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Chapter 4
Working within an arbitrary logical system

Several approaches to specification were discussed in Chapter 2. Each approach
involved a differentlogical systemas a part of its mathematical underpinnings. We
encountered different definitions of:

Signatures: “ordinary” many-sorted signatures, signatures containingbool, true
andfalse(for final and reachable semantics), error signatures, order-sorted sig-
natures;

Algebras (on a signatureΣ ): “ordinary” Σ -algebras, errorΣ -algebras, partialΣ -
algebras, order-sortedΣ -algebras;

Logical sentences (on a signatureΣ ): Σ -equations, conditionalΣ -equations, error
Σ -equations (with safe and unsafe variables),Σ -definedness formulae, order-
sortedΣ -equations; and

Satisfaction (of aΣ -sentence by aΣ -algebra): of aΣ -equation by a (total)Σ -algebra,
of an errorΣ -equation by an errorΣ -algebra, of aΣ -equation by a partialΣ -
algebra, of aΣ -definedness formula by a partialΣ -algebra, of an order-sorted
Σ -equation by an order-sortedΣ -algebra.

All of these choices can be combined to obtain many different logical systems and
hence different approaches to specification, e.g. partial error specifications with con-
ditional axioms. Not only that, but there are several alternative approaches to the
specification of partial algebras and at least half a dozen to the specification of error
handling. Furthermore, there are many other variations that have not been consid-
ered, including the following (some of them briefly mentioned in Section 2.7.6):

• polymorphic signatures which permit polymorphic type constructors (rather than
just sorts) and operations having polymorphic types;

• continuous algebras to handle infinite data objects such as streams;
• higher-order algebras to handle higher-order functions (i.e. functions taking func-

tions as arguments and/or yielding functions as results);
• relational structures to model specifications containing predicates;
• inequations and conditional inequations;
• first-order formulae, with and without equality;
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156 4 Working within an arbitrary logical system

• various modal logics, including algorithmic, dynamic, and temporal logics, for
formulating properties of (possibly non-functional) programs.

Some of these variations depart quite considerably from the usual algebraic
framework presented in Chapters 1 and 2. But none of them (and very few of the
others considered in the literature) are artificial, resulting merely from a theoreti-
cian’s toying with formal definitions. All of them arise from the practical need to
specify different aspects of software systems, often reflected by diverse features of
different programming languages.

The resulting wealth of choice of definitions of the basic concepts is not a bad
thing. None of the logical systems used in specifications is clearly better than all the
others — and we should not expect that such a “best” system will ever be developed.
In theory, we can imagine putting all of the above concepts together, producing
a single logical system where signatures, algebras, sentences and the satisfaction
relation would cover as special cases all we have considered up to now. But the
result would be so huge and complex as to make it unmanageable. Moreover, what
would we do if one day somebody points out that yet another view of software is
important and should be reflected in specifications, and hence included in the logical
system we use? Scrap everything and start again?

Different specification tasks may call for different systems to express most con-
veniently the properties required. Moreover, different logical systems may be appro-
priate for describing different aspects of the same software system, and so a number
of logical systems may be useful in a single specification task. It is thus important
that the designer of a software system be able to choose which logical system(s) to
use.

An unfortunate effect of this necessary wealth of choice is that research on speci-
fication sometimes appears to be a confused mess, where everybody adopts a differ-
ent combination of basic definitions. This makes it difficult to build on the work of
others, to compare the results obtained for different logical systems, and to transfer
results from one system to another. This is even more disturbing when one realises
that such results include not only mathematical definitions and theorems, but also
practically useful tools supporting software specification, development and verifica-
tion produced at great expense of effort, time and money.

In fact, much of the work done turns out to be independent of the particular choice
of the basic definitions, although this is often not obvious. The main objective of this
chapter, and one of the main objectives of this book, is to lay out the mathematical
foundations necessary to make this independence explicit. We achieve this using the
notion of aninstitution which formalises the informal concept of a logical system
devised to fit the purposes of specification theory; see Section 4.1 below for the def-
inition. Our thesis is that building as much as possible on the notion of an institution
brings important benefits for both the theory and the practice of software specifica-
tion and development. On one hand, this allows much work on theories, results, and
practical tools to be done just once for many different specific logical systems; on
the other hand it forces, via abstraction, a better understanding of and deeper insight
into the real problems.
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4.1 Institutions 157

A first example of this general approach is given in Section 4.2, where we recast
the fundamental ideas of the standard approach to specification from Chapter 2 in
the framework of an arbitrary institution.

It should be stressed that the notion of an institution captures only certain as-
pects of the informal concept of a logical system. In particular, it takes a model-
theoretic view of logical systems, and no direct attempt is made to accommodate
proof-theoretic concepts. See Section 9.1 for a discussion of how proof fits into the
picture.

When discussing different approaches to specification in Chapter 2, apart from
various basic notions of signature, algebra, sentence and satisfaction, we also con-
sidered different kinds of models (algebras satisfying a set of axioms) as particularly
interesting:

• the initial models;
• the reachable models satisfying∀∅• true 6= false;
• the final models in the category of reachable models satisfying∀∅• true 6= false.

These options, although important for the overall style of specification, are of a
different nature than the choice of the basic definitions embodied in the particular
institution used. We show in Section 4.3 how such “interesting models” may be
singled out in an arbitrary institution, thus suggesting that the choice here is in a
sense orthogonal to the choice of the underlying institution.

Our general programme is to strive to work in an arbitrary institution as much
as possible. However, the concepts involved in the basic theory of institutions are
often too general, and hence too weak, to express all that is necessary. When this
happens, it would be premature to give up, and switch to working in a particular
institution. The “game” is then to identify a (hopefully) minimal set of additional
assumptions under which the job can be done, covering most or all of the logical
systems of interest. This gives rise to an enriched notion of institution with some
additional structure that is relevant to the particular purpose we have in mind. A few
examples of this are given in Sections 4.4 and 4.5.

Before proceeding we should warn the reader that although working in an arbi-
trary institution is very important, it is only one side of the story. The other side is
to define an institution appropriate for the needs of the particular task at hand, and
quite often this is far from trivial. Indeed, in many areas of Computer Science, the
fundamental problem yet to be satisfactorily solved is the development of a logical
system appropriate for the aspects of computing addressed. An example of an area
for which a satisfactory, commonly accepted solution still seems to be outstanding
(despite numerous proposals and active research) is the theory of concurrency.

4.1 Institutions

Following Goguen and Burstall [GB92], we introduce the notion of aninstitution,
capturing some essential aspects of the informal concept of a “logical system”. The
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158 4 Working within an arbitrary logical system

basic ingredients of an institution are: a notion of a signature in the system, and
then for each signature, notions of an algebra with this signature, of a logical sen-
tence over this signature, and finally a satisfaction relation between algebras and
sentences.

In contrast to classical logic and model theory, we are not content with consider-
ing logical systems “pointwise”, for an “arbitrary but fixed” signature. To capture the
process of building a specification and designing a software system, some means of
moving from one signature to another is required, that is, some notion of signature
morphism. These typically enable signatures to be extended by new components,
renaming and/or identifying others, as well as hiding some components used “inter-
nally” but not intended to be visible “externally”. Any signature morphism should
give rise to a translation of sentences and a translation of algebras determined by the
change of names involved. Furthermore, these translations must be consistent with
one another, preserving the satisfaction relation. As usual, when we switch from
syntax (signatures, sentences) to semantics (algebras), the direction of translation is
reversed.

The language of category theory is used in the definition to express the above
ideas. This concisely and elegantly captures structure arising from signature mor-
phisms, as well as forcing an appropriate level of generality and abstraction.

Definition 4.1.1 (Institution). An institutionINS consists of:

• a categorySignINS of signatures;
• a functorSenINS:SignINS→Set, giving a setSen(Σ) of Σ -sentencesfor each sig-

natureΣ ∈ |SignINS| and a functionSenINS(σ):SenINS(Σ)→ SenINS(Σ ′) trans-
lating Σ -sentences toΣ ′-sentences for each signature morphismσ :Σ → Σ ′;

• a functor ModINS:Signop
INS → Cat, giving a categoryMod(Σ) of Σ -models

for each signatureΣ ∈ |SignINS| and a functorModINS(σ):ModINS(Σ ′) →
ModINS(Σ) translatingΣ ′-models toΣ -models (andΣ ′-morphisms toΣ -morphisms)
for each signature morphismσ :Σ → Σ ′; and

• for eachΣ ∈ |SignINS|, asatisfaction relation|=INS,Σ ⊆ |ModINS(Σ)|×SenINS(Σ)

such that for any signature morphismσ :Σ → Σ ′ the translationsModINS(σ) of
models andSenINS(σ) of sentences preserve the satisfaction relation, that is, for
anyϕ ∈ SenINS(Σ) andM′ ∈ |ModINS(Σ ′)|:

M′ |=INS,Σ ′ SenINS(σ)(ϕ) iff ModINS(σ)(M′) |=INS,Σ ϕ

[Satisfaction condition]

ut

We will freely use standard terminology, and for example say that aΣ -modelM
satisfiesa Σ -sentenceϕ, or thatϕ holdsin M, wheneverM |=INS,Σ ϕ.

The term “model” (which we use following [GB92]) thereby becomes over-
loaded: it is used to refer both to objects in the categoryModINS(Σ) and to the
algebras which satisfy a given set of axioms (we will soon extend the latter termi-
nology to an arbitrary institution in Section 4.2, and then to an arbitrary structured
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specification in Chapter 5). Hopefully, this will not lead to confusion as the context
will always determine which of the two meanings is meant. If in doubt, we will use
“a Σ -model” (whereΣ is a signature) for the former, and “a model ofΦ” (whereΦ

is a set of sentences) for the latter meaning of the word.

Notation.

• When there is no danger of confusion, we will omit the subscriptINS when
referring to the components of an institutionINS. Similarly, the subscriptΣ on
the satisfaction relations will often be omitted.

• For any signature morphismσ :Σ→ Σ ′, the functionSen(σ):Sen(Σ)→Sen(Σ ′)
will be denoted simply byσ :Sen(Σ)→Sen(Σ ′) and the functorMod(σ):Mod(Σ ′)→
Mod(Σ) by σ :Mod(Σ ′)→ Mod(Σ). Thus for anyΣ -sentenceϕ ∈ Sen(Σ),
σ(ϕ) ∈ Sen(Σ ′) is its σ -translation to a Σ ′-sentence, and for anyΣ ′-model
M′ ∈ |Mod(Σ ′)|, M ′ σ ∈ |Mod(Σ)| is its σ -reduct to a Σ -model. We will also
refer toM′ as aσ -expansionof M′ σ . Using this notation, the satisfaction condi-
tion of Definition 4.1.1 may be expressed as follows:M′ |= σ(ϕ)⇐⇒M′ σ |= ϕ.

• For any signatureΣ , the satisfaction relation extends naturally to sets ofΣ -
sentences and classes1 of Σ -models. Namely, for any setΦ ⊆ Sen(Σ) of Σ -
sentences and modelM ∈ |Mod(Σ)|, M |= Φ meansM |= ϕ for all ϕ ∈Φ . Then,
for anyΣ -sentenceϕ ∈ Sen(Σ) and classM ⊆ |Mod(Σ)| of Σ -models,M |= ϕ

meansM |= ϕ for all M ∈M . Finally, we will also writeM |= Φ with the obvi-
ous meaning.

• For any signatureΣ , we will sometimes writeMod(Σ) for the class|Mod(Σ)| of
all Σ -models. ut

The definition of an institution as given above is very general and covers many
logical systems of interest, as illustrated by the examples below. Nevertheless, it
does impose some restrictions which should be made explicit before we proceed
further.

First, the assumption that the translations of sentences and models induced
by signature morphisms are functors may seem overly restrictive. In some situ-
ations it would be natural to relax the requirement of functoriality and assume
that Sen (and perhapsMod as well) is a functor only “up to some appropri-
ate equivalence”. For example, given two signature morphismsσ :Σ → Σ ′ and
σ ′:Σ ′→ Σ ′′, for any sentenceϕ ∈ Sen(Σ) it follows from the functoriality ofSen
thatSen(σ ;σ ′)(ϕ) = Sen(σ ′)(Sen(σ)(ϕ)) (or using the notational convention in-
troduced above,(σ ;σ ′)(ϕ) = σ ′(σ(ϕ)) ). This seems overly restrictive when, for
example, local identifiers or bound variables are used in sentences. All we really
care about here is that the two translations ofϕ to a Σ ′′-sentence aresemantically
equivalent: that (σ ;σ ′)(ϕ) andσ ′(σ(ϕ)) hold in the sameΣ ′′-models. A solution

1 We will be somewhat more careful about the set-theoretical foundations than in our presentation
of the basics of category theory in Chapter 3: we will refer to collections of sentences as “sets” and
to collections of models as “classes”, as in Chapter 2. This is consistent with the formal definition
of an institution above, and satisfactory for the logical systems formalised as institutions given as
examples (but see Example 4.1.46, footnote 16).
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160 4 Working within an arbitrary logical system

is to consider sentences up to this semantic equivalence, and work in an institution
where sentences simplyare the corresponding equivalence classes. This solution
would resemble the usual practice inλ -calculi, where terms are considered “up to
α-conversion” (renaming of bound variables), meaning that terms are really classes
of mutuallyα-convertible syntactic terms.

The only explicit requirement in the definition of an institution is that the satis-
faction condition holds. Speaking informally, this deals with the situation where a
“small” signatureΣ and a “big” signatureΣ ′ are related by a signature morphism
σ :Σ → Σ ′, and we have a modelM′ ∈ |Mod(Σ ′)| over the “big” signature, and a
sentenceϕ ∈ Sen(Σ) over the “small” signature. There are then two ways to check
whetherM′ “satisfies”ϕ: we can either reduce the modelM′ to the “small” signature
and check whether the reduct satisfies the sentenceϕ, or translate the sentenceϕ to
the “big” signature and check whether the translated sentence holds in the model
M′.

“small”

“big”

Σ

Σ ′ M′

M′ σ

σ(ϕ)

ϕ

6

σ

|=Σ ′

|=Σ

?

6

The satisfaction condition states that these two alternatives are equivalent. This em-
bodies two fundamental assumptions. One is that the meaning of a sentence depends
only on the components used in the sentence, and does not depend on the context
in which the sentence is considered. The other is that the meaning of a sentence is
preserved under translation; as [GB92] say:

Truth is invariant under change of notation.

The latter requirement does not raise much doubt — we are not aware of any natu-
ral system in which it would not hold. The former, however, is sometimes violated.
There are natural logical systems where the meaning of a sentence depends on the
context in which it is used, or in other words on the signature over which the sen-
tence is considered. For instance, in logical systems involving quantifiers, the range
of quantification may implicitly depend on the signature, with quantified variables
ranging only over reachable values, so that “∃x• . . .” is interpreted as “there exists
an elementx which is the value of a ground term, such that . . . ” and similarly for
universal quantification. For such a logic the satisfaction condition does not hold
unless very strong restrictions are placed on signature morphisms.

Exercise 4.1.2.Give a concrete counterexample to the satisfaction condition for a
logical system similar to equational logic, but with the universally quantified vari-
ables in equations ranging only over reachable values. Show how the logical system
you give may be modified to make the satisfaction condition hold. HINT : The sat-
isfaction condition failed because the interpretation of universal quantification over
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reachable values implicitly depends on the signature; try to make this dependence
explicit! ut

4.1.1 Examples of institutions

Example 4.1.3 (Ground equational logic GEQ).The institutionGEQ of ground
equational logic is defined as follows:

• The categorySignGEQ is justAlgSig, the usual category of algebraic signatures.
• The functorSenGEQ:AlgSig→ Setgives:

– the set of groundΣ -equations for eachΣ ∈ |AlgSig|; and
– theσ -translation function taking groundΣ -equations to groundΣ ′-equations

for each signature morphismσ :Σ → Σ ′.

• The functorModGEQ:AlgSigop→ Cat is the functorAlg:AlgSigop→ Cat as
defined in Example 3.4.29, that is,ModGEQ gives:

– the categoryAlg(Σ) of Σ -algebras andΣ -homomorphisms for eachΣ ∈
|AlgSig|; and

– the reduct functor σ :Alg(Σ ′)→Alg(Σ) mappingΣ ′-algebras andΣ ′-homomorphisms
to Σ -algebras andΣ -homomorphisms for each signature morphismσ :Σ →
Σ ′.

• For eachΣ ∈ |AlgSig|, the satisfaction relation|=GEQ,Σ ⊆ |Alg(Σ)|×SenGEQ(Σ)
is the usual relation of satisfaction of a groundΣ -equation by aΣ -algebra.

The Satisfaction Lemma (Lemma 2.1.8) ensures that the required satisfaction con-
dition holds and so that the above definition indeed yields an institution. ut

Example 4.1.4 (Equational logic EQ).The institutionEQ of (ordinary) equational
logic is defined as follows:

• The categorySignEQ is justAlgSig.
• The functorSenEQ:AlgSig→ Setgives:

– the set ofΣ -equations for eachΣ ∈ |AlgSig|; and
– theσ -translation function takingΣ -equations toΣ ′-equations for each signa-

ture morphismσ :Σ → Σ ′.2

• The functorModEQ is Alg:AlgSigop→Cat, just likeModGEQ for ground equa-
tional logic.

2 The exact treatment of variables in equations requires special care to ensure that the translation
of equations along possibly non-injective signature morphisms is indeed functorial. The use of dis-
joint union in the translation of many-sorted sets of variables in Definition 1.5.10 causes problems
here. The simplest way to make this work is to assume that, in each equation, variables of different
sorts are distinct. See [GB92] for details.
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162 4 Working within an arbitrary logical system

• For eachΣ ∈ |AlgSig|, the satisfaction relation|=EQ,Σ ⊆ |Alg(Σ)|×SenEQ(Σ)
is the usual relation of satisfaction of aΣ -equation by aΣ -algebra.

The Satisfaction Lemma (Lemma 2.1.8) again ensures that the required satisfaction
condition holds and so that the above definition indeed yields an institution.ut

There is an obvious sense in whichGEQ can be regarded as a “subinstitution”
of EQ. We will encounter further such cases below. We refrain from formulating a
notion of subinstitution because the concept turns out to be more subtle than it might
appear at first. We postpone a proper treatment of relationships between institutions
to Chapter 10 (in particular, see Exercise 10.4.8).

Exercise 4.1.5 (Reachable ground equational logic RGEQ).Define an institution
RGEQ of ground equational logic on reachable algebras, by modifying the definion
of GEQ so that only reachable algebras are considered as models. Do not forget to
adjust the definition of reduct functors!

Try to extend this to an institutionREQ of equational logic on reachable algebras
— and notice that the satisfaction condition cannot be ensured without modifying
the notion of an equation to include “data constructors” to determine the reachable
values for which the equation is to be considered, as already hinted at in Exer-
cise 4.1.2. ut

Example 4.1.6 (Partial equational logic PEQ).The institutionPEQ of partial
equational logic is defined as follows (cf. Section 2.7.4):

• SignPEQ is AlgSig again.
• SenPEQ:AlgSig→ Setgives:

– the set ofΣ -equations andΣ -definedness formulae for eachΣ ∈ |AlgSig|; and
– the σ -translation function takingΣ -equations andΣ -definedness formulae

to Σ ′-equations andΣ ′-definedness formulae for each signature morphism
σ :Σ → Σ ′.3

• ModPEQ:AlgSigop→ Cat gives:

– the categoryPAlg(Σ) of partialΣ -algebras and weakΣ -homomorphisms for
eachΣ ∈ |AlgSig| (cf. Example 3.3.13); and

– the reduct functor σ :PAlg(Σ ′)→ PAlg(Σ) defined similarly as in the total
case for each signature morphismσ :Σ → Σ ′.

• For eachΣ ∈ |AlgSig|, the satisfaction relation|=PEQ,Σ ⊆ |PAlg(Σ)|×SenPEQ(Σ)
is the satisfaction ofΣ -equations (with strong equality) andΣ -definedness for-
mulae by partialΣ -algebras.

Exercise.Proceeding similarly as in the proof of Satisfaction Lemma (Lemma 2.1.8),
show that the satisfaction condition holds forPEQ. ut

3 As in Example 4.1.4, care is needed with the treatment of variables and their translation under
signature morphisms, see footnote 2.
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Example 4.1.7 (Ground partial equational logic PGEQ).The institutionPGEQ
of ground partial equational logic is defined just like the institutionPEQ of partial
equational logic above, except that only ground equations and ground definedness
formulae are considered. ut

Exercise 4.1.8.Recalling the notion of existential equality for partial algebras from
Section 2.7.4, define institutionsPEQe andPGEQe of partial existence equational
logic and ground partial existence equational logic, respectively, modifying the def-
initions in Examples 4.1.6 and 4.1.7 by using existential equations of the form
∀X.t

e= t ′ and their ground versions only. ut

Example 4.1.9 (Propositional logic PROP).The institutionPROP of proposi-
tional logic is defined as follows:

• SignPROP is Set, the usual category of sets. In this context, for each “signature”
P∈ |Set|, we call elements ofP propositional variables.

• SenPROP:Set→ Setgives

– For eachP ∈ |Set|, SenPROP(P) is the least set that containsP, sentences
true andfalse, and is closed under the usual propositional connectives, that is,
if ϕ,ϕ ′ ∈ SenPROP(Σ) then alsoϕ ∨ϕ ′ ∈ SenPROP(Σ), ¬ϕ ∈ SenPROP(Σ),
ϕ ∧ϕ ′ ∈ SenPROP(Σ), andϕ ⇒ ϕ ′ ∈ SenPROP(Σ). 4

– For each functionσ :P→P′, SenPROP(σ) extendsσ to the translation of arbi-
trary propositional sentences with propositional variables inP to propositional
sentences with propositional variables inP′, preserving the propositional con-
nectives in the obvious way.

• ModPROP:Setop→ Cat gives:

– For each set of propositional variablesP ∈ |Set|, P-models are all functions
from P to {ff , tt}. These functions can be identified with subsets ofP, where
M:P→ {ff , tt} yields {p ∈ P | M(p) = tt}). Model morphisms are just in-
clusions of these sets, i.e., given twoP-modelsM1,M2:P→ {ff , tt}, we have
a (unique) morphism fromM1 to M2 if for all p ∈ P, M2(p) = tt whenever
M1(p) = tt.

– For each signature morphismσ :P→P′, the reduct functorModPROP(σ):ModPROP(P′)→
ModPROP(P) maps any modelM′:P′→{ff , tt} to σ ;M′:P→{ff , tt}.

• For eachP∈ |Set|, the satisfaction relation|=PROP,P⊆ |ModPROP(P)|×SenPROP(P)
is the usual relation of satisfaction of propositional sentences, that is, for anyP-
modelM:P→{ff , tt}, p∈ P andϕ,ϕ ′ ∈ SenPROP(P):

– M |=PROP,P p if and only if M(p) = tt,
– M |=PROP,P ϕ ∨ϕ ′ if and only if M |=PROP,P ϕ or M |=PROP,P ϕ ′,
– M |=PROP,P ¬ϕ if and only if M 6|=PROP,P ϕ,
– M |=PROP,P ϕ ∧ϕ ′ if and only if M |=PROP,P ϕ andM |=PROP,P ϕ ′.

4 We tacitly assume here thattrue, false, ∨, ∧,⇒, ¬ are new symbols (not inP), and rely on the
usual precedence rules and parentheses to make sure that no ambiguities in their “parsing” arise.
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– M |=PROP,P ϕ ⇒ ϕ ′ if and only if M |=PROP,P ϕ ′ or M 6|=PROP,P ϕ

– M |=PROP,P true, and
– M 6|=PROP,P false. ut

Exercise 4.1.10.Recall the specification of Boolean algebras in Example 2.2.4.
Note that one way to view the definitions in Example 4.1.9 is to define the set

of P-sentences as Boolean terms with variables fromP. Then, one can consider
the two-element Boolean algebraB with the carrier{ff , tt} (with trueB = tt and
falseB = ff ). Furthermore, any propositional modelM:P→ {ff , tt} induces evalua-
tion of termsM]:SenPROP(P)→ |B|, with M](ϕ) = tt if and only if M |=PROP,P ϕ

as defined above.
Define another institution of propositional logic,PROPBA , where signatures and

sentences are as inPROP, but models use arbitrary Boolean algebras rather than just
B. That is, for any setP∈ |Set| of propositional variables, aP-model inPROPBA

consists of a Boolean algebraB together with valuationM:P→|B|, where we define
〈B,M〉 |=PROPBA ,P ϕ if and only if ϕB(M) = trueB (whereϕB(M) is the value of term
ϕ in B under valuationM).

Prove now that the semantic consequence relation (Definition 2.3.6, cf. Defini-
tion 4.2.5 below) inPROPandPROPBA coincide.

HINT : Clearly, if Ψ |=PROPBA ,P ϕ then alsoΨ |=PROP,P ϕ for any setP of
propositional variables,Ψ ⊆ SenPROP(P) andϕ ∈ SenPROP(P). Suppose now that
Ψ 6|=PROPBA ,P ϕ. Use the following lemma5:

Lemma. Given any Boolean algebra B and element b∈ |B| such that b6= trueB,
there exists a homomorphism h:B→ B from B to the two-element Boolean algebra
B such that h(b) = falseB.

Now, given any Boolean algebraB and valuationM:P→ |B| such that for all
ψ ∈Ψ , ψB(M) = trueB andϕB(M) 6= trueB, conclude using the above lemma that
(M;h)](ψ) = tt for all ψ ∈Ψ , while (M;h)](ϕ) = ff . ut

Exercise 4.1.11.Define the institution of intuitionistic propositional logic,PROPI ,
following the pattern ofPROPBA in Exercise 4.1.10, but using arbitrary Heyting
algebras (see Example 2.7.6) rather than just Boolean algebras.

Show that ifΨ |=PROPI ,P ϕ then alsoΨ |=PROP,P ϕ for any setP of propositional
variables,Ψ ⊆ SenPROP(P) and ϕ ∈ SenPROP(P), and give a counterexample to
show that the opposite implication fails in general. ut

Example 4.1.12 (First-order predicate logic with equality FOPEQ).The institu-
tion FOPEQ of first-order predicate logic with equality is defined as follows:

• SignFOPEQ, from now on denoted byFOSig, is the category offirst-order signa-
tureswhere we define:

5 The proof of this lemma is beyond the scope of this book, but see e.g. [RS63], I,8.5 and
II,5.2,(a)⇒(e).
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– A first-order signatureΘ is a triple〈S,Ω ,Π〉, whereSis a set (ofsort names),
Ω = 〈Ωw,s〉w∈S∗,s∈S is a family of sets (ofoperation nameswith their arities
and result sorts indicated — just as in algebraic signatures) andΠ = 〈Πw〉w∈S∗

is a family of sets (ofpredicateor relation nameswith their arities indicated).
– A first-order signature morphismθ :〈S,Ω ,Π〉 → 〈S′,Ω ′,Π ′〉 consists again

of three components: a functionθsorts:S→ S′, an S∗×S-indexed family of
functionsθops = 〈(θops)w,s:Ωw,s→Ω ′

θ∗sorts(w),θsorts(s)
〉w∈S∗,s∈S (these are as in

algebraic signature morphisms) andθpreds= 〈(θpreds)w:Πw→Π ′
θ∗sorts(w)〉w∈S∗ .

(As with algebraic signature morphisms, all the components of a first-order
signature morphismθ will be denoted byθ when there is no danger of ambi-
guity.)

• SenFOPEQ:FOSig→ Setgives:

– For each first-order signatureΘ = 〈S,Ω ,Π〉, SenFOPEQ(Θ) is the set of all
closed (i.e. without unbound occurrences of variables)first-order formulae
built out of atomic formulae using the standard propositional connectives (∨,
∧, ⇒, ⇔, ¬) and quantifiers (∀, ∃). The atomic formulaeare equalities of
the formt = t ′, wheret andt ′ are〈S,Ω〉-terms (possibly with variables) of
the same sort, atomic predicate formulae of the formp(t1, . . . , tn), wherep∈
Πs1...sn andt1, . . . , tn are terms (possibly with variables) of sortss1, . . . , sn,
respectively, and the logical constantstrue andfalse.

– For each first-order signature morphismθ :Θ→Θ ′, SenFOPEQ(θ) is the trans-
lation of first-orderΘ -sentences to first-orderΘ ′-sentences determined in the
obvious way by the renamingθ of sort, operation and predicate names inΘ

to the corresponding names inΘ ′.6

• ModFOPEQ:FOSigop→ Cat, from now on denoted byFOStr, gives:

– For each first-order signatureΘ = 〈S,Ω ,Π〉, the categoryFOStr(Θ) of first-
orderΘ -structuresis defined as follows:
· A first-orderΘ -structure A∈ |FOStr(Θ)| consists of a carrier set|A|s for

each sort names∈ S, a function fA: |A|s1× . . .×|A|sn → |A|s for each op-
eration namef ∈Ωs1...sn,s (these are the same as in〈S,Ω〉-algebras) and a
relationpA⊆ |A|s1× . . .×|A|sn for each predicate namep∈Πs1...sn. In the
following we write pA(a1, . . . ,an) for 〈a1, . . . ,an〉 ∈ pA.

· For any first-orderΘ -structuresA andB, afirst-orderΘ -morphismbetween
them,h:A→B, is a family of functionsh= 〈hs: |A|s→ |B|s〉s∈S which pre-
serves the operations (as ordinary〈S,Ω〉-homomorphisms do) and predi-
cates (i.e., forp∈ Πs1...sn anda1 ∈ |A|s1, . . . , an ∈ |A|sn, if pA(a1, . . . ,an)
thenpB(hs1(a1), . . . ,hsn(an)) as well). AΘ -morphism isstrongif it reflects
predicates as well, so that forp ∈ Πs1...sn anda1 ∈ |A|s1, . . . , an ∈ |A|sn,
pA(a1, . . . ,an) if and only if pB(hs1(a1), . . . ,hsn(an)).

6 As in Example 4.1.4, some care is needed with the exact treatment of quantified variables and
their translation under signature morphisms (cf. footnote 2) — again, the simplest solution is to
assume that, in each formula, variables of different sorts are distinct. See [GB92] for a careful
presentation.
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– For each first-order signature morphismθ :Θ → Θ ′, we have theθ -reduct
functorFOStr(θ):FOStr(Θ ′)→ FOStr(Θ) defined similarly as reduct func-
tors corresponding to algebraic signature morphisms.

• For eachΘ ∈ |FOSig|, the satisfaction relation|=FOPEQ,Θ ⊆ |FOStr(Θ)| ×
SenFOPEQ(Θ) s the usual relation of satisfaction of first-order sentences in first-
order structures, determined by the usual interpretation of∨, ∧, ⇒ and¬ as
disjunction, conjunction, implication and negation, respectively, of∀ and∃ as
universal and existential quantifiers, respectively, of equalitiest = t ′ as identity
of the values oft andt ′, of atomic predicate formulaep(t1, . . . , tn) as the value of
the predicate namedp in the structure on the values of the termst1, . . . , tn, and
of true andfalse.

Exercise.Work out all the details omitted from the above definition. Then, general-
ising the proof of the Satisfaction Lemma, show that the satisfaction condition holds
for FOPEQ. ut

Exercise 4.1.13 (First-order predicate logic FOP, first-order logic with equality
FOEQ). First-order predicate logic with equality contains some standard “sublog-
ics”. Define the institutionFOP of first-order predicate logic (without equality), by
referring to the same signatures and models as inFOPEQ, but limiting the sentences
to those that do not contain equality.

Define also the institutionFOEQ with signatures and models as in the institution
EQ of equational logic, but with first-order sentences (without predicates). ut

Exercise 4.1.14 (Infinitary logics).Define an institution of so-calledLω1ω logic,
which extends first-order predicate logic with equality by allowing conjunctions and
disjunctions ofcountablefamilies of formulae (but still only finitary quantification).
Extend this further by allowing quantification over countable sets of variables, ob-
taining an institution ofLω1ω1 logic. You may also want to define institutions ofLαβ

logics, for any infinite cardinal numbersα andβ such thatβ ≤α, with conjunctions
and disjunctions of sets of formulae of cardinality smaller thanα and quantification
over sets of variables of cardinality smaller thanβ . ut

Exercise 4.1.15 (Higher-order logics).Define an institution ofsecond-order logic,
which extends first-order logic by introducing variables ranging over predicates
(which in a model denote subsets of a product of the carrier sets) and quantification
over such (first-order) predicates. Then generalise this further to an institution of
higher-order logic, which introduces variables that range over (second-order) pred-
icates with arities that may include arities of first-order predicates, and predicates
with arities that may include arities of second-order predicates, etc., and allows for
quantification over such higher-order predicates. Without much additional effort,
you may want to extend this further, by allowing variables that range over func-
tions of an arbitrary higher-order type, and quantification over such functions. Note
though that this will be different from first-order logic for higher-order algebras as
sketched in Example 2.7.56, where quantification over higher-order function types
does not necessarily coincide with quantification overall functions of this type. ut
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Exercise 4.1.16 (First-order equational logic with boolean values FOEQBool).
Define an institutionFOEQBool which differs fromFOEQ by considering only
signatures that contain a subsignatureΣbool of truth values(Σbool has a special, dis-
tinguished sortbooland two constantstrue, false:bool) and assuming that signature
morphisms preserve and reflect symbols inΣbool and that algebras interpret them in
the standard way (the carrier of sortbool has exactly two distinct elements that are
values oftrueandfalse, respectively).

There is now an obvious equivalence between the categories of signatures of
FOPEQ andFOEQBool obtained by mapping each first-order signature to the al-
gebraic signature with the sortbool and constantstrue, false:bool added, and with
new operation namefp:s1× . . .×sn→ bool for each predicatep:s1× . . .×sn. First-
order structures give raise to algebras with the standard interpretation ofΣbool and
with functions fp that yield the value oftrue exactly on those arguments for which
the predicatep holds. Clearly, this yields a one-to-one correspondence between first-
order structures and algebras over the corresponding signatures. However, this does
not extend to model morphisms in general. (Exercise:Find a counterexample. No-
tice though that everystrongmorphism between first-order structures extends to a
homomorphism between their corresponding algebras.) We then consider transla-
tion of atomic sentencesp(t1, . . . , tn) to equalitiesp(t1, . . . , tn) = true, and extend it
further to arbitrary first-order sentences with predicates and equality in the obvious
way.

Prove that such translations of sentences and models preserve and reflect satis-
faction. ut

It is not much more difficult to define, for example, the institutionPFOPEQ of
partial first-order predicate logic with equality, or any other institution formalising
one of the many standard variants of the classical notions.

Exercise 4.1.17 (Partial first-order predicate logic with equality PFOPEQ).De-
fine the institutionPFOPEQ of partial first-order predicate logic with equality ac-
cording to the following sketch:

• SignPFOPEQ = FOSig.
• For eachΘ ∈ |FOSig|, partial first-orderΘ -sentences are defined in the same way

as usual first-orderΘ -sentences on atomic formulae which here includeatomic
definedness formulae def(t) for anyΘ -termt, in addition to equalities and atomic
predicate formulae. The translation of sentences along signature morphisms is
defined in the obvious way.

• For eachΘ ∈ |FOSig|, the models inModPFOPEQ(Θ) are like first-orderΘ -
structures except that the operations may be partial. Morphisms inModPFOPEQ(Θ)
are like first-orderΘ -morphisms but are required to preserve definedness of op-
erations, as weak homomorphisms of partial algebras do. The reduct functors are
defined similarly as for first-order structures.

• For each signatureΘ ∈ |FOSig|, the satisfaction relation|=PFOPEQ,Θ is defined
like the usual first-order satisfaction relation, building on the interpretation of
atomic equalities and definedness formulae which follows the interpretation of
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(strong) equations and definedness formulae in partial algebras as defined in
the institutionPEQ of partial equational logic and on the usual interpretation
of atomic predicate formulaep(t1, . . . , tn) which yieldsfalsewhen any oft1, . . . ,
tn is undefined. ut

Exercise 4.1.18 (Partial first-order logic with equality PFOEQ). Following Ex-
ercise 4.1.13, define the institutionPFOEQ of partial first-order logic with equality
with signatures and models inherited from the institutionPEQ of partial equational
logic, but with first-order sentences (without predicates). Similarly, define the insti-
tutionPFOPof partial first-order predicate logic (without equality). ut

Exercise 4.1.19 (Partial first-order equational logic with truth PFOEQTruth).
As in Exercise 4.1.16, define now an institutionPFOEQBool of partial first-order
logic with equality and built-in boolean values.

However, using partial functions predicates may be modelled differently (and
more faithfully when model morphisms are considered). Define an institutionPFOEQTruth
which differs fromPFOEQ by assuming that the signatures contain a subsignature
Σtruth (which has a special, distinguished sorttruth with a single constanttrue: truth),
that signature morphisms preserve and reflect symbols inΣtruth, and that algebras in-
terpret them in the standard way: the carrier of sorttruth has exactly one element
that is the value oftrue.

The equivalence of categories of signatures and the translation of sentences be-
tweenPFOPEQ andPFOEQTruth can now be given in essentially the same way
as in Exercise 4.1.16. Moreover, first-order partial structures are in one-to-one cor-
respondence with algebras over the corresponding algebraic signature, and this cor-
respondence may be described exactly as in Exercise 4.1.16 as well. The difference
is that now for arguments for which predicates do not hold, their corresponding op-
erations are undefined instead of yielding a non-truevalue. This allows us to extend
this correspondence to model morphisms as well.

Prove that such translations of sentences and models preserve and reflect satis-
faction. ut

Exercise 4.1.20.Recall the notion of a strong homomorphism between partial alge-
bras (Definition 2.7.31) and between first-order structures (given in Example 4.1.12).
For each of the institutions above with models that involve partial operations or
predicates (FOPEQ, FOP, PFOPEQ, PEQ, etc.) define a variant in which all
morphisms are strong. We will refer to these institutions asFOPEQstr , FOPstr ,
PFOPEQstr , PEQstr , etc. In particular, model morphisms inPFOPEQstr preserve
and reflect predicates as well as definedness of operations. ut

Exercise 4.1.21.Using the material in Sections 2.7.1, 2.7.3 and 2.7.5, respectively,
define institutions:EQ⇒ of conditional equations with signatures and models as in
EQ; Horn of Horn formulae built over signatures and models ofFOPEQ, where
sentences have the form∀X • ϕ1∧ . . .∧ϕn⇒ ϕ for atomic formulaeϕ1, . . . ,ϕn, ϕ;
ErrEQ of error equational logic; andOrdEQ of order-sorted equational logic;ut
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Example 4.1.22 (The institution CEQ of equational logic for continuous alge-
bras).We need some auxiliary definitions. LetΣ = 〈S,Ω〉 be an algebraic signature.

Recall (cf. Example 3.3.14) that a continuousΣ -algebraA∈ |CAlg(Σ)| consists
of carriers, which are complete partial orders〈|A|s,≤s〉 for s∈ S, and operations,
which are continuous functionsfA: |A|s1× . . .×|A|sn → |A|s for f :s1× . . .×sn→ s
in Σ .

For anyS-sorted setX (of variables), the (S-sorted) set|T∞
Σ

(X)| of infinitary Σ -
termsis the least set such that7:

• X ⊆ |T∞
Σ

(X)|;
• for each f :s1× . . .× sn → s in Σ , if t1 ∈ |T∞

Σ
(X)|s1, . . . , tn ∈ |T∞

Σ
(X)|sn then

f (t1, . . . , tn) ∈ |T∞
Σ

(X)|s; and
• for eachs∈ S, if for k≥ 0, tk ∈ T∞

Σ
(X)s, then

⊔
〈tk〉k≥0 ∈ |T∞

Σ
(X)|s.

Intuitively, |T∞
Σ

(X)| contains all the usual finitaryΣ -terms and in addition is closed
under formal “least upper bounds” of countable sequences of terms. Notice, how-
ever, that we do not provide|T∞

Σ
(X)|with the structure of a continuousΣ -algebra; in

particular, a term
⊔
〈tk〉k≥0 is just a formal expression here, not a least upper bound.

Then, for any continuousΣ -algebraA and valuation of variablesv:X→ |A|, we
define apartial functionv#: |T∞

Σ
(X)| → |A| which for any termt ∈ |T∞

Σ
(X)| yields

thevalue v#(t) of t (if defined):

• for x∈ X, v#(x) = v(x);
• for f :s1× . . .×sn→ sandt1 ∈ |T∞

Σ
(X)|s1, . . . ,tn ∈ |T∞

Σ
(X)|sn, v#( f (t1, . . . , tn)) is

defined if and only ifv#(t1), . . . ,v#(tn) are all defined, and thenv#( f (t1, . . . , tn)) =
fA(v#(t1), . . . ,v#(tn)); and

• for tk ∈ T∞
Σ

(X)s, k≥ 0, v#(
⊔
〈tk〉k≥0) is defined if and only if allv#(tk), k≥ 0,

are defined and form a chainv#(t0) ≤s v#(t1) ≤s . . ., and thenv#(
⊔
〈tk〉k≥0) =⊔

k≥0v#(tk) (where
⊔

on the right hand side stands for the least upper bound in
the cpo〈|A|s,≤s〉).

As usual, we writetA(v) for v#(t).
Finally, aninfinitary Σ -equationis a triple〈X, t, t ′〉, written∀X • t = t ′, whereX

is anS-sorted set of variables8 andt, t ′ ∈ |T∞
Σ

(X)|s for somes∈ S. A continuousΣ -
algebraA satisfiesan infinitaryΣ -equation∀X • t = t ′, writtenA |=CEQ,Σ ∀X • t = t ′,
if for all valuationsv:X→ |A|, tA(v) andt ′A(v) are both defined and equal.

We are now ready to define the institutionCEQ of equational logic for continu-
ous algebras:

• SignCEQ is AlgSig again.
• SenCEQ:AlgSig→ Setgives:

– the set of infinitaryΣ -equations for eachΣ ∈ |AlgSig|; and

7 For simplicity, we omit the decoration of terms by their target sorts. Formally, to avoid any
potential ambiguities, the definition should follow the pattern of Definition 1.4.1.
8 For s∈ S, the setsXs⊆X come from a fixed vocabulary of variables as in Definition 2.1.1 and
are mutually disjoint as in footnote 2.
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– the σ -translation function, mapping infinitaryΣ -equations to infinitaryΣ ′-
equations in the obvious way, for each signature morphismσ :Σ → Σ ′.

• ModCEQ:AlgSigop→ Cat gives:

– the categoryCAlg(Σ) of continuousΣ -algebras and continuousΣ -homomorphisms
for eachΣ ∈ |AlgSig|; and

– the reduct functor σ :CAlg(Σ ′)→ CAlg(Σ) defined similarly as in the case
of usual (discrete) algebras for each signature morphismσ :Σ → Σ ′.

• For eachΣ ∈ |AlgSig|, the satisfaction relation|=CEQ,Σ ⊆ |CAlg(Σ)|×SenCEQ(Σ)
is the relation of satisfaction of infinitaryΣ -equations by continuousΣ -algebras.

Exercise.Proceeding similarly as in the proof of the Satisfaction Lemma, show that
the satisfaction condition holds forCEQ.

Exercise. Show that even though we have introduced only infinitary equations as
sentences inCEQ, infinitary inequalities of the form∀X • t ≤ t ′ are expressible here
as well. (HINT : a≤ b iff atb = b.) ut

Exercise 4.1.23.For each of the institutionsINS defined above, define formally
its versionINSder based on the category of signatures with derived signature mor-
phisms as presented in Section 1.5.2 (cf. Exercises 3.1.12 and 3.4.30). ut

Example 4.1.24 (Three-valued first-order predicate logic with equality 3FOPEQ).
We sketch here the institution3FOPEQ of three-valued first-order predicate logic
with equality as an example of how the notion of an institution can cope with logical
systems based on multiple truth values, where the interpretation of sentences may
yield a number of values rather than just being true or false.

• Sign3FOPEQ is the categoryFOSigof first-order signatures.
• Sen3FOPEQ:Sign3FOPEQ→ Setgives:

– For eachΘ ∈ |FOSig|, Sen3FOPEQ(Θ) is the set of sentences of the form
ϕ is tt, ϕ is ff , or ϕ isundef, whereϕ is aΘ -sentence of partial first-order
predicate logic with equalityPFOPEQ (see Exercise 4.1.17).

– For each first-order signature morphismθ :Θ → Θ ′, we define the transla-
tion functionSen3FOPEQ(θ):Sen3FOPEQ(Θ)→ Sen3FOPEQ(Θ ′) in the obvi-
ous way using the translation of first-orderΘ -sentences toΘ ′-sentences in-
duced by the morphismθ .

• Mod3FOPEQ:Signop
3FOPEQ→ Cat is defined as usual for first-order logic, except

that operations in structures are partial functions and predicates are interpreted
as partial relations, which for any tuple of arguments may yield one of three
logical values:tt (for truth), ff (for falsity) and a “third truth value”undef (for
undefinedness).

• Atomic formulae, propositional connectives and quantifiers may be interpreted
over the three-element set of truth values{tt, ff ,undef} in a number of ways, see
for example [KTB91] and references there for a discussion. Here, we adopt the
following interpretation:
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– Atomic definedness formulae have the expected meaning:def(t) is tt if the
value oft is defined, and isff otherwise.

– Equalities are interpreted asstrict equalities: t = t ′ is tt if the values oft and
t ′ are defined and equal, isff if they are defined and different, and isundef
otherwise.

– The propositional connectives and quantifiers are interpreted as in Kleene’s
calculus (cf. [KTB91]). For example,ϕ ∨ϕ ′ is true if either ϕ or ϕ ′ is tt, is ff
if both ϕ andϕ ′ areff and isundefotherwise.

For anyϕ ∈ SenPFOPEQ(Θ) andM ∈ |Mod3FOPEQ(Θ)|, this gives theinterpre-
tation ofϕ in M, [[ϕ]]M ∈ {tt, ff ,undef}.
For each signatureΘ ∈ |FOSig|, the satisfaction relation|=3FOPEQ,Θ ⊆ |Mod3FOPEQ(Θ)|×
Sen3FOPEQ(Θ) is now defined in the obvious way: for anyM ∈ |Mod3FOPEQ(Θ)|
andϕ ∈ Sen3FOPEQ(Θ):

– M |=3FOPEQ,Θ ϕ is tt holds if and only if[[ϕ]]M = tt;
– M |=3FOPEQ,Θ ϕ is ff holds if and only if[[ϕ]]M = ff ; and
– M |=3FOPEQ,Θ ϕ isundefholds if and only if[[ϕ]]M = undef.

Exercise.Work out all the details omitted from the above definition; notice that, in
particular, model morphisms may be defined in a number of sensible ways. Then
show that the satisfaction condition holds. ut

Example 4.1.25 (The institution FPL of a logic for functional programs).The
institution FPL of a logic for a simple functional programming language with a
first-order monomorphic type system is defined as follows:

• A signatureSIG = 〈S,Ω ,D〉 consists of a setSof sort names, a family of sets of
operation namesΩ = 〈Ωw,s〉w∈S∗,s∈S, and a setD of sorts with value construc-
tors. Elements ofD have the form〈d,F 〉 with d ∈ SandF = 〈Fw,d〉w∈S∗ , where
Fw,d ⊆ Ωw,d for w∈ S∗, with no sort given more than one set of value construc-
tors, i.e.〈d,F 〉,〈d,F ′〉 ∈ D implies F = F ′. SoSIG consists of an ordinary
algebraic signature〈S,Ω〉 together with a set ofvalue constructorsfor some
of the sorts. Sorts with value constructors correspond to algebraic datatypes in
functional programming languages. In examples we use a CASL-like notation9,
for instance:

sort nat free with 0 | succ(nat)

addsnat to S, 0:natandsucc:nat→ nat to Ω , and〈nat,{0:nat,succ:nat→ nat}〉
to D. We assume for convenience that eachFPL signatureSIG contains the sort
boolwith value constructorstrueandfalse:

sort bool free with true| false

9 CASL notation: this would be writtenfree typenat ::= 0 | succ(nat) in CASL.
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• A model over a signatureSIG = 〈S,Ω ,D〉 is a partial〈S,Ω〉-algebraA such that
for each set10 of sorts with value constructors{〈d1,F1〉, . . . ,〈dn,Fn〉} ⊆ D, for
1≤ i ≤ n, each value constructor inFi is total and each elementa ∈ |A|di is
uniquely constructed from the values in|A| of sorts other thand1, . . . ,dn using
the value constructors inF1∪ ·· · ∪Fn; that is,〈|A|di 〉1≤i≤n is freely generated
by F1∪·· ·∪Fn from the carriers of the other sorts inA.
We assume that allFPL-models interpret the sortbool and its constructorstrue
andfalsein some standard way.
A SIG-morphism betweenSIG-modelsA andB is an〈S,Ω〉-homomorphism be-
tweenA andB viewed as partial〈S,Ω〉-algebras. It isstrongif it is strong when
viewed as a homomorphism between partial algebras, see Definition 2.7.31.

• The set|TSIG(X)| of FPL-terms overSIG = 〈S,Ω ,D〉 with variablesX and their
interpretation in anFPL-modelA are defined by extending the usual definition
of terms over〈S,Ω〉 and their interpretation by the following additional func-
tional programming constructs (local recursive function definitions and pattern-
matching case analysis, respectively):

– let fun f (x1:s1, . . . ,xn:sn):s′ = t ′ in t is anFPL-term of sorts with variables
in X if:
· s1, . . . ,sn,s′ ∈ S;
· t ′ is anFPL-term of sorts′ overSIG extended byf :s1×·· ·×sn→ s′ with

variables inX∪{x1:s1, . . . ,xn:sn}; and
· t is anFPL-term of sorts overSIG extended byf :s1×·· ·× sn→ s′ with

variables inX.
The value of such a term under a valuationv:X→|A| is determined as follows:
· extendA to give an algebrâA by interpreting f :s1× ·· · × sn→ s′ as the

least-defined partial functionfÂ such that for alla1 ∈ |A|s1, . . . ,an ∈ |A|sn,

the value offÂ(a1, . . . ,an) is the same as the value oft ′ in Â underv mod-
ified by mappingx1 to a1 and . . . andxn to an, whenever the latter is de-
fined.11

· the resulting value is then the value oft in Â underv.
– caset of pat1=>t1| · · · | patn=>tn is anFPL-term of sortswith variables inX

if:
· t is anFPL-term of some sorts′ overSIG with variables inX;
· for each 1≤ j ≤ n, patj is apatternoverSIG of sorts′, where a pattern is

an 〈S,Ω〉-term containing only variables and value constructors, with no
repeated variable occurrences; and

10 This definition is complicated because of the possible presence of mutually dependent sorts with
value constructors.Exercise:Check that imposing the same requirement for each sort with value
constructors separately is more permissive and would not capture the intended meaning. Check
also that it would be sufficient to consider only maximal sets of sorts with values constructors that
are mutually dependent.
11 The fact that this unambiguously definesfÂ, and that fÂ can be equivalently given via the
natural operational semantics of recursively-defined functions, is a standard result of denotational
semantics, see for instance [Sch86].
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· for each 1≤ j ≤ n, t j is anFPL-term of sorts with variables in the setX
extended by the variables ofpatj .

The value of such a term under a valuationv:X→|A| is determined as follows:
· obtain the valuea of t in A underv;
· find the leastj such thata matches patj yielding a valuationv′ of the vari-

ables inpatj , where matching a value against a pattern proceeds as follows:
· a variablex is matched by any valuea, yielding a valuation{x 7→ a};
· a patternf (p1, . . . , pm) is matched byayieldingv′ iff 12 a= fA(a1, . . . ,am)

and eachpi (1 ≤ i ≤ m) is matched byai yielding v′i , with v′ =
v′1∪·· ·∪v′m;

· the resulting value is that oft j in A under the extension ofv by v′ if such a
j exists; otherwise, the resulting value is undefined.

• Sentences overSIG are first-order sentences built over atomic formulae which
are equalities betweenFPL-terms overSIG of the same sort and definedness
assertions for such terms. Interpretation ofFPL-terms in a model determines
satisfaction of such sentences as inPFOEQ, see Exercises 4.1.17 and 4.1.18.
(Recall thatPFOEQ usesstrongequality, see Section 2.7.4.)
For convenience, we introducefunction definitionsof the form

fun f (x1:s1, . . . ,xn:sn):s= t

to abbreviate the formula

∀x1:s1, . . . ,xn:sn

• f (x1, . . . ,xn) = let fun f (x1:s1, . . . ,xn:sn):s= t in f (x1, . . . ,xn).

To make the scopes of identifiers clearer, this can be rewritten using a new oper-
ation nameg as

∀x1:s1, . . . ,xn:sn

• f (x1, . . . ,xn) = let fun g(x1:s1, . . . ,xn:sn):s= t ′ in g(x1, . . . ,xn)

wheret ′ is the result of replacingf by g in t. Such a recursive function defini-
tion is different from the equalityf (x1, . . . ,xn) = t: for instance,f (x1, . . . ,xn) =
f (x1, . . . ,xn) always holds whilefun f (x1:s1, . . . ,xn:sn):s = f (x1, . . . ,xn) holds
only when f is totally undefined.

• Given SIG = 〈S,Ω ,D〉 and SIG′ = 〈S′,Ω ′,D′〉, an FPL signature morphism
δ :SIG → SIG′ is a derived signature morphismδ :〈S,Ω〉 → 〈S′,Ω ′〉 (using
FPL-terms in place of ordinary terms in Definition 1.5.13), such that for each
〈d,F 〉 ∈ D, we have〈δ (d),F ′〉 ∈ D′ such thatδ restricted toF is determined
by a bijection fromF to F ′.
We require allFPL signature morphisms to preserve the sortbool and its con-
structorstrueandfalse.
Such signature morphisms go well beyond the usual renaming of sort and op-
eration names; here we allow (non-constructor) operations to be mapped to

12 This uniquely determines a result because non-variable patterns are of sorts that are freely gen-
erated by the value constructors and there are no repeated occurrences of variables in patterns.
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complicated terms involving programming constructs like recursion and pattern-
matching case analysis. This will be used in Chapters 6–9 to give examples,
starting with Example 6.1.6, that suggest how programs fit into the overall spec-
ification and development framework.
Such a signature morphism determines a translation ofSIG-sentences toSIG′-
sentences in the usual manner,13 and the same for the reduct fromSIG′-models
to SIG-models. Moreover, the satisfaction condition holds.

Exercise.Complete the above definition and prove the satisfaction condition.ut

Exercise 4.1.26.The functional programming constructs used above are inspired by
those in Standard ML [Pau96]. Add more constructs from Standard ML to the def-
inition of FPL. Try adding type definitions, polymorphism, higher-order functions,
exceptions.

It is easy to add built-in types other thanboolby basing the definition ofFPL on
an arbitrary algebraDT as inIMP (Example 4.1.32 below). ut

Exercise 4.1.27.Mutual recursion need not be added explicitly since it is already
expressible using local definitions of recursive functions. Show how. HINT : It may
be necessary to resort to copying function definitions, to make each function avail-
able for the definitions of the others. ut

Exercise 4.1.28.Consider anFPL-signatureSIG containing a sorts that is freely
generated by value constructors from other such sorts. Show how an equality op-
erationeqs:s× s→ bool may be defined using a recursive function definition with
pattern-matching case analysis. Use this to view conditionals of the form

if t1 = t2 then t elset ′

(wheret1, t2 areSIG-terms of sorts, andt, t ′ have the same sort) as an abbreviation
for

let fun eqs(x:s,y:s):bool= . . . in caseeqs(t1, t2) of true=>t| false=>t ′ ut

Exercise 4.1.29.One could also introduce a conditional of the formif ϕ then t elset ′

whereϕ is a formula. Spell out the details. This would be unusual as a programming
construct because branching is controlled by an arbitrary logical formula, allow-
ing terms that would be problematic from a programming point of view, such as
if def(t) then t ′ elset ′′ andif ∀x:s• t1 = t2 then t ′ elset ′′. Note that the meaning of
such a conditional would be different from the one introduced in Exercise 4.1.28
when the check for equality involves a term with no defined value. ut

13 Care is required to avoid unintended clashes oflet-bound operation names inSIG-terms with
operation names inSIG′. To avoid consequent problems with functoriality of sentence translation,
we can regardFPL-terms as being defined up to renaming oflet-bound operation names.

Moreover, as inFOPEQ (see Example 4.1.12), care is needed with the treatment of bound vari-
ables (which now also include variables in patterns and formal parameters inlet-bound operation
definitions), cf. footnote 6.
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Exercise 4.1.30.While FPL involves constructs borrowed from functional pro-
gramming languages, it puts them in a logical context involving equality, logical
connectives and quantifiers, which results in sentences capable not only of defining
functions, but also of specifying their properties. Identify the “programming part”
of FPL by defining its “subinstitution”FProg with the same signatures and mod-
els, but with sets of sentences restricted to function definitions (with satisfaction
relations inherited fromFPL as well). As function definitions may not be closed
under translation along arbitrary (derived) signature morphisms inFPL, restrict the
class of signature morphisms inFProg to the standard morphisms, where operation
names are mapped to operation names rather than to arbitrary terms. ut

Exercise 4.1.31. FPL, and its programming partFProg, relate to eager functional
programming languages like Standard ML because partial functions are required to
be strict. Formulate an analogous institution for lazy functional programming as in
Haskell. ut

The institutionsFPL andFProg will be used in the sequel to present examples
that are meant to appeal to the reader’s programming intuition. Later on, the connec-
tion with functional programming will be further enhanced by introducing notations
for defining ML-style modules inFPL (see Example 6.1.9 and Exercise 7.3.5 be-
low).

Example 4.1.32 (The institution IMP of a simple imperative language).The in-
stitution IMP of an imperative programming language with simple type definitions
is parameterised by an algebraDT on a signatureΣDT of primitive (built-in) data
types and functions of the language. The components ofIMP DT are defined as fol-
lows:

• A signatureΠ = 〈T,P〉 consists of a setT of type names and a setP of functional
procedure names with types of the forms1, . . . ,sn→ s, where each ofs1, . . . ,sn,s
is either a sort inΣDT or a type name inT. The names inT andP are distinct
from those inΣDT . ThusΠ ∪ΣDT is an algebraic signature — we will denote
it by ΠDT . Signature morphisms map type names to type names and procedure
names to procedure names preserving their types.

• There are two kinds of sentences over a signatureΠ = 〈T,P〉.
First, sentences can be type definitions of the form

type s= type-expr

wheres∈ T is a type name andtype-expris a type expression in a simple lan-
guage of types built over the sorts inΣDT and a unit typeunit using the opera-
tors+ (disjoint union) and× (Cartesian product). The type expressiontype-expr
may contain the type names as well, which provides for recursive type defini-
tions.14

Second, sentences can be procedure definitions of the form

14 Other type names fromT are excluded, to prevent mutual recursion in type definitions — with
some extra work this restriction can be removed.
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proc p(x1:s1, . . . ,xn:sn) = while-program; result expr:s

wherep:s1, . . . ,sn→ s is a procedure name inP, expr is aΠDT -term (with vari-
ables) of sorts, andwhile-programis a statement in a deterministic programming
language over the built-in data types and functions given inDT (while-program
may be empty, and so the program part of a procedure body may be omitted).
We assume that the usual iterative program constructions are provided: sequen-
tial statements, conditionals and while loops. This requires thatΣDT contains
the sortboolwith |DT|bool = {tt, ff}. The basic statements are well-typed assign-
ments (of expression values to formal parameters or variables scoped within each
procedure body).
Expressions may use projectionsproj1(v) andproj2(v) for valuesv of product
types of the forms1×s2, and pairing〈v1,v2〉 to build values of product types, as
well as boolean testsis-in 1(v) andis-in 2(v) for valuesv of union types of
the forms1 + s2 and the constant〈〉 of typeunit denoting the only element of
this type. The usual coercions between union types and their component types
may also be used. With a bit of additional complication we can also allow ex-
pressions to contain (recursive) procedure calls.

• A modelM over a signatureΠ = 〈T,P〉 has a carrier set|M|s for eachs∈ T. We
write |M|s for |DT|s if s is a sort name inΣDT .
We have the usual notion ofstate, where each state maps formal parameters and
variables to values of their sorts inM, or marks them as undefined. An obvious
operational semantics may be given that determines, for each statement and state,
a sequence of states that formally captures the execution of that statement starting
in that state.
Then,M assigns to each procedure namep:s1, . . . ,sn→ s in Pand every sequence
v1 ∈ |M|s1, . . . ,vn ∈ |M|sn of (actual parameter) values a formal execution which
has one of the following forms:

(Successful termination): a finite sequence of states and a valuev∈ |M|s;
(Unsuccessful termination): a finite sequence of states; or
(Divergence): an infinite sequence of states.

Given any such modelM, for any procedure namep:s1, . . . ,sn→ s in P we get a
partial functionpM: |M|s1×·· ·× |M|sn→ |M|s.
The models defined in this way form a discrete category.

• For any signatureΠ = 〈T,P〉 andΠ -modelM:

– M satisfies aΠ -sentence of the form

type s= type-expr

if |M|s is the least setD such thatD is the value of the type expression
type-exprin which the type names is interpreted asD and sort namess′ in
ΣDT are interpreted as|DT|s′ .

– M satisfies aΠ -sentence of the form

proc p(x1:s1, . . . ,xn:sn) = while-program; result expr:s
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if for all v1∈ |M|s1, . . . ,vn∈ |M|sn, M(p)(v1, . . . ,vn) is the formal execution of
the statementwhile-programstarting in the state{x1 7→ v1, . . . ,xn 7→ vn}, and
if the execution terminates successfully in a state in whichexprhas a defined
value thenM(p)(v1, . . . ,vn) contains this value as well.

Exercise.Complete the above definition and prove the satisfaction condition.ut

Exercise 4.1.33.Sentences inIMP are essentially programs; they provide no means
of writing loose specifications. Add sentences ofPFOPEQ for specifying properties
of the procedures ofIMP viewed as partial functions. A different way of achieving
a similar effect will be presented in Examples 10.1.9, 10.1.14 and 10.1.17. ut

Example 4.1.34 (The institution CDIAG of commutative diagrams).The follow-
ing example is of a rather non-standard character. We present a simple logical system
for stating that certain diagrams in a category with named objects and morphisms
commute. Sentences of the logical system allow one to require that morphisms pro-
duced by composition of series of (named) morphisms coincide.

• The category of signatures inCDIAG is the categoryGraph of graphs (see Def-
inition 3.2.36).

• A path equationin a graphG is a pair of paths inG with the same sources and
targets, respectively. For any graphG (a signature inSignCDIAG ), G-sentences in
CDIAG are sets of path equations inG.

• A model over a graphG is a (small) categoryC with a diagramD of “shape”
G, i.e. (via Exercise 3.4.21) a functorD:Path(G)→ C. For any twoG-models
D1:Path(G)→ C1 and D2:Path(G)→ C2, a G-morphismin ModCDIAG (G)
from D1 toD2 is a functorF:C1→ C2 such thatD1;F = D2.

• For anyG-modelD:Path(G)→ C, a pathp from s to t in G determines a mor-
phismD(p):D(s)→D(t) in C. We say that aG-modelD:Path(G)→C satisfies
a path equation〈p,q〉 if D(p) = D(q). A G-model satisfies aG-sentenceΦ if it
satisfies all path equationsϕ ∈Φ .

Exercise.Complete the definition and prove the satisfaction condition forCDIAG .

Exercise.Reformulate the above definitions so that a sentence over a graphG would
be a subdiagram ofG used to denote the set of path equations inG which make the
subdiagram commute. ut

The last few examples show that the notion of institution covers much more than
what one usually connects with the concept of a logical system.

The next two examples are perhaps even more unusual: we show that the defini-
tion of an institution does not restrict the sentences of a logic to be syntactic objects,
and does not force models to provide semantic domains and operations used to de-
termine the meanings of the syntactic objects. Thus, the notion of an institution
covers systems in which such a distinction is entirely blurred.

Example 4.1.35.Consider an arbitrary categorySign and functorMod:Signop→
Cat. We think ofSignas a category of signatures and ofMod as yielding categories
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of models and reduct functors. To be cautious about foundations, we should make
sure thatMod yields only small categories.

We can now define an institutionINSSen(Mod) where “sentences” are classes of
models:

• The category of signatures ofINSSen(Mod) is Sign.
• The “sentence” functor ofINSSen(Mod) is defined as follows:

– For any signatureΣ ∈ |Sign|, a Σ -“sentence” ofINSSen(Mod) is a collection
M ⊆ |Mod(Σ)| of Σ -models.

– For any signature morphismσ :Σ→ Σ ′, theσ -translation of anyΣ -“sentence”
M ⊆ |Mod(Σ)| to a Σ ′-“sentence”σ(M ) ⊆ |Mod(Σ ′)| is defined as the
coimage ofM w.r.t. theσ -reduct functor, i.e.σ(M ) = {M′ ∈ |Mod(Σ ′)| |
Mod(σ)(M′) ∈M }.

• The model functor ofINSSen(Mod) is Mod.
• For each signatureΣ , the Σ -satisfaction relation ofINSSen(Mod) is just the

membership relation: for anyΣ -modelM ∈ |Mod(Σ)| andΣ -“sentence”M ⊆
|Mod(Σ)|, M |=INSSen(Mod),Σ

M if and only if M ∈M .

Exercise.Complete the definition and check the satisfaction condition. ut

Example 4.1.36.Consider an arbitrary categorySignand functorSen:Sign→ Set.
We think ofSignas a category of signatures and ofSenas yielding sets of sentences
and their translations.

We can now define an institutionINSMod(Sen) where “models” are sets of sen-
tences:

• The category of signatures ofINSMod(Sen) is Sign.
• The sentence functor ofINSMod(Sen) is Sen.
• The “model” functor ofINSMod(Sen) is defined as follows:

– For any signatureΣ ∈ |Sign|, aΣ -“model” of INSMod(Sen) is a setΦ ⊆Sen(Σ)
of Σ -sentences. The category ofΣ -“models” is just the preorder category
where the set of all such subsets is ordered by inclusion.

– For any signature morphismσ :Σ → Σ ′, theσ -reduct functor ofINSMod(Sen)

from the category ofΣ ′-“models” to the category ofΣ -“models” maps any
Σ ′-“model” Φ ′ ⊆ Sen(Σ ′) to its coimage{ϕ ∈ Sen(Σ) | Sen(σ)(ϕ) ∈Φ ′} ⊆
Sen(Σ); this obviously extends to a functor between the preorder categories
of Σ ′- andΣ -“models”.

• For each signatureΣ , the Σ -satisfaction relation ofINSMod(Sen) is (the inverse
of) the membership relation: for anyΣ -“model” Φ ⊆ Sen(Σ) and Σ -sentence
ϕ ∈ Sen(Σ), Φ |=INSMod(Sen),Σ

ϕ if and only if ϕ ∈Φ .

Exercise.Complete the definition and check the satisfaction condition. ut

Let us complete this list of examples by pointing out that the definition of insti-
tution admits a number of trivial situations:
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Example 4.1.37 (Trivial institutions).

• Recall that0 is the empty category. Hence, there is a unique (empty) functor from
0 to Set and a unique (empty) functor from0op = 0 to Cat. Together with the
empty family of relations, they form an empty institution (no signatures, hence
no sentences and no models).

• Given any categorySign and functorMod:Signop→ Cat, a trivial institution
with signaturesSign, with models given byMod, and with no sentences may be
constructed. Formally, the sentences of this institution are given by the functor
Sen∅:Sign→ Setwhich yields the empty set for each signature.

• Given any categorySign and functorSen:Sign→ Set, a trivial institution with
signaturesSign, with sentences given bySen, and with no models may be
constructed. Formally, the models of this institution are given by the functor
Mod0:Signop→ Cat which yields the empty category for each signature.

• Given any categorySignand functorsSen:Sign→ SetandMod:Signop→Cat,
two trivial institutions with signaturesSign, with sentences given bySen, and
with models given byMod may be constructed. One is obtained by making all
sentences false in all models, that is by defining each satisfaction relation to be
empty. The other is obtained by making all sentences hold in all models, that
is by definining each satisfaction relation to be total (i.e., for eachΣ ∈ |Sign|,
|=Σ = |Mod(Σ)|×Sen(Σ)). ut

4.1.2 Constructing institutions

In the examples of the previous subsection, each of the institutions was constructed
“from scratch” by explicitly defining its signatures, sentences, models and satisfac-
tion relations. This is often a rather tedious task (we have simplified it in many cases
by referring to the standard definitions) and then checking the satisfaction condition
is not always easy. In this subsection we will give some examples of constructions
leading from an institution to a more complex one. The complexity added by the
construction does not necessarily imply that the institution so obtained has any ex-
tra “expressive power”. We start with some examples of “formal juggling” with
institution components, very much in the spirit of Examples 4.1.35 and 4.1.36, and
only then show how adding propositional connectives to a logic may be viewed as a
construction of a new institution from an existing one.

Example 4.1.38.Sets of sentences of any institution may be regarded as single sen-
tences (with the obvious “conjunctive” interpretation).

For any institutionINS define the institutionINS∧ of sets ofINS-sentences as
follows:

• The category ofINS∧-signatures is the same as the categorySign of INS-
signatures.

• The sentence functorSenINS∧ is defined as follows:
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– For any signatureΣ ∈ |Sign|, SenINS∧(Σ) is the set of all setsΦ ⊆ SenINS(Σ)
of Σ -sentences inINS.

– For any signature morphismσ :Σ → Σ ′, the translation of aΣ -sentenceΦ in
INS∧ is its image w.r.t. theσ -translation function inINS: SenINS∧(σ)(Φ) =
{SenINS(σ)(ϕ) | ϕ ∈Φ} ⊆ SenINS(Σ ′).

• The model functor ofINS∧ is the same as the model functorMod:Signop→Cat
of INS.

• For any signatureΣ ∈ |Sign|, the satisfaction relation ofINS∧ gives the conjunc-
tive interpretation of (sets of) sentences: for anyΣ -modelM ∈ |Mod(Σ)| andΣ -
sentenceΦ ⊆SenINS(Σ), M |=INS∧,Σ Φ if and only if for all ϕ ∈Φ , M |=INS,Σ ϕ.

ut

Example 4.1.39.Signatures of any institution may be enriched to incorporate sen-
tences which restrict the class of models considered over the given signature.

For any institutionINS define the institutionINSSign+
with signatures enriched

by sentences as follows:

• Signatures ofINSSign+
are pairs〈Σ ,Φ〉, whereΣ ∈ |SignINS| is anINS-signature

andΦ ⊆ SenINS(Σ) is a set ofΣ -sentences. Then, anINSSign+
-signature mor-

phismσ :〈Σ ,Φ〉 → 〈Σ ′,Φ ′〉 is a signature morphismσ :Σ → Σ ′ in SignINS such
that for allϕ ∈Φ , σ(ϕ) ∈Φ ′. This defines a categorySign

INSSign+ of INSSign+
-

signatures (with composition inherited fromSignINS).
• Sentences ofINSSign+

are the same asINS-sentences: for anyINSSign+
-signature

〈Σ ,Φ〉, Sen
INSSign+ (〈Σ ,Φ〉) = SenINS(Σ), with the translation functions inher-

ited fromINS as well.
• Models of INSSign+

are again the same as models ofINS; we consider, how-
ever, only those models that satisfy the sentences in the given signature. For
any INSSign+

-signature〈Σ ,Φ〉, Mod
INSSign+ (〈Σ ,Φ〉) is the full subcategory

of ModINS(Σ) consisting of allΣ -models (inINS) that satisfy (according to
|=INS,Σ ) all the sentences inΦ . The reduct functors are again inherited from
INS.

• The satisfaction relations ofINSSign+
are inherited fromINS.

Exercise. Spell out all the details of the above definition. In particular, check that
the reduct functors of the new institutionINSSign+

are well-defined (cf. Fact 4.2.24
below). ut

Example 4.1.40.For any institution, we can enlarge its categories of models by
considering models over extended signatures.

For any institutionINS, define the institutionINSMod+
with categories of models

containing models over extended signatures as follows:

• The category ofINSMod+
-signatures is the categorySignof INS-signatures.

• The sentence functor ofINSMod+
is the sentence functorSen:Sign→Setof INS.

• The model functorMod
INSMod+ :Signop→ Cat is defined as follows:
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– For any signatureΣ ∈ |Sign|, a Σ -model of INSMod+
is an INS-model

over an extension of the signatureΣ . Formally: aΣ -model in INSMod+
is

a pair〈σ :Σ → Σ ′,M′ ∈ |ModINS(Σ ′)|〉. A Σ -model morphism between two
suchΣ -models is again a pair〈σ ′, f 〉:〈σ1:Σ → Σ ′1,M

′
1 ∈ |ModINS(Σ ′1)|〉 →

〈σ2:Σ → Σ ′2,M
′
2 ∈ |ModINS(Σ ′2)|〉, which consists of anINS-signature mor-

phism σ ′:Σ ′1 → Σ ′2 such thatσ1;σ ′ = σ2 and a model morphismf :M′1 →
ModINS(σ ′)(M′2) in ModINS(Σ ′1).

– For any signature morphismσ :Σ1→Σ2, theσ -reduct functorMod
INSMod+ (σ)

maps anyΣ2-model〈σ2:Σ2→ Σ ′2,M
′
2 ∈ |ModINS(Σ ′2)|〉 to theΣ1-model〈σ ;σ2:Σ1→ Σ ′2,M

′
2 ∈ |ModINS(Σ ′2)|〉.

On model morphisms,Mod
INSMod+ (σ) is the identity.

• For each signatureΣ ∈ |Sign|, theΣ -satisfaction relation ofINSMod+
is deter-

mined by theΣ -satisfaction relation ofINS: for anyΣ -model〈σ :Σ → Σ ′,M′ ∈ |ModINS(Σ ′)|〉
and Σ -sentenceϕ ∈ Sen(Σ), 〈σ ,M′〉 |=

INSMod+
,Σ

ϕ if and only if M′ |=INS,Σ ′

Sen(σ)(ϕ), which by the satisfaction condition forINS is equivalent toModINS(σ)(M′) |=INS,Σ

ϕ.

Exercise. Complete the definition and check the satisfaction condition. Try to ex-
press the construction of the categories of models ofINSMod+

using the flattening
construction for indexed categories (Definition 3.4.58) and the machinery of comma
categories (Definition 3.4.49). ut

Example 4.1.41.For any institutionINS define the institutionINSprop by closing
the sets of its sentences under propositional connectives (with the usual interpreta-
tion) as follows:

• The category of signatures ofINSprop is just the categorySignof INS-signatures.
• The sentence functorSenINSprop:Sign→ Set is defined as follows:

– For any signatureΣ ∈ |Sign|, SenINSprop(Σ) is the least set that contains all
of the Σ -sentences ofINS and two special sentencestrue and false, and
is closed under the usual propositional connectives as introduced in Exam-
ple 4.1.9, that is, ifϕ,ϕ ′ ∈ SenINSprop(Σ) then alsoϕ ∨ϕ ′ ∈ SenINSprop(Σ),
¬ϕ ∈ SenINSprop(Σ), ϕ ∧ϕ ′ ∈ SenINSprop(Σ), andϕ ⇒ ϕ ′ ∈ SenINSprop(Σ).15

– For any signature morphismσ :Σ→Σ ′, theσ -translation functionSenINSprop(σ)
coincides withSenINS(σ) onSenINS(Σ) and preserves the propositional con-
nectives in the new sentences in the obvious way.

• The model functor ofINSprop is the model functorMod:Signop→ Cat of INS.
• For each signatureΣ ∈ |Sign|, theΣ -satisfaction relation ofINSprop is just the

same as theΣ -satisfaction relation ofINS for sentences inSenINS(Σ) and then,
for anyΣ -modelM ∈ |Mod(Σ)|, for the sentences built using the propositional
connectives, the satisfaction of such sentences inM is defined inductively as in
Example 4.1.9.

15 The remarks in footnote 4 apply as appropriate.
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Exercise. Show howPROP, the institution of propositional logic (see Exam-
ple 4.1.9) arises as the propositional closure of a simple institution with proposi-
tional variables as the only sentences. ut

In Section 4.4.2 below we define yet another similar construction on institutions
by showing how quantifiers may be introduced.

The constructions described in the examples above may naturally be viewed as
extensions of the original institution — this will be made formal in Section 10.2,
cf. Example 10.2.5. In Section 10.3 we will discuss how such extensions may be
combined using the limit construction in a suitable category of institutions.

These examples are about adding new sentences built using logical connectives
to an institution. The new sentences are added, even if the connectives were already
expressible in the following sense:

Definition 4.1.42.The institutionINS has negationif for every signatureΣ ∈ |Sign|
and Σ -sentenceϕ, there exists aΣ -sentenceψ such that for everyΣ -model M,
M |=Σ ϕ iff M 6|=Σ ψ. Any suchψ may be referred to as¬ϕ.

The properties ofhaving conjunction, having disjunctionandhaving implication
are defined in the analogous way, and similarly forhaving truth, having falsity,
having infinitary conjunctionetc. ut

Exercise 4.1.43.Suppose that the institutionINS has negation. Using the satisfac-
tion condition, show that for every signature morphismσ :Σ → Σ ′ andΣ -sentence
ϕ,¬σ(ϕ) may be taken to beσ(¬ϕ). Show a similar property for the other connec-
tives. ut

Example 4.1.44.For any institutionsINS1 = 〈Sign1,Sen1,Mod1,〈|=1,Σ1〉Σ1∈|Sign1|〉
and INS2 = 〈Sign2,Sen2,Mod2,〈|=2,Σ2〉Σ2∈|Sign2|〉, their sum INS1 + INS2 puts
INS1 and INS2 side by side without any “interaction”. Formally,INS1 + INS2 is
defined as follows:

• The category of signatures ofINS1+ INS2 is the disjoint unionSign1+Sign2 of
the categories of signatures ofINS1 and ofINS2.

• The sentence functorSenINS1+INS2:Sign1 +Sign2→ Setacts asSen1 on Sign1
and asSen2 on Sign2 (that is,SenINS1+INS2 is determined bySen1 and Sen2

according to the coproduct property ofSign1 +Sign2).
• The model functorModINS1+INS2:(Sign1 + Sign2)op→ Cat acts asMod1 on

Sign1 and asMod2 onSign2 (that is,ModINS1+INS2 is determined byMod1 and
Mod2 according to the coproduct property ofSign1 +Sign2).

• The family of satisfaction relations ofINS1 + INS2 is the union of the fam-
ilies of satisfaction relations ofINS1 and of INS2 (that is, for Σ1 ∈ |Sign1|,
|=INS1+INS2,Σ1 is |=1,Σ1, and forΣ2 ∈ |Sign2|, |=INS1+INS2,Σ2 is |=2,Σ2). ut

Example 4.1.45.Given institutionsINS1 = 〈Sign1,Sen1,Mod1,〈|=1,Σ1〉Σ1∈|Sign1|〉
and INS2 = 〈Sign2,Sen2,Mod2,〈|=2,Σ2〉Σ2∈|Sign2|〉, their product INS1× INS2 is
defined as follows:
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• The category of signatures ofINS1× INS2 is the productSign1×Sign2 of the
categories of signatures ofINS1 and ofINS2; thus a signature inINS1× INS2 is
a pair consisting of one signature fromINS1 and one fromINS2, and similarly
for signature morphisms.

• The sentence functorSenINS1×INS2:Sign1×Sign2→ Set is defined as follows:

– For any signature〈Σ1,Σ2〉 ∈ |Sign1×Sign2|, SenINS1×INS2(〈Σ1,Σ2〉)= Sen1(Σ1)+
Sen2(Σ2) is the disjoint union of the sets ofINS1-sentences overΣ1 and of
INS2-sentences overΣ2.

– For any signature morphism〈σ1,σ2〉:〈Σ1,Σ2〉→ 〈Σ ′1,Σ ′2〉, SenINS1×INS2(〈σ1,σ2〉)=
Sen1(σ1)+Sen2(σ2) acts asSen1(σ1) on INS1-sentences and asSen2(σ2) on
INS2-sentences over the signature〈Σ1,Σ2〉.

• The model functorModINS1×INS2:(Sign1×Sign2)op→ Cat is defined as fol-
lows:

– For any signature〈Σ1,Σ2〉 ∈ |Sign1×Sign2|, ModINS1×INS2(〈Σ1,Σ2〉)= Mod1(Σ1)×
Mod2(Σ2) is the product of the categories ofINS1-models overΣ1 and of
INS2-models overΣ2; thus a model inINS1× INS2 is a pair consisting of one
model fromINS1 and one fromINS2, and similarly for model morphisms.

– For any signature morphism〈σ1,σ2〉:〈Σ1,Σ2〉→ 〈Σ ′1,Σ ′2〉, ModINS1×INS2(〈σ1,σ2〉)=
Mod1(σ1)×Mod2(σ2) acts asMod1(σ1) on theINS1-components of〈Σ ′1,Σ ′2〉-
models and model morphisms and asMod2(σ2) on theINS2-components of
〈Σ ′1,Σ ′2〉-models and model morphisms.

• For any signature〈Σ1,Σ2〉 ∈ |Sign1×Sign2|, model〈M1,M2〉 ∈ |ModINS1×INS2(〈Σ1,Σ2〉)|
and sentencesϕ1 ∈Sen1(Σ1) andϕ2 ∈Sen2(Σ2), 〈M1,M2〉 |=INS1×INS2,〈Σ1,Σ2〉 ϕ1

if and only if M1 |=1,Σ1 ϕ1, and 〈M1,M2〉 |=INS1×INS2,〈Σ1,Σ2〉 ϕ2 if and only if
M2 |=2,Σ2 ϕ2. That is, satisfaction inINS1× INS2 is defined asINS1-satisfaction
for INS1-sentences (extracting theINS1-components ofINS1× INS2-models)
and asINS2-satisfaction forINS2-sentences (extracting theINS2-components of
INS1× INS2-models). ut

The next example indicates a technically correct but intuitively somewhat arti-
ficial way of dealing with the translation of sentences along signature morphisms.
The simple idea is that instead of actually translating sentences from one signa-
ture to another, we can always keep the original sentence over its original signature
together with a morphism “fitting” it to another signature.

Example 4.1.46.Consider an institutionINS = 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉 and
a functionNewSen: |Sign|→ |Set| together with a family of relations〈|=NewSen,Σ ⊆ |Mod(Σ)|×NewSen(Σ)〉Σ∈|Sign|.
Intuitively, for any signatureΣ , NewSen(Σ) is a set of new sentences overΣ with the
satisfaction relation|=NewSen,Σ . We define an institutionINS + NewSenby adding
these new sentences fitted to other signatures via signature morphisms:

• The category of signatures ofINS + NewSenis just the categorySign of INS-
signatures.

• The sentence functorSenINS+NewSen:Sign→ Set is defined as follows:
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– For any signatureΣ ∈ |Sign|, SenINS+NewSen(Σ) is the (disjoint) union of the
“old” sentencesSen(Σ) and the set16 of “new” sentences fitted to the sig-
natureΣ by a signature morphism. The latter are pairs〈ϕ ′,θ〉, written as
ϕ ′ through θ , with θ :Σ ′ → Σ andϕ ′ ∈ NewSen(Σ ′) for an arbitrary signa-
tureΣ ′.

– For any signature morphismσ :Σ → Σ1, SenINS+NewSen(σ) works asSen(σ)
on theINS-sentences; forθ :Σ ′→Σ andϕ ′ ∈NewSen(Σ ′), SenINS+NewSen(σ)(ϕ ′ through θ)=
ϕ ′ through θ ;σ .

• The model functor ofINS+NewSenis the model functorMod:Signop→Cat of
INS.

• For each signatureΣ ∈ |Sign|, the Σ -satisfaction relation ofINS + NewSenis
just the same as theΣ -satisfaction relation ofINS for the “old” Σ -sentences
and then, for anyΣ -model M ∈ |Mod(Σ)|, θ :Σ ′ → Σ and ϕ ′ ∈ NewSen(Σ ′),
M |=INS+NewSenϕ

′ through θ if and only if M θ |=NewSen,Σ ′ ϕ ′.

Exercise.Check the satisfaction condition. ut

We conclude this list of constructions on institutions with a sketch of how various
modal (and temporal) logics may be built over an arbitrary institution.

Example 4.1.47.Let INS = 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉 be an institution. We
define the institutionLTL INS of linear-time temporal logic overINS, using se-
quences of models fromINS as models and sentences fromINS as “state sentences”,
that is:

• The category of signatures ofLTL INS is Sign, the same as inINS.
• For each signatureΣ , a Σ -model in LTL INS is a countably infinite sequence

M = 〈Mn〉n≥0 of modelsMn ∈ |Mod(Σ)| for n≥ 0. Reducts of such models w.r.t.
a signature morphismσ are defined componentwise, using the reduct w.r.t.σ as
defined inINS. (We disregard model morphisms here, takingModLTL INS(Σ) to
be the discrete category.)

• For each signatureΣ , the set ofΣ -sentences inLTL INS is the least set that con-
tainstrue and all the sentences inSen(Σ) (calledstate sentencesin this context)
and is closed under negation, written¬ϕ, conjunction,ϕ ∧ψ, and two modal
operators:next time, Xϕ, anduntil, ϕ Uψ.

• For each signatureΣ , satisfaction is defined in terms of an auxiliary relation of
satisfaction at a given position in the temporal sequence; for each modelM =
〈Mn〉n≥0, and j ≥ 0 we define:

– for any state sentenceϕ, M |= j ϕ if M j |= ϕ (in INS);
– M |= j ¬ϕ if it is not the case thatM |= j ϕ;
– M |= j ϕ ∧ψ if M |= j ϕ andM |= j ψ;

16 This may lead to some foundational difficulties, since the collection of all signature morphisms
into Σ , and hence the collection of all newΣ -sentences, need not form a set. One argument for
ignoring these problems here is that we can typically limit the size of the category of signatures of
the institution we start with, for example assuming that the categorySign is small.
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– M |= j Xϕ if M |= j+1 ϕ; and
– M |= j ϕ Uψ if for somek≥ j, M |=k ψ and for all j ≤ i < k, M |=i ϕ.

We put nowM |=LTL INS,Σ ϕ if M |=0 ϕ.

Exercise.Complete the definition and check the satisfaction condition.

Exercise. Add other temporal modalities, like “eventually/finally” and “hence-
forth/globally”, either by defining them explicitly, or as abbreviations, for instance:
Fϕ ≡ trueUϕ, Gϕ ≡ ¬(F(¬ϕ)), etc.

Also, add “past” temporal modalities (previous, since, sometimes in the past,
always in the past, etc). ut

Exercise 4.1.48.Proceeding similarly as in Example 4.1.47, given an institution
INS, define the institutionMDL INS of modal logic:

• The category of signatures ofMDL INS is Sign, the same as inINS.
• For each signatureΣ , a Σ -model inMDL INS is a Kripke structure, i.e., a triple
〈W,;,M〉, which consists of a setW (of “possible worlds” or “state names”)
and a relation; ⊆W×W (“transition relation”) together with a familyM =
〈Mw〉w∈W of Σ -models inINS, Mw ∈ |Mod(Σ)| for w∈W. Again, we disregard
model morphisms.

• For each signatureΣ , the set ofΣ -sentences inMDL INS is the least set that
containstrue and all the sentences inSen(Σ) and is closed under negation¬ϕ,
conjunctionϕ ∧ψ, and the modal operator2ϕ.

• For each signatureΣ , satisfaction is defined in terms of an auxiliary relation of
satisfaction at a given world in a Kripke structure; here is the crucial clause:

– 〈W,;,M〉 |=w 2ϕ if for all v∈W such thatw ; v, 〈W,;,M〉 |=v ϕ.

Then a model satisfies a sentence inMDL INS if the sentence holds in the above
sense at each of its possible worlds.

Complete the definition and check the satisfaction condition.
To keep the definition closer toLTL INS, you may want to define a somewhat

different version of modal logic, where Kripke structures in addition indicate an
initial world, and then the satisfaction of a sentence in a model is determined by its
satisfaction at this initial world. You may also want to impose requirements on the
transition relation (for instance, that it is transitive, or that all possible worlds can
be reached from the initial world, etc.).

Combining the ideas behindMDL INS andLTL INS, define the institutionCTL ∗INS
of branching-time temporal logic, where signatures and models are as inMDL INS,
but sentences are closed under a variety of temporal operators used to quantify (sep-
arately) over paths in the Kripke structure and over worlds in these paths. HINT :
Distinguish two kinds of sentences: path sentences that are evaluated for a given
path in the Kripke structure; and state sentences that are evaluated for a given world
in the Kripke structure — or see [Eme90].

You may also start by defining a simpler institutionCTL INS where the use of
temporal operators is limited by requiring that quantification over paths and over
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worlds in these paths always happen together, so in fact we have only bundled
path/state temporal operators, like “for some path, always in this path”, “for some
path, eventually in this path”, etc. ut

Exercise 4.1.49.Consider an institutionMDL FOPEQ of modal logic built over first-
order predicate logic with equality. Note that this isnot the institution of first-order
modal logic, since quantification is internal to state sentences only and cannot be
interleaved with the modal operator. Define an institution of first-order modal logic
in which such an arbitrary interleaving of quantifiers, propositional connectives and
the modal operator is allowed. HINT : The trouble here is with moving valuations of
variables from one world to another in the definition of satisfaction. At least, define
such an institution assuming that the carriers of all models in any Kripke structure
coincide. Discuss possible generalisations.

Carry out similar constructions of first-order temporal logics that extendLTL FOPEQ,
CTL ∗FOPEQ andCTL FOPEQ, respectively. ut

4.2 Flat specifications in an arbitrary institution

Throughout this section we will deal with an arbitrary but fixed institution. This
means that we will be working with a logical system about which we know nothing
beyond what is given in the definition of an institution. For example, we will not
be able to refer to any particular components of signatures, any particular syntax
of sentences, any particular internal structure of models, or any particular definition
of satisfaction. Indeed, we cannot even be sure that signatures have components,
that sentences are syntactic entities in any sense, or that models have any internal
structure at all.

Given these limitations, one may think that there is very little that can be done.
However, the structure of an institution is rich enough to allow us to recast in these
terms the material on simple equational specifications presented in Sections 2.2
and 2.3 (this will be done in the present section, without repeating the discussion
and motivation) and then to proceed further into the theory of specifications and
software development.

Let us then fix an arbitrary institutionINS = 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉. We
start with the basic concepts built around the notion of satisfaction.

Definition 4.2.1 (ModΣ (Φ), ThΣ (M ), ClΣ (Φ) andClΣ (M )). Let Σ be an arbitrary
signature.

• For any setΦ ⊆ Sen(Σ) of Σ -sentences, the classModΣ (Φ) ⊆ |Mod(Σ)| of
models ofΦ is defined as the class of allΣ -models that satisfy all the sentences
in Φ .17

17 Note the overloading of the term “model” as discussed after Definition 4.1.1. We continue to
follow the terminology of [GB92], hoping that this will not lead to any confusion.
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• For any classM ⊆ |Mod(Σ)| of Σ -models, thetheory ofM is the setThΣ (M )⊆
Sen(Σ) of all theΣ -sentences that are satisfied by all the models inM .

• A set Φ ⊆ Sen(Σ) of Σ -sentences isclosedif Φ = ThΣ (ModΣ (Φ)). We will
write ClΣ (Φ) for ThΣ (ModΣ (Φ)) and refer toClΣ (Φ) as theclosure ofΦ .

• A classM ⊆ |Mod(Σ)| of Σ -models isclosedif M = ModΣ (ThΣ (M )). Closed
classes of models will be calleddefinable. The closure of M is the class
ModΣ (ThΣ (M )). ut

The basic properties of the above notions follow from the fact thatThΣ andModΣ

form a Galois connection:

Proposition 4.2.2.For any signatureΣ , the mappings ThΣ and ModΣ form a Ga-
lois connection between sets ofΣ -sentences and classes ofΣ -models ordered by
inclusion.

Proof. The proof is just the same (and just as easy) as in the equational case, cf.
Proposition 2.3.2. ut

Corollary 4.2.3. For any signatureΣ , setΦ ⊆ Sen(Σ) of Σ -sentences, and class
M ⊆ |Mod(Σ)| of Σ -models:

Φ ⊆ ThΣ (M ) iff ModΣ (Φ)⊇M ut

Exercise 4.2.4.Construct counterexamples that show that under the assumptions of
Corollary 4.2.3 neither of the following implications holds:

ModΣ (Φ)⊆M implies ThΣ (M )⊆Φ

ThΣ (M )⊆Φ implies ModΣ (Φ)⊆M .

Prove that the former implication holds ifΦ is closed, and the latter ifM is closed
(i.e., is definable). ut

The satisfaction relation determines in the obvious way a consequence relation
between sentences of the institution:

Definition 4.2.5 (Semantic consequence).Let Σ be an arbitrary signature. AΣ -
sentenceϕ ∈ Sen(Σ) is a semantic consequenceof a set Φ ⊆ Sen(Σ) of Σ -
sentences, writtenΦ |=Σ ϕ, if ϕ ∈ClΣ (Φ), or equivalently, ifModΣ (Φ) |=Σ ϕ. ut

As usual, the subscriptΣ will often be omitted.
In the following we will often implicitly rely on three basic properties of semantic

consequence, namely that it is reflexive, closed under weakening, and transitive, in
the following sense:

Proposition 4.2.6.LetΣ be a signature. Consider anyΣ -sentencesϕ,ψ ∈ Sen(Σ),
and sets ofΣ -sentencesΦ ,Ψ ⊆ Sen(Σ), andΨϕ ⊆ Sen(Σ) for eachϕ ∈Φ . Then:

1. {ϕ} |=Σ ϕ.
2. If Φ |=Σ ϕ thenΦ ∪Ψ |=Σ ϕ.
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3. If Φ |=Σ ψ andΨϕ |=Σ ϕ for eachϕ ∈Φ then
⋃

ϕ∈Φ Ψϕ |=Σ ψ.

Proof. Directly from the definition. ut

Another important property of semantic consequence is that it is preserved by
translation along signature morphisms:

Proposition 4.2.7.For any signature morphismσ :Σ → Σ ′, setΦ ⊆ Sen(Σ) of Σ -
sentences, andΣ -sentenceϕ ∈ Sen(Σ),

Φ |=Σ ϕ implies σ(Φ) |=Σ ′ σ(ϕ).

In other words,σ(ClΣ (Φ))⊆ ClΣ ′(σ(Φ)).

Proof. LetM′ ∈ModΣ ′(σ(Φ)). Then by the satisfaction conditionM′ σ ∈ModΣ (Φ),
and so by the definition of the consequence relationM′ σ |= ϕ. Thus, by the satis-
faction condition again,M′ |= σ(ϕ), which shows that indeedσ(Φ) |= σ(ϕ). ut

In general, the reverse implication does not hold, that is, the consequence relation
is not reflected by translation along signature morphisms.

Exercise 4.2.8.Try to prove the opposite implication, and notice where the proof
breaks down. Then construct a counterexample showing thatσ(Φ) |= σ(ϕ) does
not imply thatΦ |= ϕ even in the standard equational institutionEQ. (HINT : See
Proposition 4.2.15 below.) ut

Corollary 4.2.9. Under the assumptions of Proposition 4.2.7, ClΣ ′(σ(ClΣ (Φ))) =
ClΣ ′(σ(Φ)). ut

The above corollary implies that when we want to “move” the closure of a set of
sentences from one signature to another, it is enough to move only the set itself; all
its consequences can be derived over the target signature as well.

Another consequence of Proposition 4.2.7 is that closure of a set of sentences is
reflected by translation along signature morphisms:

Corollary 4.2.10. For any signature morphismσ :Σ → Σ ′ and setΦ ′ ⊆ Sen(Σ ′) of
Σ ′-sentences, ifΦ ′ is closed then so isσ−1(Φ ′).

Proof. SupposeΦ ′ is closed and letϕ ∈ ClΣ (σ−1(Φ ′)). First, notice that since
σ(σ−1(Φ ′)) ⊆ Φ ′, ClΣ ′(σ(σ−1(Φ ′))) ⊆ ClΣ ′(Φ ′). Now, by Proposition 4.2.7,
σ(ϕ) ∈ ClΣ ′(σ(σ−1(Φ ′)))⊆ ClΣ ′(Φ ′) = Φ ′. Thus,ϕ ∈ σ−1(Φ ′). ut

Notice that the above does not imply that “closure commutes with inverse image”
in general; only one of the required inclusions holds:

Corollary 4.2.11. For any signature morphismσ :Σ → Σ ′, setΦ ′ ⊆ Sen(Σ ′) of Σ ′-
sentences, andΣ -sentenceϕ ∈ Sen(Σ), if σ−1(Φ ′) |= ϕ thenΦ ′ |= σ(ϕ). In other
words, ClΣ (σ−1(Φ ′))⊆ σ−1(ClΣ ′(Φ ′)). ut

Exercise 4.2.12.Show that the reverse inclusion does not hold in the standard equa-
tional institutionEQ. ut
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Forming the closure of a set of sentences consists of two phases: first taking the
class of models the set defines, and then taking the theory of this class. Separation
of these two phases by translation along a signature morphism preserves the closure
to some extent only:

Proposition 4.2.13.For any signature morphismσ :Σ → Σ ′ and setΦ ′ ⊆ Sen(Σ ′)
of Σ ′-sentences,

ClΣ (σ−1(Φ ′))⊆ ThΣ (ModΣ ′(Φ
′) σ ) = σ

−1(ClΣ ′(Φ
′))

where for any classM ⊆ |Mod(Σ ′)|, M σ = {M′ σ |M′ ∈M }.

Proof. For the first part, letϕ ∈ ClΣ (σ−1(Φ ′)). Then, by Corollary 4.2.11,Φ ′ |=Σ ′

σ(ϕ). Hence, by the satisfaction condition,ModΣ ′(Φ ′) σ |=Σ ϕ, and soϕ ∈ThΣ (ModΣ ′(Φ ′) σ ).
SinceModΣ ′(Φ ′)= ModΣ ′(ClΣ ′(Φ ′)), this showsThΣ (ModΣ ′(Φ ′) σ )= ThΣ (ModΣ ′(ClΣ ′(Φ ′)) σ )⊇

ClΣ (σ−1(ClΣ ′(Φ ′)))⊇ σ−1(ClΣ ′(Φ ′)), and hence also proves one inclusion (“⊇”)
of the second part. For the opposite inclusion, considerϕ ∈ ThΣ (ModΣ ′(Φ ′) σ ), that
is ModΣ ′(Φ ′) σ |=Σ ϕ. By the satisfaction condition,ModΣ ′(Φ ′) |=Σ ′ σ(ϕ), which

meansσ(ϕ) ∈ ClΣ ′(Φ ′), and so indeedϕ ∈ σ−1(ClΣ ′(Φ ′)). ut

Corollary 4.2.14. For any signature morphismσ :Σ → Σ ′ and setΦ ⊆ Sen(Σ) of
Σ -sentences, ClΣ (Φ)⊆ σ−1(ClΣ ′(σ(Φ))). ut

Just as the implication opposite to the one stated in Proposition 4.2.7 does not hold
in general, the inclusion opposite to the one above does not hold in general either.
This changes forsurjectivereduct functors.

Proposition 4.2.15.Consider a signature morphismσ :Σ → Σ ′ such that the reduct
functor σ :Mod(Σ ′)→Mod(Σ) is surjective on models. For any setΦ ⊆ Sen(Σ)
of Σ -sentences andΣ -sentenceϕ ∈ Sen(Σ),

Φ |=Σ ϕ iff σ(Φ) |=Σ ′ σ(ϕ).

Proof. We prove only the implication opposite to that of Proposition 4.2.7. LetM ∈
|Mod(Σ)| be an arbitraryΣ -model, and letM′ ∈ |Mod(Σ ′)| be aσ -expansion ofM,
i.e., M′ σ = M (such anM′ exists since σ is surjective on models). IfM |=Σ Φ

then by the satisfaction conditionM′ |=Σ ′ σ(Φ), and soM′ |=Σ ′ σ(ϕ). Thus, by the
satisfaction condition again,M |=Σ ϕ. ut

Corollary 4.2.16. Under the assumptions of Proposition 4.2.15, ClΣ (Φ)= σ−1(ClΣ ′(σ(Φ))).
ut

This shows that the surjectivity of the reduct functor ensures that moving along a
signature morphism is “sound” and “complete” as a strategy for deciding ifΦ |=Σ

ϕ by checking whether or notσ(Φ) |=Σ ′ σ(ϕ) — without this property, such a
strategy is still “complete” (the satisfaction condition ensures that no consequences
are lost) but is not always “sound” (new consequences between “old” sentences may
be added).
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Exercise 4.2.17.Provide an example showing that surjectivity ofσ :Mod(Σ ′)→
Mod(Σ) is not a necessary condition for the conclusions of Proposition 4.2.15 and
Corollary 4.2.16. ut

Exercise 4.2.18.Show that the inclusionClΣ (Φ) ⊆ σ−1(ClΣ ′(σ(Φ))), for any
σ :Σ → Σ ′ andΦ ⊆ Sen(Σ), directly implies (and, in fact, is equivalent to) Corol-
lary 4.2.11. However, the opposite inclusionClΣ (Φ)⊇ σ−1(ClΣ ′(σ(Φ))) does not
imply the opposite to the inclusion there: even under the assumptions of Propo-
sition 4.2.15 and Corollary 4.2.16, the inclusionClΣ (σ−1(Φ ′)) ⊇ σ−1(ClΣ ′(Φ ′))
may fail for a setΦ ′ ⊆ Sen(Σ ′) of Σ ′-sentences. (HINT : One way to construct a
counterexample is to addfalse to the set of sentences ofEQ for some, but not all
signatures.)

Show, however, that under the assumptions of Proposition 4.2.15, for any set
Φ ′⊆Sen(Σ ′) of Σ ′-sentences,ClΣ (σ−1(Φ ′))= ThΣ (ModΣ ′(Φ ′) σ ) andClΣ (σ−1(Φ ′))=
σ−1(ClΣ ′(Φ ′)) provided that in additionσ : Sen(Σ)→ Sen(Σ ′) is surjective. Dis-
cuss why this fact does not seem very interesting. ut

The following generalisation of Proposition 4.2.15 underlies the key corollary
below.

Proposition 4.2.19.Letσ :Σ→ Σ ′ be a signature morphism. Suppose that a setΓ ⊆
Sen(Σ) of Σ -sentences exactly characterises theσ -reducts ofΣ ′-models that satisfy
a setΓ ′⊆Sen(Σ ′) of Σ ′-sentences, that is, ModΣ (Γ ) = Mod(σ)(ModΣ ′(Γ ′)). Then
for any setΦ ⊆ Sen(Σ) of Σ -sentences andΣ -sentenceϕ ∈ Sen(Σ), Φ ∪Γ |=Σ ϕ

if and only ifσ(Φ)∪Γ ′ |=Σ ′ σ(ϕ).

Proof. For the “if” part, assume thatσ(Φ)∪Γ ′ |=Σ ′ σ(ϕ) and letM |=Σ Φ ∪Γ .
Then, sinceM ∈ ModΣ (Γ ), there existsM′ ∈ ModΣ ′(Γ ′) with M′ σ = M. By the
satisfaction condition,M′ |=Σ ′ σ(Φ), henceM′ |=Σ ′ σ(Φ)∪Γ ′ and soM′ |=Σ ′ σ(ϕ)
as well. Thus, by the satisfaction condition again,M |=Σ ϕ.

For the “only if” part, asume thatΦ ∪Γ |=Σ ϕ and let M′ |=Σ ′ σ(Φ)∪Γ ′.
Then by the satisfaction condition,M′ σ |=Σ Φ and moreover, by the assumption,
M′ σ |=Σ Γ . Hence,M′ σ |=Σ Φ ∪Γ , and soM′ σ |=Σ ϕ as well, which by the satis-
faction condition again proves thatM′ |=Σ ′ σ(ϕ). ut

Corollary 4.2.20. Let σ :Σ → Σ ′ be a signature morphism. Suppose that a setΓ ⊆
Sen(Σ) of Σ -sentences exactly characterises theσ -reducts ofΣ ′-models, that is,
ModΣ (Γ ) = Mod(σ)(|Mod(Σ ′)|). Then for any setΦ ⊆ Sen(Σ) of Σ -sentences
andΣ -sentenceϕ ∈ Sen(Σ), Φ ∪Γ |=Σ ϕ if and only ifσ(Φ) |=Σ ′ σ(ϕ). ut

Exercise 4.2.21.Show that Proposition 4.2.15 follows directly from Proposition 4.2.19
(or Corollary 4.2.20). Generalise Corollary 4.2.16 in a similar way. ut

Definition 4.2.22 (Presentation).For any signatureΣ , aΣ -presentation(also known
as aflat specification) is a pair〈Σ ,Φ〉whereΦ ⊆Sen(Σ). M ∈ |Mod(Σ)| is amodel
of a Σ -presentation〈Σ ,Φ〉 if M |= Φ . Mod[〈Σ ,Φ〉] denotes the class of all models
of the presentation〈Σ ,Φ〉, andMod[〈Σ ,Φ〉] the full subcategory ofMod(Σ) with
objects inMod[〈Σ ,Φ〉]. ut
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Definition 4.2.23 (The category of theories).For any signatureΣ , aΣ -theory T is
a Σ -presentation〈Σ ,Φ〉 whereΦ is closed. AΣ -presentation〈Σ ,Ψ〉 presentsthe
Σ -theory〈Σ ,ClΣ (Ψ)〉.

For any theoriesT = 〈Σ ,Φ〉 andT ′ = 〈Σ ′,Φ ′〉, a theory morphismσ :T→ T ′ is
a signature morphismσ :Σ → Σ ′ such thatσ(ϕ) ∈Φ ′ for everyϕ ∈Φ .

The categoryThINS of theories inINS has theories as objects and theory mor-
phisms as morphisms, with identities and composition inherited from the category
SignINS of signatures ofINS. ut

The satisfaction condition implies the following important characterisation of
theory morphisms, analogous to that given for equational theory morphisms in
Proposition 2.3.13.

Proposition 4.2.24.For any signature morphismσ :Σ → Σ ′ and setsΦ ⊆ Sen(Σ)
andΦ ′ ⊆ Sen(Σ ′) of sentences, the following conditions are equivalent:

1. σ is a theory morphismσ :〈Σ ,ClΣ (Φ)〉 → 〈Σ ′,ClΣ ′(Φ ′)〉.
2. σ(Φ)⊆ ClΣ ′(Φ ′).
3. For every M′ ∈ModΣ ′(Φ ′), M′ σ ∈ModΣ (Φ).

Proof.

1⇒ 2: Obvious, sinceΦ ⊆ ClΣ (Φ).
2⇒ 3: ConsiderM′ ∈ModΣ ′(Φ ′). Then alsoM′ ∈ModΣ ′(ClΣ ′(Φ ′)), and so for all

ϕ ∈ Φ , M′ |= σ(ϕ) (sinceσ(ϕ) ∈ ClΣ ′(Φ ′)). Hence, by the satisfaction condi-
tion, M′ σ |= ϕ, and thus indeedM′ σ ∈ModΣ (Φ).

3⇒ 1: Consider anyϕ ∈ ClΣ (Φ). We have to show thatσ(ϕ) ∈ ClΣ ′(Φ ′), that
is that for allM′ ∈ ModΣ ′(Φ ′), M′ |= σ(ϕ). However, ifM′ ∈ ModΣ ′(Φ ′) then
M′ σ ∈ModΣ (Φ). Hence,M′ σ |= ϕ, and the conclusion follows from the satis-
faction condition. ut

Exercise 4.2.25.Define the categoryPresINS of presentations inINS, with mor-
phismsσ :〈Σ ,Φ〉 → 〈Σ ′,Φ ′〉 that are signature morphismsσ :Σ → Σ ′ such that
Φ ′ |= σ(ϕ) for all ϕ ∈ Φ . Check thatThINS is a full subcategory ofPresINS and
that the two categories are equivalent. ut

Exercise 4.2.26.Show that by Proposition 4.2.24 above, the mapping which to any
theory assigns the category of its models extends to a functorMod : Thop

INS→ Cat,
where:

• for any theoryT = 〈Σ ,Φ〉, Mod[T] is the full subcategory ofMod(Σ) with ob-
jects inMod[T] as in Definition 4.2.22; and

• for any theory morphismσ :T→T ′, Mod(σ) is the reduct functor σ :Mod[T ′]→
Mod[T]. ut

Many standard properties of theories (and presentations) investigated in the realm
of classical model theory may be formulated in the framework of an arbitrary insti-
tution. For example:

Page: 191 job: root macro: svmono.cls date/time: 29-Sep-2010/18:07



192 4 Working within an arbitrary logical system

Definition 4.2.27 (Consistency and completeness of a presentation).A presen-
tation〈Σ ,Φ〉 is consistentif it has a model, i.e. ifMod[〈Σ ,Φ〉] 6= ∅.

A presentation〈Σ ,Φ〉 is completeif it is a maximal consistent presentation, i.e.
if it is consistent and no presentation〈Σ ,Φ ′〉 such thatΦ ′ properly containsΦ is
consistent. ut

Proposition 4.2.28.A presentation〈Σ ,Φ〉 is consistent if and only if the theory
〈Σ ,ClΣ (Φ)〉 is consistent. Any complete presentation is a (consistent) theory.ut

Definition 4.2.29 (Conservative theory morphism).For any theoriesT = 〈Σ ,Φ〉
and T ′ = 〈Σ ′,Φ ′〉, a theory morphismσ :T → T ′ is conservativeif for every Σ -
sentenceϕ, ϕ ∈Φ wheneverσ(ϕ) ∈Φ ′.

A theory morphismσ :T → T ′ admits model expansionif the corresponding
reduct function σ :ModΣ ′(Φ ′)→ModΣ (Φ) is surjective, that is, for everyΣ -model
M such thatM |=Σ Φ , there exists aΣ ′-modelM′ such thatM′ |=Σ ′ Φ

′ andM′ σ = M.
ut

Exercise 4.2.30.As in Proposition 4.2.15, show that a theory morphismσ :T→ T ′

is conservative if it admits model expansion. Note that the opposite implication does
not hold by Exercise 4.2.17. ut

The careful reader has probably realised that in this section we have not even
mentioned model morphisms. Indeed, everything above works equally well if we
forget about the category structure provided on the collections of models in an in-
stitution. But this proves inadequate for some purposes; see for example the next
section where the category structure on models is exploited.

4.3 Constraints

As discussed in Section 2.5, the class of all models that satisfy a given presentation
often contains some models that intuitively are undesirable realisations of the pre-
sentation. Different methods are used to constrain the semantics of presentations so
that from among all its models only the ones that are “desirable” are selected: for
example, one may take its initial semantics, reachable semantics, final semantics,
etc. (cf. Sections 2.5 and 2.7.2). How do these fit into the institutional framework
introduced above? Let us consider initiality constraints18 first.

There is clearly no problem with expressing the basic concept of initial model
in an arbitrary institution: models over any signature form a category, hence the
class of models satisfying a given presentation determines a full subcategory of this
category — and we know what initiality means in any category (cf. Section 3.2.1).

Let INS = 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉 be an institution, fixed throughout this
section.

18 We use the term “constraint” here following the terminology of [BG80], [GB92]. Initiality and
data constraints as discussed and formally defined below have nothing to do with constraints as
used in “constraint logic programming” [JL87].
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Definition 4.3.1 (Initial model of a presentation).For any signatureΣ ∈ |Sign|
and setΦ ⊆ Sen(Σ) of sentences, theinitial modelof the presentation〈Σ ,Φ〉 is the
(unique up to isomorphism) initial object inModΣ (Φ) considered as a full subcate-
gory ofMod(Σ). ut

We might feel tempted to pursue a number of possibilities to incorporate the idea
of initiality into the institutional framework:

• We may hope to be able to modify all institutions of interest so that they yield
initial semantics directly, by changing the model functorMod to yield only the
initial models as models over any signature. Clearly, this fails: requiring initiality
only makes sense relative to a presentation. If sentences are not taken into ac-
count then for example the only initial models in the institutionEQ of equational
logic are ground term algebras.

• We can attempt to modify the satisfaction relation so that only the initial models
of a sentence will be defined to satisfy it. Quite obviously, this does not work,
since it would then be impossible to adequately define models of presentations
involving more than one sentence. Without modifying the satisfaction relation,
we could modify Definitions 4.2.1 and 4.2.22 and consider only initial models
of presentations by definingModΣ (Φ) to consist only of the initial models in
{M |M |= Φ} considered as a full subcategory ofMod(Σ). But this would make
the whole theory rather clumsy, and the various definitions would not fit together
as neatly as they do now. For example, Propositions 4.2.7 and 4.2.24 would no
longer hold. Worse, this would not allow the user to write axioms that are to be
interpreted in a loose, non-initial fashion, indicating that only certain parts of a
specification are to be interpreted in an initial way. See Example 4.3.2 below.

• We can view the requirement of initiality with respect to a presentation as just
anothersentence. This would be a rather complicated sentence, as it has to con-
tain other sentences within it, but in view of examples like 4.1.38 (not to men-
tion 4.1.35) there is no reason why this should bother us. This is the approach we
will take.

It is not sufficient to define initiality constraints simply as sets of sentences over
a given signature, and then to define their satisfaction via the notion of an initial
model. The problem is that we do not always want to constrain the entire model of
a presentation. As the following example illustrates, we need to be able to constrain
only a certain part of this model, that is, to impose initiality constraints on its reduct
to a certain subsignature.

Example 4.3.2.Recall Exercise 2.5.21 which concerned the specification of a func-
tion ch:nat→ nat that for each natural numbern chooses an arbitrary number that is
greater thann. As argued there, we certainly do not want to take the initial model of
the entire specification: the initial model would generate “artificial elements” of sort
nat (as the results of the functionch) and then artificial elements of sortboolas well
(as results of comparisons by< involving the artificial elements of sortnat). What
one would like is to first interpret the original specificationNat of natural num-
bers in an initial way, do the same for the specificationBool, add the operation

Page: 193 job: root macro: svmono.cls date/time: 29-Sep-2010/18:07



194 4 Working within an arbitrary logical system

< :nat×nat→ bool (which is defined by its axioms in a sufficiently complete
way) — it so happens that this would be the same as taking an initial model of these
specifications put together — and only then add an operationch:nat→ nat with the
corresponding axiom interpreted in the underlying logic, with no initiality restric-
tions intervening in any way at this stage. ut

By allowing initiality requirements to be “fitted” to larger signatures by signature
morphisms, along the lines of the construction presented in Example 4.1.46, we can
impose the initiality requirement on parts of models.

Definition 4.3.3 (Initiality constraint). Let Σ ∈ |Sign| be a signature. AΣ -initiality
constraintis a pair〈Φ ′,θ〉, written asinitial Φ ′ through θ , whereθ :Σ ′ → Σ is a
signature morphism andΦ ′ ⊆ Sen(Σ ′) is a set ofΣ ′-sentences. AΣ -modelM ∈
|Mod(Σ)| satisfiesa Σ -initiality constraintinitial Φ ′ through θ if its reductM θ ∈
|Mod(Σ ′)| is an initial model of〈Σ ′,Φ ′〉. ut

Now, such an initiality constraint may be regarded as just another sentence in a
presentation, and freely mixed with “ordinary” sentences.

Exercise 4.3.4.Redo Exercise 2.5.21 using initiality constraints. Discuss the pos-
sibility of achieving the same effect without the “fitting morphism” component in
initiality constraints. ut

The specification built in Exercise 4.3.4 is not a presentation inFOEQ — we
have to extend this institution by adding initiality constraints first. Indeed, given
an institutionINS we can always form a new institutionINSinit in which initiality
constraints are allowed as additional sentences. Such a construction is implicitly
involved whenever initiality constraints are used.

Definition 4.3.5 (Institution with initiality constraints). The institution INSinit

with initiality constraints inINS is defined as follows:

• The categorySignINSinit of signatures is justSign, the same as inINS.
• The functorSenINSinit gives:

– for each signatureΣ , the (disjoint) union of the setSen(Σ) of Σ -sentences in
INS and of the set ofΣ -initiality constraints;19 and

– for each signature morphismσ :Σ → Σ1, the translation functionSenINSinit (σ)
that works asSen(σ) on all the “old” Σ -sentences inINS, and for anyΣ -
initiality constraintinitial Φ ′ through θ , whereθ :Σ ′→Σ andΦ ′⊆Sen(Σ ′),
is defined bySenINSinit (σ)(initial Φ ′ through θ) = initial Φ ′ through θ ;σ .

• The functorModINSinit is justMod, the same as inINS.
• For each signatureΣ ∈ |SignINSinit |, theΣ -satisfaction relation|=INSinit ,Σ is the

same as theΣ -satisfaction relation inINS for theΣ -sentences fromINS, and is
given by Definition 4.3.3 forΣ -initiality constraints. ut

19 As in Example 4.1.46, this may lead to some foundational difficulties which we disregard here,
cf. footnote 16.
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4.3 Constraints 195

Exercise 4.3.6.Present the above definition as an instance of the construction given
in Example 4.1.46. Notice that this is sufficient to conclude thatINSinit is indeed an
institution.

Show (referring for example to Exercise 4.3.4) that in general the translation of
an initiality constraint cannot be given without the “fitting morphism” component,
and so we would not be able to define an institution where only initiality constraints
with trivial (identity) fitting morphisms would be allowed. ut

Exercise 4.3.7.Working in the institutionEQ, follow Definition 4.3.3 and define
reachability constraintsthat are satisfied only by algebras having an indicated reduct
that is reachable. Note that axioms used in initiality constraints play no role here,
so you can adopt a syntax likereachable throughθ . Following Definition 4.3.5,
define an institutionEQreach extendingEQ by reachability constraints.

Assuming that each category of models inINS comes equipped with a factorisa-
tion system (Section 3.3), introduce reachability constraints forINS using Defini-
tion 3.3.7 and extendINS correspondingly. ut

The use of initiality constraints as introduced above is not always entirely satis-
factory. Often, rather than requiring that a certain part of a model is initial, we want
to require it to be afree extensionof some other part. Natural examples arise when
we want to specify data structures built on an arbitrary set of elements, like lists,
sets or bags of arbitrary elements. This involves imposing the requirement that an
algebra modelling the data structure is a free extension of its reduct to the sort of
elements. To formalise this, the concept of a data constraint is introduced below.

Definition 4.3.8 (Data constraint).Let Σ ∈ |Sign| be a signature.
A Σ -data constraintis a triple〈σ ,Φ ′,θ〉, written asdata Φ ′ over σ through θ ,

whereσ :Σ1→ Σ ′ andθ :Σ ′ → Σ are signature morphisms andΦ ′ ⊆ Sen(Σ ′) is a
set ofΣ ′-sentences.

A Σ -modelM ∈ |Mod(Σ)| satisfiesthe data constraintdata Φ ′ over σ through θ

if its reductM θ ∈ |Mod(Σ ′)| to aΣ ′-model is a free model ofΦ ′ w.r.t. the reduct
functor σ :Mod[〈Σ ,Φ ′〉]→Mod(Σ1) over(M θ ) σ , with the identity as unit. That
is, M satisfiesdata Φ ′ over σ through θ if:

• M θ |=Σ ′ Φ ′; and
• for anyM′ ∈ModΣ ′(Φ ′) andΣ1-morphismf :M σ ;θ →M′ σ there exists a unique

Σ ′-morphismf #:M θ →M′ such thatf #
σ = f . ut

Exercise 4.3.9.Using data constraints, give a specification of finite bags of an arbi-
trary set of elements. ut

Exercise 4.3.10.Following the pattern of Definition 4.3.5 (and of Example 4.1.46),
define the institutionINSdata by adding data constraints as additional sentences to
INS. ut

Note that nowhere in the above has it been assumed that initial models of presen-
tations actually exist in general (nor that the reduct functor used in Definition 4.3.8
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196 4 Working within an arbitrary logical system

has a left adjoint). We do know that in some institutions (for example, in the insti-
tutionEQ of equational logic and in the institutionPEQ of partial equational logic)
any set of sentences over a given signature has an initial model (see Theorem 2.5.14
for the case ofEQ). On the other hand, there are institutions in which some sets
of sentences do not have initial models; the institutionFOEQ of first-order logic
with equality is an example (see Example 2.7.11). Nevertheless, the above defini-
tions work for an arbitrary institution. If a setΦ ⊆ Sen(Σ) of Σ -sentences has no
initial model, then an initiality constraintinitial Φ through θ based on this set has
no model, even if the classModΣ (Φ) of models of this set of sentences is not empty.

Exercise 4.3.11.Any set of sentences in the equational institutionEQ has a model,
and moreover, it has an initial model. Show that neither of these properties carries
over to the institutionEQinit of initiality constraints inEQ. That is, give a presenta-
tion in EQinit that has no model. ut

Exercise 4.3.12.Recall the institutionHorn of Horn formulae from Exercise 4.1.21
and show that every set of sentences inHorn has an initial model. Discuss the inter-
pretation of predicates in initial models: notice that they hold “minimally”, meaning
that only positive cases need to be explicitly specified. Extend this analysis to data
constraints, and use this to specify the transitive and reflexive closure of an arbitrary
binary predicate. ut

Exercise 4.3.13.Working in the institutionEQ as in Exercise 4.3.7, follow Defini-
tion 4.3.8 and definegeneration constraintsgenerated overσ through θ that are
satisfied by algebrasA such thatA θ is generated in a suitable sense byA σ ;θ . Define
an institutionEQgen extendingEQ by generation constraints.

Assuming that each category of models inINS comes equipped with a factori-
sation system (Section 3.3), introduce generation constraints forINS anticipating
Definition 4.5.1 and extendINS correspondingly. ut

Exercise 4.3.14.Following Exercise 3.5.24, dualise the concept of data constraint.
A co-data constraintin an institutionINS can be written asco-dataΦ ′ over σ through θ ,
whereΦ ′, σ andθ are as in Definition 4.3.8. AΣ -modelM ∈ |Mod(Σ)| satisfies
co-dataΦ ′ over σ through θ if M θ is a cofree model ofΦ ′ w.r.t. the reduct func-
tor σ :Mod[〈Σ ′,Φ ′〉]→Mod(Σ1) over itsσ -reduct, with the identity as counit, that
is, if M θ |=Σ ′ Φ ′ and for anyM′ ∈ModΣ ′(Φ ′) andΣ1-morphism f :M′ σ →M σ ;θ

there exists a uniqueΣ ′-morphism f #:M′ → M θ such thatf #
σ = f . Extend this

definition to build an institutionINScodata by adding co-data constraints as addi-
tional sentences toINS.

Discuss the use of co-data constraints in standard institutions likeEQ and
FOPEQ. For instance, consider the following simple presentation:
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specStream= sorts elem,stream
ops hd:stream→ elem

tl:stream→ stream
cons:elem×stream→ stream

∀x:elem,∀s:stream
• hd(cons(x,s)) = x
• tl(cons(x,s)) = s

Check that any modelM of Stream that is cofree overE = |M|elem(w.r.t. the reduct
functor given by the obvious signature inclusion) is isomorphic to the algebraEω of
(countably) infinite streams of elements fromE, with the operations defined in the
standard way.

Much the same effect is achieved even when we remove the operationconsand
the two axioms from this presentation: check that ifΣ is a signature with sorts
elem,streamand operationshd:stream→ elem, tl:stream→ streamthen cofreeΣ -
models over their carrierE of sort elemare (up to isomorphism) the algebrasEω

of (countably) infinite streams of elements fromE, with hd and tl defined in the
standard way. Check then that in any such algebra the two axioms inStream define
the operationconsunambiguously. ut

4.4 Exact institutions

As illustrated in Sections 4.2 and 4.3, institutions provide a sufficient basis for much
of the standard machinery of specifications without the need for further assumptions.
Still, the structure and properties of a logical system exposed by the definition of an
institution are very limited, and do not provide an adequate basis for many other
aspects of the theory and practice of software specification and development. As
discussed in the introduction to this chapter, this should not discourage us from
working within the institutional framework. On the contrary, it is worth trying to find
some adequately abstract additional assumptions that are sufficient for the purpose
at hand. As always in mathematics, the main informal guideline to follow is to keep
the additional assumptions to a minimum. Part of the payoff is that this forces us to
work at a level of generality and abstraction that ensures a deeper understanding of
the essence of the studied phenomena, while at the same time covering as many of
the cases of potential interest as possible.

In this section and the next we will illustrate this strategy by presenting some
extensions to the notion of an institution by additional structure or properties that
are required to support study of more detailed properties of specifications.

The ways in which specifications (or programs, systems, or structures of any
kind) are put together is the very essence of the theory and methodology of software
specification and development. One of the basic tools for “putting things together”
is the categorical notion of colimit (cf. Section 3.2) with pushouts as a particularly
important special case; see for instance Section 6.3 below. Putting specifications
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198 4 Working within an arbitrary logical system

together then involves taking colimits in the category of theories. It would be rather
inconvenient to have to establish the existence of a colimit for each diagram of
interest separately, so we normally require the category of theories to be cocomplete
(or at least finitely cocomplete). Checking this directly would be tedious — and this
is why the following general result is useful.

Theorem 4.4.1.For any institutionINS, if the categorySignINS of signatures in
INS is cocomplete then so is the categoryThINS of theories inINS.

Proof. Let D be a diagram inThINS with |G(D)|node= N andDn = 〈Σn,Φn〉 for
n ∈ N. Let D′ be the corresponding diagram inSignINS, henceD′n = Σn for n ∈
N. By the assumption of the theorem,D′ has a colimit, say〈αn:Σn→ Σ〉n∈N. Let
Φ = ClΣ (

⋃
n∈Nαn(Φn)). Then for eachn ∈ N, αn:〈Σn,Φn〉 → 〈Σ ,Φ〉 is a theory

morphism (this is obvious) and〈αn〉n∈N is a colimit ofD in ThINS. For: first notice
that it is a cocone onD (since it is a cocone onD′ in SignINS), and then consider
another cocone onD, say〈βn:〈Σn,Φn〉 → 〈Σ ′,Φ ′〉〉n∈N. By the construction, there
exists a unique signature morphismσ :Σ → Σ ′ such that for eachn∈N, αn;σ = βn.
To complete the proof, it is sufficient to show thatσ :〈Σ ,Φ〉 → 〈Σ ′,Φ ′〉 is a theory
morphism. By Proposition 4.2.24, it is enough to show thatσ(

⋃
n∈Nαn(Φn))⊆Φ ′.

This easily follows from the fact that for eachn∈ N, βn is a theory morphism, and
henceσ(αn(Φn)) = (αn;σ)(Φn) = βn(Φn)⊆Φ ′. ut

The above proof shows that in fact a stronger property holds: in any institution,
the category of theories has all of the colimits that the category of signatures has:
the forgetful functor mapping theories to their underlying signatureslifts colimits.
So, for instance:

Corollary 4.4.2. For any institutionINS, if the categorySignINS of signatures in
INS is finitely cocomplete then so is the categoryThINS of theories inINS. ut

Notice that the above theorem applies toany institution, regardless of the means
used to construct it. Hence, for example, if the categorySignINS of signatures in
an institutionINS is cocomplete, then not only is the categoryThINS of theories
in INS cocomplete, but so are the categoriesThINSinit , ThINSdata andThINScodata of
theories in the corresponding institutions with initiality constraints, data constraints
and co-data constraints respectively (cf. Definition 4.3.5, Exercise 4.3.10 and Exer-
cise 4.3.14).

Exercise 4.4.3.Assume that the category of signatures of a certain institution has
an initial object. What is then an initial object in the category of theories? ut

Example 4.4.4.Working in the institutionEQ of equational logic, recall Exam-
ple 3.2.35 of a simple pushout of algebraic signatures, and the setΦNat of equa-
tional axioms over the signatureΣNat given in Exercise 2.5.4. LetTNat be the
ΣNat-theory presented byΦNat. Let TNatfib be theΣNatfib-theory presented
by the axiomsΦNatfib that includeΦNat plus the following:
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fib(0) = succ(0)
fib(succ(0)) = succ(0)
∀n:nat• fib(succ(succ(n))) = fib(succ(n))+fib(n)

Finally, let TNatmult be theΣNatmult-theory presented by the axiomsΦNatmult

that includeΦNat plus the following:

∀n:nat•mult(0,n) = 0
∀n,m:nat•mult(succ(n),m) = mult(n,m)+m

Now, we have theory inclusions:

TNatfib←−↩ TNat ↪−→ TNatmult

with the corresponding signature inclusions given in Example 3.2.35. Their pushout
is theΣNatfib,mult-theoryTNatfib,mult presented by the union ofΦNat, ΦNatfib

andΦNatmult.
As in Example 3.2.35, this is deceptively simple, as only single-sorted theory

inclusions that introduce different operation names are involved.

Exercise. Give examples of pushouts in the category of equational theories with
signatures involving more than one sort, extensions with overlapping sets of opera-
tion names, and theory morphisms that are not injective on sort and/or on operation
names. Notice however that the extra complications come only from the construc-
tion of signature pushouts; the theories are defined in much the same way.

Exercise. Obviously, when giving the set of axioms forTNatfib,mult, ΦNat may
be omitted, as it is already included in the other sets of axioms. Try to generalise
this remark to “optimise” the construction of the colimit in the category of theories
given in the proof of Theorem 4.4.1. ut

We have seen how the assumption that the category of signatures of an institu-
tion is (finitely) cocomplete ensures that the institution provides means for “putting
theories together”. It is also interesting to investigate how this relates to “putting
models together”, which is what structured programming in the large is all about.
There is an important difference here: in the above, and in general when dealing
with specifications, we were interested in combining theories, i.e., sets of sentences.
In model-theoretic terms, this corresponds to combining classes of models. How-
ever, when the specified system is being built, we are interested in expanding and
combiningindividualmodels.

Example 4.4.5.Recall Example 4.4.4 of a simple pushout in the category of the-
ories of the institutionEQ of equational logic. Consider an arbitrary modelN of
TNat, anyΣNatmult-algebraN2 built by adding toN an interpretation offib such
that the axioms inΦNatfib are satisfied, and anyΣNatmult-algebraN2 built by
adding toN an interpretation ofmultsuch that the axioms inΦNatmult are satisfied.
Then, much as in Example 3.4.35 where specific such algebras were considered,N1

andN2 may be uniquely combined to aΣNatfib,mult-algebraN′ that expands them
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both. The key property now is that the algebras built in this way are models of the
theoryTNatfib,mult, and moreover, that all its models may be built in this way.ut

It turns out that the crucial link which ensures that constructions to combine theories
and to combine models work together smoothly, as in the above example, is the
continuity of the model functor in the underlying institution.

Definition 4.4.6 (Exact institution).An institutionINS is (finitely) exactif its cate-
gory of signaturesSignINS is (finitely) cocomplete and its model functorModINS:Signop

INS→
Cat is (finitely) continuous, mapping (finite) colimits inSignINS to limits in Cat.

ut

Example 4.4.7.All of the institutions defined in the examples and sketched in the
exercises in Section 4.1.1, with the major exception ofFPL (Example 4.1.25) and
perhaps those given in Examples 4.1.35, 4.1.36 and 4.1.37 where we know nothing
about the signature categories, are exact. See Exercises 3.2.53 and 3.4.33 for the
standard algebraic case of the equational institutionEQ — all of the other cases
require a similar argument. ut

Exercise 4.4.8.The abstract formulation of exactness above may somewhat hide the
role of this property in “putting models together”. Consider an exact institutionINS
and a diagramD in SignINS with colimit signatureΣ ′. Anticipating the crucial case
of preservation of signature pushouts treated in Definition 4.4.12, show that (up to
isomorphism of categories)ModINS(Σ ′) can be defined as follows, whereN is the
set of nodes inD:

• Σ ′-models are families〈Mn ∈ |ModINS(Dn)|〉n∈N that are compatible with signa-
ture morphisms inD in the sense thatMn = Mm De for each edgee:n→m in the
graph ofD; and

• Σ ′-morphisms between any suchΣ ′-models〈Mn〉n∈N and〈M′n〉n∈N are families
〈hn:Mn→M′n〉n∈N of morphisms inModINS(Dn), n∈N, that are compatible with
signature morphisms inD in the sense thathn = hm De for each edgee:n→m in
the graph ofD.

Moreover, for eachn∈ N, the reduct functor w.r.t. the colimit injection fromDn to
Σ ′ is just the projection of such families on then-th component.

HINT : Use Exercise 3.4.32 (and indirectly Exercise 3.2.53). ut

Exercise 4.4.9.Consider a finitely exact institution. Present initiality constraints
(Definition 4.3.3) as a special case of data constraints (Definition 4.3.8). Is the as-
sumption that the institution is finitely exact essential? ut

Exercise 4.4.10.An interesting standard institution with a cocomplete category of
signatures and a model functor that preserves “nearly all” finite colimits of signa-
tures is the institutionSSEQof single-sorted equational logic. Give a precise def-
inition of this institution and indicate which colimits of signature diagrams are not
preserved by the model functor. HINT : Consider the initial single-sorted signature.

ut
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Definition 4.4.11 (Semi-exact institution).An institution INS is semi-exactif
all pushouts exist in its category of signaturesSignINS and its model functor
ModINS:Signop

INS→ Cat preserves pushouts, mapping them to pullbacks inCat.
ut

A consequence of the assumption that the model functor of an institution pre-
serves signature pushouts is the well-knownAmalgamation Lemma.

Definition 4.4.12 (Amalgamation property).Let INS = 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉
be an institution and consider the following diagram inSign:

Σ

Σ1 Σ2

Σ ′

@
@

@@I

�
�

���

�
�

���

@
@

@@I

σ1 σ2

σ ′1 σ ′2

This diagramadmits amalgamationif:

• for any two modelsM1 ∈ |Mod(Σ1)| and M2 ∈ |Mod(Σ2)| such thatM1 σ1 =
M2 σ2, there exists a unique modelM′ ∈ |Mod(Σ ′)| such thatM′ σ ′1

= M1 and
M′ σ ′2

= M2 (we call suchM′ theamalgamationof M1 andM2); and
• for any two model morphismsf1:M11→ M12 in Mod(Σ1) and f2:M21→ M22

in Mod(Σ2) such that f1 σ1 = f2 σ2, there exists a unique model morphism
f ′:M′1→ M′2 in Mod(Σ ′) such thatf ′ σ ′1

= f1 and f ′ σ ′2
= f2 (we call suchf ′

theamalgamationof f1 and f2).

The institutionINS has the amalgamation propertyif all pushouts inSignexist and
every pushout diagram inSignadmits amalgamation. ut

Exercise 4.4.13.Show that if a diagram as in Definition 4.4.12 admits amalgama-
tion and is commutative then all models and morphisms inMod(Σ ′) are amalgama-
tions of pairs of (compatible) models and morphisms fromMod(Σ1) andMod(Σ2),
respectively. ut

Lemma 4.4.14 (Amalgamation Lemma).Any semi-exact institution has the amal-
gamation property. ut

The proof of the Amalgamation Lemma is based on the construction of pullbacks
in Cat, cf. Exercise 3.4.32; see also Exercise 3.4.34, which is the same result in
the standard algebraic framework. Note that the opposite implication also holds, so
semi-exactness is equivalent to the amalgamation property.

Clearly, every exact institution is finitely exact, and every finitely exact institu-
tion is semi-exact. However, the last property is strictly weaker: for example, the
institutionSSEQof single-sorted equational logic is semi-exact, but not finitely ex-
act (see Exercise 4.4.10). In semi-exact institutions coproducts of signatures need
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not exist, or if they exist, need not be preserved by the model functor. However,
if signature coproducts exist, the colimits for a large interesting class of signature
diagrams (exist and) are preserved:

Proposition 4.4.15.In any semi-exact institution, if the category of signatures has
an initial object then it is finitely cocomplete and the model functor maps colimits
of all finite non-empty connected diagrams of signatures to limits inCat.

Proof sketch.The first part (existence of colimits of finite signature diagrams) fol-
lows as usual, by dualising Exercise 3.2.48; the second part (preservation of limits
of finite non-empty connected signature diagrams) follows by Exercise 3.4.55.ut

Exercise 4.4.16.Define institutions:SSFOPEQof single-sorted first-order predi-
cate logic with equality,SSPFOPEQof single-sorted partial first-order predicate
logic with equality,SSCEQof single-sorted equational logic for continuous alge-
bras, etc. Check that all of these institutions have cocomplete categories of sig-
natures and are semi-exact. However, check that their model functors do not map
coproducts of their signatures to products of the corresponding model categories, so
these institutions are not (finitely) exact. ut

Exercise 4.4.17.Let INS be a (finitely) exact institution. Recall that there is a func-
tor ModTh :Thop

INS → Cat mapping theories to their model categories and theory
morphisms to the corresponding reduct functors (cf. Exercise 4.2.26). Prove that
ModTh preserves (finite) limits.

HINT : First use the satisfaction condition forINS and the Amalgamation Lemma
for signatures (Lemma 4.4.14) to prove the following generalisation of the Amalga-
mation Lemma:

Lemma (Amalgamation Lemma for theories).Let INS be a semi-exact institu-
tion. Consider a pushout in the categoryThINS of theories:

T

T1 T2

T ′

@
@

@@I

�
�

���

�
�

���

@
@

@@I

σ1 σ2

σ ′1 σ ′2

Then, for any two models M1∈Mod[T1] and M2∈Mod[T2] such that M1 σ1 = M2 σ2,
there exists a unique model M′ ∈ Mod[T ′] such that M′ σ ′1

= M1 and M′ σ ′2
= M2,

and similarly for morphisms.

To complete the proof thatModTh is finitely continuous, by Exercise 3.2.48 it is
enough to consider the initial theory and its category of models. To show that it
is continuous, by Exercise 3.4.23 it is enough to consider coproducts of arbitrary
families of theories and their categories of models. ut
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The trouble withFPL and with other institutions based on derived signature mor-
phisms (see Exercise 4.1.23) is more severe than with single-sorted institutions: they
are not semi-exact since not all pushouts exist in their signature categories, see Ex-
ercise 3.2.54. This motivates the following relaxation of semi-exactness, which is
important for applications later on.

Definition 4.4.18 (I-semi-exact institution).For any institutionINS, we say that a
collection I of signature morphisms inINS is closed under pushoutsif I contains
all the identities, is closed under composition (so thatI is a wide subcategory of
SignINS) and for any signature morphismσ :Σ → Σ1 and “I -extension ofΣ ” ι :Σ →
Σ ′ in I , there is a pushout inSign

Σ

Σ ′

Σ1

Σ ′1

6

ι

-
σ

-σ ′

6

ι ′

such thatι ′ ∈ I .
Moreover, if all such pushouts withι , ι ′ ∈ I admit amalgamation (i.e., the model

functor maps them to pullbacks inCat) we say thatINS is semi-exact w.r.t.I (or
I -semi-exact). ut

Exercise 4.4.19.As mentioned above, institutions with derived signature morphisms
do not have cocomplete signature categories. Check, however, that for example the
institutionGEQder is semi-exact w.r.t. the class of all inclusions (where inclusions
are derived signature morphisms that map anyn-ary operation namef to the term
f ( 1 , . . . , n ), cf. Definition 1.5.14). Similarly, check thatGEQder is semi-exact
w.r.t. the class of inclusions that introduce only new constants. (Notice that in gen-
eral an institution may beI -semi-exact without beingI ′-semi-exact for someI ′ ⊆ I .)

For FPL, consider the classIFPL of signature morphismsδ :SIG→ SIG′ that are
injective renamings of sort and operation names such that no new value constructors
are added for “old” sorts (i.e. sorts inδ (SIG)). Show thatFPL is IFPL-semi-exact.
Notice that both parts of the assumption on these morphisms are essential. Give
an example of a non-injective renaming that does not have a pushout with another
FPL signature morphism. Give an example of an injective renaming that adds value
constructors for an old sort and does not have a pushout with anotherFPL signa-
ture morphism. Finally, give an example of a pushout in the the category ofFPL-
signatures that is not mapped by theFPL-model functor to a pullback inCat. HINT :
Consider two morphisms that add a new sort and a new unary value constructor for
a previously unconstrained sort, with the new sort as its argument sort. ut

Exercise 4.4.20.To complete the formal picture, note that the category of theories
in FPL is cocomplete even though its category of signatures is not. Discuss why
this is not useful for combining models over different signatures. HINT : Consider a
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simple signature with one sort and one binary operation, and two morphisms which
map this operation to the projections on the first and second argument respectively.
Then these two morphisms do not have a coequaliser inSignFPL while in ThFPL
their coequaliser is obtained by adding an equation to assert that the two projections
coincide. ut

We have introduced and studied amalgamation, exactness and semi-exactness as
purely technical properties of institutions. However, as hinted at by Example 4.4.5
and the examples it builds on, amalgamation, and hence semi-exactness and exact-
ness, provide a fundamental tool for combining models over different signatures.
The point is easiest to see in institutions with standard signatures, likeFOPEQ
or EQ, when all the morphisms are inclusions. In that case, generalising the simple
example of natural numbers and their extensions by the Fibonacci function and mul-
tiplication in Example 3.2.35, given signaturesΣ1 andΣ2 with Σ = Σ1∩Σ2, we get
Σ ′= Σ1∪Σ2 as the pushout signature. Now, the amalgamation property ensures that,
given aΣ1-modelM1 and aΣ2-modelM2 which give the same interpretation to all
of the common symbols (inΣ ), we can put them together in the obvious way (gen-
eralising Example 4.4.5) to interpret all of the symbols in the combined signature
Σ ′. In the institutional context, this intuition applies as well, but the sharing require-
ment is expressed by insisting on a common reduct along the indicated signature
morphisms, and the combined signature is obtained using the pushout.

4.4.1 Abstract model theory

One of the ideas behind the definition of institution is that it is important to indi-
cate over which signature one is working. In classical logic, there are a number of
theorems in which the signature (orlanguage, as logicians would say) over which
formulae are constructed must be considered. Here is an example (for this, and for
a classical formulation of the Robinson consistency theorem mentioned below, see
e.g. [CK90]):

Theorem (Craig interpolation theorem). In first-order logic, for any two formu-
lae ϕ1 and ϕ2, if ϕ1 |= ϕ2 then there exists a formulaθ using only the common
symbols ofϕ1 andϕ2 — that is, those symbols that occur in both formulae — such
that ϕ1 |= θ andθ |= ϕ2. ut

In our view, this standard formulation is not very elegant: referring to “the com-
mon symbols ofϕ1 andϕ2” feels rather clumsy, even though it is easy enough to
make it precise in the case of first-order logic. In the institutional framework this
can be expressed in a more general and abstract way using colimits in the category
of signatures.

Definition 4.4.21 (Craig interpolation property). Let INS be an institution with a
finitely cocomplete categorySign of signatures.INS satisfies theCraig interpola-
tion propertyif for any pushout
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Σ
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σ1 σ2

σ ′1 σ ′2

in Sign, and for anyΣ1-sentenceϕ1 ∈ Sen(Σ1) andΣ2-sentenceϕ2 ∈ Sen(Σ2), if
σ ′1(ϕ1) |=Σ ′ σ

′
2(ϕ2) then there exists aΣ -sentenceθ ∈Sen(Σ) (called aninterpolant

for ϕ1 andϕ2) such thatϕ1 |=Σ1 σ1(θ) andσ2(θ) |=Σ2 ϕ2. ut

Not only has “the common symbols ofϕ1 andϕ2” been captured by the simple cate-
gorical concept of a pushout here, but we were also forced to identify the signatures
over which the individual consequence relations are considered. In our view, this
is a much improved statement of the Craig interpolation property! Not only does
it seem more clear (of course, any comparison should be made with a fully formal
statement of the Craig interpolation theorem in the classical framework, not with the
presentation given above), it is also more abstract and may be used for any logical
system formalised as an institution, not just for first-order logic.

Here is another example, which states that consistent extensions of a complete
theory (cf. Definition 4.2.27) combine safely:

Definition 4.4.22 (Robinson consistency property).Let INS be an institution with
a finitely cocomplete categorySign of signatures.INS satisfies theRobinson con-
sistency propertyif for any pushout

Σ

Σ1 Σ2

Σ ′
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@

@@I
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���
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���

@
@

@@I

σ1 σ2

σ ′1 σ ′2

in Sign, and for any completeΣ -theoryT = 〈Σ ,Φ〉 and consistent theoriesT1 =
〈Σ1,Φ1〉 andT2 = 〈Σ2,Φ2〉 such thatσ1:T → T1 andσ2:T → T2 are theory mor-
phisms, theΣ ′-presentation〈Σ ′,σ ′1(Φ1)∪σ ′2(Φ2)〉 is consistent. ut

Exercise 4.4.23.Adapt any standard proof of the Craig interpolation theorem to
show thatFOPEQ has the Craig interpolation property for those pushouts where
at least one ofσ1 or σ2 is injective on sorts. Construct a counterexample which
shows that the proof must break down if neitherσ1 norσ2 is injective on sort names
(injectivity on operation and predicate names does not have to be required). HINT :
See [Bor05].

Show also that the Craig interpolation theorem forFOPEQ implies the analo-
gous result for some of the subinstitutions ofFOPEQ (see Exercise 4.1.13), for
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instance forFOEQ. Note though that your argument will not work forFOP, first-
order predicate logic without equality — in fact, Craig interpolation may fail inFOP
when one of the morphisms involved is non-injective on operation names, even if all
the morphisms are injective on sort names. Of course, the standard proofs of Craig
interpolation easily adapt toFOP when the morphisms involved are injective (on
sort names as well as on operation names). ut

It is well known that equational logic does not have the interpolation property:

Counterexample 4.4.24.In EQ, consider the signatureΣ with three sortss, s1

ands2, and two constantsa,b:s. Let Σ1 andΣ2 extendΣ by a constante:s1 and
by a unary operationf :s1 → s2 respectively. LetΣ ′ be the union ofΣ1 and Σ2

(this is the pushout signature for the two signature inclusions). Consider the sen-
tences∀x:s2• a = b∈ SenEQ(Σ1) anda = b∈ SenEQ(Σ2). Clearly, overΣ ′ we have
∀x:s2• a = b |= a = b (since allΣ ′-algebras have non-empty carriers for all sorts).

Suppose that we have an interpolantθ ∈ SenEQ(Σ) for ∀x:s2• a = b anda = b,
so that∀x:s2• a = b |= θ overΣ1 andθ |= a = b overΣ2. Consider aΣ1-algebraA1

with the carrier of sorts2 empty and withaA1 6= bA1. Clearly,A1 |=Σ1 ∀x:s2• a = b,
and so alsoA1 |=Σ1 θ . Hence,A1 Σ |=Σ θ . Take a subalgebra ofA1 Σ with the empty
carrier of sorts1, which satisfiesθ , and consider its expansionA2 to aΣ2-algebra.
ThenA2 |=Σ2 θ butA2 6|=Σ2 a = b. Contradiction. ut

Exercise 4.4.25.It is often stated that equational logic has interpolation (at least for
pushouts w.r.t. injective signature morphisms) if one admits aset of interpolants,
rather than just a single interpolant sentenceθ as in Definition 4.4.21. Spell out this
property following Definition 4.4.21, but using a set of sentencesΘ ⊆ Sen(Σ) in
place of a single sentenceθ ∈Sen(Σ). It also makes sense then to replace the single
sentenceϕ1 ∈ Sen(Σ1) by a setΦ1⊆ Sen(Σ1).

Unfortunately, equational logic has this property only if we restrict attention to
algebras with non-empty carriers for all sorts. Carry out the proof for this case as-
suming that the signature morphisms considered are injective (HINT : see [Rod91])
and note where the assumption that the carriers are non-empty is important. Give a
counterexample which shows that in general no single interpolant can be sufficient
here. Extend this proof to the case where only one of the signature morphisms is
injective on sorts (HINT : see [RG00], [PŞR09]).

Check that Counterexample 4.4.24 shows that the institutionEQ of equational
logic (with models that admit empty carriers) does not have the interpolation prop-
erty, not even when sets of interpolants are allowed (and the morphisms involved
are signature inclusions).

Go through other examples of institutions in Section 4.1.1 and check which of
them have the interpolation property, either with a single interpolant, or with a set of
interpolants (at least for pushouts involving signature inclusions, where this notion
makes sense). ut

Of course, we cannot expect to be able to prove that either the Craig interpo-
lation or Robinson consistency properties are satisfied by an arbitrary institution
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— they simply do not hold for some logics. However, one may attempt to iden-
tify other conditions on the underlying institution which imply the two properties.
Along these lines, under some further technical assumptions, the two properties are
equivalent: an institution satisfying certain technical assumptions satisfies the Craig
interpolation property if and only if it satisfies the Robinson consistency property.
This reflects what is well-known in classical model theory, where the two properties
are indeed derivable from one another.

4.4.2 Free variables and quantification

In logic, formulae may contain free variables; such formulae are calledopen, as op-
posed toclosedformulae which have no free variables. To interpret an open formula,
one needs not only an interpretation for the symbols of the underlying signature (a
model) but also an interpretation for the free variables (a valuation of variables in
the model). This provides a natural way to deal with quantifiers. The need for open
formulae also arises in the study of specification languages. In fact, we will use them
to abstractly express the basic notion of behavioural equivalence in Section 8.5.3,
see Exercise 8.5.61.

Fortunately we do not have to change the notion of an institution to cope with
free variables — we can provide open formulae in the present framework. Note that
we use here the term “formula” rather than “sentence”, which is reserved for the
sentences of the underlying institution, corresponding to closed formulae.

Consider the institutionGEQ of ground equational logic (Example 4.1.3). Let
Σ = 〈S,Ω〉 be an algebraic signature. For anyS-indexed family of sets,X = 〈Xs〉s∈S,
defineΣ(X) to be the extension ofΣ by the elements ofX as new constants of the
appropriate sorts. Any sentence overΣ(X) may be viewed as an open formula over
Σ with free variablesX. Given aΣ -algebraA, to determine whether an openΣ -
formula with variablesX holds in A we have to first fix a valuation of variables
X into |A|. Such a valuation corresponds exactly to an expansion ofA to a Σ(X)-
algebra.

Given a translation of sentences along an algebraic signature morphismσ :Σ →
Σ ′ we can extend it to a translation of open formulae: we translate an openΣ -
formula with variablesX, which is aΣ(X)-sentence, to the correspondingΣ ′(X′)-
sentence, which is an openΣ ′-formula with variablesX′. HereX′ results fromX by
an appropriate renaming of sorts determined byσ (we also have to avoid unintended
”clashes” of variables and operation symbols).

The above ideas generalise to any semi-exact institutionINS = 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉.

Definition 4.4.26 (Open formula).Let Σ ∈ |Sign| be a signature inINS. Any pair
〈ϕ,θ〉, whereθ :Σ → Σ ′ is a signature morphism andϕ ∈ Sen(Σ ′), is anopenΣ -
formulawith variables “Σ ′ \θ(Σ)”. For anyΣ -modelM ∈ |Mod(Σ)|, avaluationof
variables “Σ ′ \θ(Σ)” into M is aΣ ′-modelM′ ∈ |Mod(Σ ′)| which is aθ -expansion
of M, i.e., such thatM′ θ = M. We say that〈ϕ,θ〉 holds in M under valuation M′ iff
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M′ |=Σ ′ ϕ. If σ :Σ → Σ1 is a signature morphism then we define the translation of
〈ϕ,θ〉 alongσ as〈σ ′(ϕ),θ ′〉, where

Σ

Σ ′

Σ1

Σ ′1

6

θ

-
σ

-σ ′

6

θ ′

is a pushout inSign. ut

Note the quotation marks around the “set of variables”Σ ′ \θ(Σ) in the above defini-
tion: sinceΣ ′ \θ(Σ) makes no sense in an arbitrary institution, it is only meaningful
as an aid to our intuition.

In the standard logical framework there may be no valuation of a set of variables
into a model containing an empty carrier. Similarly here, a valuation need not always
exist. For example, inGEQ if a signature morphismθ :Σ → Σ ′ is not injective then
someΣ -models have noθ -expansion.

There is a rather subtle problem with the above definition: pushouts are defined
only up to isomorphism, so strictly speaking the translation of open formulae is not
well-defined. The following exercise shows that (at least for semantic analysis) an
arbitrary pushout may be selected and so we may safely accept the above definition
of translation.

Exercise 4.4.27.Consider an isomorphismι :Σ ′1→ Σ ′′1 in Sign, with inverseι−1.
Since functors preserve isomorphisms,Sen(ι):Sen(Σ ′1)→ Sen(Σ ′′1 ) is a bijection
andMod(ι):Mod(Σ ′′1 )→Mod(Σ ′1) is an isomorphism inCat. Show that moreover,
for anyψ ∈ Sen(Σ ′1) andM′1 ∈ |Mod(Σ ′1)|, M′1 |=Σ ′1

ψ ⇐⇒M′1 ι−1 |=Σ ′′1
ι(ψ). ut

Sometimes we want to restrict the class of signature morphisms that may be
used to construct open formulae. In fact, in the above remarks sketching how free
variables may be introduced intoGEQ we used just algebraic signature inclusions
ι :Σ ↪→ Σ ′ where the only new symbols inΣ ′ were constants. To guarantee that the
translation of open formulae is defined under such a restriction, we consider only
restrictions to a collectionI of signature morphisms that is closed under pushouts
(see Definition 4.4.18).

Examples of such collectionsI in AlgSig include: the collection of all algebraic
signature inclusions, the restriction of this to inclusionsθ :Σ ↪→ Σ ′ such thatΣ ′ con-
tains no new sorts, the further restriction of this by the requirement thatΣ ′ contains
new constants only (as above), the collection of all algebraic signature morphisms
which are surjective on sorts, the collection of all identities, and the collection of
all morphisms. Note that most of these permit variables denoting operations or even
sorts.
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4.4.2.1 Universal quantification

In the rest of this section we briefly sketch how to universally close the open formu-
lae introduced above.

Let I be a collection of signature morphisms that is closed under pushouts. Let
Σ be a signature and let〈ϕ,θ〉 be an openΣ -formula such thatθ ∈ I . Consider the
universal closure of〈ϕ,θ〉, written ∀θ • ϕ, as a newΣ -sentence. The satisfaction
relation and the translation of a sentence∀θ • ϕ along a signature morphism are
defined in the expected way:

• A Σ -model satisfies theΣ -sentence∀θ • ϕ if 〈ϕ,θ〉 holds in this model under
any valuation of the variables “Σ ′ \θ(Σ)”, that is, for anyM ∈ |Mod(Σ)|, M |=Σ

∀θ • ϕ if for all M′ ∈ |Mod(Σ ′)| such thatM′ θ = M, M′ |=Σ ′ ϕ.
• For any signature morphismσ :Σ → Σ1, σ(∀θ • ϕ) is ∀θ ′ • σ ′(ϕ), where

Σ

Σ ′

Σ1

Σ ′1

6

θ

-
σ

-σ ′

6

θ ′

is a pushout inSignsuch thatθ ′ ∈ I .

Note that in the above we have extended our underlying institutionINS. For-
mally:

Definition 4.4.28 (Institution with universally closed formulae).Let INS be an
institution, and letI be a collection of signature morphisms inINS that is closed
under pushouts such thatINS is I -semi-exact. Theextension ofINS by universal
closure w.r.t.I is the following institutionINS∀(I):

• SignINS∀(I) is SignINS.
• For any signatureΣ , SenINS∀(I)(Σ) is the disjoint union ofSenINS(Σ) with the

collection20 of all universal closures∀θ • ϕ of openΣ -formulae, whereθ ∈ I ;
for any signature morphismσ :Σ → Σ1, SenINS∀(I)(σ) is the function induced
by SenINS(σ) on SenINS(Σ) and by the notion of translation defined above on
universally closed openΣ -formulae.

• ModINS∀(I) is ModINS.

• The satisfaction relation inINS∀(I) is induced by the satisfaction relation ofINS
for INS-sentences and the notion of satisfaction for universally closed open for-
mulae as defined above. ut

The following theorem guarantees thatINS∀(I) is in fact an institution, modulo
the above remark about the definition of the translation of open formulae.

20 As usual, we disregard here the foundational problems which may arise ifI is not a set.
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Theorem 4.4.29 (Satisfaction condition for INS∀(I)). Let INS and I be as in Def-
inition 4.4.28. For any signature morphismσ :Σ → Σ1, openΣ -formula 〈ϕ,θ〉
(whereθ ∈ I ), Σ1-model M1 ∈ |Mod(Σ1)|, and pushout

Σ

Σ ′

Σ1

Σ ′1

6

θ

-
σ

-σ ′

6

θ ′

in Signsuch thatθ ′ ∈ I ,

M1 σ |=Σ ∀θ • ϕ iff M1 |=Σ1 ∀θ
′ • σ

′(ϕ)

Proof.

(⇒) : Assume thatM1 σ |=Σ ∀θ • ϕ and let M′1 be a θ ′-expansion ofM1. Put
M′ = M′1 σ ′ . Obviously,M′ θ = M′1 θ ;σ ′ = M′1 σ ;θ ′ = M1 σ . Thus, sinceM1 σ |=Σ

∀θ • ϕ, M′ |=Σ ′ ϕ. Hence, by the satisfaction condition ofINS, M′1 |=Σ ′1
σ ′(ϕ),

which provesM1 |=Σ1 ∀θ ′ • σ ′(ϕ).
(⇐) : Assume thatM1 |=Σ1 ∀θ ′ • σ ′(ϕ) and letM′ be aθ -expansion ofM1 σ . Since

INS is I -semi-exact, there exists aθ ′-expansionM′1 of M1 such thatM′1 σ ′ =
M′. Then, sinceM1 |=Σ1 ∀θ ′ • σ ′(ϕ), M′1 |=Σ ′1

σ ′(ϕ). Thus, by the satisfaction
condition,M′ |=Σ ′ ϕ, which provesM1 σ |=Σ ∀θ • ϕ. ut

Example 4.4.30.Let I be the collection of algebraic signature inclusionsι :Σ ↪→ Σ ′

in AlgSig such thatΣ ′ \ Σ contains new constants only. The institutionGEQ∀(I)

essentially coincides with the institutionEQ of equational logic (modulo the details
of the notation used for sentences), as suggested already in Exercise 2.1.6. IfΣ ′ \Σ

is allowed to contain new operation names (not just constants), then quantification
along morphisms inI leads to a version of second-order logic. ut

Other quantifiers (there exists, there exists a unique, there exist infinitely many,
for almost all, . . . ) may be introduced in the same manner as we have just introduced
universal quantifiers. Example 4.1.41 illustrates how one may introduce logical con-
nectives. By iterating these constructions one can, for example, derive the institution
of first-order logic from the institution of ground atomic formulae.

4.5 Institutions with reachability structure

An alternative to the standard initial algebra approach to specifications is to take
the reachable semantics of presentations, as discussed in Section 2.7.2, where from
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4.5 Institutions with reachability structure 211

among all the algebras satisfying a presentation only thereachablealgebras are
selected. In Section 4.3 we argued that it is important to consider not just initial
algebras, but more generally, algebras that are free extensions of a specified part;
similarly, it is important here to consider not just reachable algebras, but more gen-
erally, algebras that are generated by some specified part. Given an algebraic signa-
ture Σ and a subsignatureΣ ′ ⊆ Σ , a Σ -algebraA is reachable fromΣ ′ if it has no
proper subalgebra with the sameΣ ′-reduct. (Exercise: Show that this is the same as
to require that the algebra is generated by the set of all its elements in the carriers of
the sorts inΣ ′, as defined in Exercise 1.2.6.) To generalise this notion to the frame-
work of an arbitrary institution we will proceed along the lines suggested by the
“categorical theory of reachability” presented in Section 3.3 based on factorisation
systems.

Definition 4.5.1 (Reachable model).Let 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉 be an in-
stitution. Assume that for each signatureΣ ∈ |Sign|, we have a factorisation system
〈EΣ ,MΣ 〉 for the categoryMod(Σ) of Σ -models.

Let σ :Σ ′ → Σ be a signature morphism. AΣ -model M ∈ |Mod(Σ)| is σ -
reachableif M has no proper submodel with an isomorphicσ -reduct, that is, if
any factorisation monomorphismm:N→M in MΣ such thatm σ is an isomorphism
in Mod(Σ ′) is in fact an isomorphism inMod(Σ). ut

Example 4.5.2.Recall that for any algebraic signatureΣ ∈ AlgSig, the categories
Alg(Σ), PAlg(Σ) and CAlg(Σ) of total, partial and continuous algebras come
equipped with factorisation systems (Examples 3.3.3, 3.3.13 and 3.3.14, respec-
tively). Hence, the above definition makes sense in the institutionsEQ of equational
logic, PEQ of partial equational logic andCEQ of equational logic for continuous
algebras, yielding the expected notions. ut

Exercise 4.5.3.Recall that by Definition 3.3.7 aΣ -model is reachable if it has no
proper submodel. Show that ifINS is finitely exact then reachability is a special
case ofσ -reachability as defined above. (HINT : Use the fact that there is an initial
signature with the singleton category1 of models.) ut

In Section 3.3 it was shown how the notion of reachability introduced there may
be related to an equivalent definition stated in terms of quotients of initial mod-
els (Theorem 3.3.8(1)). In the standard algebraic case, an algebra is reachable if
and only if it is isomorphic to a quotient of the algebra of ground terms (Exer-
cise 1.4.14). To give an analogous result forσ -reachability we have to be able to
build terms over a specified reduct of the given algebra (cf. Exercise 3.5.11). Given
such a construction, aΣ -algebraA is reachable fromΣ ′ ⊆ Σ if and only if evaluation
in A of Σ -terms over theΣ ′-reduct ofA is surjective, or equivalently, ifA is a natural
quotient of the algebra ofΣ -terms built overA Σ ′ . We introduce a generalisation of
the construction of term algebras to an arbitrary institution by requiring that reduct
functors induced by signature morphisms have left adjoints. Notice that only sig-
natures are involved in this definition, no sentences, and so this requirement indeed
corresponds to the mild assumption that free models (term algebras) may be built
along arbitrary signature morphisms.
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Definition 4.5.4 (Institution with reachability structure). An institution with reach-
ability structureis an institution〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉 together with:

• for each signatureΣ ∈ |Sign|, a factorisation system〈EΣ ,MΣ 〉 for the category
Mod(Σ) of Σ -models; and

• for each signature morphismσ :Σ ′ → Σ , a σ -free functor Fσ :Mod(Σ ′) →
Mod(Σ) which is left adjoint to theσ -reduct functor σ :Mod(Σ)→Mod(Σ ′)
with unit ησ : IdMod(Σ ′)→ Fσ ( ) σ .

(As usual, sub- and superscripts will be omitted when convenient.) ut

Example 4.5.5.The institutionEQ of equational logic equipped with factorisation
systems for categories of algebras (cf. Example 3.3.3) has reachability structure —
the free functors are given by Exercise 3.5.11. ut

Exercise 4.5.6.Show that the institutionPEQ of partial equational logic with the
factorisation systems given by Example 3.3.13 for categories of partial algebras
forms an institution with reachability structure. (HINT : Free functors are rather triv-
ial here.)

Similarly, show that the institutionCEQ of equational logic for continuous al-
gebras with the factorisation systems given by Example 3.3.14 for categories of
continuous algebras forms an institution with reachability structure. (HINT : The
construction of free functors is much more difficult here — follow the construction
for ordinary algebras in Exercise 3.5.11, but when defining the new operations in a
free way remember that you have to extend the complete partial order to cover the
new values as well, ensuring continuity of the operations.) ut

Exercise 4.5.7.Let INS be a finitely exact institution. Prove that if every reduct
functor inINS has a left adjoint, then for every signatureΣ the categoryModINS(Σ)
of Σ -models has an initial object. (HINT : Use the fact that there is an initial signature
with the singleton category1 of models.) ut

The following theorem generalises well-known facts from the standard algebraic
setting. Just like its “predecessor” Theorem 3.3.8, it confirms our confidence in the
abstract definitions by showing how their different versions “click together” nicely.

Theorem 4.5.8.Let INS = 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉 be an institution with
reachability structure. Consider a signature morphismσ :Σ ′→ Σ .

1. A Σ -model M∈ |Mod(Σ)| is σ -reachable if and only if it is a natural quo-
tient of the free object over itsσ -reduct, that is, the counit morphismεM =
(idM σ

)#:Fσ (M σ )→M belongs toEΣ (cf. Exercise 3.5.24).

2. For anyσ -reachable model M∈ |Mod(Σ)|, any model N∈ |Mod(Σ)| and Σ ′-
model morphism f′:M σ → N σ , there exists at most oneΣ -model morphism
f :M→ N that extends f′ (i.e., such that fσ = f ′).

3. EveryΣ -model has a unique (up to isomorphism)σ -reachable submodel with an
isomorphicσ -reduct.
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4. If M ∈ |Mod(Σ)| is σ -reachable then for anyΣ -model morphism f:N→M such
that f σ is an isomorphism, f is a factorisation epimorphism (i.e., f∈ EΣ ).

Proof.

1. (⇒) : Let Fσ (M σ ) e−→ N
m−→ M be a factorisation ofεM:Fσ (M σ )→ M. Ar-

guing dually to Exercise 3.5.18 we can show thatm σ :N σ →M σ is an isomor-
phism. Hence, by theσ -reachability ofM, m is an isomorphism, which proves
thatεM ∈ EΣ .
(⇐) : Letm:N→M, m∈MΣ , with m σ being an isomorphism. Definef :Fσ (M σ )→
N by f = ((m σ )−1)#. ThenηM σ

;( f ;m) σ = idM σ
. By the freeness ofFσ (M σ ),

this implies thatf ;m= εM. Thus, by the assumption thatεM ∈ EΣ and by Exer-
cise 3.3.5,m is an isomorphism.

2. Suppose thatf1, f2:M→N are such thatf1 σ = f2 σ = f ′. ThenηM σ
;(εM; f1) σ =

f ′ = ηM σ
;(εM; f2) σ , and soεM; f1 = εM; f2. Thus, we also havef1 = f2, since by

(1) aboveεM is an epimorphism.
3. Consider an arbitraryΣ -model M. Let Fσ (M σ ) e−→ N

m−→ M be a factorisa-
tion of εM:Fσ (M σ ) → M. Again, arguing dually to Exercise 3.5.18 we can
show thatm σ :N σ →M σ is an isomorphism. Moreover, by the naturality ofε,
Fσ (m σ );εM = εN;m, that isFσ (m σ );e;m= εN;m, and so (sincem is a monomor-
phism)εN = Fσ (m σ );e∈ EΣ . Thus, by (1) again,N is aσ -reachable submodel
of M.
To prove uniqueness up to isomorphism, consider a subobjectm1:N1→M with
m1 σ being an isomorphism andεN1:Fσ (N1 σ )→N1 in EΣ . ThenFσ (m1 σ );εM =
εN1;m1, and sinceFσ (m1 σ ) is an isomorphism, we have two factorisations of

εM:Fσ (M σ )→ M, 〈Fσ (m1 σ )−1;εN1,m1〉 and〈e,m〉, which by the uniqueness
of factorisations implies thatN andN1 are isomorphic.

4. Let N
e−→ · m−→ M be a factorisation off :N→ M. Then, by naturality ofε,

εN;e;m= Fσ ( f σ );εM. Now, sincef σ (and henceFσ ( f σ )) is an isomorphism,
by σ -reachability ofM and (1) above,εN;e;m∈ EΣ . Thus, by Exercise 3.3.5,m
is an isomorphism, and sof ∈ EΣ . ut

4.5.1 The method of diagrams

In the standard algebraic framework, reachable algebras enjoy a number of use-
ful properties which make them especially easy to deal with. As a consequence
of the fact that we are able to “name” (using ground terms) all their elements,
reachable algebras are easy to describe using the most elementary logical sentences,
ground equations. To be more precise: for any algebraic signatureΣ and reachable
Σ -algebraA, the class

Ext(A) = {B∈ |Alg(Σ)| | there exists aΣ-homomorphismh:A→ B}
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is definable by the groundΣ -equations that hold inA, that is,Ext(A)= ModGEQ(ThGEQ({A})),
and moreover,A is initial in Ext(A). (We will refer to classes of algebras of the
form Ext(A) for a reachable algebraA asground varieties.) This gives a one-to-
one correspondence between ground equational theories and isomorphism classes
of reachable algebras (and furthermore, congruences on ground term algebras by
Exercise 1.4.14).

Unfortunately, not all algebras are reachable, and it is clear that this correspon-
dence does not carry over to arbitrary algebras: there are algebras that cannot be
characterised as initial models of equational theories. But there is a technical trick
that may help: if aΣ -algebraA is not reachable, then consider the signatureΣ(A)
obtained by adding toΣ the elements of|A| as constants of the appropriate sorts.
Now, the algebraA has an obvious expansion to a reachableΣ(A)-algebraE(A),
where the new constants are interpreted as the elements they correspond to. This
expansion has a number of useful properties:

• Any Σ -homomorphismh:A→ B determines unambiguously an expansion ofB
to a Σ(A)-algebraEh(B) where each new constant inΣ(A) is interpreted as the
value ofh on the corresponding element of|A|. Moreover, this expansion is in-
dependent from any decomposition ofh: for anyΣ -homomorphismsh1:A→C
andh2:C→ B such thath = h1;h2, the homomorphismh2 (or more precisely, its
underlying map) is aΣ(A)-homomorphism fromEh1(C) to Eh(B).

• Intuitively, the expansion does not introduce more structure than necessary to
makeA reachable; in particular, no new elements are added.

Putting all these together, anyΣ -algebraA may be characterised by the set of ground
equations on the signatureΣ(A) that hold inE(A). This technique, known asthe
method of diagrams, is one of the basic tools of classical model theory (cf. e.g.
[CK90]). We have already suggested its use in the construction of the free functor
corresponding to a signature morphism in Exercise 3.5.11.

In the following the method of diagrams is formulated in the context of an ar-
bitrary institution with reachability structure. We will assume that the institution
is finitely exact in order to be able to deal with reachability (not just reachability
relative to signature morphisms, cf. Exercises 4.5.3 and 4.5.7).

Definition 4.5.9 (The method of diagrams).Let INS = 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉
be a finitely exact institution with reachability structure.INS admits the method of
diagramsif:

• (Definability of ground varieties)
for every signatureΣ ∈ |Sign| and reachableΣ -modelM ∈ |Mod(Σ)|, the class

Ext(M) = {N ∈ |Mod(Σ)| | there exists aΣ-model morphismh:M→ N}

of extensions ofM is definable, that is,Ext(M) = ModΣ (Φ) for some setΦ ⊆
Sen(Σ).

• (Existence of diagrams)
for every signatureΣ ∈ |Sign| andΣ -modelM ∈ |Mod(Σ)|, there exists a signa-
tureΣ(M) ∈ |Sign| and signature morphismι :Σ → Σ(M) such that:
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– M has a reachableι-expansionE(M): there existsE(M) which is a reachable
Σ(M)-model such thatE(M) ι = M;

– ι-reduct is an isomorphism of the slice categoriesMod(Σ(M))↑E(M) and
Mod(Σ)↑M (see Exercise 3.1.30), that is, for anyΣ -model morphismf :M→
N, there exists a uniqueι-expansion ofN, Ef (N), such that f has anι-
expansionE( f ):E(M)→Ef (N) and such that anyΣ -model morphismh:N→
N1 has a uniqueι-expansionE(h):Ef (N)→ Ef ;h(N1); and

– ι-reduct preserves the factorisation system onMod(Σ(M))↑E(M) as inherited
from Mod(Σ(M)), that is, for anyf :E(M)→N′ andh:N′→N′′, if h∈EΣ(M)
thenh ι ∈ EΣ and ifh∈MΣ(M) thenh ι ∈MΣ .

Then, Σ(M) is called thediagram signature for M(with signature inclusionι),
E(M) is called thediagram expansion of M, and finally the theory∆+(M) =
ThΣ(M)(Ext(E(M))) is called the (positive) diagram of M. ut

Example 4.5.10.The institutionsEQ of equational logic,PEQ of partial equational
logic, andCEQ of equational logic for continuous algebras admit the method of di-
agrams. Ground varieties inEQ are definable by sets of ground equations; ground
varieties ofPEQ are definable by sets of ground equations and ground definedness
formulae; ground varieties inCEQ are definable by sets of ground infinitary equa-
tions. For any (total, partial, or continuous)Σ -algebraA, the diagram signature for
A is formed by adding constants corresponding to all the elements of|A|. The dia-
gram expansion of a partial algebra is formed by requiring that the new constants
are defined and have the expected values. ut

Exercise 4.5.11.Show that in any institution that admits the method of diagrams,
and for any modelM, the class of models of the positive diagram ofM is the class of
all extensions of the diagram expansion ofM: ModΣ(M)(∆+(M)) = Ext(E(M)). ut

4.5.2 Abstract algebraic institutions

In Exercise 3.5.11 we suggested the use of the method of diagrams to prove that in
the standard algebraic framework, the reduct functor induced by a signature mor-
phism has a left adjoint. With some more effort, one can generalise this result and
prove that in the standard equational institution the reduct functor induced by athe-
ory morphism has a left adjoint:

Exercise 4.5.12.Prove that in the equational institutionEQ, for any theory mor-
phismσ :T→ T ′, the reduct functor σ :Mod[T ′]→Mod[T] has a left adjoint.

HINT : Formalise and complete the following construction: LetT = 〈Σ ,Φ〉 and
T ′ = 〈Σ ′,Φ ′〉. For anyΣ -algebraA ∈ Mod[T], let Σ(A) be its diagram signature,
and let
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Σ(A)

Σ ′Σ

Σ ′(A)-σ ′

6

ι

6

ι ′

-
σ

be a pushout in the category of signatures. Then, let∆+(A)⊆ SenEQ(Σ(A)) be the
positive diagram ofA. Consider the presentation〈Σ ′(A),σ ′(∆+(A))∪ ι ′(Φ ′)〉. By
Theorem 2.5.14, this has an initial model. Itsι ′-reduct is a free object overA. (See
also Exercise 3.5.11 for a slightly different line of reasoning.) ut
We will come back to a careful, more abstract analysis of this construction later (cf.
Theorem 4.5.18 below). For now, just notice that the construction not only uses the
fact that the equational institution admits the method of diagrams, but also relies
(directly or indirectly) on a number of simple facts about the reachability structure
of the equational institution. We capture some of these additional properties in the
following abstract definition:

Definition 4.5.13 (Abstract algebraic institution). An abstract algebraic institu-
tion is a finitely exact institutionINS = 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉 with reach-
ability structure that admits the method of diagrams, for which the following condi-
tions hold:

• For any signatureΣ ∈ |Sign|, the categoryMod(Σ) has all products (of sets of
models) and isEΣ -co-well-powered (Definition 3.3.10).

• For any signature morphismσ :Σ → Σ ′, theσ -reduct functor preserves submod-
els (i.e., for allm′ ∈MΣ ′ , m′ σ ∈MΣ ) and products.

• (Abstraction condition) For any signatureΣ andΣ -modelsM,N ∈ |Mod(Σ)|, if
M andN are isomorphic then they satisfy exactly the sameΣ -sentences. ut

Example 4.5.14.The institutionsEQ of equational logic,PEQ of partial equational
logic, andCEQ of equational logic for continuous algebras are abstract algebraic
institutions. ut

Exercise 4.5.15.There is a certain asymmetry in the above definition: reduct func-
tors in abstract algebraic institutions are required to preserve submodels but are not
required to preserve quotients. Prove that inEQ, reduct functors preserve quotients
as well: for allσ :Σ → Σ ′ ande′ ∈ EΣ ′ , e′ σ ∈ EΣ . Show, however, that this is not
true in general inPEQ. ut

4.5.3 Liberal abstract algebraic institutions

In Section 4.3 we have shown that it is possible to restrict attention to initial models
of specifications written in an arbitrary institution, even if theories in the institution
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are not guaranteed to have initial models in general. Similarly, data constraints make
sense in an arbitrary institution even if reduct functors induced by theory morphisms
are not guaranteed to have left adjoints. This flexibility is useful, but nevertheless it
may be important to know whether or not a theory used in an initiality constraint has
an initial model, or whether a theory morphism used in a data constraint has a cor-
responding free functor. In some institutions this is always the case: the equational
institutionEQ is one example (cf. Theorem 2.5.14 and Exercise 4.5.12). In the rest
of this section we present a characterisation of institutions that have this property.
Of course, very little can be done in the framework of an arbitrary institution: how-
ever, abstract algebraic institutions as introduced above provide a sufficiently rich
background.

Definition 4.5.16 (Liberal institution). An institution INS admits initial modelsif
every theory inINS has an initial model.INS is liberal if for every theory morphism
σ :T→ T ′ in INS, theσ -reduct functor σ :Mod[T ′]→Mod[T] has a left adjoint.

Then, an abstract algebraic institutionINS admits reachable initial modelsif
every theory inINS has an initial model which is reachable.INS is strongly liberalif
for every theory morphismσ :T→ T ′ in INS, theσ -reduct functor σ :Mod[T ′]→
Mod[T] has a left adjointFσ :Mod[T]→ Mod[T ′] such that for anyM ∈ Mod[T],
Fσ (M) ∈Mod[T ′] is σ -reachable. ut

In the last part of the definition we have slightly abused notation by usingσ as both
a theorymorphism and asignaturemorphism (which in fact it is). It is important
that the notion ofσ -reachability used here is taken w.r.t. signature morphisms (cf.
Definition 4.5.1) without taking into account the theory context.

Exercise 4.5.17.Find an institution that admits initial models but does not admit
reachable initial models. HINT : Consider an algebraic signatureΣ with a unary
operation symbolf :s→ s. Show that the class ofΣ -algebras satisfying the axiom
∃!x:s• f (x) = x has an initial model which is not reachable, where∃! reads “there ex-
ists a unique”, that is,∃!x:s• f (x) = x stands for∃x:s• f (x) = x∧∀x1,x2:s• f (x1) =
x1∧ f (x2) = x2⇒ x1 = x2. ut

For abstract algebraic institutions, the requirements introduced in Definition 4.5.16
are pairwise equivalent.

Theorem 4.5.18.Let INS be an abstract algebraic institution.INS is liberal if and
only if it admits initial models.

Proof.

(⇒): Let T = 〈Σ ,Φ〉 be a theory. LetιΣ :Σ∅ → Σ be the only signature mor-
phism from the initial signatureΣ∅ to Σ . Then ιΣ :T∅ → T is a theory mor-
phism, whereT∅ = 〈Σ∅,ClΣ∅(∅)〉 is the initial theory, and so the reduct functor

ιΣ
:Mod[T]→Mod[T∅] has a left adjointFιΣ

:Mod[T∅]→Mod[T]. Now, there
is exactly oneΣ∅-model, sayM∅ ∈ |Mod[T∅]|, and moreover,FιΣ

(M∅) is an ini-
tial model ofT.
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(⇐): We follow the proof for the equational institutionEQ sketched in Exer-
cise 4.5.12. For any theory morphismσ :T → T ′, whereT = 〈Σ ,Φ〉 andT ′ =
〈Σ ′,Φ ′〉, and modelM ∈Mod[T], we construct a modelFσ (M) ∈Mod[T ′] with
unit ηM:M→ Fσ (M) σ that is free overM w.r.t. σ :Mod[T ′]→Mod[T].
Let Σ(M) be the diagram signature forM with signature inclusionι :Σ ↪→ Σ(M),
and let

Σ(M)

Σ ′Σ

Σ ′(M)-σ ′

6

ι

6

ι ′

-
σ

be a pushout in the category of signatures. Then, let∆+(M)⊆Sen(Σ(M)) be the
positive diagram ofM. Consider the presentation〈Σ ′(M),σ ′(∆+(M))∪ ι ′(Φ ′)〉.
By the assumption, it has an initial model, sayI . PutFσ (M) = I ι ′ . Then, since
by the satisfaction conditionI σ ′ |=Σ(M) ∆+(M), I σ ′ ∈ Ext(E(M)) (cf. Exer-
cise 4.5.11). Hence, there exists a (unique, sinceE(M) is reachable)Σ(M)-model
morphismη̂M:E(M)→ I σ ′ . PutηM = η̂M ι :M→ Fσ (M) σ .
First, notice that sinceI |=Σ ′(M) ι ′(Φ ′), Fσ (M) ∈ Mod[T ′]. Then, consider an
arbitrary modelN ∈Mod[T ′] and aΣ -model morphismf :M→ N σ .
By the definition of the diagram signature forM, N σ has a uniqueι-expansion
to a Σ(M)-model Ef (N σ ) such that there exists aΣ(M)-model morphism
E( f ):E(M)→ Ef (N σ ) with E( f ) ι = f . Amalgamation yields a uniqueΣ ′(M)-
modelEσ

f (N σ )∈ |Mod(Σ ′(M))| with Eσ
f (N σ ) σ ′ = Ef (N σ ) andEσ

f (N σ ) ι ′ =
N. SinceN |=Σ ′ Φ ′, Eσ

f (N σ ) |=Σ ′(M) ι ′(Φ ′). Then, sinceEf (N σ ) ∈ Ext(E(M)),
Ef (N σ ) |=Σ(M) ∆+(M), and soEσ

f (N σ ) |=Σ ′(M) σ ′(∆+(M)). Consequently, we

get a uniqueΣ ′(M)-model morphism̂f ′: I → Eσ
f (N σ ). Put f ′ = f̂ ′ ι ′ :Fσ (M)→

N. Notice thatη̂M; f̂ ′ σ ′ :E(M) → Ef (N σ ). Hence, sinceE(M) is reachable,

η̂M; f̂ ′ σ ′ = E( f ), and so we obtainηM; f ′ σ = f . Moreover, f ′ is the only mor-
phism with this property. To see this, suppose that for somef ′′:Fσ (M)→ N,
ηM; f ′′ σ = f . Then, by the amalgamation property (this time for model mor-

phisms) there exists aΣ ′(M)-model morphism̂f ′′: I→Eσ
f (N σ ) such that̂f ′′ ι ′ =

f ′′ (and f̂ ′′ σ ′ = E( f ′′ σ ): I σ ′ → Ef (N σ )). By initiality of I , f̂ ′′ = f̂ ′, and so
f ′′ = f ′, which completes the proof. ut

Theorem 4.5.19.Let INS be an abstract algebraic institution.INS is strongly lib-
eral if and only if it admits reachable initial models.

Proof. We extend the proof of the previous theorem, relying on the notation intro-
duced there.
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(⇒): The only additional remark needed is thatFιΣ
(M∅) is reachable if it isιΣ -

reachable (cf. Exercise 4.5.3).
(⇐): We have to additionally prove thatFσ (M) = I ι ′ is σ -reachable whenever

I is reachable. To see this, consider an arbitrary submodel ofI ι ′ with an iso-
morphicσ -reduct, saym:N→ I ι ′ , wherem∈ MΣ ′ andm σ :N σ → I σ ;ι ′ is an

isomorphism. Putf = ηM;(m σ )−1:M → N σ . Then f ;m σ = ηM, and som σ

has an expansion to aΣ(M)-model morphismE(m σ ):Ef (N σ )→ EηM (I σ ;ι ′) =
I σ ′ . Then, as in the corresponding part of the proof of Theorem 4.5.18, we
get a uniqueΣ ′(M)-modelEσ

f (N σ ) ∈ |Mod(Σ ′(M))| such thatEσ
f (N σ ) σ ′ =

Ef (N σ ) andEσ
f (N σ ) ι ′ = N, and aΣ ′(M)-model morphism̂f ′: I → Eσ

f (N σ ).
On the other hand, by the amalgamation property again, there exists a unique
Σ ′(M)-model morphism̂m:Eσ

f (N σ )→ I such that̂m σ ′ = E(m σ ) andm̂ ι ′ = m.

By the initiality of I , f̂ ′;m̂ is the identity, and so is( f̂ ′;m̂) ι ′ = f̂ ′ ι ′ ;m. Thus, by
Exercise 3.3.5,m is an isomorphism — which completes the proof. ut

4.5.4 Characterising abstract algebraic institutions that admit
reachable initial models

From the very beginning of work on algebraic specifications it has been known that
the standard equational institutionEQ admits reachable initial models (cf. Theo-
rem 2.5.14). Moreover, the proof of this property generalises readily to the situation
where conditional equations (even with infinite sets of premises) are permitted as
axioms. On the other hand, Example 2.7.11 shows that if disjunction is permitted,
the property is lost. Indeed, in the standard algebraic framework the infinitary con-
ditional axioms, which define all non-empty quasi-varieties, form in some sense a
borderline beyond which one cannot be sure of the existence of reachable initial
models. We generalise this result to the framework of abstract algebraic institutions.

Theorem 4.5.20.Let INS be an abstract algebraic institution.INS admits reach-
able initial models if and only if every class of models definable inINS is closed
under products (of sets of models) and under submodels.

Proof.

(⇐): This follows directly by Lemma 3.3.12; just notice that any class of models
closed under products and submodels is anon-emptyquasi-variety (cf. Defini-
tion 3.3.11).

(⇒): Let 〈Σ ,Φ〉 be a presentation inINS. We show the required closure properties
of ModΣ (Φ).

(Submodels): Consider a modelM ∈ ModΣ (Φ) and its submodelm:N→ M,
m∈ MΣ . Let Σ(N) be a diagram signature forN with signature inclusion
ι :Σ → Σ(N), and let∆+(N)⊆ Sen(Σ(N)) be the positive diagram ofN. Re-
call thatModΣ(N)(∆+(N)) = Ext(E(N)), whereE(N) ∈ Mod(Σ(N)) is the
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diagram expansion ofN. The presentation〈Σ(N),∆+(N)∪ ι(Φ)〉 has a reach-
able initial model, sayI . We show thatI ι is isomorphic toN, which in partic-
ular impliesN ∈ModΣ (Φ).
Since I |=Σ(N) ∆+(N), there exists aΣ(N)-model morphismf :E(N) → I .
Moreover, sinceI is reachable,f ∈ EΣ(N) (by Theorem 3.3.8(4)) and hence
also f ι ∈ EΣ . Then, letEm(M) be the unique expansion ofM to a Σ(N)-
model with E(m):E(N) → Em(M) such thatE(m) ι = m. SinceM |= Φ ,
Em(M) |=Σ(N) ι(Φ), and, sinceEm(M) ∈ Ext(E(N)), Em(M) |=Σ(N) ∆+(N).
Hence, there is a (unique) morphismg: I→Em(M). Now, sinceE(N) is reach-
able, there exists at most one morphism fromE(N) to Em(M), and so we have
f ;g= E(m), which impliesf ι ;g ι = m∈MΣ . Sincef ι ∈EΣ , it follows from
Exercise 3.3.5 thatf ι :N→ I ι is indeed an isomorphism.

(Products): Consider any familyMi ∈ ModΣ (Φ), i ∈ J, whereJ is any set (of
indices). LetN with projectionsπi :N→Mi , i ∈ J, be the product of〈Mi〉i∈J.
We proceed similarly as in the previous case: letΣ(N) be a diagram signature
for N with signature inclusionι :Σ → Σ(N), and let∆+(N) ⊆ Sen(Σ(N))
be the positive diagram ofN. The presentation〈Σ(N),∆+(N)∪ ι(Φ)〉 has a
reachable initial model, sayI . We show thatI ι is isomorphic toN, which
implies thatN ∈ModΣ (Φ).
Just as in the previous case, there existsf :E(N)→ I with f ι ∈ EΣ .
Then, fori ∈ J, letEπi (Mi) be the uniqueΣ(N)-model such that there is an ex-
pansion ofπi to a Σ(N)-model morphismE(πi):E(N)→ Eπi (Mi). Eπi (Mi)
satisfies both∆+(N) and ι(Φ), and so there exists a morphismhi : I →
Eπi (Mi). Hence, by the definition of a product, there exists a (unique)Σ -model
morphismg: I ι →N such that fori ∈ J, hi ι = g;πi . Moreover, fori ∈ J, since
E(N) is reachable and so there is at most one morphism fromE(N) to Eπi (Mi),
f ;hi = E(πi). Consequently,( f ι ;g);πi = f ι ;hi ι = ( f ;hi) ι = E(πi) ι = πi .
It follows that f ι ;g is an isomorphism, and thusf ι ∈ EΣ implies that
f ι :N→ I ι is an isomorphism as well. ut

Exercise 4.5.21.As we have mentioned earlier, institutions of single-sorted logics,
like those in Exercises 4.4.10 and 4.4.16, are only semi-exact, rather than finitely
exact.

Call an institutionINS almost abstract algebraicif it satisfies all the assump-
tions imposed on abstract algebraic institution except for the requirement of finite
exactness, instead of which we require that:

• INS is semi-exact; and
• for each signatureΣ ∈ |SignINS|, the categoryModINS(Σ) of Σ -models has an

initial object.

The above characterisation theorems nearly hold for almost abstract algebraic insti-
tutions:
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• By direct inspection of their proofs, check that Theorem 4.5.20 as well as the
“if” parts of Theorems 4.5.18 and 4.5.19 hold for almost abstract algebraic insti-
tutions.

• Prove that the “only if” part of Theorem 4.5.18 holds for almost abstract alge-
braic institutions. HINT : To show that aΣ -theoryT has an initial model, consider
the identity signature morphism as a morphism from the emptyΣ -theory toT.
Then use Exercise 3.5.17.

• Show that the “only if” part of Theorem 4.5.19 does not hold for almost abstract
algebraic institutions. HINT : In SSEQ, the requirement ofσ -reachability is triv-
ial for any signature morphismσ . Consider the extension ofSSEQby sentences
involving the quantifier “there exists a unique”. ut

4.6 Bibliographical remarks

This chapter has its origins in the seminal work of Goguen and Burstall on insti-
tutions. The reader may have noticed that the main paper on institutions [GB92]
appeared later than many of its applications. The first appearance of institutions was
in the semantics of Clear [BG80], under the name “language”, and early versions of
[GB92] were widely circulated, with [GB84a] as an early published version. Most
of our terminology (signature, sentence, model, liberal institution, etc.) comes from
[GB92]. There is a minor technical difference with respect to the definition given in
[GB92]: we take the contravariant functorModINS to beModINS:Signop

INS → Cat
rather thanModINS:SignINS→Catop. This is consistent with the further refinement
of this definition in Chapter 10 as well as with the notion of an indexed category (cf.
Section 3.4.3 and [TBG91]).

A large number of variants, generalisations and extensions of the notion of in-
stitution have been considered. In some work where model morphisms are not im-
portant, institutions were considered with classes (rather than categories) of mod-
els, e.g. [BG80]. Somewhat dually, one way to bring deduction into the realm of
institutions is by considering categories (rather than sets) of sentences, where mor-
phisms capture proofs. These variants were present in some unpublished versions of
[GB92]; see also [MGDT07] for some elaboration on these possibilities.

One line of generalisation is to allow a space of truth values other than just the
standard two-valued set, leading to proposals like galleries [May85] or generalised
institutions [GB86]. General logics [Mes89] add an explicit notion of entailment
and proof to institutions, see Chapter 9 for developments in this direction. Founda-
tions [Poi88] include a similar idea, in addition imposing a rich indexed category
structure on sentences. Context institutions [Paw96] offer an explicit notion of con-
text and hence of open formulae and valuation as a part of the institution structure.
There have also been attempts to relax the satisfaction condition, with for instance
pre-institutions [SS93], [SS96], where the equivalence in the satisfaction conditions
is split into two separately-imposed implications. This captures logical systems in
which one or both of the directions of the satisfaction condition fail, as discussed
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before Exercise 4.1.2. This applies to the so-called ultra-loose approach to algebraic
specification [WB89], Extended ML [KST97] and various notions of behavioural
satisfaction, see Chapter 8. (In [Gog91a], the satisfaction condition is satisfied for
behavioural satisfaction but at the cost of restricting the notion of signature mor-
phism.) Overall though, in spite of all these proposed variants and generalisations,
most research has been based on the original notion, as we present it here.

The theory of institutions adopts a primarily model-theoretic view of logical sys-
tems. This does not preclude proof-theoretic investigation, see Chapter 9, but it does
exclude logical systems that are inherently not based on the Tarskian notion of sat-
isfaction of a sentence in a model. Typically such systems are centred around a
notion of logical consequence that is defined via deduction, in contrast to our Def-
inition 4.2.5. One such example would be non-monotonic logics [MT93], where
increasing the set of premises can render consequences invalid. Other examples in-
clude substructural logics such as linear logic [Gir87], where changing the number
of occurrences of premises, or their order, may affect deduction and change the set
of valid consequences. Clearly, such logics cannot be directly represented as insti-
tutions, but see for instance [CM97] which indicates how an institution for linear
logic can be defined by taking linear logic sequents (statements about consequence)
as individual sentences. A view of logic based on proof rules and deduction under-
lies so-called “general logical frameworks”, with Edinburgh LF [HHP93] as a prime
example. For proposals in this direction related to institutions, seeπ-institutions
[FS88] and also entailment systems [Mes89], [HST94], which re-emerge in Defini-
tion 9.1.2 below.

Sections 4.1.1 gives only the beginning of the long list of examples of logical
systems that have been formalised as institutions. Standard examples of institutions
(EQ, FOP, Horn , Horn without equality,EQ⇒) were in [GB92] with further stan-
dard algebraic variants in [Mos96b], andCEQ is from [Tar86b].

Dozens of other logical systems have been formalised as institutions. Some
examples: [Bor00] defines an institution of higher-order logic based on HOL;
[SML05] defines an institution with type class polymorphism; [Roş94] defines an
institution of order-sorted equational logic; [ACEGG91] defines a family of insti-
tutions of multiple-valued logics, including logical systems arising from fuzzy set
theory; [Dia00] defines an institution of constraint logic; [Cı̂r02] defines an insti-
tution with models that have both coalgebraic and algebraic components, and sen-
tences involving modal formulae; [FC96] defines an institution of temporal logic;
[LS00] defines an institution of hybrid systems based on the specification language
of HYTECH [HHWT97]; and [BH06a] defines the COL constructor-based obser-
vational logic institution based on viewing reachability and observability as dual
concepts. The semantics of basic specifications in CASL [ST04] defines an institu-
tion, the rest of the semantics being defined in an institution-independent fashion.
Alternatives to the standard CASL institution include: the institution underlying CO-
CASL, which includes cogeneration constraints, cofreeness constraints, and modal
formulae [MSRR06]; the institution underlying HASCASL, with partial higher or-
der functions, higher-order subtyping, shallow polymorphism, and type classes, de-
signed for specifying functional programs [SM09]; an institution of labelled tran-
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sition logic for specifying dynamic reactive systems [RAC99]; and the institution
underlying CSP-CASL for describing systems of processes [Rog06]. The eight in-
stitutions involved inCafeOBJ [DF98] are defined in [DF02], with their combina-
tion leading to an institution via a version of the Grothendieck construction (Defi-
nition 3.4.58) that is applicable here [Dia02], and the Maude language [CDE+02]
is based on rewriting logic [Mes92] and on the institution of membership equa-
tional logic [Mes98] (with some technical nuances of their relationship pointed at
in [CMRM10]). Institutions for three different UML diagram types are defined in
[CK08a, CK08b, CK08c], with the relationships between them given by institu-
tion comorphisms (see Section 10.4 below). A spectrum of institutions capturing
some aspects of Semantic Web languages are defined and linked with each other in
[LLD06]. Different approaches to the specification of objects have led to the def-
inition of a number of institutions, including [SCS94] which defines an institution
of temporal logic for specifying object behaviour, [GD94b] which argues that an
institution based on hidden-sorted algebra is relevant, and [Zuc99] which shows
how to construct an institution with features for specifying dynamic aspects of sys-
tems using so-called “d-oids” from an institution for specifying static data. Finally,
some slightly non-standard examples include two institutions for graph colouring in
[Sco04], a way of viewing a database as an institution [Gog10], and a framework
based on institutions for typed object-oriented, XML and other data models [Ala02].

Some of the examples of constructions on institutions in Section 4.1.2 were in-
dependently introduced by others. For instance, [Mes89] constructs an institution
“out of thin air” starting with theories in an entailment system, the idea of which is
presented in Examples 4.1.36 and 4.1.40. Incidentally, a very interesting exercise is
to use the method of diagrams (Definition 4.5.9) to show how the construction of
models from theories recovers the institution for which the entailment system that
generates the theories was built.

Overall though, Section 4.1.2 only hints at the issue of how institutions should
be defined. In particular, we do not discuss here the notion of aparchment[GB86],
which offers one convenient way to present institutions in a concise and uniform
style, at the same time ensuring that the satisfaction condition holds. See also
[MTP97, MTP98] for variants of this notion and its use for combining presenta-
tions of logical systems.

The idea of data constraints originates in [BG80], but has been independently
introduced earlier by Reichel [Rei80], cf. [KR71]. Our treatment in Section 4.3 fol-
lows [GB92]. Definition 4.3.8 is essentially equivalent to the definition there, al-
though the technicalities are somewhat different; in particular, as in [ST88a], we do
not require the institution to be liberal. Hierarchy constraints [SW82], also known
as generating constraints [EWT83], are like data constraints but require that some
carriers are generated from other carriers rather than freeness, see Exercise 4.3.13.
Exercise 4.3.14 introduces a way to specify so-called co-inductive data types involv-
ing infinitary data. This has been mixed with algebraic techniques both in specifi-
cation, see COCASL [MSRR06] and in experimental programming languages, see
[Hag87] and Charity [CS92, CF92]. See [Rut00] for an introduction to a comprehen-
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sive coalgebraic approach to specification which provides an alternative perspective
to the material on behavioural specifications in Chapter 8 below.

Colimits of signatures and theories built over them have been used as a tool for
combining theories and specifications at least since [BG77, GB78]. This follows the
general ideas of [Gog73] and underlies for instance the semantics of Clear [BG80]
and the commercial Specware system [Smi06]; support for the use of colimits to
combine theories in a number of institutions is also offered by the HETS system
[MML07]. A category-theoretic approach to software engineering which makes ex-
tensive use of these ideas is [Fia05]. Theorem 4.4.1 originates with [GB92], gener-
alising a non-institutional version in [GB84b], and Corollary 4.4.2 is from [BG80].

The idea of amalgamation in model theory [CK90] refers to a subtler and deeper
property of certain theories than does the notion defined here. The use of amalga-
mation in algebraic specification, in connection with pushout-style parameterisation
mechanisms, originates with [EM85], following its introduction in [BPP85], see
also the Extension Lemma in [EKT+80, EKT+83]. In the context of an arbitrary
institution, it was first imposed as a requirement and linked with continuity of the
model functor in [ST88a], cf. [EWT83].

Limiting the amalgamation property to pushouts along a chosen collection of sig-
nature morphisms, as in Definition 4.4.18, is important not only because of examples
like those in Exercise 4.4.19. The range of relevant cases includes systems emerging
in practice. For instance, the institution of CASL [Mos04] admits amalgamation for
pushouts along most, but not all, CASL signature morphisms, due to problems with
the required unique interpretation of subsorting coercions, see [SMT+05].

There has been some confusion with the terminology surrounding exactness of
institutions in the literature. The term was first used in [Mes89], although for preser-
vation of signature pushouts (the amalgamation property) only. It became widely
used after [DGS93], where it meant that the model functor maps finite colimits of
signatures to limits inCat, so that neither infinite colimits nor existence of colimits
were covered (the latter also applies to semi-exactness as introduced there). This
was sometimes missed in the literature, leading to subtle mistakes in the presenta-
tion of some results. We decided to put all of these assumptions together under the
single requirement of “exactness”. The notion of an institution “with composable
signatures” was used in early versions of this chapter and in [Tar99] to mean the
same thing as exactness, and this terminology was adopted by other authors in a
few papers. The notion of exactness as used in category theory is different, although
for functors between so-called Abelian categories it implies preservation of finite
colimits.

The consequences of semi-exactness for preservation of finite connected colimits
of signature diagrams stated in Proposition 4.4.15 appear to be new in the literature
concerning institutions; they had not been clear to us until we were pointed to [CJ95]
and a result there which we give as Exercise 3.4.55.

Institutions with extra structure have been used as the basis for the definition of
the semantics of a number of specification languages, beginning with ASL [ST88a]
which required an exact institution. In [ST86], an institution-independent semantics
for the Extended ML specification language is sketched in terms of an “institution
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with syntax”; this requires an additional functor which gives concrete syntactic rep-
resentations of sentences, together with a natural transformation which associates
these concrete objects with the “abstract” sentences they represent. In [ST04], the
semantics of CASL is based on an “institution with qualified symbols” [Mos00]
which requires considerable additional structure in order to support the operations
on signatures used in the semantics; these include union of signatures and generation
of signature morphisms from maps between symbols. Similar constructions on sig-
natures are available when the category of signatures is equipped with a so-called
inclusion system, which leads to the concept of an inclusive institution [DGS93],
[GR04] (see also Exercise 5.2.1 below).

Although the theory of institutions emerged originally in the context of algebraic
specification theory, it shares ideas and broad goals with abstract model theory as
pursued within mathematical logic, see [Bar74, BF85], which concentrates on the
study of definable classes of algebras (or rather first-order structures), abstracting
away from the structure of sentences and from proof-theoretic mechanisms. The
idea of developing an institutional version of abstract model theory, which also ab-
stracts away from the nature of models, was first put forward in [Tar86a], where
for instance the equivalence of the Craig interpolation and Robinson consistency
properties, mentioned in Section 4.4.1, was shown.

The Craig interpolation property (Definition 4.4.21) will be used frequently in
the sequel. In this formulation, it originates in [Tar86a]. Interpolation for first-order
logic is a standard result in model theory [CK90] but the delicacy of its status in
many-sorted first-order logic (see Exercise 4.4.23) was first pointed out in [Bor05].
There are several variants of the formulation of interpolation [DM00]. the general-
isation to arbitrary commuting squares of signature morphisms [Dia08] and sets of
interpolants (see the discussion in [DGS93]) is especially important. In particular,
sets of interpolants may always be found in the case of equational logic under the as-
sumption that carriers are non-empty [Rod91], but the necessity of this assumption
has been widely disregarded, see Exercise 4.4.25.

Our treatment of variables, open formulae and quantification in an arbitrary insti-
tution comes from [Tar86b, ST88a]; see the concept of syntactic operator in [Bar74]
for an earlier related idea. Section 4.5 is based on [Tar85], following [MM84] which
is in an institutional style but based on the standard notion of logical structure. In
[Tar86b], infinitary conditional “equations” were defined for an arbitrary abstract
algebraic institution and it was shown that sets of these sentences define quasi-
varieties, see [Mal71], thus obtaining a “syntactic” version of Theorem 4.5.20. Fur-
ther developments in institutional abstract model theory, with results and ideas that
refine those in Sections 4.4 and 4.5 and reach much further into classical model
theory than we have done here, are in [Dia08].

Page: 225 job: root macro: svmono.cls date/time: 29-Sep-2010/18:07



Page: 532 job: root macro: svmono.cls date/time: 29-Sep-2010/18:07



References

AC89. Egidio Astesiano and Maura Cerioli. On the existence of initial models for partial
(higher-order) conditional specifications. In Josep Dı́az and Fernando Orejas, editors,
Proceedings of the International Joint Conference on Theory and Practice of Software
Development, TAPSOFT’89, Barcelona,Lecture Notes in Computer Science, volume
351, pages 74–88. Springer, 1989.

AC01. David Aspinall and Adriana B. Compagnoni. Subtyping dependent types.Theoretical
Computer Science, 266(1–2):273–309, 2001.

ACEGG91. Jaume Agustı́-Cullell, Francesc Esteva, Pere Garcia, and Lluis Godo. Formalizing
multiple-valued logics as institutions. In Bernadette Bouchon-Meunier, Ronald R.
Yager, and Lotfi A. Zadeh, editors,Proceedings of the 3rd International Conference
on Information Processing and Management of Uncertainty in Knowledge-Based Sys-
tems, IPMU’90, Paris,Lecture Notes in Computer Science, volume 521, pages 269–
278. Springer, 1991.
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Computer Science, Štrbsḱe Pleso,Lecture Notes in Computer Science, volume 118,
pages 271–280. Springer, 1981.

Ehr82. Hans-Dieter Ehrich. On the theory of specification, implementation and parametriza-
tion of abstract data types.Journal of the Association for Computing Machinery,
29(1):206–227, 1982.

EKMP82. Hartmut Ehrig, Hans-Jörg Kreowski, Bernd Mahr, and Peter Padawitz. Algebraic
implementation of abstract data types.Theoretical Computer Science, 20:209–263,
1982.

EKT+80. Hartmut Ehrig, Hans-Jörg Kreowski, James Thatcher, Eric Wagner, and Jesse Wright.
Parameter passing in algebraic specification languages. Technical report, Technische
Universiẗat Berlin, 1980.

EKT+83. Hartmut Ehrig, Hans-Jörg Kreowski, James Thatcher, Eric Wagner, and Jesse Wright.
Parameter passing in algebraic specification languages.Theoretical Computer Sci-
ence, 28(1–2):45–81, 1983.

EM85. Hartmut Ehrig and Bernd Mahr.Fundamentals of Algebraic Specification 1, EATCS
Monographs on Theoretical Computer Science, volume 6. Springer, 1985.

Eme90. E. Allen Emerson. Temporal and modal logic. In Jan van Leeuwen, editor,Handbook
of Theoretical Computer Science. Volume B (Formal Models and Semantics), pages
995–1072. North-Holland and MIT Press, 1990.

End72. Herbert B. Enderton.A Mathematical Introduction to Logic. Academic Press, 1972.
EPO89. Hartmut Ehrig, Peter Pepper, and Fernando Orejas. On recent trends in algebraic

specification. In Giorgio Ausiello, Mariangiola Dezani-Ciancaglini, and Simona
Ronchi Della Rocca, editors,Proceeding of the 16th International Colloquium on
Automata, Languages and Programming, Stresa,Lecture Notes in Computer Science,
volume 372, pages 263–288. Springer, 1989.

EWT83. Hartmut Ehrig, Eric G. Wagner, and James W. Thatcher. Algebraic specifications
with generating constraints. InProceeding of the 10th International Colloquium on
Automata, Languages and Programming, Barcelona,Lecture Notes in Computer Sci-
ence, volume 154, pages 188–202. Springer, 1983.
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ing, and Computation, Essays Dedicated to Joseph A. Goguen on the Occasion of His
65th Birthday, Lecture Notes in Computer Science, volume 4060, pages 317–332.
Springer, 2006.

SML05. Lutz Schr̈oder, Till Mossakowski, and Christoph Lüth. Type class polymorphism
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