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Chapter 4
Working within an arbitrary logical system

Several approaches to specification were discussed in Chgpter 2. Each approach
involved a differentogical systenas a part of its mathematical underpinnings. We
encountered different definitions of:

Signatures: “ordinary” many-sorted signatures, signatures contabuong true
andfalse (for final and reachable semantics), error signatures, order-sorted sig-
natures;

Algebras (on a signatut®): “ordinary” X-algebras, erroZ-algebras, partial-
algebras, order-sortedt-algebras;

Logical sentences (on a signatwe X-equations, conditional-equations, error
X-equations (with safe and unsafe variableS)definedness formulae, order-
sortedX-equations; and

Satisfaction (of &-sentence by &-algebra): of &-equation by a (totaly-algebra,
of an errorX-equation by an erroE-algebra, of aZ-equation by a partiak-
algebra, of aX-definedness formula by a partigtalgebra, of an order-sorted
X-equation by an order-sortédtalgebra.

All of these choices can be combined to obtain many different logical systems and

hence different approaches to specification, e.g. partial error specifications with con-
ditional axioms. Not only that, but there are several alternative approaches to the
specification of partial algebras and at least half a dozen to the specification of error
handling. Furthermore, there are many other variations that have not been consid-
ered, including the following (some of them briefly mentioned in Se¢tion[2.7.6):

e polymorphic signatures which permit polymorphic type constructors (rather than
just sorts) and operations having polymorphic types;

e continuous algebras to handle infinite data objects such as streams;

o higher-order algebras to handle higher-order functions (i.e. functions taking func-
tions as arguments and/or yielding functions as results);

e relational structures to model specifications containing predicates;

e ineqguations and conditional inequations;

o first-order formulae, with and without equality;
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156 4 Working within an arbitrary logical system

e various modal logics, including algorithmic, dynamic, and temporal logics, for
formulating properties of (possibly non-functional) programs.

Some of these variations depart quite considerably from the usual algebraic
framework presented in Chaptéfs 1 and 2. But none of them (and very few of the
others considered in the literature) are artificial, resulting merely from a theoreti-
cian’s toying with formal definitions. All of them arise from the practical need to
specify different aspects of software systems, often reflected by diverse features of
different programming languages.

The resulting wealth of choice of definitions of the basic concepts is not a bad
thing. None of the logical systems used in specifications is clearly better than all the
others — and we should not expect that such a “best” system will ever be developed.
In theory, we can imagine putting all of the above concepts together, producing
a single logical system where signatures, algebras, sentences and the satisfaction
relation would cover as special cases all we have considered up to now. But the
result would be so huge and complex as to make it unmanageable. Moreover, what
would we do if one day somebody points out that yet another view of software is
important and should be reflected in specifications, and hence included in the logical
system we use? Scrap everything and start again?

Different specification tasks may call for different systems to express most con-
veniently the properties required. Moreover, different logical systems may be appro-
priate for describing different aspects of the same software system, and so a number
of logical systems may be useful in a single specification task. It is thus important
that the designer of a software system be able to choose which logical system(s) to
use.

An unfortunate effect of this necessary wealth of choice is that research on speci-
fication sometimes appears to be a confused mess, where everybody adopts a differ-
ent combination of basic definitions. This makes it difficult to build on the work of
others, to compare the results obtained for different logical systems, and to transfer
results from one system to another. This is even more disturbing when one realises
that such results include not only mathematical definitions and theorems, but also
practically useful tools supporting software specification, development and verifica-
tion produced at great expense of effort, time and money.

In fact, much of the work done turns out to be independent of the particular choice
of the basic definitions, although this is often not obvious. The main objective of this
chapter, and one of the main objectives of this book, is to lay out the mathematical
foundations necessary to make this independence explicit. We achieve this using the
notion of aninstitution which formalises the informal concept of a logical system
devised to fit the purposes of specification theory; see S¢ctipn 4.1 below for the def-
inition. Our thesis is that building as much as possible on the notion of an institution
brings important benefits for both the theory and the practice of software specifica-
tion and development. On one hand, this allows much work on theories, results, and
practical tools to be done just once for many different specific logical systems; on
the other hand it forces, via abstraction, a better understanding of and deeper insight
into the real problems.
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4.1 Institutions 157

A first example of this general approach is given in Sedtioh 4.2, where we recast
the fundamental ideas of the standard approach to specification from Chapter 2 in
the framework of an arbitrary institution.

It should be stressed that the notion of an institution captures only certain as-
pects of the informal concept of a logical system. In particular, it takes a model-
theoretic view of logical systems, and no direct attempt is made to accommodate
proof-theoretic concepts. See Secfiorj 9.1 for a discussion of how proof fits into the
picture.

When discussing different approaches to specification in Chpter 2, apart from
various basic notions of signature, algebra, sentence and satisfaction, we also con-
sidered different kinds of models (algebras satisfying a set of axioms) as particularly
interesting:

¢ the initial models;
e the reachable models satisfyikg . true # false
¢ the final models in the category of reachable models satisfyimgtrue + false

These options, although important for the overall style of specification, are of a
different nature than the choice of the basic definitions embodied in the particular
institution used. We show in Sectipn 4.3 how such “interesting models” may be
singled out in an arbitrary institution, thus suggesting that the choice here is in a
sense orthogonal to the choice of the underlying institution.

Our general programme is to strive to work in an arbitrary institution as much
as possible. However, the concepts involved in the basic theory of institutions are
often too general, and hence too weak, to express all that is necessary. When this
happens, it would be premature to give up, and switch to working in a particular
institution. The “game” is then to identify a (hopefully) minimal set of additional
assumptions under which the job can be done, covering most or all of the logical
systems of interest. This gives rise to an enriched notion of institution with some
additional structure that is relevant to the particular purpose we have in mind. A few
examples of this are given in Sectigns|4.4 4.5.

Before proceeding we should warn the reader that although working in an arbi-
trary institution is very important, it is only one side of the story. The other side is
to define an institution appropriate for the needs of the particular task at hand, and
quite often this is far from trivial. Indeed, in many areas of Computer Science, the
fundamental problem yet to be satisfactorily solved is the development of a logical
system appropriate for the aspects of computing addressed. An example of an area
for which a satisfactory, commonly accepted solution still seems to be outstanding
(despite numerous proposals and active research) is the theory of concurrency.

4.1 Institutions

Following Goguen and Burstall [GB92], we introduce the notion ofretitution,
capturing some essential aspects of the informal concept of a “logical system”. The
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158 4 Working within an arbitrary logical system

basic ingredients of an institution are: a notion of a signature in the system, and
then for each signature, notions of an algebra with this signature, of a logical sen-
tence over this signature, and finally a satisfaction relation between algebras and
sentences.

In contrast to classical logic and model theory, we are not content with consider-
ing logical systems “pointwise”, for an “arbitrary but fixed” signature. To capture the
process of building a specification and designing a software system, some means of
moving from one signature to another is required, that is, some notion of signature
morphism. These typically enable signatures to be extended by new components,
renaming and/or identifying others, as well as hiding some components used “inter-
nally” but not intended to be visible “externally”. Any signature morphism should
give rise to a translation of sentences and a translation of algebras determined by the
change of names involved. Furthermore, these translations must be consistent with
one another, preserving the satisfaction relation. As usual, when we switch from
syntax (signatures, sentences) to semantics (algebras), the direction of translation is
reversed.

The language of category theory is used in the definition to express the above
ideas. This concisely and elegantly captures structure arising from signature mor-
phisms, as well as forcing an appropriate level of generality and abstraction.

Definition 4.1.1 (Institution). An institutionINS consists of:

e a categonBignyg of signatures

e afunctorSenys: Signys — Set giving a seSen X) of X-sentence®r each sig-
natureX € |Signys| and a functiorBenns(o): Senns(X) — Senys(Z’) trans-
lating X-sentences t&’-sentences for each signature morphisnt — X’;

e a functor Mod.Ns:Signﬂ\ﬁ’S — Cat, giving a categoryMod(X) of X-models
for each signature € |Signyg| and a functorModns(o):Mod s (Z') —
Mod ns(X) translatingZ’-models taZ-models (andt’-morphisms t&-morphisms)
for each signature morphisot X — X’; and

e foreachX € |Signys|, asatisfaction relation=ns » < |Modns(Z)| x Senns(X)

such that for any signature morphismX — X’ the translationsModys (o) of
models andSenys(o) of sentences preserve the satisfaction relation, that is, for
any ¢ € Senys(X) andM’ € [Modns (Z')[:

M’ Eins zr Senns(0)(¢) iff  Modins(o) (M) Fins,x @
[Satisfaction conditioh

O

We will freely use standard terminology, and for example say th&traodel M
satisfiesa X-sentencep, or thate holdsin M, wheneveM |=ns s .

The term “model” (which we use followind [GB92]) thereby becomes over-
loaded: it is used to refer both to objects in the cateddodns(X) and to the
algebras which satisfy a given set of axioms (we will soon extend the latter termi-
nology to an arbitrary institution in Sectipn #.2, and then to an arbitrary structured
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4.1 Institutions 159

specification in Chaptéi 5). Hopefully, this will not lead to confusion as the context
will always determine which of the two meanings is meant. If in doubt, we will use
“a X-model” (whereX is a signature) for the former, and “a model®dt (where @

is a set of sentences) for the latter meaning of the word.

Notation.

e When there is no danger of confusion, we will omit the subsdii{® when
referring to the components of an institutitwS. Similarly, the subscripE on
the satisfaction relations will often be omitted.

e For any signature morphisot X — X/, the functionSen(c): SenX) — SenX’)
will be denoted simply by: SenX) — Sen(X’) and the functoMod (c):Mod (X') —
Mod(X) by ,‘G:Mod(z’) — Mod(X). Thus for anyX-sentencep € SenX),
o(p) € SenY’) is its o-translationto a X’-sentence, and for an’-model
M’ € |Mod(X')], M/‘G € |Mod(Z)]| is its o-reductto a X-model. We will also
refer toM’ as ac-expansiorof M"g. Using this notation, the satisfaction condi-
tion of Definition|4.1.1 may be expressed as folloWg}= o (@) <— M"(, = o.

e For any signature’, the satisfaction relation extends naturally to setsEef
sentences and clasﬁem‘ X-models. Namely, for any sep C Sen(X) of X-
sentences and modél € [Mod(X)|, M = @ meanM = ¢ for all ¢ € &. Then,
for any Z-sentencep € SenX) and class# C |Mod(X)| of Z-models, # = ¢
meanM = ¢ for all M € .. Finally, we will also write.# |= & with the obvi-
ous meaning.

e For any signatur&, we will sometimes writdlod(X) for the clasgMod (X)| of
all X-models. ad

The definition of an institution as given above is very general and covers many
logical systems of interest, as illustrated by the examples below. Nevertheless, it
does impose some restrictions which should be made explicit before we proceed
further.

First, the assumption that the translations of sentences and models induced
by signature morphisms are functors may seem overly restrictive. In some situ-
ations it would be natural to relax the requirement of functoriality and assume
that Sen (and perhapsviod as well) is a functor only “up to some appropri-
ate equivalence”. For example, given two signature morphisns — X’ and
o’:X' — X", for any sentence € SenX) it follows from the functoriality ofSen
thatSen(o;0’)(¢) = Sen(c’)(Sen(o)(¢)) (or using the notational convention in-
troduced above(o;06’)(¢) = 6’(c())). This seems overly restrictive when, for
example, local identifiers or bound variables are used in sentences. All we really
care about here is that the two translationspdb a X”-sentence areemantically
equivalent that (c;6”)(¢) ando’(c(¢)) hold in the same”-models. A solution

1 We will be somewhat more careful about the set-theoretical foundations than in our presentation
of the basics of category theory in Chayter 3: we will refer to collections of sentences as “sets” and
to collections of models as “classes”, as in Chapter 2. This is consistent with the formal definition

of an institution above, and satisfactory for the logical systems formalised as institutions given as

examples (but see Exam.46, foot@e 16).
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160 4 Working within an arbitrary logical system

is to consider sentences up to this semantic equivalence, and work in an institution
where sentences simp8re the corresponding equivalence classes. This solution
would resemble the usual practiceircalculi, where terms are considered “up to
a-conversion” (renaming of bound variables), meaning that terms are really classes
of mutually a-convertible syntactic terms.

The only explicit requirement in the definition of an institution is that the satis-
faction condition holds. Speaking informally, this deals with the situation where a
“small” signatureX and a “big” signatureZ’ are related by a signature morphism
0:X — X', and we have a mod&ll’ € |[Mod(X’)| over the “big” signature, and a
sentencep € SenX) over the “small” signature. There are then two ways to check
whetheM’ “satisfies”@: we can either reduce the modié to the “small” signature
and check whether the reduct satisfies the sentenoetranslate the sentengeto
the “big” signature and check whether the translated sentence holds in the model
M’

“big” bl M Fx o(e)
(o)
“small” x Mls s (0]

The satisfaction condition states that these two alternatives are equivalent. This em-
bodies two fundamental assumptions. One is that the meaning of a sentence depends
only on the components used in the sentence, and does not depend on the context
in which the sentence is considered. The other is that the meaning of a sentence is
preserved under translation; as [GB92] say:

Truth is invariant under change of notation.

The latter requirement does not raise much doubt — we are not aware of any natu-
ral system in which it would not hold. The former, however, is sometimes violated.
There are natural logical systems where the meaning of a sentence depends on the
context in which it is used, or in other words on the signature over which the sen-
tence is considered. For instance, in logical systems involving quantifiers, the range
of quantification may implicitly depend on the signature, with quantified variables
ranging only over reachable values, so thate"...” is interpreted as “there exists

an elemenk which is the value of a ground term, such that ...” and similarly for
universal quantification. For such a logic the satisfaction condition does not hold
unless very strong restrictions are placed on signature morphisms.

Exercise 4.1.2Give a concrete counterexample to the satisfaction condition for a
logical system similar to equational logic, but with the universally quantified vari-
ables in equations ranging only over reachable values. Show how the logical system
you give may be modified to make the satisfaction condition hold.THThe sat-
isfaction condition failed because the interpretation of universal quantification over
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4.1 Institutions 161

reachable values implicitly depends on the signature; try to make this dependence
explicit! O

4.1.1 Examples of institutions

Example 4.1.3 (Ground equational logic GEQ)The institutionGEQ of ground
equational logic is defined as follows:

e The categonbignge is justAlgSig, the usual category of algebraic signatures.
e The functorSerzeq: AlgSig — Setgives:

— the set of ground@-equations for each < |AlgSig|; and
— theo-translation function taking grountb-equations to groundl’-equations
for each signature morphisot X — X',

e The functorModgeq: AlgSig® — Cat is the functorAlg: AlgSig® — Cat as
defined in Examplg 3.4.29, that Modgeq gives:

— the categoryAlg(Z) of X-algebras and®-homomorphisms for eack <
|AlgSig|; and
— thereduct functQ[‘G:AIg(Z’) — Alg(X) mappingz’-algebras and’-homomorphisms
to X-algebras and-homomorphisms for each signature morphisnt —
X
e ForeactE € |AlgSig|, the satisfaction relatioh=geg x C |Alg(X)| x Serzeq(X)
is the usual relation of satisfaction of a groutebquation by &-algebra.

The Satisfaction Lemma (Lemrfia 2]1.8) ensures that the required satisfaction con-
dition holds and so that the above definition indeed yields an institution. O

Example 4.1.4 (Equational logic EQ)The institutionEQ of (ordinary) equational
logic is defined as follows:

e The categonfigng is justAlgSig.
e The functorSen:q: AlgSig — Setgives:

— the set o-equations for each < |AlgSig|; and
— theo-translation function taking-equations t&’-equations for each signa-
ture morphismo: £ — £’

e The functorModgq is Alg: AlgSig®? — Cat, just like Modgeq for ground equa-
tional logic.

2 The exact treatment of variables in equations requires special care to ensure that the translation
of equations along possibly non-injective signature morphisms is indeed functorial. The use of dis-
joint union in the translation of many-sorted sets of variables in Defirfifion 7.5.10 causes problems
here. The simplest way to make this work is to assume that, in each equation, variables of different
sorts are distinct. See [GBO2] for details.
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162 4 Working within an arbitrary logical system

e For eachr € |AlgSig|, the satisfaction relatiof=gq » < |Alg(X)| x Sereg(X)
is the usual relation of satisfaction ofaequation by &-algebra.

The Satisfaction Lemma (Lemrpa 2]1.8) again ensures that the required satisfaction
condition holds and so that the above definition indeed yields an institutiond

There is an obvious sense in whi@EQ can be regarded as a “subinstitution”
of EQ. We will encounter further such cases below. We refrain from formulating a
notion of subinstitution because the concept turns out to be more subtle than it might
appear at first. We postpone a proper treatment of relationships between institutions

to Chaptef 10 (in particular, see Exerdise 10.4.8).

Exercise 4.1.5 (Reachable ground equational logic RGEQefine an institution
RGEQ of ground equational logic on reachable algebras, by modifying the definion
of GEQ so that only reachable algebras are considered as models. Do not forget to
adjust the definition of reduct functors!

Try to extend this to an institutioREQ of equational logic on reachable algebras
— and notice that the satisfaction condition cannot be ensured without modifying
the notion of an equation to include “data constructors” to determine the reachable
values for which the equation is to be considered, as already hinted at in Exer-
cise[4.1.D. O

Example 4.1.6 (Partial equational logic PEQ).The institutionPEQ of partial
equational logic is defined as follows (cf. Sectjon 2.7.4):

e Signegq is AlgSig again.
e Serpeg:AlgSig — Setgives:

— the set oZ-equations an&-definedness formulae for eaZhe |AlgSig|; and

— the o-translation function takingt-equations and-definedness formulae
to X’-equations andt’-definedness formulae for each signature morphism
0.z — 2B

e Modpgq: AlgSig®® — Cat gives:

— the categoryAlg(X) of partial X-algebras and weaX-homomorphisms for

eachX € |AlgSig| (cf. Exampld 3.3.13); and
— the reduct functOL‘G:PAlg():’) — PAIg(Z) defined similarly as in the total

case for each signature morphismr — X’
e ForeactE € |AlgSig|, the satisfaction relatiop=peg » C |PAIg(X)| x Serpeg(X)

is the satisfaction oE-equations (with strong equality) ar¥tdefinedness for-
mulae by partiak-algebras.

Exercise.Proceeding similarly as in the proof of Satisfaction Lemma (Lefnma]2.1.8),
show that the satisfaction condition holds REQ. ad

S Asin Exampl, care is needed with the treatment of variables and their translation under
signature morphisms, see footnE}e 2.
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Example 4.1.7 (Ground partial equational logic PGEQ).The institutionPGEQ
of ground partial equational logic is defined just like the institufREQ of partial
equational logic above, except that only ground equations and ground definedness
formulae are considered. O

Exercise 4.1.8Recalling the notion of existential equality for partial algebras from
Sectior] 2.7 4, define institutio®EQ® andPGEQ?® of partial existence equational
logic and ground partial existence equational logic, respectively, modifying the def-
initions in Exampleg 4.1]6 ar[d 4.1.7 by using existential equations of the form
vX.t =t" and their ground versions only. O

Example 4.1.9 (Propositional logic PROP).The institution PROP of proposi-
tional logic is defined as follows:

e Signerop IS Set the usual category of sets. In this context, for each “signature”
P € |Set, we call elements dP propositional variables
e Serprop: Set— Setgives

— For eachP € |Set, Serprop(P) is the least set that contaifs sentences
true andfalse, and is closed under the usual propositional connectives, that is,
if @,¢" € Serprop(X) then alsop Vv ¢’ € Serprop(X), ~¢ € Serprop(Z),

@A ¢ € Serbrop(X), andp = ¢’ € Serbrop(Z).[f

— For each functiow: P — P, Serprop(0) extendss to the translation of arbi-
trary propositional sentences with propositional variabldstmpropositional
sentences with propositional variable$s¥h preserving the propositional con-
nectives in the obvious way.

e Modpgrop: Sef? — Cat gives:

— For each set of propositional variables |Set, P-models are all functions
from P to {ff,tt}. These functions can be identified with subset®ofvhere
M:P — {ff,tt} yields {p € P | M(p) = tt}). Model morphisms are just in-
clusions of these sets, i.e., given tRemodelsM1, M,: P — {ff tt}, we have
a (unique) morphism fronM; to My if for all p € P, My(p) = tt whenever
My (p) = tt.
— Foreach signature morphismP — P', the reduct functoModprop(0): Modprop(P') —
Modprop(P) maps any modeéWl’: P’ — {ff it} to o;M’: P — {ff  tt}.

e For eacltP ¢ |Set, the satisfaction relatiog-prop,pr € [Modprop(P)| x Serprop(P)
is the usual relation of satisfaction of propositional sentences, that is, fdP-any
modelM: P — {ff,tt}, p€ P andg, ¢’ € Serprop(P):

— M =propp pifand only if M(p) = tt,

— M =propp ¢ V¢ if and only if M =propp ¢ OF M [=propp ¢’
— M [=propp —¢ if and only if M “propp @,

— M =propp ¢ A @' if and only if M [=propp ¢ andM propp @'

4 We tacitly assume here thaiue, false, V, A, =, — are new symbols (not i), and rely on the
usual precedence rules and parentheses to make sure that no ambiguities in their “parsing” arise.
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— M [=propp ¢ = ¢’ if and only if M =propp ¢’ Or M Epropp @
- M ):pRop_p true, and

- M %pRop.p false. O

Exercise 4.1.10Recall the specification of Boolean algebras in Exarpple2.2.4.

Note that one way to view the definitions in Example 4.1.9 is to define the set
of P-sentences as Boolean terms with variables fidanThen, one can consider
the two-element Boolean algebBawith the carrier{ff,tt} (with trueg = tt and
falseg = ff). Furthermore, any propositional moddt P — {ff,tt} induces evalua-
tion of termsM¢: Serprop(P) — |B|, with M#(¢) = tt if and only if M =propp ¢
as defined above.

Define another institution of propositional logRROPPA, where signatures and
sentences are asiROP, but models use arbitrary Boolean algebras rather than just
B. That is, for any seP € |Set of propositional variables, B-model inPROPPA
consists of a Boolean algetBdogether with valuatioM: P — |B|, where we define
(B,M) FEpropsa p ¢ if and only if g (M) = trueg (Wheregg(M) is the value of term
@ in B under valuatiorM).

Prove now that the semantic consequence relation (Defirfition] 2.3.6, cf. Defini-
tion[4.2.5 below) iPROP andPROPP* coincide.

HINT: Clearly, if ¥ ':PROPBA)P ¢ then also¥ |=propp ¢ for any setP of
propositional variablesl C Serprop(P) and¢ € Sensrop(P). Suppose now that
¥ Wpropea p 9- Use the following Iemrrﬁ

Lemma. Given any Boolean algebra B and element kB| such that b# trueg,
there exists a homomorphismBi— B from B to the two-element Boolean algebra
B such that lib) = falsep.

Now, given any Boolean algebi® and valuationM:P — |B| such that for all
y eV, yg(M) = trueg andgg(M) # trueg, conclude using the above lemma that
(M;h)¥(y) = tt for all y € ¥, while (M;h)?(¢) = ff. 0

Exercise 4.1.11Define the institution of intuitionistic propositional logieROP',
following the pattern oPROPPA in ExercisO, but using arbitrary Heyting
algebras (see Examgle 2.]7.6) rather than just Boolean algebras.

Show that iff’ =ppop p @ then alsat [=propp ¢ for any seP of propositional
variables,¥ C SerpRop(P) and ¢ € Serprop(P), and give a counterexample to
show that the opposite implication fails in general. O

Example 4.1.12 (First-order predicate logic with equality FOPEQ).The institu-
tion FOPEQ of first-order predicate logic with equality is defined as follows:

e Signeopeg, from now on denoted bFOSig, is the category dfirst-order signa-
tureswhere we define:

5 The proof of this lemma is beyond the scope of this book, but seele.g. [RS63], 1,8.5 and
11,5.2,(a)=(e).
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4.1 Institutions 165

— Afirst-order signatured is a triple(S, Q,IT), whereSis a set (okort name}
Q = (Qus)wes ses is a family of sets (obperation namesvith their arities
and result sorts indicated — just as in algebraic signatures)laad ITy)wes:
is a family of sets (opredicateor relation namesvith their arities indicated).

— A first-order signature morphism: (S Q,IT) — (S,Q’,IT’) consists again
of three components: a functighors S — S, anS* x Sindexed family of
functions Ogps = ((Bops)ws: Lws — 'Qé;ons(w),esons(s)>W63*75€S (these are as in

algebraic signature morphisms) afgeds= ((Opreds)w: Iw — ngorts(w>>weg.

(As with algebraic signature morphisms, all the components of a first-order
signature morphism will be denoted byd when there is no danger of ambi-
guity.)

e Senopeq: FOSig— Setgives:

— For each first-order signatut® = (S Q,1II), Senopeq(®) is the set of all
closed (i.e. without unbound occurrences of variabfesj-order formulae
built out of atomic formulae using the standard propositional connectives (
A, =, <, ) and quantifiersY(, 3). The atomic formulaeare equalities of
the formt = t/, wheret andt’ are (S Q)-terms (possibly with variables) of
the same sort, atomic predicate formulae of the fg(t,...,t,), wherep €
ITs, s, andty, ..., t, are terms (possibly with variables) of soss ..., s,
respectively, and the logical constantse andfalse.

— For each first-order signature morphién® — @', Sertopeg(0) is the trans-
lation of first-order®-sentences to first-ordé¥’-sentences determined in the
obvious way by the renamin@ of sort, operation and predicate name®in
to the corresponding names@i[ﬂ

e Modgopeq: FOSIig®P — Cat, from now on denoted biFOStr, gives:

— For each first-order signatué = (S, Q,II), the category-OStr(®) of first-
order ®-structuress defined as follows:

A first-order @-structure Ac |FOStr(®)| consists of a carrier s¢A|s for
each sort namse S, a functionfa:|Als, x ... x |Als, — |Als for each op-
eration name € Qg 5, s (these are the same as( Q)-algebras) and a
relationpa C |Als; X ... x |Als, for each predicate namee I, _s,. In the
following we write pa(a, .. .,an) for (a1,...,an) € pa.
For any first-orde®-structureA andB, afirst-order®-morphismbetween
them,h: A — B, is a family of functionsh = (hs:|Ajs — |B|s)scs Which pre-
serves the operations (as ordina8/Q)-homomorphisms do) and predi-
cates (i.e., fop € I, s, anday € |Als,, ..., an € |Als,, If pa(as,....an)
thenpg(hs, (a1), .. .,hs,(an)) as well). A@-morphism isstrongif it reflects
predicates as well, so that fgre ITs, s, anday € |Als;, ..., 8n € |Als,,
pa(ay,...,an) ifand only if pe(hs, (a1), ..., hs,(an)).

6 Asin Exampl, some care is needed with the exact treatment of quantified variables and
their translation under signature morphisms (cf. footfigte 2) — again, the simplest solution is to

assume that, in each formula, variables of different sorts are distinct!_Seel[GB92] for a careful

presentation.
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— For each first-order signature morphigim® — @', we have thef-reduct
functorFOStr(6): FOStr(®') — FOStr(®) defined similarly as reduct func-
tors corresponding to algebraic signature morphisms.

e For each® < |FOSig|, the satisfaction relatiofi=ropege C |[FOStr(0©)| x
Senopeq(@) s the usual relation of satisfaction of first-order sentences in first-
order structures, determined by the usual interpretation,of, = and — as
disjunction, conjunction, implication and negation, respectivelyy @hd 3 as
universal and existential quantifiers, respectively, of equalities’ as identity
of the values of andt’, of atomic predicate formulag(ty, ... ,t,) as the value of
the predicate namep in the structure on the values of the tertps. . ., t,, and
of true andfalse.

Exercise.Work out all the details omitted from the above definition. Then, general-
ising the proof of the Satisfaction Lemma, show that the satisfaction condition holds
for FOPEQ. O

Exercise 4.1.13 (First-order predicate logic FOP, first-order logic with equality
FOEQ). First-order predicate logic with equality contains some standard “sublog-
ics”. Define the institutiorOP of first-order predicate logic (without equality), by
referring to the same signatures and models 8OREQ, but limiting the sentences
to those that do not contain equality.

Define also the institutioROEQ with signatures and models as in the institution
EQ of equational logic, but with first-order sentences (without predicates). O

Exercise 4.1.14 (Infinitary logics).Define an institution of so-called,,, logic,
which extends first-order predicate logic with equality by allowing conjunctions and
disjunctions oftountablefamilies of formulae (but still only finitary quantification).
Extend this further by allowing quantification over countable sets of variables, ob-
taining an institution ot ¢, logic. You may also want to define institutionslaofg
logics, for any infinite cardinal numbeosandf such thaf < ¢, with conjunctions

and disjunctions of sets of formulae of cardinality smaller thaand quantification
over sets of variables of cardinality smaller than O

Exercise 4.1.15 (Higher-order logics)Define an institution ofecond-order logic
which extends first-order logic by introducing variables ranging over predicates
(which in a model denote subsets of a product of the carrier sets) and quantification
over such (first-order) predicates. Then generalise this further to an institution of
higher-order logi¢ which introduces variables that range over (second-order) pred-
icates with arities that may include arities of first-order predicates, and predicates
with arities that may include arities of second-order predicates, etc., and allows for
quantification over such higher-order predicates. Without much additional effort,
you may want to extend this further, by allowing variables that range over func-
tions of an arbitrary higher-order type, and quantification over such functions. Note
though that this will be different from first-order logic for higher-order algebras as
sketched in Example 2.766, where quantification over higher-order function types
does not necessarily coincide with quantification @léfunctions of this type. O
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Exercise 4.1.16 (First-order equational logic with boolean values FOEQBo0I).
Define an institutiorFOEQBool which differs fromFOEQ by considering only
signatures that contain a subsignatliggy of truth values(Xyoo has a special, dis-
tinguished sorbooland two constantsue, false bool) and assuming that signature
morphisms preserve and reflect symbol&ijgo and that algebras interpret them in
the standard way (the carrier of stdol has exactly two distinct elements that are
values oftrue andfalse respectively).

There is now an obvious equivalence between the categories of signatures of
FOPEQ andFOEQBool obtained by mapping each first-order signature to the al-
gebraic signature with the sdibol and constanttrue, false bool added, and with
new operation namé,:s; x ... x s, — boolfor each predicatg:s; x ... x s,. First-
order structures give raise to algebras with the standard interpretat&yptind
with functions f,, that yield the value ofrue exactly on those arguments for which
the predicate holds. Clearly, this yields a one-to-one correspondence between first-
order structures and algebras over the corresponding signatures. However, this does
not extend to model morphisms in gener&xércise: Find a counterexample. No-
tice though that evergtrongmorphism between first-order structures extends to a
homomorphism between their corresponding algebras.) We then consider transla-
tion of atomic sentencey(ty, .. .,tn) to equalitiesp(ts, . . .,t,) = true, and extend it
further to arbitrary first-order sentences with predicates and equality in the obvious

way.
Prove that such translations of sentences and models preserve and reflect satis-
faction. O

It is not much more difficult to define, for example, the institutPROPEQ of
partial first-order predicate logic with equality, or any other institution formalising
one of the many standard variants of the classical notions.

Exercise 4.1.17 (Partial first-order predicate logic with equality PFOPEQ)De-
fine the institutionPFOPEQ of partial first-order predicate logic with equality ac-
cording to the following sketch:

[ SigrbpopEQ = FOSIg

e Foreact® € |[FOSig|, partial first-orde®-sentences are defined in the same way
as usual first-orde®-sentences on atomic formulae which here inclatimic
definedness formulae def for any®-termt, in addition to equalities and atomic
predicate formulae. The translation of sentences along signature morphisms is
defined in the obvious way.

e For each® € |[FOSig|, the models inModpropeq(@) are like first-order®-
structures except that the operations may be partial. MorphisMedpropeq(©)
are like first-ordel®-morphisms but are required to preserve definedness of op-
erations, as weak homomorphisms of partial algebras do. The reduct functors are
defined similarly as for first-order structures.

e For each signatur® < |FOSig|, the satisfaction relatiof=propeqe is defined
like the usual first-order satisfaction relation, building on the interpretation of
atomic equalities and definedness formulae which follows the interpretation of
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168 4 Working within an arbitrary logical system

(strong) equations and definedness formulae in partial algebras as defined in
the institutionPEQ of partial equational logic and on the usual interpretation

of atomic predicate formulap(ts, . . .,t,) which yieldsfalsewhen any oty, ...,

tn is undefined. a

Exercise 4.1.18 (Patrtial first-order logic with equality PFOEQ). Following Ex-
ercisq 4.1.13, define the instituti®FOEQ of partial first-order logic with equality
with signatures and models inherited from the institulREQ of partial equational
logic, but with first-order sentences (without predicates). Similarly, define the insti-
tution PFOP of partial first-order predicate logic (without equality). O

Exercise 4.1.19 (Partial first-order equational logic with truth PFOEQTruth).
As in Exercisg 4.1.16, define now an institutiBROEQBool of partial first-order
logic with equality and built-in boolean values.

However, using partial functions predicates may be modelled differently (and
more faithfully when model morphisms are considered). Define an institBE@EQTruth
which differs fromPFOEQ by assuming that the signatures contain a subsignature
Zwuth (Which has a special, distinguished south with a single constaritue: truth),
that signature morphisms preserve and reflect symbdlg jf, and that algebras in-
terpret them in the standard way: the carrier of $arth has exactly one element
that is the value ofrue.

The equivalence of categories of signatures and the translation of sentences be-
tweenPFOPEQ andPFOEQTruth can now be given in essentially the same way
as in Exercisg 4.1.16. Moreover, first-order partial structures are in one-to-one cor-
respondence with algebras over the corresponding algebraic signature, and this cor-
respondence may be described exactly as in Exdrcise 4.1.16 as well. The difference
is that now for arguments for which predicates do not hold, their corresponding op-
erations are undefined instead of yielding a tarevalue. This allows us to extend
this correspondence to model morphisms as well.

Prove that such translations of sentences and models preserve and reflect satis-
faction. O

Exercise 4.1.20Recall the notion of a strong homomorphism between partial alge-
bras (Definitiof 2.7.31) and between first-order structures (given in Example}4.1.12).
For each of the institutions above with models that involve partial operations or
predicates FOPEQ, FOP, PFOPEQ, PEQ, etc.) define a variant in which all
morphisms are strong. We will refer to these institutiond=&PEQg;,, FOPst,
PFOPEQy;,, PEQg, etc. In particular, model morphisms RFOPEQ,, preserve

and reflect predicates as well as definedness of operations. O

Exercise 4.1.21Using the material in Sectiofs 2.7[1, 2]7.3 and 2.7.5, respectively,
define institutionsEQ~ of conditional equations with signatures and models as in
EQ; Horn of Horn formulae built over signatures and modeld—F@IPEQ, where
sentences have the foriXe« @1 A ... A @y = ¢ for atomic formulaeps, ..., ¢n, @;
ErrEQ of error equational logic; an@rdEQ of order-sorted equational logic;0
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Example 4.1.22 (The institution CEQ of equational logic for continuous alge-
bras). We need some auxiliary definitions. LBt= (S Q) be an algebraic signature.

Recall (cf. Examplg 3.3.14) that a continudlilgebraA € [CAlg(X)| consists
of carriers, which are complete partial ordéf8|s, <s) for s€ S, and operations,
which are continuous functiorfa: |Als, x ... x |Als, — [Alsfor fisg x...x sy —s
inX.

For anyS-sorted seX (of variables), the&sorted) setT;’ (X)| of infinitary X-
termsis the least set such tffht

o XCITEX;

e foreachf:sy x...xs —sin X, if t1 € [T (X)]s;, ..., th € [T (X)|s, then
f(t1,...,ta) € |Tx (X)|s; and

e foreachse S, if for k> 0,tx € Tg ' (X)s, then| [(tk) k=0 € | T (X)]s.

Intuitively, | Tz (X)| contains all the usual finitar¥-terms and in addition is closed
under formal “least upper bounds” of countable sequences of terms. Notice, how-
ever, that we do not provid@;’ (X)| with the structure of a continuous-algebra; in
particular, a tern |(tx)k>0 is just a formal expression here, not a least upper bound.

Then, for any continuous-algebraA and valuation of variableg X — |A|, we
define apartial functionv*: [T (X)| — |A| which for any ternt € [T (X)| yields
thevalue V(t) of t (if defined):

e forxe X, V¥ (x) = v(x);

o for fis; x...x s — sandty € [TZ(X)ls,, - -+ tn € [T (X) |s VV(F(ta, ... tn)) is
defined if and only i##(ty), ..., V¥(tn) are all defined, and thesf( f (t1,...,t,)) =
fa(V¥(t1),...,V¥(tn)); and

o fort € T2 (X)s, k> 0, V¥((t)k=0) is defined if and only if alv¥(ty), k > 0,
are defined and form a chaiff(ty) <s V¥(t1) <s ..., and therv*(| J(tk)k=0) =
Lo V¥(tk) (where[ | on the right hand side stands for the least upper bound in
the cpo(|Als, <s)).

As usual, we writea (V) for v¥(t).

Finally, aninfinitary X-equationis a triple (X,t,t’), written¥X e+t =t’, whereX
is anS-sorted set of variabl@s&ndt,t’ € |Te°(X)|s for somes € S A continuousk-
algebraA satisfiesan infinitaryX-equationvXe t =t’, written A |=ceq s VXet =t/,
if for all valuationsv: X — |A|, ta(v) andt,(v) are both defined and equal.

We are now ready to define the instituti®iEQ of equational logic for continu-
ous algebras:

e Signceq is AlgSig again.
e Serceq:AlgSig — Setgives:

— the set of infinitaryZ-equations for eack € |AlgSig|; and

7 For simplicity, we omit the decoration of terms by their target sorts. Formally, to avoid any
potential ambiguities, the definition should follow the pattern of Definftion 1.4.1.

8 Forse S the setXs C 2 come from a fixed vocabulary of variables as in Defini.l.l and
are mutually disjoint as in footno@ 2.
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— the o-translation function, mapping infinitar-equations to infinitarZ’-
equations in the obvious way, for each signature morplism — X'

e Modcgq:AlgSig® — Cat gives:

— the categorfAlg(Z) of continuousE-algebras and continuoltishomomorphisms
for eachX € |AlgSig|; and
— the reduct functOL‘G:CAIg(E’) — CAIlg(X) defined similarly as in the case

of usual (discrete) algebras for each signature morphiskh— X’.

e Foreach < |AlgSig|, the satisfaction relatioh=ceq » C |CAIg(X)| x Serceq(X)
is the relation of satisfaction of infinitady-equations by continuous-algebras.

Exercise.Proceeding similarly as in the proof of the Satisfaction Lemma, show that
the satisfaction condition holds f@EQ.

Exercise. Show that even though we have introduced only infinitary equations as
sentences iICEQ, infinitary inequalities of the form'X.«t <t’ are expressible here
aswell. (HNT: a<biff aub=Db.) a0

Exercise 4.1.23For each of the institutiontiNS defined above, define formally
its versionINS®" based on the category of signatures with derived signature mor-

phisms as presented in Sectjon 1.5.2 (cf. Exer§ises 3.1.12 and|3.4.30). O

Example 4.1.24 (Three-valued first-order predicate logic with equality 3SFOPEQ).

We sketch here the instituticddFOPEQ of three-valued first-order predicate logic
with equality as an example of how the notion of an institution can cope with logical
systems based on multiple truth values, where the interpretation of sentences may
yield a number of values rather than just being true or false.

e Signzropeq IS the categoryOSig of first-order signatures.
e Senropreq: Signzropeg — Setgives:

— For each® € |FOSig|, Sersropeq(@) is the set of sentences of the form
o istt, ¢ isff, or ¢ isundef, whereg is a ®-sentence of partial first-order
predicate logic with equalitPFOPEQ (see Exercisg 4.1.1L7).

— For each first-order signature morphigm® — @’, we define the transla-
tion function Sersropeq(0): Sensropeq(@) — Sersropeq(®’) in the obvi-
ous way using the translation of first-ord@rsentences t®’-sentences in-
duced by the morphisré.

e Modsropeo: Signg,EOPEQ — Cat is defined as usual for first-order logic, except
that operations in structures are partial functions and predicates are interpreted
as partial relations which for any tuple of arguments may yield one of three
logical valuestt (for truth), ff (for falsity) and a “third truth valuetundef (for
undefinedness).

e Atomic formulae, propositional connectives and quantifiers may be interpreted
over the three-element set of truth valyésff, undef} in a number of ways, see
for example[[KTB91] and references there for a discussion. Here, we adopt the
following interpretation:
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— Atomic definedness formulae have the expected meadifgt) is tt if the
value oft is defined, and iff otherwise.

— Equalities are interpreted africt equalitiest =t’ is tt if the values oft and
t’ are defined and equal, 6 if they are defined and different, anduadef
otherwise.

— The propositional connectives and quantifiers are interpreted as in Kleene’s
calculus (cf.[[KTB91]). For examplep v ¢’ is trueif either ¢ or ¢’ istt, is ff
if both ¢ and¢’ areff and isundefotherwise.

For anyg € Serpropeq(@) andM € [Modsropeq(®)|, this gives thenterpre-

tation of ¢ in M, [o]m € {tt,ff,undef}.

For each signatur® < |FOSig|, the satisfaction relatiob=3ropeqe < |M0od3zropeq(®)| X
Sersropeq(@) is now defined in the obvious way: for aM/c [Modzropeq(@)|

andg € Sersropeq(0):

- M >:3FOPEQ,® @ istt holds if and only if[@]m = tt;
— M E=3ropege ¢ isff holds if and only iff¢]m = ff; and
— M E=3ropege ¢ isundefholds if and only if[¢]m = undef.

Exercise.Work out all the details omitted from the above definition; notice that, in
particular, model morphisms may be defined in a number of sensible ways. Then
show that the satisfaction condition holds. O

Example 4.1.25 (The institution FPL of a logic for functional programs).The
institution FPL of a logic for a simple functional programming language with a
first-order monomorphic type system is defined as follows:

e A signatureSIG = (S, Q,D) consists of a sé of sort names, a family of sets of
operation name® = (Qys)wes scs, and a seD of sorts with value construc-
tors. Elements oD have the form(d,.#) with d € Sand.# = (Fyd)wes:, Where
Fud € Qug for we S, with no sort given more than one set of value construc-
tors, i.e.(d,#),(d,.Z’) € D implies # = .#'. SoSIG consists of an ordinary
algebraic signaturéS, Q) together with a set ofalue constructorgor some
of the sorts. Sorts with value constructors correspond to algebraic datatypes in
functional programming languages. In examples we usesLdike notatio@
for instance:

sort natfree with 0| sucgnat)

addsnatto S, 0:natandsuccnat— natto 2, and(nat, {0:nat, succnat — nat})
to D. We assume for convenience that e&€t. signatureSIG contains the sort
boolwith value constructorsue andfalse

sort bool free with true| false

9 CasL notation: this would be writtefree type nat::= 0| sucdnat) in CASL.
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e A model over a signaturglG = (S, Q,D) is a partial(S, Q)-algebraA such that
for each s¢t| of sorts with value constructofgdy,.#1), ..., (dn,-Zn) } C D, for
1 <i < n, each value constructor itf; is total and each elemeate Ay is
uniquely constructed from the values |y of sorts other thawl;,...,d, using
the value constructors i1 U --- U.%y; that is, (|Ag ) 1<i<n iS freely generated
by #1U---U.%, from the carriers of the other sortsAn
We assume that aitPL-models interpret the sobool and its constructorsue
andfalsein some standard way.
A SIG-morphism betwee61G-modelsA andB is an (S, Q)-homomorphism be-
tweenA andB viewed as partial{S Q)-algebras. It istrongif it is strong when
viewed as a homomorphism between partial algebras, see Def[nition|2.7.31.
e The sefTsig(X)| of FPL-terms ovelSIG = (S Q, D) with variablesX and their
interpretation in arFPL-model A are defined by extending the usual definition
of terms over(S, Q) and their interpretation by the following additional func-
tional programming constructs (local recursive function definitions and pattern-
matching case analysis, respectively):

— letfun f(x1:s1,...,X:S):S =t'int is anFPL-term of sorts with variables

in X if:

- S1,...,5,5€S
t’ is anFPL-term of sorts’ overSIG extended byf:s; x --- x 5, — & with
variables inX U {x1:s1,...,Xn:Sn}; and
t is anFPL-term of sorts overSIG extended byf:s; x -+ x §, — 8 with
variables inX.

The value of such a term under a valuatoX — |A| is determined as follows:
extendA to give an algebra by interpretingf:s; x --- x s, — < as the
least-defined partial functiofy, such that for alpy € |Als;,...,an € |Als,,

the value offz(ay,...,an) is the same as the value tfin A underv mod-
ified by mappingx; to a; and... andx, to a,, whenever the latter is de-

finedt] ~
- the resulting value is then the valuetah A underv.
— caset of pat;=>ty| ---| pat,=>t, is anFPL-term of sortswith variables inX

if:
- tis anFPL-term of some sor$’ overSIG with variables inX;

for each 1< j <n, pat; is apatternoverSIG of sorts, where a pattern is
an (S Q)-term containing only variables and value constructors, with no
repeated variable occurrences; and

10 This definition is complicated because of the possible presence of mutually dependent sorts with
value constructor€xercise: Check that imposing the same requirement for each sort with value
constructors separately is more permissive and would not capture the intended meaning. Check
also that it would be sufficient to consider only maximal sets of sorts with values constructors that
are mutually dependent.

11 The fact that this unambiguously definég and thatf; can be equivalently given via the
natural operational semantics of recursively-defined functions, is a standard result of denotational
semantics, see for instan¢e [Sch86].
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for each 1< j <n, tj is anFPL-term of sorts with variables in the seX
extended by the variables pét;.
The value of such a term under a valuatioK — |A| is determined as follows:

obtain the valua of t in A underv;

find the least such that matches patyielding a valuation/ of the vari-

ables inpat;, where matching a value against a pattern proceeds as follows:
a variablex is matched by any valug yielding a valuation{x — a};
apatternf (ps, ..., pm) is matched byyieldingVv iffa: fa(as,...,am)
and eachp; (1 <i < m) is matched bya; yielding v{, with vV =
ViU Uvyy,

the resulting value is that of in A under the extension afby V' if such a

j exists; otherwise, the resulting value is undefined.

e Sentences ove$IG are first-order sentences built over atomic formulae which
are equalities betweelRPL-terms overSIG of the same sort and definedness
assertions for such terms. InterpretationF#fL-terms in a model determines
satisfaction of such sentences asPROEQ, see Exercisgs 4.1]17 ahd 4.1.18.
(Recall thatPFOEQ usesstrongequality, see Sectign 2.7.4.)

For convenience, we introdudenction definition®f the form

fun f(x1:s1,...,%:S):s=t
to abbreviate the formula

VX1:S1,...,%n:Sh
o f(X1,..., %) =letfun f(xi:s1,...,Xn:Sn):s=tin f(X1,...,%n).

To make the scopes of identifiers clearer, this can be rewritten using a new oper-
ation nameg as

VX1:S1,- .+, Xn:Sh
o f(Xq,...,%) =letfun g(x1:s1, ..., X:S):s=t"in g(Xq,...,%n)

wheret’ is the result of replacing by g in t. Such a recursive function defini-
tion is different from the equality (xi, ..., %) =t: for instance f (xa,...,Xn) =
f(X1,...,%) always holds whilgfun f(x1:s1,...,%:Sh):s= f(X1,..., %) holds
only whenf is totally undefined.

e Given SIG = (SQ,D) and SIG' = (S,Q’,D’), an FPL signature morphism
6:SIG — SIG' is a derived signature morphis@: (S Q) — (S,Q’) (using
FPL-terms in place of ordinary terms in Definitipn 1.5.13), such that for each
(d,.#) € D, we have(6(d), #') € D' such thatd restricted to# is determined
by a bijection from% to .%".

We require allFPL signature morphisms to preserve the dmbl and its con-
structorgtrue andfalse

Such signature morphisms go well beyond the usual renaming of sort and op-
eration names; here we allow (non-constructor) operations to be mapped to

12 This uniquely determines a result because non-variable patterns are of sorts that are freely gen-
erated by the value constructors and there are no repeated occurrences of variables in patterns.
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complicated terms involving programming constructs like recursion and pattern-
matching case analysis. This will be used in Chagft¢[s 6-9 to give examples,
starting with Examplg 6.1]6, that suggest how programs fit into the overall spec-
ification and development framework.

Such a signature morphism determines a translatiosi@fsentences t81G’-
sentences in the usual manf@and the same for the reduct froBhG’-models

to SIG-models. Moreover, the satisfaction condition holds.

Exercise.Complete the above definition and prove the satisfaction conditiomnl

Exercise 4.1.26The functional programming constructs used above are inspired by
those in Standard ML [PauB6]. Add more constructs from Standard ML to the def-
inition of FPL. Try adding type definitions, polymorphism, higher-order functions,

exceptions.
It is easy to add built-in types other thinol by basing the definition dFPL on
an arbitrary algebr®T as inIMP (Examplg 4.1.32 below). O

Exercise 4.1.27Mutual recursion need not be added explicitly since it is already
expressible using local definitions of recursive functions. Show hawr Hit may

be necessary to resort to copying function definitions, to make each function avail-
able for the definitions of the others. O

Exercise 4.1.28Consider ar-PL-signatureSIG containing a sors that is freely
generated by value constructors from other such sorts. Show how an equality op-
erationeq;: s x s — bool may be defined using a recursive function definition with
pattern-matching case analysis. Use this to view conditionals of the form

if t1 =t> thent elset’

(wherety, t, areSIG-terms of sorfs, andt,t’ have the same sort) as an abbreviation
for

let fun eqy(x:s,y:s):bool= ... in caseeq(ty,tp) of true=>t| false=>t’ O

Exercise 4.1.290ne could also introduce a conditional of the fdfnp then't elset’
whereg is a formula. Spell out the details. This would be unusual as a programming
construct because branching is controlled by an arbitrary logical formula, allow-
ing terms that would be problematic from a programming point of view, such as
if def(t) thent’ elset” andif Vx:se t; =t; thent’ elset”. Note that the meaning of
such a conditional would be different from the one introduced in Exefcise 4.1.28
when the check for equality involves a term with no defined value. O

13 Care is required to avoid unintended clashetetbound operation names BiG-terms with
operation names i8IG’. To avoid consequent problems with functoriality of sentence translation,
we can regar@PL-terms as being defined up to renamindetfbound operation names.

Moreover, as iFOPEQ (see Examplg 4.1.12), care is needed with the treatment of bound vari-
ables (which now also include variables in patterns and formal parametetshiound operation
definitions), cf. footnotE]G.
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Exercise 4.1.30While FPL involves constructs borrowed from functional pro-
gramming languages, it puts them in a logical context involving equality, logical
connectives and quantifiers, which results in sentences capable not only of defining
functions, but also of specifying their properties. Identify the “programming part”
of FPL by defining its “subinstitution’FProg with the same signatures and mod-
els, but with sets of sentences restricted to function definitions (with satisfaction
relations inherited fromFPL as well). As function definitions may not be closed
under translation along arbitrary (derived) signature morphisrR®In, restrict the

class of signature morphismsHhiProg to the standard morphisms, where operation
names are mapped to operation hames rather than to arbitrary terms. ad

Exercise 4.1.31. FPland its programming paRProg, relate to eager functional
programming languages like Standard ML because partial functions are required to
be strict. Formulate an analogous institution for lazy functional programming as in
Haskell. O

The institutiond=PL andFProg will be used in the sequel to present examples
that are meant to appeal to the reader’s programming intuition. Later on, the connec-
tion with functional programming will be further enhanced by introducing notations
for defining ML-style modules ifFPL (see Examplg 6.7.9 and Exercjse 7.3.5 be-
low).

Example 4.1.32 (The institution IMP of a simple imperative language)The in-
stitutionIMP of an imperative programming language with simple type definitions
is parameterised by an algeld®d on a signatur&pt of primitive (built-in) data
types and functions of the language. The componenit8|Bfpt are defined as fol-
lows:

e Asignaturell = (T,P) consists of a séf of type names and a setf functional
procedure names with types of the fosm. .., s, — s, where each oy, ...,s,,S
is either a sort inCpt or a type name ifM. The names im andP are distinct
from those inXpt. ThusIT U Xpt is an algebraic signature — we will denote
it by ITp7. Signature morphisms map type names to type names and procedure
names to procedure names preserving their types.

e There are two kinds of sentences over a signaliire (T,P).
First, sentences can be type definitions of the form

type s= type-expr

wheres € T is a type name antype-expris a type expression in a simple lan-
guage of types built over the sortsiipt and a unit typaunit using the opera-
tors+ (disjoint union) andx (Cartesian product). The type expressigpe-expr
may contain the type nangas well, which provides for recursive type defini-

tions[14

Second, sentences can be procedure definitions of the form

14 Other type names from are excluded, to prevent mutual recursion in type definitions — with
some extra work this restriction can be removed.
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proc p(Xi:S1, ..., %n:Sn) = While-programresult expr. s

wherep:si,...,S — Sis a procedure hame B, expris allpt-term (with vari-
ables) of sors, andwhile-programis a statement in a deterministic programming
language over the built-in data types and functions givebTin(while-program
may be empty, and so the program part of a procedure body may be omitted).
We assume that the usual iterative program constructions are provided: sequen-
tial statements, conditionals and while loops. This requires XYpat contains
the sortboolwith |DT |peo1 = {tt, ff }. The basic statements are well-typed assign-
ments (of expression values to formal parameters or variables scoped within each
procedure body).
Expressions may use projectiopso j4(v) andproj,(v) for valuesv of product
types of the forms; x s, and pairing(v1, v2) to build values of product types, as
well as boolean tesfs-in  1(v) andis-in  2(v) for valuesv of union types of
the forms; + s, and the constan of typeunit denoting the only element of
this type. The usual coercions between union types and their component types
may also be used. With a bit of additional complication we can also allow ex-
pressions to contain (recursive) procedure calls.

e A modelM over a signaturél = (T,P) has a carrier séM|s for eachse T. We
write |M|s for |DT|s if sis a sort name iXpr.
We have the usual notion efate where each state maps formal parameters and
variables to values of their sorts M, or marks them as undefined. An obvious
operational semantics may be given that determines, for each statement and state,
a sequence of states that formally captures the execution of that statement starting
in that state.
Then,M assigns to each procedure nams, ..., S, — sin P and every sequence
Vi € [M|g,...,Vnh € |M|g, Of (actual parameter) values a formal execution which
has one of the following forms:

(Successful terminatign a finite sequence of states and a valee|M|s;
(Unsuccessful terminatign a finite sequence of states; or
(Divergencg: an infinite sequence of states.

Given any such modé\, for any procedure namgs,...,S, — sin Pwe geta
partial functionpm:|Mls, x --- x [M|s, — |[Mls.
The models defined in this way form a discrete category.

e For any signaturél = (T,P) andIT-modelM:

— M satisfies dI-sentence of the form
type s = type-expr

if [M|s is the least seD such thatD is the value of the type expression
type-exprin which the type nams is interpreted a® and sort names' in
Xpr are interpreted dOT|y.

— M satisfies d1-sentence of the form

proc p(X1:S1, .-, %n:Sn) = While-programresult expr. s
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ifforall vo € [M|s,, ...,Vn € [M|s,, M(P)(V1,...,Vn) is the formal execution of
the statemenivhile-programstarting in the stat¢x; — vi,..., Xy — Vn}, and
if the execution terminates successfully in a state in wiigbr has a defined
value therM(p)(v1,...,Vn) contains this value as well.

Exercise.Complete the above definition and prove the satisfaction conditiom

Exercise 4.1.33Sentences itMP are essentially programs; they provide no means
of writing loose specifications. Add sentence®&OPEQ for specifying properties
of the procedures dMP viewed as partial functions. A different way of achieving

a similar effect will be presented in Exampfes 10.[.9, 10]1.14and 1D.1.17.0

Example 4.1.34 (The institution CDIAG of commutative diagrams).The follow-

ing example is of a rather non-standard character. We present a simple logical system
for stating that certain diagrams in a category with named objects and morphisms

commute. Sentences of the logical system allow one to require that morphisms pro-

duced by composition of series of (named) morphisms coincide.

e The category of signatures €DIAG is the categorgraph of graphs (see Def-
inition [3.2.36).

e A path equatiorin a graphG is a pair of paths ir with the same sources and
targets, respectively. For any grah{(a signature irSigncp,ac ), G-sentences in
CDIAG are sets of path equations@

e A model over a grapl@ is a (small) categorf with a diagramD of “shape”
G, i.e. (via Exercis¢ 3.4.21) a functér. Path(G) — C. For any twoG-models
D1:Path(G) — C1 and D2:Path(G) — C2, a G-morphismin Modcpag (G)
from D1 toD2 is a functor: C1 — C2 such thaD1;F = D2.

e For anyG-modelD: Path(G) — C, a pathp from stot in G determines a mor-
phismD(p):D(s) — D(t) in C. We say that &-modelD: Path(G) — C satisfies
a path equationip,q) if D(p) = D(q). A G-model satisfies &-sentenceb if it
satisfies all path equatiose .

Exercise.Complete the definition and prove the satisfaction conditiorCiotAG .

Exercise.Reformulate the above definitions so that a sentence over a Graphld
be a subdiagram @ used to denote the set of path equation& which make the
subdiagram commute. O

The last few examples show that the notion of institution covers much more than
what one usually connects with the concept of a logical system.

The next two examples are perhaps even more unusual; we show that the defini-
tion of an institution does not restrict the sentences of a logic to be syntactic objects,
and does not force models to provide semantic domains and operations used to de-
termine the meanings of the syntactic objects. Thus, the notion of an institution
covers systems in which such a distinction is entirely blurred.

Example 4.1.35.Consider an arbitrary categoBign and functorMod: Sign°® —
Cat. We think ofSignas a category of signatures andwdd as yielding categories
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of models and reduct functors. To be cautious about foundations, we should make
sure thaMod yields only small categories.

We can now define an institutidhSSe"™od) where “sentences” are classes of
models:

e The category of signatures BhSSe"™°d) js Sign.
e The “sentence” functor dNSSe™Mod) is defined as follows:

— For any signatur& e |Sign|, a Z-“sentence” ofiNSS¢™°d) s 3 collection

A C [Mod(X)| of Z-models.

— For any signature morphisan £ — X', theo-translation of any-“sentence”

# C |Mod(X)| to a X’'-“sentence”o(.#) C |Mod(ZX’)| is defined as the
coimage of.# w.r.t. theo-reduct functor, i.ec(.#) = {M’ € [Mod(X’)] |
Mod(o)(M') € .4'}.

e The model functor ofNSS®™od) js Mod.

e For each signatur&, the X-satisfaction relation ofNSS®™°d) s just the
membership relation: for an¥-modelM € [Mod(X)| and X-“sentence”.# C
IMod (Z)[, M = gsermod) 5 - if and only if M € ..

Exercise.Complete the definition and check the satisfaction condition. a0

Example 4.1.36.Consider an arbitrary categoBign and functorSen Sign — Set
We think of Signas a category of signatures andsahnas yielding sets of sentences
and their translations.

We can now define an institutiabSMod(

Sen \where “models” are sets of sen-

tences:

e The category of signatures tSM0d(Sen s Sign,
e The sentence functor diRSMOd(SeN js Sen
e The “model” functor ofINSMod(Sen s defined as follows:

— For any signaturg ¢ |Sign|, aZ-“model” of INSMOU(SeD js a setd C Sen(X)

of X-sentences. The category df“models” is just the preorder category
where the set of all such subsets is ordered by inclusion.

For any signature morphispt £ — X', the o-reduct functor of NSMod
from the category of’-“models” to the category oE-“models” maps any
X'-*model” @’ C SenX’) to its coimage{ ¢ € SenX) | Seno)(¢p) € &'} C
SenX); this obviously extends to a functor between the preorder categories
of X’- andX-“models".

Sen)

For each signatur®, the Z-satisfaction relation ofNSM°4(Se s (the inverse
of) the membership relation: for any-“model” & C Sen(X) and X-sentence
¢ € SenZk), @ = gMmodsen y @ ifand only if ¢ € .

Exercise.Complete the definition and check the satisfaction condition. O

Let us complete this list of examples by pointing out that the definition of insti-

tution admits a number of trivial situations:
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Example 4.1.37 (Trivial institutions).

e RecallthaDis the empty category. Hence, there is a unique (empty) functor from
0 to Setand a unique (empty) functor frol@PP = 0 to Cat. Together with the
empty family of relations, they form an empty institution (no signatures, hence
no sentences and no models).

e Given any categongign and functorMod: Sign®® — Cat, a trivial institution
with signaturesSign, with models given byMod, and with no sentences may be
constructed. Formally, the sentences of this institution are given by the functor
Serny: Sign — Setwhich yields the empty set for each signature.

e Given any categorgign and functorSen Sign — Set, a trivial institution with
signaturesSign, with sentences given b$en and with no models may be
constructed. Formally, the models of this institution are given by the functor
Modg: Sign°® — Cat which yields the empty category for each signature.

¢ Given any categorgign and functorsSen Sign — SetandMod: Sign°? — Cat,
two trivial institutions with signatureSign, with sentences given b8en and
with models given byMod may be constructed. One is obtained by making all
sentences false in all models, that is by defining each satisfaction relation to be
empty. The other is obtained by making all sentences hold in all models, that
is by definining each satisfaction relation to be total (i.e., for e&eh|Sign|,

Er =|Mod(Z)| x SenX)). O

4.1.2 Constructing institutions

In the examples of the previous subsection, each of the institutions was constructed
“from scratch” by explicitly defining its signatures, sentences, models and satisfac-
tion relations. This is often a rather tedious task (we have simplified it in many cases
by referring to the standard definitions) and then checking the satisfaction condition
is not always easy. In this subsection we will give some examples of constructions
leading from an institution to a more complex one. The complexity added by the
construction does not necessarily imply that the institution so obtained has any ex-
tra “expressive power”. We start with some examples of “formal juggling” with
institution components, very much in the spirit of Examples 4]1.35 and 4.1.36, and
only then show how adding propositional connectives to a logic may be viewed as a
construction of a new institution from an existing one.

Example 4.1.38.Sets of sentences of any institution may be regarded as single sen-
tences (with the obvious “conjunctive” interpretation).

For any institutionINS define the institutiodlNS” of sets ofINS-sentences as
follows:

e The category ofiNS”-signatures is the same as the categ8ign of INS-
signatures.
e The sentence funct@enys~ is defined as follows:
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— For any signatur& < |Sign|, Senys (X) is the set of all set® C Senys(X)
of X-sentences ifNS.

— For any signature morphisot X — X', the translation of £-sentenceb in
INS” is its image w.r.t. thes-translation function iHNS: Senyg (0)(®) =
{Senns(o)(e) | ¢ € P} < Senns ().

e The model functor ofNS" is the same as the model funciod: Sign°® — Cat
of INS.

e For any signatur& € |Sign|, the satisfaction relation dNS” gives the conjunc-
tive interpretation of (sets of) sentences: for arynodelM € [Mod (X)| andX-
sentenceb C Senns(X), M = ysn » P ifand onlyifforallg € @, M =ins 5 @

O

Example 4.1.39.Signatures of any institution may be enriched to incorporate sen-
tences which restrict the class of models considered over the given signature.

For any institutionNS define the institutionNSS9"" with signatures enriched
by sentences as follows:

o Signatures ofNSS9"" are pairg X, @), whereX € |Signys| is anINS-signature
and® C Senns(Z) is a set ofX-sentences. Then, aNSSigrﬁ-signature mor-
phismo: (X, ®) — (X', @) is a signature morphism: X — X’ in Signyg such
thatfor allg € @, 6(¢) € @' This defines a categoign, csigr+ Of INSSion” .
signatures (with composition inherited fraBignys).

e Sentences dNSS9" are the same dblS-sentences: for anNSS9" -signature
(Z, @), Sen csignt ((£, P)) = Senns(Z), with the translation functions inher-
ited fromINS as well.

e Models of INSS9"" are again the same as modelsINfS; we consider, how-
ever, only those models that satisfy the sentences in the given signature. For
any INSS9" _signature (X, &), Mod | ssign ({Z,P)) is the full subcategory
of Modns(X) consisting of allX-models (inINS) that satisfy (according to
Eins x) all the sentences i. The reduct functors are again inherited from
INS.

e The satisfaction relations #RSS9"" are inherited fromNS.

Exercise. Spell out all the details of the above definition. In particular, check that

the reduct functors of the new institutidNSS9"" are well-defined (cf. Fact 4.2.04
below). a0

Example 4.1.40For any institution, we can enlarge its categories of models by
considering models over extended signatures.

For any institutiorNS, define the institutiofNSMod" with categories of models
containing models over extended signatures as follows:

e The category ofNSM°d+-signatures is the categoBign of INS-signatures.
e The sentence functor d1SM°4" is the sentence funct&en Sign— Setof INS.
e The model functoMod, \ coa+: Sign°P — Cat is defined as follows:
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— For any signatureX € |Sign|, a X-model of INSM2" s an INS-model
over an extension of the signatuke Formally: aX-model inINSMod” ig
a pair(c:X — X',M" € [Mod|ns(Z')|). A £-model morphism between two
suchX-models is again a paifo’, f): (01: X — X1,M] € [Modins(Z7)]) —
(02:X — X5, M; € [Modns(Z5)[), which consists of atNS-signature mor-
phism¢’:Z; — X} such thatoi;6’ = 6, and a model morphisnfi: M; —
MOd|Ns(G/)(Mé) in MOd|NS(Ei).
— Forany signature morphisat X; — X5, thec-reduct functoMoleSMod+ (o)
maps any;-model(oy: £ — X5, M5 € [Modns(Z5)]) to theZi-model(o;02: £1 — X5, M5 € [Modins(Z5)]).
On model morphismsylod | voq+ () is the identity.

e For each signatur® € |Sign|, the XZ-satisfaction relation ofNSMed™ is deter-
mined by theZ-satisfaction relation dNS: for anyX-model(c: X — X/, M’ € |[Modns(Z') )
and Z-sentencep € SenX), (o,M’) Finsoat ¢ @ if and only if M E=ins .z
Sen(c) (@), which by the satisfaction condition &S is equivalent tdodns (o) (M) EiNs z
Q.

Exercise. Complete the definition and check the satisfaction condition. Try to ex-
press the construction of the categories of modelgMod” using the flattening
construction for indexed categories (Definitjon 3.4.58) and the machinery of comma
categories (Definitioh 3.4.49). g

Example 4.1.41.For any institutionINS define the institutiodNSP™P by closing
the sets of its sentences under propositional connectives (with the usual interpreta-
tion) as follows:

e The category of signatures IMSP™P is just the categor§ign of INS-signatures.
e The sentence funct@enyseror: Sign — Setis defined as follows:

— For any signatur& < |Sign|, Sennseor(X) is the least set that contains all
of the X-sentences ofNS and two special sentencesie and false, and
is closed under the usual propositional connectives as introduced in Exam-
ple[4.1.9, that is, ifp, ¢’ € Senyseor(X) then alsop v ¢ € Senyspron(Z),
- € Sennsror(X), A @' € Senyspor(X), andp = ¢’ € SenNsprop(Z)é

— For any signature morphisa1 X — X', thec-translation functior8enyspror (o)
coincides withSenyns(o) on Senys(X) and preserves the propositional con-
nectives in the new sentences in the obvious way.

e The model functor ofNSP™P is the model functoMod: Sign°? — Cat of INS.

e For each signatur® € |Sign|, the Z-satisfaction relation ofNSP™P is just the
same as th&-satisfaction relation ofNS for sentences i$enys(X) and then,
for any X-modelM € |Mod(X)|, for the sentences built using the propositional
connectives, the satisfaction of such sentencéd is defined inductively as in

Examplg 4.1.0.

15 The remarks in footno@ 4 apply as appropriate.
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Exercise. Show howPROP, the institution of propositional logic (see Exam-
ple[4.1.9) arises as the propositional closure of a simple institution with proposi-
tional variables as the only sentences. O

In Sectior] 4.42 below we define yet another similar construction on institutions
by showing how quantifiers may be introduced.

The constructions described in the examples above may naturally be viewed as
extensions of the original institution — this will be made formal in Secfion]10.2,
cf. Example 10.2]5. In Sectign 10.3 we will discuss how such extensions may be
combined using the limit construction in a suitable category of institutions.

These examples are about adding new sentences built using logical connectives
to an institution. The new sentences are added, even if the connectives were already
expressible in the following sense:

Definition 4.1.42.The institutionINS has negatiotif for every signature € |Sign|
and X-sentencep, there exists &-sentencey such that for every=-model M,
M =x @ iff M (A5 w. Any suchy may be referred to ase.

The properties ofiaving conjunctiophaving disjunctiorandhaving implication
are defined in the analogous way, and similarly fi@wving truth having falsity
having infinitary conjunctioretc. O

Exercise 4.1.43Suppose that the institutidiNS has negation. Using the satisfac-
tion condition, show that for every signature morphisn — X’ and X-sentence
¢, o (@) may be taken to be(—¢). Show a similar property for the other connec-
tives. O

Example 4.1.44 For any institution$NS; = (Sign,, Sen,Mody, (1.5, ) 5, ¢[signy |)
and INS, = <Sign2,Ser12,Mod2,(hz,&)&e‘ggnﬂ), their sumINS; + INS, puts
INS; andINS; side by side without any “interaction”. Formallj\NS; + INS; is
defined as follows:

e The category of signatures IS + INS; is the disjoint uniorSign, + Sign, of
the categories of signaturesIdfS; and ofINS,.

e The sentence funct®enns, +ins,: Sign + Sign, — Setacts asSen on Sign,
and asSerp on Sign, (that is, Senys, 1ins, is determined bySen and Sen
according to the coproduct property ®ign, + Sign,).

e The model functoModns, +ins,: (Sign, + Sign,)°P — Cat acts asMod; on
Sign, and asMod> on Sign, (that is,Mod s, +iNs, iS determined byMod; and
Mod; according to the coproduct property ®ign, + Sign,).

e The family of satisfaction relations dNS; + INS, is the union of the fam-
ilies of satisfaction relations ofNS; and of INS; (that is, forX; € |Sign|,

E=INS, +INS,.x; 1S 1,5, and forX; € [Sign,|, EiNs; +iNs,, 5, 1S F2,5,)- g

Example 4.1.45Given institutionsINS; = (Signy, Sen;,Mod1, (F1.5; ) 5, ¢sign,|)
andINS, = <Sign2,Serp,Mod27<|:2,;2>22€|5ignz‘>, their product INS; x INS; Is
defined as follows:
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e The category of signatures tf1S; x INS; is the productSign; x Sign, of the
categories of signatures tiS; and ofINSy; thus a signature ifNS; x INS; is
a pair consisting of one signature frdidS; and one fromNS,, and similarly
for signature morphisms.

e The sentence funct@enns, «Ins,: Sign, x Sign, — Setis defined as follows:

— Forany signatureXy, o) € |Sign; x Sign,|, Senns, xins, ((Z1,X2)) = Sen (1) +
Sen(X,) is the disjoint union of the sets ®NS;-sentences oveX; and of
INS,-sentences over,.

— For any signature morphis(oy, 62): (X1, X2) — (£1,X5), Senns, xIns, ((01,02)) =
Sen(o1) + Senp(o2) acts aSen (o1) onINS;-sentences and &y (o2) on
INS,-sentences over the signatysg, X»).

e The model functoMod s, xins,: (Sign, x Sign,)°? — Cat is defined as fol-
lows:

— Forany signaturéXy, X,) € |Sign; x Signy|, Modns, xins, ((Z1, X2)) =Mod1(X1) %
Mod2(X,) is the product of the categories BfiS;-models overZ; and of
INS,-models over,; thus a model ilNS; x INS; is a pair consisting of one
model fromINS; and one fromNS,, and similarly for model morphisms.

— For any signature morphis(oy, 62): (X1, X2) — (£1,X5), Mod|ns, xINs, ((01,02)) =
Mod1(01) x Modx(02) acts adMod(o1) on thelNS;-components ofX], £5)-
models and model morphisms andMsd(o2) on theINSz-components of
(Z1,X5)-models and model morphisms.

e Forany signaturéX,, X) € |Sign x Sign,|, model(M1, M) € [Modins, xiNs, ((Z1,X2))]
and sentenceg; € Sen (X1) andg, € Senp(X,), (M1, M2) ):|N51X|N527<21322> 0l
if and only if My =15, @1, and (M1, M2) =ins, xINS,,(2,5,) 92 If and only if
M =25, @2. That is, satisfaction ifNS1 x INS; is defined agNS;-satisfaction
for INS3-sentences (extracting tHBS;-components ofNS; x INS,;-models)
and adNS;-satisfaction folNS;-sentences (extracting theS,-components of
INS1 x INS2-models). a

The next example indicates a technically correct but intuitively somewhat arti-
ficial way of dealing with the translation of sentences along signature morphisms.
The simple idea is that instead of actually translating sentences from one signa-
ture to another, we can always keep the original sentence over its original signature
together with a morphism “fitting” it to another signature.

Example 4.1.46 Consider an institutiofNS = (Sign, SenMod, (}=x) r¢|sign ) @and

afunctionNewSen Sign| — |Set together with a family of relation§=newser € [Mod(Z)| x NewSeqX)) r¢|sign -
Intuitively, for any signatur&, NewSefl) is a set of new sentences o¥ewith the

satisfaction relatior=newsers. We define an institutiotNS + NewSerby adding

these new sentences fitted to other signatures via signature morphisms:

e The category of signatures @IS + NewSeris just the categorpign of INS-
signatures.
e The sentence funct@enys . newsenSign — Setis defined as follows:
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— For any signatur& € |Sign|, Senns.newsetZ) is the (disjoint) union of the
“old” sentencesSen(X) and the s of “new” sentences fitted to the sig-
natureX by a signature morphism. The latter are pdigs, 0), written as
¢’ through 6, with 6: X — X and ¢’ € NewSe(X') for an arbitrary signa-
tureX’.
— For any signature morphisot X — X1, Senns.inewsetO) Works asSen o)
on thelNS-sentences; fof: X’ — ¥ and¢’ € NewSe(X'), Sennsnewseh o) (¢ through 6) =
¢’ through 9;0.

e The model functor ofNS + NewSeris the model functoMod: Sign°® — Cat of
INS.

e For each signatur& € |Sign|, the X-satisfaction relation ofNS + NewSeris
just the same as thE-satisfaction relation ofNS for the “old” X-sentences
and then, for any-modelM € |Mod(Z)|, 6: X' — X and ¢’ € NewSe('),

M Einsinewser®’ through 6 if and only if M‘g ENewsers’ ¢’
Exercise.Check the satisfaction condition. a

We conclude this list of constructions on institutions with a sketch of how various
modal (and temporal) logics may be built over an arbitrary institution.

Example 4.1.47Let INS = (Sign,SenMod, (=x)s¢|sign) b€ an institution. We

define the institutiorL.TL |ys of linear-time temporal logic ovelNS, using se-

quences of models frofS as models and sentences friWs as “state sentences”,
that is:

e The category of signatures bfL |ys is Sign, the same as ifiNS.

For each signatur&, a X-model inLTL |ns is a countably infinite sequence
M = (Mn)n>0 of modelsM,, € [Mod(X)| for n > 0. Reducts of such models w.r.t.
a signature morphisra are defined componentwise, using the reduct varas
defined inINS. (We disregard model morphisms here, takiigd ., (X) to

be the discrete category.)

e For each signaturg, the set off-sentences ihTL |ys is the least set that con-
tainstrue and all the sentences Ben(X) (calledstate sentences this context)
and is closed under negation, writtetp, conjunction,p A y, and two modal
operatorsnext time X¢, anduntil, ¢ U y.

e For each signaturg, satisfaction is defined in terms of an auxiliary relation of
satisfaction at a given position in the temporal sequence; for each rivbdel
(Mn)n>0, andj > 0 we define:

— for any state sentengg M =g if M;j = ¢ (in INS);
- M ! —gifitis not the case thaWl |=! ;
- ME oAyt ME! g andM E! v;

16 This may lead to some foundational difficulties, since the collection of all signature morphisms
into X, and hence the collection of all neli+sentences, need not form a set. One argument for
ignoring these problems here is that we can typically limit the size of the category of signatures of
the institution we start with, for example assuming that the cate§myis small.
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- ME! Xgif M "1 ¢; and _
— MElpUyifforsomek> j,M =K yandforallj <i <k ME o.

We put nowM ELTL nNs.Z @ if M ':0 .
Exercise.Complete the definition and check the satisfaction condition.

Exercise. Add other temporal modalities, like “eventually/finally” and “hence-
forth/globally”, either by defining them explicitly, or as abbreviations, for instance:
Fo =trueU ¢, Go = —(F(—9)), etc.

Also, add “past” temporal modalities (previous, since, sometimes in the past,
always in the past, etc). O

Exercise 4.1.48Proceeding similarly as in Example 4.1.47, given an institution
INS, define the institutioMDL |ys of modal logic:

e The category of signatures BfDL \s is Sign, the same as ilNS.

e For each signaturg, a X-model inMDL |\s is a Kripke structure, i.e., a triple
(W,~, M), which consists of a sat/ (of “possible worlds” or “state names”)
and a relatiom C W x W (“transition relation”) together with a famili =
(Mw)wew Of Z-models inINS, My, € [Mod(X)| for w € W. Again, we disregard
model morphisms.

e For each signature&, the set ofX-sentences itMDL |\s is the least set that
containstrue and all the sentences BenX) and is closed under negatiorp,
conjunctiong A v, and the modal operatare.

e For each signaturg, satisfaction is defined in terms of an auxiliary relation of
satisfaction at a given world in a Kripke structure; here is the crucial clause:

- (W,~,M) =¥ Oe if for all ve W such thatv~ v, (W,~, M) " ¢.

Then a model satisfies a sentencdbDL s if the sentence holds in the above
sense at each of its possible worlds.

Complete the definition and check the satisfaction condition.

To keep the definition closer tolL |ys, you may want to define a somewhat
different version of modal logic, where Kripke structures in addition indicate an
initial world, and then the satisfaction of a sentence in a model is determined by its
satisfaction at this initial world. You may also want to impose requirements on the
transition relation (for instance, that it is transitive, or that all possible worlds can
be reached from the initial world, etc.).

Combining the ideas behifdDL s andLTL |ys, define the institutio©TL f‘;\,s
of branching-time temporal logic, where signatures and models areNBlinys,
but sentences are closed under a variety of temporal operators used to quantify (sep-
arately) over paths in the Kripke structure and over worlds in these paths.: H
Distinguish two kinds of sentences: path sentences that are evaluated for a given
path in the Kripke structure; and state sentences that are evaluated for a given world
in the Kripke structure — or seg [Em€e90].

You may also start by defining a simpler instituti@iL ys where the use of
temporal operators is limited by requiring that quantification over paths and over
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worlds in these paths always happen together, so in fact we have only bundled
path/state temporal operators, like “for some path, always in this path”, “for some
path, eventually in this path”, etc. O

Exercise 4.1.49Consider an institutioMDL ropeg 0of modal logic built over first-
order predicate logic with equality. Note that thisist the institution of first-order
modal logic, since quantification is internal to state sentences only and cannot be
interleaved with the modal operator. Define an institution of first-order modal logic
in which such an arbitrary interleaving of quantifiers, propositional connectives and
the modal operator is allowed.IMT: The trouble here is with moving valuations of
variables from one world to another in the definition of satisfaction. At least, define
such an institution assuming that the carriers of all models in any Kripke structure
coincide. Discuss possible generalisations.

Carry out similar constructions of first-order temporal logics that ext&hd-opeq,
CTL fopeq andCTL ropeq, respectively. O

4.2 Flat specifications in an arbitrary institution

Throughout this section we will deal with an arbitrary but fixed institution. This
means that we will be working with a logical system about which we know nothing
beyond what is given in the definition of an institution. For example, we will not

be able to refer to any particular components of signatures, any particular syntax
of sentences, any particular internal structure of models, or any particular definition
of satisfaction. Indeed, we cannot even be sure that signatures have components,
that sentences are syntactic entities in any sense, or that models have any internal
structure at all.

Given these limitations, one may think that there is very little that can be done.
However, the structure of an institution is rich enough to allow us to recast in these
terms the material on simple equational specifications presented in Sectipns 2.2
and[2.3 (this will be done in the present section, without repeating the discussion
and motivation) and then to proceed further into the theory of specifications and
software development.

Let us then fix an arbitrary institutidNS = (Sign, SenMod, (=x) s¢(sign ) - We
start with the basic concepts built around the notion of satisfaction.

Definition 4.2.1 Mods (®), Th(.# ), Cls(®) and Clg(#)). Let X be an arbitrary
signature.

e For any setd C SenX) of X-sentences, the claddody(P) C |Mod(X)| of
models ofp is defined as the class of &itmodels that satisfy all the sentences
in [

17 Note the overloading of the term “model” as discussed after Defi4.l.1. We continue to
follow the terminology of[[GB9P], hoping that this will not lead to any confusion.
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4.2 Flat specifications in an arbitrary institution 187

e Forany class# C [Mod(X)| of Z-models, theheory of # is the sefThy (.#) C
Sen(X) of all the Z-sentences that are satisfied by all the model#in

e Asetd C SenX) of X-sentences islosedif @ = Thy(Modx(P)). We will
write Clx (&) for The (Mods (<)) and refer toCly () as theclosure ofd.

e Aclass.# C |Mod(Z)| of Z-models isclosedif .# = Mods (Ths (.#)). Closed
classes of models will be calledefinable The closure of .#Z is the class
Modyx (Thz (%)) O

The basic properties of the above notions follow from the factThatandMody
form a Galois connection:

Proposition 4.2.2.For any signatureX, the mappings Thiand Mod: form a Ga-
lois connection between sets Bfsentences and classes Xfmodels ordered by
inclusion.

Proof. The proof is just the same (and just as easy) as in the equational case, cf.
Propositiod 2.3]2. g

Corollary 4.2.3. For any signatureX, set® C Sen(X) of Z-sentences, and class
# C |Mod(X)| of Z-models:

® CThe(#) iff Mods(®) 2.4 0

Exercise 4.2.4Construct counterexamples that show that under the assumptions of
Corollary[4.2.3 neither of the following implications holds:

Modyx (®) C .# implies Thy(.#) C @
Thy (#) C & implies Modx(®) C ..

Prove that the former implication holdsdf is closed, and the latter i#Z is closed
(i.e., is definable). O

The satisfaction relation determines in the obvious way a consequence relation
between sentences of the institution:

Definition 4.2.5 (Semantic consequencelet X be an arbitrary signature. A-
sentencep € SenX) is a semantic consequenad a set® C SenX) of X-
sentences, writtef® =5 ¢, if ¢ € Clg (), or equivalently, iMods (®) =5 ¢. O

As usual, the subscrif will often be omitted.

In the following we will often implicitly rely on three basic properties of semantic
consequence, namely that it is reflexive, closed under weakening, and transitive, in
the following sense:

Proposition 4.2.6.Let X be a signature. Consider arB-sentence®, v € Sen(X),
and sets of-sentence®, ¥ C Sen(X), and¥, C SenX) for eachg € &. Then:

1L{o}Ex 0.
2. If® 'ZZ ¢ thend UW¥ ':Z Q.
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3.1f @ =y yand¥, =5 ¢ for each € @ thenUyco ¥y Fx V.
Proof. Directly from the definition. O

Another important property of semantic consequence is that it is preserved by
translation along signature morphisms:

Proposition 4.2.7.For any signature morphismg: X — X', set® C SenX) of X-
sentences, anl-sentencep € SenX),

@ =5 ¢ implies o(P) =5 o(9).

In other words,c(Clg(®)) C Cly/(o(D)).

Proof. LetM’ € Mods/ (o(®)). Then by the satisfaction conditicM(‘G € Modz (),
and so by the definition of the consequence relals'rbp, = ¢. Thus, by the satis-
faction condition againV’ = o (@), which shows that indeedl(®) = o(p). O

In general, the reverse implication does not hold, that is, the consequence relation
is not reflected by translation along signature morphisms.

Exercise 4.2.8Try to prove the opposite implication, and notice where the proof
breaks down. Then construct a counterexample showingatt@t) = o(¢) does
not imply that® = ¢ even in the standard equational institutie®. (HINT: See

Propositiof 4.2.75 below.) O
Corollary 4.2.9. Under the assumptions of Proposition 4]2.7yC6(Clx (D)) =
Clg: (a(D)). =

The above corollary implies that when we want to “move” the closure of a set of
sentences from one signature to another, it is enough to move only the set itself; all
its consequences can be derived over the target signature as well.

Another consequence of Propositjon 4]2.7 is that closure of a set of sentences is
reflected by translation along signature morphisms:

Corollary 4.2.10. For any signature morphismr: £ — X’ and set®’ C SenX’) of
X’-sentences, @' is closed then so is—1(P').

Proof. Supposed’ is closed and letp € Clz(c~1(®')). First, notice that since
o(c (@) C @, Clp(c(c 1)) C Clg/(®'). Now, by Proposnlor-?
o(¢) € Cly/(c(c7 (@) C Cly/(P') = @'. Thus,p € 6~ 1(P').

Notice that the above does not imply that “closure commutes with inverse image”
in general; only one of the required inclusions holds:

Corollary 4.2.11. For any signature morphism: X — X', set®’ C Sen(X’) of X'-
sentences, anl-sentencep € SenX), if 6 1(d') = ¢ thend®’ |= 5 (). In other
words, Ck (o~ 1(®')) € o Y(Clg (D). O

Exercise 4.2.12Show that the reverse inclusion does not hold in the standard equa-
tional institutionEQ. O
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Forming the closure of a set of sentences consists of two phases: first taking the
class of models the set defines, and then taking the theory of this class. Separation
of these two phases by translation along a signature morphism preserves the closure
to some extent only:

Proposition 4.2.13.For any signature morphisra: X — X’ and set®’ C SenX’)
of X’-sentences,

Clz(o~(@")) € The(Mody/(@')[¢) = 6~ *(Cly/(2'))

where for any class# C [Mod(Z')|, #|c = {M'|c |[M" € .4}

Proof. For the first part, letp € Clx(c~%(®')). Then, by Corollary 4.2.31¢' =5

o (). Hence, by the satisfaction conditidﬂodg(db’)‘g Ex ¢,and sap € Thy (Mods: (®)] ).

SinceMody (®') = Mody/ (Cly (@')), this showsThg (Mody/ (@) |6) = Thr (Mody: (Cly (27))|6) 2

Clg(c~(Clg/(@'))) 2 6 (Cly (@), and hence also proves one inclusiof

of the second part. For the opposite inclusion, consxjdeﬂ'h;(ModZ/(CP’)‘c), that

is Modg(cb’)‘a Ex ¢. By the satisfaction conditioiMods: (®') =5 (@), which

meanso (@) € Cly/ (@), and so indee¢ € 6~ (Cly/ (P')). O

Corollary 4.2.14. For any signature morphisrr: X — X’ and set® C SenX) of
X-sentences, G(®) C 6~ (Cly/(c(P))). O

Just as the implication opposite to the one stated in Propogitior) 4.2.7 does not hold
in general, the inclusion opposite to the one above does not hold in general either.
This changes fosurjectivereduct functors.

Proposition 4.2.15.Consider a signature morphisat X — X’ such that the reduct
functor_|o: Mod(X’) — Mod(ZX) is surjective on models. For any sétC Sen(X)
of Z-sentences anB-sentencep € SenX),

PEre iff o(P) =y o(e)

Proof. We prove only the implication opposite to that of Proposifion 4.2.7 NLet
[Mod(X)| be an arbitraryt-model, and leM’ € |[Mod (X')| be ac-expansion oM,
ie., M"G = M (such anM’ exists sinc&‘<j is surjective on models). M =5 &

then by the satisfaction conditidt’ =5 6(®), and saV’ =5 6(@). Thus, by the

satisfaction condition agai =5 ¢. O
Corollary 4.2.16. Under the assumptions of Propositjon 4.2.15 @) = 6~(Cly (o(®))).
O

This shows that the surjectivity of the reduct functor ensures that moving along a
signature morphism is “sound” and “complete” as a strategy for decididghfx

¢ by checking whether or nat(®) =5 o(¢) — without this property, such a
strategy is still “complete” (the satisfaction condition ensures that no consequences
are lost) but is not always “sound” (new consequences between “old” sentences may
be added).
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Exercise 4.2.17Provide an example showing that surjectivitng: Mod(X') —
Mod (X) is not a necessary condition for the conclusions of Propodition 4.2.15 and

Corollary[4.2.1p. g

Exercise 4.2.18Show that the inclusiorCly (®) C o~ 1(Cly/(c(P))), for any

6:X — X and® C Sen(X), directly implies (and, in fact, is equivalent to) Corol-
lary[4.2.11. However, the opposite inclusiGiz (®) 2 6~(Cly (c(P))) does not
imply the opposite to the inclusion there: even under the assumptions of Propo-
sition[4.2.15 and Corollary 4.2.]L6, the inclusiGh: (6~ (®')) D 6~ (Clg/(P'))

may fail for a set®’ C SenX’) of X’-sentences. (HiT: One way to construct a
counterexample is to addlseto the set of sentences BfQ for some, but not all
signatures.)

Show, however, that under the assumptions of Propodition 4.2.15, for any set
@' C Sen2’) of r'-sentence<lx (o~ (') = Thy (Mody (') |6) andCly (o~ (")) =
o~ 1(Clg/(@")) provided that in additions : Sen(X) — Sen(X’) is surjective. Dis-
cuss why this fact does not seem very interesting. O

The following generalisation of Propositipn 4.2.15 underlies the key corollary
below.

Proposition 4.2.19.Leto: X — X’ be a signature morphism. Suppose that d 3¢t
Sen(X) of X-sentences exactly characterises theeducts off’-models that satisfy
asetl” C Sen(X’) of ¥’-sentences, thatis, Medl") = Mod (o) (Mody/(I'’)). Then
for any setd C SenX) of Z-sentences an8i-sentencep € SenX), PUT 5 ¢
if and only ifo(®@)UT" =5 o ().

Proof. For the “if” part, assume that(®)UI" =5 o(¢) and letM |=x @ UT".
Then, sinceM € Mods (I"), there existdV’ € Mody/(I"") with M"(, = M. By the
satisfaction conditiorM’ =5/ o(®), henceM’ =5/ o(P)UT” and sdM’ =5/ 6 (@)
as well. Thus, by the satisfaction condition agaih=»x ¢.

For the “only if” part, asume thatb UI" =5 ¢ and letM’ Eyx o(@)UI".
Then by the satisfaction conditiofv/l/‘(7 Er @ and moreover, by the assumption,
M"G EsI. HenceM"G Es ®@UTI', and sd\/l"(, Es ¢ as well, which by the satis-
faction condition again proves thil' =5 o(@). O
Corollary 4.2.20. Let 0: X — X’ be a signature morphism. Suppose that alset

SenX) of X-sentences exactly characterises theeducts ofX’-models, that is,
Modsx (I') = Mod(o)(|[Mod(X")|). Then for any setb C SenX) of X-sentences

andZ-sentencep € SenX), ®UTI 5 ¢ ifand only ifo(®) =5 o(9). O
Exercise 4.2.21Show that Propositidn 4.2.]L5 follows directly from Proposifion 4.2.19
(or Corollary[4.2.2D). Generalise Corolldry 4.2.16 in a similar way. g

Definition 4.2.22 (Presentation)For any signatur&, aX-presentatior{also known
as aflat specificatiohis a pair(X, @) where® C Sen(X). M € |[Mod(X)| is amodel
of a Z-presentationX, @) if M = &. Mod[(Z, ®)] denotes the class of all models
of the presentatiofr, @), andMod[(X, ®)] the full subcategory oMod (X) with
objects inMod[(X, P)]. O
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Definition 4.2.23 (The category of theories)ror any signatur&, aX-theory Tis
a X-presentationX, @) where® is closed. AX-presentation X, ¥) presentshe
X-theory(X,Clz(¥)).

For any theorie§ = (X, ®) andT’' = (X', @'), atheory morphisno: T — T’ is
a signature morphismr: £ — X’ such thaio (@) € &' for everyo € &.

The categoryThys of theories inINS has theories as objects and theory mor-
phisms as morphisms, with identities and composition inherited from the category
Signs of signatures ofNS. O

The satisfaction condition implies the following important characterisation of
theory morphisms, analogous to that given for equational theory morphisms in

Propositiorf 2.3.7]3.

Proposition 4.2.24.For any signature morphisra: X — X’ and setsp C SenX)
and®’ C SenX’) of sentences, the following conditions are equivalent:

1. o is a theory morphisno: (X,Clx(®)) — (X', Cly/(D')).
2.0(®) C Clg/ (D).
3. For every M € Mody/(2'), M'|s € Modx ().

Proof.

[@M={2: Obvious, sinceb C Cly(P).

2={3 ConsideM’ € Modys/(®'). Then alsdM’ € Mody: (Cly/(®')), and so for all
@ € ®, M = () (sincec(p) € Cls/(@')). Hence, by the satisfaction condi-
tion, M'|s |= ¢, and thus indeeM’|s € Modg ().

B={I: Consider anyp € Clz(®P). We have to show that(¢) € Cly/(P’), that
is that for allM’ € Mody/ (®'), M’ |= o(¢). However, ifM" € Mody/ (®') then
M"G € Mody (D). Hence,M"cy E ¢, and the conclusion follows from the satis-
faction condition. O

Exercise 4.2.25Define the categorfPresns of presentations inNS, with mor-
phismso: (X,®) — (X', ®') that are signature morphisnts £ — X’ such that
@' = o(g) for all ¢ € ®. Check thafTh|ys is a full subcategory oPresys and
that the two categories are equivalent. O

Exercise 4.2.26Show that by Propositidn 4.2.24 above, the mapping which to any
theory assigns the category of its models extends to a fuivzadr: Thf’,\'l’S — Cat,
where:

e for any theoryT = (X, @), Mod([T] is the full subcategory dflod (X) with ob-
jects inMod[T] as in Definitior] 4.2.22; and

e forany theory morphisro: T — T/, Mod (o) is the reduct functQ[‘G: Mod[T'] —
Mod[T]. O

Many standard properties of theories (and presentations) investigated in the realm
of classical model theory may be formulated in the framework of an arbitrary insti-
tution. For example:
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Definition 4.2.27 (Consistency and completeness of a presentatior). presen-
tation (X, @) is consistentf it has a model, i.e. iMod[(X, )] # .

A presentation X, @) is completef it is a maximal consistent presentation, i.e.
if it is consistent and no presentati¢h, ®’) such that®’ properly containsp is
consistent. O

Proposition 4.2.28.A presentation(X, @) is consistent if and only if the theory
(X,Clx (D)) is consistent. Any complete presentation is a (consistent) theory.

Definition 4.2.29 (Conservative theory morphism)For any theorie§ = (X, &)
and T’ = (X', @’), a theory morphisno: T — T’ is conservativef for every X-
sentencep, ¢ € & whenevero () € @'.

A theory morphismo:T — T’ admits model expansioifi the corresponding
reduct functiorl‘o: Mody/ (@) — Mods (D) is surjective, that is, for every-model
M such thaM =5 @, there exists &’-modelM’ such thaM’ =5/ &’ andM"cr =M.

O

Exercise 4.2.30As in Propositiof 4.2.15, show that a theory morphisrT — T’
is conservative if it admits model expansion. Note that the opposite implication does
not hold by Exercisg 4.2.17. g

The careful reader has probably realised that in this section we have not even
mentioned model morphisms. Indeed, everything above works equally well if we
forget about the category structure provided on the collections of models in an in-
stitution. But this proves inadequate for some purposes; see for example the next
section where the category structure on models is exploited.

4.3 Constraints

As discussed in Sectign 2.5, the class of all models that satisfy a given presentation
often contains some models that intuitively are undesirable realisations of the pre-
sentation. Different methods are used to constrain the semantics of presentations so
that from among all its models only the ones that are “desirable” are selected: for
example, one may take its initial semantics, reachable semantics, final semantics,
etc. (cf. Sectiong 2|5 arjd 2.J.2). How do these fit into the institutional framework
introduced above? Let us consider initiality constrifsst.

There is clearly no problem with expressing the basic concept of initial model
in an arbitrary institution: models over any signature form a category, hence the
class of models satisfying a given presentation determines a full subcategory of this
category — and we know what initiality means in any category (cf. Seftion 3.2.1).

LetINS = (Sign, SenMod, (=x)s¢(sign) be an institution, fixed throughout this
section.

18 We use the term “constraint” here following the terminologylof [BGE0]. [GB92]. Initiality and
data constraints as discussed and formally defined below have nothing to do with constraints as
used in “constraint logic programming” [JL87].
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Definition 4.3.1 (Initial model of a presentation).For any signature& € |Sign|
and setb C Sen(X) of sentences, thiaitial modelof the presentatiofX, @) is the
(unique up to isomorphism) initial object Mody (®) considered as a full subcate-
gory ofMod(Z). O

We might feel tempted to pursue a number of possibilities to incorporate the idea
of initiality into the institutional framework:

e We may hope to be able to modify all institutions of interest so that they yield
initial semantics directly, by changing the model fundiwd to yield only the
initial models as models over any signature. Clearly, this fails: requiring initiality
only makes sense relative to a presentation. If sentences are not taken into ac-
count then for example the only initial models in the institutte® of equational
logic are ground term algebras.

e We can attempt to modify the satisfaction relation so that only the initial models
of a sentence will be defined to satisfy it. Quite obviously, this does not work,
since it would then be impossible to adequately define models of presentations
involving more than one sentence. Without modifying the satisfaction relation,
we could modify Definition$ 4.2]1 arjd 4.2]22 and consider only initial models
of presentations by defininglods (&) to consist only of the initial models in
{M | M = &} considered as a full subcategoryMbd (X). But this would make
the whole theory rather clumsy, and the various definitions would not fit together
as neatly as they do now. For example, Proposifions]4.2.7 and4.2.24 would no
longer hold. Worse, this would not allow the user to write axioms that are to be
interpreted in a loose, non-initial fashion, indicating that only certain parts of a
specification are to be interpreted in an initial way. See Example]4.3.2 below.

e We can view the requirement of initiality with respect to a presentation as just
anothersentenceThis would be a rather complicated sentence, as it has to con-
tain other sentences within it, but in view of examples [ike 4]1.38 (not to men-
tion[4.1.35) there is no reason why this should bother us. This is the approach we
will take.

It is not sufficient to define initiality constraints simply as sets of sentences over
a given signature, and then to define their satisfaction via the notion of an initial
model. The problem is that we do not always want to constrain the entire model of
a presentation. As the following example illustrates, we need to be able to constrain
only a certain part of this model, that is, to impose initiality constraints on its reduct
to a certain subsignature.

Example 4.3.2.Recall Exercisg 2.5.21 which concerned the specification of a func-
tion ch: nat— natthat for each natural numberchooses an arbitrary number that is
greater tham. As argued there, we certainly do not want to take the initial model of
the entire specification: the initial model would generate “artificial elements” of sort
nat(as the results of the functiar) and then artificial elements of sdrbol as well

(as results of comparisons kByinvolving the artificial elements of sonaf). What

one would like is to first interpret the original specificatidinT of natural num-
bers in an initial way, do the same for the specificatidmoL, add the operation
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__< __:natx nat— bool (which is defined by its axioms in a sufficiently complete
way) — it so happens that this would be the same as taking an initial model of these
specifications put together — and only then add an operatiorat — natwith the
corresponding axiom interpreted in the underlying logic, with no initiality restric-
tions intervening in any way at this stage. ad

By allowing initiality requirements to be “fitted” to larger signatures by signature
morphisms, along the lines of the construction presented in Example}4.1.46, we can
impose the initiality requirement on parts of models.

Definition 4.3.3 (Initiality constraint). LetX € |Sign| be a signature. A-initiality
constraintis a pair(®’, 8), written asinitial &’ through 6, where6:X’ — X is a
signature morphism and’ C SenX’) is a set ofX’-sentences. A-modelM €
|[Mod (X)| satisfiesa Z-initiality constraintinitial @’ through 6 if its reductM|e €

[Mod(X’)| is an initial model of( X/, @'). O

Now, such an initiality constraint may be regarded as just another sentence in a
presentation, and freely mixed with “ordinary” sentences.

Exercise 4.3.4Redo Exercisg 2.5.21 using initiality constraints. Discuss the pos-
sibility of achieving the same effect without the “fitting morphism” component in
initiality constraints. O

The specification built in Exercige 4.8.4 is not a presentatioRGEQ — we
have to extend this institution by adding initiality constraints first. Indeed, given
an institutionINS we can always form a new institutidhIS™" in which initiality
constraints are allowed as additional sentences. Such a construction is implicitly
involved whenever initiality constraints are used.

Definition 4.3.5 (Institution with initiality constraints). The institutionINS™"
with initiality constraints inINS is defined as follows:

e The categorysign,ginit Of signatures is jusbign, the same as ifNS.
e The functorSenygnit gives:

— for each signaturg, the (disjoint) union of the s&@enX) of X-sentences in
INS and of the set of-initiality constraint§-and

— for each signature morphisen £ — X, the translation functioBenyginit (o)
that works asSeno) on all the “old” Z-sentences inNS, and for anyZ-
initiality constraintinitial &’ through 6, wheref: X’ — X and®’ C Sen(Y’),
is defined bySengnit (o)(initial @’ through 6) = initial &’ through 6;c.

e The functorMod ginit is justMod, the same as iNS.

e For each signaturg < |Sign,ginit|, the Z-satisfaction relationk= gt 5 is the
same as th&-satisfaction relation iiNS for the Z-sentences frontNS, and is
given by Definitior] 4.3 3 foE-initiality constraints. 0

B Asin Exampl6, this may lead to some foundational difficulties which we disregard here,

cf. footnotqu.
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Exercise 4.3.6 Present the above definition as an instance of the construction given
in Exampld 4.1.46. Notice that this is sufficient to conclude IN&™" is indeed an
institution.

Show (referring for example to Exercise 4]3.4) that in general the translation of
an initiality constraint cannot be given without the “fitting morphism” component,
and so we would not be able to define an institution where only initiality constraints
with trivial (identity) fitting morphisms would be allowed. O

Exercise 4.3.7Working in the institutionEQ, follow Definition[4.3.3 and define
reachability constraintshat are satisfied only by algebras having an indicated reduct
that is reachable. Note that axioms used in initiality constraints play no role here,
so you can adopt a syntax likeachable through 6. Following Definition[4.3.5,
define an institutioEQ™2°" extendingEQ by reachability constraints.

Assuming that each category of modeld$N& comes equipped with a factorisa-
tion system (Sectiop 3.3), introduce reachability constraint$N& using Defini-
tion[3.3.7T and extentNS correspondingly. O

The use of initiality constraints as introduced above is not always entirely satis-
factory. Often, rather than requiring that a certain part of a model is initial, we want
to require it to be dree extensiomf some other part. Natural examples arise when
we want to specify data structures built on an arbitrary set of elements, like lists,
sets or bags of arbitrary elements. This involves imposing the requirement that an
algebra modelling the data structure is a free extension of its reduct to the sort of
elements. To formalise this, the concept of a data constraint is introduced below.

Definition 4.3.8 (Data constraint).Let X € |Sign| be a signature.

A X-data constrainis a triple(c, @', 8), written asdata ¢’ over ¢ through 6,
wherec:X; — X’ and6: X’ — X are signature morphisms adel C Sen(X’) is a
set ofX’-sentences.

A X-modelM € |Mod (X)| satisfieghe data constraintata ¢’ over ¢ through 6
if its reductM|e € [Mod(X')| to aX’-model is a free model o’ w.r.t. the reduct
functor,‘c: Mod[(X,®')] — Mod(Z;) over(M‘e) &, With the identity as unit. That
is, M satisfiesdata @' over o through 0 if:

° M‘g ':E’ @'; and
e foranyM’ € Mods/ (®’) andX;-morphismf:M ‘0-;9 — M"G there exists a unique
£'-morphismf#:M|g — M’ such thatf#|; = f. 0

Exercise 4.3.9Using data constraints, give a specification of finite bags of an arbi-
trary set of elements. ad

Exercise 4.3.10Following the pattern of Definition 4.3.5 (and of Example 4.1.46),
define the institutionNSY2® by adding data constraints as additional sentences to
INS. O

Note that nowhere in the above has it been assumed that initial models of presen-
tations actually exist in general (nor that the reduct functor used in Defifitior] 4.3.8
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has a left adjoint). We do know that in some institutions (for example, in the insti-
tution EQ of equational logic and in the institutidPEQ of partial equational logic)

any set of sentences over a given signature has an initial model (see Theorein 2.5.14
for the case oEQ). On the other hand, there are institutions in which some sets
of sentences do not have initial models; the instituff@DEQ of first-order logic

with equality is an example (see Example 2.7.11). Nevertheless, the above defini-
tions work for an arbitrary institution. If a s& C Sen(X) of X-sentences has no
initial model, then an initiality constrairnmitial & through 6 based on this set has

no model, even if the clasdods (P) of models of this set of sentences is not empty.

Exercise 4.3.11Any set of sentences in the equational institutit® has a model,

and moreover, it has an initial model. Show that neither of these properties carries
over to the institutiorEQ™" of initiality constraints inEQ. That is, give a presenta-

tion in EQ that has no model. O

Exercise 4.3.12Recall the institutiotHorn of Horn formulae from Exercide 4.1.21

and show that every set of sentenceblorn has an initial model. Discuss the inter-
pretation of predicates in initial models: notice that they hold “minimally”, meaning
that only positive cases need to be explicitly specified. Extend this analysis to data
constraints, and use this to specify the transitive and reflexive closure of an arbitrary
binary predicate. ad

Exercise 4.3.13Working in the institutionEQ as in Exercisg¢ 4.3]7, follow Defini-
tion[4.3.8 and defingeneration constraintgenerated overc through 6 that are
satisfied by algebra& such thaA‘g is generated in a suitable senseﬂq)y;g. Define
an institutionEQ9®" extendingEQ by generation constraints.

Assuming that each category of modeldNG comes equipped with a factori-
sation system (Sectign 3.3), introduce generation constraintdN®mnticipating
Definition[4.5.] and extenliNS correspondingly. O

Exercise 4.3.14Following Exercis¢ 3.5.24, dualise the concept of data constraint.
A co-data constrainin an institutionINS can be written aso-data @’ over o through 0,
where®’, o and 6 are as in Definitiofi 4.3]8. £-modelM € [Mod (X)| satisfies
co-data®’ over o through 0 if M‘e is a cofree model ofd’ w.r.t. the reduct func-
tor,‘g: Mod[(X’, &')] — Mod (X1) over itso-reduct, with the identity as counit, that
is, if Mg =5/ @’ and for anyM’ € Mody/ (®') anle-morphismf:M"G — Moy
there exists a uniquE’-morphismf#:M’ — M‘e such thatf#‘c = f. Extend this
definition to build an institutioNS°%? by adding co-data constraints as addi-
tional sentences tiNS.

Discuss the use of co-data constraints in standard institutionsBi®eand
FOPEQ. For instance, consider the following simple presentation:
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SPEeCSTREAM = sorts elemstream
ops hd:stream— elem
tl: stream— stream
conselemx stream— stream
vx: elemVs:. stream
« hd(congx,s)) = x
« ti(congx,s)) =s

Check that any mod&ll of STREAM that is cofree oveE = |M|gjem(W.r.t. the reduct
functor given by the obvious signature inclusion) is isomorphic to the algebat
(countably) infinite streams of elements frdmwith the operations defined in the
standard way.

Much the same effect is achieved even when we remove the opecatisand
the two axioms from this presentation: check thakifis a signature with sorts
elemstreamand operationd: stream— elem tl: stream— streamthen cofreer-
models over their carrieE of sortelemare (up to isomorphism) the algebra¥
of (countably) infinite streams of elements frdi with hd andtl defined in the
standard way. Check then that in any such algebra the two axioftxinam define
the operatiortonsunambiguously. ad

4.4 Exact institutions

As illustrated in Sectiorfs 4.2 ahd #.3, institutions provide a sufficient basis for much
of the standard machinery of specifications without the need for further assumptions.
Still, the structure and properties of a logical system exposed by the definition of an
institution are very limited, and do not provide an adequate basis for many other
aspects of the theory and practice of software specification and development. As
discussed in the introduction to this chapter, this should not discourage us from
working within the institutional framework. On the contrary, it is worth trying to find
some adequately abstract additional assumptions that are sufficient for the purpose
at hand. As always in mathematics, the main informal guideline to follow is to keep
the additional assumptions to a minimum. Part of the payoff is that this forces us to
work at a level of generality and abstraction that ensures a deeper understanding of
the essence of the studied phenomena, while at the same time covering as many of
the cases of potential interest as possible.

In this section and the next we will illustrate this strategy by presenting some
extensions to the notion of an institution by additional structure or properties that
are required to support study of more detailed properties of specifications.

The ways in which specifications (or programs, systems, or structures of any
kind) are put together is the very essence of the theory and methodology of software
specification and development. One of the basic tools for “putting things together”
is the categorical notion of colimit (cf. Sectipn B.2) with pushouts as a particularly
important special case; see for instance Sedtioh 6.3 below. Putting specifications
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together then involves taking colimits in the category of theories. It would be rather
inconvenient to have to establish the existence of a colimit for each diagram of
interest separately, so we normally require the category of theories to be cocomplete
(or at least finitely cocomplete). Checking this directly would be tedious — and this
is why the following general result is useful.

Theorem 4.4.1.For any institutionINS, if the categorySignyg of signatures in
INS is cocomplete then so is the categdityys of theories inINS.

Proof. Let D be a diagram irThys with |G(D)|noge = N and Dy = (X, @y) for
ne N. Let D’ be the corresponding diagram 8igns, henceDj, = X, for n €
N. By the assumption of the theoref®, has a colimit, sayot,: £, — X)nen- Let
@ = Clz(Unen@n(Pn)). Then for eacm € N, ain: (Zn, &) — (Z,P) is a theory
morphism (this is obvious) an@n)nen is a colimit of D in Thys. For: first notice
that it is a cocone ol (since it is a cocone oB’ in Signyyg), and then consider
another cocone oD, say{fn: (Zn, @n) — (X', ®’) )nen. By the construction, there
exists a unique signature morphigmX — X’ such that for each € N, a0 = Bn.
To complete the proof, it is sufficient to show tfat(X, @) — (X', @') is a theory
morphism. By Propositioh 4.2.P4, it is enough to show t@t),-yon(Pn)) € P
This easily follows from the fact that for eache N, 3, is a theory morphism, and
henceo (on(®n)) = (an;0)(Pn) = Bn(Pn) C P'. O

The above proof shows that in fact a stronger property holds: in any institution,
the category of theories has all of the colimits that the category of signatures has:
the forgetful functor mapping theories to their underlying signatlifisscolimits
So, for instance:

Corollary 4.4.2. For any institutionINS, if the categorySignys of signatures in
INS is finitely cocomplete then so is the categ®hyns of theories inINS. ad

Notice that the above theorem appliestyyinstitution, regardless of the means
used to construct it. Hence, for example, if the catedsignyg of signatures in
an institutionINS is cocomplete, then not only is the categdiyns of theories
in INS cocomplete, but so are the categofTégyginit, Thygdaa and Thyscodata OF
theories in the corresponding institutions with initiality constraints, data constraints
and co-data constraints respectively (cf. Definifion 4.3.5, Exefrcise 4.3.10 and Exer-

ciseZ3.1H).

Exercise 4.4.3 Assume that the category of signatures of a certain institution has
an initial object. What is then an initial object in the category of theories? O

Example 4.4.4.Working in the institutionEQ of equational logic, recall Exam-
ple[3.2.3% of a simple pushout of algebraic signatures, and th@XNetr of equa-
tional axioms over the signatuleNar given in Exercis¢ 2.5/4. LEENAT be the
XNaT-theory presented b¥pNAT. Let TN AT, be theXNaTg,-theory presented
by the axiomsPN ATy, that include®N AT plus the following:
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fib(0) = sucq0)
fib(sucq0)) = sucg0)
vn:nat. fib(sucgsucgn))) = fib(sucgn)) + fib(n)

Finally, let TN ATy be theXN ATy -theory presented by the axiond®N AT mye
that included®N AT plus the following:

Vn:nate mult(0,n) =0
¥n, m:nate mult(sucdgn), m) = mult(n,m) +m

Now, we have theory inclusions:

TNATfp «— TNAT —— TNATmuit

with the corresponding signature inclusions given in Exainple 3.2.35. Their pushout
is the ZNATfjp myir-theory T N ATsip muit presented by the union @NAT, @NATy,
and®N ATyt

As in Examplg 3.2.35, this is deceptively simple, as only single-sorted theory
inclusions that introduce different operation names are involved.

Exercise. Give examples of pushouts in the category of equational theories with
signatures involving more than one sort, extensions with overlapping sets of opera-
tion names, and theory morphisms that are not injective on sort and/or on operation
names. Notice however that the extra complications come only from the construc-
tion of signature pushouts; the theories are defined in much the same way.

Exercise. Obviously, when giving the set of axioms fOiN ATfip mui, PNAT may

be omitted, as it is already included in the other sets of axioms. Try to generalise
this remark to “optimise” the construction of the colimit in the category of theories
given in the proof of Theorefn 4.4.1. 0

We have seen how the assumption that the category of signatures of an institu-
tion is (finitely) cocomplete ensures that the institution provides means for “putting
theories together”. It is also interesting to investigate how this relates to “putting
models together”, which is what structured programming in the large is all about.
There is an important difference here: in the above, and in general when dealing
with specifications, we were interested in combining theories, i.e., sets of sentences.
In model-theoretic terms, this corresponds to combining classes of models. How-
ever, when the specified system is being built, we are interested in expanding and
combiningindividual models.

Example 4.4.5.Recall Exampl¢ 4.4]4 of a simple pushout in the category of the-
ories of the institutiorEQ of equational logic. Consider an arbitrary modelof
TNAT, any XN ATy -algebraN; built by adding toN an interpretation ofib such
that the axioms inPN ATy, are satisfied, and anyN AT -algebraN, built by
adding toN an interpretation afult such that the axioms i@ N AT, ; are satisfied.
Then, much as in Examgle 3.4]35 where specific such algebras were condiered,
andN, may be uniquely combined to 2N ATy, mui-@lgebraN’ that expands them
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both. The key property now is that the algebras built in this way are models of the
theory T N ATyip mui, @and moreover, that all its models may be built in this wayl

It turns out that the crucial link which ensures that constructions to combine theories
and to combine models work together smoothly, as in the above example, is the
continuity of the model functor in the underlying institution.

Definition 4.4.6 (Exact institution). An institutionINS is (finitely) exactif its cate-
gory of signatureSignys is (finitely) cocomplete and its model functdiod ns: Signis —
Cat is (finitely) continuous, mapping (finite) colimits Bign,ys to limits in Cat.

O

Example 4.4.7.All of the institutions defined in the examples and sketched in the
exercises in Sectidn 4.].1, with the major exceptioffBL (Examplg 4.1.25) and
perhaps those given in Examples 4.1[35, 4]1.36 and 4.1.37 where we know nothing
about the signature categories, are exact. See Exefcises| 3.2.63 anfl 3.4.33 for the
standard algebraic case of the equational instituE@— all of the other cases
require a similar argument. O

Exercise 4.4.8The abstract formulation of exactness above may somewhat hide the
role of this property in “putting models together”. Consider an exact instituhGh

and a diagran in Signyg With colimit signatureX’. Anticipating the crucial case

of preservation of signature pushouts treated in Definftion 4.4.12, show that (up to
isomorphism of categories)iodns(X’) can be defined as follows, whekeis the

set of nodes iD:

e X’-models are familie$Mn € |[Modns(Dn)|)nen that are compatible with signa-
ture morphisms iD in the sense tha#l, = Mm‘De for each edge:n — min the
graph ofD; and

e X’-morphisms between any sugh-models(My)nen and (Mf)nen are families
(hn: My — M)))nen of morphisms ilMod s (Dy), n € N, that are compatible with
signhature morphisms iD in the sense thdt, = hm‘De for each edge:n — min
the graph oD.

Moreover, for eact € N, the reduct functor w.r.t. the colimit injection froBy, to
X' is just the projection of such families on theh component.

HINT: Use Exercisg 3.4.32 (and indirectly Exerdise 3.2.53). 0

Exercise 4.4.9Consider a finitely exact institution. Present initiality constraints
(Definition[4.3.3) as a special case of data constraints (Defirjition| 4.3.8). Is the as-
sumption that the institution is finitely exact essential? O

Exercise 4.4.10An interesting standard institution with a cocomplete category of
signatures and a model functor that preserves “nearly all” finite colimits of signa-
tures is the institutioBSEQ of single-sorted equational logic. Give a precise def-
inition of this institution and indicate which colimits of signature diagrams are not
preserved by the model functoritr: Consider the initial single-sorted signature.

O
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Definition 4.4.11 (Semi-exact institution). An institution INS is semi-exactif
all pushouts exist in its category of signaturBgnyg and its model functor
Modns: Signﬁﬁ’S — Cat preserves pushouts, mapping them to pullback3ah

O

A consequence of the assumption that the model functor of an institution pre-
serves signature pushouts is the well-knaWwnalgamation Lemma

Definition 4.4.12 (Amalgamation property).LetINS = (Sign,SenMod, (=x) r<|sign|)
be an institution and consider the following diagransign:

2/
2N
2 2
)

This diagramadmits amalgamatioit:

¢ for any two modeldVl; € |[Mod(X1)| and Mz € |Mod(X3)| such thathIl‘(yl =
Mz\az, there exists a unique model’ € [Mod(X’)| such thatv’ o =Mz and
M"Gé = M (we call suchM’ theamalgamatiorof M; andMy); and

e for any two model morphismé;: M1 — M1z in Mod(Z1) and fz: M1 — Maz
in Mod(Zy) such thatfl‘f,l = fz‘(,z, there exists a uniqgue model morphism
f’:M] — M5 in Mod(Z’) such thatf"ai = f; and f"cé = f, (we call suchf’
theamalgamatiorof f; and fy).

The institutionINS has the amalgamation properifyall pushouts inSign exist and
every pushout diagram iBign admits amalgamation. O

Exercise 4.4.13Show that if a diagram as in Definitipn 4.4]12 admits amalgama-
tion and is commutative then all models and morphisnidandl (') are amalgama-
tions of pairs of (compatible) models and morphisms fidod (1) andMod (X3),
respectively. O

Lemma 4.4.14 (Amalgamation Lemma)Any semi-exact institution has the amal-
gamation property. O

The proof of the Amalgamation Lemma is based on the construction of pullbacks
in Cat, cf. Exercisd 3.4.32; see also Exerdise 3}4.34, which is the same result in
the standard algebraic framework. Note that the opposite implication also holds, so
semi-exactness is equivalent to the amalgamation property.

Clearly, every exact institution is finitely exact, and every finitely exact institu-
tion is semi-exact. However, the last property is strictly weaker: for example, the
institution SSEQof single-sorted equational logic is semi-exact, but not finitely ex-
act (see Exercige 4.4]10). In semi-exact institutions coproducts of signatures need
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not exist, or if they exist, need not be preserved by the model functor. However,
if signature coproducts exist, the colimits for a large interesting class of signature
diagrams (exist and) are preserved:

Proposition 4.4.15.In any semi-exact institution, if the category of signatures has
an initial object then it is finitely cocomplete and the model functor maps colimits
of all finite non-empty connected diagrams of signatures to limi€&an

Proof sketchThe first part (existence of colimits of finite signature diagrams) fol-
lows as usual, by dualising Exercise 3.2.48; the second part (preservation of limits
of finite non-empty connected signature diagrams) follows by Exercise B.4.55.

Exercise 4.4.16Define institutionsSSFOPEQof single-sorted first-order predi-

cate logic with equalitySSPFOPEQof single-sorted partial first-order predicate
logic with equality, SSCEQ of single-sorted equational logic for continuous alge-
bras, etc. Check that all of these institutions have cocomplete categories of sig-
natures and are semi-exact. However, check that their model functors do not map
coproducts of their signatures to products of the corresponding model categories, so
these institutions are not (finitely) exact. a0

Exercise 4.4.17Let INS be a (finitely) exact institution. Recall that there is a func-
tor ModTh:Thﬁ\’fS — Cat mapping theories to their model categories and theory
morphisms to the corresponding reduct functors (cf. Exefcise 4.2.26). Prove that
Mod+h preserves (finite) limits.

HINT: First use the satisfaction condition itNS and the Amalgamation Lemma
for signatures (Lemnfa 4.4]14) to prove the following generalisation of the Amalga-
mation Lemma:

Lemma (Amalgamation Lemma for theories).Let INS be a semi-exact institu-
tion. Consider a pushout in the categariiys of theories:

T/
T T2
T

Then, for any two models{M Mod[T;] and My € Mod[T,] such that M‘Gl = Mz\cz,
there exists a unique model’ Mod[T’| such that M|s; = Mz and M"c,é = My,
and similarly for morphisms.

To complete the proof thaflodh is finitely continuous, by Exercide 3.2]48 it is
enough to consider the initial theory and its category of models. To show that it
is continuous, by Exercide 3.4]23 it is enough to consider coproducts of arbitrary
families of theories and their categories of models. O
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The trouble with=PL and with other institutions based on derived signature mor-
phisms (see Exercife 4.1]23) is more severe than with single-sorted institutions: they
are not semi-exact since not all pushouts exist in their signature categories, see Ex-
ercisg 3.2.54. This motivates the following relaxation of semi-exactness, which is
important for applications later on.

Definition 4.4.18 (I-semi-exact institution).For any institutiolNS, we say that a
collection| of signature morphisms ilNS is closed under pushouté | contains
all the identities, is closed under composition (so that a wide subcategory of
Signs) and for any signature morphiso1 X — X; and “-extension o” 1: X —
X’ in |, there is a pushout iBign

hol X
1 v
X Py}

such that’ e 1.

Moreover, if all such pushouts withi’ € | admit amalgamation (i.e., the model
functor maps them to pullbacks Dat) we say thaiNS is semi-exact w.r.tl (or
I-semi-exagt O

Exercise 4.4.19As mentioned above, institutions with derived signature morphisms
do not have cocomplete signature categories. Check, however, that for example the
institution GEQ®" is semi-exact w.r.t. the class of all inclusions (where inclusions
are derived signature morphisms that map asary operation namé to the term
f([],...,[n]), cf. Definition). Similarly, check th&EQ%" is semi-exact

w.r.t. the class of inclusions that introduce only new constants. (Notice that in gen-
eral an institution may ble-semi-exact without beintj-semi-exact for somg C 1.)

For FPL, consider the clagsp, of signature morphismé:SIG — SIG' that are
injective renamings of sort and operation names such that no new value constructors
are added for “old” sorts (i.e. sorts &(SIG)). Show that~PL is | gp_ -semi-exact.
Notice that both parts of the assumption on these morphisms are essential. Give
an example of a non-injective renaming that does not have a pushout with another
FPL signature morphism. Give an example of an injective renaming that adds value
constructors for an old sort and does not have a pushout with arfeiiesigna-
ture morphism. Finally, give an example of a pushout in the the categdfiPlof
signatures that is not mapped by feL-model functor to a pullback i@at. HINT:
Consider two morphisms that add a new sort and a new unary value constructor for
a previously unconstrained sort, with the new sort as its argument sort. O

Exercise 4.4.20To complete the formal picture, note that the category of theories
in FPL is cocomplete even though its category of signatures is not. Discuss why
this is not useful for combining models over different signaturastTHConsider a
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simple signature with one sort and one binary operation, and two morphisms which

map this operation to the projections on the first and second argument respectively.
Then these two morphisms do not have a coequalis&ign-p, while in Thgp

their coequaliser is obtained by adding an equation to assert that the two projections
coincide. O

We have introduced and studied amalgamation, exactness and semi-exactness as
purely technical properties of institutions. However, as hinted at by Exgmplé 4.4.5
and the examples it builds on, amalgamation, and hence semi-exactness and exact-
ness, provide a fundamental tool for combining models over different signatures.
The point is easiest to see in institutions with standard signaturesFkeEQ
or EQ, when all the morphisms are inclusions. In that case, generalising the simple
example of natural numbers and their extensions by the Fibonacci function and mul-
tiplication in Exampl¢ 3.2.35, given signatutBsand X with £ = X; N X, we get
XY’ = X;UX, as the pushout signature. Now, the amalgamation property ensures that,
given aX;-modelM; and aX,-modelM, which give the same interpretation to all
of the common symbols (i%), we can put them together in the obvious way (gen-
eralising Examplé 4.4]5) to interpret all of the symbols in the combined signature
X', In the institutional context, this intuition applies as well, but the sharing require-
ment is expressed by insisting on a common reduct along the indicated signature
morphisms, and the combined signature is obtained using the pushout.

4.4.1 Abstract model theory

One of the ideas behind the definition of institution is that it is important to indi-
cate over which signature one is working. In classical logic, there are a number of
theorems in which the signature (@nguage as logicians would say) over which
formulae are constructed must be considered. Here is an example (for this, and for
a classical formulation of the Robinson consistency theorem mentioned below, see
e.g. [CK90)):

Theorem (Craig interpolation theorem). In first-order logic, for any two formu-
lae @1 and ¢y, if @1 = @2 then there exists a formulé using only the common
symbols ofp; and g, — that is, those symbols that occur in both formulae — such
thatg; =6 and 0 | @s. O

In our view, this standard formulation is not very elegant: referring to “the com-
mon symbols ofp; and ¢,” feels rather clumsy, even though it is easy enough to
make it precise in the case of first-order logic. In the institutional framework this
can be expressed in a more general and abstract way using colimits in the category
of signatures.

Definition 4.4.21 (Craig interpolation property). Let INS be an institution with a
finitely cocomplete categor8ign of signaturesINS satisfies theCraig interpola-
tion propertyif for any pushout
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4\
2 )Y
o1 o2
b))

in Sign, and for anyX;-sentencep; € Sen(X;) and Xy-sentencep, € SenX,), if
01(91) =5 05(92) then there exists B-sentenc® € Sen(X) (called arinterpolant
for @1 and¢y) such thatp, =5, 61(0) andoz(0) =5, @2. O

Not only has “the common symbols @f and¢,” been captured by the simple cate-
gorical concept of a pushout here, but we were also forced to identify the signatures
over which the individual consequence relations are considered. In our view, this
is a much improved statement of the Craig interpolation property! Not only does
it seem more clear (of course, any comparison should be made with a fully formal
statement of the Craig interpolation theorem in the classical framework, not with the
presentation given above), it is also more abstract and may be used for any logical
system formalised as an institution, not just for first-order logic.

Here is another example, which states that consistent extensions of a complete
theory (cf. Definitior] 4.2.37) combine safely:

Definition 4.4.22 (Robinson consistency property).et INS be an institution with
a finitely cocomplete categoigign of signaturesINS satisfies théRobinson con-
sistency propertyf for any pushout

2/
AN
X1 b}
X
in Sign, and for any complet&-theory T = (X, ®) and consistent theorieg =

(Z1,d1) and T, = (Xp, ®,) such thatoy: T — Ty ando,: T — T, are theory mor-
phisms, ther’-presentatiofX’, o1 (P1) U 05(P2)) is consistent. O

Exercise 4.4.23Adapt any standard proof of the Craig interpolation theorem to
show thatFOPEQ has the Craig interpolation property for those pushouts where
at least one ob or o> is injective on sorts. Construct a counterexample which
shows that the proof must break down if neitlsemor o> is injective on sort names
(injectivity on operation and predicate names does not have to be requined). H
Seel[Bor05].
Show also that the Craig interpolation theorem F®PEQ implies the analo-

gous result for some of the subinstitutionsEDPEQ (see Exercisg 4.1.13), for
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instance folFOEQ. Note though that your argument will not work fBOP, first-

order predicate logic without equality — in fact, Craig interpolation may faH@P

when one of the morphisms involved is non-injective on operation names, even if all
the morphisms are injective on sort names. Of course, the standard proofs of Craig
interpolation easily adapt tBOP when the morphisms involved are injective (on
sort names as well as on operation names). O

Itis well known that equational logic does not have the interpolation property:

Counterexample 4.4.24In EQ, consider the signaturE with three sortss, s;
andsy, and two constanta,b:s. Let X, and X, extendX by a constant:s; and
by a unary operatiorf:s; — s, respectively. Let’ be the union off; and X,
(this is the pushout signature for the two signature inclusions). Consider the sen-
tencesvx:sye a=b € Sergg(Z1) anda=b € Sergq(X>). Clearly, overz’ we have
Vx:spe a=b |=a= b (since allX’-algebras have non-empty carriers for all sorts).
Suppose that we have an interpolént Sergq(X) for Vxis;e a=b anda= Db,
so thatvx:s,e a=b = 6 overX; and6 = a= b overZXZ,. Consider &;-algebra’;
with the carrier of sors, empty and withaa, # ba,. Clearly,A; =5, VXise a=Db,
and so als@\; =5, 6. HenceAl‘z Er 6. Take a subalgebra @fl‘; with the empty
carrier of sorts;, which satisfie®, and consider its expansi@y to a X,-algebra.
ThenA; =5, 6 butA; -5, a=b. Contradiction. O

Exercise 4.4.251t is often stated that equational logic has interpolation (at least for
pushouts w.r.t. injective signature morphisms) if one admigetaof interpolants
rather than just a single interpolant sentefices in Definitior] 4.4.21. Spell out this
property following Definitior] 4.4.71, but using a set of senten®eS Ser(X) in
place of a single sentenéec SenX). It also makes sense then to replace the single
sentencep; € Sen(X;) by a setd; C Sen(Xy).

Unfortunately, equational logic has this property only if we restrict attention to
algebras with non-empty carriers for all sorts. Carry out the proof for this case as-
suming that the signature morphisms considered are injectiver(tsee [Rod91])
and note where the assumption that the carriers are non-empty is important. Give a
counterexample which shows that in general no single interpolant can be sufficient
here. Extend this proof to the case where only one of the signature morphisms is
injective on sorts (MNT: see[[RGOD], [PSR09]).

Check that Counterexamgle 4.4.24 shows that the instit#Qrof equational
logic (with models that admit empty carriers) does not have the interpolation prop-
erty, not even when sets of interpolants are allowed (and the morphisms involved
are signature inclusions).

Go through other examples of institutions in Secfion 4.1.1 and check which of
them have the interpolation property, either with a single interpolant, or with a set of
interpolants (at least for pushouts involving signature inclusions, where this notion
makes sense). O

Of course, we cannot expect to be able to prove that either the Craig interpo-
lation or Robinson consistency properties are satisfied by an arbitrary institution
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— they simply do not hold for some logics. However, one may attempt to iden-
tify other conditions on the underlying institution which imply the two properties.
Along these lines, under some further technical assumptions, the two properties are
equivalent: an institution satisfying certain technical assumptions satisfies the Craig
interpolation property if and only if it satisfies the Robinson consistency property.
This reflects what is well-known in classical model theory, where the two properties
are indeed derivable from one another.

4.4.2 Free variables and quantification

In logic, formulae may contain free variables; such formulae are cafled as op-
posed talosedformulae which have no free variables. To interpret an open formula,
one needs not only an interpretation for the symbols of the underlying signature (a
model) but also an interpretation for the free variables (a valuation of variables in
the model). This provides a natural way to deal with quantifiers. The need for open
formulae also arises in the study of specification languages. In fact, we will use them
to abstractly express the basic notion of behavioural equivalence in Sgction 8.5.3,
see Exercise 8.5.61.

Fortunately we do not have to change the notion of an institution to cope with
free variables — we can provide open formulae in the present framework. Note that
we use here the term “formula” rather than “sentence”, which is reserved for the
sentences of the underlying institution, corresponding to closed formulae.

Consider the institutioGEQ of ground equational logic (Example 4.L.3). Let
X = (S Q) be an algebraic signature. For @ndexed family of setsX = (Xs)ses,
defineX(X) to be the extension o by the elements oK as new constants of the
appropriate sorts. Any sentence o¥¥iX) may be viewed as an open formula over
X with free variablesX. Given aX-algebraA, to determine whether an oper
formula with variablesX holds in A we have to first fix a valuation of variables
X into |A]. Such a valuation corresponds exactly to an expansightofa X (X)-
algebra.

Given a translation of sentences along an algebraic signature morphBm-

X’ we can extend it to a translation of open formulae: we translate an Bpen
formula with variablesX, which is aX (X)-sentence, to the correspondifig X')-
sentence, which is an opé¥-formula with variable<’. HereX’ results fromX by
an appropriate renaming of sorts determinedt{yve also have to avoid unintended
"clashes” of variables and operation symbols).
The above ideas generalise to any semi-exact institUtl8n= (Sign, SenMod, (=x) s¢|sign|)-

Definition 4.4.26 (Open formula).Let X € |Sign| be a signature itNS. Any pair
(p,0), wheref: X — X' is a signature morphism angle SenX’), is anopenZX-
formulawith variables ="\ 6(X)". For anyX-modelM € [Mod(X)|, avaluationof
variables '\ 6(X)" into M is aX’-modelM’ € |[Mod (X’)| which is af-expansion
of M, i.e., such thaM"e = M. We say thatg, 8) holds in M under valuation Wff
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M’ 5 @. If 0:X — X3 is a signature morphism then we define the translation of
(p,0) alongo as(c’(¢),0’), where

/

c
b3l I
6 0’
X o X1
is a pushout irSign. O

Note the quotation marks around the “set of variab®s(6 () in the above defini-
tion: sinceX’\ 6(X) makes no sense in an arbitrary institution, it is only meaningful
as an aid to our intuition.

In the standard logical framework there may be no valuation of a set of variables
into a model containing an empty carrier. Similarly here, a valuation need not always
exist. For example, iGEQ if a signature morphism: X — X’ is not injective then
someX-models have n@-expansion.

There is a rather subtle problem with the above definition: pushouts are defined
only up to isomorphism, so strictly speaking the translation of open formulae is not
well-defined. The following exercise shows that (at least for semantic analysis) an
arbitrary pushout may be selected and so we may safely accept the above definition
of translation.

Exercise 4.4.27Consider an isomorphism X; — X7 in Sign, with inverset 1.
Since functors preserve isomorphisrB@n(1): SenX;) — SenZy) is a bijection
andMod(1):Mod(Z{') — Mod(Z7) is an isomorphism iiCat. Show that moreover,
foranyy € Sen(Z;) andM; € [Mod (£7)[, My =y W <= Mi| 1 sy t(y). O

Sometimes we want to restrict the class of signature morphisms that may be
used to construct open formulae. In fact, in the above remarks sketching how free
variables may be introduced in@EQ we used just algebraic signature inclusions
1.2 — X' where the only new symbols ifi' were constants. To guarantee that the
translation of open formulae is defined under such a restriction, we consider only
restrictions to a collectioh of signature morphisms that is closed under pushouts
(see Definition 4.4.78).

Examples of such collectiorisin AlgSig include: the collection of all algebraic
signature inclusions, the restriction of this to inclusien& — X’ such that’ con-
tains no new sorts, the further restriction of this by the requiremenfthadntains
new constants only (as above), the collection of all algebraic signature morphisms
which are surjective on sorts, the collection of all identities, and the collection of
all morphisms. Note that most of these permit variables denoting operations or even
sorts.
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4.4.2.1 Universal quantification

In the rest of this section we briefly sketch how to universally close the open formu-
lae introduced above.

Let | be a collection of signature morphisms that is closed under pushouts. Let
X be a signature and Iéfp, 0) be an operE-formula such tha® € |. Consider the
universal closure ofg, 6), written V0. ¢, as a newZ-sentence. The satisfaction
relation and the translation of a sentent®s ¢ along a signature morphism are
defined in the expected way:

e A X-model satisfies th&-sentence’6.« ¢ if (¢,0) holds in this model under
any valuation of the variable” \ 6(X)”, that is, for anyM € |[Mod (X)|, M Ex
V6. ¢ if for all M’ € [Mod(Z')| such thaM’|g =M, M’ =5 ¢.

e For any signature morphiso: X — X1, 6(V6+ @) is V0« 6'(¢), where

G/

b3l I
] 0’
b 5 b3

is a pushout irBign such tha#®’ c I.

Note that in the above we have extended our underlying institubis For-
mally:

Definition 4.4.28 (Institution with universally closed formulae).Let INS be an
institution, and let be a collection of signature morphismsINS that is closed
under pushouts such thldS is I-semi-exact. The&xtension ofNS by universal
closure w.r.tl is the following institutionNS"("):

e Sign,gvo) IS Signs.

e For any signatureZ, Senyqvi) (£) is the disjoint union ofSenys(X) with the
collectio@ of all universal closure¥6. ¢ of openX-formulae, where € I;
for any signature morphisra: X — X, Sen,qvi) (o) is the function induced
by Senns(o) on Senns(X) and by the notion of translation defined above on
universally closed opeB-formulae.

° MOdINSV(l) is MOd|N3.

e The satisfaction relation ilNS"(") is induced by the satisfaction relation16fS
for INS-sentences and the notion of satisfaction for universally closed open for-
mulae as defined above. O

The following theorem guarantees tHaIS"(") is in fact an institution, modulo
the above remark about the definition of the translation of open formulae.

20 As usual, we disregard here the foundational problems which may atis®ribt a set.
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Theorem 4.4.29 (Satisfaction condition for IN8")). Let INS and| be as in Def-
inition [4.4.28. For any signature morphisim: X — X1, open XZ-formula (¢, 6)
(whereb € 1), £1-model M € |[Mod(Z1)|, and pushout

/

X/ X
0 o’
r )

in Signsuch thatd’ e 1,
Mifo s ¥0ep il My s, 6/ /()

Proof.

(=): Assume thaﬂvll‘g =r V0e @ and letM] be a6’-expansion ofM;. Put
M’ = Mj|q. Obviously,M"g = Mi‘e;of = M’l‘o;ef = Ml‘c,. Thus, sinceMl‘c, Ex
V0@, M =5 @. Hence, by the satisfaction condition IS, M; Fxy o'(p),
which provedM =5, V6'« 6’(9).

(«<): Assume thaM; =5, V6'« ¢’(¢) and letM’ be af-expansion oM. Since
INS is I-semi-exact, there exists &{-expansionM; of My such thatMj|, =
M’. Then, sinceM; =5, V0'« 6'(¢p), M Fxy o’(¢p). Thus, by the satisfaction
condition,M’ =5/ @, which provele‘G ErVOeo. O

Example 4.4.30Let| be the collection of algebraic signature inclusions — X’

in AlgSig such thatX’ \ £ contains new constants only. The institutiGEQ" (")
essentially coincides with the instituti@Q of equational logic (modulo the details

of the notation used for sentences), as suggested already in Ee Z1\eIf

is allowed to contain new operation names (not just constants), then quantification
along morphisms i leads to a version of second-order logic. a0

Other quantifiers (there exists, there exists a unique, there exist infinitely many,
for almostall, ...) may be introduced in the same manner as we have just introduced
universal quantifiers. Examgle 4.1]41 illustrates how one may introduce logical con-
nectives. By iterating these constructions one can, for example, derive the institution
of first-order logic from the institution of ground atomic formulae.

4.5 Institutions with reachability structure

An alternative to the standard initial algebra approach to specifications is to take
the reachable semantics of presentations, as discussed in $ectipn 2.7.2, where from
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4.5 Institutions with reachability structure 211

among all the algebras satisfying a presentation onlyr¢laghablealgebras are
selected. In Section 4.3 we argued that it is important to consider not just initial
algebras, but more generally, algebras that are free extensions of a specified part;
similarly, it is important here to consider not just reachable algebras, but more gen-
erally, algebras that are generated by some specified part. Given an algebraic signa-
ture X and a subsignaturE’ C X, a X-algebraA is reachable fromX’ if it has no

proper subalgebra with the saliereduct. Exercise: Show that this is the same as

to require that the algebra is generated by the set of all its elements in the carriers of
the sorts int’, as defined in Exercie 1.2.6.) To generalise this notion to the frame-
work of an arbitrary institution we will proceed along the lines suggested by the
“categorical theory of reachability” presented in Secfior} 3.3 based on factorisation
systems.

Definition 4.5.1 (Reachable model)Let (Sign, SenMod, (=x)s¢|sign) b€ an in-
stitution. Assume that for each signat@res |Sign|, we have a factorisation system
(Ex,Mg) for the categoriMod (X) of £-models.

Let 0:X' — X be a signature morphism. &-model M € |[Mod(X)| is o-
reachableif M has no proper submodel with an isomorpligeduct, that is, if
any factorisation monomorphismN — M in Mz such tha'm‘(y is an isomorphism

in Mod (X') is in fact an isomorphism iMod (X). O

Example 4.5.2.Recall that for any algebraic signatuXec AlgSig, the categories
Alg(Z), PAIg(Z) and CAIg(X) of total, partial and continuous algebras come
equipped with factorisation systems (Examgles 3/3.3, 3.3.13 and [3.3.14, respec-
tively). Hence, the above definition makes sense in the instituk@hsf equational

logic, PEQ of partial equational logic an@EQ of equational logic for continuous
algebras, yielding the expected notions. O

Exercise 4.5.3Recall that by Definitiofi 3.3]7 &-model is reachable if it has no
proper submodel. Show that liNS is finitely exact then reachability is a special
case ofo-reachability as defined above. I : Use the fact that there is an initial
signature with the singleton categdrpf models.) O

In Sectior] 3.B it was shown how the notion of reachability introduced there may
be related to an equivalent definition stated in terms of quotients of initial mod-
els (Theorenj 3.3]B[1)). In the standard algebraic case, an algebra is reachable if
and only if it is isomorphic to a quotient of the algebra of ground terms (Exer-
cise[1.4.T§). To give an analogous result foreachability we have to be able to
build terms over a specified reduct of the given algebra (cf. Exgrcise B.5.11). Given
such a construction, B-algebraA is reachable fronx’ C X if and only if evaluation
in A of X-terms over the’-reduct ofA is surjective, or equivalently, & is a natural
quotient of the algebra d-terms built overA|x,. We introduce a generalisation of
the construction of term algebras to an arbitrary institution by requiring that reduct
functors induced by signature morphisms have left adjoints. Notice that only sig-
natures are involved in this definition, no sentences, and so this requirement indeed
corresponds to the mild assumption that free models (term algebras) may be built
along arbitrary signature morphisms.
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Definition 4.5.4 (Institution with reachability structure). An institution with reach-
ability structureis an institution(Sign, SenMod, (=5 ) r¢|sign) together with:

e for each signatur& € |Sign|, a factorisation systerEy,My) for the category
Mod(X) of £-models; and

e for each signature morphisra:X’ — X, a o-free functor Fs:Mod(Z') —
Mod(X) which is left adjoint to thes-reduct functor_|;:Mod(X) — Mod (X’
with unit n°:1d yoq () — Fg(,)‘c.

(As usual, sub- and superscripts will be omitted when convenient.) a0

Example 4.5.5.The institutionEQ of equational logic equipped with factorisation
systems for categories of algebras (cf. Exariple B.3.3) has reachability structure —
the free functors are given by Exercjse 3.5.11. 0

Exercise 4.5.6 Show that the institutiofPEQ of partial equational logic with the
factorisation systems given by Example 3.3.13 for categories of partial algebras
forms an institution with reachability structure. It : Free functors are rather triv-

ial here.)

Similarly, show that the institutio€EQ of equational logic for continuous al-
gebras with the factorisation systems given by Exarfple 3.3.14 for categories of
continuous algebras forms an institution with reachability structurentHThe
construction of free functors is much more difficult here — follow the construction
for ordinary algebras in Exerci§e 3.5/11, but when defining the new operations in a
free way remember that you have to extend the complete partial order to cover the
new values as well, ensuring continuity of the operations.) O

Exercise 4.5.7Let INS be a finitely exact institution. Prove that if every reduct
functor inINS has a left adjoint, then for every signat@ehe categoryodns(X)
of X-models has an initial object. (NT: Use the fact that there is an initial signature
with the singleton category of models.) ad

The following theorem generalises well-known facts from the standard algebraic
setting. Just like its “predecessor” Theorem 3.3.8, it confirms our confidence in the
abstract definitions by showing how their different versions “click together” nicely.

Theorem 4.5.8.Let INS = (Sign,SenMod, (=x)xesign) be an institution with
reachability structure. Consider a signature morphient’ — X.

1. A Z-model M€ |[Mod(X)| is o-reachable if and only if it is a natural quo-
tient of the free object over its-reduct, that is, the counit morphisay =
(idM‘U)#: Fo(M|o) — M belongs tcEy (cf. Exercisg 3.5.24).

2. For anyo-reachable model Me [Mod(X)|, any model Ne |[Mod(X)| and X'-
model morphism ’fM‘(y — Nl|g, there exists at most onB-model morphism
f:M — N that extends ‘f(i.e., such that fo = .

3. EveryX-model has a unique (up to isomorphisoyeachable submodel with an
isomorphico-reduct.
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4. If M € [Mod(X)| is o-reachable then for ang-model morphism:IN — M such
that f‘c is an isomorphism, f is a factorisation epimorphism (i.es Ey).

Proof.
1.(=): LetFo(Mlo) -, N - M be a factorisation 0bm:Fo(M|o) — M. Ar-
guing dually to Exercisge 3.5.[L8 we can show :N‘(F — M‘G is an isomor-

phism. Hence, by the-reachability ofM, mis an isomorphism, which proves
thatey € Ey.

(«<):Letm:N— M, me Mgy, with m‘c being an isomorphism. Defirfe F5 (M ‘0) —
N by f = ((m|s)")*. Thenn,, OHWIEES idM‘G. By the freeness df¢(M|s),
this implies thatf;m = gy. Thus, by the assumption thay € Ex and by Exer-

cise[3.3.bmis an isomorphism.
2. Suppose thdt, f,:M — N are such thatl‘(y = fg‘g =f ThennM‘g;(s,\,.;fl)‘(y =

f'=mny,_i(emif2)
(1) aboveey is an epimorphism.

3. Consider an arbitrarg-modelM. Let F5(M|5) — N - M be a factorisa-
tion of ew:Fo(M|s) — M. Again, arguing dually to Exercis@lS we can
show thatm‘d: N‘G — M‘G is an isomorphism. Moreover, by the naturalityspf
Fc(m‘a);eM = gn;m, that isFG(m‘c);e;m: en;m, and so (sincenis a monomor-
p?:\jlm)gN = Fg(m‘g);ee Ey. Thus, by) again\ is ac-reachable submodel
of M.

To prove unigueness up to isomorphism, consider a subamed; — M with
ml‘(, being an isomorphism ars, : F(,(Nl‘(,) — Nz inEs. ThenFG(ml‘G);sM =
en,;my, and sinceF(,(ml‘G) is an isomorphism, we have two factorisations of
em:Fo(M|o) — M, (Fo(mi|o)~*en,, M) and (e,m), which by the uniqueness
of factorisations implies thatl andN; are isomorphic.

4. LetN —= . - M be a factorisation of :N — M. Then, by naturality of,
en;em=Fqs(f|s);em. Now, sincef‘c (and henceFG(f‘G)) is an isomorphism,
by o-reachability ofM and [1) abovegn;e;m e Ex. Thus, by Exercisg 3.3.5)
is an isomorphism, and sbe Ey. O

o, and scey ; f1 = em; f2. Thus, we also havg = f,, since by

4.5.1 The method of diagrams

In the standard algebraic framework, reachable algebras enjoy a number of use-
ful properties which make them especially easy to deal with. As a consequence
of the fact that we are able to “name” (using ground terms) all their elements,
reachable algebras are easy to describe using the most elementary logical sentences,
ground equations. To be more precise: for any algebraic sign&tarel reachable
X-algebraA, the class

Ext(A) = {B € |Alg(X)| | there exists &-homomorphisnh: A — B}
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is definable by the grount-equations that hold iA, that is,Ext(A) = Modgeg (Theeg ({A})),
and moreoverA is initial in Ext(A). (We will refer to classes of algebras of the

form Ext(A) for a reachable algebr asground varietieg This gives a one-to-

one correspondence between ground equational theories and isomorphism classes
of reachable algebras (and furthermore, congruences on ground term algebras by

Exercisd 1.4.14).

Unfortunately, not all algebras are reachable, and it is clear that this correspon-
dence does not carry over to arbitrary algebras: there are algebras that cannot be
characterised as initial models of equational theories. But there is a technical trick
that may help: if a¥-algebraA is not reachable, then consider the signaitifd)
obtained by adding t& the elements ofA| as constants of the appropriate sorts.
Now, the algebraA has an obvious expansion to a reachab{é)-algebrak(A),
where the new constants are interpreted as the elements they correspond to. This
expansion has a number of useful properties:

e Any X-homomorphismh: A — B determines unambiguously an expansiorBof
to a X (A)-algebraE(B) where each new constant B{A) is interpreted as the
value ofh on the corresponding element |@f. Moreover, this expansion is in-
dependent from any decompositiontoffor any X-homomorphism#$;: A — C
andh,:C — B such thah = hg;h,, the homomorphisrh, (or more precisely, its
underlying map) is & (A)-homomorphism fronty,, (C) to En(B).

¢ Intuitively, the expansion does not introduce more structure than necessary to
makeA reachable; in particular, no new elements are added.

Putting all these together, adralgebraA may be characterised by the set of ground
equations on the signatudA) that hold inE(A). This technique, known ahe
method of diagramsis one of the basic tools of classical model theory (cf. e.g.
[CK9Q]). We have already suggested its use in the construction of the free functor
corresponding to a signature morphism in Exergise 35.11.

In the following the method of diagrams is formulated in the context of an ar-
bitrary institution with reachability structure. We will assume that the institution
is finitely exact in order to be able to deal with reachability (not just reachability

relative to signature morphisms, cf. Exercises 4.5.3and|4.5.7).

Definition 4.5.9 (The method of diagrams)LetINS = (Sign, SenMod, (=x) z¢|sign )
be a finitely exact institution with reachability structuldS admits the method of
diagramsif:

o (Definability of ground varieties
for every signatur& € |Sign| and reachabl&-modelM € |Mod(X)|, the class

Ext(M) = {N € |Mod(X)| | there exists &-model morphisnh:M — N}

of extensions oM is definable, that isExt(M) = Modsx () for some setb C
Sen(X).

o (Existence of diagrams
for every signatur& € |Sign| andX-modelM € [Mod(X)|, there exists a signa-
tureX(M) € |Sign| and signature morphismX — X (M) such that:
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— M has a reachableexpansiorE(M): there exist€ (M) which is a reachable
X (M)-model such thaE(M)‘l =M;

— 1-reduct is an isomorphism of the slice categofiésd (Z(M))TE(M) and
Mod(X)TM (see Exercise 3.1.B0), that is, for afiymodel morphisnf:M —
N, there exists a unique-expansion ofN, E;(N), such thatf has ani-
expansiorE(f):E(M) — E¢(N) and such that an¥-model morphisni: N —
N; has a unique-expansiorE(h):E¢(N) — E;.n(Ny); and

— 1-reduct preserves the factorisation systenvimd (X(M))TE(M) as inherited
fromMod(Z(M)), thatis, for anyf: E(M) — N"andh:N" — N”, if h € Ex )
thenh‘l € Ex andifhe Mgy thenh‘t €My

Then, Z(M) is called thediagram signature for M(with signature inclusion),
E(M) is called thediagram expansion of Mand finally the theoryA™ (M) =
Thyw) (EX(E(M))) is called the |positivg diagram of M O

Example 4.5.10.The institution€EQ of equational logicPEQ of partial equational
logic, andCEQ of equational logic for continuous algebras admit the method of di-
agrams. Ground varieties BQ are definable by sets of ground equations; ground
varieties ofPEQ are definable by sets of ground equations and ground definedness
formulae; ground varieties IBEQ are definable by sets of ground infinitary equa-
tions. For any (total, partial, or continuous)algebraA, the diagram signature for

A'is formed by adding constants corresponding to all the elemen#y.ofhe dia-

gram expansion of a partial algebra is formed by requiring that the new constants
are defined and have the expected values. O

Exercise 4.5.11Show that in any institution that admits the method of diagrams,
and for any modeM, the class of models of the positive diagranibfs the class of
all extensions of the diagram expansiorMifMods ) (4™ (M)) = Ex{(E(M)). O

4.5.2 Abstract algebraic institutions

In Exercisq 3.5.7]1 we suggested the use of the method of diagrams to prove that in
the standard algebraic framework, the reduct functor induced by a signature mor-
phism has a left adjoint. With some more effort, one can generalise this result and
prove that in the standard equational institution the reduct functor inducethigy a

ory morphism has a left adjoint:

Exercise 4.5.12Prove that in the equational institutidfQ, for any theory mor-
phismo:T — T', the reduct functor|s:Mod[T'] — Mod|[T] has a left adjoint.

HINT: Formalise and complete the following construction: Tet (X, ®) and
T = (X', ®’). For anyX-algebraA € Mod[T], let Z(A) be its diagram signature,
and let
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Z(A) (A
1 1
X X!

o

be a pushout in the category of signatures. Them fefA) C Sen:q(Z(A)) be the
positive diagram ofA. Consider the presentatid®’(A), o’ (A1 (A)) Ut (P')). By
Theorenj 2.5.14, this has an initial model. itseduct is a free object ove. (See
also Exercisg 3.5.]1 for a slightly different line of reasoning.) O

We will come back to a careful, more abstract analysis of this construction later (cf.
Theorenj 4.5.718 below). For now, just notice that the construction not only uses the
fact that the equational institution admits the method of diagrams, but also relies
(directly or indirectly) on a number of simple facts about the reachability structure

of the equational institution. We capture some of these additional properties in the
following abstract definition:

Definition 4.5.13 (Abstract algebraic institution). An abstract algebraic institu-
tion is a finitely exact institutionNS = (Sign, SenMod, (=x) r¢|sign) With reach-
ability structure that admits the method of diagrams, for which the following condi-
tions hold:

e For any signature& € |Sign|, the categorMod(X) has all products (of sets of
models) and i€z -co-well-powered (Definitiof 3.3.10).

e For any signature morphiso. X — X', the c-reduct functor preserves submod-
els (i.e., for allm’ e Mz, n"(‘g € Mx) and products.

e (Abstraction conditioh For any signatur& andX-modelsM,N € |Mod(Z)], if
M andN are isomorphic then they satisfy exactly the sa&rgentences. O

Example 4.5.14.The institution€£Q of equational logicPEQ of partial equational
logic, andCEQ of equational logic for continuous algebras are abstract algebraic
institutions. O

Exercise 4.5.15There is a certain asymmetry in the above definition: reduct func-
tors in abstract algebraic institutions are required to preserve submodels but are not
required to preserve quotients. Prove thaE@, reduct functors preserve quotients

as well: for allo:X — X' and€ € Ey, e"a € Ex. Show, however, that this is not

true in general IPEQ. O

4.5.3 Liberal abstract algebraic institutions

In Sectior] 4.B we have shown that it is possible to restrict attention to initial models
of specifications written in an arbitrary institution, even if theories in the institution
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4.5 Institutions with reachability structure 217

are not guaranteed to have initial models in general. Similarly, data constraints make
sense in an arbitrary institution even if reduct functors induced by theory morphisms
are not guaranteed to have left adjoints. This flexibility is useful, but nevertheless it
may be important to know whether or not a theory used in an initiality constraint has
an initial model, or whether a theory morphism used in a data constraint has a cor-
responding free functor. In some institutions this is always the case: the equational
institution EQ is one example (cf. Theorgm 2.514 and Exercise 4,5.12). In the rest
of this section we present a characterisation of institutions that have this property.
Of course, very little can be done in the framework of an arbitrary institution: how-
ever, abstract algebraic institutions as introduced above provide a sufficiently rich
background.

Definition 4.5.16 (Liberal institution). An institutionINS admits initial modelsf
every theory iINS has an initial modelNS is liberal if for every theory morphism
0:T — T'inINS, thec-reduct functor |5:Mod[T’] — Mod([T] has a left adjoint.
Then, an abstract algebraic institutittidS admits reachable initial modelg
every theory irINS has an initial model which is reachabldS is strongly liberalif
for every theory morphisro: T — T’ in INS, the o-reduct functoqc: Mod[T’] —
Mod[T] has a left adjoinfs: Mod[T] — Mod[T’'] such that for anyM € Mod[T],
Fs(M) € Mod[T’] is o-reachable. O

In the last part of the definition we have slightly abused notation by usiag both

a theorymorphism and aignaturemorphism (which in fact it is). It is important
that the notion ofo-reachability used here is taken w.r.t. signature morphisms (cf.
Definition[4.5.]) without taking into account the theory context.

Exercise 4.5.17Find an institution that admits initial models but does not admit
reachable initial models. INT: Consider an algebraic signatuEewith a unary
operation symbof:s — s. Show that the class d&-algebras satisfying the axiom
Jlx:se f(X) =xhas an initial model which is not reachable, whéreeads “there ex-
ists a unique”, that isj!x:se f(x) = x stands foEx:Se f(X) = XAVXy, Xp:8e f(X1) =

X1 A F(X2) =X = X1 = Xo. O

For abstract algebraic institutions, the requirements introduced in Definition}4.5.16
are pairwise equivalent.

Theorem 4.5.18.LetINS be an abstract algebraic institutiotNS is liberal if and
only if it admits initial models.

Proof.

(=): Let T = (X,®) be a theory. Letz: X, — X be the only signature mor-
phism from the initial signatur&, to X. Theniz: Tz — T is a theory mor-
phism, wherdl; = (£4,Clx, (2)) is the initial theory, and so the reduct functor
7\1;3 Mod[T] — Mod[T] has aleft adjoinF,,: Mod [T;] — Mod[T]. Now, there
is exactly one&€x-model, sapMg € |[Mod[Tz]|, and moreovers,;. (My) is an ini-
tial model of T.
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(«<): We follow the proof for the equational institutioBQ sketched in Exer-
cise[4.5.1p. For any theory morphissaT — T, whereT = (X, ®) andT' =
(X', @), and modeM € Mod[T], we construct a modéi;(M) € Mod[T’] with
unitnu:M — Fs(M)]|o that is free oveM w.r.t. _|:Mod [T'] — Mod[T].

Let Z(M) be the diagram signature fivt with signature inclusion: X — X (M),

and let
/

Z(M) (M)
1 v
X X!

o

be a pushout in the category of signatures. Ther} f&€tM) C Sen(X(M)) be the
positive diagram oM. Consider the presentatig®’(M), s’ (AT (M))ut/(®’)).
By the assumption, it has an initial model, dayutFs(M) = 1|,,. Then, since
by the satisfaction conditioh‘a/ Erm) AT (M), I‘G/ € Ext(E(M)) (cf. Exer-
cisg4.5.1]1). Hence, there exists a (unique, sif®¢) is reachablef (M)-model
morphismny:E(M) — I‘G/. Putnu = ﬁ,\\/.‘L:M — FG(M)‘G.

First, notice that sincé =y t'(®’), Fs(M) € Mod[T’]. Then, consider an
arbitrary modeN € Mod[T’] and aX-model morphismf: M — N‘G.

By the definition of the diagram signature figr, N‘G has a unigue-expansion
to a X(M)-model Ef(N‘g) such that there exists &(M)-model morphism
E(f):E(M) — E; (N‘U) with E(f)‘l = f. Amalgamation yields a unique/(M)-
modelE? (N|s) € [Mod (X'(M))| with EZ (N|s)|o» = Ef (N|) andEF (N|s)
N. SinceN =5/ @/, E7(N|s) Fx/m) 1'(®'). Then, sincéEf (N|o) € Ext(E(M)),
Et(N|o) Fxqm) AT (M), and scE? (N|o) Fx/m) o’(A*(M)). Consequently, we
get a unique’ (M)-model morphismf’: | — EZ(N|o)- Putf’ = /| :Fg(M) —

N. Notice thatﬁ[ﬂ;fA"(,/:E(M) — Ef(N‘g). Hence, sinceE(M) is reachable,
ﬁ,\];fA’ o = E(f), and so we obtaim;M;f"(, = f. Moreover,f’ is the only mor-
phism with this property. To see this, suppose that for séth&s(M) — N,
TIM;f”‘(y = f. Then, by the amalgamation property (this time for model mor-
phisms) there exists® (M)-model morphisnf”:1 — E?(N‘G) such thalﬁ‘l/ =

£ (and 7|o) = E(f"|o):1|or — Ex(N|o)). By initiality of I, 7 = ', and so

f” = f/, which completes the proof. O

V=

Theorem 4.5.19L et INS be an abstract algebraic institutiohNS is strongly lib-
eral if and only if it admits reachable initial models.

Proof. We extend the proof of the previous theorem, relying on the notation intro-
duced there.

Page: 218 job: root macro: svmono.cls date/time: 29-Sep-2010/18:07



4.5 Institutions with reachability structure 219

(=): The only additional remark needed is tiiaf (M) is reachable if it isiy-

reachable (cf. Exercige 4.5.3).

(«<): We have to additionally prove th&it; (M) = I‘l/ is o-reachable whenever
| is reachable. To see this, consider an arbitrary submodls#l/ot/ith an iso-
morphico-reduct, sayn:N — 1|,;, whereme My and m‘a: N‘G — I‘G;l/ is an
isomorphism. Puf = nM;(m‘G)*l:M — N‘G. Then f;m‘cy = 1w, and som‘g
has an expansion toX(M)-model morphisrrE(m‘c): Es (N‘G) — Epy(l|g:) =
I‘G/. Then, as in the corresponding part of the proof of The.5.18, we
get a uniqu@’(M)-modelE?(N‘a) € |Mod(X’(M))| such thatE? (N|o )6 =
Ef(N|o) andE?(N‘G)El =N, and a%’(M)-model morphisnf’:1 — EF (N|s).
On the other hand, by the amalgamation property again, there exists a unique
Z'(M)-model morphisnin: E (N|) — | such thatn|s = E(m

~

By the initiality of I, f:mis the identity, and so i@f’;rﬁ)‘l/ = fA"l/;m. Thus, by
Exercisg 3.3J5mis an isomorphism — which completes the proof. g

&) andm

v =m.

4.5.4 Characterising abstract algebraic institutions that admit
reachable initial models

From the very beginning of work on algebraic specifications it has been known that
the standard equational instituti@Q admits reachable initial models (cf. Theo-

rem[2.5.14). Moreover, the proof of this property generalises readily to the situation
where conditional equations (even with infinite sets of premises) are permitted as
axioms. On the other hand, Example 2.7.11 shows that if disjunction is permitted,
the property is lost. Indeed, in the standard algebraic framework the infinitary con-
ditional axioms, which define all non-empty quasi-varieties, form in some sense a
borderline beyond which one cannot be sure of the existence of reachable initial
models. We generalise this result to the framework of abstract algebraic institutions.

Theorem 4.5.20.Let INS be an abstract algebraic institutiodNS admits reach-
able initial models if and only if every class of models definabliNi is closed
under products (of sets of models) and under submodels.

Proof.

(«): This follows directly by Lemmé 3.3.]12; just notice that any class of models
closed under products and submodels ia-emptyquasi-variety (cf. Defini-
tion[3.3.11).

(=): Let(X,®) be a presentation iiNS. We show the required closure properties
of Modg (P).

(Submodels Consider a modeM € Mody () and its submodein:N — M,
me My. Let Z(N) be a diagram signature fod with signature inclusion
1:X — X(N), and letA™(N) C SenZ(N)) be the positive diagram ®. Re-
call thatMody ) (A" (N)) = Ex{(E(N)), whereE(N) € Mod(Z(N)) is the
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diagram expansion d. The presentatiof™ (N),A™(N)U1(®)) has a reach-
able initial model, say. We show that‘l is isomorphic ta\, which in partic-
ular impliesN € Modx ().

Sincel sy AT(N), there exists & (N)-model morphismf:E(N) — 1.
Moreover, sincd is reachablef € Exy) (by Theore@ 4)) and hence
also f‘l € Ey. Then, letEn(M) be the unique expansion ™ to a X(N)-
model with E(m):E(N) — En(M) such thatE(m)|, = m. SinceM = &,
Em(M) Exn) 1(®), and, sinceEn(M) € EXY(E(N)), En(M) Exny AT (N).
Hence, there is a (unique) morphigm — E,(M). Now, sinceE(N) is reach-
able, there exists at most one morphism fia@) to En(M), and so we have
f;g= E(m), which impliesf l;g‘l =me My. Sincef \1 € Ey, it follows from
ExercisS that‘t: N— I ‘l is indeed an isomorphism.

(Product3: Consider any familyM; € Modg (®), i € J, whereJ is any set (of
indices). LetN with projectionsmi:N — M;, i € J, be the product ofM;)ic;.
We proceed similarly as in the previous caseX@N) be a diagram signature
for N with signature inclusion:X — X(N), and letA™(N) C Sen(X(N))
be the positive diagram dfi. The presentatiofX(N),A*(N)U1(®)) has a
reachable initial model, saly We show that ‘l is isomorphic toN, which
implies thatN € Mods (P).

Just as in the previous case, there exis&(N) — | with f|, € E.

Then, fori € J, letE (M;) be the unique (N)-model such that there is an ex-
pansion ofr; to a X(N)-model morphismE(m):E(N) — Eg (Mi). Eg (M)
satisfies bothA*(N) and 1(®), and so there exists a morphisht| —
Ex (Mi). Hence, by the definition of a product, there exists a (unigsgjodel
morphismg: | \1 — N such that foii € J, h; \1 = g;m. Moreover, fori € J, since
E(N) is reachable and so there is at most one morphismE@R) to Ex (M),
f;hi = E(m). Consequently(f|,;g);m = f l;hi‘l = (f;hi)‘l = E(m)‘l =m.

It follows that f|,;g is an isomorphism, and thug|, € Ex implies that
f‘l: N — I ‘L is an isomorphism as well. a0

Exercise 4.5.21As we have mentioned earlier, institutions of single-sorted logics,
like those in Exercisgs 4.410 ahd 4.4.16, are only semi-exact, rather than finitely
exact.

Call an institutionINS almost abstract algebraid it satisfies all the assump-
tions imposed on abstract algebraic institution except for the requirement of finite
exactness, instead of which we require that:

¢ INS is semi-exact; and
o for each signatur& < |Signys|, the categoriModys(X) of Z-models has an
initial object.

The above characterisation theorems nearly hold for almost abstract algebraic insti-
tutions:
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e By direct inspection of their proofs, check that Theofem 4]5.20 as well as the
“if” parts of Theorem$ 4.5.78 arid 4.5]19 hold for almost abstract algebraic insti-
tutions.

e Prove that the “only if” part of Theorein 4.5]18 holds for almost abstract alge-
braic institutions. HNT: To show that &-theoryT has an initial model, consider
the identity signature morphism as a morphism from the emptiieory toT.
Then use Exercide 3.5117.

¢ Show that the “only if” part of Theorefn 4.5]19 does not hold for almost abstract
algebraic institutions. HNT: In SSEQ the requirement ofi-reachability is triv-
ial for any signature morphism. Consider the extension &SEQby sentences
involving the quantifier “there exists a unique”. O

4.6 Bibliographical remarks

This chapter has its origins in the seminal work of Goguen and Burstall on insti-
tutions. The reader may have noticed that the main paper on institutions [GB92]
appeared later than many of its applications. The first appearance of institutions was
in the semantics of Cledr [BGBO0], under the name “language”, and early versions of
[GB92] were widely circulated, with [GB84a] as an early published version. Most
of our terminology (signature, sentence, model, liberal institution, etc.) comes from
[GB92]. There is a minor technical difference with respect to the definition given in
[GB92]: we take the contravariant functitod;ys to be Mod ns: Signy;s — Cat
rather tharMod ns: Signyg — CatP. This is consistent with the further refinement

of this definition in Chaptdr 10 as well as with the notion of an indexed category (cf.
Sectior] 3.4 and [TBG91]).

A large number of variants, generalisations and extensions of the notion of in-
stitution have been considered. In some work where model morphisms are not im-
portant, institutions were considered with classes (rather than categories) of mod-
els, e.qg.[[BG8D]. Somewhat dually, one way to bring deduction into the realm of
institutions is by considering categories (rather than sets) of sentences, where mor-
phisms capture proofs. These variants were present in some unpublished versions of
[GB92]; see alsd [MGDTQ7] for some elaboration on these possibilities.

One line of generalisation is to allow a space of truth values other than just the
standard two-valued set, leading to proposals like galldries [May85] or generalised
institutions [GB86]. General logics [Mes89] add an explicit notion of entailment
and proof to institutions, see Chapftér 9 for developments in this direction. Founda-
tions [Poi88] include a similar idea, in addition imposing a rich indexed category
structure on sentences. Context institutions [Paw96] offer an explicit notion of con-
text and hence of open formulae and valuation as a part of the institution structure.
There have also been attempts to relax the satisfaction condition, with for instance
pre-institutions[[SS93][ [SS96], where the equivalence in the satisfaction conditions
is split into two separately-imposed implications. This captures logical systems in
which one or both of the directions of the satisfaction condition fail, as discussed
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before Exercisg 4.11.2. This applies to the so-called ultra-loose approach to algebraic
specification [WB89], Extended ML._[KST97] and various notions of behavioural
satisfaction, see Chapfer 8. ([n [GogP1la], the satisfaction condition is satisfied for
behavioural satisfaction but at the cost of restricting the notion of signature mor-
phism.) Overall though, in spite of all these proposed variants and generalisations,
most research has been based on the original notion, as we present it here.

The theory of institutions adopts a primarily model-theoretic view of logical sys-
tems. This does not preclude proof-theoretic investigation, see Chapter 9, but it does
exclude logical systems that are inherently not based on the Tarskian notion of sat-
isfaction of a sentence in a model. Typically such systems are centred around a
notion of logical consequence that is defined via deduction, in contrast to our Def-
inition [4.2.5. One such example would be non-monotonic logics [MT93], where
increasing the set of premises can render consequences invalid. Other examples in-
clude substructural logics such as linear logic [Gir87], where changing the number
of occurrences of premises, or their order, may affect deduction and change the set
of valid consequences. Clearly, such logics cannot be directly represented as insti-
tutions, but see for instance [CM97] which indicates how an institution for linear
logic can be defined by taking linear logic sequents (statements about consequence)
as individual sentences. A view of logic based on proof rules and deduction under-
lies so-called “general logical frameworks”, with Edinburgh LE [HHP93] as a prime
example. For proposals in this direction related to institutions,ns@estitutions
[ES88] and also entailment systerns [Mes89], [HST94], which re-emerge in Defini-
tion[9.1.2 below.

Sectiong 4.1]1 gives only the beginning of the long list of examples of logical
systems that have been formalised as institutions. Standard examples of institutions
(EQ, FOP, Horn, Horn without equality EQ~) were in [GB92] with further stan-
dard algebraic variants ih [Mos96b], aG&EQ is from [Tar86b].

Dozens of other logical systems have been formalised as institutions. Some
examples: [[Bor00] defines an institution of higher-order logic based on HOL;
[SMLO5] defines an institution with type class polymorphism; [R0s94] defines an
institution of order-sorted equational logic; [ACEGG91] defines a family of insti-
tutions of multiple-valued logics, including logical systems arising from fuzzy set
theory; [Dia00] defines an institution of constraint logicif@@)] defines an insti-
tution with models that have both coalgebraic and algebraic components, and sen-
tences involving modal formulae; [FC96] defines an institution of temporal logic;
[LS0Q] defines an institution of hybrid systems based on the specification language
of HyTecH [HHWT97]; and [BHO64a] defines the @ constructor-based obser-
vational logic institution based on viewing reachability and observability as dual
concepts. The semantics of basic specificationsAsl(JST04] defines an institu-
tion, the rest of the semantics being defined in an institution-independent fashion.
Alternatives to the standardASL institution include: the institution underlyingaz
CasL, which includes cogeneration constraints, cofreeness constraints, and modal
formulae [MSRROB]; the institution underlyingA$CasL, with partial higher or-
der functions, higher-order subtyping, shallow polymorphism, and type classes, de-
signed for specifying functional programs [SMO09]; an institution of labelled tran-
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sition logic for specifying dynamic reactive systerns [RAC99]; and the institution
underlying Gpr-CAsL for describing systems of processes [Rdg06]. The eight in-
stitutions involved inCafeOBJ [DE98] are defined in [DFEQ2], with their combina-
tion leading to an institution via a version of the Grothendieck construction (Defi-
nition ) that is applicable helle [Dia02], and the Maude language {OPJE

is based on rewriting logid [Mes92] and on the institution of membership equa-
tional logic [Mes98] (with some technical nuances of their relationship pointed at
in [CMRM10Q]). Institutions for three different UML diagram types are defined in
[CK084d,[CK08h/ CKO8c], with the relationships between them given by institu-
tion comorphisms (see Sectipn 7]0.4 below). A spectrum of institutions capturing
some aspects of Semantic Web languages are defined and linked with each other in
[LLDO#6]. Different approaches to the specification of objects have led to the def-
inition of a number of institutions, includin@ [SC394] which defines an institution
of temporal logic for specifying object behaviour, [GD94b] which argues that an
institution based on hidden-sorted algebra is relevant, land [Zuc99] which shows
how to construct an institution with features for specifying dynamic aspects of sys-
tems using so-called “d-oids” from an institution for specifying static data. Finally,
some slightly non-standard examples include two institutions for graph colouring in
[Sco04], a way of viewing a database as an institution [Gpg10], and a framework
based on institutions for typed object-oriented, XML and other data madels [Ala02].

Some of the examples of constructions on institutions in Seftion|4.1.2 were in-
dependently introduced by others. For instance, [Mes89] constructs an institution
“out of thin air” starting with theories in an entailment system, the idea of which is
presented in Examplés 4.1]36 and 4.]1.40. Incidentally, a very interesting exercise is
to use the method of diagrams (Definitjon 4]5.9) to show how the construction of
models from theories recovers the institution for which the entailment system that
generates the theories was built.

Overall though, Section 4.1.2 only hints at the issue of how institutions should
be defined. In particular, we do not discuss here the notiorpefehmen{GB86§],
which offers one convenient way to present institutions in a concise and uniform
style, at the same time ensuring that the satisfaction condition holds. See also
[MTP97,IMTP98] for variants of this notion and its use for combining presenta-
tions of logical systems.

The idea of data constraints originates|in [BG80], but has been independently
introduced earlier by Reichel [Rei80], cf. [KR71]. Our treatment in Se¢tioh 4.3 fol-
lows [GB92]. Definition[4.3B is essentially equivalent to the definition there, al-
though the technicalities are somewhat different; in particular, as in [$ST88a], we do
not require the institution to be liberal. Hierarchy constraints [SW82], also known
as generating constrainis [EWT83], are like data constraints but require that some
carriers are generated from other carriers rather than freeness, see Hxercige 4.3.13.
Exercis¢ 4.3.74 introduces a way to specify so-called co-inductive data types involv-
ing infinitary data. This has been mixed with algebraic techniques both in specifi-
cation, see OCAsL [MSRRO06] and in experimental programming languages, see
[Hag87] and Charity [CS92, CFD2]. Sée [Rut00] for an introduction to a comprehen-
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sive coalgebraic approach to specification which provides an alternative perspective
to the material on behavioural specifications in Chggter 8 below.

Colimits of signatures and theories built over them have been used as a tool for
combining theories and specifications at least since [BG77, GB78]. This follows the
general ideas of [GogT3] and underlies for instance the semantics of Clear|[BG80]
and the commercial Specware systém [Stni06]; support for the use of colimits to
combine theories in a number of institutions is also offered by teg4tystem
[MMLOY]. A category-theoretic approach to software engineering which makes ex-
tensive use of these ideas/is [Fia05]. Theofem }.4.1 originates/with [GB92], gener-
alising a non-institutional version in [GB84b], and Corollary 4.4.2 is from [BG80].

The idea of amalgamation in model thedry [CK90] refers to a subtler and deeper
property of certain theories than does the notion defined here. The use of amalga-
mation in algebraic specification, in connection with pushout-style parameterisation
mechanisms, originates with_ [EM85], following its introduction in_[BPP85], see
also the Extension Lemma in [EKBQ,|[EKT"83]. In the context of an arbitrary
institution, it was first imposed as a requirement and linked with continuity of the
model functor in[[ST88a], cf[ [EWT83].

Limiting the amalgamation property to pushouts along a chosen collection of sig-
nature morphisms, as in Definitipn 4.4.18, is important not only because of examples
like those in Exercise 4.4.119. The range of relevant cases includes systems emerging
in practice. For instance, the institution oA€L [Mos04] admits amalgamation for
pushouts along most, but not alla€L signature morphisms, due to problems with
the required unique interpretation of subsorting coercions, see [9EIT

There has been some confusion with the terminology surrounding exactness of
institutions in the literature. The term was first used in [M&s89], although for preser-
vation of signature pushouts (the amalgamation property) only. It became widely
used after[[DGS93], where it meant that the model functor maps finite colimits of
signatures to limits ifCat, so that neither infinite colimits nor existence of colimits
were covered (the latter also applies to semi-exactness as introduced there). This
was sometimes missed in the literature, leading to subtle mistakes in the presenta-
tion of some results. We decided to put all of these assumptions together under the
single requirement of “exactness”. The notion of an institution “with composable
signatures” was used in early versions of this chapter and in [[Tar99] to mean the
same thing as exactness, and this terminology was adopted by other authors in a
few papers. The notion of exactness as used in category theory is different, although
for functors between so-called Abelian categories it implies preservation of finite
colimits.

The consequences of semi-exactness for preservation of finite connected colimits
of signature diagrams stated in Proposifion 44.15 appear to be new in the literature
concerning institutions; they had not been clear to us until we were poinied td [CJ95]
and a result there which we give as Exer€ise 3]4.55.

Institutions with extra structure have been used as the basis for the definition of
the semantics of a number of specification languages, beginning withlASL [ST88a]
which required an exact institution. In [ST86], an institution-independent semantics
for the Extended ML specification language is sketched in terms of an “institution
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with syntax”; this requires an additional functor which gives concrete syntactic rep-
resentations of sentences, together with a natural transformation which associates
these concrete objects with the “abstract” sentences they represeént. In [ST04], the
semantics of @sL is based on an “institution with qualified symbol§” [Mo$00]
which requires considerable additional structure in order to support the operations
on signatures used in the semantics; these include union of signatures and generation
of signature morphisms from maps between symbols. Similar constructions on sig-
natures are available when the category of signatures is equipped with a so-called
inclusion system, which leads to the concept of an inclusive institution [DIGS93],
[GRO4] (see also Exercie 5.P.1 below).

Although the theory of institutions emerged originally in the context of algebraic
specification theory, it shares ideas and broad goals with abstract model theory as
pursued within mathematical logic, seée [B&r74, BF85], which concentrates on the
study of definable classes of algebras (or rather first-order structures), abstracting
away from the structure of sentences and from proof-theoretic mechanisms. The
idea of developing an institutional version of abstract model theory, which also ab-
stracts away from the nature of models, was first put forward in [Tar86a], where
for instance the equivalence of the Craig interpolation and Robinson consistency
properties, mentioned in Sectipn 4]4.1, was shown.

The Craig interpolation property (Definitign 4.4]21) will be used frequently in
the sequel. In this formulation, it originates in [Tar86a]. Interpolation for first-order
logic is a standard result in model theory [CK90] but the delicacy of its status in
many-sorted first-order logic (see Exerdise 4.4.23) was first pointed dut in [Bor05].
There are several variants of the formulation of interpolation [DMOQ]. the general-
isation to arbitrary commuting squares of signature morphisms [Dia08] and sets of
interpolants (see the discussion|in [DGS93)) is especially important. In particular,
sets of interpolants may always be found in the case of equational logic under the as-
sumption that carriers are non-empty [Rod91], but the necessity of this assumption
has been widely disregarded, see Exelcise 4.4.25.

Our treatment of variables, open formulae and quantification in an arbitrary insti-
tution comes from [Tar86b, ST88a]; see the concept of syntactic operator in [Bar74]
for an earlier related idea. Sectjon}4.5 is based on [Tar85], following [MM84] which
is in an institutional style but based on the standard notion of logical structure. In
[Tar86Db], infinitary conditional “equations” were defined for an arbitrary abstract
algebraic institution and it was shown that sets of these sentences define quasi-
varieties, see [Mal71], thus obtaining a “syntactic” version of Thegrem 4.5.20. Fur-
ther developments in institutional abstract model theory, with results and ideas that
refine those in Sectioris 4.4 ahd]4.5 and reach much further into classical model
theory than we have done here, are in [Dia08].
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