomorphisms
inK;

e each ofE andM is closed under composition and contains all isomorphisms in
K;

e every morphism irK has anlE, M )-factorisation: for eacti € K, f = ef;m; for
somees € E andm; € K;

N

e (E,M)-factorisations are unique up to isomorphism: for ayg/ € E andm,m €
M, if m= €;m then there exists an isomorphismsuch that;i = € andi;m =
m.

O

Example 3.3.2. Sehas a factorisation syste(i, M), whereE is the collection of
all surjective functions ani is the collection of all injective functions. ad

Example 3.3.3.For any signaturg, Alg(X) has a factorisation systE}hTEg,TM =)
whereTE is the collection of all surjectivE-homomorphisms an@M y is the col-
lection of all injectiveZ-homomorphisms; see Exerc|se 1.3.23. g

Consider an arbitrary categolky equipped with a factorisation syste(, M ).

4“T”in TEy andTM 5 indicates that we are dealing with ordinaoyal algebras here, as opposed
to partial and continuous algebras with the factorisation systems discussed below.
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Lemma 3.3.4 (Diagonal fill-in lemma).For any morphisms;f f2,e, m inK, where
ec E and me M, if f1;m= g;f, then there exists a unique morphism g such that
eg= frand gm= f,.

Proof sketchThe required “diagonal” is given by= ey,;i;ms1, as illustrated by the
diagram below; its uniqueness follows easily sieés an epimorphism.

. e > -
\ /
\ % otz
S U N
/ \
/ m, mfz\
Y/ \4
’ m ) ]

Exercise 3.3.5Show that ife € E ande;f € M for some morphisnf € K, thene
is an isomorphism. Dually, im€ M and f;m € E for some morphisnf € K, then
mis an isomorphism. ad

Definition 3.3.6 (Subobject and quotient).Let A € |K|. A subobjectof A is an
objectB € |K| together with a morphism: B — A such tham e M. A quotientof
Ais an objecB € |K | together with a morphisre A — B such thae € E. O

Definition 3.3.7 (Reachable object)An objectA € |K]| is reachableif it has no
proper subobject, i.e., if every morphisme M with targetA is an isomorphism.
O

The categonAlg (X) of Z-algebras and the notion of a reachable algebra provide
an instance of the general concept of reachability introduced in the above definition.
The following theorem gives more general versions of well-known facts often labo-
riously proved in the standard algebraic framework.

Theorem 3.3.8.Assume tha has an initial objectA. Then:

1. An object Ac |K| is reachable iff it is a quotient of the initial objedt.

2. Every object K| has a reachable subobject which is unique up to isomorphism.

3. If A€ |K| is reachable then for every B |K | there exists at most one morphism
from A to B.

4. 1f A< |K] is reachable and £ K is a morphism with target Athend E. O

Exercise 3.3.9Prove the theorem and identify the familiar facts about reachable
algebras generalised here. O

One of the main results of Chapfgr 2, Theofem 2]5.14, states that any equational
specification has an initial model. This is just a special case of a more general result
which we formulate and prove for an arbitrary category with “reachability structure”
satisfying an additional, technical property that any object has up to isomorphism
only asetof quotients.
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Definition 3.3.10 (Co-well-powered category). Ks E-co-well-poweredf for any
A € |[K]| there exists aetof morphismsE C E such that for every morphisme E
with sourceA there exist a morphis € E and an isomorphisiinsuch thae = €';i.

O

Definition 3.3.11 (Quasi-variety). A collection of objectsQ C |K| is a quasi-
variety if it is closed under subobjects and products of non-empty sets of objects
in Q. O

Lemma 3.3.12 (Initiality lemma). Assume thaK has an initial object, isE-co-
well-powered, and any set of objectdirhas a product. Then any non-empty quasi-
variety inK (considered as the corresponding full subcategori{ phas an initial
object which is reachable iK.

Proof. Let Q C |K| be a non-empty collection of objects closed under subobjects
and products of non-empty sets. 1@t be asetof reachable objects i@ such that
every reachable object @ is isomorphic to an element ¢f; (such a set exists since

K is E-co-well-powered). The reachable subobject of the produ®,ofwhich is
unigue up to isomorphism) is a reachable initial objedDin ad

It is now easy to check that in the context of Exanjple 3.3.3 every clas of
algebras definable by a set Bfequations is a non-empty quasi-variety, and hence
Lemmg 3.3.12 indeed directly implies Theorem 2.5.14.

We conclude this section with two examples of categories naturally equipped
with a notion of reachability which is an instance of the general concept introduced
above.

Example 3.3.13Recall Definitionsg 2.7.30 arjd 2.7]31 of partialgebras and-
homomorphisms between them. For any signatiirdefine the category of partial
X-algebrasPAlg(X), as follows:

Objects of PAIg(X): partial Z-algebras;
Morphisms ofPAIg(X): weakX-homomorphisms.

Define also the subcategoPAlg,, (X) of partial X-algebras wittstronghomo-
morphisms between them, as follows:

Objects ofPAlg,, (X): partial Z-algebras;
Morphisms ofPAlgg, (X): strongZ-homomorphisms.

The categoryPAlg(X) of partialZ-algebras has a factorisation systépy, PMy ),
wherePE;y is the collection of all epimorphisms PAIg(X) andPMj is the collec-
tion of all monomorphisms iRAIg(Z) that are strong-homomorphisms.

Exercise. Characterise epimorphisms RAIg(Z) (they are not surjective in gen-
eral) and prove tha{PEx,PMy) is indeed a factorisation system fBAIg(X).
Check then that factorisation of a strodghomomorphism inlPEs,PMy) con-
sists of strongZ-homomorphisms. Conclude that strong homomorphisni3Ep
andPMy, respectively, form a factorization system fAlgg, (X). O

Page: 126 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05



3.4 Functors and natural transformations 127

Example 3.3.14 For any signatur&, define the category of continuoisalgebras,
CAlg(ZX), as follows:

Objects of CAlg(X): continuousZ-algebras which are just like ordinary (total)
X-algebras, except that their carriers are required to be complete partial orders
and their operations are continuous functions (cf. Exefcise|3.1.9);

Morphisms ofCAIg(X): continuousZ-homomorphisms continuousg-homomorphism
from a continuoux-algebraAto a continuoug-algebraB is aX-homomorphism
h: A— B which is continuous as a function between complete partial orders. We
say thath is full if it reflects the ordering, i.e., for all, & € |Als, h(a) <g h(&)
impliesa<a d'.

The categoryCAIg(X) of continuousX-algebras has a factorisation system
(CEx,CMy), whereCMy is the collection of all full monomorphisms BAIg(X)
andCE;y is the collection of alktrongly densepimorphisms irCAlg(X). A con-
tinuousX-homomorphisnh: A — B is strongly dense iB has no proper continuous
subalgebra which contains the set-theoretic imagéAptinderh. (Note that the
expected notion of a continuous subalgebra is determined by the chosen collection
of factorisation monomorphisnSM x.) This is equivalent to the requirement that
every element ofB]| is the least upper bound of a countable chain of least upper
bounds of countable chains of ... of elements in the set-theoretic imdge wf-
derh. Consequently, given a strongly dense continuous homomorghidm- B,
every element ofB| is the least upper bound of a subset (not necessarily a chain
though) of the set-theoretic image |é{ underh, which yields the key argument to
show thatCAIlg(X) is CEx-co-well-powered.

Exercise. Prove that(CEx,CMy) is indeed a factorisation system fGAIg(X).
Also, try to construct an example of an epimorphismdAlg(X) which is not
strongly dense. O

Exercise 3.3.15Characterise reachable algebraskig(X) and inCAIg(X). In-
stantiate the facts listed in Theorém 3]3.8 to these categories. g

3.4 Functors and natural transformations

As explained in the introduction to this chapter, for category theorists it is tanta-
mount to heresy to consider objects in the absence of morphisms between them. Up
to now we have departed from this dogma in our study of categories themselves;
in the previous sections of this chapter we have worked with categories without in-
troducing any notion of a morphism between them. We hasten here to correct this
lapse: morphisms between categoriesfaretors to be introduced in this section.

And by way of atonement we will also introdunatural transformationswhich are
morphisms between functors.
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3.4.1 Functors

A category consists of a collection of objects and a collection of morphisms with
structure given by the choice of sources and targets of morphism, by the definition
of composition and by the identities that are assumed to exist. As in other standard
cases of collections with additional structure, morphisms between categories are
maps between the collections of objects and morphisms, respectively, that preserve
this structure.

Definition 3.4.1 (Functor). A functor F: K1 — K2 from a categorK1 to a cate-
gory K2 consists of:

e afunctionFopj: |[K1| — |[K2|; and
e for eachA B e |[K1|, a functionFag:K1(A B) — K2(Fobj(A),Fobj(B))

such that:

e F preserves identitie§ia a(ida) = idFObj(A) for all objectsA € |[K|; and
e F preserves composition: for all morphisnis A— B andg: B — C in K1,
Fac(f;9) =Fag(f);Fsc(9). O

Notation. We useF to refer to bothFopj andFapg for all A,B € [K1|. |

In the literature, functors as defined above are sometimes referreddoariant
functors. Acontravariantfunctor is then defined in the same way except that it “re-
verses the direction of morphisms”, i.e., a contravariant funét&l — K2 maps
aK1l-morphismf:A — B to aK2-morphismF(f):F(B) — F(A). Even though we
will use this terminology sometimes, no new formal definition is required: a con-
travariant functor fronK1 to K2 is a (covariant) functor fronk1°P to K2 (cf. e.g.

Example$ 3.417 ar{d 3.4]29 below).

Example 3.4.2 (Identity functor). A functorldk : K — K is defined in the obvious
way. O

Example 3.4.3 (Inclusion functor).If K1 is a subcategory d€2 then the inclusion
I:K1 — K2 is a functor. O

Example 3.4.4 (Constant functor).For anyA € |K2|, Ca:K1 — K2 is a functor,
whereCa(B) = Afor anyB € |K1| andCx(f) =ida for anyK1-morphismf. O

Example 3.4.5 (Opposite functor) For any functor: K1 — K2, there is a functor
FOP:K1°P — K2°P which is the “same” aF, but is considered between the opposite
categories. O

Example 3.4.6 (Powerset functor)®: Set— Setis a functor, wheré?(X) = {Y |
Y C X} for any setX, and for any functionf:X — X', P(f):P(X) — P(X') is
defined by?(f)(Y)={f(y) |ye Y} O
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Example 3.4.7 (Contravariant powerset functor).?_;: SefP — Setis a functor,
whereP_;(X) = {Y | Y C X} for any setX, and for any morphisnf:X — X’
in Sef® (i.e., any functionf: X" — X), P_1(f):P_1(X) — P_1(X’) is defined by
P_a(f)Y)={XeX | f(X)eY} O

Example 3.4.8 (Sequence functor). Se§et— Mon is a functor, whereévon is

the category of monoids with monoid homomorphisms as morphisms. For any set
X € |Set, Seq X) = (X*,", €), whereX* is the set of all finite sequences of elements
from X, " is sequence concatenation, and the empty sequence. Then, for any
function f:X — Y, Seq f):SeqX) — SedY) is the homomorphism defined by
Seq f)(Xp...Xn) = F(x1)... F(Xn). O

Example 3.4.9 (Reduct functor)For any signature morphisax X — X', |5:Alg(X’) —
Alg(Z) is a functor that takes each-algebraA’ to its o-reductq|; € |Alg(X)| and
eachZ’-homomorphismé’ to its o-reducthy| (cf. Definitiong 1.5.1 an.8).D

Example 3.4.10 (Forgetful functor).Let X = (S Q) be a signature. Then|: Alg(X) —
Sefis the functor that takes ea¢halgebraA € |Alg(X)| to its S-sorted carrier set
|A| € |Sef| and eachz-homomorphism to its underlying-sorted function. (The
functor|_| should really be decorated with a subscript identifying the signafure
— we hope that leaving it out will not confuse the reader.) These special reduct
functors|_| will be referred to agorgetful functors

More generally, the term “forgetful functor” is used to refer to any functor that,
intuitively, forgets the structure of objects in a category, mapping any structured
object to its underlying unstructured set of elements. Thus, in addition to examples
that exactly fit the above definition (like the functor mapping any monoid to the set
of its elements) this also covers examples like the functor that maps any topological
space to the set of its points and the functor that forgets the metric of a metric space.

O

Example 3.4.11 (Term algebra)For any signatur& = (S Q), there is a functor
Tr:Sef — Alg(X) that maps ang-sorted seX to the term algebrdy (X), and any
S-sorted functiorf: X — Y to the uniqueZ-homomorphisnf#: Ts (X) — Tz (Y) that
extendsf. O

Exercise 3.4.12For any signatur& and setd of X-equations, define thguotient
functor_/®:Alg(X) — Alg(X) such that for anyE-algebraA, A/® is the quotient
of Aby the least congruence on A generated byp, that is, such theti(v) ~ tj(v)
for eachZ-equationvX.t =t in @ and valuation: X — |A|. Make sure that what
you define is a functor! O

Exercise 3.4.13For any signature, define therestriction functorRyz: Alg(X) —
Alg(Z) such that for any-algebraA, Ry (A) is the reachable subalgebrafof

More generally: leK be an arbitrary category with an initial object and a factori-
sation system, and l&tg be the full subcategory d€ determined by the collection
of all reachable objects iK (cf. Sectior] 3.3). Define a functdtk:K — Kg that
maps amyA € |K| to the (unique up to isomorphism) reachable subobjegt of O
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Example 3.4.14 (Projection functor).For any two categoriei1 andK2, the pro-
jection functorsllk;:K1 x K2 — K1 and Ilk,:K1 x K2 — K2 are defined by
k1 ((A,B)) = AandIlk, ((f,9)) = f, andIk2 ((A,B)) = B andIlk ((f,9)) = 0.

O

Example 3.4.15 (Hom-functor).Let K be a locally small categorjdom: K°P x
K — Setis a functor, wherélom((A,B)) = K(A,B) and

Hom({f:A' - AgB—B))(hA—B )= fhg
N—— ~——
€KOPxK((AB),(ABY)  €HOM((AB))  cHom((A,B))
f
A A
|
|

g O

Exercise 3.4.16 (Exponent functor)For any seX define a functof —X]: Sef? —
Set mapping any set to the set of all functions from itXo That is, for any set
Y € |Set, [Y—X] is the set of all functions fron¥ to X and then for any morphism
f:Y — Y’ in SefP, which is a functionf: Y’ — Y in Set [f =X]:[Y=X] — [Y'—=X]
is defined by pre-composition withas follows:[f —X](g) = f;0. a

Example 3.4.17 (Converting partial functions to total functions).Let Pfn be the
category of sets with partial functions and &#t, be the subcategory &ethaving
sets containing a distinguished elemenas objects and -preserving functions as
morphisms. Theot: Pfn — Set, converts partial functions to total functions by
using_L to represent “undefined” as follows:

e Tot(X)=Xw{Ll}
f(x) if f(x) is defined
o Tot(f)(x) = {J_ otherwise

Exercise. Notice that strictly speaking the above definition is not well-formed: ac-
cording to the definition of disjoint union, X is non-empty theiX € X {_L}; thus,
given a partial functiorf: X — Y, Tot(f) as defined above need not be a function
from Tot(X) to Tot(Y). Restate this definition formally, using explicit injections
11: X — Xw{L}andi:{L} — Xw{L} for each seX. O

Example 3.4.18 (Converting partial algebras to total algebras)The same “to-
talisation” idea as used in the above Exanjple 3]4.17 yields a totalisation functor
Tots: PAlgg, () — Alg(Z), for each signatur&, mapping partiak-algebras and
their strong homomorphisms to totelalgebras and their homomorphisms (cf. Def-

initions[2.7.3D anfl 2.7.31, and Example 3.8.13).

LetX = (S Q) € |AlgSig|. Tots: PAlgg, (X) — Alg(Z) is defined as follows:
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e For any partial-algebraA € |PAlgg, (X)|, Tots (A) € |Alg(X)] is theX-algebra
whose carriers are obtained from the corresponding carriefslyf adding a
distinguished element, and whose operations are obtained from the operations
of A by making the result. for arguments on which the latter are undefined, that
is:

— for each sort namee S, |Totxz (A)|s = |Alsw{L}; and
— foreach operation nanfes; x ... x sy — sin X, frq, (a) is the function which
yields L if any of its arguments id., and foray € |Als,,...,an € |Als,,

fa(as,...,an) if fa(as,...,an) is defined
Frots () (@1, -+, 20) = { il otherwise

e For any strongc-homomorphisnh: A — B (which is a family oftotal functions
between the corresponding carriersfcdindB), Totx (h): Totx (A) — Totx(B) is
(the family of functions inh extended to map. to L.

Exercise.Check that for any strong-homomorphisni: A — B, Totx (h): Toty (A) —
Totx (B) is indeed &-homomorphism. Can you extefidty to weakX-homomorphisms
between partial algebras? O

Exercise 3.4.19Do the above functors map monomorphisms to monomorphisms?
Do they map epimorphisms to epimorphisms? What about isomorphisms? (Co)limits?
(Co)cones? Anything else you can think of? O

Definition 3.4.20 (Diagram translation). Given a functor: K1 — K2 and a dia-
gramD in K1, thetranslation of D byF is defined as the diagraR(D) in K2 with
the same underlying graph Bsand with the labels ob translated by:

e G(F(D)) =G(D);
e for eachn € |G(D)|node F(D)n = F(Dp); and
e for eache € |G(D)|edge F(D)e = F(De). O

Exercise 3.4.21 (Diagrams as functorsp diagramD in K corresponds to a func-
tor from the categoryPath(G(D)) of paths in the underlying graph &fto K. For-
malise this. HNT: Given a diagranD, define a functor that maps each peth. . e,
in G(D) to De,; . .. ;De,. Do not forget the case whene= 0.

Then, anticipating Definitiof_3.4.27, define the translation of a diagram by a
functor in terms of functor composition. ad

Definition 3.4.22 (Functor continuity and cocontinuity). A functor F: K1 — K2
is (finitely) continuousif it preserves the existing limits of all (finite) diagrams in
K1, that is, if for any (finite) diagran® in K1, F maps any limiting cone oveD to
a limiting cone oveF (D).

A functor F: K1 — K2 is (finitely) cocontinuousf it preserves the existing col-
imits of all (finite) diagrams irk1, that is, if for any (finite) diagranD in K1, F
maps any colimiting cocone overto a colimiting cocone ovef(D). O
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Exercise 3.4.23Assuming thatk1 is (finitely) complete, use Exercie 3.2/49 to
show that a functoF: K1 — K2 is (finitely) continuous if and only if it preserves
(finite) products and equalisers.

Similarly, show thaft: K1 — K2 is finitely continuous if and only if it preserves
terminal objects and all pullbacks, and it is continuous if and only if it preserves
terminal objects and all wide pullbacksini: Exercise$ 3.2.48 arjd 3.2]50).

Dually, give similar characterisation of (finitely) cocontinuous functors, for in-
stance as those that preserve (finite) coproducts and coequalisers. O

Exercise 3.4.24Given a seK, show that the functdr —X]: SefP — Setfrom Ex-
ercisg 3.4.76 is continuous.ikir: Use Exercisg 3.4.23: relying on the explicit con-
structions of (co)products and (co)equalisersSet, show that the functor maps
any coproduct (disjoint union) of set3)nen to @ product of sets of functions
[Xn—X], n€ N, and a coequaliser of functiorisg: X; — X, to an equaliser of (pre-
composition) functiongf;_), (g;—): [Xo—X] — [X1—X].

You may also want to similarly check which of the examples of functors given
above are (finitely) (co)continuous. a0

Exercise 3.4.25Consider a categori{ with a terminal objectl € |K|. Given any
functorF:K — K’, check thaf determines a functdf;:K — K’|F(1) fromK to
the slice category dk’-objects oveF (1) (Definition[3.1.28), where for any object
A€ K|, F|1(A) = F(!a), with Ia:A — 1 being the unique morphism froMto 1,
andF |, coincides withF on morphisms.

Suppose now tha has all pullbacks (so that it is finitely complete) afgre-
serves them (but we do not requifeo preserve the terminal object, so it does not
have to be finitely continuous). Show that :K — K’|F(1) is finitely continuous.
HINT: Recall Exercisg 3.2.51. By the discussion there, sihpeeserves pullbacks,

F maps products i, which are pullback of morphisms tig to pullbacks irK’ of
morphisms td=(1) — and these are essentially productKiiF(1). Moreover, by

the constructionF|; preserves the terminal object, and the conclusion follows by
Exercisd 3.4.23.

Similarly, show that ifK has all wide pullbacks (so that it is complete) &nd
preserves them thef;: K — K’|F(1) is continuous. O

Exercise 3.4.26Recall the definition of the categofls ¢, the algebraic theory
generated by a seb of equations over a signatue (cf. Exercisg 3.1.75). Show
that those functors frorit gf’g to Setthat preserve finite products (where products
in T3, that is coproducts il s o, are given by concatenation of sequences of sort
names, cf. Exercide 3.2]18, and productSeétare given by the Cartesian product)
are in a bijective correspondence whhalgebras ifAlg(X)|. Generalise this corre-
spondence further to product-preserving functors fﬂt%ﬁp to SetandX-algebras

in Mody (). O

Definition 3.4.27 (Functor composition).The categoryCat (the category of all
categories) is defined as follows:
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Objects ofCat: categorig$

Morphisms ofCat: functors;

Composition inCat: If F:K1 — K2 andG:K2 — K3 are functors, thek;G:K1 —
K3 is a functor defined as followsF;G)onj = Fobj;Gobj and (F;G)ag =
FA,B;GF(A),F(B) for all A B eK1. O

Example 3.4.28In the following we will often use the functor |:Cat — Seﬁ
which for any categorK € |Cat| yields the collectioriK | of the objects of this cat-
egory and for each functét. K — K’ yields its object partF| = Fop;: K| — |K’[.

O

Example 3.4.29. AlgAlgSig°® — Cat is a functor, where:

e foranyZX € |AlgSig|, Alg(X) is the category oE-algebras; and
e forany morphisno: X — X’ in AlgSig, Alg (o) is the reduct functhG:AIg(E’) —
Alg(XZ). O

Exercise 3.4.30Define a functorlg?®': (AlgSigi®")°P — Cat so thatAlg?®'(X) =

Alg(X) for any signature < |AlgSig®®'|, and for any derived signature morphism

8, Algde'(8) is thes-reduct as sketched in Definitipn 1.5/16 and Exerfcise 1,.5.17.
O

Exercise 3.4.31Define the categoryoset (objects: partially-ordered sets; mor-
phisms: order-preserving functions). Define the functor fRmetto Cat that maps

a partially-ordered set to the corresponding (preorder) category (cf. Example 3.1.3)
and an order-preserving function to the corresponding functor. O

Exercise 3.4.32Characterise isomorphisms @at. Show that product categories
are products irCat. What are terminal objects, pullbacks and equaliserGat?
Conclude tha€Cat is complete. HNT: Use constructions analogous to thos&at,
as summarised in Exercise 3.2.53. O

Exercise 3.4.33Prove thatAlg: AlgSig®® — Cat (cf. Examplg 3.4.29) is continu-
ous, that is, that it maps colimits in the categétgSig of signatures to limits in the
categoryCat of all categories.

HINT: By Exercisd 3.4.23 it is enough to show thilg maps coproducts of
signatures to products of the corresponding categories of algebras and coequalisers
of signature morphisms to equalisers of the corresponding reduct functors.

(Coproducty: Recall that by Exercise 3.2.[16, a coproduct of signatures is in fact
their disjoint union. Now, it is easy to see that an algebra over a disjoint union
of a family of signatures may be identified with a tuple of algebras over the
signatures in the family. Since a similar fact holds for homomorphisms, the rest
of the proof in this case is straightforward (cf. Exer¢ise 34.32). Notice that this
argument covers the coproduct of the empty family of signatures as well.

5 To be cautious about the set-theoretic foundations here, we should rathemsdigategories.

6 Again, we should restrict attention to small categories here. Alternatively, in plaSetafie
could use the category of all discrete categories, inheriting all of the foundational probl€at of
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(Coequalisers Recall (cf. Exercis¢ 3.2.24) that a coequaliser of two signature
morphismso,c’: X — X' is the natural projectiop: X’ — (X'/=), where =
is the least equivalence relation @& such thato(x) = ¢’(x) for all sort and
operation namex in X (this is just a sketch of the construction). Notice now
that (X’/=)-algebras correspond exactly to thaSealgebras that have iden-
tical componentss(x) and ¢’(x) for all sort and operation namesin X, or
equivalently, to those algebras e |Alg(X’)| for which A"G = A"G/. Moreover,
the correspondence is given by the funclgf Alg(X’/=) — Alg(X’). Since a
similar fact holds for homomorphisms, it is straightforward now to prove that
,‘p = Alg(p) is an equaliser Ot‘g = Alg(o) and_|, = Alg(c’) (cf. Exer-

cise34.32 arfd 3.222). 0

Exercise 3.4.34 (Amalgamation Lemma for algebras)XConsider a pushout in the
categoryAlgSig of signatures:

2/
YN
by X
o e
X

Conclude from Exercide 3.433 above that for ahyalgebraA; andX;-algebraA;
such thaiAl‘[,1 = Az\oz, there exists a unique’-algebrad’ such tha‘A"Gi =A; and
Aoy = Ao.

Similarly, for any two homomorphisnis;: Aj; — Agz in Alg(X1) andhy: Ayg —
Ay in Alg(X;) such thathl‘gl = hz\cz, there exists a uniqu&’-homomorphism
h:A} — A, such that'|;; = hy andhl|; = h. 0

Example 3.4.35Recall Examplé¢ 3.2.35 of a simple pushout of algebraic signa-
tures. LetN € |Alg(XNAT)| be the standard model of natural numbers. Build
N; € |Alg(ENaTyp)| by adding toN the interpretation of the operatidib as

the standard Fibonacci function, af € |Alg(ZNATmy)| by adding toN the
interpretation of the operatiomult as multiplication. By construction we have
Nl‘ZNAT =N= NZ‘ZNAT and soN; andN, amalgamate to a unique algebac

|Alg (ENATfip, murr)| such thaIN’FNATfib = N; and N/‘ENATmuIt = N,. Clearly, N’ is

the only expansion dfl that definedib as the Fibonacci function (¢ does) and
multas multiplication (af\, does). O

Exercise 3.4.36Define initial objects and coproducts@at. (HINT: This is easy.)
Try to define coequalisers and then pushouBan. (HINT: This is difficult.) O

iiiiiii C342.tex ======= ¢ ¢.¢.6é.éé 1.15
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3.4.2 Natural transformations

Let F:K1 — K2 andG: K1 — K2 be two functors with common source and target
categories.

A transformation fronf to G should map the results &fto the results o6. This
means, that it should consists of a family of morphism&& oneK2-morphism
from F(A) to G(A) for eachK1-objectA. An extra requirement to impose is that
this family should be compatible with the applicationFodndG to K1-morphisms,
as formalised by the following definition:

Definition 3.4.37 (Natural transformation). A natural transformatiorfrom F to
G, ©:F — /| is a family (a: F(A) — G(A)) acjk1 Of K2-morphisms such that for
anyA B € |K1| andK1-morphismf: A — B the following diagram commutes:

K1: K2:

A F(A) LSRN

f F(f) G(f)
B F(B) — % G(B)

(this property is often referred to as thaturality of the family 7).
Furthermorez is anatural isomorphisnif for all A€ |K1|, 7aisiso (inK2). O

Example 3.4.38.The identity transformatioidg: F — F, where(idr)a = idg(a), is
a natural isomorphism.

For any morphismf: A — B in a categoryK2 and for any categorKl, there
is a constant natural transformaticp:Co — Cg between the constant functors
Ca,Cs:K1 — K2 (cf. Examplg 3.4 ]4) defined kg ), = f for all objectso € |K1|.

O

Example 3.4.39.The family of singleton functionsing set Id s¢t — P, where for
any setX, sing set;: X — P(X) is defined bysing set; (a) = {a}, is a natural trans-
formation.

Let(_)* =Seq|_|: Set— Setbe the functor given as the compositiorSeq Set—
Mon (Example[3.4]8) with the forgetful functdr|:Mon — Set mapping any
monoid to its underlying carrier set. The family of singleton functising seqld se;—
(L)*, where for any seK, singseg;:X — X* is defined bysingseg(a) = a
(sing.segmaps any element to the singleton sequence consisting of this element
only) is a natural transformation. ad

7 Some authors would use a dotted or double arrow here, writifg> G or 7:F = G, respec-
tively. We prefer to use the same symbol for all morphisms, and also for natural transformations,
since they are morphisms in certain categories, see Defi.4.60 below.
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Exercise 3.4.40Consider the functof_)*:Set— Set mapping any seX to the
setX* of sequences oveX (cf. Examplg 3.4.39 above). Show that the following
families of functions (indexed by se¥sc |Set) yield natural transformations from
() to ()"
e foreachk> 0, forn> 0 andxy,..., X, € X,
stuttel (X1...Xn) = X1...X1... Xn. .. Xn;
—_— =
k times k times
e foreachk >0, forn> 0 andxy,...,x, € X,
repeak (Xq...%n) = X1.. . Xn--. X1 - Xn;
—— =

— —
k times

e forn>0andxy,..., X, € X,
revers(Xi...Xn) = Xn...X1;

e forn>0andxy,...,Xon 1 € X,
odds( (X1XoX3 . . . Xon) = X1X3...Xon—1 @nd
OddS( (X1X2X3 .. .X2n+1) = X1X3...Xon+1-

Check which of these functions also yield natural transformations 8eqto Seq
(whereSeq Set— Mon, cf. Examplég 3.4]8).

The above examples indicate a close link between polymorphic functions as en-
countered in functional programming languages (like Standard/ML [MTHM97] or
Haskell [PeyORB]) and natural transformations between functors representing poly-
morphic types. This property, often referred to as “parametric polymorphism” (as
opposed to “ad hoc polymorphism”) can be explored to derive some propeties of
polymorphic functions directly from their types [Wad89]. O

Exercise 3.4.41Recall (Exercisd 3.4.26) the correspondence between product-
preserving functors fronT 3, to Setand X-algebras inMod (X, ®)|. Show that
this correspondence extends to morphisms: gatiomomorphism between alge-
bras gives rise to a natural transformation between the corresponding functors, and
vice versa, each natural transformation between such functors determines a homo-
morphism between the corresponding algebrasiTH To prove that this yields a
bijective correspondence, first use the naturality condition for product projections
to show that for any natural transformatiorF — G between product-preserving
functorsF,G:Tg‘?d, — Set any sequencs; ... s, of sort names (an object ifix o)
and any(ay,...,an) € F(S1...%), Ts;..5,((a1,...,8n)) = (T, (a1),..., T, (@)). O
Natural transformations have been introduced as morphisms between functors.
The obvious thing to do next is to define composition of natural tranformations. Tra-
ditionally, two different composition operations for natural transformations are in-
troducedyverticalandhorizontalcomposition. The former is a straightforward com-
position of natural transformations between parallel functors. The latter is somewhat
more involved; in a sense, it shows how natural transformations “accumulate” when
functors are composed.

Definition 3.4.42 (Vertical composition).Let F1,F2,F3: K1 — K2 be three func-
tors with common source and target categoriesatEl — F2 ando:F2 — F3 be
natural transformations:
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)

—— F1—

KL | —F2 —| K2

T P

Then thevertical compositiorof T ando, 7;6:F1 — F3, is defined by(t;6)a =
Ta;0a (in K2) for all A € |[K1|. O

Exercise 3.4.43Prove thatr;o is indeed a natural transformation. O

Definition 3.4.44 (Horizontal composition)LetF1, F2: K1 — K2 andG1,G2: K2 —
K3 be two pairs of parallel functors. Let F1 — F2 andc:G1 — G2 be natural
transformations:

— F1— —Gl—
K1 T K2 o K3
— F2 — —G2—

Then thehorizontal compositiof T ando, 7-0:F1,G1 — F2;G2, is defined by
(T-G)A = Gl(TA);sz(A) = GFl(A);GZ(TA) (inK3) forallAe |K1|

F1(A) GL(F1(A)) F1A) - G2(F1(A))
\\
~
~.
A G1(za) (1:0)a \\\ G2(1p)
~
N
F2(A) G1(F2(A)) oo - G2(F2(A)

O

Exercise 3.4.45Prove that the above diagram commutes, andrso)a is well-
defined. Then prove thato is indeed a natural transformationinNg :
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A GL(FL(A)) (TOn | Garaa)
OF2(A)
Gl(TA)
f GL(FL(f)) GL(F2(A) G2(F2(1))
GL(F2(f))
B G1(F1(B)) Tk | | GaFae)
G1() OF2(e)
G1(F2(B))

O

Definition 3.4.46 (Multiplication by a functor). A special case of the horizontal
composition of natural transformations is tieltiplicationof a natural transforma-
tion by a functor. Under the assumptions of Definifion 3.4.44, we define:

e 7-Gl=1idg;1:F1;,G1 — F2;G1, or more explicitly:(7-G1)p = G1(1p) for Ae

|K1[;
e Floo =idr1-0:F1,G1 — FL,G2, or more explicitly:(F1.0)a = Ogya) for A€
|K1]. O
Exercise 3.4.47Show thatr-c = (7-G1);(F2-0) = (F1.0);(t-G2). O

Exercise 3.4.48 (Interchange law)Consider any categoridsl, K2, K3, func-
torsF1,F2,F3:K1 — K2 andG1,G2,G3:K2 — K3, and natural transformations
T.F1—F2,7:F2— F3,0:G1 — G2, ando’":G2 — G3:

S Y W e
T c
Y Y

KIiI|—F2—| K2 |—G2—— | K3
T/ G/
Y Y
—— F3 — —— G3—
NI N \_/
Show that(z;7")-(0;0") = (t-0);(7'-0”). O
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3.4.3 Constructing categories, revisited

3.4.3.1 Comma categories

Definition 3.4.49 (Comma category)Let F:K1 — K andG: K2 — K be two func-
tors with a common target category. Tetemma categoryF, G) is defined by:

Objects of(F,G): triples(Al, f,A2), whereAl € |K1|, A2 ¢ |K2| and f:F(Al) —
G(A2) is a morphism irK;

Morphisms of(F,G): a morphism fromAl, f,A2) to (B1,g,B2) is a pair(h1,h2)
of morphisms wherél:Al — Bl (in K1) andh2: A2 — B2 (in K2) such that (the
middle part of) the following diagram commutes:

f

Al F(A1) G(A2) A2
h1 F(h1) G(h2) h2
B1 F(B1) g G(B2 B2
Composition iNF,G): (h1,h2);(hl’,h2") = (h1;h1’ h2;h2’). 0

Exercise 3.4.50Construct the categoiy— of K-morphisms and the categdfyj A

of K-objects oveA € |K| as comma categories (cf. Definitidns 3.1.27 and 3]1.28).
HINT: Consider categoriefld,ldk) and (IdK,C}\), whereldk is the identity
functor onK andC%:1 — K is a constant functor from the terminal categtry O

Example 3.4.51 Another way of presenting the categdByaph is as the comma
category(ld set, CP), whereCP: Set— Setis the Cartesian product functor defined
by CP(X) =X x X andCP(f:X — Y)(x1,x2) = (f(x1), f(x2)).
To see this, write an object j(ld s¢;, CP)| as(E, (sourceE — N, target E — N),N).
O

Exercise 3.4.52Another way to present the category of sighatukksSig is as the
comma categoryld set, (_)7), where(_)*: Set— Setis the functor which for any
setX € |Set yields the seX™ of all finite non-empty sequences of elements from
X.

First, complete the definition of the functor)*. Then, notice thaX™ = X* x X
and hence an object jid s, () )| may be written a¢Q, (arity: @ — S*;sort Q2 — S), S).
Indicate now why the category defined is almost, but not quite, the same as the cat-
egoryAlgSig of signatures (cf. Exercige 3.4]75 below). O

Exercise 3.4.53Prove that iK1 andK2 are (finitely) complete categorids,K1 —

K is a functor, and>: K2 — K is a (finitely) continuous functor, then the comma cat-
egory(F,G) is (finitely) complete. Moreover, the obvious projections fréfG)

to K1 andK2, respectively, are (finitely) continuous.iir: To construct a limit
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of a diagram in(F,G), start by building limits of the projections of the diagram to

K1 andK2, respectively, and then use the continuity propert&db complete the
construction of the limit object ifF, G). If the notation in the proof gets too heavy,
use Exercis€ 3.2.49 and spell the details out for the construction of products and
equalisers.

Check that this construction of limits ifF, G) works for diagrams of any given
shape: ifK1 and K2 have limits of diagrams of a given shape, @doreserves
them, then(F,G) has limits of diagrams of this shape, and the projection functors
preserve them.

State and prove the analogous facts about cocompleteneds @f. HINT:
Clearly, appropriate colimits must exist Kil and K2, but unlike with limits, it
is F that must preserve them. O

Exercise 3.4.54Use Exercisep 3.4.50 ahd 3.4.53 to show tha is a (finitely)
complete category then so is the categdry of morphisms irk.

Then, without looking at Exercide 3.2]51, use Exercjses 3.4.5(0 and |3.4.53 to
prove that if a categoriK has limits of all (finite) non-empty connected diagrams
then so does the slice categdtyA of its objects oveA € |K|, and that the obvious
forgetful functor fromK |Ato K preserves these limits. Notice though that this does
not generalise to arbitrary (finite) limits that existdn A if K is (finitely) complete
by Exercis¢ 3.2.51.

Check that your proof shows a stronger fact: without assuming the existence of
any limits inK, the forgetful functor fronkK |Ato K createdimits of all non-empty
connected diagrams, that is: for any such diagBamin K | A, if its projectionD to
K has a limit inK then there is a unique cocone D, in K | A that projects to this
limit, and this cocone is a limit dD 5 in K |A. 0

Exercise 3.4.55Show that ifK has all pullbacks and a terminal object (so, it is
finitely complete) and a functdf:K — K’ preserves pullbacks, théhalso pre-
serves the limits of all finite non-empty connected diagramstti Put together
Exercise§ 3.4.25 and 3.4]154.

Similarly, show that ifK has all wide pullbacks and a terminal object (so, it is
complete) and a functd¥: K — K’ preserves wide pullbacks, thénalso preserves
the limits of all non-empty connected diagrams. O

3.4.3.2 Indexed categories

We frequently need to deal not just with a single category, but rather with a family
of categories, “parameterised” by a certain collection of indices. The categories of
S-sorted sets (one for each s®tand the categories df-algebras (one for each
signatureX) are typical examples. A crucial property here is that all the categories in
such a family are defined in a uniform way, and consequently any change of an index
induces a smooth translation between the corresponding component categories. In
typical examples, the translation goes in the opposite direction than the change of
index, which leads to the following definition:
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Definition 3.4.56 (Indexed category)An indexed categorfover anindex category
Ind) is a functorC: Ind°P — Cat. O

Example 3.4.57. AlgAlgSig®® — Cat is an indexed category (cf. Example 3.4.29).
O

Definition 3.4.58 (Grothendieck construction) Every indexed categoi@: Ind °° —
Cat gives rise to dlattenedcategoryFlat(C) defined as follows:

Objects ofFlat(C): pairs(i,A) for alli € |Ind| andA € |C(i)|;

Morphisms ofFlat(C): a morphism from(i,A) to (j,B) is a pair(c, f): (i,A) —
(j,B), whereo:i — j is anInd-morphism andf:A — C(o)(B) is a C(i)-
morphism;

Composition irFlat(C): (o, f);(o’, ') = (c;0’, ;C(0)(f')). O

Exercise 3.4.59Show that ifInd is completeC(i) are complete for all € |Ind|,
andC(o) are continuous for al € Ind, thenFlat(C) is complete.

HINT: Given a diagram in the flattened categétiat(C), first consider its ob-
vious projection on the index categaryd. Sincelnd is complete, this has a limit
| € |Ind|. Using the functors assigned Byto the projection morphism of the limit,
“translate” all the nodes and edges of the diagram to the categ@iy thus ob-
taining a diagram irC(l). SinceC(l) is complete, it has a limit. Check that the
projection morphisms of the limit of the diagram constructedinich when paired
with the corresponding projection morphisms of the limit of the diagrar@(ih
form the limit of the original diagram ifrlat(C).

To make the construction manageable, consider only products and equalisers:

this is sufficient by Exercide 3.2.49. 0

3.4.3.3 Functor categories

Definition 3.4.60 (Functor category).Let K1 andK2 be categori@ Thefunctor
category|[K1—K?2] is defined by:

Objects of[K1—K2]: functors fromK1 to K2;
Morphisms of[K1—K2]: natural transformations;
Composition iNK1—K2]: vertical composition. O

Exercise 3.4.61Define the categorgef of Ssorted sets as a functor categoryl

Exercise 3.4.62For any categorK, define its morphism categok/— as the cate-
gory of functorg2—K]. O

Exercise 3.4.63Let K1 andK2 be categories. Show thatk2 is (finitely) com-
plete then so is the functor categdi§l —K2]. State and show the dual fact as well.
HINT: The limit of any diagram ifK1—K2] may be constructed “pointwise”, for

8 To be cautious about set-theoretic foundations, one may want to assurké tisamall.
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each object inK1| separately. More precisely, using Exerdise 32.49 to simplify
the notational burden: consider any family of funct@g: K1 — K2)nen. For each

X € |K1|, let Q(X) € |[K2| with projections(mn)x:Q(X) — Fn(X), n€ N, be a
product of (F,(X))nen in K2. Check that there is a unique way to extédo a
functor Q:K1 — K2 so that allm,:Q — Fn, n € N, become natural transforma-
tions. Show thaf) with projections(m,)nen is a product of(Fn: K1 — K2)pen in
[K1—K2]. Then proceed similarly for equalisers: consider funckis: K1 — K2
and natural transformatiors, 7: F — F'. For eachX € |K1|, let 7x: Q(X) — F(X)

be an equaliser oft)x, (72)x: F(X) — F/(X) in K2. This yields a unique functor
Q:K1 — K2 such thatr: Q — F is a natural transformation, which is an equaliser
of 11,72 in [Kl—>K2]. O

Exercise 3.4.64LetK1, K1’ andK2 be categories. Show how any funckaikK1 —
K1’ induces a functofF;_): [K1'—K2] — [K1—K2]. Relying on the construction
outlined in Exercisg 3.4.63 and assuming tKatis (finitely) complete, show that
this functor is (finitely) continuous.
Prove also that this yields a functor—K2]: Cat® — Caf’|(cf. Exercis¢ 3.4.16).
O

Exercise 3.4.65For any categorK, define a categorffunct(K) of functors into
K as follows:

Objects ofFunct(K): functorsF:K’ — K into K;

Morphisms ofFunct(K): a morphism fromF:K1 — K to G:K2 — K is a pair
(P, p), whered:K1 — K2 is a functor angp: F — ;G is a natural transforma-
tion (between functors fro{1 to K);

Composition inFunct(K): (®@,p);(®,p") = (®; P, p;(P-p')).

Show how the categorfyunct(K) arises by the flattening construction of Defini-
tion[3.4.58 for the functof —K | as defined in the previous exerdiS. 0

Exercise 3.4.66Show that ifK is a (finitely) complete category then the category
Funct(K) of functors intoK is (finitely) complete as well. HiT: You may con-
struct the limits inFunct(K) directly, perhaps using Exercise 3.7.49. Alternatively,
rely on the construction dfunct(K) by flattening (Definitiof 3.4.58) for the functor
[ —K]:Cat®? — Cat and on Exercisg 3.4.59; recall th@at is complete by Exer-
cise[3.4.3p, for any categokl, [K1—K] is (finitely) complete by Exercide 3.4J63,
and for every functoF: K1 — K2, (F;_): [K2—K] — [K1—K] is (finitely) contin-
uous by Exercisg 3.4.p4. 0

Exercise 3.4.67Show that if a categorKl has a factorisation system (cf. Sec-
tion[3.3) than for any categoty2, the functor categorjk2—K1] has a factorisa-
tion system as well.

HINT: Let (E1,M1) be afactorisation system f&il. DefineE = {e € [K2—K1] |
ea € Elforac |[K2|} andM = {n € [K2—K1] | na € M1 for a € |K2|}. Now,

9 Assuming thak2 is small would help to resolve potential foundational problems here.
10 50, for foundational reasons, one may prefer to keep all categories small around here as well.
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to construct an(E,M)-factorisation of a natural transformationF — G be-
tween functord=, G: K2 — K1, first for each objeca € |K2| obtain an(E1,M1)-
factorisation ofta, sayta = ea;na with g5 € ELandna € M1, andea: F(A) — H(A),
na:H(A) — G(A) for someH(A) € |K1|. Then use the diagonal fill-in lemma
(Lemma[3.3.4) to extend the mappihy |K2| — |K1| to a functorH:K2 — K1
such that:F — H andn:H — G are natural transformations. O

3.4.3.4 Equivalence of categories

Definition 3.4.68 (Isomorphic categories)Two categorie&1 andK2 areisomor-
phicif there are functor§:K1 — K2 andF~1:K2 — K1 such thafF;F~! = Idk
andF~L:F = Idks. O

In other words, we say that two categories are isomorphic if they are isomorphic
as objects ofat. As with isomorphic objects of other kinds, we will view isomor-
phic categories as abstractly the same. It turns out, however, that in this case there
is a coarser relation which allows us to identify categories which have all the same
categorical properties, even though they may not be isomorphic.

Definition 3.4.69 (Equivalent categories). KlandK2 are equivalentif there are
functorsF:K1 — K2 andG:K2 — K1 and natural isomorphismsIdg; — F;G
ando:G;F — Idko. a

To characterise equivalent categories, we need one more concept:

Definition 3.4.70 (Skeletal category)A categoryK is skeletaliff any two isomor-
phic K-objects are identical. Akeleton oK is any maximal skeletal subcategory
of K. O

Exercise 3.4.71Prove that two categories are equivalent iff they have isomorphic
skeletons. O

Thus, intuitively, two categories are equivalent if and only if they differ only in
the number of isomorphic copies of corresponding objects.

Example 3.4.72.The categoryFinSet of all finite sets is equivalent to its full sub-
category of all natural numbers, where any natural numhisrdefined as the set
{0,...,n—1} of all natural numbers smaller tham In fact, the latter is a skeleton
of FinSet Similarly, the categorgetof all sets is equivalent to its full subcategory
of all ordinals. O

Exercise 3.4.73Show that for any signaturE and set® of X-equations, the full
subcategory o 5 /® given by the finite sets of variables is equivalent to the cate-

gory Ts o (cf. Exercise$ 3.1.14 and 3.1]15). O
Exercise 3.4.74Let K1 and K2 be equivalent categories. Show thatKf is
(finitely) (co)complete then so K$2. O
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Exercise 3.4.75Recall Exercisg 3.4.52. As indicated there, categokigSig and
(Idse, ()1) are not isomorphic. Show that they are equivalent. Then, using Exer-
ciseg 3.4.74 ar{d 3.4.53, conclude from this tigSig is complete and cocomplete.

0

3.5 Adjoints

Recall FactE 1.414 and 1.4]110:

Fact 1.4.4.For any XZ-algebra A and S-sorted functionX — |A| there is exactly
one X-homomorphism® Ty (X) — A which extends v, i.e. such that(i(x)) =
vs(X) for all s € S, xe Xs, whereix: X — [Tz (X)| is the embedding that maps each
variable in X to the corresponding term. O

Fact 1.4.10.This property definess{X) up to isomorphism: if B is &-algebra
andn:X — |B| is an S-sorted function such that for aByalgebra A and S-sorted
function vX — |A| there is a unique&-homomorphism%B — A such that;|v®| =
v then B is isomorphic tos[ X). O

The construction of the algebra bBfterms is one example of adjoint functor
(it is left adjointto the functor|_|:Alg(X) — Sef°™¥)). The general concept of an
adjoint functor, to which this section is devoted, has many other important instances.
In fact, [Gog91b] goes so far as to say:

Any canonical construction from widgets to whatsits is an adjoint of another
functor, from whatsits to widgets.

3.5.1 Free objects

LetK1 andK2 be categories:: K2 — K1 be a functor, ané1 be an object oK1.

Definition 3.5.1 (Free object).A free object over A w.rt. G is a K2-object A2
together with &1-morphismmnai: A1 — G(A2) such that for anK2-objectB2 and
K1-morphismf:Al — G(B2) there is a uniqué&2-morphismf#: A2 — B2 such
thatna;G(f#) = f.
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G

K1 K2
AL— . G(A2) A2
\ \

\ \

\ \

f }G(f#) }f#

\ \

¥ Y

G(B2) B2

Na1 is called theunit morphism a

Example 3.5.2.Let X = (S Q) be an arbitrary signature. Consider the forgetful
functor| |:Alg(Z) — Sef’. Fac{1.4.4 asserts that for aBysorted seK, the term
algebraly (X) with the inclusionnx: X — | Tz (X)] is a free object oveX w.r.t. | |.

O

Exercise 3.5.3Define free monoids and the path categoRath(G) as free objects
w.r.t. some obvious functors. Then, look around at the areas of mathematics with
which you are familiar for more examples. For instance, check that free groups and
discrete topologies, (ideal) completion of partial orders, of ordered algebras, etc.
may be defined as free objects w.r.t. some straightforward functors. ad

Exercise 3.5.4Prove that any free object ovAd w.r.t. G is an initial object in the
comma categoryCas,G), whereCas:1 — K1 is the constant functor. Conclude
that a free object ovekl w.r.t. G is unique up to isomorphism. O

Exercise 3.5.5Prove that ifA2 € |K2| is a free object oveAl € |K1| w.r.t. G:K2 —
K1, then for anyB2 € |K2|, #:K1(A1,G(B2)) — K2(A2,B2) is a bijection.

Check that one consequence of this is that two morphisim#\2 — B2 coincide
(in K2) whenevema1;G(g) = na1;G(h) in K1. O

3.5.2 Left adjoints

Let K1 andK2 be categories an@:K2 — K1 be a functor. So far we have con-
sidered free objects w.r& one by one, without relating them with each other. One
crucial property is that the construction of free objects, if they exist, is functorial.

Proposition 3.5.6.If for any Al € |[K1| there is a free object overlAw.r.t. G, say
F (A1) € |K2| with unit morphismmai: Al — G(F(Al1)) (in K1), then AL — F (A1)
and fe K1(AL,B1) — (f;ne1)* € K2(F(AL),F(B1)) determine a functoF: K1 —
K2.

Page: 145 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05



146 3 Category theory
G
K1 - K2
AL T | G(F(AD) F(AL)
i i
f G(F(1)) F() = (fmey)*
\ \
' '
Bl 781 ~G(F(B1)) F(B1)

Proof. F preserves identities (ida1) = (ida1;na1)* = idr(a) follows from the fact

that the following diagram commutes:

Al UIN

idat

Al Na1

G(F(A1)

idg(r(a1)) = G(idr(az))

G(F(AD)

F preserves compositiosince the following diagram commutes:

AL—L . G(F(AL) —
f G(F(f))
81—+ G(F(B1))

g G(F(9))
c1—™ . gEcy) —

it follows thatF(f;g) = (f;0;nc1)* = F(f);F(g).

O

Exercise 3.5.7 Prove that:1dx; — F;G in Propositiorj 3.5)6 is a natural transfor-

mation.
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3.5 Adjoints 147

Definition 3.5.8 (Left adjoint). Let F:K1 — K2 andG:K2 — K1 be functors and
n:ldg1 — F;G be a natural transformatiof.is left adjoint toG with unitn if for
anyAl € |K1|, F(AL) with unit morphismnai: Al — G(F(AL)) is a free object over
Al w.rt.G. O

Before we give any examples, let us prove a very important property of left ad-
joints.

Proposition 3.5.9.A left adjoint toG is unique up to (natural) isomorphism:
andF' are left adjoints ofG with unitsn andn’ respectively, then there is a natural
isomorphisnt: F — F’ such thatm;(7-G) = n'.

G(F(A1)) F(AL)
Na1
Al G(TAl) = (’C~G)A1 TAL
G(F/(AL)) F(A1)

Proof. First notice that for anyf € K1(AL1,B1), F(f) = (f;ng1)* and F/(f) =
(Fingy)”.

Then, forAl e |K1|, defineta; = (nx,)* and 7ot = (na1)? . Thentar;tt =
idr(a1) since the following diagrams commute:

G(F(AL)) TN

G (‘L’A]_;Tgll)
i G(ta) G(F(AL))
Na1
A1L G(F'(A1)) Al G(idr(a1)
Na1
NA1 Gt G(F(A1))

G(F‘(Al)) —

andrA’ll;rAl = idr(a1) by a similar argument.
Finally, for f: A1 — B1 (in K1), the following diagrams commute:
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Al L ~ G(F(AL)) Al AL ~ G(F(AL))
o G (o)
f G(F"(Al)) f
G(F/(f)) G(F(f))
B1 ey G(F (B1)) B1
U G(7a1) Ne1
G(F(B)) G(F(B1)

Thus,F(f) = (f;ne1)* = tas;F(); 151 This proves tha(f);te1 = ta;F'(), and
hence that:F — F' is natural. O

Example 3.5.10For any signatureZ = (S ), the functorTy:Sef — Alg(Z
is left adjoint to the forgetful functof_|:Alg(Z) — Sef (cf. Examples 3.4.11

and34.).
The functorSeq Set— Mon is left adjoint to the forgetful functor_|: Mon —
Setwhich takes a monoid to its underlying set of elements. The usiihgseqld ggt—
Seq|_| (cf. Example$ 3.4]8 arjd 3.4]39).
The “free group” functor~: Set— Grp is left adjoint to the forgetful functor
|_|:Grp — Set Also, the functor taking a sét to the discrete topology oX is left
adjoint to the forgetful functof_|: Top — Set(cf. Exercis¢ 3.5]3). 0

Exercise 3.5.11Consider any algebraic signature morphisnt — X’. Prove that
the reduct functOL‘G:Alg(Z’) — Alg(X) has a left adjoint.

HINT: Formalise and complete the following construction. For BrgigebraA,
let Z(A) be an algebraic signature which exteiby a constang: s for each ele-
menta € |Als, s€ sortdX), and letX’(A) be a similar extension &’ by a constant
a:o(s) for eacha € |Als, s€ sortyX). Consider the congruenegs on Ty () gener-
ated by the identities that hold i The congruencesp may be translated by to
Z'(A)-terms, generating there a congruemde=a), and the algebray:(a) /o (=a)
is (almost) the freec’-algebra oveA.

Consider then a se®’ of X’-equations. Recall thatlod (X', @’) is the full
subcategory ofAlg(X’) with all X’-algebras that satisf$p’ as objects (cf. Exam-
ple ). Prove that the reduct functds:Mod(Z’, @) — Alg(Z) has a left
adjoint.

HINT: In the construction above, close the congrueacea) so that for each
equationvX’et =t’ in @’ and substitutiord: X’ — |Ty(n), it identifies the terms
t[6] andt’[6] (cf. Exercisg 1.4]9 for the notation used here).
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Finally, for any set® of X-equations such thab’ =5 o(®), prove that the
reduct fUﬂCtOL‘gZ Mod (X', @') — Mod (X, ®) has a left adjoint.

HINT: This is easy now (Propositign 2.3]|13 ensures that the functor is well de-
fined). O

Exercise 3.5.12Generalise Exercide 3.5]11 to derived signature morphisms, with
reduct functors as introduced in Exerdise 3.4.30. O

Example 3.5.13Let K be a category, and recall thatis a category containing a
single object, say. Let F:1 — K be left adjoint toC5:K — 1 (note that such a
functorF may not exist). Thefr(a) is an initial object inkK. O

Exercise 3.5.14Let A:K — K x K be the “diagonal” functor such that(A) =
(A,A) andA(f:A— B) = (f, f):A(A) — A(B). Prove thaK has all coproducts iff
A has a left adjoint. What is the unit? O

Exercise 3.5.15Formulate analogous theorems for coequalisers and pushouts and
prove them. Show how this may be done for any colimit. O

Exercise 3.5.16LetK be a category with an initial object and a factorisation system
and letK g be its full subcategory of reachable objects. RecallBhatk — Kris a
functor that maps any object to its reachable subobject (cf. Exgrcise|3.4.13). Show
that the inclusion functor. Kgr — K is left adjoint toRk . a

Exercise 3.5.17Show that left adjoints preserve colimits of diagrams. Do they pre-
serve limits as well? O

Exercise 3.5.18LetF:K2 — K1 be left adjoint tdG: K1 — K2 with unitn:ldx; —
F;G. Consider two object®\,B € |K1| and suppose that for some epimorphism
e A — B there exists a morphistm B — G(F(A)) such thateh = na. Prove that
F(e):F(A) — F(B) is an isomorphism.

HINT:
B+ G(F(B)) F(B)
. i F(e)
A" G F(A)
G(fe) e
\ G "
G(C) C

Page: 149 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05



150 3 Category theory

First show thaf(B) with eng: A — G(F(B)) as the unit morphism is a free object
overAw.r.t. G. For this, use the following construction: for a@y |K2| andf: A —

G(C), let fg:F(B) — C be the unique morphism such thag;G(fg) = h;G(fa),
where in turnfa: F(A) — Cis the unigue morphism such thgk;G(fa) = f. Now,

fg satisfied e;ng);G(fg) = f and moreover, it is the only morphism frdriB) to C

with this property (use the fact thais an epimorphism and the freenes$-¢B) to
prove the latter). Then, show the conclusion following the proof of the uniqueness
of left adjoints, cf. Proposition 3.5.9. g

3.5.3 Adjunctions

Consider two categorie€l andK2 and functors=: K1 — K2 andG:K2 — K1
such thaf is left adjoint toG with unitn:1dgx; — F;G.

Proposition 3.5.19.There is a natural transformatios: G;F — Idk, such that

(%) : (Gn)i(e:G) =idg
(k) (n-F);(Fe) =idg
K1: K2:
G(r2) 160, G(FG(A2)  F(G(A2)
(*)
idea) G(ea2) &po
G(A2) A2
Al F(A1)
NAa1 F(na1) idF(a)
()
G(F(A1))  F(G(F(A1))) = ~ F(A1)
Proof idea.

o (x) defineseaz: F(G(A2)) — A2 aseaz = (idg(az))".

e Check naturality To show that for alh: A2 — B2 in K2, ea2;0 = F(G(Qg));€p2, it
is enough to prove that (K1) 1ga2);G(€a2;9) = N (a2);G(F(G(0));€82)-

e Check(xx): To prove thatF(na1);&r(a1) = idr(a1), it is enough to show that (in
K1) na1;G(F(na1);€r(a1)) = Na1;G(idraz))- g
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Proposition 3.5.20.Consider functor$-: K1 — K2 andG:K2 — K1, and natural
transformations):ldx; — F;G ande: G;F — Id k2 such that

(*) 1 (Gn)i(e:G) =idg
(k) (n-F);(F-e) =idg

ThenF is left adjoint toG with unitn.
Proof. ForAl € |[K1|, B2 € |[K2|, f: A1 — G(B2), let f# = F(f);eg: F(Al) — B2.
o NaLG(f¥) = nai;G(F(f));G(erz) = fing(sz):Glerz) = fiidge) = f.

e Suppose that for somg F(Al) — B2, na1;G(g) = f. Then: f# = F(f);ez =
F(na1;:G(9));€82 = F(na1);F(G(9)):€82 = F(NA1);€F(A1):9 = O- O
Definition 3.5.21 (Adjunction). Let K1 andK2 be categories. Aadjunction from

K1 to K2 is a quadrupléF, G, n, €) whereF:K1 — K2 andG:K2 — K1 are func-
tors andn:ldx; — F;G ande: G;F — ldk, are natural transformations such that

(%) : (Gn);(e:G) =idg
(%) : (n-F);(F-e) =ide 0

Fact 3.5.22.Equivalently, an adjunction may be given as either of the following:

e AfunctorG:K2 — K1 and for each A € |[K1|, a free object over Aw.r.t. G;
e AfunctorG:K2 — K1 and its left adjoint. ad

Exercise 3.5.23 (Galois connectionRecall that any partial order gives rise to a
corresponding preorder category (cf. Exanjple 3.1.3). Galois connections (Defini-
tion[2.3.3) arise as adjunctions between preorder categories:

Consider two partially ordered se&, <) and(B, <g) and two order-preserving
functionsf:A— Bandg:B — A (i.e.,, fora,a@ € A, if a<a a thenf(a) <g f(a)
and forb,b’ € B, if b <g b’ theng(b) <a g(b)).

Show thatf andg (viewed as functors) form an adjunction betw&@n<,) and
(B, <g) (viewed as categories) if and only if for @lc A andb € B:

a<ag(b) iff f(a)<ghb

Then show that this is further equivalent to the requirement that:

e a<ag(f(a))forallacA; and
e f(g(b)) <gbforallbeB.

View the Galois connection between sets of equations and classes of algebras on
a given signature defined in Sectjon]2.3 (cf. Propos[tion P.3.2) as a special case of
the above definition. That is, check that for any signafir¢he function mapping
any set of£-equations to the class of allalgebras that satisfy this set of equations
and the function mapping any classXfalgebras to the set of all-equations that
hold in this class form an adjunction between the powerset of the 3eegiiations
(ordered by inclusion) and the powerclass of the clasE-afgebras (ordered by
containment).
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Then check that the above definition of Galois connection coincides with the
more explicit Definitior] 2.3]3 of a Galois connection betwean<a) and (B, >g)
(note the opposite order f&). O

Exercise 3.5.24Dualise the development in this section. Begin with the following
definition, dual to Definitiof 3.5]1:

Definition. Let F:K1 — K2 be a functor and leA2 € |K2|. A cofree object over
A2 w.rt. F is aK1-objectAl together with &2-morphismeay: F(Al) — A2 such
that for anyK1-objectB1 andK2-morphismf:F(B1) — A2 there is a uniqu&1-
morphismf#:B1 — A1l such thaF(f#);ep = f.

Then dually to Section 3.5.2 show how cofree objects indigte adjoints Finally,
prove facts dual to Propositiofs 3.5.19 and 3}5.20, thus proving that right adjoints
and cofree objects give another equivalent definition of adjunction. O

Exercise 3.5.25Develop yet another equivalent definition (at least for small cate-
gories) of an adjunction, centering around the bijectidfi{Al, G(A2)) — K2(F(Al),A2)
using a generalised version of Hom-functors (cf. Exarpple 3/4.15).

Proof sketch.

e Forany small categorg and two functor§1: K1 — K andF2: K2 — K, define a
functorHomgy p2: K19P x K2 — Setby Homgg r2((A1,A2)) = K (F1(AL),F2(A2))
andHomegy g2((f1, £2))(h) = F1(f1);h;F2(f2).

e Show that ifF:K1 — K2 is left adjoint toG:K2 — K1 then #Homyg,, ¢ —
Homg \q,., is @ natural isomorphism.

e Finally, prove that for any functofs: K1 — K2 andG: K2 — K1, a natural iso-
morphism #Homyg,, ¢ — HOME 14, Shows thaF is left adjoint toG. a

Exercise 3.5.26Show that adjunctions compose: given any categdtiek2 and
K3, and adjunctionsF,G, n, €) from K1 to K2 and(F',G’,n’,€') from K2 to K3,
we have an adjunction of the forii;F',G’;G, _, ) from K1 to K3. Fill in the
holes! O

3.6 Bibliographical remarks

Category theory has found very many applications in computer science, and the ma-
terial presented here covers just those fragments that we will require in later chap-
ters. Books on category theory for mathematicians include the classic [Mac71] as
well as the encyclopedic [HSI73], with[AHS90] as a more recent favourite, the three-
volume handbook [Bor94], the modestly-sized textbaok [Awo06], and many more.
An early book on category theory directed towards computer scientists is [AM75],
followed by [Pie91],[Poi92] and [BW95]. An interesting angle is[in [RB88], where
categorical concepts are presented by coding them in ML.

Page: 152 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05



3.6 Bibliographical remarks 153

Our terminology is mainly based on [Mac71], although we prefer to write com-
position in diagrammatic order, denoted by semicolon. The reader should be warned
that the terminology and notation in category theory is not completely standardized,
and differ from one author to another.

We have decided to keep to the basics, and have not ventured into many more
advanced topics, some of which are quite important for computer-science appli-
cations. In particular, Cartesian closed categofies [BW95], [Mit96] and the Curry-
Howard isomorphism [SUQ6], categorical logic [L$86], monads [Man¥ 6], [Mbg91],
[Pho92], fibrations [Jac99], and topbi [Joh02], [Gadl06] all deserve attention.

We have presented somewhat more material than usual on certain topics that will
find application in some of the subsequent chapters. For example, in the material
on factorisation systems (with Section]3.3 taken from [Tar85]) and on indexed cat-
egories (with Section 3.4.3.2 based bn [TBG91]), we include some exercises which
formulate facts that we will rely on later. We will work with indexed categories
throughout the book, sometimes implicitly, since we find them more natural for
these applications than equivalent formulations in terms of fibrations [Jac99].

We have deliberately chosen to use a notion of factorisation system based on
[HS73]. The later book [AHS90] uses a somewhat more general concept, where
factorisation morphisms are not required to be epi and mono, respectively, and there-
fore the uniqueness of the isomorphism between different factorisations of the same
morphisms — or equivalently, of the diagonal in Lermma 3.3.4 — must be required
explicitly. Although much of the material carries over, some results are simpler un-
der our assumptions: for instance, we rely on Exeicise|3.3.5 which does not hold in
this form in the framework of [AHSS0].

Our presentation of signatures, terms and algebras in Cligpter 1 was elementary
and set-theoretic, and we retain this style throughout the book. But category the-
ory offers a whole spectrum of possibilities of doing universal algebra fruitfully
in a different style. Exercisdgs 3.4]26 gnd 3.4.41 relate to a categorical “Lawvere-
style” presentation of some of the same concepts,[see [Law63], [Manh76], [BW85].
This was used in some early papers on algebraic specificatior, e.q. [GTWW?75], but
as it abstracts away from the choice of operation names in the signature, it seems
less useful for applications to program specification. (This argument was put for-
ward already in[[BG80], with the notion of “signed theory” from [GB78] called
to the rescue.) An alternative approach to specifications in this framework is given
by sketches, see [BW95], which present specifications as graphs with indicated dia-
grams, cones and cocones that in a functorial model of the graph are mapped to com-
mutative diagrams, limits and colimits, respectively. Commutative diagrams capture
equational requirements here, with (co)limiting (co)cones offering additional speci-
fication power. Another related approach takes the general notiof-@figebra for
afunctorT:K — K as its starting point, whereTe-algebra on an objeét € |K| is a
morphism fromT (A) to A; this works smoothly ifT is a monad, seé [Man6]. Such
abstract approaches offer natural generalisations based on semantic interpretation in
categories other tha®et but again, in our view, abstraction from familiar concepts
and syntactic presentations makes them less convenient for practical use.

Page: 153 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05



Page: 532 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05



References

AC89.

ACO1.

ACEGG91.

AF96.

AG97.

AHO5.

AHS90.
Ala02.
AM75.

Asp95.

Asp97.

Asp00.

Egidio Astesiano and Maura Cerioli. On the existence of initial models for partial
(higher-order) conditional specifications. In Josépdand Fernando Orejas, editors,
Proceedings of the International Joint Conference on Theory and Practice of Software
Development, TAPSOFT'8Barcelonal.ecture Notes in Computer Sciengelume

351, pages 74-88. Springer, 1989.

David Aspinall and Adriana B. Compagnoni. Subtyping dependent tfjpesretical
Computer Scien¢@66(1-2):273-309, 2001.

Jaume Aguis€Cullell, Francesc Esteva, Pere Garcia, and Lluis Godo. Formalizing
multiple-valued logics as institutions. In Bernadette Bouchon-Meunier, Ronald R.
Yager, and Lotfi A. Zadeh, editorBroceedings of the 3rd International Conference
on Information Processing and Management of Uncertainty in Knowledge-Based Sys-
tems, IPMU’90 Paris,Lecture Notes in Computer Scieneelume 521, pages 269—
278. Springer, 1991.

Mario Arrais and Jas Luiz Fiadeiro. Unifying theories in different institutions. In
Magne Haveraaen, Olaf Owe, and Ole-Johan Dahl, ediResent Trends in Data
Type Specification. Selected Papers from the 11th Workshop on Specification of Ab-
stract Data TypesOslo, Lecture Notes in Computer Sciena®lume 1130, pages
81-101. Springer, 1996.

Robert Allen and David Garlan. A formal basis for architectural connec#@i
Transactions on Software Engineering and Methodol6¢9):213-249, 1997.

David Aspinall and Martin Hofmann. Dependent types. In Benjamin Pierce, editor,
Advanced Topics in Types and Programming Languadespter 2, pages 45-86. MIT
Press, 2005.

Jii Adamek, Horst Herrlich, and George Streckiostract and Concrete Categories:
The Joy of CatsWiley, 1990.

Suad Alagic. Institutions: Integrating objects, XML and databalsgsrmation and
Software Technologyl4(4):207-216, 2002.

Michael A. Arbib and Ernest G. Maneérrows, Structures and Functors: The Cate-
gorical Imperative Academic Press, 1975.

David Aspinall. Subtyping with singleton types. In Leszek Pacholski and Jerzy
Tiuryn, editors Proceedings of the 8th International Workshop on Computer Science
Logic, CSL'94 Kazimierz,Lecture Notes in Computer Sciene®lume 933, pages
1-15. Springer, 1995.

David Aspinall. Type Systems for Modular Programming and SpecificatiBhD
thesis, University of Edinburgh, Department of Computer Science, 1997.

David Aspinall. Subtyping with power types. In Peter Clote and Helmut Schwichten-
berg, editorsProceedings of the 14th International Workshop on Computer Science

533



534

Avrol.

Awo006.
Bar74.

BBB*85.

BBC86.

BC88.

BCH99.

BD77.

BDP*79.

Bén85.

Ber87.

BF85.

BG77.

BG80.

BG81.

BGO1.

BH96.

BHO98.

Page: 534

References

Logic, Fischbachaul ecture Notes in Computer Sciene®lume 1862, pages 156—
171. Springer, 2000.

Arnon Avron. Simple consequence relatiolmormation and Computatiqr92:105—

139, 1991.

Steve AwodeyCategory TheoryOxford University Press, 2006.

Jon Barwise. Axioms for abstract model theoAnnals of Mathematical Logic
7:221-265, 1974.

Friedrich L. Bauer, Rudolf Berghammer, Manfred Broy, Walter Dosch, Franz Geisel-
brechtinger, Rupert Gnatz, E. Hangel, Wolfgang Hesse, Bernd KriggkBer, Al-

fred Laut, Thomas Matzner, Berndd\ler, Friederike Nickl, Helmut Partsch, Peter
Pepper, Klaus Samelson, Martin Wirsing, and Hangsgver. The Munich Project
CIP: Volume 1: The Wide Spectrum Language ClR-&cture Notes in Computer
Sciencevolume 183. Springer, 1985.

Gilles Bernot, Michel Bidoit, and Christine Choppy. Abstract data types with ex-
ception handling: An initial approach based on a distinction between exceptions and
errors. Theoretical Computer Scienc#6(1):13-45, 1986.

Val Breazu-Tannen and Thierry Coquand. Extensional models for polymorphism.
Theoretical Computer Scienc®d(1-2):85-114, 1988.

Michel Bidoit, Mafa Victoria Cengarle, and Rolf Hennicker. Proof systems for struc-
tured specifications and their refinements. In Egidio Astesiano, Hagskieowski,

and Bernd Krieg-Biickner, editorsAlgebraic Foundations of Systems Specification
chapter 11, pages 385—-433. Springer, 1999.

R.M. Burstall and J. Darlington. A transformational system for developing recursive
programs.Journal of the Association for Computing Maching2y(1):44-67, 1977.
Manfred Broy, Walter Dosch, Helmut Partsch, Peter Pepper, and Martin Wirsing. Ex-
istential quantifiers in abstract data types. In Hermann A. Maurer, e&itoceed-

ings of the 6th International Colloquium on Automata, Languages and Programming
Graz,Lecture Notes in Computer Sciengelume 71, pages 73-87. Springer, 1979.
Jean Bnabou. Fibred categories and the foundations iveneategory theorydour-

nal of Symbolic Logic50:10-37, 1985.

Gilles Bernot. Good functors ... are those preserving philosophy! In David H.
Pitt, Axel Poigreé, and David E. Rydeheard, editoBpceedings of the 2nd Summer
Conference on Category Theory and Computer Scigidmburgh Lecture Notes in
Computer Scien¢erolume 283, pages 182-195. Springer, 1987.

Jon Barwise and Solomon Feferman, editokéodel-Theoretic Logics Springer,
1985.

R.M. Burstall and J.A. Goguen. Putting theories together to make specifications.
In Fifth International Joint Conference on Artificial Intelligencgages 1045—-1058,
Boston, 1977.

R.M. Burstall and J.A. Goguen. The semantics of Clear, a specification language.
In Dines Bjgrner, editoiProceedings of the 1979 Copenhagen Winter School on Ab-
stract Software Specificatiphecture Notes in Computer Scieneelume 86, pages
292-332. Springer, 1980.

R.M. Burstall and J.A. Goguen. An informal introduction to specifications using
Clear. In R.S. Boyer and J.S. Moore, editdrhe Correctness Problem in Computer
Sciencepages 185-213. Academic Press, 1981. Als8aiftware Specification Tech-
nigues(eds. N. Gehani and A.D. McGettrick), Addison-Wesley, 1986.

Leo Bachmair and Harald Ganzinger. Resolution theorem proving. In John Alan
Robinson and Andrei Voronkov, editoidandbook of Automated Reasonjmpgges
19-99. Elsevier and MIT Press, 2001.

Michel Bidoit and Rolf Hennicker. Behavioural theories and the proof of behavioural
properties.Theoretical Computer Scienck65(1):3-55, 1996.

Michel Bidoit and Rolf Hennicker. Modular correctness proofs of behavioural imple-
mentations Acta Informatica 35(11):951-1005, 1998.

job: root macro: svmono.cls date/time: 29-Sep-2010/18:05



References

BHO6a.

BHO6b.

BHK90.

BHW94.

BHW95.

Bir35.

BL69.

BMO04.

BN98.

Bor94.

Bor00.

Bor02.

Bor05.

BPP85.

BRJ98.

BS93.

BSTO2.

BSTO8.

BT87.

Page: 535

535

Michel Bidoit and Rolf Hennicker. Constructor-based observational Idgignal of
Logic and Algebraic Programming7(1-2):3-51, 2006.

Michel Bidoit and Rolf Hennicker. Proving behavioral refinements afL.-C
specifications. In Kokichi Futatsugi, Jean-Pierre Jouannaud, agdVeseguer, edi-
tors,Algebra, Meaning and Computation: Essays Dedicated to Joseph A. Goguen on
the Occasion of His 65th Birthdalecture Notes in Computer Sciengelume 4060,
pages 333-354. Springer, 2006.

Jan Bergstra, Jan Heering, and Paul Klint. Module algelmarnal of the Association
for Computing Machinery37(2):335-372, 1990.

Michel Bidoit, Rolf Hennicker, and Martin Wirsing. Characterizing behavioural se-
mantics and abstractor semantics. In Donald Sannella, e®itoceedings of the
5th European Symposium on Programmifglinburgh,Lecture Notes in Computer
Sciencevolume 788, pages 105-119. Springer, 1994.

Michel Bidoit, Rolf Hennicker, and Martin Wirsing. Behavioural and abstractor spec-
ifications. Science of Computer Programmirzh(2-3):149-186, 1995.

Garrett Birkhoff. On the structure of abstract algebRasceedings of the Cambridge
Philosophical Society31:433-454, 1935.

R.M. Burstall and P.J. Landin. Programs and their proofs: an algebraic approach. In
B. Meltzer and D. Michie, editordyiachine Intelligence 4pages 17—-43. Edinburgh
University Press, 1969.

Michel Bidoit and Peter D. Mosses, editorsA<L User Manual Number 2900 in
Lecture Notes in Computer Science. Springer, 2004.

Franz Baader and Tobias Nipkowerm Rewriting and All ThatCambridge Univer-
sity Press, 1998.

Francis Borceaux-andbook of Categorical AlgebraCambridge University Press,
1994.

Tomasz Borzyszkowski. Higher-order logic and theorem proving for structured spec-
ifications. In Didier Bert, Christine Choppy, and Peter D. Mosses, ediResent
Trends in Algebraic Development Techniques. Selected Papers from the 14th Interna-
tional Workshop on Algebraic Development Technig@steau de Bonad,ecture
Notes in Computer Scienceolume 1827, pages 401-418. Springer, 2000.

Tomasz Borzyszkowski. Logical systems for structured specificatibmsoretical
Computer Scien¢®86(2):197-245, 2002.

Tomasz Borzyszkowski. Generalized interpolation in first order Idgimdamenta
Informaticag 66(3):199-219, 2005.

Edward K. Blum and Francesco Parisi-Presicce. The semantics of shared submod-
ules specifications. In Hartmut Ehrig, Christiane Floyd, Maurice Nivat, and James W.
Thatcher, editordMathematical Foundations of Software Development. Proceedings
of the International Joint Conference on Theory and Practice of Software Develop-
ment. Volume 1: Colloquium on Trees in Algebra and Programpiiagture Notes in
Computer Scien¢e&olume 185, pages 359-373. Springer, 1985.

Grady Booch, James Rumbaugh, and Ivar Jacobserlnified Modeling Language
User Guide Addison-Wesley, 1998.

Rudolf Berghammer and Gunther Schmidt. Relational specifications. In C. Rauszer,
editor, Proc. XXXVIII Banach Center Semester on Algebraic Methods in Logic and
their Computer Science ApplicatiarBanach Center Publicationsolume 28, pages
167-190, Warszawa, 1993. Institute of Mathematics, Polish Academy of Sciences.
Michel Bidoit, Donald Sannella, and Andrzej Tarlecki. Architectural specifications
in CAsL. Formal Aspects of Computing3:252-273, 2002.

Michel Bidoit, Donald Sannella, and Andrzej Tarlecki. Observational interpretation
of CAsL specificationsMathematical Structures in Computer Scient®:325-371,
2008.

Jan Bergstra and John Tucker. Algebraic specifications of computable and semicom-
putable data typeslheoretical Computer Science0(2):137-181, 1987.

job: root macro: svmono.cls date/time: 29-Sep-2010/18:05



536

BT96.

Bur86.

BW82a.

BW82b.

BWS8S5.

BWO5.

BWP84.

Car88.

CDE'02.

Cen94.

CF92.

CGRO3.

Chub56.

Cir02.

CJ95.

CK90.

CKO08a.

CKO8b.

CKO8c.

Page: 536

References

Michel Bidoit and Andrzej Tarlecki. Behavioural satisfaction and equivalence in con-
crete model categories. Indiéne Kirchner, editoProceedings of the 21st Interna-
tional Colloquium on Trees in Algebra and Programmihgnkoping, Lecture Notes

in Computer Sciencerolume 1059, pages 241-256. Springer, 1996.

Peter Burmeister. A Model Theoretic Oriented Approach to Partial Algehras
Akademie-Verlag, 1986.

Friedrich L. Bauer and HansdasnerAlgorithmic Language and Program Develop-
ment Springer, 1982,

Manfred Broy and Martin Wirsing. Partial abstract data typasta Informatica
18(1):47-64, 1982.

Michael Barr and Charles WellsToposes, Triples and TheoriedNumber 278 in
Grundlehren der mathematischen Wissenschaften. Springer, 1985.

Michael Barr and Charles Well€ategory Theory for Computing Scienderentice

Hall, second edition, 1995.

Manfred Broy, Martin Wirsing, and Claude Pair. A systematic study of models of
abstract data typeJ.heoretical Computer Sciencg3(2—3):139-174, 1984.

Luca Cardelli. Structural subtyping and the notion of power typeRrdoeedings

of the 15th ACM Symposium on Principles of Programming Langy&gs Diego,
pages 70-79, 1988.

Manuel Clavela, Francisco Cam, Steven Eker, Patrick Lincoln, Narciso Ma@iliet,
Jog Meseguer, and JesF. Quesada. Maude: Specification and programming in
rewriting logic. Theoretical Computer Scienc285(2):187—-243, 2002. See also
http://maude.cs.uiuc.edu/

Maia Victoria CengarleFormal Specifications with Higher-Order Parameterization
PhD thesis, Ludwig-Maximilians-Universit Minchen, Institutiir Informatik, 1994.
Robin Cockett and Tom Fukushima. About Charity. Technical Report No. 92/480/18,
Department of Computer Science, University of Calgary, 1992.

Carlos Caleiro, Paula Gouveia, and Jaime Ramos. Completeness results for fibred
parchments: Beyond the propositional base. In Martin Wirsing, Dirk Pattinson, and
Rolf Hennicker, editorsRecent Trends in Algebraic Development Techniques. Se-
lected Papers from the 16th International Workshop on Algebraic Development Tech-
niques Frauenchiemsee,ecture Notes in Computer Sciena®lume 2755, pages
185-200. Springer, 2003.

Alonzo Churchintroduction to Mathematical Logic, Volume Brinceton University
Press, 1956.

Corina Grstea. On specification logics for algebra-coalgebra structures: Reconciling
reachability and observability. IRroceedings of the 5th International Conference on
Foundations of Software Science and Computation Structures. European Joint Con-
ferences on Theory and Practice of Software (ETAPS 2@2noblelecture Notes

in Computer Sciengevolume 2303, pages 82-97. Springer, 2002.

Aurelio Carboni and Peter Johnstone. Connected limits, familial representability and
Artin glueing. Mathematical Structures in Computer Sciens@!):441-459, 1995.
Chen-Chung Chang and H. Jerome Keislstodel Theory North-Holland, third
edition, 1990.

Mara Victoria Cengarle and Alexander Knapp. An institution for OCL 2.0. Techni-
cal Report 10801, Institutifr Informatik, Ludwig-Maximilians-Universét Minchen,
2008.

Maia Victoria Cengarle and Alexander Knapp. An institution for UML 2.0 in-
teractions. Technical Report 10808, Institiir finformatik, Ludwig-Maximilians-
Universitt Munchen, 2008.

Maia Victoria Cengarle and Alexander Knapp. An institution for UML 2.0 static
structures. Technical Report 10807, Institiitr finformatik, Ludwig-Maximilians-
Universitat Munchen, 2008.

job: root macro: svmono.cls date/time: 29-Sep-2010/18:05


http://maude.cs.uiuc.edu/

References 537

CKTWO08. Maria-Victoria Cengarle, Alexander Knapp, Andrzej Tarlecki, and Martin Wirsing. A
heterogeneous approach to UML semantics. In Pierpaolo Degano, Rocco de Nicola,
and Joé Meseguer, editor€oncurrency, Graphs and Models, Essays Dedicated to
Ugo Montanari on the Occasion of His 65th Birthddyecture Notes in Computer
Sciencevolume 5065, pages 383-402. Springer, 2008.

CM97. Maura Cerioli and Jé&sMeseguer. May | borrow your logic? (Transporting logical
structures along mapsJheoretical Computer SciencE73(2):311-347, 1997.

CMRM10. Mihai Codescu, Till Mossakowski, Adn Riesco, and Christian Maeder. Integrat-
ing Maude into Hets. In Mike Johnson and Dusko Pavlovic, editdk$AST 2010
Lecture Notes in Computer Science. Springer, 2010.

CMRSO01. Carlos Caleiro, Paulo Mateus, Jaime Ramos, arittAnSernadas. Combining log-
ics: Parchments revisited. In Maura Cerioli and Gianna Reggio, edRecgnt Trends
in Algebraic Development Techniques. Selected Papers from the 15th Workshop on Al-
gebraic Development Techniques joint with the CoFl WG Meg@enoval ecture
Notes in Computer Scienceolume 2267, pages 48-70. Springer, 2001.

Coh65. Paul M. CohnUniversal Algebra Harper and Row, 1965.

CS92. Robin Cockett and Dwight Spencer. Strong categorical datatypes I. In R.A.G. Seely,
editor, International Meeting on Category Theory 19%@lanadian Mathematical So-
ciety Proceedings. American Mathematical Society, 1992.

CSSO05. Carlos Caleiro, Alcar Sernadas, and Cristina Sernadas. Fibring logics: Past, present
and future. In Sergei N. Artemov, Howard Barringer, Artur S. d’Avila Garceis1Gi
Lamb, and John Woods, editok&/e Will Show Them! Essays in Honour of Dov Gab-
bay, Volume Ongpages 363—-388. College Publications, 2005.

DF98. Razvan Diaconescu and Kokichi Futatsu@iafeOBJ Report: The Language, Proof
Techniques, and Methodologies for Object-Oriented Algebraic SpecificAMAST
Series in Computing/olume 6. World Scientific, 1998.

DFO02. Razvan Diaconescu and Kokichi Futatsugi. Logical foundatiorGajféOBJ. Theo-
retical Computer Scien¢@85:289-318, 2002.

DGS93. Razvan Diaconescu, Joseph Goguen, and Petros Stefaneas. Logical support for mod-
ularisation. In @rard Huet and Gordon Plotkin, editoksgical Environmentpages
83-130. Cambridge University Press, 1993.

Dia00. Razvan Diaconescu. Category-based constraint lojlethematical Structures in
Computer Scien¢d 0(3):373-407, 2000.

Dia02. Razvan Diaconescu. Grothendieck institutions\pplied Categorical Structures
10(4):383-402, 2002.

Dia08. Razvan Diaconescunstitution-independent Model Theorgirkhauser, 2008.

DJ90. Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In Jan van

Leeuwen, editorHandbook of Theoretical Computer Science. Volume B (Formal
Models and Semanticg)ages 244-320. North-Holland and MIT Press, 1990.

DLL62. Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-provingCommunications of the ACN6(7):394-397, 1962.
DMOO. Theodosis Dimitrakos and Tom Maibaum. On a generalised modularisation theorem.

Information Processing Letterg4(1-2):65-71, 2000.

DMR76. Martin Davis, Yuri Matiyasevich, and Julia Robinson. Hilbert’s tenth problem. Dio-
phantine equations: Positive aspects of a negative solutidviathematical Develop-
ments Arising from Hilbert ProblemBroceedings of Symposia in Pure Mathematics
volume 28, pages 323-378, Providence, Rhode Island, 1976. American Mathematical

Society.

DP90. B.A. Davey and H.A. Priestleintroduction to Lattices and OrdeiCambridge Uni-
versity Press, 1990.

Ehr78. Hans-Dieter Ehrich. Extensions and implementations of abstract data type specifica-

tions. In bzef Winkowski, editorProceedings of the 7th Symposium on Mathemati-
cal Foundations of Computer Scien@akopanel.ecture Notes in Computer Science
volume 64, pages 155-164. Springer, 1978.

Page: 537 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05



538 References

Ehr81. Hans-Dieter Ehrich. On realization and implementation. In Jozef Gruska and Michal
Chuytil, editors,Proceedings of the 10th Symposium on Mathematical Foundations of
Computer SciengeStrbsié Plesolecture Notes in Computer Scieneelume 118,
pages 271-280. Springer, 1981.

Ehr82. Hans-Dieter Ehrich. On the theory of specification, implementation and parametriza-
tion of abstract data typesJournal of the Association for Computing Machinery
29(1):206-227, 1982.

EKMP82. Hartmut Ehrig, Hansddg Kreowski, Bernd Mahr, and Peter Padawitz. Algebraic
implementation of abstract data typeBheoretical Computer Scienc20:209-263,
1982.

EKT*80. Hartmut Ehrig, Hansélg Kreowski, James Thatcher, Eric Wagner, and Jesse Wright.
Parameter passing in algebraic specification languages. Technical report, Technische
Universitt Berlin, 1980.

EKT*83. Hartmut Ehrig, Hansédg Kreowski, James Thatcher, Eric Wagner, and Jesse Wright.
Parameter passing in algebraic specification languagbsoretical Computer Sci-
ence 28(1-2):45-81, 1983.

EM85. Hartmut Ehrig and Bernd MahFundamentals of Algebraic SpecificationBIATCS
Monographs on Theoretical Computer Scienadume 6. Springer, 1985.
Eme90. E. Allen Emerson. Temporal and modal logic. In Jan van Leeuwen, étitotbook

of Theoretical Computer Science. Volume B (Formal Models and Semapscgs
995-1072. North-Holland and MIT Press, 1990.

End72. Herbert B. Enderto Mathematical Introduction to LogicAcademic Press, 1972.

EPO89. Hartmut Ehrig, Peter Pepper, and Fernando Orejas. On recent trends in algebraic
specification. In Giorgio Ausiello, Mariangiola Dezani-Ciancaglini, and Simona
Ronchi Della Rocca, editor®roceeding of the 16th International Colloquium on
Automata, Languages and Programmigresal ecture Notes in Computer Science
volume 372, pages 263-288. Springer, 1989.

EWT83. Hartmut Ehrig, Eric G. Wagner, and James W. Thatcher. Algebraic specifications
with generating constraints. Proceeding of the 10th International Colloquium on
Automata, Languages and ProgrammiBgrcelonal ecture Notes in Computer Sci-
ence volume 154, pages 188-202. Springer, 1983.

Far89. Jordi Fafs-Casals. Proving correctness of constructor implementations. In Antoni
Kreczmar and Grazyna Mirkowska, editoProceedings of the 14th Symposium on
Mathematical Foundations of Computer Scigneerabka-Kozubnikl.ecture Notes
in Computer Sciengerolume 379, pages 225-235. Springer, 1989.

Far90. Jordi Fafs-Casals. Proving correctness wrt specifications with hidden parts. In
Heélene Kirchner and Wolfgang Wechler, editdPsoceedings of the 2nd International
Conference on Algebraic and Logic Programmii@ncy,Lecture Notes in Computer
Sciencevolume 463, pages 25-39. Springer, 1990.

Far92. Jordi Fags-CasalsVerification in ASL and Related Specification LanguadesD
thesis, University of Edinburgh, Department of Computer Science, 1992.
FC96. Joé Luiz Fiadeiro and JésFelix Costa. Mirror, mirror in my hand: A duality be-

tween specifications and models of process behaviMathematical Structures in
Computer Scien¢é(4):353-373, 1996.

Fei89. Loe M. G. Feijs. The calculusz. In Martin Wirsing and Jan A. Bergstra, editors,
Proceedings of the Workshop on Algebraic Methods: Theory, Tools and Applications
Lecture Notes in Computer Sciengelume 394, pages 307—328. Springer, 1989.

FGT92. William M. Farmer, Joshua D. Guttman, and F. Javier Thayer. Little theories. In
Deepak Kapur, editoroceedings of the 11th International Conference on Auto-
mated DeductionLecture Notes in Artificial Intelligencesolume 607, pages 567—
581, Saratoga Springs, 1992. Springer.

Fia05. Joé Luiz Fiadeiro.Categories for Software Engineerin§pringer, 2005.

Fit08. John S. Fitzgerald. The typed logic of partial functions and the Vienna Develop-
ment Method. In Dines Bjgrner and Martin Henson, editbogics of Specification
Languagespages 453—-487. Springer, 2008.

Page: 538 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05



References 539

FJ90. J. Fitzgerald and C.B. Jones. Modularizing the formal description of a database sys-
tem. InProceedings of the 3rd International Symposium of VDM Europe: VDM and
Z, Formal Methods in Software Developmekiel, Lecture Notes in Computer Sci-
ence volume 428, pages 189-210. Springer, 1990.

FS88. Jos Luiz Fiadeiro and Ariicar Sernadas. Structuring theories on consequence. In
Donald Sannella and Andrzej Tarlecki, editdRgcent Trends in Data Type Specifica-
tion. Selected Papers from the 5th Workshop on Specification of Abstract Data Types
Gullane,Lecture Notes in Computer Sciena®lume 332, pages 44-72. Springer,

1988.
Gab9s. Dov M. Gabbayibring Logics Oxford Logic Guidesvolume 38. Oxford University
Press, 1998.
Gan83. Harald Ganzinger. Parameterized specifications: Parameter passing and implemen-

tation with respect to observabilitACM Transactions on Programming Languages
and System$(3):318—-354, 1983.

GB78. J.A. Goguen and R.M. Burstall. Some fundamental properties of algebraic theories:
a tool for semantics of computation. Technical Report 53, Department of Atrtificial
Intelligence, University of Edinburgh, 1978. Revised version appeared as [GB84b]
and [GB84c].

GB80. J.A. Goguen and R.M. Burstall.AC, a system for the structured elaboration of cor-
rect programs from structured specifications. Technical Report CSL-118, Computer
Science Laboratory, SRI International, 1980.

GB84a. J.A. Goguen and R.M. Burstall. Introducing institutions. In Edmund Clarke and Dex-
ter Kozen, editorsProceedings of the Workshop on Logics of PrograRiisburgh,
Lecture Notes in Computer Sciengelume 164, pages 221-256. Springer, 1984.

GB84b. J.A. Goguen and R.M. Burstall. Some fundamental algebraic tools for the semantics
of computation. Part 1: Comma categories, colimits, signatures and thedhes-
retical Computer Scien¢@1:175-209, 1984.

GB84c. J.A. Goguen and R.M. Burstall. Some fundamental algebraic tools for the semantics
of computation. Part 2: Signed and abstract theoflésoretical Computer Science
31:263-295, 1984.

GB86. Joseph A. Goguen and Rod M. Burstall. A study in the functions of programming
methodology: Specifications, institutions, charters and parchments. In David H. Pitt,
Samson Abramsky, Axel Poig@nand David E. Rydeheard, editoPspceedings of the
Tutorial and Workshop on Category Theory and Computer Programn@ngdford,
Lecture Notes in Computer Sciengelume 240, pages 313-333. Springer, 1986.

GB92. J.A. Goguen and R.M. Burstall. Institutions: Abstract model theory for specification
and programmingJournal of the Association for Computing Machine®®(1):95—
146, 1992.

GD9%4a. Joseph Goguen and#¥an Diaconescu. An Oxford survey of order sorted algebra.
Mathematical Structures in Computer Sciend(3):363—-392, 1994.

GD94b. Joseph A. Goguen an@®/an Diaconescu. Towards an algebraic semantics for the

object paradigm. In Hartmut Ehrig and Fernando Orejas, ediResent Trends in
Data Type Specification. Selected Papers from the 9th Workshop on Specification of
Abstract Data Types joint with the 4BompPAss Workshop Caldes de Malavella,
Lecture Notes in Computer Scienpgelume 785, pages 1-29. Springer, 1994.

GDLE84. Martin Gogolla, Klaus Drosten, Udo Lipeck, and Hans-Dieter Ehrich. Algebraic and
operational semantics of specifications allowing exceptions and erfdrwsoretical
Computer Scien¢e84(3):289-313, 1984.

GG89. Stephen J. Garland and John V. Guttag. An overview of LP, the Larch Proveirdn
International Conference on Rewriting Techniques and Applicati@tspel Hill,
Lecture Notes in Computer Sciena®lume 355, pages 137-151. Springer, 1989.
See alsthttp://nms.lcs.mit.edu/larch/LP/all.html !

GGM76. V. Giarratana, F. Gimona, and Ugo Montanari. Observability concepts in abstract data
type specifications. In Antoni Mazurkiewicz, edit®toceedings of the 5th Sympo-

Page: 539 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05


http://nms.lcs.mit.edu/larch/LP/all.html

540

GH78.
GH93.

Gin68.
Gir87.
Gir89.

GLROO.

GM82.

GM85.

GM92.

GMO00.

Gog73.

Gog74.

Gog7s.

Gog84.

Gog85.

Gog91la.

Gog91b.

Gog96.

Gog10.

Gol06.

Page: 540

References

sium on Mathematical Foundations of Computer Scie@mgsk, Lecture Notes in
Computer Science&olume 45, pages 567-578. Springer, 1976.

John Guttag and James Horning. The algebraic specification of abstract data types.
Acta Informatica 10:27-52, 1978.

John V. Guttag and James J. Hornibgrch: Languages and Tools for Formal Spec-
ification. Springer, 1993.

Abraham GinzburgAlgebraic Theory of AutomataAcademic Press, 1968.

Jean-Yves Girard. Linear logi€heoretical Computer Sciencg0:1-102, 1987.
Jean-Yves Girard?roofs and TypeCambridge Tracts in Theoretical Computer Sci-
ence volume 7. Cambridge University Press, 1989. Translated and with appendices
by Paul Taylor and Yves Lafont.

Joseph Goguen, Kai Lin, and Grigore Rosu. Circular coinductive rewritingroin
ceedings of the 15th International Conference on Automated Software Engineering
Grenoble. IEEE Computer Society, 2000.

Joseph A. Goguen and &ddleseguer. Universal realization, persistent interconnec-
tion and implementation of abstract modules. In Mogens Nielsen and Erik Meineche
Schmidt, editorsProceeding of the 9th International Colloquium on Automata, Lan-
guages and Programmindarhus,Lecture Notes in Computer Sciengelume 140,
pages 265-281. Springer, 1982.

Joseph Goguen and &ddeseguer. Completeness of many sorted equational deduc-
tion. Houston Journal of Mathematic$1(3):307-334, 1985.

Joseph Goguen and &okleseguer. Order-sorted algebra I: Equational deduction
for multiple inheritance, overloading, exceptions and partial operatidhsoretical
Computer Sciencd 05(2):217-273, 1992.

Joseph A. Goguen and Grant Malcolm. A hidden agerttaeoretical Computer
Science245(1):55-101, 2000.

Joseph Goguen. Categorical foundations for general systems theory. In F. Pichler and
R. Trappl, editorsAdvances in Cybernetics and Systems Resgamidon, pages
121-130. Transcripta Books, 1973.

J.A. Goguen. Semantics of computation. In Ernest G. Manes, &ibogedings
of the 1st International Symposium on Category Theory Applied to Computation and
Control, San Franciscd,ecture Notes in Computer Scieneelume 25, pages 151—
163. Springer, 1974.

Joseph Goguen. Abstract errors for abstract data types. In Erich Neuhold, editor,
Formal Description of Programming Concepggages 491-526. North-Holland, 1978.

Martin Gogolla. Partially ordered sorts in algebraic specification®rdeeedings
of the 9th Colloquium on Trees in Algebra and Programmipages 139-153. Cam-
bridge University Press, 1984.

Martin Gogolla. A final algebra semantics for errors and exceptions. In Hans-
Jorg Kreowski, editorRecent Trends in Data Type Specification. Selected Papers
from the 3rd Workshop on Theory and Applications of Abstract Data Tgresen,
Informatik-Fachberichtevolume 116, pages 89-103. Springer, 1985.

Joseph Goguen. Types as theories. In G.M. Reed, A.W. Roscoe, and R.F. Wachter,
editors,Topology and Category Theory in Computer Scie@dord, pages 357-390.
Oxford University Press, 1991.

Joseph A. Goguen. A categorical manifesfathematical Structures in Computer
Sciencel(1):49-67, 1991.

Joseph A. Goguen. Parameterized programming and software architecture. In Murali
Sitaraman, editorProceedings of the Fourth International Conference on Software
Reusepages 2—-11. IEEE Computer Society Press, 1996.

Joseph Goguen. Information integration in institutions. In Larry Moss, etiitior-
ing Logically: a Volume in Memory of Jon BarwiseSLlI, Stanford University, 2010.

To appear.

Robert GoldblattTopoi: The Categorial Analysis of Logidover, revised edition,

2006.

job: root macro: svmono.cls date/time: 29-Sep-2010/18:05



References 541

Gor95. Andrew D. Gordon. Bisimilarity as a theory of functional programmingrbteed-
ings of the 11th Annual Conference on Mathematical Foundations of Programming
SemanticsElectronic Notes in Theoretical Computer Scient@32-252, 1995.

GRO2. Joseph A. Goguen and Grigore Rosu. Institution morphishesmal Aspects of
Computing 13(3-5):274-307, 2002.
GRO4. Joseph A. Goguen and Grigore Rosu. Composing hidden information modules over

inclusive institutions. InFrom Object-Orientation to Formal Methods. Essays in
Memory of Ole-Johan DahLecture Notes in Computer Sciengelume 2635, pages
96-123. Springer, 2004.

Grar9. George A. Gatzer.Universal Algebra Springer, second edition, 1979.

GS90. Carl Gunter and Dana Scott. Semantic domains. In Jan van Leeuwen Haifithr,
book of Theoretical Computer Science. Volume B (Formal Models and Semantics)
pages 633-674. North-Holland and MIT Press, 1990.

GTW76. Joseph Goguen, James Thatcher, and Eric Wagner. An initial algebra approach to
the specification, correctness and implementation of abstract data types. Technical
Report RC 6487, IBM Watson Research Center, Yorktown Heights NY, 1976. Also
in: Current Trends in Programming Methodology. Volume IV (Data Structuried)
R.T. Yeh), Prentice-Hall, 80-149, 1978.

GTWW?73. Joseph Goguen, James Thatcher, Eric Wagner, and Jesse Wright. A junction between
computer science and category theory, I: Basic concepts and examples (part 1). Tech-
nical Report RC 4526, IBM Watson Research Center, Yorktown Heights NY, 1973.

GTWW?75. Joseph Goguen, James Thatcher, Eric Wagner, and Jesse Wright. An introduction to
categories, algebraic theories and algebras. Technical Report RC 5369, IBM Watson
Research Center, Yorktown Heights NY, 1975.

GTWW?77. Joseph Goguen, James Thatcher, Eric Wagner, and Jesse Wright. Initial algebra se-
mantics and continuous algebrasurnal of the Association for Computing Machin-
ery, 24(1):68-95, 1977.

Gut75. John GuttagThe Specification and Application to Programming of Abstract Data
Types PhD thesis, University of Toronto, Department of Computer Science, 1975.

Hag87. Tatsuya HaginoA Categorical Programming Languagé>hD thesis, University of
Edinburgh, Department of Computer Science, 1987.

Haho1. Reiner Ehnle. Tableaux and related methods. In John Alan Robinson and Andrei
Voronkov, editorsHandbook of Automated Reasonipgges 100-178. Elsevier and
MIT Press, 2001.

Hal70. Paul R. HalmosNaive Set TheoryUndergraduate Texts in Mathematics. Springer,
1970.

Hat82. William HatcherThe Logical Foundations of Mathematidsoundations and Philos-
ophy of Science and Technology. Pergamon Press, 1982.

Hay94. Susumu Hayashi. Singleton, union and intersection types for program extraction.
Information and Computatiqri09(1/2):174-210, 1994.

Hee86. Jan Heering. Partial evaluation amdompleteness of algebraic specificatiombe-
oretical Computer Sciencd3:149-167, 1986.

Hen9l. Rolf Hennicker. Context induction: A proof principle for behavioural abstractions

and algebraic implementationSormal Aspects of Computing(4):326-345, 1991.

HHP93. Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
Journal of the Association for Computing Machine49(1):143-184, January 1993.

HHWT97. Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toiy THCH: A model
checker for hybrid systemsSoftware Tools for Technology Transféi(1-2):110-
122, 1997.

Hig63. Phillip J. Higgins. Algebras with a scheme of operatitathematische Nachrichten
27:115-132, 1963.

HLSTO00. Furio Honsell, John Longley, Donald Sannella, and Andrzej Tarlecki. Constructive
data refinement in typed lambda calculus. Proceedings of the 3rd International
Conference on Foundations of Software Science and Computation Structures. Euro-
pean Joint Conferences on Theory and Practice of Software (ETAPS, B&j,
Lecture Notes in Computer Sciengelume 1784, pages 161-176. Springer, 2000.

Page: 541 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05



542

Hoa72.

HS73.

HS96.

HS02.

HST94.

Hus92.

HWB97.

Jac99.

JL87.

JNW96.

JOE9S.

Joh02.

Jon80.
Jon89.

JR97.

KB70.

Kir99.

KKM88.

Klo92.

KM87.

KR71.

Kre87.

Page: 542

References

C. A. R. Hoare. Proof of correctness of data representatiéiota Informatica
1:271-281, 1972.

Horst Herrlich and George E. Streckeategory Theory: An IntroductiorAllyn and
Bacon, 1973.

Martin Hofmann and Donald Sannella. On behavioural abstraction and behavioural
satisfaction in higher-order logi@-heoretical Computer Scienct67:3-45, 1996.

Furio Honsell and Donald Sannella. Prelogical relatiomfermation and Computa-
tion, 178:23-43, 2002.

Robert Harper, Donald Sannella, and Andrzej Tarlecki. Structured presentations and
logic representationgAnnals of Pure and Applied Logi67:113-160, 1994,

Heinrich Hussmann. Nondeterministic algebraic specifications and nonconfluent term
rewriting. Journal of Logic Programmingl2(1-4):237-255, 1992.

Rolf Hennicker, Martin Wirsing, and Michel Bidoit. Proof systems for struc-
tured specifications with observability operator3heoretical Computer Science
173(2):393-443, 1997.

Bart Jacob<Categorical Logic and Type ThearyNumber 141 in Studies in Logic
and the Foundations of Mathematics. Elsevier Science, 1999.

Joxan Jaffar and Jean-Louis Lassez. Constraint logic programmipgadeedings of
the 14th ACM Symposium on Principles of Programming Langyadesich, pages
111-119, 1987.

Andeé Joyal, Mogens Nielsen, and Glynn Winskel. Bisimulation from open maps.
Information and Computatiqri27(2):164—-185, 1996.

Rosa M. Jigmez, Fernando Orejas, and Hartmut Ehrig. Compositionality and com-
patibility of parameterization and parameter passing in specification langats.
ematical Structures in Computer Scien6€2):283-314, 1995.

Peter T. Johnston8ketches of an Elephant: A Topos Theory Compend@xfiord
Logic Guides Series. Clarendon Press, 2002.

Cliff B. JonesSoftware Development: A Rigorous ApproaEtmentice-Hall, 1980.

Hans B.M. Jonkers. An introduction t@KD-K. In Martin Wirsing and Jan A.
Bergstra, editorRroceedings of the Workshop on Algebraic Methods: Theory, Tools
and ApplicationsLecture Notes in Computer Sciene®lume 394, pages 139-205.
Springer, 1989.

Bart Jacobs and Jan Rutten. A tutorial on (co)algebras and (co)induBidetin of
the European Association for Theoretical Computer Scigd2e222—-259, 1997.

Donald E. Knuth and Peter B. Bendix. Simple word problems in universal algebras.
In J. Leech, editorComputational Problems in Abstract Algebreages 263-297.
Pergamon Press, 1970.

Hélene Kirchner. Term rewriting. In Egidio Astesiano, HatsglKreowski, and
Bernd Krieg-Biickner, editorsAlgebraic Foundations of Systems Specificatabap-

ter 9, pages 273-320. Springer, 1999.

Claude Kirchner, ilene Kirchner, and JésMeseguer. Operational semantics of
OBJ-3. In Timo Lepisht and Arto Salomaa, editorBroceedings of the 15th Inter-
national Colloquium on Automata, Languages and Programinliagnperel ecture
Notes in Computer Scienoceolume 317, pages 287-301. Springer, 1988.

Jan Klop. Term rewriting systems. In Samson Abramsky, Dov Gabbay, and Tom
Maibaum, editorsiHandbook of Logic in Computer Science. Volume 2 (Background:
Computational Structurespages 1-116. Oxford University Press, 1992.

Deepak Kapur and David R. Musser. Proof by consisterfayificial Intelligence
31(2):125-157, 1987.

Heinz Kaphengst and Horst Reichel. Algebraische Algorithmentheorie. Technical
Report WIB 1, VEB Robotron, Zentruniif Forschung und Technik, Dresden, 1971.
Hans-drg Kreowski. Partial algebras flow from algebraic specifications. In
T. Ottmann, editorProceedings of the 14th International Colloquium on Automata,
Languages and Programmingarlsruhe,Lecture Notes in Computer Scienc®l-
ume 267, pages 521-530. Springer, 1987.

job: root macro: svmono.cls date/time: 29-Sep-2010/18:05



References

KST97.

KTB91.

Las98.

Law63.
LB88.
LEWO96.
Lin03.
Lip83.

LLDOG.

LS86.

LS00.

Luo93.

Mac71.
Mac84.

MAHO06.

Mai72.

Maj77.

Mal71.

Man76.
May85.

Mei92.

Page: 543

543

Stefan Kahrs, Donald Sannella, and Andrzej Tarlecki. The definition of Extended
ML: A gentle introduction.Theoretical Computer Scienck73:445-484, 1997.

Beata Konikowska, Andrzej Tarlecki, and Andrzej Blikle. A three-valued logic for
software specification and validationFundamenta Informaticael4(4):411-453,
1991.

Stawomir Lasota. Open maps as a bridge between algebraic observational equivalence
and bisimilarity. In Francesco Parisi-Presicce, ediRecent Trends in Data Type
Specification. Selected Papers from the 12th International Workshop on Specification
of Abstract Data Typedarquinia,Lecture Notes in Computer Sciengelume 1376,
pages 285-299. Springer, 1998.

F. William Lawvere. Functorial Semantics of Algebraic TheoriesPhD thesis,
Columbia University, 1963.

Butler Lampson and Rod Burstall. Pebble, a kernel language for modules and abstract
data typesinformation and Computatiqry6(2/3):278-346, 1988.

Jacques Loeckx, Hans-Dieter Ehrich, and Markus W&pecification of Abstract
Data Types John Wiley and Sons, 1996.

Kai Lin. Machine Support for Behavioral Algebraic Specification and Verification
PhD thesis, University of California, San Diego, 2003.

Udo Lipeck. Ein algebraischer Kaliél fur einen strukturierten Entwurf von Daten-
abstraktionen PhD thesis, Universit Dortmund, 1983.

Dorel Lucanu, Yuan-Fang Li, and Jin Song Dong. Semantic Web languages—towards
an institutional perspective. In Kokichi Futatsugi, Jean-Pierre Jouannaud, and Jos
Meseguer, editorsdlgebra, Meaning and Computation: Essays Dedicated to Joseph
A. Goguen on the Occasion of His 65th Birthdagcture Notes in Computer Science
volume 4060, pages 99-123. Springer, 2006.

Joachim Lambek and Philip J. Sctritroduction to Higher-Order Categorical Logic
Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1986.
Hugo Lourenco and Ailcar Sernadas. An institution of hybrid systems. In Didier
Bert, Christine Choppy, and Peter D. Mosses, editBesent Trends in Algebraic
Development Techniques. Selected Papers from the 14th International Workshop on
Algebraic Development Techniquéshateau de Bonad,ecture Notes in Computer
Sciencevolume 1827, pages 219-236. Springer, 2000.

Zhaohui Luo. Program specification and data refinement in type tivattyematical
Structures in Computer Scien&(3):333-363, 1993.

Saunders Mac Lan€ategories for the Working Mathematicia8pringer, 1971.

David B. MacQueen. Modules for Standard ML.Pimceedings of the 1984 ACM
Conference on LISP and Functional Programmipgges 198-207, 1984.

Till Mossakowski, Serge Autexier, and Dieter Hutter. Development graphs — proof
management for structured specificatiodsurnal of Logic and Algebraic Program-

ming 67(1-2):114-145, 2006.

Tom Maibaum. The characterization of the derivation trees of context free sets of
terms as regular sets. Rroceedings of the 13th Annual IEEE Symposium on Switch-
ing and Automata Theorpages 224-230, 1972.

Mila E. Majster. Limits of the “algebraic” specification of abstract data typ&M
SIGPLAN Noticesl2(10):37-42, 1977.

Anatoly Malcev. Quasiprimitive classes of abstract algebras in the metamathematics
of algebraic systems. IMathematics of Algebraic Systems: Collected Papers, 1936-
67, number 66 in Studies in Logic and Mathematics, pages 27-31. North-Holland,
1971.

Ernest G. Maneg\lgebraic TheoriesSpringer, 1976.

Brian Mayoh. Galleries and institutions. Technical Report DAIMI PB-191, Aarhus
University, 1985.

Karl Meinke. Universal algebra in higher type3heoretical Computer Science
100:385-417, 1992.

job: root macro: svmono.cls date/time: 29-Sep-2010/18:05



544

Mes89.

Mes92.

Mes98.

Mes09.

MG85.

MGDTO7.

MHSTO08.

Mid93.

Mil71.

Mil77.
Mil89.
Mit96.
MM84.

MMLO7.

Mog91.

Moo056.

Mos89.

Mos93.

Mos96a.

Page: 544

References

Jos Meseguer. General logics. In H.-D. Ebbinghaus, editogic Colloquium '87
Granada, pages 275-329. North-Holland, 1989.

Jos Meseguer. Conditional rewriting logic as a unified model of concurrertugo-
retical Computer Scienc®6(1):73-155, 1992.

Jos Meseguer. Membership algebra as a logical framework for equational specifica-
tion. In Francesco Parisi-Presicce, edif®ecent Trends in Data Type Specification.
Selected Papers from the 12th International Workshop on Specification of Abstract
Data TypesTarquinia,Lecture Notes in Computer Scienpgelume 1376, pages 18—

61. Springer, 1998.

Jos Meseguer. Order-sorted parameterization and induction. In Jens Palsberg, editor,
Semantics and Algebraic Specification: Essays Dedicated to Peter D. Mosses on the
Occasion of His 60th Birthday_ecture Notes in Computer Sciena®lume 5700,
pages 43-80. Springer, 2009.

Jo& Meseguer and Joseph Goguen. Initiality, induction and computability. In Mau-
rice Nivat and John C. Reynolds, editogebraic Methods in Semantjcpages
459-541. Cambridge, 1985.

Till Mossakowski, Joseph Goguera®an Diaconescu, and Andrzej Tarlecki. What

is a logic? In Jean-Yves Beziau, editbggica Universalis: Towards a General The-

ory of Logic pages 111-135. Birktuser, 2007.

Till Mossakowski, Anne Haxthausen, Donald Sannella, and Andrzej Tarlecki. CASL
— the common algebraic specification language. In Dines Bjgrner and Martin Hen-
son, editorslogics of Specification Languaggmges 241-298. Springer, 2008.

Aart Middeldorp. Modular properties of conditional term rewriting systeimgor-
mation and Computatiqri04(1):110-158, 1993.

Robin Milner. An algebraic definition of simulation between programs. Pto-
ceedings of the 2nd International Joint Conference on Artificial Intelligepages
481-489, 1971.

Robin Milner. Fully abstract models of typedcalculi. Theoretical Computer Sci-
ence 4(1):1-22, 1977.

Robin Milner. Communication and Concurrencirentice-Hall, 1989.

John C. Mitchell.Foundations of Programming LanguagedIT Press, 1996.

Bernd Mahr and Johann Makowsky. Characterizing specification languages which
admit initial semanticsTheoretical Computer Scienc#l:49-60, 1984.

Till Mossakowski, Christian Maeder, and Klaugittich. The heterogeneous tool set,
HETSs. In Orna Grumberg and Michael Huth, editoPspceedings of the 13th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems. European Joint Conferences on Theory and Practice of Software (ETAPS 2007)
Braga,Lecture Notes in Computer Scienelume 4424, pages 519-522. Springer,
2007. See alsbttp://www.informatik.uni-bremen.de/cofi/hets/

Eugenio Moggi. Notions of computation and mondafrmation and Computatlon
93:55-92, 1991.

Edward F. Moore. Gedanken-experiments on sequential machines. In Claude E.
Shannon and John McCarthy, editafginals of Mathematics Studies 34, Automata
Studiespages 129-153. Princeton University Press, 1956.

Peter D. Mosses. Unified algebras and module?rdoeedings of the 16th ACM
Symposium on Principles of Programming Languadgesstin, pages 329-343, 1989.
Peter Mosses. The use of sorts in algebraic specifications. In Michel Bidoit and Chris-
tine Choppy, editorsRecent Trends in Data Type Specification. Selected Papers from
the 8th Workshop on Specification of Abstract Data Types joint with theC8nd-

PASs Workshop Dourdan,Lecture Notes in Computer Sciena®lume 655, pages
66-91. Springer, 1993.

Till Mossakowski. Different types of arrow between logical frameworks. In Fried-
helm Meyer auf der Heide and Burkhard Monien, editétsceedings of the 23rd
International Colloguium Automata, Languages and Programmiagerbornl.ec-

ture Notes in Computer Sciena®lume 1099, pages 158-169. Springer, 1996.

job: root macro: svmono.cls date/time: 29-Sep-2010/18:05


http://www.informatik.uni-bremen.de/cofi/hets/

References 545

Mos96b.  Till Mossakowski. Representations, Hierarchies and Graphs of InstitutiofhD
thesis, Universit Bremen, 1996.

Mos00. Till Mossakowski. Specification in an arbitrary institution with symbols. In Didier
Bert, Christine Choppy, and Peter D. Mosses, editBesent Trends in Algebraic
Development Techniques. Selected Papers from the 14th International Workshop on
Algebraic Development Techniqué3hateau de Bonad,ecture Notes in Computer
Sciencevolume 1827, pages 252-270. Springer, 2000.

Mos02. Till Mossakowski. Comorphism-based Grothendieck logics. In Krzysztof Diks and
Woijciech Rytter, editors?roceedings of the 27th Symposium on Mathematical Foun-
dations of Computer Scienc@/arsaw,Lecture Notes in Computer Sciene®lume
2420, pages 593-604. Springer, 2002.

Mos03. Till Mossakowski. Foundations of heterogeneous specification. In Martin Wirsing,
Dirk Pattinson, and Rolf Hennicker, editoRecent Trends in Algebraic Development
Techniques.. Selected Papers from the 16th International Workshop on Algebraic De-
velopment TechniqueBrauenchiemseg&gecture Notes in Computer Sciengelume
2755, pages 359-375. Springer, 2003.

Mos04. Peter D. Mosses, editora€L Reference ManuaNumber 2960 in Lecture Notes in
Computer Science. Springer, 2004.

Mos05. Till Mossakowski. Heterogeneous Specification and the Heterogeneous Tool Set.
Habilitation thesis, Universitt Bremen, 2005.

MS85. David MacQueen and Donald Sannella. Completeness of proof systems for equa-
tional specifications.IEEE Transactions on Software Engineerif®E-11(5):454—

461, 1985.

MSRRO06. Till Mossakowski, Lutz Scbder, Markus Roggenbach, and Horst Reichel.
Algebraic-coalgebraic specification iroCAsL. Journal of Logic and Algebraic Pro-
gramming 67(1-2):146-197, 2006.

MSS90. Vincenzo Manca, Antonino Salibra, and Giuseppe Scollo. Equational type logic.
Theoretical Computer Sciencé7(1-2):131-159, 1990.

MSTO04. Till Mossakowski, Donald Sannella, and Andrzej Tarlecki. A simple refinement lan-
guage for CASL. In JdsFiadeiro, editorRecent Trends in Algebraic Development
Techniques.. Selected Papers from the 17th International Workshop on Algebraic De-
velopment TechniqueBarcelonalecture Notes in Computer Sciengelume 3423,
pages 162-185. Springer, 2004.

MT92. Karl Meinke and John Tucker. Universal algebra. In Samson Abramsky, Dov Gab-
bay, and Tom Maibaum, editorklandbook of Logic in Computer Science. Volume
1 (Background: Mathematical Structureglages 189-409. Oxford University Press,

1992.

MT93. V. Wiktor Marek and Mirostaw Truszchgki. Nonmonotonic Logics: Context-
Dependent Reasoninpringer, 1993.

MT94. David B. MacQueen and Mads Tofte. A semantics for higher-order functors. In

Donald Sannella, editoRroceedings of the 5th European Symposium on Program-
ming Edinburgh Lecture Notes in Computer Sciene®lume 788, pages 409-423.
Springer, 1994.

MTO09. Till Mossakowski and Andrzej Tarlecki. Heterogeneous logical environments for
distributed specifications. In Andrea Corradini and Ugo Montanari, ediResent
Trends in Algebraic Development Techniques.. Selected Papers from the 19th Interna-
tional Workshop on Algebraic Development Technig&ésa,Lecture Notes in Com-
puter Sciencevolume 5486, pages 266—289. Springer, 2009.

MTDO09.  Till Mossakowski, Andrzej Tarlecki, and&®van Diaconescu. What is a logic trans-
lation? Logica Universalis3(1):95-124, 2009.

MTHM97. Robin Milner, Mads Tofte, Robert Harper, and David MacQue€he Definition of
Standard ML (RevisedMIT Press, 1997.

MTP97. Till Mossakowski, Andrzej Tarlecki, and Wiestaw Pawtowski. Combining and repre-
senting logical systems. In Eugenio Moggi and Giuseppe Rosolini, edtooseed-
ings of the 7th International Conference on Category Theory and Computer Science

Page: 545 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05



546

MTP98.

MTW88.

Mus80.

MW098.

Nel91.
Nip86.

NO88.

Nou81.

Oka98.

ONS93.

Ore83.

Pad85.

Pad99.

Pau87.
Pau96.

Paw96.

Page: 546

References

Santa Margherita Ligurd,ecture Notes in Computer Sciene®lume 1290, pages
177-196. Springer, 1997.

Till Mossakowski, Andrzej Tarlecki, and Wiestaw Pawtowski. Combining and rep-
resenting logical systems using model-theoretic parchments. In Francesco Parisi-
Presicce, editoiRecent Trends in Data Type Specification. Selected Papers from the
12th International Workshop on Specification of Abstract Data Typasjuinia,Lec-
ture Notes in Computer Scienamlume 1376, pages 349-364. Springer, 1998.
Bernhard Mller, Andrzej Tarlecki, and Martin Wirsing. Algebraic specifications of
reachable higher-order algebras. In Donald Sannella and Andrzej Tarlecki, editors,
Recent Trends in Data Type Specification. Selected Papers from the 5th Workshop on
Specification of Abstract Data TypeSullane,Lecture Notes in Computer Science
volume 332, pages 154-169. Springer, 1988.

David Musser. On proving inductive properties of abstract data typEsodeedings
of the 7th ACM Symposium on Principles of Programming Langydges Vegas,
pages 154-162, 1980.

Alfio Martini and Uwe Wolter. A single perspective on arrows between institutions.
In Armando Haeberer, editdProceedings of the 7th International Conference on Al-
gebraic Methodology and Software Technologhanaus]ecture Notes in Computer
Sciencevolume 1548, pages 486-501. Springer, 1998.

Greg Nelson, editoBystems Programming in Modula-Brentice-Hall, 1991.

Tobias Nipkow. Non-deterministic data types: Models and implementatidota
Informatica 22(6):629-661, 1986.

Pilar Nivela and Fernando Orejas. Initial behaviour semantics for algebraic speci-
fications. In Donald Sannella and Andrzej Tarlecki, edit®scent Trends in Data
Type Specification. Selected Papers from the 5th Workshop on Specification of Ab-
stract Data TypesGullane,Lecture Notes in Computer Sciene®lume 332, pages
184-207. Springer, 1988.

Farshid Nourani. On induction for programming logic: Syntax, semantics, and induc-
tive closure.Bulletin of the European Association for Theoretical Computer Science
13:51-64, 1981.

Chris Okasaki.Purely Functional Data Structures Cambridge University Press,
1998.

Fernando Orejas, Marisa Navarro, and AfmacBez. Implementation and behavioural
equivalence: A survey. In Michel Bidoit and Christine Choppy, editRexent Trends
in Data Type Specification. Selected Papers from the 8th Workshop on Specification of
Abstract Data Types joint with the 3@ompPAssWorkshopDourdan Lecture Notes
in Computer Sciencerolume 655, pages 93-125. Springer, 1993.

Fernando Orejas. Characterizing composability of abstract implementations. In
Marek Karpinski, editorProceedings of the 1983 International Conference on Foun-
dations of Computation Thearorgholm,Lecture Notes in Computer Scieneel-
ume 158, pages 335—-346. Springer, 1983.

Peter Padawitz. Parameter preserving data type specifications. In Hartmut Ehrig,
Christiane Floyd, Maurice Nivat, and James Thatcher, ediiA8®,SOFT'85: Pro-
ceedings of the International Joint Conference on Theory and Practice of Software
Development. Volume 2: Colloquium on Software Engineegeglin, Lecture Notes
in Computer Sciencerolume 186, pages 323-341. Springer, 1985.

Peter Padawitz. Proof in flat specifications. In Egidio Astesiano, iBegn&i&owski,
and Bernd Krieg-Biickner, editorsAlgebraic Foundations of Systems Specification
chapter 10, pages 321-384. Springer, 1999.

Laurence Paulsobogic and Computation: Interactive Proof with Cambridge LCF
Cambridge University Press, 1987.

Laurence PaulsoML for the Working ProgrammerCambridge University Press,
second edition, 1996.

Wiestaw Pawtowski. Context institutions. In Magne Haveraaen, Olaf Owe, and Ole-
Johan Dabhl, editorgRecent Trends in Data Type Specification. Selected Papers from

job: root macro: svmono.cls date/time: 29-Sep-2010/18:05



References 547

the 11th Workshop on Specification of Abstract Data Tyfeso, Lecture Notes in
Computer Science&olume 1130, pages 436—457. Springer, 1996.

Pet10. Marius PetriaGeneric Refinements for Behavioural Specificatid?tsD thesis, Uni-
versity of Edinburgh, School of Informatics, 2010.

Pey03. Simon Peyton Jones, editdaskell 98 Language and Libraries: The Revised Report
Cambridge University Press, 2003.

Pho92. Wesley Phoa. An introduction to fibrations, topos theory, the effective topos and

modest sets. Technical Report ECS-LFCS-92-208, LFCS, Department of Computer
Science, University of Edinburgh, 1992.

Pie9l. Benjamin C. PierceBasic Category Theory for Computer ScientistdIT Press,
1991.

Plo77. Gordon D. Plotkin. LCF considered as a programming languBgeoretical Com-
puter Sciences(3):223-255, 1977.

P0i86. Axel Poigl. On specifications, theories, and models with higher tylpdsrmation
and Contro| 68(1-3):1-46, 1986.

Po0i88. Axel Poiglk. Foundations are rich institutions, but institutions are poor foundations.

In Hartmut Ehrig, Horst Herrlich, Hans3dy Kreowski, and Gerhard Preuf3, editors,
Proceedings of the International Workshop on Categorical Methods in Computer Sci-
ence with Aspects from Topoloderlin, Lecture Notes in Computer Sciengelume

393, pages 82-101. Springer, 1988.

P0i90. Axel Poige. Parametrization for order-sorted algebraic specificatidournal of
Computer and System Sciencé3:229-268, 1990.
P0i92. Axel Poige. Basic category theory. In Samson Abramsky, Dov Gabbay, and Tom

Maibaum, editorstHandbook of Logic in Computer Science. Volume 1 (Background:
Mathematical Structurespages 413-640. Oxford University Press, 1992.

Pos47. Emil Post. Recursive unsolvability of a problem of Thieeirnal of Symbolic Logic
12:1-11, 1947.
PS83. Helmuth Partsch and Ralf Steiidpgen. Program transformation system&CM

Computing Survey45(3):199-236, 1983.
PSRO09. Andrei Popescu, Traian Florin S&tbg, and Grigore Rosu. A semantic approach to
interpolation.Theoretical Computer Scienc$10(12-13):1109-1128, 2009.

QG93. Xiaolei Qian and Allen Goldberg. Referential opacity in nondeterministic data re-
finement. ACM Letters on Programming Languages and Syst&@tis-4):233-241,
1993.

Qia93. Zhenyu Qian. An algebraic semantics of higher-order types with subtyjets.

Informatica 30(6):569—-607, 1993.

RAC99. Gianna Reggio, Egidio Astesiano, and Christine ChoppysLELTL: a CASL ex-
tension for dynamic systems — summary. Technical Report DISI-TR-99-34, DISI,
Universit di Genova, 1999.

RB88. David Rydeheard and Rod Burstallomputational Category Thearyrentice Hall
International Series in Computer Science. Prentice Hall, 1988.
Rei80. Horst Reichel. Initially-restricting algebraic theories. In Piotr Déskii editor,

Proceedings of the 9th Symposium on Mathematical Foundations of Computer Sci-
ence Lecture Notes in Computer Sciengelume 88, pages 504-514, Rydzyna, 1980.
Springer.

Rei81. Horst Reichel. Behavioural equivalence — a unifying concept for initial and final
specification methods. IRroceedings of the 3rd Hungarian Computer Science Con-
ference pages 27-39, 1981.

Rei85. Horst Reichel. Behavioural validity of equations in abstract data typdoteed-
ings of the Vienna Conference on Contributions to General Alggiages 301-324.
Teubner-Verlag, 1985.

Rei87. Horst Reichellnitial Computability, Algebraic Specifications, and Partial Algehras
Oxford University Press, 1987.

Page: 547 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05



548

RG98.

RGOO.

Rod91.
Rog06.
Ros94.
Ros00.

RRSO00.

RS63.

Rus98.

Rut00.

San82.

SB83.

Sch8é.

Sch87.

Sch9o.

Sch92.

Sco76.
Sco04.

SCS94.

Sel72.

Page: 548

References

Grigore Rosu and Joseph A. Goguen. Hidden congruent deduction. In Ricardo Ca-
ferra and Gernot Salzer, editoRroceedings of the 1998 Workshop on First-Order
Theorem Proving Vienna, Lecture Notes in Artificial Intelligencevolume 1761,
pages 251-266. Springer, 1998.

Grigore Rosu and Joseph A. Goguen. On equational Craig interpolddiomal of
Universal Computer Scienc(1):194-200, 2000.

Pieter Hendrik Rodenburg. A simple algebraic proof of the equational interpolation
theorem.Algebra Universalis28:48-51, 1991.

Markus Roggenbach.s€CAsL — a new integration of process algebra and alge-
braic specificationTheoretical Computer Sciencgs4(1):42-71, 2006.

Grigore Rosu. The institution of order-sorted equational Id&idetin of the Euro-
pean Association for Theoretical Computer Sciem@250-255, 1994.

Grigore RosuHidden Logic PhD thesis, University of California at San Diego,
2000.

Sergei Romanenko, Claudio Russo, and Peter Sestoft. Moscow ML owner’s manual.
Technical report, Royal Veterinary and Agricultural University, Copenhagen, 2000.
Available fromhttp://www.itu.dk/people/sestoft/mosmli/manual.
pdf |

Helena Rasiowa and Roman Sikorglie Mathematics of Metamathematidéum-
ber 41 in Monografie Matematyczne. Polish Scientific Publishers, 1963.

Claudio RussoTypes for Modules PhD thesis, University of Edinburgh, Depart-
ment of Computer Science, 1998. Also Electronic Notes in Theoretical Computer
Science60, 2003.

Jan J.M.M. Rutten. Universal coalgebra: A theory of systdimsoretical Computer
Science249(1):3-80, 2000.

Donald SannellaSemantics, Implementation and Pragmatics of Clear, a Program
Specification LanguagePhD thesis, University of Edinburgh, Department of Com-
puter Science, 1982.

Donald Sannella and Rod Burstall. Structured theories in LCF. In Giorgio Ausiello
and Marco Protasi, editor®roceedings of the 8th Colloquium on Trees in Algebra
and ProgrammingL’Aquila, Lecture Notes in Computer Sciengelume 159, pages
377-391. Springer, 1983.

David SchmidDenotational Semantics: A Methodology for Language Development
Allyn and Bacon, 1986.

Oliver SchoettData Abstraction and the Correctness of Modular Prograr®hD
thesis, University of Edinburgh, Department of Computer Science, 1987.

Oliver Schoett. Behavioural correctness of data represent&@mance of Computer
Programming 14(1):43-57, 1990.

Oliver Schoett. Two impossibility theorems on behaviour specification of abstract
data typesActa Informatica 29(6/7):595-621, 1992.

Dana Scott. Data types as lattic®®\M Journal of Computing(3):522-587, 1976.

Giuseppe Scollo. An institution isomorphism for planar graph colouring. In Rudolf
Berghammer, Bernhard ®er, and Georg Struth, editorRelational and Kleene-
Algebraic Methods in Computer Science. Selected Papers from the 7th International
Seminar on Relational Methods in Computer Science and 2nd International Workshop
on Applications of Kleene AlgebrBad Malentel ecture Notes in Computer Science
volume 3051, pages 252-264. Springer, 2004.

Anficar Sernadas, Jésrelix Costa, and Cristina Sernadas. An institution of ob-
ject behaviour. In Hartmut Ehrig and Fernando Orejas, edif®esent Trends in
Data Type Specification. Selected Papers from the 9th Workshop on Specification of
Abstract Data Types joint with the 4@ompPAss Workshop Caldes de Malavella,
Lecture Notes in Computer Sciengelume 785, pages 337—350. Springer, 1994.

Alan Selman. Completeness of calculi for axiomatically defined classes of algebras.
Algebra Universalis2:20-32, 1972.

job: root macro: svmono.cls date/time: 29-Sep-2010/18:05


http://www.itu.dk/people/sestoft/mosml/manual.pdf
http://www.itu.dk/people/sestoft/mosml/manual.pdf

References 549

SHOO. Christopher A. Stone and Robert Harper. Deciding type equivalence in a language
with singleton kinds. IrProceedings of the 27th ACM Symposium on Principles of
Programming Language8oston, pages 214—-227, 2000.

Sha08. Stewart Shapiro.  Classical logic. In Edward N. Zalta, edifbe Stan-
ford Encyclopedia of PhilosophyCSLI, Stanford University, fall 2008 edi-
tion, 2008. Available fromhttp://plato.stanford.edu/archives/
fall2008/entries/logic-classical/

SMO09. Lutz Schoder and Till Mossakowski. KWSCAsSL: Integrated higher-order specifica-
tion and program developmeniTheoretical Computer Sciencé10(12-13):1217—
1260, 2009.

Smig3. Douglas R. Smith. Constructing specification morphistosrnal of Symbolic Com-
putation 15(5/6):571-606, 1993.

Smi06. Douglas R. Smith. Composition by colimit and formal software development. In Ko-

kichi Futatsugi, Jean-Pierre Jouannaud, ané ddsseguer, editorglgebra, Mean-
ing, and Computation, Essays Dedicated to Joseph A. Goguen on the Occasion of His
65th Birthday Lecture Notes in Computer Sciena®lume 4060, pages 317-332.
Springer, 2006.

SMLO5. Lutz Schoder, Till Mossakowski, and Christophiith. Type class polymorphism
in an institutional framework. In JésFiadeiro, editorRecent Trends in Algebraic
Development Techniques.. Selected Papers from the 17th International Workshop on
Algebraic Development Technigué&arcelonalecture Notes in Computer Science
volume 3423, pages 234-248. Springer, 2005.

Smo86. Gert Smolka. Order-sorted Horn logic: Semantics and deduction. Technical Report
SR-86-17, Universit Kaiserslautern, Fachbereich Informatik, 1986.

SMT*05.  Lutz Schéder, Till Mossakowski, Andrzej Tarlecki, Bartek Klin, and Piotr Hoffman.
Amalgamation in the semantics oAGL. Theoretical Computer Scienc231(1):215—

247, 2005.

Spi92. J. Michael SpiveyThe Z Notation: A Reference Manu#rentice Hall International
Series in Computer Science, second edition, 1992.

SS93. Antonino Salibra and Guiseppe Scollo. A soft stairway to institutions. In Michel

Bidoit and Christine Choppy, editorRecent Trends in Data Type Specification. Se-
lected Papers from the 8th Workshop on Specification of Abstract Data Types joint
with the 3rdCompAssWorkshopDourdan Lecture Notes in Computer Sciengel-

ume 655, pages 310-329. Springer, 1993.

SS96. Antonino Salibra and Giuseppe Scollo. Interpolation and compactness in categories
of pre-institutions. Mathematical Structures in Computer Scien6é¢€3):261-286,
1996.

SST92. Donald Sannella, Stefan Sokotowski, and Andrzej Tarlecki. Toward formal devel-

opment of programs from algebraic specifications: Parameterisation revigittd.
Informatica 29(8):689-736, 1992.

ST85. Donald Sannella and Andrzej Tarlecki. Program specification and development in
Standard ML. InProceedings of the 12th ACM Symposium on Principles of Pro-
gramming LanguageNew Orleans, pages 67-77, 1985.

ST86. Donald Sannella and Andrzej Tarlecki. Extended ML: An institution-independent
framework for formal program development. In David H. Pitt, Samson Abramsky,
Axel Poigre, and David E. Rydeheard, editoPspceedings of the Tutorial and Work-
shop on Category Theory and Computer Programm(Bgildford, Lecture Notes in
Computer Scienga&rolume 240, pages 364—389. Springer, 1986.

ST87. Donald Sannella and Andrzej Tarlecki. On observational equivalence and algebraic
specification.Journal of Computer and System Scien@&s150-178, 1987.

ST88a. Donald Sannella and Andrzej Tarlecki. Specifications in an arbitrary institirion.
formation and Computatiqry6(2/3):165-210, 1988.

ST88b. Donald Sannella and Andrzej Tarlecki. Toward formal development of programs from
algebraic specifications: Implementations revisitédta Informatica 25:233-281,
1988.

Page: 549 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05


http://plato.stanford.edu/archives/fall2008/entries/logic-classical/
http://plato.stanford.edu/archives/fall2008/entries/logic-classical/

550

ST89.

ST97.

STOA4.
STO6.

STO8.

Str67.

SU06.

SW82.

SW83.

SW909.

Tar85.

Tar86a.

Tar86b.

Tar87.

Tar96.

Tar99.

Page: 550

References

Donald Sannella and Andrzej Tarlecki. Toward formal development of ML programs:

Foundations and methodology. In Jose@dDand Fernando Orejas, editof#P-
SOFT'89: Proceedings of the International Joint Conference on Theory and Practice
of Software Development. Volume 2: Advanced Seminar on Foundations of Innovative
Software Development Il and Colloquium on Current Issues in Programming Lan-
guagesBarcelonalecture Notes in Computer Sciengelume 352, pages 375-389.
Springer, 1989.

Donald Sannella and Andrzej Tarlecki. Essential concepts of algebraic specification
and program developmerftformal Aspects of Computing:229-269, 1997.

Donald Sannella and Andrzej Tarlecki, editora.sCsemantics. 1fiMos04]. 2004.

Donald Sannella and Andrzej Tarlecki. Horizontal composability revisited. In Ko-
kichi Futatsugi, Jean-Pierre Jouannaud, ané dsseguer, editorglgebra, Mean-
ing and Computation: Essays Dedicated to Joseph A. Goguen on the Occasion of His
65th Birthday Lecture Notes in Computer Sciena®lume 4060, pages 296—316.
Springer, 2006.

Donald Sannella and Andrzej Tarlecki. Observability concepts in abstract data
type specification, 30 years later. In Pierpaolo Degano, Rocco de Nicola, and Jos
Meseguer, editor€;oncurrency, Graphs and Models: Essays Dedicated to Ugo Mon-
tanari on the Occasion of his 65th Birthdalyecture Notes in Computer Science.
Springer, 2008.

Christopher Strachey. Fundamental concepts in programming languad¢sTOn
Summer School in Programming, Copenhage®67. Also in:Higher-Order and
Symbolic Computatioh3(1-2):11-49, 2000.

Morten H. Sgrensen and Pawet Urzyczyectures on the Curry-Howard Isomor-
phism Number 149 in Studies in Logic and the Foundations of Mathematics. Elsevier
Science, 2006.

Donald Sannella and Martin Wirsing. Implementation of parameterised specifica-
tions. In Mogens Nielsen and Erik Meineche Schmidt, editBrsceeding of the
9th International Colloguium on Automata, Languages and Programnfaghus,
Lecture Notes in Computer Sciengelume 140, pages 473-488. Springer, 1982.
Donald Sannella and Martin Wirsing. A kernel language for algebraic specification
and implementation. In Marek Karpinski, editéttoceedings of the 1983 Interna-
tional Conference on Foundations of Computation TheBgrgholm,Lecture Notes
in Computer Sciencevolume 158, pages 413-427. Springer, 1983.

Donald Sannella and Martin Wirsing. Specification languages. In Egidio Astesiano,
Hans-&rg Kreowski, and Bernd Krieg-Bickner, editorsAlgebraic Foundations of
Systems Specificatipchapter 8, pages 243-272. Springer, 1999.

Andrzej Tarlecki. On the existence of free models in abstract algebraic institutions.
Theoretical Computer Sciencg7(3):269-304, 1985.

Andrzej Tarlecki. Bits and pieces of the theory of institutions. In David H. Pitt,
Samson Abramsky, Axel Poig@nand David E. Rydeheard, editoPspceedings of the
Tutorial and Workshop on Category Theory and Computer Programn@addford,
Lecture Notes in Computer Sciengelume 240, pages 334—360. Springer, 1986.
Andrzej Tarlecki. Quasi-varieties in abstract algebraic institutidmstnal of Com-
puter and System Scien¢88(3):333-360, 1986.

Andrzej Tarlecki. Institution representation. Unpublished note, Dept. of Computer
Science, University of Edinburgh, 1987.

Andrzej Tarlecki. Moving between logical systems. In Magne Haveraaen, Olaf Owe,
and Ole-Johan Dahl, editorRecent Trends in Data Type Specification. Selected Pa-
pers from the 11th Workshop on Specification of Abstract Data T¥psde, Lecture
Notes in Computer Scienceolume 1130, pages 478-502. Springer, 1996.

Andrzej Tarlecki. Institutions: An abstract framework for formal specification. In
Egidio Astesiano, Hansadg Kreowski, and Bernd Krieg-Bickner, editorsAlgebraic
Foundations of Systems Specificatiohapter 4, pages 105-130. Springer, 1999.

job: root macro: svmono.cls date/time: 29-Sep-2010/18:05



References 551

Tar00. Andrzej Tarlecki. Towards heterogeneous specifications. In Dov Gabbay and Maarten
de Rijke, editorsFrontiers of Combining Systems Qtudies in Logic and Computa-
tion, pages 337-360. Research Studies Press, 2000.

TBGI1. Andrzej Tarlecki, Rod M. Burstall, and Joseph A. Goguen. Some fundamental alge-
braic tools for the semantics of computation. Part 3: Indexed categditesretical
Computer Scien¢®1(2):239-264, 1991.

Ter03. TereseTerm Rewriting System@ambridge Tracts in Theoretical Computer Scignce
volume 55. Cambridge University Press, 2003.

Tho89. Simon Thompson. A logic for MirandBormal Aspects of Computing(4):339-365,

1989.

T™M87. Wiadystaw M. Turski and Thomas S.E. Maibau@pecification of Computer Pro-
grams Addison-Wesley, 1987.

Tra93. Will Tracz. Parametrized programming in LILEANNA. Rroceedings of the 1993

ACM/SIGAPP Symposium on Applied Computingianapolis, pages 77-86, 1993.

TWW82. James Thatcher, Eric Wagner, and Jesse Wright. Data type specification: Parameteri-
zation and the power of specification technigu&SM Transactions on Programming
Languages and Systena44):711-732, 1982.

Vra88. Jos L.M. Vrancken. The algebraic specification of semi-computable data types. In
Donald Sannella and Andrzej Tarlecki, editdRgcent Trends in Data Type Specifica-
tion. Selected Papers from the 5th Workshop on Specification of Abstract Data Types
Gullane,Lecture Notes in Computer Scieneelume 332, pages 249-259. Springer,
1988.

Wad89. Philip Wadler. Theorems for free! Rioceedings of the 4th International ACM Con-
ference on Functional Programming Languages and Computer Architettomelon,
pages 347-359, 1989.

Wan79. Mitchell Wand. Final algebra semantics and data type extenslonmal of Com-
puter and System Sciencé9:27-44, 1979.

Wan82. Mitchell Wand. Specifications, models, and implementations of data abstractions.
Theoretical Computer Scienc20(1):3-32, 1982.

WBS82. Martin Wirsing and Manfred Broy. An analysis of semantic models for algebraic

specifications. In Manfred Broy and Gunther Schmidt, editdteoretical Foun-
dations of Programming Methodology: Lecture Notes of an International Summer
School, Marktoberdorf 198 pages 351-416. Reidel, 1982.

WB89. Martin Wirsing and Manfred Broy. A modular framework for specification and imple-
mentation. In Josepi@z and Fernando Orejas, editof8PSOFT'89: Proceedings of
the International Joint Conference on Theory and Practice of Software Development.
Volume 1: Advanced Seminar on Foundations of Innovative Software Development |
and Colloquium on Trees in Algebra and ProgrammiBgrcelonal_ecture Notes in
Computer Science&olume 351, pages 42—-73. Springer, 1989.

WES8?7. Eric G. Wagner and Hartmut Ehrig. Canonical constraints for parameterized data
types. Theoretical Computer Science0:323-349, 1987.

Wec92. Wolfgang WechletJniversal Algebra for Computer ScientisBATCS Monographs
on Theoretical Computer Sciena®lume 25. Springer, 1992.

Wik. Wikipedia. Hash table. Available froihttp://en.wikipedia.org/wiki/
Hash table

Wir82. Martin Wirsing. Structured algebraic specifications.Phoceedings of the AFCET
Symposium on Mathematics for Computer ScigReeis, pages 93—-107, 1982.

Wir86. Martin Wirsing. Structured algebraic specifications: A kernel languageoretical
Computer Scien¢é?2(2):123-249, 1986.

Wir90. Martin Wirsing. Algebraic specification. In Jan van Leeuwen, ediandbook

of Theoretical Computer Science. Volume B (Formal Models and Semapscgs
675-788. North-Holland and MIT Press, 1990.

Wir93. Martin Wirsing. Structured specifications: Syntax, semantics and proof calculus. In
Friedrich L. Bauer, Wilfried Brauer, and Helmut Schwichtenberg, editargjc and

Page: 551 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05


http://en.wikipedia.org/wiki/Hash_table
http://en.wikipedia.org/wiki/Hash_table

552 References

Algebra of Specification: Proceedings of the NATO Advanced Study Institute, Mark-
toberdorf 1991 pages 411-442. Springer, 1993.

WM97. Michal Walicki and Sigurd Meldal. Algebraic approches to nondeterminism: An
overview. ACM Computing Survey29(1):30-81, 1997.

Zil74. Steven Zilles. Abstract specification of data types. Technical Report 119, Computa-
tion Structures Group, Massachusetts Institute of Technology, 1974.
Zuc99. Elena Zucca. From static to dynamic abstract data-types: An institution transforma-

tion. Theoretical Computer Scienc216(1-2):109-157, 1999.

Page: 552 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05



	Category theory
	Introducing categories
	Categories
	Constructing categories
	Category-theoretic definitions

	Limits and colimits
	Initial and terminal objects
	Products and coproducts
	Equalisers and coequalisers
	Pullbacks and pushouts
	The general situation

	Factorisation systems
	Functors and natural transformations
	Functors
	Natural transformations
	Constructing categories, revisited

	Adjoints
	Free objects
	Left adjoints
	Adjunctions

	Bibliographical remarks

	References

