
Donald Sannella and Andrzej Tarlecki

Foundations of Algebraic
Specification and Formal
Software Development

September 29, 2010

Springer

Page: v job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

Page: xiv job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

Contents

0 Introduction . 1
0.1 Modelling software systems as algebras . 1
0.2 Specifications . 5
0.3 Software development . 8
0.4 Generality and abstraction . 10
0.5 Formality . 12
0.6 Outlook . 14

1 Universal algebra . 15
1.1 Many-sorted sets . 15
1.2 Signatures and algebras . 18
1.3 Homomorphisms and congruences . 22
1.4 Term algebras . 27
1.5 Changing signatures . 32

1.5.1 Signature morphisms . 32
1.5.2 Derived signature morphisms . 36

1.6 Bibliographical remarks . 38

2 Simple equational specifications. 41
2.1 Equations . 41
2.2 Flat specifications . 44
2.3 Theories . 50
2.4 Equational calculus . 54
2.5 Initial models . 58
2.6 Term rewriting . 66
2.7 Fiddling with the definitions . 72

2.7.1 Conditional equations . 72
2.7.2 Reachable semantics . 74
2.7.3 Dealing with partial functions: error algebras 78
2.7.4 Dealing with partial functions: partial algebras 84
2.7.5 Partial functions: order-sorted algebras 87

xv

xvi Contents

2.7.6 Other options . 91
2.8 Bibliographical remarks . 93

3 Category theory. 97
3.1 Introducing categories . 99

3.1.1 Categories . 99
3.1.2 Constructing categories . 105
3.1.3 Category-theoretic definitions . 109

3.2 Limits and colimits . 111
3.2.1 Initial and terminal objects . 111
3.2.2 Products and coproducts . 113
3.2.3 Equalisers and coequalisers . 115
3.2.4 Pullbacks and pushouts . 116
3.2.5 The general situation . 119

3.3 Factorisation systems . 123
3.4 Functors and natural transformations . 127

3.4.1 Functors . 128
3.4.2 Natural transformations . 135
3.4.3 Constructing categories, revisited . 139

3.5 Adjoints . 144
3.5.1 Free objects . 144
3.5.2 Left adjoints . 145
3.5.3 Adjunctions . 150

3.6 Bibliographical remarks . 152

4 Working within an arbitrary logical system . 155
4.1 Institutions . 157

4.1.1 Examples of institutions . 161
4.1.2 Constructing institutions . 179

4.2 Flat specifications in an arbitrary institution. 186
4.3 Constraints . 192
4.4 Exact institutions . 197

4.4.1 Abstract model theory . 204
4.4.2 Free variables and quantification . 207

4.5 Institutions with reachability structure . 210
4.5.1 The method of diagrams . 213
4.5.2 Abstract algebraic institutions . 215
4.5.3 Liberal abstract algebraic institutions . 216
4.5.4 Characterising abstract algebraic institutions that admit

reachable initial models . 219
4.6 Bibliographical remarks . 221

Page: xvi job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

Contents xvii

5 Structured specifications. 227
5.1 Specification-building operations . 228
5.2 Towards specification languages . 234
5.3 An example . 238
5.4 A property-oriented semantics of specifications 243
5.5 The category of specifications . 247
5.6 Algebraic laws for structured specifications . 250
5.7 Bibliographical remarks . 255

6 Parameterisation. 257
6.1 Modelling parameterised programs . 258
6.2 Specifying parameterised programs . 268
6.3 Parameterised specifications . 274
6.4 Higher-order parameterisation . 278
6.5 An example . 285
6.6 Bibliographical remarks . 288

7 Formal program development . 291
7.1 Simple implementations . 292
7.2 Constructor implementations . 300
7.3 Modular decomposition . 307
7.4 Example . 314
7.5 Bibliographical remarks . 320

8 Behavioural specifications. 323
8.1 Motivating example . 324
8.2 Behavioural equivalence and abstraction . 327

8.2.1 Behavioural equivalence . 328
8.2.2 Behavioural abstraction . 333
8.2.3 Weak behavioural equivalence . 335

8.3 Behavioural satisfaction . 338
8.3.1 Behavioural satisfaction vs. behavioural abstraction 342

8.4 Behavioural implementations . 346
8.4.1 Implementing specifications up to behavioural equivalence . 347
8.4.2 Stepwise development and stability . 348
8.4.3 Stable and behaviourally trivial constructors 351
8.4.4 Global stability and behavioural correctness 356
8.4.5 Summary . 363

8.5 To partial algebras and beyond . 364
8.5.1 Behavioural specifications inFPL . 364
8.5.2 A larger example . 371
8.5.3 Behavioural specifications in an arbitrary institution 382

8.6 Bibliographical remarks . 394

Page: xvii job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

xviii Contents

9 Proofs for specifications. 399
9.1 Entailment systems . 400
9.2 Proof in structured specifications . 414
9.3 Entailment between specifications . 427
9.4 Correctness of constructor implementations. 435
9.5 Proof and parameterisation . 440
9.6 Proving behavioural properties . 451

9.6.1 Behavioural consequence . 451
9.6.2 Behavioural consequence for specifications 463
9.6.3 Behavioural consequence between specifications 466
9.6.4 Correctness of behavioural implementations 470
9.6.5 A larger example, revisited . 472

9.7 Bibliographical remarks . 479

10 Working with multiple logical systems . 483
10.1 Moving specifications between institutions . 484

10.1.1 Institution semi-morphisms . 485
10.1.2 Duplex institutions . 489
10.1.3 Migrating specifications . 491

10.2 Institution morphisms . 500
10.3 The category of institutions . 509
10.4 Institution comorphisms . 517
10.5 Bibliographical remarks . 528

References. 533

Page: xviii job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

Chapter 1
Universal algebra

The most basic assumption of work on algebraic specification is that programs are
modelled as algebras. This point of view abstracts from the concrete details of code
and algorithms, and regards the input/output behaviour of functions and the repre-
sentation of data as primary. Representing programs in terms of sets (of data values)
and ordinary mathematical functions over these sets greatly simplifies the task of
reasoning about program correctness. See Section 0.1 for some illustrative exam-
ples and more introductory discussion on this point.

The branch of mathematics that deals with algebras in this general sense (as
opposed to the study of specific classes of algebras, such as groups and rings) is
calleduniversal algebraor sometimesgeneral algebra. However, work on univer-
sal algebra by mathematicians has concentrated almost exclusively on the special
case of single-sorted algebras with first-order total functions. The generalisation to
many-sortedor heterogeneousalgebras is required to model programs that manip-
ulate several kinds orsortsof data; further generalisations are necessary to handle
programs that fail to terminate on some inputs, that generate exceptions during exe-
cution, etc. This chapter summarizes the basic concepts and results of many-sorted
universal algebra that will be required for the rest of this book. Some extensions
useful for modelling more complex programs will be discussed later, in Section 2.7.
In this chapter, all proofs are left as exercises for the reader.

1.1 Many-sorted sets

When using an algebra to model a program which manipulates several sorts of data,
it is natural to partition the underlying set of values in the algebra so that there is one
set of values for each sort of data. It is often convenient to manipulate such a family
of sets as a unit, in such a way that operations on this unit respect the “typing” of
data values.

The following sequence of definitions and notational conventions allow us to ma-
nipulate sorted families of sets (of functions, of relations, . . .) in just the same way

15

16 1 Universal algebra

as ordinary sets (functions, relations, . . .). Ordinary sets (functions, relations, . . .)
correspond to the degenerate case in which there is just one sort, so these definitions
also serve to recall the notation and terminology of set theory to be used throughout
this book. LetSbe a set; the notation〈Xs〉s∈S is a standard shorthand for the family
of objectsXs indexed bys∈ S, i.e. the function with domainS which maps each
s∈ S to Xs.

Throughout this section, letSbe a set (of sorts).

Definition 1.1.1 (Many-sorted set).An S-sorted setis anS-indexed family of sets
X = 〈Xs〉s∈S, which isemptyif Xs is empty for alls∈ S. The emptyS-sorted set will
be written (ambiguously) as∅. TheS-sorted setX is finite if Xs is finite for alls∈ S
and there is a finite set̂S⊆ Ssuch thatXs = ∅ for all s∈ S\ Ŝ.

Let X = 〈Xs〉s∈S andY = 〈Ys〉s∈S beS-sorted sets. Union, intersection, Cartesian
product, disjoint union, inclusion (subset) and equality ofX andY are defined com-
ponentwise as follows:

X∪Y = 〈Xs∪Ys〉s∈S

X∩Y = 〈Xs∩Ys〉s∈S

X×Y = 〈Xs×Ys〉s∈S

X]Y = 〈Xs]Ys〉s∈S (whereXs]Ys = ({1}×Xs)∪ ({2}×Ys))
X ⊆Y iff (if and only if) Xs⊆Ys for all s∈ S
X =Y iff X ⊆Y andY⊆X (equivalently, iffX andY are equal as functions).ut

Exercise 1.1.2.Give a formal explanation of the above statement that “Ordinary
sets . . . correspond to the degenerate case [of many-sorted sets] in which there is
just one sort”. How many∅-sorted sets are there? ut

Notation. It will be very convenient to pretend thatX ⊆ X]Y andY ⊆ X]Y. Al-
though this is never actually the case, it allows us to treat disjoint union in the same
way as ordinary union, the difference being that whenX ∩Y 6= ∅, X]Y contains
two “copies” of the common elements and keeps track of which copy is fromX and
which fromY. To see that this does not cause problems, observe that there are in-
jectiveS-sorted functions (see the next definition)i1:X→ X]Y andi2:Y→ X]Y
defined byi1s(x) = 〈1,x〉 for all s∈ S andx ∈ Xs and similarly for i2. A pedant
would be able to correct what follows by simply inserting the functionsi1 and/ori2
where appropriate in expressions involving] . ut

Exercise 1.1.3.Extend the above definitions of union, intersection, product and dis-
joint union to operations onI -indexed families ofS-sorted sets, for an arbitrary in-
dex setI . For example, the definition for product is(∏〈Xi〉i∈I)s = { f : I→

⋃
i∈I (Xi)s |

f (i) ∈ (Xi)s for all i ∈ I} for eachs∈ S. ut

Definition 1.1.4 (Many-sorted function).Let X = 〈Xs〉s∈S andY = 〈Ys〉s∈S be S-
sorted sets. AnS-sorted function f:X→Y is anS-indexed family of functionsf =
〈 fs:Xs→Ys〉s∈S; X is called thedomain(orsource) of f , andY is called itscodomain
(or target). An S-sorted functionf :X → Y is an identity (an inclusion, surjective,
injective, bijective, . . .) if for everys∈ S, the functionfs:Xs→Ys is an identity (an

Page: 16 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

1.1 Many-sorted sets 17

inclusion, surjective, injective, bijective, . . .). The identityS-sorted function onX
will be written asidX:X→ X.

If f :X→Y andg:Y→ Z areS-sorted functions then theircomposition f;g:X→
Z is theS-sorted function defined byf ;g = 〈 fs;gs〉s∈S. That is, if s∈ S andx ∈ Xs

then(f ;g)s(x) = gs(fs(x)).1

Let f :X→Y be anS-sorted function andX′ ⊆ X, Y′ ⊆Y beS-sorted sets. The
image of X′ under f is theS-sorted setf (X′) = 〈 fs(X′s)〉s∈S⊆ Y, where fs(X′s) =
{ fs(x) | x ∈ X′s} ⊆ Ys for all s∈ S. The coimage of Y′ under f is theS-sorted set
f−1(Y′) = 〈 f−1

s (Y′s)〉s∈S⊆ X, where f−1
s (Y′s) = {x ∈ Xs | fs(x) ∈ Y′s} ⊆ Xs for all

s∈ S. ut

Definition 1.1.5 (Many-sorted binary relation). Let X = 〈Xs〉s∈S andY = 〈Ys〉s∈S

beS-sorted sets. AnS-sorted binary relation between X and Y, writtenR⊆ X×Y,
is anS-indexed family of binary relationsR= 〈Rs⊆ Xs×Ys〉s∈S. For s∈ S, x∈ Xs

andy∈Ys, x Rs y (sometimes writtenx R y) means〈x,y〉 ∈ Rs. ut

The generalisation ton-ary relations, forn≥ 0, is obvious. As usual, many-sorted
functions may be viewed as special many-sorted relations.

Definition 1.1.6 (Kernel of a many-sorted function).Let f :X→Y be anS-sorted
function. Thekernel of f is the S-sorted binary relation ker(f) = 〈ker(fs)〉s∈S⊆
X×X where ker(fs) = {〈x,y〉 | x,y∈ Xs and fs(x) = fs(y)} ⊆ Xs×Xs is the kernel
of fs for all s∈ S. ut

Definition 1.1.7 (Many-sorted equivalence).Let X = 〈Xs〉s∈S be anS-sorted set.
An S-sorted binary relationR⊆ X×X is anS-sorted equivalence (relation) on Xif
it is:

• reflexive:xRsx;
• symmetric:xRsy impliesyRsx; and
• transitive:xRsy andyRsz impliesxRsz

for all s∈ Sandx,y,z∈ Xs. The symbol≡ is often used for (S-sorted) equivalence
relations.

Let ≡ be anS-sorted equivalence onX. If s∈ Sandx∈ Xs then theequivalence
class of x modulo≡ is the set[x]≡s = {y∈ Xs | x≡s y}. Thequotient of X modulo
≡ is theS-sorted setX/≡ = 〈Xs/≡s〉s∈S whereXs/≡s = {[x]≡s | x ∈ Xs} for all
s∈ S. ut

Example 1.1.8.Let S= {s1,s2}, and letX andY be twoS-sorted sets defined as
follows:

X = 〈Xs〉s∈S whereXs1 = {2,4} andXs2 = {♣,♥,♠},
Y = 〈Ys〉s∈S whereYs1 = {1,2,3} andYs2 = {1,2,3}.

Let f :X→Y be theS-sorted function such that

1 This “diagrammatic” order of composition and the semicolon notation will be used consistently
throughout this book.

Page: 17 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

18 1 Universal algebra

fs1 = {2 7→ 1,4 7→ 3}
fs2 = {♣ 7→ 1,♥ 7→ 2,♠ 7→ 2}.

(i.e., fs1(2) = 1 and fs1(4) = 3; analogously forfs2). Then the kernel off is the
S-sorted equivalence relation ker(f) = 〈ker(fs)〉s∈S where

ker(fs1) = {〈2,2〉,〈4,4〉}
ker(fs2) = {〈♣,♣〉,〈♥,♥〉,〈♥,♠〉,〈♠,♥〉,〈♠,♠〉}.

The quotient ofX modulo ker(f) is theS-sorted setX/ker(f) = 〈Xs/ker(fs)〉s∈S

where

Xs1/ker(fs1) = {{2},{4}}
Xs2/ker(fs2) = {{♣},{♥,♠}}. ut

Exercise 1.1.9.Show that if f :X→Y is anS-sorted function, then ker(f) is anS-
sorted equivalence onX. ut

Exercise 1.1.10.Show that if≡ is anS-sorted equivalence onX then for alls∈ S
andx,y∈ Xs, [x]≡s = [y]≡s iff x≡s y. ut

Notation. Subscripts selecting components ofS-sorted sets (functions, relations,
. . .) are often omitted when there is no danger of confusion. Then Exercise 1.1.10
would read: “. . . for alls∈ Sandx,y∈ Xs, [x]≡ = [y]≡ iff x≡ y.” ut

1.2 Signatures and algebras

The functions and data types defined by a program have names. These names are
used to compute with and reason about the program, and to build larger programs
which rely on the functionality the program provides. The connection between a
program and an algebra used to model it is provided by these names, which are at-
tached to the corresponding components of the algebra. The set of names associated
with an algebra is called its signature. The signature of an algebra defines thesyntax
of the algebra by characterising the ways in which its components may legally be
combined; the algebra itself supplies thesemanticsby assigning interpretations to
the names in the signature.

Definition 1.2.1 (Many-sorted signature).A (many-sorted) signatureis a pairΣ =
〈S,Ω〉, where:

• S is a set (of sort names); and
• Ω is anS∗×S-sorted set (of operation names)

whereS∗ is the set of finite (including empty) sequences of elements ofS. We will
sometimes writesorts(Σ) for Sandops(Σ) for Ω . Σ is asubsignatureof a signature
Σ ′ = 〈S′,Ω ′〉 if S⊆ S′ andΩw,s⊆Ω ′w,s for all w∈ S∗,s∈ S. ut

Page: 18 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

1.2 Signatures and algebras 19

Many-sorted signatures will be referred to asalgebraicsignatures when it is neces-
sary to distinguish them from other kinds of signatures to be introduced later.

Notation. Saying thatf :s1×·· ·×sn→ s is in Σ = 〈S,Ω〉means thats1 . . .sn ∈ S∗,
s∈ S and f ∈ Ωs1...sn,s. Then f is said to havearity s1 . . .sn andresult sort s. The
abbreviationf :s will be used forf :ε → s (ε is the empty sequence). ut

This definition of signature does not accommodate programs containing higher-
order functions, or functions returning multiple results. A possible extension to han-
dle higher-order functions is briefly discussed in Section 2.7.6. As for functions with
multiple results, a functionf :s1×·· ·×sn→ t1×·· ·× tm may be viewed as a family
of m functions

f1:s1×·· ·×sn→ t1 . . . fm:s1×·· ·×sn→ tm.

Generalising the definition of signature to handle such functions in a more di-
rect way is easy but makes subsequent developments somewhat messier in a non-
interesting way.

The definition abovedoespermit overloaded operation names, since it is possible
to have bothf :s1× ·· · × sn→ s and f : t1× ·· · × tm→ t in a signatureΣ , where
s1 . . .sns 6= t1 . . . tmt. A more restrictive definition of signature, adequate for most
purposes, would have a setΩ of operation names (and a setSof sort names) with
functionsarity:Ω → S∗ andsort:Ω → S. These two definitions are equivalent if
each operation name inΩ is taken to be tagged with its arity and result sort.

In the rest of this section, letΣ = 〈S,Ω〉 be a signature.

Definition 1.2.2 (Many-sorted algebra).A Σ -algebra Aconsists of:

• anS-sorted set|A| of carrier sets(or carriers); and
• for each f :s1× ·· ·× sn→ s in Σ , a function (oroperation) (f :s1× ·· ·× sn→

s)A: |A|s1×·· ·× |A|sn→ |A|s. ut

If A is a Σ -algebra ands is a sort name inΣ then |A|s, the carrier set of sorts
in A, is the universe of data values of sorts; accordingly, we often refer to the
elements of carrier sets asvalues. If f :s1×·· ·× sn→ s is in Σ then the operation
(f :s1×·· ·×sn→ s)A is a function on the corresponding carrier sets ofA. If n = 0
(i.e. f :s), then|A|s1×·· ·×|A|sn is a singleton set containing the empty tuple〈〉, and
then(f :s)A may be viewed as a constant denoting the value(f :s)A(〈〉)∈ |A|s. Notice
that (f :s1×·· ·× sn→ s)A is a total function2 so algebras as defined here are only
appropriate for modelling programs containing total functions. See Sections 2.7.3–
2.7.5 for several ways of extending the definitions to cope with partial functions.
Note also that there is no restriction on the cardinality of|A|s; in particular,|A|s may
be empty and need not be countable.

Notation. Let A be aΣ -algebra and letf :s1×·· ·×sn→ sbe inΣ . We always write
fA in place of(f :s1×·· ·× sn→ s)A when there is no danger of confusion. When
n = 0 (i.e. f :s), we write(f :s)A or fA in place of(f :s)A(〈〉). ut

2 All functions in this book are total except where they are explicitly designated as partial.

Page: 19 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

20 1 Universal algebra

Exercise 1.2.3.If Ωε,s 6= ∅ for somes∈S, then there are no〈S,Ω〉-algebras having
an empty carrier of sorts. Characterise signatures for which all algebras have non-
empty carriers of all sorts. ut

Example 1.2.4.LetS1= {shape,suit} and letΩ1ε,shape= {box}, Ω1ε,suit = {hearts},
Ω1shape,shape= {boxify}, Ω1shapesuit,suit = { f}, andΩ1w,s = ∅ for all other w ∈
S1∗,s∈ S1. ThenΣ1 = 〈S1,Ω1〉 is a signature with sort namesshapeand suit
and operation namesbox:shape, hearts:suit, boxify:shape→ shapeand f :shape×
suit→ suit. We can presentΣ1 in tabular form as follows (this notation will be used
later with the obvious meaning):

Σ1 = sorts shape,suit
ops box:shape

hearts:suit
boxify:shape→ shape
f :shape×suit→ suit

We define aΣ1-algebraA1 as follows:

|A1|shape= {2,4},
|A1|suit = {♣,♥,♠},
boxA1 = 2 ∈ |A1|shape,
heartsA1 =♥ ∈ |A1|suit,
boxifyA1: |A1|shape→ |A1|shape= {2 7→2,4 7→2},

and fA1: |A1|shape×|A1|suit→ |A1|suit is defined by the following table:

fA1 ♣ ♥ ♠
2 ♣ ♠ ♥
4 ♥ ♠ ♠

(NOTE: Reference will be made toΣ1 andA1 in examples throughout the rest of
this chapter.) ut

Definition 1.2.5 (Subalgebra).Let A andB beΣ -algebras.B is asubalgebraof A
if:

• |B| ⊆ |A|; and
• for f :s1× ·· · × sn → s in Σ and b1 ∈ |B|s1, . . . ,bn ∈ |B|sn, fB(b1, . . . ,bn) =

fA(b1, . . . ,bn).

B is apropersubalgebra ofA if it is a subalgebra ofA and|B| 6= |A|. A subalgebra of
A is determined by anS-sorted subset|B| of |A| which is closed under the operations
of Σ , i.e. such that for eachf :s1×·· ·× sn→ s in Σ andb1 ∈ |B|s1, . . . ,bn ∈ |B|sn,
fA(b1, . . . ,bn) ∈ |B|s. ut

If B is a (proper) subalgebra ofA thenB is “smaller” thanA in the sense that it
contains fewerdata valuesthanA. BothA andB areΣ -algebras though, soA andB
contain interpretations for exactly the same sort and operation names.

Page: 20 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

1.2 Signatures and algebras 21

Exercise 1.2.6.Let A be aΣ -algebra. Show that the intersection of any family of
(carriers of) subalgebras ofA is a (carrier of a) subalgebra ofA. Use this to show
that for anyX ⊆ |A|, there is a least subalgebra ofA that containsX. This is called
the subalgebra of A generated by X. Give an explicit construction of this algebra.
(HINT : Consider the family ofS-sorted setsXi ⊆ |A|, i≥ 0, whereX0 = X andXi+1 is
obtained fromXi by adding the results of applying the operations ofA to arguments
in Xi .) ut

Definition 1.2.7 (Reachable algebra).Let A be aΣ -algebra.A is reachableif A has
no proper subalgebra (equivalently, ifA is generated by∅). ut

By Exercise 1.2.6, every algebra has a unique reachable subalgebra.

Example 1.2.8.Let Σ1 = 〈S1,Ω1〉 andA1 be as defined in Example 1.2.4. Define
a Σ1-algebraB1 by

|B1|shape= {2},
|B1|suit = {♥,♠},
boxB1 = 2 ∈ |B1|shape,
heartsB1 =♥ ∈ |B1|suit,
boxifyB1: |B1|shape→ |B1|shape= {2 7→2},
fB1: |B1|shape×|B1|suit→ |B1|suit = {〈2,♥〉 7→ ♠,〈2,♠〉 7→ ♥}.

B1 is the subalgebra ofA1 generated by∅. That is,B1 is the reachable subalgebra
of A1. ut

Definition 1.2.9 (Product algebra).Let A andB beΣ -algebras. Theproduct alge-
bra A×B is theΣ -algebra defined as follows:

• |A×B|= |A|× |B|; and
• for eachf :s1×·· ·×sn→ s in Σ and〈a1,b1〉 ∈ |A×B|s1, . . . ,〈an,bn〉 ∈ |A×B|sn,

fA×B(〈a1,b1〉, . . . ,〈an,bn〉) = 〈 fA(a1, . . . ,an), fB(b1, . . . ,bn)〉 ∈ |A×B|s.

This generalises to the product∏〈Ai〉i∈I of a family of Σ -algebras, indexed by an
arbitrary setI (possibly empty), as follows:

• |∏〈Ai〉i∈I |= ∏〈|Ai |〉i∈I ; and
• for each f :s1× ·· · × sn→ s in Σ and f1 ∈ |∏〈Ai〉i∈I |s1, . . . , fn ∈ |∏〈Ai〉i∈I |sn,

fΠ 〈Ai〉i∈I
(f1, . . . , fn)(i) = fAi (f1(i), . . . , fn(i)) for all i ∈ I . ut

Exercise 1.2.10.Definition 1.2.9 shows how twoΣ -algebras can be combined to
form a newΣ -algebra by taking the Cartesian product of their carriers. According
to Exercise 1.2.6, the same thing can be done (with subalgebras of a fixed algebra)
using intersection. Try to formulate definitions ofunionanddisjoint unionof alge-
bras, where|A∪B|= |A|∪ |B| and|A]B|= |A|] |B| respectively. What happens?

ut

Page: 21 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

22 1 Universal algebra

1.3 Homomorphisms and congruences

A homomorphism between algebras is the analogue of a function between sets, and
a congruence relation on an algebra is the analogue of an equivalence relation on a
set. An algebra has more structure than a set, so homomorphisms and congruences
are required to respect the additional structure (i.e. the behaviour of the operations).
Homomorphisms and congruences are important basic tools for relating algebras
and constructing new algebras from old ones.

Throughout this section, letΣ = 〈S,Ω〉 be a signature.

Definition 1.3.1 (Homomorphism).LetAandBbeΣ -algebras. AΣ -homomorphism
h:A→ B is an S-sorted functionh: |A| → |B| which respects the operations of
Σ , i.e. such that for allf :s1× ·· · × sn → s in Σ and a1 ∈ |A|s1, . . . ,an ∈ |A|sn,
hs(fA(a1, . . . ,an)) = fB(hs1(a1), . . . ,hsn(an)). A Σ -homomorphismh:A→ B is an
identity (an inclusion, surjective, . . .) if it is an identity (an inclusion, surjective,
. . .) when viewed as anS-sorted function. ut

Notation. If h:A→ B is aΣ -homomorphism, then|h|: |A| → |B| denotesh viewed
as anS-sorted function. The only difference betweenh and|h| is that in the case of
|h| we have “forgotten” that the additional condition required of a homomorphism
is satisfied. ut

Informally, the homomorphism condition says that the behaviour of the opera-
tions inA is reflected in that of the operations inB. This condition can be expressed
in the form of a diagram as follows:

|A|s1×·· ·× |A|sn

|A|s

-
hs1×·· ·×hsn

-
hs

?

fA

|B|s1×·· ·× |B|sn

|B|s

?

fB

where(hs1×·· ·×hsn)(as1, . . . ,asn)= (hs1(as1), . . . ,hsn(asn)) for all a1∈ |A|s1, . . . ,an∈
|A|sn. The homomorphism condition amounts to the requirement that this diagram
commutes, i.e. that composing the functions on the top and right-hand arrows gives
the same result as composing the functions on the left-hand and bottom arrows. Such
commuting diagrams will be used heavily in later chapters, particularly in Chapter 3.

Example 1.3.2.Let Σ1 = 〈S1,Ω1〉 andA1 be as defined in Example 1.2.4. Define
a Σ1-algebraC1 by

Page: 22 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

1.3 Homomorphisms and congruences 23

|C1|shape= |C1|suit = {1,2,3},
boxC1 = 1∈ |C1|shape,
heartsC1 = 2∈ |C1|suit,
boxifyC1: |C1|shape→ |C1|shape= {1 7→ 1,2 7→ 3,3 7→ 1},

and fC1: |C1|shape×|C1|suit→ |C1|suit is defined by the following table:

fC1 1 2 3
1 1 2 3
2 2 1 2
3 2 2 1

Let h1:|A1| → |C1| be theS1-sorted function such that

h1shape= {2 7→ 1,4 7→ 3},
h1suit = {♣ 7→ 1,♥ 7→ 2,♠ 7→ 2}.

It is easy to verify thath1:A1→C1 is aΣ1-homomorphism by checking the fol-
lowing:

h1shape(boxA1) = boxC1

h1suit(heartsA1) = heartsC1

h1shape(boxifyA1(2)) = boxifyC1(h1shape(2))
h1shape(boxifyA1(4)) = boxifyC1(h1shape(4))

h1suit(fA1(2,♣)) = fC1(h1shape(2),h1suit(♣))
h1suit(fA1(2,♥)) = fC1(h1shape(2),h1suit(♥))
h1suit(fA1(2,♠)) = fC1(h1shape(2),h1suit(♠))
h1suit(fA1(4,♣)) = fC1(h1shape(4),h1suit(♣))
h1suit(fA1(4,♥)) = fC1(h1shape(4),h1suit(♥))
h1suit(fA1(4,♠)) = fC1(h1shape(4),h1suit(♠)). ut

Exercise 1.3.3.Let A be aΣ -algebra. Show thatid|A|:A→ A (the identityS-sorted
function) is aΣ -homomorphism. Leth:A→B andh′:B→C beΣ -homomorphisms.
Show that|h|;|h′|: |A| → |C| is aΣ -homomorphismh;h′:A→C. ut

Exercise 1.3.4.Let h:A→ B be aΣ -homomorphism, and letA′ be a subalgebra of
A. Let theimage of A′ under hbe theΣ -algebrah(A′) defined as follows:

• |h(A′)|= |h|(|A′|); and
• for eachf :s1×·· ·×sn→ s in Σ anda1∈ |A′|s1, . . . ,an∈ |A′|sn, fh(A′)(hs1(a1), . . . ,hsn(an))=

hs(fA′(a1, . . . ,an)).

Show thath(A′) is a well-definedΣ -algebra (in particular, that the functionfh(A′): |h(A′)|s1×
·· ·× |h(A′)|sn→ |h(A′)|s is well-defined for eachf :s1×·· ·×sn→ s in Σ) and that
it is a subalgebra ofB. Formulate a definition of thecoimageof a subalgebraB′ of
B underh, and show that it is a subalgebra ofA. ut

Exercise 1.3.5.Let h:A→ B be aΣ -homomorphism, and supposeX ⊆ |A|. Show
that the subalgebra ofB generated by|h|(X) ⊆ |B| is the image of the subalgebra
of A generated byX. Show that it follows that ifh:A→ B is surjective andA is
reachable thenB is reachable. ut

Page: 23 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

24 1 Universal algebra

Exercise 1.3.6.LetBbe a reachableΣ -algebra. Show that for anyΣ -algebraA, there
is at most oneΣ -homomorphismh:B→A, and that anyΣ -homomorphismh:A→B
is surjective. ut

Definition 1.3.7 (Isomorphism).Let A andB beΣ -algebras. AΣ -homomorphism
h:A→ B is a Σ -isomorphismif it has an inverse, i.e. there is aΣ -homomorphism
h−1:B→ A such thath;h−1 = id|A| andh−1;h = id|B|. (Exercise:Show that ifh−1

exists then it is unique.) ThenA andB are calledisomorphicand we writeh:A∼= B
or justA∼= B. ut

Exercise 1.3.8.Let h:A∼= B andh′:B∼=C beΣ -isomorphisms. Show that their com-
position is aΣ -isomorphismh;h′:A∼= C. Show that∼= (as a binary relation onΣ -
algebras) is reflexive and symmetric, and is therefore an equivalence relation.ut

Two isomorphic algebras are typically regarded as indistinguishable for all practi-
cal purposes. It is easy to see why: the only way in which they can differ is in the
particular choice of data values in the carriers. The size of the carriers and the way
that the operations behave on the values in the carriers is exactly the same. For this
reason we are often satisfied with a definition of an algebra “up to isomorphism”,
i.e. a description of an isomorphism class of algebras in a context where one would
expect a definition of a single algebra. An example of this is in Fact 1.4.10 below.
The notion of isomorphism can be generalised to other kinds of structures, where
it embodies exactly the same concept of indistinguishability. See Chapter 3 for this
generalisation and for many more examples of definitions of objects “up to isomor-
phism”.

Example 1.3.9.Let Σ1 = 〈S1,Ω1〉 andA1 be as defined in Example 1.2.4. Define
a Σ1-algebraD1 by

|D1|shape= {2,4},
|D1|suit = {1,2,3},
boxD1 =4∈ |D1|shape,
heartsD1 = 2∈ |D1|suit,
boxifyD1: |D1|shape→ |D1|shape= {2 7→ 4,4 7→4},

and fD1: |D1|shape×|D1|suit→ |D1|suit is defined by the following table:

fD1 1 2 3
2 2 3 3
4 1 3 2

Let i1:|A1| → |D1| be theS1-sorted function such that

i1shape= {2 7→ 4,4 7→2}
i1suit = {♣ 7→ 1,♥ 7→ 2,♠ 7→ 3}.

This defines aΣ1-homomorphismi1:A1→D1 which is aΣ1-isomorphism, soA1∼=
D1. ut

Page: 24 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

1.3 Homomorphisms and congruences 25

Exercise 1.3.10.Show that a homomorphism is an isomorphism iff it is bijective.
ut

Exercise 1.3.11.Show that there is an injective homomorphismh:A→ B iff A is
isomorphic to a subalgebra ofB. ut

Example 1.3.12.Let Σ = 〈S,Ω〉 be the signature

sorts s
ops a:s

f :s→ s

and defineΣ -algebrasA andB by

|A|s = Nat (the natural numbers),
aA = 0∈ |A|s,
fA: |A|s→ |A|s = {n 7→ n+1 | n∈ Nat},

|B|s = {n∈ Nat | the Turing machine with G̈odel numbern halts on all inputs},
aB = the smallestn∈ |B|s,
fB: |B|s→ |B|s = {n∈ |B|s 7→ the smallestm∈ |B|s such thatm> n}.

Let i: |A| → |B| be theS-sorted function such that

is(n) = the(n+1)st smallest element of|B|s

for all n∈ |A|s. The functionis is well-defined since|B|s is infinite. This defines a
Σ -homomorphismi:A→ B which is an isomorphism.

Although A∼= B, theΣ -algebrasA andB are not “the same” from the point of
view of computability: everything inA is computable, in contrast toB (|B|s is not
recursively enumerable andfB is not computable). Isomorphisms capturestructural
similarity, ignoring what the values in the carriers are and what the operations actu-
ally compute. This example shows that, for some purposes, properties stronger than
structural similarity are important. ut

Definition 1.3.13 (Congruence).Let A be aΣ -algebra. AΣ -congruence on Ais
an (S-sorted) equivalence≡ on |A| which respects the operations ofΣ : for all
f :s1×·· ·×sn→ s in Σ anda1,a′1 ∈ |A|s1, . . . ,an,a′n ∈ |A|sn, if a1≡s1 a′1 and . . . and
an≡sn a′n then fA(a1, . . . ,an)≡s fA(a′1, . . . ,a

′
n). ut

Exercise 1.3.14.Show that the intersection of any family ofΣ -congruences onA is
aΣ -congruence onA. Use this to show that for anyS-sorted binary relationRon |A|
there is a least (with respect to⊆) Σ -congruence onA which includesR.

Show that the kernel of anyΣ -homomorphismh:A→ B is aΣ -congruence onA.
Show that a surjectiveΣ -homomorphism is an isomorphism iff its kernel is the

identity. ut

Definition 1.3.15 (Quotient algebra).Let A be aΣ -algebra, and let≡ be aΣ -
congruence onA. Thequotient algebra of A modulo≡ is theΣ -algebraA/≡ defined
by:

Page: 25 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

26 1 Universal algebra

• |A/≡|= |A|/≡; and
• for eachf :s1×·· ·×sn→ sanda1∈ |A|s1, . . . ,an∈ |A|sn, fA/≡([a1]≡s1

, . . . , [an]≡sn
)=

[fA(a1, . . . ,an)]≡s. ut

Exercise 1.3.16.Show thatA/≡ in Definition 1.3.15 is a well-definedΣ -algebra.
ut

Example 1.3.17.Let Σ1 = 〈S1,Ω1〉 andA1 be as defined in Example 1.2.4, and let
≡= 〈≡s〉s∈S1 be theS1-sorted binary relation on|A1| defined by

≡shape= {〈2,2〉,〈4,4〉}
≡suit = {〈♣,♣〉,〈♥,♥〉,〈♥,♠〉,〈♠,♥〉,〈♠,♠〉}.

This defines a congruence onA1. A1/≡ is theΣ1-algebra defined by

|A1/≡|shape= {{2},{4}},
|A1/≡|suit = {{♣},{♥,♠}},
boxA1/≡ = {2} ∈ |A1/≡|shape,
heartsA1/≡ = {♥,♠} ∈ |A1/≡|suit,
boxifyA1/≡: |A1/≡|shape→ |A1/≡|shape= {{2} 7→ {2},{4} 7→ {2}},

and fA1/≡: |A1/≡|shape×|A1/≡|suit→ |A1/≡|suit is defined by the following table:

fA1/≡ {♣} {♥,♠}
{2} {♣} {♥,♠}
{4} {♥,♠} {♥,♠} ut

Exercise 1.3.18.Let ≡ be aΣ -congruence onA, and leths(a) = [a]≡s for s∈ S,
a∈ |A|s. Show that〈hs: |A|s→ (|A|/≡)s〉s∈S is aΣ -homomorphismh:A→A/≡with
ker(h) =≡. ut

Exercise 1.3.19.Let h:A→ B be aΣ -homomorphism. Show thatA/ker(h) is iso-
morphic toh(A). (HINT : The isomorphism is given by[a]ker(hs) 7→ hs(a) for s∈ S,
a∈ |A|s.) ut

Exercise 1.3.20.Let≡ be aΣ -congruence onA. Show that for anyΣ -homomorphism
h:A→ B such that≡⊆ ker(h), there exists a uniqueΣ -homomorphismg:A/≡→ B
such thaths(a) = gs([a]≡s) for all s∈ S, a∈ |A|s. ut

Exercise 1.3.21.Show that there is a surjective homomorphismh:A→B iff there is
a congruence≡ onA such thatB is isomorphic toA/≡. ut

Exercise 1.3.22.Let A be aΣ -algebra, let≡ be a congruence onA and letB be a
subalgebra ofA/≡. Show that there is a subalgebraC of A and congruence≡′ on
C such thatB = C/≡′. ut

Exercise 1.3.23.Let h:A→ B be aΣ -homomorphism. Show that there is a unique
Σ -congruence≡ on A and a unique injectiveΣ -homomorphismg:A/≡→ B such
thaths(a) = gs([a]≡s) for all s∈ S, a∈ |A|s. ut

Page: 26 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

1.4 Term algebras 27

1.4 Term algebras

For any signatureΣ there is a specialΣ -algebra whose values are just well-formed
terms (i.e. expressions) built from the operation names inΣ . A Σ -algebra of terms
with variables is similarly determined by a signatureΣ = 〈S,Ω〉 and anS-sorted
set of variables. These algebras are rather boring insofar as modelling programs is
concerned — the term algebra models a program which does no real computation.
But the homomorphisms from these algebras toother algebras turn out to be very
useful technical tools, as shown by the definitions below.

Throughout this section, letΣ = 〈S,Ω〉 be a signature and letX be anS-sorted
set (of variables), wherex∈Xs for s∈Smeans that the variablex is of sorts (written
x:s). Note that “overloading” of variable names is permitted here, since there is no
requirement thatXs andXs′ be disjoint fors 6= s′ ∈ S.

Definition 1.4.1 (Term algebra).The Σ -algebra TΣ (X) of terms with variables X
is theΣ -algebra defined as follows:

• |TΣ (X)| is the least (with respect to⊆) S-sorted set of words (sequences) over the
alphabet

S∪
⋃

w∈S∗
s∈S

Ωw,s∪
⋃
s∈S

Xs∪{: ,(, ,,)}

such that:

– the word “x:s” ∈ |TΣ (X)|s for all s∈ Sandx∈ Xs; and
– for all f :s1×·· ·×sn→ s in Σ and all wordst1 ∈ |TΣ (X)|s1, . . . , tn ∈ |TΣ (X)|sn,

the word “f (t1, . . . , tn):s” ∈ |TΣ (X)|s.

• for all f :s1×·· ·× sn→ s in Σ and all wordst1 ∈ |TΣ (X)|s1, . . . , tn ∈ |TΣ (X)|sn,
fTΣ (X)(t1, . . . , tn) = (the word) “f (t1, . . . , tn):s” ∈ |TΣ (X)|s.

(Quotation marks are used here solely to emphasize that terms are words, and are
not part of the words they delimit.) Ifs∈ S andt ∈ |TΣ (X)|s thent is a Σ -term of
sort s with variables X; thefree variables of tis the setFV(t)⊆ X of variables that
actually occur int: for s∈ Sandx∈ Xs, x∈ FV(t)s if t contains the subword “x:s”.

The Σ -algebra of ground termsis theΣ -algebraTΣ = TΣ (∅) of terms without
variables. Ifs∈ Sandt ∈ |TΣ |s thent is agroundΣ -term. ut

The values ofTΣ (X) are “fully-typed” terms formed using the variables inX and
the operation names inΣ , and the operations ofTΣ (X) just build complicated terms
from simpler terms. Note that a termt ∈ |TΣ (X)| need not contain all the variables
in X, and that some variables may occur more than once int. TΣ is also called the
Σ -word algebra, and its carriers|TΣ | are sometimes called theHerbrand universe
for Σ .

Example 1.4.2.Let Σ1 = 〈S1,Ω1〉 be as defined in Example 1.2.4. ThenTΣ1 is the
Σ1-algebra defined by

Page: 27 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

28 1 Universal algebra

|TΣ1|shape= { “box():shape” ,
“boxify(box():shape):shape” ,
“boxify(boxify(box():shape):shape):shape” ,
. . . },

|TΣ1|suit = { “hearts():suit” ,
“ f (box():shape,hearts():suit):suit” ,
“ f (boxify(box():shape):shape,hearts():suit):suit” ,
“ f (box():shape, f (box():shape,hearts():suit):suit):suit” ,
. . . }

where the operations ofTΣ1 are the term formation operations

boxTΣ1 = “box():shape” ∈ |TΣ1|shape,
heartsTΣ1 = “hearts():suit” ∈ |TΣ1|suit,
boxifyTΣ1

: |TΣ1|shape→ |TΣ1|shape

= { “box():shape” 7→ “boxify(box():shape):shape” ,
“boxify(box():shape):shape” 7→ “boxify(boxify(box():shape):shape):shape” ,
. . . },

and similarly for f :shape×suit→ suit. ut

Notation. Sort decorations (e.g. “:shape” in “ box():shape”) are often unambigu-
ously determined, and they will usually be omitted when this is the case. When
Ωε,s∩Xs = ∅ for somes∈ S, then variables of sorts cannot be confused with con-
stants (0-ary operations) of sorts and so we will usually drop the parentheses “()”
in the latter. We will omit quotation marks whenever it is clear from the context that
we are dealing with terms. Finally, in examples we will use infix notation for binary
operations when convenient. ut

Example 1.4.2 (revisited).We repeat Example 1.4.2, making use of these nota-
tional conventions.

Let Σ1 = 〈S1,Ω1〉 be as defined in Example 1.2.4. ThenTΣ1 is theΣ1-algebra
defined by

|TΣ1|shape= {box,boxify(box),boxify(boxify(box)), . . .},
|TΣ1|suit = {hearts, f (box,hearts), f (boxify(box),hearts), f (box, f (box,hearts)), . . .}

where the operations ofTΣ1 are the term formation operations

boxTΣ1 = box∈ |TΣ1|shape,
heartsTΣ1 = hearts∈ |TΣ1|suit,
boxifyTΣ1

: |TΣ1|shape→ |TΣ1|shape

= {box 7→ boxify(box),boxify(box) 7→ boxify(boxify(box)), . . .},

and similarly for f :shape×suit→ suit. ut

Example 1.4.3.The notational conventions above will almost always be applicable.
They cannot be adopted from the outset (i.e. in Definition 1.4.1) because of the
relatively rare examples where confusion can arise. For example, letΣ2 = 〈S2,Ω2〉

Page: 28 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

1.4 Term algebras 29

be the signature with sortss,s′, t and operationsa:s, a:s′, f :s→ t and f :s′→ t (no
mistakes here, repetition of names is intented).

According to the definition,|TΣ2|t = {“ f (a():s): t” , “ f (a():s′): t”}. If all sort dec-
orations were omitted then both of the terms in this set would become “f (a())” and
so|TΣ2|t would have just this single element. The “outer” decoration can be omitted
but the “inner” decoration is required, thus e.g. “f (a():s)”.

Similarly, if X is anS2-sorted set of variables such thata∈ Xs, then “f (a():s)”
and “f (a:s)” are different terms in|TΣ2(X)|t , so the convention of writing “a():s”
as “a:s” cannot be used.

Since the definitions permit variables and operation names likef (a():s) and even
“ or , or (), the custom of writing terms as sequences of symbols without explicit
separators can cause confusion. Luckily, such names never arise in practice and so
for the purposes of this book this problem can safely be forgotten. ut

Fact 1.4.4.For any Σ -algebra A and S-sorted function v:X→ |A| there is exactly
oneΣ -homomorphism v#:TΣ (X)→A that extends v, i.e. such that v#

s(ιX(x)) = vs(x)
for all s∈S, x∈Xs, whereιX:X→|TΣ (X)| is the embedding that maps each variable
in X to its corresponding term.

S-sorted sets Σ -algebras

X |TΣ (X)|

|A|

-⊂ ιX

?

|v#|

@
@

@
@

@
@

@R

v

TΣ (X)

A

?

v#

ut

The existence and uniqueness ofv# follow easily from the requirement thatv# ex-
tendsv (this fixes the value ofv# for any variable as a term in|TΣ (X)|) and thatv#

is a Σ -homomorphism (this determines the value ofv# for any term f (t1, . . . , tn) ∈
|TΣ (X)| as a function of the values ofv# for its immediate subtermst1, . . . , tn ∈
|TΣ (X)|). The homomorphism which results is the function which evaluatesΣ -terms
based on the assignment of values inA to variables inX given byv.

Definition 1.4.5 (Term evaluation).Let A be aΣ -algebraA and letv:X→|A| be an
S-sorted function. By Fact 1.4.4 there is a uniqueΣ -homomorphismv#:TΣ (X)→ A
that extendsv. Let s∈ Sand lett ∈ |TΣ (X)|s be aΣ -term of sorts; thevalue of t in A
under the valuation vis v#(t) ∈ |A|s. Whent ∈ |TΣ |s the value oft does not depend
on v; then thevalue of t in Ais ∅#(t) where∅:∅→ |A| is the empty function.
To make the algebra explicit, we writetA(v) for v#(t), andtA for tA(∅) whent is
ground. ut

Page: 29 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

30 1 Universal algebra

Exercise 1.4.6.Let t ∈ |TΣ (X)| be aΣ -term and letA be aΣ -algebra. Show that if
v:X→ |A| andv′:X→ |A| coincide onFV(t), thentA(v) = tA(v′). This follows from
another fact: for anyt ∈ |TΣ (X)|, X⊆Y (so thatt ∈ |TΣ (Y)|) andv:Y→|A|, we have
tA(v) = tA(ι ;v), whereι :X ↪→Y is the inclusion (and soι ;v:X→ |A|). ut

Exercise 1.4.7.Define evaluation of terms in an inductive fashion. Convince your-
self that the result is the same as that given by Definition 1.4.5. ut

Exercise 1.4.8.Let h:A→ B be aΣ -homomorphism, letv:X→ |A| be anS-sorted
function, and lett ∈ |TΣ (X)| be aΣ -term. Using Fact 1.4.4, prove thath(v#(t)) =
(v;h)#(t). Compare this with a proof of the same thing using your inductive defini-
tion of term evaluation from Exercise 1.4.7. ut

Exercise 1.4.9.Functionsθ :X → |TΣ (Y)| are sometimes calledsubstitutions(of
terms inTΣ (Y) for variables inX). Using Fact 1.4.4, define theΣ -termt[θ] resulting
from applying the substitutionθ to aΣ -termt ∈ |TΣ (X)|. Show thatt[ιX] = t for any
t ∈ |TΣ (X)|, whereιX maps each variable inX to its corresponding term in|TΣ (X)|.
Define the compositionθ ;θ ′ of substitutionsθ :X→ |TΣ (Y)| andθ ′:Y→ |TΣ (Z)|,
and show that(t[θ])[θ ′] = t[θ ;θ ′] for anyΣ -termt and substitutionsθ andθ ′. ut

Notation. Supposeu∈ |TΣ (Y)|s for some sorts∈ S. Then[x 7→ u] (when used as a
substitution{x:s}∪X→|TΣ (X∪Y)|) is shorthand for the function{x:s 7→ u}∪{z 7→
z | z∈ X,z 6= x:s}. Fort ∈ |TΣ ({x:s}∪X)|, t[x 7→ u] ∈ |TΣ (X∪Y)| thus stands for the
term obtained by substitutingu for x in t. This notation generalises straightforwardly
to [x1 7→ u1, . . . ,xn 7→ un] andt[x1 7→ u1, . . . ,xn 7→ un] providedx1, . . . ,xn are distinct
variables. ut

Fact 1.4.10.The property of TΣ (X) in Fact 1.4.4 defines TΣ (X) up to isomorphism:
if B is a Σ -algebra andη :X → |B| is an S-sorted function such that for anyΣ -
algebra A and S-sorted function v:X → |A| there is a uniqueΣ -homomorphism
v$:B→ A such thatη ;|v$|= v then B is isomorphic to TΣ (X), whereη#:TΣ (X)→ B
is an isomorphism with inverseι$

X:B→ TΣ (X).

Page: 30 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

1.4 Term algebras 31

S-sorted sets Σ -algebras

X

|TΣ (X)|

|B|

|TΣ (X)|

�
�

�
�

�
�

��

ιX

-
η

@
@

@
@

@
@

@R

ιX

?

|η#|

?

|ι$
X|

TΣ (X)

B

TΣ (X)

?

η#

?

ι
$
X

�

��

ι#
X = idTΣ (X)

ut

Fact 1.4.4 says that the definition ofTΣ (X) fixes the definition of the term evalu-
ation function “for free” (see Definition 1.4.5). Fact 1.4.10 says that this property
is unique (up to isomorphism) toTΣ (X), so in fact the explicit definition ofTΣ (X)
is superfluous — it would be enough to defineTΣ (X) as “the” (unique up to iso-
morphism)Σ -algebra for which Definition 1.4.5 makes sense.TΣ (X) is a particular
example of afree object— see Section 3.5 for more on this topic.

Example 1.4.11.Let Σ1 = 〈S1,Ω1〉 be as defined in Example 1.2.4. ThenTΣ1 is
theΣ1-algebra described in Example 1.4.2. LetT1 be theΣ1-algebra defined by

|T1|shape= {box,box boxify,box boxify boxify, . . .},
|T1|suit = {hearts,box hearts f,box boxify hearts f,box box hearts f f, . . .}

where the operations ofT1 are the postfix term formation operations

boxT1 = box∈ |T1|shape,
heartsT1 = hearts∈ |T1|suit,
boxifyT1: |T1|shape→ |T1|shape= {box 7→ box boxify,box boxify7→ box boxify boxify, . . .},

and similarly for f :shape× suit→ suit. ThenT1 satisfies the property ofTΣ1 in
Fact 1.4.4 (the fact thatX = ∅ here makes this easy to check — there is only one
functionv:∅→ |A1| for anyΣ1-algebraA1), so by Fact 1.4.10 (whereη :∅→ |T1|
is the empty function)T1 is isomorphic toTΣ1. The isomorphism∅#:TΣ1→ T1
converts aΣ1-term to its postfix form. ut

Exercise 1.4.12.Prove Facts 1.4.4 and 1.4.10. ut

Exercise 1.4.13.Let A be aΣ -algebra and let∅:∅→ |A| be the empty function.
Show thatA is reachable iff the unique homomorphism∅# : TΣ → A is surjective,
i.e., iff every element in|A| is the value of a groundΣ -term. ut

Page: 31 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

32 1 Universal algebra

Exercise 1.4.14.Show thatTΣ is reachable. Put this fact together with previous re-
sults to show that aΣ -algebra is reachable iff it is isomorphic to a quotient ofTΣ , and
that there is a one-to-one correspondence between isomorphism classes of reachable
Σ -algebras and congruences onTΣ . ut

Exercise 1.4.15.Let G be a context-free grammar over an alphabetT of terminal
symbols. Consider the signatureΣG = 〈SG,ΩG〉, whereSG is the set of non-terminal
symbols ofG and each productionX→ Y1 . . .Yn in G corresponds to an operation
in ΩG with result sortX and arity given by the sequence of non-terminal symbols
in Y1 . . .Yn. TheΣG-algebraAG has carriers|AG|X = T∗ for all X ∈ SG, and for any
p:X1× ·· · ×Xn → X in ΣG and a1, . . . ,an ∈ T∗, pAG(a1, . . . ,an) is the sequence
obtained by substitutinga j for the j th non-terminal symbol on the right-hand side
of the production associated withp. Prove the following:

1. For anyX ∈ SG, the carrier of sortX in the reachable subalgebra ofAG is the set
of sequences generated from the non-terminalX in G.

2. The algebraTΣG is isomorphic to the algebra of parse trees ofG.
3. The grammarG is unambiguous iff the reachable subalgebra ofAG is isomorphic

to TΣG. ut

1.5 Changing signatures

A signature morphism defines a mapping from the sort and operation names in one
signature to those in another signature, in such a way that the arity and result sort
of operations are respected. (This requirement is analogous to the requirement that
homomorphisms respect the behaviour of the operations.) Signature morphisms will
be used extensively in later chapters to mediate constructions involving multiple
signatures. The crucial point that makes these constructions work is that a signature
morphism fromΣ to Σ ′ induces translations of syntax (terms — later, also logical
formulae) and semantics (algebras and homomorphisms) betweenΣ andΣ ′.

Two kinds of signature morphisms are introduced in this section. Only the first
kind will be used in the rest of the book. The second kind,derived signature mor-
phisms, are introduced mainly as an example of one way in which a basic definition
could be modified. Such a modification would not affect later definitions and re-
sults, since these depend only on the induced translations of terms, algebras and
homomorphisms.

1.5.1 Signature morphisms

Definition 1.5.1 (Signature morphism).Let Σ = 〈S,Ω〉 andΣ ′= 〈S′,Ω ′〉 be signa-
tures. Asignature morphismσ :Σ → Σ ′ is a pairσ = 〈σsorts,σops〉 whereσsorts:S→

Page: 32 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

1.5 Changing signatures 33

S′ and σops is a family of functions respecting the arities and result sorts of op-
eration names inΣ , that is σops = 〈σw,s:Ωw,s→Ω ′

σ∗sorts(w),σsorts(s)
〉w∈S∗,s∈S (where

for w = s1 . . .sn ∈ S∗, σ∗sorts(w) = σsorts(s1) . . .σsorts(sn)). A signature morphism
σ :Σ → Σ ′ is a signature inclusionσ :Σ ↪→ Σ ′ if σsorts is an inclusion andσw,s is
an inclusion for allw∈ S∗,s∈ S. ut

Signature morphisms as defined above will be referred to asalgebraic signature
morphisms when it is necessary to distinguish them from other kinds of signature
morphisms to be introduced later. Note thatσsorts and (the functions constituting)
σops are not required to be either surjective or injective.

Notation. Whenσ :Σ → Σ ′, bothσsorts andσops (and its componentsσw,s for all
w∈ S∗,s∈ S) will be denoted byσ . ut

Example 1.5.2.Let Σ = 〈S,Ω〉 be the signature

sorts polygon,figure, trump
ops square:polygon

boxify:polygon→ polygon
boxify:polygon→ figure
h:figure× trump→ trump

Let Σ1 = 〈S1,Ω1〉 be the signature defined in Example 1.2.4.
Defineσsorts:S→ S1 andσops= 〈σw,s:Ωw,s→Ω1σ∗sorts(w),σsorts(s)〉w∈S∗,s∈S by

σsorts= {polygon7→ shape,figure 7→ shape, trump 7→ suit},
σε,polygon= {square7→ box}, σpolygon,polygon= {boxify 7→ boxify},
σpolygon,figure = {boxify 7→ boxify},
σfiguretrump,trump = {h 7→ f},

andσw,s = ∅ for all otherw∈ S∗,s∈ S. Thenσ :Σ → Σ1 is a signature morphism.
ut

Exercise 1.5.3.Let σ :Σ→Σ ′ andσ ′:Σ ′→Σ ′′ be signature morphisms. Let(σ ;σ ′)sorts=
σsorts;σ ′sorts and (σ ;σ ′)ops = σops;σ ′ops (or rather, to be more precise:(σ ;σ ′)w,s =
σw,s;σ ′σ∗sorts(w),σsorts(s)

for w∈ S∗,s∈ S). Show that this defines a signature morphism

σ ;σ ′:Σ → Σ ′′. ut

In the rest of this section, letσ :Σ → Σ ′ be a signature morphism, where
Σ = 〈S,Ω〉 andΣ ′ = 〈S′,Ω ′〉. As will be defined below, any such signature mor-
phism gives rise to a translation ofΣ -terms toΣ ′-terms, and ofΣ ′-algebras and ho-
momorphisms toΣ -algebras and homomorphisms. Note that the direction of trans-
lation of algebras and homomorphisms is “backwards” with respect to the direction
of the signature morphism, as the following figure indicates.

Page: 33 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

34 1 Universal algebra

Syntax



Semantics



Σ
-σ

Σ ′

Σ -terms -σ
Σ ′-terms

Σ -algebras �
σ

Σ ′-algebras

Σ -homomorphisms�
σ

Σ ′-homomorphisms

Definition 1.5.4 (Reduct algebra).Let A′ be aΣ ′-algebra. Theσ -reduct of A′ is the
Σ -algebraA′ σ defined as follows:

• |A′ σ |s = |A′|σ(s) for all s∈ S; and
• for all f :s1×·· ·×sn→ s in Σ ,

fA′ σ
: |A′ σ |s1×·· ·×|A

′
σ |sn→|A′ σ |s= σ(f)A′ : |A′|σ(s1)×·· ·×|A′|σ(sn)→|A′|σ(s).

ut

If Σ is a subsignature ofΣ ′, σ :Σ ↪→ Σ ′ is the signature inclusion, andA′ is a Σ ′-
algebra, thenA′ σ is aΣ -algebra which is justA′ with some carriers and/or opera-
tions removed.

Notation. We sometimes writeA′ Σ for A′ σ whenσ :Σ → Σ ′ is obvious, such as
whenσ is a signature inclusion. ut

Example 1.5.5.Let σ :Σ→ Σ1 be the signature morphism defined in Example 1.5.2
and letA1 be theΣ1-algebra defined in Example 1.2.4. ThenA1 σ is theΣ -algebra
such that

|A1 σ |polygon= |A1 σ |figure = {2,4}= |A1|shape,

|A1 σ |trump = {♣,♥,♠}= |A1|suit,

squareA1 σ
= 2 = boxA1,

boxifyA1 σ
: |A1 σ |polygon→ |A1 σ |polygon= {2 7→2,4 7→2}

= boxifyA1: |A1|shape→ |A1|shape,
boxifyA1 σ

: |A1 σ |polygon→ |A1 σ |figure = {2 7→2,4 7→2}
= boxifyA1: |A1|shape→ |A1|shape,

hA1 σ
: |A1 σ |figure×|A1 σ |trump→ |A1 σ |trump = {〈2,♣〉 7→ ♣,〈2,♥〉 7→ ♠, . . .}

= fA1: |A1|shape×|A1|suit→ |A1|suit.
ut

Exercise 1.5.6.A Σ -algebraA can be regarded as a function mapping the names in
Σ to their interpretations; theσ -reduct ofA is then the compositionσ ;A. Spell out
the details. ut

Exercise 1.5.7.Let σ :Σ → Σ ′ be a signature morphism that is surjective on sort
names, and letA′ be aΣ ′-algebra. Show that ifA′ σ is reachable thenA′ is reachable.
Give counterexamples showing that the opposite implication does not hold, and that
the implication itself does not hold if some sort names inΣ ′ are not in the image of
Σ underσ . ut

Page: 34 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

1.5 Changing signatures 35

Definition 1.5.8 (Reduct homomorphism).Leth′:A′→B′ be aΣ ′-homomorphism.
Theσ -reduct of h′ is theS-sorted functionh′ σ : |A′ σ | → |B′ σ | such that(h′ σ)s =
h′

σ(s) for all s∈ S. (Exercise:Show thath′ σ :A′ σ → B′ σ is aΣ -homomorphism.)
ut

Exercise 1.5.9.Define theσ -reduct≡′ σ of a Σ ′-congruence≡′ on aΣ ′-algebra
A′, and prove that it is aΣ -congruence onA′ σ . Show thatσ -reduct distributes over
quotient, i.e.(A′/≡′) σ = (A′ σ)/(≡′ σ) for all Σ ′-algebrasA′ andΣ ′-congruences
≡′ onA′. ut

The following definition of the translation of terms along a signature morphism
σ :Σ → Σ ′ may look somewhat daunting, but its simple upshot is to translate each
termt ∈ |TΣ (X)| to theΣ ′-term obtained by replacing each operation name fromΣ

by its image underσ . Some care must be taken in the treatment of variables: since
variables for different sorts are not required to be distinct, to make sure they are not
inadvertently identified by the translation, for each sorts′ in Σ ′ we have to take a
disjoint union of the sets of variables of sorts mapped tos′.

Definition 1.5.10 (Term translation).Let X be anS-sorted set of variables. Define
X′ = 〈X′s′〉s′∈S′ to be theS′-sorted set such that

X′s′ =
⊎

σ(s)=s′
Xs for eachs′ ∈ S′.

Then (TΣ ′(X′)) σ is a Σ -algebra. Leti:X → |(TΣ ′(X′)) σ | be the obvious embed-
ding (if not for the disjoint union in the definition ofX′ and explicit decoration of
variables with sorts in terms,i would coincide withιX which maps each variable
to its corresponding term). Then by Fact 1.4.4 there is a uniqueΣ -homomorphism
σ̂ :TΣ (X)→ (TΣ ′(X′)) σ extendingi:

S-sorted sets Σ -algebras

X |TΣ (X)|

|(TΣ ′(X′)) σ |

-⊂ ιX

?

|σ̂ |

@
@

@
@

@
@

@R

i

TΣ (X)

(TΣ ′(X′)) σ

?

σ̂ = i #

The translation of aΣ -term t∈ |TΣ (X)| by σ is theΣ ′-term σ̂(t) ∈ |TΣ ′(X′)|. To
keep the notation simple, we will write justσ(t) for σ̂(t). ut
Example 1.5.11.Let σ :Σ → Σ1 be the signature morphism defined in Exam-
ple 1.5.2, whereΣ = 〈S,Ω〉 andΣ1 = 〈S1,Ω1〉. Let X be theS-sorted set of vari-
ablesx:polygon,x:figure,y:figure,z: trump. TheS1-sorted set of variablesX′ in Def-
inition 1.5.10 is thenx:shape,x′:shape,y:shape,z:suit, and

Page: 35 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

36 1 Universal algebra

σ(h(boxify(x:polygon),h(x:figure,z))) = f (boxify(x), f (x′,z)),

σ(h(x:figure,h(boxify(boxify(square)),z))) = f (x′, f (boxify(boxify(box)),z)),

and so on. ut

Exercise 1.5.12.Let t ∈ |TΣ | be a groundΣ -term and letA′ be aΣ ′-algebra. Show
that the value oft is invariant under change of signature, i.e.σ(t)A′ = tA′ σ

.
Formulate and prove a more general version of this result in whicht may contain

variables. ut

1.5.2 Derived signature morphisms

A derived signature morphism fromΣ to Σ ′ is like an algebraic signature morphism
from Σ to Σ ′ except that operation names inΣ are mapped totermsover Σ ′. This
allows operation names inΣ to be mapped to combinations of operations inΣ ′, and
also handles the case where the order of arguments of the corresponding operations
in Σ andΣ ′ are different.

Definition 1.5.13 (Derived signature).Let Σ = 〈S,Ω〉 be a signature. For any se-
quences1 . . .sn ∈ S∗, let Is1...sn be theS-sorted set 1 :s1, . . . , n :sn. The derived
signature ofΣ is the signatureΣder = 〈S,Ω der〉 where for eachs1 . . .sn ∈ S∗ and
s∈ S, Ω der

s1...sn,s = |TΣ (Is1...sn)|s. ut

In the derived signature ofΣ , a Σ -term t of sort s with variablesIs1...sn represents
an operationt:s1× ·· · × sn → s. The variable i :si in Is1...sn thus stands for the
ith argument oft. Note that a “bare” variablei ∈ |TΣ (Is1...sn)|si is an operation
i:s1×·· ·×sn→ si in Σder, corresponding to a projection function.

Definition 1.5.14 (Derived signature morphism).Let Σ andΣ ′ be signatures. A
derived signature morphismδ :Σ → Σ ′ is an algebraic signature morphismδ :Σ →
(Σ ′)der. ut

Definition 1.5.15 (Derived algebra).Let Σ = 〈S,Ω〉 be a signature, and letA be a
Σ -algebra. Thederived algebra of Ais theΣder-algebraAder defined as follows:

• |Ader|= |A|; and
• for eacht:s1×·· ·×sn→ s in Σder anda1∈ |Ader|s1, . . . ,an∈ |Ader|sn, tAder(a1, . . . ,an)=

tA(v) ∈ |Ader|s wherev is theS-sorted function{(1 :s1) 7→ a1, . . . ,(n :sn) 7→
an}. ut

In the rest of this section, letδ :Σ → Σ ′ be a derived signature morphism. The
following corresponds to Definition 1.5.4 for algebraic signature morphisms; later
exercises correspond to Definitions 1.5.8 and 1.5.10 and related results.

Definition 1.5.16 (Reduct algebra w.r.t. a derived signature morphism).Let A′

be aΣ ′-algebra. Theδ -reduct of A′ is theΣ -algebraA′ δ defined as follows:

Page: 36 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

1.5 Changing signatures 37

• |A′ δ |s = |A′|δ (s) for all s∈ S; and
• for all f :s1×·· ·×sn→ s in Σ , fA′ δ

: |A′ δ |s1×·· ·×|A′ δ |sn→|A′ δ |s= δ (f)(A′)der.

Equivalently,A′ δ is theΣ -algebra(A′)der
δ , viewing δ as the algebraic signature

morphismδ :Σ → (Σ ′)der. ut

Exercise 1.5.17 (Reduct homomorphism w.r.t. a derived signature morphism).
What is theδ -reducth′ δ of aΣ ′-homomorphismh′:A′→B′? Prove thath′ δ :A′ δ →
B′ δ is aΣ -homomorphism. ut

Exercise 1.5.18 (Term translation w.r.t. a derived signature morphism).Let
t ∈ |TΣ (X)| be aΣ -term, whereX is anS-sorted set of variables. Defineδ (t), the
translation oft by δ (the result should be aΣ ′-term). ut

Example 1.5.19.Let Σ = 〈S,Ω〉 be the signature defined in Example 1.5.2, and let
Σ1 = 〈S1,Ω1〉 be the signature defined in Example 1.2.4. Letδ :Σ → Σ1 be the
derived signature morphism defined by

δsorts= {polygon7→ shape,figure 7→ shape, trump 7→ suit},
δε,polygon= {square7→ boxify(box)},
δpolygon,polygon= {boxify 7→ 1 :shape},
δpolygon,figure = {boxify 7→ boxify(boxify(1 :shape))},
δfiguretrump,trump = {h 7→ f (boxify(1 :shape), f (1 :shape, 2 :suit))},

andδw,s = ∅ for all otherw∈ S∗,s∈ S.
Let A1 be theΣ1-algebra defined in Example 1.2.4. ThenA1 δ is theΣ -algebra

such that

|A1 δ |polygon= |A1 δ |figure = {2,4},
|A1 δ |trump = {♣,♥,♠},
squareA1 δ

= 2,

boxifyA1 δ
: |A1 δ |polygon→ |A1 δ |polygon= {2 7→2,4 7→4}

boxifyA1 δ
: |A1 δ |polygon→ |A1 δ |figure = {2 7→2,4 7→2},

andhA1 δ
: |A1 δ |figure×|A1 δ |trump→ |A1 δ |trump is defined by the following table:

hA1 δ
♣ ♥ ♠

2 ♣ ♥ ♠
4 ♠ ♥ ♥

Let X be theS-sorted set of variablesx:polygon,x:figure,y:figure,z: trump. A
correct solution to Exercise 1.5.18 would translateh(boxify(x:polygon),h(x:figure,z))
(a Σ -term with variablesX) to

f (boxify(boxify(boxify(x))︸ ︷︷ ︸
=δ (boxify(x:polygon))

), f (boxify(boxify(x))︸ ︷︷ ︸
=δ (boxify(x:polygon))

, f (boxify(x′), f (x′,z))︸ ︷︷ ︸
=δ (h(x:figure,z))

)).

ut

Page: 37 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

38 1 Universal algebra

Exercise 1.5.20.Repeat Exercise 1.5.12 for the case of derived signature mor-
phisms. ut

Exercise 1.5.21.A more complex definition of derived signature morphismδ :Σ →
Σ ′ would allow a sort names in Σ to be mapped to aCartesian product s′1×·· ·×s′n
of sortss′1, . . . ,s

′
n in Σ ′. Give versions of the above definitions which permit this.ut

Exercise 1.5.22.Another variation on the definition of derived signature morphism
would permit operation names inΣ to be mapped to recursively defined functions
in terms of the operation names inΣ ′. Give versions of the above definitions which
would allow this. (HINT : Look at a book like [Sch86] before attempting this exer-
cise.) ut

1.6 Bibliographical remarks

This chapter presents the basic notions of universal algebra that are required in the
sequel. There is a vast literature on universal algebra as a branch of mathematics,
and the concepts and results we need here are a tiny fraction of this. Applications of
universal algebra in computer science are widespread, going back at least to [BL69].

For much more on universal algebra see e.g. [Grä79] or [Coh65] but note that
both of these handle only the single-sorted case. A presentation of some of this
material for a computer scientist audience is [Wec92], see also [MT92] where ap-
plications to some topics in computer science other than the ones covered in this
book are also indicated.

The style of presentation here is relaxed but it might still be too dense for some
readers, who might prefer the gentler style, with proofs of many of the results which
we omit here, in [GTW76], [EM85], [MG85] or [LEW96].

The generalisation from single-sorted to many-sorted algebras originates with
[Hig63]. First applications to computer science came later [Mai72], becoming
prominent with [GTW76]. The generalisation is straightforward from a purely math-
ematical standpoint, but there are a few subtle issues that will surface in later chap-
ters. For instance, we admit empty carrier sets in Definition 1.2.2, unlike most logic
books and, for instance, [BT87] and [Mos04]. Admitting empty carrier sets requires
more care in the presentation of rules for reasoning, see Exercise 2.4.10 below, but
it also makes some results smoother, see Exercise 2.5.18.

There are different definitions of many-sorted signature in the literature. The one
here is quite general, allowing overloading of operation names etc., and originates
with [GTWW73] and [Gog74]. In some early papers, signatures are called “oper-
ator domains”. Definitions that do not permit overloading are used in [EM85] and
[Wir90], but as remarked after Definition 1.2.1, these definitions are equivalent if
each operation name is taken to be tagged with its arity and result sort.

Signature morphisms emerged around 1978 in the context of early work on the
semantics of parameterised specifications in the style of Definition 6.3.5 below, see

Page: 38 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

1.6 Bibliographical remarks 39

[Ehr78] and [GB78]; Definition 1.5.1 is from the latter. Various variants and re-
strictions on this notion have been used in the meantime. One possible simplifying
assumption is to restrict attention to injective signature morphisms as in [BHK90],
or to bijective signature morphisms, which are sometimes referred to as “renam-
ings”. The notion of reduct, but only with respect to a signature inclusion, arises
in universal algebra. The generalisation from signature morphisms to derived sig-
nature morphisms originates in [GTW76], and is related to the even more general
notion of (theory) interpretation in logic [End72]. Since the 1970s, derived signa-
ture morphisms have made only sporadic appearances in the algebraic specification
literature, see for instance [SB83] and [HLST00].

Page: 39 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

Page: 40 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

Chapter 2
Simple equational specifications

A specification is an unambiguous description of a signatureΣ and a class ofΣ -
algebras. Because we model programs as algebras, a specification amounts to a
characterisation of a class of programs. Each of these programs is regarded as a
correct realisation of the specification.

Given a signatureΣ (which, if finite, may be presented by simply listing its sort
names and its operation names with their arities and result sorts), there are two
basic techniques that may be used for describing a class ofΣ -algebras. The first is
to simply give a list of all the algebras in the class. Unfortunately, we are almost
always interested ininfiniteclasses of algebras, where this technique is useless. The
second is to describe the functional behaviour of the algebras in the class by listing
the properties (axioms) they are to satisfy. This is the fundamental specification
technique used in work on algebraic specification and the one that will be studied in
this chapter. The simplest and most common case is the one in which properties are
expressed in the form of universally quantified equations; in most of this chapter,
we restrict attention to this case. Section 2.7 indicates other forms of axioms that
may be of use, along with some possible variations on the definitions of Chapter 1,
and further possibilities will be discussed in Chapter 4. Since most of the results in
this chapter are fairly standard and proofs are readily available in the literature, most
proofs are left as exercises for the reader.

Chapters 5 and 8 will cover additional techniques for describing classes of alge-
bras. All of these involve taking a class of algebras and performing a simple opera-
tion to obtain another class of algebras, often over a different signature. Using such
methods, complex specifications of classes of complex algebras may be built from
small and easily understood units.

2.1 Equations

Any given signature characterises the class of algebras over that signature. Although
this fixes the names of sorts and operations, it is an exceedingly limited form of de-

41

42 2 Simple equational specifications

scription since each such class contains a wide diversity of different algebras. Any
two algebras taken from such a class may have carrier sets of different cardinalities
and containing different elements; even if both algebras happen to have “match-
ing” carrier sets, the results produced by applying operations may differ. For most
applications it is necessary to focus on a subclass of algebras, obtained by impos-
ing axiomswhich serve as constraints on the permitted behaviour of operations.
One particularly simple form of axioms are equations, which constrain behaviour
by asserting that the value of two given terms arethe same. Equations have limited
expressive power, but this disadvantage is to some extent balanced by the simplicity
and convenience of reasoning in equational logic (see Sections 2.4 and 2.6).

Variables in equations will be taken from a fixed but arbitrary infinite setX . We
requireX to be closed under finite disjoint union: if〈Xi〉i∈I is finite andXi ⊆X
for all i ∈ I , then

⊎
〈Xi〉i∈I ⊆X . We use variable names likex,y,z in examples, and

so we assume that these are all inX . Throughout this section, letΣ = 〈S,Ω〉 be a
signature.

Definition 2.1.1 (Equation).A Σ -equation∀X • t = t ′ consists of:

• a finiteS-sorted setX (of variables), such thatXs⊆X for all s∈ S; and
• two Σ -termst, t ′ ∈ |TΣ (X)|s for some sorts∈ S.

A Σ -equation∀∅• t = t ′ is called aground (Σ -)equation. ut

Notation. The explicit quantification overX in aΣ -equation∀X • t = t ′ is essential,
as will become clear in Section 2.4. In spite of this fact, it is common in practice to
leave quantification implicit, writingt = t ′ in place of∀FV(t)∪FV(t ′)• t = t ′, and
we will follow this convention in examples when no confusion is possible. ut

Definition 2.1.2 (Satisfaction).A Σ -algebraA satisfies(or, is a model of) a Σ -
equation∀X • t = t ′, writtenA |=Σ ∀X • t = t ′, if for every (S-sorted) functionv:X→
|A|, tA(v) = t ′A(v).

A satisfies (or, is a model of) a setΦ of Σ -equations, writtenA |=Σ Φ , if A |=Σ ϕ

for every equationϕ ∈Φ . A classA of Σ -algebras satisfies aΣ -equationϕ, written
A |=Σ ϕ, if A |=Σ ϕ for everyA∈ A . Finally, a classA of Σ -algebras satisfies a
setΦ of Σ -equations, writtenA |=Σ Φ , if A |=Σ Φ for everyA∈A (equivalently,
if A |=Σ ϕ for everyϕ ∈Φ , i.e.A |=Σ ϕ for everyA∈A andϕ ∈Φ). ut

The definition of satisfaction provides the syntax of equations with the obvious se-
mantics: an algebraA satisfies an equation∀X • t = t ′ if for any given assignment of
values in|A| to the variables inX, the termst andt ′ evaluate inA to the same value.

Notation. We sometimes write|= in place of|=Σ whenΣ is obvious. ut

Exercise 2.1.3.Recall Σ1 andA1 from Example 1.2.4. Give someΣ1-equations
(both ground and non-ground) that are satisfied byA1. Give someΣ1-equations
(both ground and non-ground) that arenot satisfied byA1. ut

Page: 42 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.1 Equations 43

Exercise 2.1.4.If ∀X • t = t ′ is aΣ -equation andX ⊆ X′ (andX′s⊆X for all s∈ S),
it follows from Definition 2.1.1 that∀X′ • t = t ′ is also aΣ -equation. Show that
A |=Σ ∀X • t = t ′ implies thatA |=Σ ∀X′ • t = t ′. Give a counterexample showing that
the converse doesnot hold. (HINT : ConsiderXs = ∅ and|A|s = ∅ for somes∈ S.)
Show that itdoeshold if Σ has only one sort. ut

Exercise 2.1.5.Show that surjectiveΣ -homomorphisms preserve satisfaction ofΣ -
equations: ifh:A→B is a surjectiveΣ -homomorphism thenA |=Σ ϕ impliesB |=Σ ϕ

for anyΣ -equationϕ. Show that injectiveΣ -homomorphisms reflect satisfaction of
Σ -equations: ifh:A→ B is an injectiveΣ -homomorphism thenB |=Σ ϕ implies
A |=Σ ϕ for anyΣ -equationϕ. Conclude thatΣ -isomorphisms preserve and reflect
satisfaction ofΣ -equations. ut

Exercise 2.1.6.Give an alternative definition ofA |=Σ ∀X • t = t ′ via the satisfaction
of t = t ′ viewed as a ground equation over an enlarged signature. (HINT : Defi-
nition 2.1.2 involves quantification over valuationsv:X → |A|. Consider how this
might be replaced by quantification over algebras having a signature obtained from
Σ by adding a constant for each variable inX.) ut

It is worth noting in passing the use of the word “class” above to refer to an arbi-
trary collection ofΣ -algebras. We use this term since the collection ofΣ -algebras is
too “large” to form a set. Since the set/class distinction is peripheral to our concerns
here, we will not belabour it, except to mention that it would be possible to avoid the
issue entirely by restricting attention to algebras in which all carrier sets are subsets
of some large but fixed universal set of values.

A signature morphismσ :Σ → Σ ′ gives rise to a translation ofΣ -equations toΣ ′-
equations. This is essentially a simple matter of applying the translation on terms
induced byσ to both sides of the equation.

Definition 2.1.7 (Equation translation). Let ∀X • t = t ′ be aΣ -equation, and let
σ :Σ → Σ ′ be a signature morphism. Recall from Definition 1.5.10 that we then
haveσ(t),σ(t ′) ∈ |TΣ ′(X′)| where

X′s′ =
⊎

σ(s)=s′
Xs for eachs′ ∈ S′.

The translation of ∀X • t = t ′ by σ is then theΣ ′-equationσ(∀X • t = t ′) =
∀X′ • σ(t) = σ(t ′). (The fact thatX is closed under finite disjoint union guaran-
tees that this is indeed aΣ ′-equation.) ut

An important result which brings together some of the main definitions above is the
following:

Lemma 2.1.8 (Satisfaction Lemma [BG80]).If σ :Σ → Σ ′ is a signature mor-
phism,ϕ is a Σ -equation and A′ is a Σ ′-algebra, then A′ |=Σ ′ σ(ϕ) iff A′ σ |=Σ ϕ.

ut

Page: 43 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

44 2 Simple equational specifications

Whenϕ is a groundΣ -equation, it is easy to see that this follows directly from the
property established in Exercise 1.5.12. Whenσ is injective (on both sort and op-
eration names), it seems intuitively clear that the Satisfaction Lemma should hold,
since the domain of quantification of variables is unchanged, the only difference
betweenϕ andσ(ϕ) is the names used for sorts and operations, and the only differ-
ence betweenA′ andA′ σ (apart from sort/operation names) is thatA′ might provide
interpretations for sort and operation names which do not appear inσ(ϕ) and so
cannot affect its satisfaction. Whenσ is non-injective the Satisfaction Lemma still
holds, but this is less intuitively obvious (particularly whenσ is non-injective on
sort names).

Exercise 2.1.9.Take a signature morphismσ :Σ→ Σ ′ which is non-injective on sort
and operation names, aΣ -equation involving the sort and operation names for which
σ is not injective, and aΣ ′-algebra, and check that the Satisfaction Lemma holds in
this case. ut

Exercise 2.1.10.Prove the Satisfaction Lemma, using Exercise 1.5.12. ut

Exercise 2.1.11.Define the translation of aΣ -equation by a derived signature mor-
phismδ :Σ → Σ ′, and convince yourself that the Satisfaction Lemma also holds for
this case. ut

The Satisfaction Lemma says that the translations of syntax (terms, equations) and
semantics (algebras) induced by signature morphisms are coherent with the defini-
tion of satisfaction. Said another way, the manner in which satisfaction of equations
by algebras varies according to the signature at hand fits exactly with these transla-
tions. Further discussion of the property embodied in the Satisfaction Lemma may
be found in Section 4.1.

2.2 Flat specifications

A signature together with a set of equations over that signature constitutes a simple
form of specification. We refer to these asflat (meaningunstructured) specifications
in order to distinguish them from thestructuredspecifications to be introduced in
Chapter 5, formed from simpler specifications using specification-building opera-
tions. As we shall see later, it is possible in some (but not all) cases to “flatten”
a structured specification to yield a flat specification describing the same class of
algebras.

Throughout this section, letΣ be a signature.

Definition 2.2.1 (Presentation).A presentation(also known as aflat specification)
is a pair〈Σ ,Φ〉 whereΦ is a set ofΣ -equations (called theaxiomsof 〈Σ ,Φ〉). A
presentation〈Σ ,Φ〉 is sometimes referred to as aΣ -presentation. ut

The term “presentation” is chosen to emphasize the syntactic nature of the concept.
The idea is that a presentationdenotes(or presents) a semantic object which is

Page: 44 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.2 Flat specifications 45

inconvenient to describe directly. A reasonable objection to the definition above is
that it fails to include restrictions to ensure that presentations are truly syntactic
objects, namely thatΣ andΦ arefinite, or at least effectively presentable in some
other sense (e.g. recursive or recursively enumerable). Although it would be possible
to impose such a restriction, we refrain from doing so in order to avoid placing undue
emphasis on issues of this kind.

Definition 2.2.2 (Model of a presentation).A modelof a presentation〈Σ ,Φ〉 is a
Σ -algebraA such thatA |=Σ Φ . Mod[〈Σ ,Φ〉] is the class of all models of〈Σ ,Φ〉. ut

Taking〈Σ ,Φ〉 to denote the semantic objectMod[〈Σ ,Φ〉] is sometimes called taking
its loose semantics. The word “loose” here refers to the fact that this is not always
(in fact, hardly ever) an isomorphism class of algebras:A,B ∈ Mod[〈Σ ,Φ〉] does
not imply thatA∼= B. In Section 2.5 we will consider the so-calledinitial semantics
of presentations in which a further constraint is imposed on the models of a pre-
sentation, forcing every presentation to denote an isomorphism class of algebras.

Example 2.2.3.LetBool= 〈ΣBool,ΦBool〉 be the presentation below.1

specBool= sorts bool
ops true:bool

false:bool
¬ :bool→ bool
∧ :bool×bool→ bool
⇒ :bool×bool→ bool

∀p,q:bool
• ¬true= false
• ¬false= true
• p∧ true= p
• p∧¬p = false
• p⇒ q = ¬(p∧¬q)

DefineΣBool-algebrasA1, A2 andA3 as follows:

1 Here and in the sequel we follow the notation of CASL and itemize axioms in specifications,
marking them with• and introducing universal quantification over the variables only once for the
rest of the list of axioms. Note though that it may be important to keep some axioms outside of the
scope of quantification over some variables, see Exercise 2.1.4.

Page: 45 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

46 2 Simple equational specifications

|A1|bool = {?} |A2|bool = {♣,♥,♠} |A3|bool = {tt, ff}
trueA1 = ? trueA2 =♣ trueA3 = tt
falseA1 = ? falseA2 =♥ falseA3 = ff

¬A1 = {? 7→ ?} ¬A2 = {♣ 7→ ♥,
♥ 7→ ♣,
♠ 7→ ♠}

¬A3 = {tt 7→ ff ,
ff 7→ tt}

∧A1 ?

? ?

∧A2 ♣ ♥ ♠
♣ ♣ ♥ ♥
♥ ♥ ♥ ♥
♠ ♠ ♥ ♥

∧A3 tt ff
tt tt ff
ff ff ff

⇒A1 ?
? ?

⇒A2 ♣ ♥ ♠
♣ ♣ ♥ ♣
♥ ♣ ♣ ♣
♠ ♣ ♠ ♣

⇒A3 tt ff
tt tt ff
ff tt tt

Each of these algebras is a model ofBool. (NOTE: Reference will be made to
Bool and to its modelsA1, A2 andA3 in later sections of this chapter. The name
Bool has been chosen for the same reason asbool is used for the type of truth
values in programming languages; it is technically a misnomer since this is not a
specification of Boolean algebras, see Example 2.2.4 below.)

Exercise. Show that the models defined and in fact all the models ofBool sat-
isfy ∀p:bool• ¬(p∧¬false) = ¬p. Define a model ofBool that does not satisfy
∀p:bool• ¬¬p = p. ut

Example 2.2.4.LetBA= 〈ΣBA,ΦBA〉 be the following presentation.

Page: 46 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.2 Flat specifications 47

specBA= sorts bool
ops true:bool

false:bool
¬ :bool→ bool
∨ :bool×bool→ bool
∧ :bool×bool→ bool
⇒ :bool×bool→ bool

∀p,q, r:bool
• p∨ (q∨ r) = (p∨q)∨ r
• p∧ (q∧ r) = (p∧q)∧ r
• p∨q = q∨ p
• p∧q = q∧ p
• p∨ (p∧q) = p
• p∧ (p∨q) = p
• p∨ (q∧ r) = (p∧q)∨ (p∧ r)
• p∧ (q∨ r) = (p∨q)∧ (p∨ r)
• p∨¬p = true
• p∧¬p = false
• p⇒ q = ¬p∨q

Models ofBA are calledBoolean algebras. One such model is the following two-
valued Boolean algebraB:

|B|bool = {tt, ff},
trueB = tt,
falseB = ff ,
¬B = {tt 7→ ff , ff 7→ tt}

and
∨B tt ff
tt tt tt
ff tt ff

∧B tt ff
tt tt ff
ff ff ff

⇒B tt ff
tt tt ff
ff tt tt

This is (essentially) the same asA3 in Example 2.2.3. Note thatA1 can be turned
into a (trivial) Boolean algebra in a similar way, but this is not the case withA2.

Exercise.Given a Boolean algebraB, define a relation≤B⊆ |B|× |B| by a≤B b iff
a∨B b = b. Show that≤B is a partial order withtrueB andfalseB as its greatest and
least elements respectively, and witha∨B b yielding the least upper bound ofa,b
anda∧B b yielding their greatest lower bound. (In fact,〈|B|,≤B〉 is a distributive
lattice with top and bottom elements and complement¬B.) ut

Exercise 2.2.5.Show that all Boolean algebras (the models ofBA as introduced in
Exercise 2.2.4) satisfy thede Morgan laws:

∀p,q:bool• ¬(p∨q) = ¬p∧¬q
∀p,q:bool• ¬(p∧q) = ¬p∨¬q ut

Page: 47 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

48 2 Simple equational specifications

The following characterisation of the expressive power of flat equational specifi-
cations is one of the classical theorems of universal algebra.

Definition 2.2.6 (Equationally definable class).A classA of Σ -algebras isequa-
tionally definableif A = Mod[〈Σ ,Φ〉] for some setΦ of Σ -equations. ut

Definition 2.2.7 (Variety). A classA of Σ -algebras isclosed under subalgebras
if for any A ∈ A and subalgebraB of A, B ∈ A . Similarly, A is closed under
homomorphic imagesif for any A∈A andΣ -homomorphismh:A→ B, h(A) ∈A ,
andA is closed under productsif for any family 〈Ai ∈A 〉i∈I , ∏〈Ai〉i∈I ∈A .

A non-empty class ofΣ -algebras which is closed under subalgebras, homomor-
phic images, and products is called avariety. ut

Proposition 2.2.8.Any equationally definable classA of Σ -algebras is a variety.
ut

Exercise 2.2.9.Prove Proposition 2.2.8: show that for any presentation〈Σ ,Φ〉,
Mod[〈Σ ,Φ〉] is closed under subalgebras, homomorphic images and products. For
example, formalise the following argument to show closure under subalgebras: if
A |=Σ ϕ andB is a subalgebra ofA thenB |=Σ ϕ since removing values from the
carriers of an algebra does not affect the truth of universally quantified assertions
about its behaviour. Closure under products and under homomorphic images are not
much more difficult to prove. ut

Theorem 2.2.10 (Birkhoff’s Variety Theorem [Bir35]). If Σ is a signature with a
finite set of sort names then a classA of Σ -algebras is a variety iffA is equationally
definable. ut

The “if” part of this theorem is (a special case of) Proposition 2.2.8. A complete
proof of the “only if” part is beyond the scope of this book; the curious reader
should consult e.g. [Wec92].

Example 2.2.11.Consider the signature

Σ = sorts s
ops 0:s

× :s×s→ s

and the classA of Σ -algebras satisfying the familiar cancellation law:

if a 6= 0 anda×b = a×c thenb = c

The Σ -algebraA such that|A|s is the set of natural numbers and×A is ordinary
multiplication is inA . TheΣ -algebraB such that|B|s = {0,1,2,3} and×A is mul-
tiplication modulo 4 is not inA . (Exercise:Why not?) SinceB is a homomorphic
image ofA, this shows thatA is not a variety and hence is not equationally defin-
able. ut

Page: 48 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.2 Flat specifications 49

Exercise 2.2.12.Formulate a definition of what it means for a class ofΣ -algebras to
be closed under homomorphic coimages. Are varieties closed under homomorphic
coimages? ut

Exercise 2.2.13.Formulate definitions of what it means for a class ofΣ -algebras to
be closed under quotients, and under isomorphisms. Show that closure under both
quotients and isomorphisms is equivalent to closure under homomorphic images.

ut

The assumption in Theorem 2.2.10 that the set of sort names inΣ is finite cannot
easily be omitted:

Exercise 2.2.14.A family B of Σ -algebras isdirectedif any two algebrasB1,B2 ∈
B are subalgebras of someB ∈B. Define theunion

⋃
B of such a family to be

the leastΣ -algebra such that eachB ∈ B is a subalgebra of
⋃

B (the carrier of⋃
B is the union of the carriers of all algebras inB, and the values of operations

on arguments are inherited from the algebras inB; this is well-defined sinceB is
directed). Prove that since we consider equations with finite sets of variables only,
then for any presentation〈Σ ,Φ〉, Mod[〈Σ ,Φ〉] is closed under directed unions, that
is, given anydirectedfamily of algebrasB ⊆Mod[〈Σ ,Φ〉], its union

⋃
B is also in

Mod[〈Σ ,Φ〉].
A generalisation of Theorem 2.2.10 that we hint at here without a proof is that

for anysignatureΣ , a class ofΣ -algebras is equationally definable iff it is a variety
that is closed under directed unions. ut

Exercise 2.2.15.Consider a signature with an infinite set of sort names and no op-
erations. LetAfin be the class of all algebras over this signature that have non-empty
carriers for a finite set of sorts only, and letA be the closure ofAfin under products
and subalgebras (this adds algebras where the carrier of each sort is either a single-
ton or empty). Check thatA is a variety. Prove, however, thatA is not definable by
any set of equations. HINT : Use Exercise 2.2.14. ut

Exercise 2.2.16.Modify the definition of equation (Definition 2.1.1) so that infinite
sets of variables are allowed; it is enough to consider sets of variables that are finite
for each sort, but may be non-empty for infinitely many sorts. Extend the notion
of satisfaction (Definition 2.1.2) to such generalised equations in the obvious way.
Check that the classA defined in Exercise 2.2.15 is definable by such equations.
HINT : Consider all equations of the form∀X∪{x,y:s}• x= y, for all sortssand sets
X of variables such thatXs′ 6= ∅ for infinitely many sortss′.

Another generalisation of Theorem 2.2.10 that we want to hint at here is that for
any signatureΣ a class ofΣ -algebras is definable by such generalised equations
iff it is a variety. The proof of the “if” part is as easy as for ordinary equations
(Proposition 2.2.8). The proof of the “only if” part is also quite similar as in the
finitary case. ut

A final remark to clarify the nuances in the many-sorted versions of Theo-
rem 2.2.10 is that the theorem holds forany signature (also with an infinite set

Page: 49 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

50 2 Simple equational specifications

of sort names) when we restrict attention to algebras with non-empty carriers of
all sorts: all varieties of such algebras (with closure under subalgebras limited to
subalgebras with non-empty carriers) are definable by equations with a finite set of
variables.

2.3 Theories

Any given equationally definable class of algebras has many different presentations;
in practice the choice of presentation is determined by various factors including the
need for simplicity and understandability and the desire for elegance. On the other
hand, such a class determines a single set of equations which uniquely identifies
it, called its theory. Since this is an infinite set, it is not a useful way of presenting
the class. However, it is a useful set to consider since it contains all axioms in all
presentations of the class, together with all their consequences.

Throughout this section, letΣ be a signature.

Definition 2.3.1 (ModΣ (Φ), ThΣ (A), ClΣ (Φ) and ClΣ (A)). For any setΦ of Σ -
equations,ModΣ (Φ) (themodels ofΦ) denotes the class of allΣ -algebras satisfying
all theΣ -equations inΦ :

ModΣ (Φ) = {A | A is aΣ -algebra andA |=Σ Φ} (= Mod[〈Σ ,Φ〉]).

For any classA of Σ -algebras,ThΣ (A) (the theory of A) denotes the set of all
Σ -equations satisfied by eachΣ -algebra inA :

ThΣ (A) = {ϕ | ϕ is aΣ -equation andA |=Σ ϕ}.

A setΦ of Σ -equations isclosedif Φ = ThΣ (ModΣ (Φ)). Theclosureof a setΦ of
Σ -equations is the (closed) setClΣ (Φ) = ThΣ (ModΣ (Φ)). Analogously, a classA
of Σ -algebras isclosedif A = ModΣ (ThΣ (A)), and theclosureof A is ClΣ (A) =
ModΣ (ThΣ (A)). ut

Proposition 2.3.2.For any setsΦ andΨ of Σ -equations and classesA ,B of Σ -
algebras:

1. If Φ ⊆Ψ then ModΣ (Φ)⊇ModΣ (Ψ).
2. If B ⊇A then ThΣ (B)⊆ ThΣ (A).
3. Φ ⊆ ThΣ (ModΣ (Φ)) and ModΣ (ThΣ (A))⊇A .
4. ModΣ (Φ) = ModΣ (ThΣ (ModΣ (Φ))) and ThΣ (A) = ThΣ (ModΣ (ThΣ (A))).
5. ClΣ (Φ) and ClΣ (A) are closed.

Proof. Exercise. (HINT : Properties 4 and 5 follow from properties 1–3.) ut

For any signatureΣ , the functionsThΣ andModΣ constitute what is known in lattice
theory as a Galois connection.

Page: 50 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.3 Theories 51

Definition 2.3.3 (Galois connection).A Galois connectionis given by two partially
ordered setsA andM (in Proposition 2.3.2,A is the set of all sets ofΣ -equations,
andM is the “set” of all classes ofΣ -algebras, both ordered by inclusion) and maps
∗:A→M and +:M→A (hereModΣ andThΣ) satisfying properties correspond-

ing to 2.3.2(1)–2.3.2(3). An elementa∈A (resp.m∈M) is calledclosedif a= (a∗)+

(resp.m= (m+)∗). ut

Some useful properties — including ones corresponding to 2.3.2(4) and 2.3.2(5) —
hold for any Galois connection.

Exercise 2.3.4.For any Galois connection and anya,b∈ A andm∈M, show that
the following properties hold:

1. a≤A m+ iff a∗ ≥M m.
2. If a andb are closed thena≤A b iff a∗ ≥M b∗. (Show that the “if” part fails ifa

or b is not closed.)

Here,≤A and≤M are the orders onA andM respectively. ut

Exercise 2.3.5.For any Galois connection such thatAandM have binary least upper
bounds (tA, tM) and greatest lower bounds (uA, uM), and for anya,b∈ A, show
that the following properties hold:

1. (atA b)∗ = a∗uM b∗.
2. (auA b)∗ ≥M a∗tM b∗.

(HINT : tA satisfies the following properties for anya,b,c∈ A:

• a≤A atA b andb≤A atA b.
• If a≤A c andb≤A c thenatA b≤A c.

and analogously foruA, tM anduM.) State and prove analogues to 1 and 2 for
anym,n∈M, and instantiate all these general properties for the Galois connection
between sets ofΣ -equations and classes ofΣ -algebras. ut

Definition 2.3.6 (Semantic consequence).A Σ -equationϕ is a semantic conse-
quenceof a setΦ of Σ -equations, writtenΦ |=Σ ϕ, if ϕ ∈ ClΣ (Φ) (equivalently, if
ModΣ (Φ) |=Σ ϕ). ut

Notation. We will write Φ |= ϕ instead ofΦ |=Σ ϕ when the signatureΣ is obvious.
ut

The use of the double turnstile (|=) here is the same as its use in logic:Φ |= ϕ if the
equationϕ is satisfied in every algebra which satisfies all the equations inΦ . Here,
Φ is a set ofassumptionsandϕ is aconclusionwhich follows fromΦ . We refer to
this assemantic(or model-theoretic) consequence to distinguish it from a similar
relation defined by means of “syntactic” inference rules in the next section.

Example 2.3.7.Recall Example 2.2.3. The exercise there shows:

ΦBool |=ΣBool ∀p:bool• ¬(p∧¬false) = ¬p
ΦBool 6|=ΣBool ∀p:bool• ¬¬p = p

Page: 51 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

52 2 Simple equational specifications

Then, referring to Example 2.2.4, Exercise 2.2.5 shows that the de Morgan laws are
semantical consequences of the set of axiomsΦBA. ut

Exercise 2.3.8.Prove that semantic consequence is preserved by translation along
signature morphisms: for any signature morphismσ :Σ → Σ ′, setΦ of Σ -equations,
andΣ -equationϕ,

if Φ |=Σ ϕ thenσ(Φ) |=Σ ′ σ(ϕ).

Equivalently,σ(ClΣ (Φ)) ⊆ ClΣ ′(σ(Φ)). Show that the reverse inclusion does not
hold. ut

Exercise 2.3.9.Let σ :Σ → Σ ′ be a signature morphism and letΦ ′ be a closed set
of Σ ′-equations. Show thatσ−1(Φ ′) is a closed set ofΣ -equations. ut

See Section 4.2 for some further results on semantic consequence and translation
along signature morphisms, presented in a more general context.

Definition 2.3.10 (Theory).A theoryis a presentation〈Σ ,Φ〉 such thatΦ is closed.
A presentation〈Σ ,Φ〉 (whereΦ need not be closed)presentsthe theory〈Σ ,ClΣ (Φ)〉.
A theory〈Σ ,Φ〉 is sometimes referred to as aΣ -theory. ut

A theory morphism between two theories is a signature morphism between their
signatures that maps the equations in the source theory to equations belonging to
the target theory.

Definition 2.3.11 (Theory morphism).For any theories〈Σ ,Φ〉 and〈Σ ′,Φ ′〉, athe-
ory morphismσ :〈Σ ,Φ〉 → 〈Σ ′,Φ ′〉 is a signature morphismσ :Σ → Σ ′ such that
σ(ϕ) ∈Φ ′ for everyϕ ∈Φ ; if moreoverσ is a signature inclusionσ :Σ ↪→ Σ ′ then
σ :〈Σ ,Φ〉 ↪→ 〈Σ ′,Φ ′〉 is atheory inclusion. ut

Exercise 2.3.12.Let σ :〈Σ ,Φ〉 → 〈Σ ′,Φ ′〉 and σ ′:〈Σ ′,Φ ′〉 → 〈Σ ′′,Φ ′′〉 be the-
ory morphisms. Show thatσ ;σ ′:Σ → Σ ′′ is a theory morphismσ ;σ ′:〈Σ ,Φ〉 →
〈Σ ′′,Φ ′′〉. ut

Proposition 2.3.13.Let σ :Σ → Σ ′ be a signature morphism,Φ be a set ofΣ -
equations andΦ ′ be a set ofΣ ′-equations. Then the following conditions are equiv-
alent:

1. σ is a theory morphismσ :〈Σ ,ClΣ (Φ)〉 → 〈Σ ′,ClΣ ′(Φ ′)〉.
2. σ(Φ)⊆ ClΣ ′(Φ ′).
3. For every A′ ∈ModΣ ′(Φ ′), A′ σ ∈ModΣ (Φ).

Proof. Exercise. (HINT : Use the Satisfaction Lemma, Lemma 2.1.8.) ut

The fact that 2.3.13(2) implies 2.3.13(1) gives a shortcut for checking if a signa-
ture morphism is a theory morphism: one need only check, for each axiom in some
presentationof the source theory, that the translation of that axiom is in the target
theory. The equivalence between 2.3.13(1) and 2.3.13(3) is similar in spirit to the
Satisfaction Lemma, demonstrating a perfect correspondence between translation

Page: 52 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.3 Theories 53

of syntax (axioms) along a signature morphism and translation of semantics (mod-
els) in the opposite direction. This equivalence shows that there is a model-level
alternative to the axiom-level phrasing of Definition 2.3.11; in fact, we will take
this alternative in the case of structured specifications (Chapter 5) where there is no
equivalent axiom-level characterisation (Exercise 5.5.4).

Example 2.3.14.Let Σ be the signature

Σ = sorts s,b
ops ttr:b

ffa:b
not:b→ b
and:b×b→ b
≤ :s×s→ b

and recall the presentationBool= 〈ΣBool,ΦBool〉 from Example 2.2.3. Define
a signature morphismσ :Σ → ΣBool by

σsorts= {s 7→ bool,b 7→ bool},
σε,b = {ttr 7→ true, ffa 7→ false},
σb,b = {not 7→ ¬},
σbb,b = {and 7→ ∧},
σss,b = {≤ 7→⇒}.

Let Φ be the set ofΣ -equations

Φ = {∀x:s• x≤ x = ttr, ∀p:b• and(p, ttr) = p}.

ThenClΣ (Φ) includesΣ -equations that were not inΦ , such as∀p:b,x:s• and(p,x≤
x) = p. Similarly, by Example 2.3.7,ClΣBool(ΦBool) includes theΣBool-
equation∀p:bool• ¬(p∧¬false) = ¬p, but it doesnot include∀p:bool• ¬¬p = p.
The presentations〈Σ ,ClΣ (Φ)〉 and 〈ΣBool,ClΣBool(ΦBool)〉 are theories —
the latter is the theory presented byBool. The signature morphismσ :Σ→ ΣBool

is a theory morphismσ :〈Σ ,ClΣ (Φ)〉 → 〈ΣBool,ClΣBool(ΦBool)〉.
Recalling Example 2.2.4, the theory presented byBA is 〈ΣBA,ClΣBA(ΦBA)〉,

the theory of Boolean algebras, withClΣBA(ΦBA) including for instance the de
Morgan laws (Exercise 2.2.5). The obvious signature morphismι :ΣBool→ ΣBA

is a theory morphismι :〈ΣBool,ClΣBool(ΦBool)〉 → 〈ΣBA,ClΣBA(ΦBA)〉.
These two theory morphisms can be composed, yielding the theory morphism

σ ;ι :〈Σ ,ClΣ (Φ)〉 → 〈ΣBA,ClΣBA(ΦBA)〉. ut

Exercise 2.3.15.Give presentations〈Σ ,Φ〉 and 〈Σ ′,Φ ′〉 and a theory morphism
σ :〈Σ ,ClΣ (Φ)〉→ 〈Σ ′,ClΣ ′(Φ ′)〉 such thatσ(Φ) 6⊆Φ ′. Note that this doesnotcon-
tradict the equivalence between 2.3.13(1) and 2.3.13(2). ut

Page: 53 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

54 2 Simple equational specifications

2.4 Equational calculus

As we have seen, each presentation〈Σ ,Φ〉 determines a theory〈Σ ,ClΣ (Φ)〉, where
ClΣ (Φ) containsΦ together with all of its semantic consequences. An obvious ques-
tion at this point is how to determine whether or not a givenΣ -equation∀X • t = t ′

belongs to the setClΣ (Φ), i.e. how to decide ifΦ |=Σ ∀X • t = t ′. The defini-
tion of ClΣ (Φ) does not provide an effective method: according to this, testing
Φ |=Σ ∀X • t = t ′ involves constructing the (infinite!) classModΣ (Φ) and check-
ing whether or not∀X • t = t ′ is satisfied by each of the algebras in this class, that
is, checking for each algebraA∈ModΣ (Φ) and functionv:X→ |A| (there may be
infinitely many such functions for a givenA) that tA(v) = t ′A(v). An alternative is
to proceed “syntactically” by means ofinference ruleswhich allow the elements of
ClΣ (Φ) to bederivedfrom the axioms inΦ via a sequence of formal proof steps.

Throughout this section, letΣ be a signature.

Definition 2.4.1 (Equational calculus).A Σ -equationϕ is a syntactic(or proof-
theoretic) consequenceof a setΦ of Σ -equations, writtenΦ `Σ ϕ, if this can be
derived by application of the following inference rules:

Axiom:
Φ `Σ ∀X • t = t ′

∀X • t = t ′ ∈Φ

Reflexivity:
Φ `Σ ∀X • t = t

Xs⊆X for all s∈ Sandt ∈ |TΣ (X)|

Symmetry:
Φ `Σ ∀X • t = t ′

Φ `Σ ∀X • t ′ = t

Transitivity:
Φ `Σ ∀X • t = t ′ Φ `Σ ∀X • t ′ = t ′′

Φ `Σ ∀X • t = t ′′

Congruence:
Φ `Σ ∀X • t1 = t ′1 · · · Φ `Σ ∀X • tn = t ′n

Φ `Σ ∀X • f (t1, . . . , tn) = f (t ′1, . . . , t
′
n)

f :s1×·· ·×sn→ s in Σ and
ti , t ′i ∈ |TΣ (X)|si for all i ≤ n

Instantiation:
Φ `Σ ∀X • t = t ′

Φ `Σ ∀Y• t[θ] = t ′[θ]
θ :X→ |TΣ (Y)| ut

Exercise 2.4.2 (Admissibility of weakening and cut).Prove that ifΦ `Σ ∀X • t = t ′

andΦ ⊆Φ ′ thenΦ ′ `Σ ∀X • t = t ′. (HINT : Simple induction on the structure of the
derivation ofΦ `Σ ∀X • t = t ′.) This shows that the following rule is admissible2:

Weakening:
Φ `Σ ∀X • t = t ′

Φ ∪Φ
′ `Σ ∀X • t = t ′

2 A rule is admissiblein a formal system of rules if its conclusion is derivable in the system
provided that all its premises are derivable. This holds in particular if the rule isderivablein the
system, that is, if it can be obtained by composition of the rules in the system.

Page: 54 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.4 Equational calculus 55

Prove that ifΨ `Σ ϕ and{ϕ}∪Φ `Σ ψ thenΨ ∪Φ `Σ ψ. (HINT : Use induction
on the structure of the derivation of{ϕ}∪Φ `Σ ψ; for the case of the axiom rule,
use the fact that weakening is admissible.) This shows that the following rule is
admissible:

Cut:
Ψ `Σ ϕ {ϕ}∪Φ `Σ ψ

Ψ ∪Φ `Σ ψ

Check that your proof can be generalised to show that ifΦ `ψ andΨϕ ` ϕ for each
ϕ ∈Φ then

⋃
ϕ∈Φ Ψϕ ` ψ. ut

Exercise 2.4.3 (Consequence is preserved by translation).Show that for any sig-
nature morphismσ :Σ → Σ ′, setΦ of Σ -equations, andΣ -equationϕ, if Φ `Σ ϕ

thenσ(Φ) `Σ ′ σ(ϕ). ut

Example 2.4.4.Recall the presentationBool = 〈ΣBool,ΦBool〉 from Exam-
ple 2.2.3. The following is a derivation ofΦBool`ΣBool ∀p:bool• ¬(p∧¬false)=
¬p:

A
A
A
A
A
A
A
A
A
A
AA

P

�
�

�
�

�
�

�
�

�
�

��
ΦBool `ΣBool ∀p:bool• ¬(p∧¬false) = ¬(p∧ true)

ΦBool `ΣBool ∀p:bool• p∧ true= p
ΦBool `ΣBool ∀p:bool• ¬(p∧ true) = ¬p

ΦBool `ΣBool ∀p:bool• ¬(p∧¬false) = ¬p

whereP is the derivation

ΦBool `ΣBool ∀p:bool• p = p

ΦBool `ΣBool ¬false= true

ΦBool `ΣBool ∀p:bool• ¬false= true
ΦBool `ΣBool ∀p:bool• p∧¬false= p∧ true

ΦBool `ΣBool ∀p:bool• ¬(p∧¬false) = ¬(p∧ true)

Exercise.Tag each step above with the inference rule being applied. ut

Exercise 2.4.5.Give a derivation ofΦBool `ΣBool ∀p:bool• p⇒ p = true.
A considerably more serious challenge is to give derivations for the de Morgan

laws from the axioms of Boolean algebra (see Example 2.2.4 and Exercise 2.2.5).
ut

Page: 55 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

56 2 Simple equational specifications

On its own, the equational calculus is nothing more than a game with symbols;
its importance lies in the correspondence between the two relations|=Σ and`Σ . As
we shall see, there is an exact correspondence:`Σ is bothsoundandcompletefor
|=Σ . Soundness (Φ `Σ ϕ ⇒ Φ |=Σ ϕ) is a vital property for any formal system: it
ensures that the inference rules cannot be used to derive an incorrect result.

Theorem 2.4.6 (Soundness of equational calculus).LetΦ be a set ofΣ -equations
and letϕ be aΣ -equation. IfΦ `Σ ϕ thenΦ |=Σ ϕ. ut

Exercise 2.4.7.Prove Theorem 2.4.6. Use induction on the depth of the derivation
of Φ `Σ ϕ, showing that each rule in the system preserves the indicated property.

ut

Example 2.4.8.By Theorem 2.4.6, the formal derivation in Example 2.4.4 justifies
the claim in Example 2.3.7 thatΦBool |=ΣBool ∀p:bool• ¬(p∧¬false) = ¬p. On
the other hand, sinceΦBool 6|=ΣBool ∀p:bool• ¬¬p = p, there can be no proof in
the equational calculus forΦBool `ΣBool ∀p:bool• ¬¬p = p. ut

It is a somewhat counter-intuitive fact (see [GM85]) that simplifying the calculus
by omitting explicit quantifiers in equations yields an unsound system. This is due
to the fact that algebras may have empty carrier sets. Any equation that includes a
quantified variablex:swill be satisfied by any algebra having an empty carrier fors,
even ifx appears on neither side of the equation. The instantiation rule is the only
one that can be used to change the set of quantified variables; it is designed to ensure
that quantified variables are eliminated only when it is sound to do so.

Exercise 2.4.9.Formulate a version of the equational calculus without explicit
quantifiers on equations and show that it is unsound. (HINT : Consider the signature
Σ with sortss,s′ and operationsf :s→ s′, a:s′, b:s′, and setΦ = { f (x) = a, f (x) =
b} of Σ -equations.

Show thatΦ `Σ a = b in your version of the calculus. Then give aΣ -algebra
A ∈ ModΣ (Φ) such thatA 6|=Σ a = b.) Pinpoint where this proof of unsoundness
breaks down for the version of the equational calculus given in Definition 2.4.1.ut

Exercise 2.4.10.Show that the equational calculus without explicit quantifiers is
sound when the definition ofΣ -algebra is changed to require all carrier sets to be
non-empty, or when either of the following constraints onΣ is imposed:

1. Σ has only one sort.
2. All sorts inΣ arenon-void: for each sort names in Σ , |TΣ |s 6= ∅. ut

Exercise 2.4.11.Give an example of a signatureΣ which satisfies neither 2.4.10(1)
nor 2.4.10(2), for which the equational calculus without explicit quantifiers is sound.

ut

Completeness (Φ |=Σ ϕ ⇒ Φ `Σ ϕ) is typically more difficult to achieve than
soundness: it means that the rules in the system are powerful enough to derive all
correct results. It is not as important as soundness, in the sense that a complete

Page: 56 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.4 Equational calculus 57

but unsound system is useless while (as we shall see in the sequel) a sound but
incomplete system is often the best that can be obtained. The equational calculus
happens to be complete for|=Σ :

Theorem 2.4.12 (Completeness of equational calculus).Let Φ be a set ofΣ -
equations and letϕ be aΣ -equation. IfΦ |=Σ ϕ thenΦ `Σ ϕ.

Proof sketch.SupposeΦ |=Σ ∀X • t = t ′. Define≡ ⊆ |TΣ (X)| × |TΣ (X)| by u ≡
u′ ⇐⇒ Φ `Σ ∀X • u = u′; ≡ is a Σ -congruence onTΣ (X). TΣ (X)/≡ |=Σ Φ so
TΣ (X)/≡ |=Σ ∀X • t = t ′, and thust ≡ t ′, i.e.Φ `Σ ∀X • t = t ′. ut

Exercise 2.4.13.Fill in the gaps in the proof of Theorem 2.4.12. ut

There are several different but equivalent versions of the equational calculus. The
following exercise considers various alternatives to the congruence and instantiation
rules.

Exercise 2.4.14.Show that the version of the equational calculus in Definition 2.4.1
is equivalent to the system obtained when the congruence and instantiation rules are
replaced by the following single rule:

Substitutivity:
Φ `Σ ∀X • t = t ′ for eachx∈ X, Φ `Σ ∀Y• θ(x) = θ ′(x)

Φ `Σ ∀Y• t[θ] = t ′[θ ′]
θ ,θ ′:X→ |TΣ (Y)|

Show that this is equivalent to the system having the following more restricted ver-
sion of the substitutivity rule:

Substitutivity′:
Φ `Σ ∀X∪{x:s}• t = t ′ Φ `Σ ∀Y• u = u′

Φ `Σ ∀X∪Y• t[x 7→ u] = t ′[x 7→ u′]
u,u′ ∈ |TΣ (Y)|s

(HINT : The equivalence relies on the fact that the set of quantified variables in an
equation is finite.) Finally, show that both of the following rules may be derived in
any of these systems:

Abstraction:
Φ `Σ ∀X • t = t ′

Φ `Σ ∀X∪Y• t = t ′
Ys⊆X for all s∈ S

Concretion:
Φ `Σ ∀X∪{x:s}• t = t ′

Φ `Σ ∀X • t = t ′
t, t ′ ∈ |TΣ (X)| and|TΣ (X)|s 6= ∅ ut

A consequence of the soundness and completeness theorems is that the equa-
tional calculus constitutes asemi-decision procedurefor |=Σ : enumerating all deriva-
tions will eventually produce a derivation forΦ `Σ ϕ if Φ |=Σ ϕ holds, but if
Φ 6|=Σ ϕ then this procedure will never terminate. This turns out to be the best we
can achieve:

Theorem 2.4.15.There is no decision procedure for|=Σ .

Proof. Follows immediately from the undecidability of the word problem for semi-
groups [Pos47]. ut

Page: 57 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

58 2 Simple equational specifications

Mechanised proof search techniques can be applied with considerable success to the
discovery of derivations (and under certain conditions, discussed in Section 2.6, a
decision procedureis possible) but Theorem 2.4.15 shows that such techniques can
provide no more than a partial solution.

2.5 Initial models

The class of algebras given by the loose semantics of aΣ -presentation contains too
many algebras to be very useful in practice. In particular, Birkhoff’s Variety The-
orem guarantees that this class will always include degenerateΣ -algebras having
a single value of each sort inΣ , as well as (nearly always)Σ -algebras that are not
reachable. This unsatisfactory state of affairs is a consequence of the limited power
of equational axioms. A standard way out is to take the so-calledinitial semanticsof
presentations, which selects a certain class of “best” models from among all those
satisfying the axioms. Various alternatives to this approach will be presented in the
sequel.

Throughout this section, let〈Σ ,Φ〉 be a presentation.

Exercise 2.5.1.Verify the above claim concerning Birkhoff’s Variety Theorem, be-
ing specific about the meaning of “nearly always”. ut

There are two features that render certain models of presentations unfit for use in
practice. The mnemonic terms “junk” and “confusion” were coined in [BG81] to
characterise these:

Definition 2.5.2 (Junk and confusion).Let A be a model of〈Σ ,Φ〉. We say that
A contains junkif it is not reachable, and thatA contains confusionif it satisfies a
groundΣ -equation that is not inClΣ (Φ). ut

The intuition behind these terms should be readily apparent: “junk” refers to useless
values which could be discarded without being missed, and “confusion” refers to
the values of two ground terms being unnecessarily identified (confused).

Example 2.5.3.Recall the presentationBool = 〈ΣBool,ΦBool〉 and its mod-
elsA1, A2 andA3 from Example 2.2.3.A1 contains confusion (A1 |=ΣBool true=
false 6∈ ClΣBool(ΦBool)) but not junk; A2 contains junk (there is no ground
ΣBool-termt such thattA2 =♠ ∈ |A2|bool) but not confusion;A3 contains neither
junk nor confusion. There are models ofBool containing both junk and confusion.
(Exercise:Find one.) ut

Exercise 2.5.4.Consider the following specification of the natural numbers with
addition:

Page: 58 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.5 Initial models 59

specNat= sorts nat
ops 0:nat

succ:nat→ nat
+ :nat×nat→ nat

∀m,n:nat • 0+n = n
• succ(m)+n = succ(m+n)

List some of the models ofNat. Which of these contain junk and/or confusion?
(NOTE: For reference later in this section,ΣNat refers to the signature ofNat and
ΦNat refers to its axioms.) ut

Exercise 2.5.5.According to Exercise 1.3.5, surjective homomorphisms reflect junk.
Show that injective homomorphisms preserve junk and reflect confusion, and that
all homomorphisms preserve confusion. It follows that isomorphisms preserve and
reflect junk and confusion. ut

Examples like the ones above suggest that often the algebras of interest are those
which contain neither junk nor confusion. Recall Exercise 1.4.14, which charac-
terised reachableΣ -algebras as those which are isomorphic to a quotient ofTΣ .
Accordingly, the algebras we want are all isomorphic to quotients ofTΣ ; by Exer-
cise 2.5.5 it is enough to consider just these quotient algebras themselves. Of course,
not all quotientsTΣ /≡ will be models of〈Σ ,Φ〉: this will only be the case when≡
identifies enough terms that the equations inΦ are satisfied. But if≡ identifies
“too many” terms,TΣ /≡ will contain confusion. There is exactly oneΣ -congruence
that yields a model of〈Σ ,Φ〉 containing no confusion:

Definition 2.5.6 (Congruence generated by a set of equations).The relation
≡Φ ⊆ |TΣ | × |TΣ | is defined byt ≡Φ t ′ ⇐⇒ Φ |=Σ ∀∅• t = t ′, for all t, t ′ ∈ |TΣ |.
≡Φ is called theΣ -congruence generated byΦ . ut

Exercise 2.5.7.Prove that≡Φ is aΣ -congruence onTΣ . ut

Theorem 2.5.8 (Quotient construction).TΣ /≡Φ is a model of〈Σ ,Φ〉 containing
no junk and no confusion. ut

Exercise 2.5.9.Prove Theorem 2.5.8. HINT : Note thatTΣ /≡Φ contains no junk by
Exercise 1.4.14. Then show that for any termt ∈ TΣ (X) and substitutionθ :X→ TΣ ,
tTΣ /≡Φ

(θ ′) = [t[θ]]≡Φ
, whereθ ′(x) = [θ(x)]≡Φ

for x ∈ X. Use this to show that
TΣ /≡Φ satisfies all the equations inΦ and contains no confusion. ut

Example 2.5.10.Recall the presentationBool= 〈ΣBool,ΦBool〉 from Exam-
ple 2.2.3. The modelTΣBool/≡ΦBool of Bool is defined as follows:

Page: 59 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

60 2 Simple equational specifications

|TΣBool/≡ΦBool|bool = {[true]≡ΦBool
, [false]≡ΦBool

}
trueTΣBool/≡ΦBool

= [true]≡ΦBool

falseTΣBool/≡ΦBool
= [false]≡ΦBool

¬TΣBool/≡ΦBool
= {[true]≡ΦBool

7→ [false]≡ΦBool
, [false]≡ΦBool

7→ [true]≡ΦBool
}

∧TΣBool/≡ΦBool
[true]≡ΦBool

[false]≡ΦBool

[true]≡ΦBool
[true]≡ΦBool

[false]≡ΦBool

[false]≡ΦBool
[false]≡ΦBool

[false]≡ΦBool

⇒TΣBool/≡ΦBool
[true]≡ΦBool

[false]≡ΦBool

[true]≡ΦBool
[true]≡ΦBool

[false]≡ΦBool

[false]≡ΦBool
[true]≡ΦBool

[true]≡ΦBool

where

[true]≡ΦBool
= {true,¬false, true∧ true,¬(false∧ true),¬(false∧¬false), false⇒ false, . . .},

[false]≡ΦBool
= {false,¬true, true∧ false,¬(true∧ true),¬(true∧¬false), true⇒ false, . . .}.

The carrier set|TΣBool/≡ΦBool|bool has just two elements since the axioms in
ΦBool can be used to reduce each groundΣBool-term to true or false, and
true 6≡ΦBool false. Note that the “syntactic” nature ofTΣBool is preserved in
TΣBool/≡ΦBool, e.g. for eachx∈ [true]≡ΦBool

, “¬x” ∈ [false]≡ΦBool
=¬TΣBool/≡ΦBool

([true]≡ΦBool
).

ut

Exercise 2.5.11.Recall the presentationNat = 〈ΣNat,ΦNat〉 given in Exer-
cise 2.5.4. Construct the modelTΣNat/≡ΦNat of Nat. ut

Exercise 2.5.12.Show that≡Φ is the onlyΣ -congruence making Theorem 2.5.8
hold. ut

The special properties ofTΣ /≡Φ described by Theorem 2.5.8 can be captured
very succinctly by saying thatTΣ /≡Φ is a so-calledinitial modelof 〈Σ ,Φ〉.

Definition 2.5.13 (Initial model of a presentation).A Σ -algebraA is initial in
a classA of Σ -algebras ifA ∈ A and for everyB ∈ A there is a uniqueΣ -
homomorphismh:A→ B. An initial model of 〈Σ ,Φ〉 is aΣ -algebra that is initial in
Mod[〈Σ ,Φ〉]. IMod[〈Σ ,Φ〉] is the class of all initial models of〈Σ ,Φ〉. ut

In the next chapter we will see that this definition can be generalised to a much
wider context than that of algebras and homomorphisms.

Theorem 2.5.14 (Initial model theorem).TΣ /≡Φ is an initial model of〈Σ ,Φ〉.

Proof sketch. TΣ /≡Φ is a model of〈Σ ,Φ〉 by Theorem 2.5.8. GivenB∈Mod[〈Σ ,Φ〉],
let ∅]:TΣ → B be the unique homomorphism from the algebra of groundΣ -terms
to B. SinceB |=Σ Φ , we have≡Φ ⊆ K(∅]), and by Exercise 1.3.20 there is a homo-
morphismh:TΣ /≡Φ → B, which is unique by Exercise 1.3.6. (Exercise:Fill in the
gaps in this proof.) ut

Page: 60 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.5 Initial models 61

Example 2.5.15.Recall the presentationBool= 〈ΣBool,ΦBool〉 and its mod-
elsA1, A2 andA3 from Example 2.2.3, and its modelTΣBool/≡ΦBool from Exam-
ple 2.5.10, which is an initial model by Theorem 2.5.14.ΣBool-homomorphisms
from TΣBool/≡ΦBool to A1, A2 andA3 are as follows:

h1:TΣBool/≡ΦBool→ A1 h1bool = {[true]≡ΦBool
7→ ?, [false]≡ΦBool

7→ ?},
h2:TΣBool/≡ΦBool→ A2 h2bool = {[true]≡ΦBool

7→ ♣, [false]≡ΦBool
7→ ♥},

h3:TΣBool/≡ΦBool→ A3 h3bool = {[true]≡ΦBool
7→ 1, [false]≡ΦBool

7→ 0}.

(Exercise:Check uniqueness.)
A1 is not an initial model: for example,6 ∃h:A1→ A2 and 6 ∃h:A1→ A3. In

general, models containing confusion cannot be initial since homomorphisms pre-
serve confusion (Exercise 2.5.5). Similarly,A2 is not an initial model: for exam-
ple, 6 ∃h:A2→ A3, since there is no value in|A3|bool to which h can map the “ex-
tra” value♠ ∈ |A2|bool. On the other hand,A3 is initial: for example,∃!g1:A3→
A1 (whereg1bool(1) = g1bool(0) = ?), ∃!g2:A3→ A2 (whereg2bool(1) = ♣ and
g2bool(0) =♥), and∃!g:A3→ TΣBool/≡ΦBool (wheregbool(1) = [true]≡ΦBool

and
gbool(0) = [false]≡ΦBool

). ut

Exercise 2.5.16.Recall the model you constructed in Exercise 2.5.11 of the specifi-
cationNat of natural numbers with addition. Show that there is a unique homomor-
phism from this model to each of the models you considered in Exercise 2.5.4.ut

Exercise 2.5.17.Using Theorem 2.5.14, show thatTΣ is an initial model of〈Σ ,∅〉.
Contemplate how this relates to Fact 1.4.4 and Definition 1.4.5. ut

Exercise 2.5.18.Note that initial models of〈Σ ,Φ〉 may have empty carriers for
some sorts. Show that this is necessary: give an example of a presentation〈Σ ,Φ〉
such that no algebra is initial in the class of its models that have non-empty carriers
of all sorts. Link this with Exercise 1.2.3. ut

Taking a presentation〈Σ ,Φ〉 to denote the classIMod[〈Σ ,Φ〉] of its initial
models is called taking itsinitial semantics. We know from Theorem 2.5.14 that
IMod[〈Σ ,Φ〉] is never empty. Although the motivation for wishing to exclude mod-
els containing junk and confusion was merely to weed out certain kinds of degener-
ate cases, the effect of this constraint is to restrict attention to an isomorphism class
of models:

Exercise 2.5.19.Show that any two initial models of a presentation are isomorphic.
Conclude that the initial models of a presentation are exactly those containing no
junk and no confusion. ut

For some purposes, restricting to an isomorphism class of models is clearly inap-
propriate. The following exercise demonstrates what can go wrong.

Exercise 2.5.20.Consider the addition of a subtraction operation−:nat×nat→ nat
to the specificationNat in Exercise 2.5.4, with the axioms∀m:nat•m−0 = m and
∀m,n:nat• succ(m)− succ(n) = m−n. These axioms do not fix the value ofm−n

Page: 61 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

62 2 Simple equational specifications

whenn > m; assume that we are willing to accept any value in this case, perhaps
because we are certain for some reason that it will never arise. Construct an initial
model of this specification. Why is this model unsatisfactory? Can you think of
a better model? What is the problem with restricting to an isomorphism class of
models of this specification? ut

The phenomenon illustrated here arises in cases where operations are not defined
in a sufficiently completeway. Roughly speaking, a definition of an operation is
sufficiently complete when the value produced by the operation is defined for all
of the possible values of its arguments. See Definition 6.1.22 below for a proper
definition of this term in a more general context.

One may argue that Exercise 2.5.20 is unconvincing, since the lack of sufficient
completeness arises there because we do not really needm− n to be defined as
a natural number whenn > m, and that this can be dealt with using one of the
approaches to partial functions below (Sections 2.7.3, 2.7.4, or 2.7.5). However, the
same phenomenon arises in other cases as well:

Exercise 2.5.21.Give a specification of natural numbers with a function that for
each natural numbern chooses an arbitrary number that is greater thann. HINT :
You may first extend the specificationNat of Exercise 2.5.4 with a sortbool with
operations and axioms as inBool in Example 2.2.3, and add a binary operation

< :nat×nat→ boolwith the following axioms:

∀n:nat• 0 < succ(n) = true
∀m:nat• succ(m) < 0 = false
∀m,n:nat• succ(m) < succ(n) = m< n

The required functionch:nat→ nat may now be constrained by the obvious axiom
∀n:nat• n < ch(n) = true.

Clearly, the definition ofchcannot be sufficiently complete. Construct the initial
model of the resulting specification and check that it is not satisfactory. Referring
to other algebraic approaches presented in Sections 2.7.3, 2.7.4, and 2.7.5 below,
check that none of them offers a satisfactory solution either. ut

The above exercise indicates one of the most compelling reasons for considering
alternatives to initial semantics: requiring specifications to define all operations in
a sufficiently complete way is much too restrictive in many practical cases. Such
a requirement is also undesirable for methodological reasons, since it forces the
specifier of a problem to make decisions which are more appropriately left to the
implementor.

The comments above notwithstanding, there are certain common situations in
which initial semantics is appropriate and useful. In particular, the implicit “no junk”
constraint conveniently captures the “that’s all there is” condition which is needed
e.g. in inductive definitions of syntax.

Example 2.5.22.Consider the following specification of syntax for simple arith-
metic expressions:

Page: 62 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.5 Initial models 63

specExpr= sorts expr
ops x,y,0:expr

plus,minus:expr×expr→ expr
∀e,e′:expr • plus(e,e′) = plus(e′,e)

The axiom requires thesyntaxof addition to be commutative. In the initial seman-
tics ofExpr, the “no junk” condition ensures that the only expressions (value of
sortexpr) are those built from 0,x andy usingplusandminus. The “no confusion”
condition ensures that no undesired identification of expressions occurs: for exam-
ple, the syntax of addition is not associative and the syntax of subtraction is not
commutative. ut

Exercise 2.5.23.Write a specification of (finite) sets of natural numbers. The oper-
ations should include∅:set, singleton:nat→ setand∪:set×set→ set. ut

The “no junk” condition is more powerful than it might appear to be at first
glance. Imposing the constraint that every value be expressible as a ground term
makes it possible to use induction on the structure of terms to prove properties of all
the values in an algebra. This means that for reasoning about models of specifica-
tions containing no junk, such as initial models, it is sound to add an induction rule
scheme to the equational calculus presented in the previous section. Since the form
of the induction rule scheme varies according to the signature of the specification at
hand, this is best illustrated by means of examples.

Example 2.5.24.Recall the presentationNat = 〈ΣNat,ΦNat〉 of natural num-
bers with addition given in Exercise 2.5.4. To simplify notation, letx andy stand for
variable names such thatx:nat andy:nat are not inΣNat andx:nat does not appear
in thesorts(ΣNat)-sorted set of variablesX used below. The following induction
rule scheme is sound for reachable models ofNat (and for reachable models of all
otherΣNat-presentations):

Φ `ΣNat P(0) Φ ∪{P(x)} `ΣNat∪{x:nat} P(succ(x)) Φ ∪{P(x),P(y)} `ΣNat∪{x,y:nat} P(x+y)
Φ `ΣNat ∀x:nat• P(x)

Here, P(x) stands for aΣNat∪ {x:nat}-equation∀X • t = t ′; think of this as a
ΣNat-equation with free variablex:nat. ThenP(0) stands for theΣNat-equation
∀X • t[x 7→ 0] = t ′[x 7→ 0], P(succ(x)) stands for theΣNat ∪ {x:nat}-equation
∀X • t[x 7→ succ(x)] = t ′[x 7→ succ(x)] and analogously forP(y) andP(x+ y), and
∀x:nat• P(x) stands for theΣNat-equation∀X ∪ {x:nat}• t = t ′. The following
additional inference rule is needed to infer equations overΣNat∪ {x:nat} and
ΣNat∪{x,y:nat} from ΣNat-equations:

Φ `Σ ∀X • t = t ′

Φ `Σ∪Σ ′ ∀X • t = t ′

Exercise.Show that adding the two inference rules above to the equational calculus
gives a system that is sound for reachable models ofΣNat-presentations.

Page: 63 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

64 2 Simple equational specifications

The inference rule scheme above can be used for proving theorems such as as-
sociativity and commutativity of+. But note that the axioms for+ fully define it
in terms of 0 andsucc: it is possible to prove by induction on the structure of terms
that for every groundΣNat-termt there is a groundΣNat-termt ′ such thatt ′ does
not contain the+ operation andΦ `ΣNat t = t ′. (Exercise:Prove it. Note that this
is a proof at the meta-levelabout`, not a derivation at the object levelusing`.)
This shows that the third premise of the above induction rule scheme is redundant.
Eliminating it gives the following scheme, which is more obviously related to the
usual form of induction for natural numbers:

Φ `ΣNat P(0) Φ ∪{P(x)} `ΣNat∪{x:nat} P(succ(x))
Φ `ΣNat ∀x:nat• P(x)

Taking P(x) to be∀n, p:nat• x+ (n+ p) = (x+ n) + p, we have the following
derivation, which proves that addition is associative in initial models ofNat (Ex-
ercise:Supply the derivationsP1 andP2):

A
A
A
A
A
A
A
A
A
A
AA

P1

�
�

�
�

�
�

�
�

�
�

��
Φ `ΣNat ∀n, p:nat• 0+(n+ p) = (0+n)+ p

A
A
A
A
A
A
A
A
A
A
AA

P2

�
�

�
�

�
�

�
�

�
�

��
Φ ∪{∀n, p:nat• x+(n+ p) = (x+n)+ p}
`ΣNat∪{x:nat}
∀n, p:nat• succ(x)+(n+ p) = (succ(x)+n)+ p

Φ `ΣNat ∀x,n, p:nat• x+(n+ p) = (x+n)+ p

Note that there are models ofNat containing junk which do not satisfy∀x,n, p:nat• x+
(n+ p) = (x+n)+ p. Hence, this equation is not inClΣNat(ΦNat) and induction
is required for its derivation. ut

Exercise 2.5.25.Recall the presentationBool = 〈ΣBool,ΦBool〉 from Exam-
ple 2.2.3. Give an induction rule scheme that is sound for reachable models of
ΣBool-presentations. (HINT : There will be five premises, one for each operation
in Bool.) Show that three of the premises are redundant (HINT : eliminate one op-
eration at a time), which gives the following rule scheme:

Φ `ΣBool P(true) Φ `ΣBool P(false)
Φ `ΣBool ∀x:bool• P(x)

Use this to prove that∀p:bool• ¬¬p= p holds in initial models ofBool. Prove that
the axiom∀p:bool• p∧¬p = falseis redundant for the initial semantics ofBool,

Page: 64 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.5 Initial models 65

that is:

ΦBool\{∀p:bool• p∧¬p = false} `ΣBool ∀p:bool• p∧¬p = false. ut

Adding an induction rule scheme appropriate to the signature at hand to the equa-
tional calculus gives a system that is sound for reasoning about initial models of
specifications, and is more powerful than the equational calculus on its own. How-
ever, the resulting system is not always complete. In fact, it turns out that complete-
ness is unachievable in general: there isno sound proof system that is complete for
reasoning about initial models of arbitrary specifications. In order to prove that this
is the case, it is necessary to formalize what we mean by the term “proof system”.
For our purposes it will suffice to assume that any proof system has a recursively
enumerable set of theorems. See [Chu56] for a discussion of the philosophical con-
siderations (e.g. finiteness of proofs, decidability of the correctness of individual
proof steps) underlying this assumption.

Theorem 2.5.26 (Incompleteness for initial semantics).There is a presentation
〈Σ ,Φ〉 such that there is no proof system which is sound and complete with respect
to satisfaction of equations in the class of initial models of〈Σ ,Φ〉.

Proof ([MS85]).As a consequence of Matiyasevich’s theorem, the set of equations
which hold in the standard model of the natural numbers (with 0,succ, +,× and−,
such thatm−n = 0 whenn≥m) is not recursively enumerable [DMR76, Sect. 8].
Therefore, this cannot be the set of theorems produced by any proof system. It is
easy to construct a (single-sorted) presentation having this as an initial model. (Ex-
ercise: Construct it.) Since all the initial models of a presentation are isomorphic
(Exercise 2.5.19) and since isomorphisms preserve and reflect satisfaction of equa-
tions (Exercise 2.1.5), this completes the proof. ut

The fact that completeness cannot be achieved is of no real importance in practice:
the equational calculus together with induction is perfectly adequate for normal use.
But the failure of completeness does mean that care must be taken to distinguish
between satisfaction (|=) and provability (̀) in theoretical work. It is important to
recognize that model-theoretic satisfaction is the relation of primary importance,
since it embodiestruth. Provability is merely an approximation to truth, albeit one
that is of great importance for practical use since it is based on mechanical syntactic
manipulation. The failure of completeness means that the approximation cannot be
exact, but by being sound it errs on the side of safety.

Exercise 2.5.27.Show that the equational calculus (without added induction rule
schemes) is complete with respect to satisfaction ofgroundequations in initial mod-
els of specifications. ut

The additional specification techniques introduced in Chapter 5 will lead to a widen-
ing of the gap between satisfaction and provability. In particular, even completeness
with respect to satisfaction of ground equations will be impossible to retain.

A generalisation of the concept of initial model is needed to give a fully satis-
factory specification of classes of models that are naturally parametric with respect

Page: 65 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

66 2 Simple equational specifications

to some basic data. An example is the definition of terms in Section 1.4, which is
parametric in anS-sorted set of variables. Another is the specification of sets (see
Exercise 2.5.23): it should be possible to specify sets without building in a specifi-
cation of the kind of values in the sets (in this case, natural numbers).

Exercise 2.5.28.Suppose that all information about the natural numbers is removed
from the specification of sets you gave in Exercise 2.5.23, by deleting operations
on natural numbers likesuccand changing the sort namenat to elem. Construct an
initial model of the resulting specification. Why is this model unsatisfactory?ut

The required concept is that of afreemodel extending a given algebra, which cap-
tures the idea of initialityrelative toa fixed part of the model. See Section 3.5 for
the details, Section 4.3 for the use of this concept in the context of specifications,
and Chapter 6 for much more on the general topic of parameterisation.

2.6 Term rewriting

Although there is no decision procedure for|=Σ (Theorem 2.4.15), there is a class of
specifications for which consequence can be decided. The idea is similar to the one
behind the strategy used in mathematics for proving that an equation follows from a
set of equational axioms: one applies the axioms in an attempt to reduce both sides
of the equation to a common result, and if this is successful then the equation follows
from the axioms. An essential ingredient of this strategy is the use of equations as
directedsimplificationor rewrite rules.

Throughout this section, letΣ = 〈S,Ω〉 be a signature, and letX be anS-sorted
set of variables such thatXs⊆X for all s∈ S.

Assumption. For simplicity of presentation, we assume throughout this section that
eitherΣ has only one sort, or all sorts inΣ are non-void (see Exercise 2.4.10). Under
this assumption, the version of the equational calculus without explicit quantifiers
is sound, and all references to the calculus below are to this version. See Exer-
cises 2.6.11 and 2.6.26 for hints on how to do away with this assumption. ut

Definition 2.6.1 (Context).A Σ -context for sort s∈ S is a termC ∈ |TΣ (X]2:s)|
containing one occurrence of the distinguished variable2. We writeC[] to suggest
thatC should be viewed as a term with a hole in it. Substitution of a termt ∈ |TΣ (X)|s
in C[] gives the termC[2:s 7→ t] ∈ |TΣ (X)|, writtenC[t]. ut

Definition 2.6.2 (Rewrite rule).A Σ -rewrite rule r of sort s∈ Sconsists of twoΣ -
termst, t ′ ∈ |TΣ (X)|s, written t→ t ′. TheΣ -equation determined by ris Eq(r) =def

t = t ′; by the assumption, we can dispense with explicit quantification of variables
in equations. AΣ -rewrite ruler = t→ t ′ of sortsdetermines a set ofreduction steps
C[t[θ]]→r C[t ′[θ]] for all Σ -contextsC[] for sortsand substitutionsθ :X→|TΣ (X)|;
this defines the relation→r ⊆ |TΣ (X)| × |TΣ (X)|, the one-step reduction relation
generated by r. The inverse of one-step reduction→r is one-step expansion, written
r← . ut

Page: 66 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.6 Term rewriting 67

A reduction stepu→r u′ according to a rewrite ruler = t → t ′ is an application of
an instance t[θ]→ t ′[θ] of r to replace thesubterm t[θ] of u (corresponding to the
“hole” in C[]) by t ′[θ]. The subtermt[θ] of u is called aredex(short for “reducible
expression”).

Definition 2.6.3 (Term rewriting system).A Σ -term rewriting system Ris a set of
Σ -rewrite rules. Theset ofΣ -equations determined by Ris Eq(R) = {Eq(r) | r ∈R}.
Theone-step reduction relation generated by Ris the relation

→R =
⋃
r∈R

→r (⊆ |TΣ (X)|× |TΣ (X)|).

The inverse of one-step reduction→R is one-step expansion, written R← . ut

Given a setΦ of Σ -equations, aΣ -term rewriting systemR will be of greatest rele-
vance toΦ whenClΣ (Φ) = ClΣ (Eq(R)). One way to obtain such anR is to use the
equations themselves as rewrite rules by selecting anorientationfor each equation
t = t ′: eithert→ t ′ or t ′→ t. For reasons that will become clear below, the most use-
ful orientation is the one in which the right-hand side of the rule is “simpler” than
the left-hand side. It is not always obvious how to measure simplicity of terms — in
fact, this is a major issue in the theory of term rewriting — and sometimes there is
no satisfactory orientation, as in the case of an equation such asn+m= m+n.

In the rest of this section, letRbe aΣ -term rewriting system.

Definition 2.6.4 (Reduction→∗R and convertibility ∼R). The reduction relation
→∗R⊆ |TΣ (X)|×|TΣ (X)| generated by Ris the transitive reflexive closure of→R . In
other words,t→∗R t ′ if t = t ′ or there exist termst1, . . . , tn ∈ |TΣ (X)|, n≥ 0, such that
t→R t1→R · · ·→R tn→R t ′; then we say thatt reduces to t′. The inverse of reduction
→∗R is expansion, written ∗R← . Theconvertibility relation∼R⊆ |TΣ (X)|× |TΣ (X)|
generated by Ris the symmetric transitive reflexive closure of→R . In other words,
t ∼R t ′ if t = t ′ or there exist termst1, . . . , tn ∈ |TΣ (X)|, n≥ 0, such thatt →R t1 or
t R← t1, andt1→R t2 or t1 R← t2, and . . . , andtn→R t ′ or tn R← t ′; then we say thatt
converts to t′. ut

Exercise 2.6.5.Check that∼R is aΣ -congruence onTΣ (X). ut

Example 2.6.6.Recall the presentationBool = 〈ΣBool,ΦBool〉 from Exam-
ple 2.2.3. The followingΣBool-term rewriting systemRBool obviously satisfies
ClΣBool(ΦBool) = ClΣBool(Eq(RBool)):

RBool= {¬true→ false, ¬false→ true, p∧ true→ p, p∧ false→ false,
p∧¬p→ false, p⇒ q→¬(p∧¬q)}.

(Observe that in the rulep⇒ q→¬(p∧¬q), the right-hand side is not obviously
simpler than the left-hand side.) We have (for example):

Page: 67 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

68 2 Simple equational specifications

¬(p∧ (q⇒¬false))→RBool ¬(p∧¬(q∧¬¬false))
→RBool ¬(p∧¬(q∧¬true))
→RBool ¬(p∧¬(q∧ false))
→RBool ¬(p∧¬false)
→RBool ¬(p∧ true)
→RBool ¬p

(at each step, the redex reduced by the step is underlined) so¬(p∧(q⇒¬false))→∗
RBool

¬p, and

¬(p∧ (q⇒ false)) RBool← ¬(p∧ (q⇒¬true))
→RBool ¬(p∧¬(q∧¬¬true))
→RBool ¬(p∧¬(q∧¬false))
RBool← ¬(p∧¬((q∧ true)∧¬false))
→RBool ¬(p∧¬((q∧ true)∧ true))
→RBool ¬(p∧¬(q∧ true))

so¬(p∧ (q⇒ false))∼RBool ¬(p∧¬(q∧ true)). ut

Exercise 2.6.7.Recall the presentationNat= 〈ΣNat,ΦNat〉 given in Exercise 2.5.4.
Give aΣNat-term rewriting systemRNat such thatClΣNat(ΦNat)= ClΣNat(Eq(RNat)),
and practice reducing and converting someΣNat-terms usingRNat. ut

The convertibility relation generated byRcoincides with equality provable from
Eq(R). This fact is captured by the following two theorems.

Theorem 2.6.8 (Soundness of convertibility).If t ∼R t ′ then Eq(R) `Σ t = t ′.

Proof sketch.Consider a reduction stepC[t[θ]]→r C[t ′[θ]]. This corresponds to a
derivation involving: an application of the axiom rule, to deriveEq(R) ` t = t ′; an
application of instantiation, to deriveEq(R) ` t[θ] = t ′[θ]; and repeated applications
of reflexivity and congruence, to deriveEq(R) `C[t[θ]] =C[t ′[θ]]. The definition of
∼R as the symmetric transitive reflexive closure of→R corresponds directly to

applications of the symmetry, transitivity and reflexivity rules. (Exercise:Fill in the
gaps in this proof.) ut

Lemma 2.6.9.Suppose t, t ′ ∈ |TΣ (X)|s for s∈ S. If t∼R t ′ then:

1. C[t]∼R C[t ′] for anyΣ -context C[] for sort s.
2. t[θ]∼R t ′[θ] for any substitutionθ :X→ |TΣ (X)|.

Proof. Exercise:Do it. ut

Theorem 2.6.10 (Completeness of convertibility).If Eq(R) `Σ t = t ′ then t∼R t ′.

Proof sketch.By induction on the depth of the derivation ofEq(R) `Σ t = t ′. The
most interesting case is when the last step is an application of the congruence rule:

Eq(R) `Σ t1 = t ′1 · · · Eq(R) `Σ tn = t ′n
Eq(R) `Σ f (t1, . . . , tn) = f (t ′1, . . . , t

′
n)

Page: 68 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.6 Term rewriting 69

where f :s1×·· ·×sn→ s. By the inductive assumption,t1 ∼R t ′1 and . . . andtn ∼R

t ′n. Then, by repeated application of Lemma 2.6.9(1), we havef (t1, t2 . . . , tn) ∼R

f (t ′1, t2 . . . , tn)∼R · · · ∼R f (t ′1, t
′
2 . . . , t ′n) (using first the contextf (2:s1, t2 . . . , tn), then

f (t ′1,2:s2, . . . , tn), then . . . , thenf (t ′1, t
′
2, . . . ,2:sn)). When the last step of the deriva-

tion of Eq(R) `Σ t = t ′ is an application of the instantiation rule, the result follows
directly by Lemma 2.6.9(2). (Exercise:Complete the proof.) ut

Exercise 2.6.11.Try to get rid of the need for the assumption onΣ made at the
beginning of this section in all the definitions and results above. This will involve
rewriting terms of the form(X)t using rewrite rules of the form∀X • t→ t ′, in both
cases with explicit variable declarations. ut

Given the exact correspondence between convertibility and provable equality, a
decision procedure fort ∼R t ′ amounts to a decision procedure forΦ `Σ t = t ′, pro-
videdClΣ (Φ) = ClΣ (Eq(R)). The problem with testingt ∼R t ′ by simply applying
the definition is that the “path” fromt to t ′ may include both reduction steps and
expansion steps, and may be of arbitrary length. But whenRsatisfies certain condi-
tions, it is sufficient to test just asinglepath having the special formt→∗R t ′′ ∗R← t ′,
which yields a simple and efficient decision procedure for convertibility.

Definition 2.6.12 (Normal form). A Σ -term t ∈ TΣ (X) is anormal form (for R)if
there is no termt ′ such thatt→R t ′. ut

Definition 2.6.13 (Termination). A Σ -term rewriting systemR is terminating(or
strongly normalising) if there is no infinite reduction sequencet1→R t2→R · · · ;
that is, whenevert1 →R t2 →R · · · , there is some (finite)n ≥ 1 such thattn is a
normal form. ut

The usual way to show that a term rewriting systemR is terminating is to demon-
strate that each rule inR reduces the complexity of terms according to some
carefully-chosen measure.

Definition 2.6.14 (Confluence).A Σ -term rewriting systemR isconfluent(orChurch-
Rosser) if whenevert →∗R t1 andt →∗R t2, there is a termt3 such thatt1→∗R t3 and
t2→∗R t3. ut

Definition 2.6.15 (Completeness).A Σ -term rewriting systemR is completeif it is
both terminating and confluent. ut

Completeness of a term rewriting system should not be confused with completeness
of a proof system, as in for example Theorem 2.6.10 above.

Exercise 2.6.16.Suppose thatR is a completeΣ -term rewriting system, and lett ∈
|TΣ (X)| be aΣ -term. Show that there is a unique normal formNFR(t) ∈ |TΣ (X)|
such thatt→∗R NFR(t).

HINT : An abstract reduction systemconsists of a setA together with a binary
relation→ ⊆ A×A. A Σ -term rewriting systemR is a particular example, where
A = |TΣ (X)| and → is →R . Concepts such as normal form and confluence make
sense in the context of any abstract reduction system, and the required property
holds in this more abstract setting. ut

Page: 69 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

70 2 Simple equational specifications

Example 2.6.17.The term rewriting systemRBool from Example 2.6.6 is both
terminating and confluent, and is therefore complete. As the reduction sequence in
Example 2.6.6 shows,NFRBool(¬(p∧ (q⇒¬false))) = ¬p.

The term rewriting systemRBool′ = RBool∪{p∧q→ q∧ p} is not termi-
nating:p∧q→RBool′ q∧ p→RBool′ p∧q→RBool′ q∧ p→RBool′ · · · .

The term rewriting systemRBool′′ =RBool∪{(p∧q)∧ r → p∧ (q∧ r)} is
not confluent:(p∧¬p)∧q→RBool′′ false∧q and(p∧¬p)∧q→RBool′′ p∧(¬p∧
q), and bothfalse∧q andp∧ (¬p∧q) are normal forms. ut

Exercise 2.6.18.Is your term rewriting systemRNat from Exercise 2.6.7 com-
plete? If not, find an alternative term rewriting system forNat that is complete. ut

Exercise 2.6.19.A Σ -term rewriting systemR is weakly confluentif whenever
t →R t1 and t →R t2, there is a termt3 such thatt1 →∗R t3 and t2 →∗R t3. Find a
term rewriting system that is weakly confluent but not confluent. (HINT : Weak con-
fluence plus termination implies confluence, so don’t bother looking at terminating
term rewriting systems.) Weak confluence is a much easier condition to check than
confluence, so the usual way to prove that a term rewriting system is confluent is to
show that it is weakly confluent and terminating. ut

In view of the obvious analogy between reduction and computation,NFR(t) can
be thought of as thevalueof t; sinceNFR(t) need not be a ground term, this is a
more general notion of computation than the usual one.

Exercise 2.6.20.Convince yourself thatNFR: |TΣ (X)| → |TΣ (X)| is computable for
any finite complete term rewriting systemR — perhaps try to implement it in your
favourite programming language. ut

Theorem 2.6.21 (Decision procedure for convertibility).If R is complete, then
t ∼R t ′ iff NFR(t) = NFR(t ′). ut

Exercise 2.6.22.Prove Theorem 2.6.21. (HINT : The proof does not depend on the
definition of →R , but only on the assumption thatR is complete.) ut

Sincet ∼R t ′ iff Eq(R) `Σ t = t ′ (by soundness and completeness of convertibility)
iff Eq(R) |=Σ t = t ′ (by soundness and completeness of the equational calculus),
Theorem 2.6.21 constitutes a decision procedure for consequence:

Corollary 2.6.23 (Decision procedure forEq(R) |=Σ t = t ′). If R is complete, then
Eq(R) |=Σ t = t ′ iff NFR(t) = NFR(t ′). ut

Example 2.6.24.Since the term rewriting systemRBool from Example 2.6.6
is complete (see Example 2.6.17), Corollary 2.6.23 can be used to prove that
Eq(RBool) |=ΣBool ¬(p∧ (q⇒¬false)) = p⇒ (p∧¬p): NFRBool(¬(p∧ (q⇒
¬false)))=¬p= NFRBool(p⇒ (p∧¬p)). SinceClΣBool(ΦBool)= ClΣBool(Eq(RBool)),
this proves thatΦBool |=ΣBool ¬(p∧ (q⇒¬false)) = p⇒ (p∧¬p).

Exercise. Give a derivation ofΦBool `ΣBool ¬(p∧ (q⇒ ¬false)) = p⇒ (p∧
¬p) in the equational calculus. Compare this with the above proof. ut

Page: 70 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.6 Term rewriting 71

Exercise 2.6.25.Recall your complete term rewriting system forNat from Ex-
ercise 2.6.18. Use this to prove thatΦNat |=ΣNat succ(succ(0)) + succ(n) =
succ(succ(succ(n))), and thatΦNat 6|=ΣNat succ(m)+ succ(n) = succ(succ(m+
n)), ut

Exercise 2.6.26.Let t → t ′ be aΣ -rewrite rule of sorts. The following restrictions
are often imposed:

• t 6∈ Xs; and
• FV(t ′)⊆ FV(t).

Show that, if these restrictions are imposed on rewrite rules, then Corollary 2.6.23
holds even without the assumption onΣ made at the beginning of this section.
(These restrictions seem harmless since almost no complete term rewriting system
contains rules that violate them.) ut

Exercise 2.6.27.Equality of terms in the equational theory of a rewriting systems is
also decidable under somewhat weaker requirements than those in Corollary 2.6.23.
A term-rewriting systemR is weakly normalisingif for each termt there is a finite
reduction sequence inR leading fromt to a normal form.R is semi-completeif it is
weakly normalising and confluent.

Generalising Exercise 2.6.16, show that ifR is a semi-completeΣ -term rewriting
system, then for anyΣ -term t ∈ |TΣ (X)| there is a unique normal formNFR(t) ∈
|TΣ (X)| such thatt →∗R NFR(t). Moreover, convince yourself that the function
NFR: |TΣ (X)| → |TΣ (X)| is then computable. Finally, show that the property cap-
tured by Corollary 2.6.23 holds for all semi-complete term rewriting systemsR. ut

By Corollary 2.6.23, the problem of deciding consequenceΦ |=Σ ϕ is reduced to
the problem of finding a finite complete term rewriting systemRsuch thatClΣ (Φ) =
ClΣ (Eq(R)). Clearly, by Theorem 2.4.15, this is not always possible. But theKnuth-
Bendix completion algorithmcan sometimes be used to produce such anR givenΦ

together with an order relation on terms. The algorithm works by pinpointing causes
of failure of (weak) confluence and adding rules to correct them, where the supplied
term ordering is used to orient these new rules. The algorithm is iterative and may
fail to terminate; it may also fail because the ordering supplied is inadequate.

The Knuth-Bendix completion algorithm can also be used to reason about ini-
tial models of specifications, using a method known asinductionless inductionor
proof by consistency. This method is based on the observation that an equationt = t ′

holds in the initial models of〈Σ ,Φ〉 iff there is no ground equations= s′ such that
Φ 6|= s = s′ andΦ ∪{t = t ′} |= s = s′. (Exercise: Prove this fact.) Given a com-
plete term rewriting systemR such thatClΣ (Φ) = ClΣ (Eq(R)) (perhaps produced
using the Knuth-Bendix algorithm), the Knuth-Bendix algorithm is used to produce
a complete term rewriting systemR′ for Φ ∪{t = t ′} by extendingR. It is then pos-
sible to test ifR andR′ have the same normal forms for groundΣ -terms; if so, then
t = t ′ holds in the initial models of〈Σ ,Φ〉.

Page: 71 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

72 2 Simple equational specifications

2.7 Fiddling with the definitions

In principle, the specification framework presented in the preceding sections is pow-
erful enough for any conceivable computational application. This is made precise
by a theorem in [BT87] (cf. [Vra88]) which states that for every reachablesemi-
computableΣ -algebraA there is a presentation〈Σ ′,Φ ′〉 with finite Φ ′ such that
A = A′ Σ for some initial modelA′ ∈ IMod[〈Σ ′,Φ ′〉]. (See [BT87] for the definition
of semi-computable algebra.) In spite of this fact, there are several reasons why this
framework is inconvenient for use in practice.

One deficiency becomes apparent as soon as one attempts to write specifications
that are somewhat larger than the examples we have seen so far. In order to be un-
derstandable and usable, large specifications must be built up incrementally from
smaller specifications. Specification mechanisms designed to cope with such prob-
lems of scale are presented in Chapter 5. These methods also solve the problem
illustrated by Exercise 2.5.20, see Exercise 5.1.11.

Another difficulty arises from the relatively low level of equational logic as a
language for describing constraints to be satisfied by the operations of an algebra.
When using equational axioms, it is often necessary to write a dozen equations to
express a property that can be formulated much more clearly using a single ax-
iom in some more powerful logic. Some properties that are easy to express in more
powerful systems are not expressible at all using equations. Similar awkwardness
is caused by the limitations of the type system used here, in comparison with the
polymorphic type systems of modern programming languages such as Standard ML
[Pau96]. Finally, the present framework is only able to cope conveniently with al-
gebras comprised oftotal anddeterministicfunctions operating on data values built
by finitary compositions of such functions, a limitation which rules out its use for
very many programs of interest.

All these difficulties can be addressed by making appropriate modifications to the
standard framework presented in the preceding sections. An example was already
given in Section 1.5.2 where it was shown how signature morphisms could be re-
placed by derived signature morphisms. This section is devoted to a sketch of some
other possible modifications. The presentation is very brief and makes no attempt
to be truly comprehensive; the interested reader will find further details (and further
citations) in the cited references.

2.7.1 Conditional equations

The most obvious kind of modification to make is to replace the use of equational
axioms by formulae in a more expressive language. Some care is required since
a number of the results presented above depend on the use of equational axioms.
A relatively unproblematic choice is to use equations that apply only when certain
pre-conditions (expressed as equations) are satisfied.

Let Σ = 〈S,Ω〉 be a signature.

Page: 72 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.7 Fiddling with the definitions 73

Definition 2.7.1 (Conditional equation).A (positive) conditionalΣ -equation∀X • t1 =
t ′1∧ . . .∧ tn = t ′n⇒ t0 = t ′0 consists of:

• a finiteS-sorted setX (of variables), such thatXs⊆X for all s∈ S; and
• for each 0≤ j ≤ n (wheren≥ 0), two Σ -termst j , t ′j ∈ |TΣ (X)|sj for some sort

sj ∈ S.

A Σ -algebraA satisfiesa conditionalΣ -equation∀X • t1 = t ′1∧ . . .∧ tn = t ′n⇒ t0 =
t ′0 if for every (S-sorted) functionv:X → |A|, if (t1)A(v) = (t ′1)A(v) and . . . and
(tn)A(v) = (t ′n)A(v) then(t0)A(v) = (t ′0)A(v). ut

Note that variables in the conditions (t1 = t ′1∧ . . .∧ tn = t ′n) that do not appear in
the consequent (t0 = t ′0) can be seen as existentially quantified: for example, the
conditional equation∀a,b:t • a×b = 1⇒ a×a−1 = 1 is equivalent to the formula
∀a:t • (∃b:t • a×b = 1)⇒ a×a−1 = 1 in ordinary first-order logic.

Exercise 2.7.2.Define the translation of conditionalΣ -equations by a signature
morphismσ :Σ → Σ ′. ut
The remaining definitions of Sections 2.1–2.5 require only superficial changes, and
most results go through with appropriate modifications.

Let 〈Σ ,Φ〉 be a presentation, whereΦ is a set of conditionalΣ -equations.
Mod[〈Σ ,Φ〉] is not always a variety, as is (almost) shown by Example 2.2.11; in
this sense, the power of conditional equations is strictly greater than that of ordinary
equations.

Exercise 2.7.3.The cancellation law given in Example 2.2.11 is not a conditional
equation. Give a version of this example that uses only conditional equations.
(HINT : Equality can be axiomatized as an operationeq:s×s→ bool.) ut
In spite of this increase in expressive power, there is a proof system that is sound
and complete with respect to conditional equational consequence [Sel72], and the
quotient construction can be used to construct an initial model of〈Σ ,Φ〉 [MT92] (cf.
Lemma 3.3.12 below). Term rewriting with conditional rewrite rules is possible, but
there are some complications, see [Klo92] and [Mid93].

Exercise 2.7.4.[Sel72] gives a proof system that is sound and complete for condi-
tional equational consequence in the single-sorted case. Extend this to the many-
sorted case, where explicit quantifiers are required for the same reason as in the
equational calculus. ut

Exercise 2.7.5.Recall Exercise 2.5.21 concerning the specification of a function
ch:nat→ nat that for each natural numbern chooses an arbitrary number that is
greater thann. Modify this, using a conditional equation to makechchoose an arbi-
trary number that islessthann when 0< n. ut

Example 2.7.6.LetHA= 〈ΣHA,ΦHA〉 be the following presentation.3

3 We use the same symbol⇒ for implication in conditional equations and for an operation in the
presentation below — the usual symbols are used for other propositional connectives as well, as in
Example 2.2.4. We use extra space around implication in the conditional equations below in order
to make them easier to read.

Page: 73 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

74 2 Simple equational specifications

specHA= sorts bool
ops true:bool

false:bool
¬ :bool→ bool
∨ :bool×bool→ bool
∧ :bool×bool→ bool
⇒ :bool×bool→ bool

∀p,q, r:bool
• p∨ (q∨ r) = (p∨q)∨ r
• p∧ (q∧ r) = (p∧q)∧ r
• p∨q = q∨ p
• p∧q = q∧ p
• p∨ (p∧q) = p
• p∧ (p∨q) = p
• p∨ true = true
• p∨ false = p
• (p∨ (r ∧q) = p) ⇒ ((q⇒ p)∨ r = (q⇒ p))
• ((q⇒ p)∨ r = (q⇒ p)) ⇒ (p∨ (r ∧q) = p)
• ¬p = (p⇒ false)

Models ofHA are calledHeyting algebras.

Exercise.Recall the presentationBA of Boolean algebras in Example 2.2.4. Show
that every Boolean algebra is a Heyting algebra. Then repeat the exercise in Ex-
ample 2.2.4, building for every Heyting algebraH a lattice〈|H|,≤H〉 with top and
bottom elements. Check that the conditional axioms concerning the implication⇒
can now be captured by requiring thatr ∧q≤H p is equivalent tor ≤H q⇒ p. Show
that the lattice is distributive.

Give an example of a Heyting algebra that is not Boolean. Check which of the
axioms of the presentationBA do not follow fromHA.

Prove that anequationalpresentation with the same models asHA can be given.
HINT : Use Theorem 2.2.10. Or consider the following properties of the implica-
tion: p⇒ p = true, q∧ (q⇒ p) = q∧ p, p∨ (q⇒ p) = q⇒ p, andq⇒ (p∧ r) =
(q⇒ p)∧ (q⇒ r). ut

2.7.2 Reachable semantics

In Section 2.5, the motivation given for taking a presentation〈Σ ,Φ〉 to denote the
classIMod[〈Σ ,Φ〉] of its initial models was the desire to exclude models containing
junk and confusion. The need to exclude models containing confusion stems mainly
from the use of equational axioms, which make it impossible to rule out degenerate
models having a single value of each sort inΣ . If a more expressive language is used
for axioms, or if degenerate models are ruled out by some other means, then models
containing confusion need not be excluded.

Page: 74 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.7 Fiddling with the definitions 75

Example 2.7.7.Consider the following specification of sets of natural numbers (a
variant of the one in Exercise 2.5.23):

specSetNat= sorts bool,nat,set
ops true:bool

false:bool
∨ :bool×bool→ bool

0:nat
succ:nat→ nat
eq:nat×nat→ bool
∅:set
add:nat×set→ set
∈ :nat×set→ bool

∀p:bool,m,n:nat,S:set
• p∨ true= true
• p∨ false= p
• eq(n,n) = true
• eq(0,succ(n)) = false
• eq(succ(n),0) = false
• eq(succ(m),succ(n)) = eq(m,n)
• n∈∅ = false
• m∈ add(n,S) = eq(m,n)∨m∈ S

There are many different models ofSetNat, including algebras having a single
value of each sort. Suppose we restrict attention to algebras that do not satisfy the
equation∀∅• true= false; this excludes such degenerate models (see the exercise
below). Consider the following two equations:

Commutativity ofadd: ∀m,n:nat,S:set• add(m,add(n,S)) = add(n,add(m,S))
Idempotency ofadd: ∀n:nat,S:set• add(n,add(n,S)) = add(n,S)

The models ofSetNat that do not satisfy∀∅• true= falsemay be classified ac-
cording to which of these two equations they satisfy.

“List-like” algebras: add is neither commutative nor idempotent.
“Set-like” algebras:add is both commutative and idempotent.
“Multiset-like” algebras: add is commutative but not idempotent.
“List-like” algebras without repeated adjacent entries:add is idempotent but not

commutative.

There are also “hybrid” models ofSetNat, e.g. those in whichadd is commuta-
tive but is only idempotent forn 6= 0. The initial models ofSetNat are “list-like”
algebras. Adding the commutativity and idempotency requirements toSetNat as
additional axioms would eliminate all but the “set-like” algebras.

Exercise. Show that restricting attention to models ofSetNat that do not satisfy
the equation∀∅• true = falseeliminates all but “sensible” realisations of sets of
natural numbers, by forcingeq(succm(0),succn(0)) = true iff m= n iff succm(0) =

Page: 75 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

76 2 Simple equational specifications

succn(0), anda∈ add(a1,add(a2, . . . ,add(ap,∅) . . .)) = true iff eq(a,a1) = trueor
. . . or eq(a,ap) = true, for m,n, p≥ 0. Note thatm,n and p are ordinary integers
here,not values of the sortnat, andsuccm(0) meanssucc(. . .succ(︸ ︷︷ ︸

m times

0) . . .). ut

Consideration of examples like the one above suggests various alternatives to
taking the initial semantics of specifications. One choice is to require signatures to
include the sortbool and the constantstrue andfalse, and to exclude models satis-
fying ∀∅• true= false. This might be termed taking thestandard loose semantics
of specifications. Another choice is to additionally exclude models containing junk:

Definition 2.7.8 (Reachable semantics).Let Σ = 〈S,Ω〉 be a signature such that
bool∈ S and true:bool and false:bool are in Ω . A reachable standard modelof
a presentation〈Σ ,Φ〉 is a reachableΣ -algebraA such thatA |=Σ Φ and A 6|=Σ

∀∅• true = false. RMod[〈Σ ,Φ〉] is the class of all reachable standard models of
〈Σ ,Φ〉. Taking 〈Σ ,Φ〉 to denoteRMod[〈Σ ,Φ〉] is called taking itsreachable se-
mantics. ut

The motivation for excluding models containing junk is the same as in the case of
initial semantics.RMod[〈Σ ,Φ〉] is not always an isomorphism class of models, as
Example 2.7.7 demonstrates (the classification given there was forall models that
do not satisfy∀∅• true= false, but the same applies to the reachable models in this
class). There is still a problem when operations are not defined in a sufficiently com-
plete way, although the problem is less severe than in the case of initial semantics.

Exercise 2.7.9.Reconsider the problem posed in Exercise 2.5.20, by writing a
reachable model specification of natural numbers including a subtraction operation
− :nat×nat→natwith the axioms∀m:nat•m−0= mand∀m,n:nat• succ(m)−

succ(n) = m−n. Recall from Exercise 2.5.20 the assumption that we are willing to
accept any value form−n whenn > m, which is why the axioms do not constrain
the value ofm−n in this case. List some of the reachable standard models of this
specification, and decide whether the models you considered in Exercise 2.5.20 are
reachable standard models (ignoring the difference in signatures). From an intuitive
point of view, is this an adequate class of models for this specification? ut

Exercise 2.7.10.Definition 2.7.8 permits algebrasA∈RMod[〈Σ ,Φ〉] with values of
sort bool other thantrueA and falseA. This is ruled out if all operations delivering
results in sortbool are defined in a sufficiently complete way to yield eithertrue or
falseon each argument that is definable by a ground term. Check that the specifi-
cationSetNat in Example 2.7.7 ensures this property and so all of its reachable
models have a two-element carrier of sortbool. Give an example of a specification
for which this is not the case. ut

The equational calculus is sound for reasoning about the reachable standard models
of presentations, sinceRMod[〈Σ ,Φ〉]⊆Mod[〈Σ ,Φ〉] for any presentation〈Σ ,Φ〉. It
is sound to add induction rule schemes such as those given in Section 2.5; these are

Page: 76 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.7 Fiddling with the definitions 77

sound for any class of reachable models. Completeness is unachievable, for exactly
the same reason as in the case of initial semantics; the proof of Theorem 2.5.26 can
be repeated in this context almost without change. Finally, the techniques of term
rewriting presented in Section 2.6 remain sound.

Initial semantics cannot be used for specifications with axioms that are more
expressive than (infinitary) conditional equations [Tar86b], in the sense that initial
models of such specifications are not guaranteed to exist. To illustrate the problem,
the following example shows what can go wrong when the language of axioms is
extended to permit disjunctions of equations.

Example 2.7.11.Consider the following specification:

specStatus= sorts status
ops single:status

married:status
widowed:status

• widowed= single∨widowed= married

where disjunction of equations has the obvious interpretation. There are three kinds
of algebras inMod[Status]:

1. Those satisfyingsingle= widowed= married.
2. Those satisfyingsingle= widowed6= married.
3. Those satisfyingsingle6= widowed= married.

None of these is an initial model ofStatus: there are no homomorphisms from
algebras in the first class to algebras in either of the other two classes, and no homo-
morphisms in either direction between algebras in the second and third classes.ut
In contrast, reachable semantics can be used for specifications with axioms of any
form (once a definition of satisfaction of such axioms by algebras has been given,
of course). Such flexibility is a distinct advantage of this approach.

Another alternative to initial semantics deserves brief mention.

Definition 2.7.12 (Final semantics).Let Σ = 〈S,Ω〉 be a signature such thatbool∈
Sandtrue:bool andfalse:bool are inΩ . A Σ -algebraA∈ RMod[〈Σ ,Φ〉] is afinal
(or terminal) model of〈Σ ,Φ〉 if for every B∈ RMod[〈Σ ,Φ〉] there is a uniqueΣ -
homomorphismh:B→ A. Taking 〈Σ ,Φ〉 to denote the class of its final models is
called taking itsfinal semantics. ut
As in the case of initial semantics, the final models of a presentation form an iso-
morphism class. Recall that a model of a presentation is initial iff it contains no
junk and no confusion (Exercise 2.5.19). We can give a similar characterisation
of final models as the models containing no junk andmaximal confusion: a final
modelA satisfies as many ground equations as possible, subject to the restriction
thatA 6|= ∀∅• true= false(imposed on all reachable standard models).

Example 2.7.13.Recall the specificationSetNat from Example 2.7.7, and the
classification of models ofSetNat according to the commutativity and idempo-
tence ofadd. The final models ofSetNat are in the class of “set-like” algebras, in
whichadd is both commutative and idempotent. (Exercise:Why?) ut

Page: 77 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

78 2 Simple equational specifications

Not all presentations with equational axioms have final models, but it is possible
to give conditions on the form of presentations that guarantee the existence of final
models [BDP+79].

Exercise 2.7.14.Find a variation on the specificationStatus in Example 2.7.11
that has no final models. ut

When reachable or final semantics of presentations is used with equational or
conditional equational axioms, sometimes more operations are required in specifi-
cations than in the case of initial semantics. These additional operations are needed
to provide ways of “observing” values of sorts other thanbool, in order to avoid
degenerate models. For example, the presence of the operationeq in Example 2.7.7
ensures thatsuccm(0) = succn(0) only if m = n in all models that do not satisfy
∀∅• true = false; it would not be needed if we were interested only in the initial
models ofSetNat. Such operations are not required if inequations are allowed as
axioms.

Exercise 2.7.15.Recall the presentationNat given in Exercise 2.5.4. Augment this
with the sortbool and constantstrue, false:bool (to make reachable and final se-
mantics applicable), and show that final models of the resulting specification have
a single value of sortnat. Add an operationeven:nat→ bool, with the following
axioms:

∀∅• even(0) = true
∀∅• even(succ(0)) = false
∀n:nat• even(succ(succ(n))) = even(n)

Show that final models of the resulting specification have exactly two values of sort
nat. Replaceevenwith ≤ :nat×nat→ bool, with appropriate axioms, and show
that final models of the resulting specification satisfysuccm(0) = succn(0) iff m= n.
(We have already seen that this is the case ifeq:nat×nat→ bool is added in place
of ≤.) ut
Although the inclusion of additional operations tends to make specifications longer,
it is not an artificial device. In practice, one would expect each sort to come with
an assortment of operations for creating and manipulating values of that sort, so
specifications such asNat are less natural thanNat augmented with operations
like ≤ and/oreq.

2.7.3 Dealing with partial functions: error algebras

An obvious inadequacy of the framework(s) presented above stems from the use of
total functions in algebras to interpret the operation names in a signature. Since par-
tial functions are not at all uncommon in Computer Science applications — a very
simple example being the predecessor functionpred:nat→ nat, which is undefined
on 0 — a great deal of work has gone into ways of lifting this restriction. Three
main approaches are discussed below:

Page: 78 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.7 Fiddling with the definitions 79

Error algebras (this subsection): Predecessor is regarded as a total function, with
pred(0) specified to yield anerror value.

Partial algebras (Section 2.7.4): Predecessor is regarded as a partial function.
Order-sorted algebras (Section 2.7.5): Predecessor is regarded as a total function

on a sub-domain that excludes the value 0.

A fourth approach is to use ordinary (total) algebras, leaving the value ofpred(0)
unspecified. This is more an attempt to avoid the issue than a solution, and it is
workable only in frameworks that deal adequately with non-sufficiently-complete
definitions; see Exercises 2.5.20, 2.7.9, and 5.1.11.

The most obvious way of adding error values to algebras does not work, as the
following example demonstrates.

Example 2.7.16.Consider the following specification of the natural numbers, where
pred(0) is specified to yield an error:

specNatPred= sorts nat
ops 0:nat

succ:nat→ nat
pred:nat→ nat
error:nat

+ :nat×nat→ nat
× :nat×nat→ nat

∀m,n:nat
• pred(succ(n)) = n
• pred(0) = error
• 0+n = n
• succ(m)+n = succ(m+n)
• 0×n = 0
• succ(m)×n = (m×n)+n

Initial models ofNatPred will have many “non-standard” values of sortnat, in
addition to the intended one (error). For example, the axioms ofNatPred do not
force the ground termspred(error) andpred(error)+0 to be equal to any “normal”
value, or toerror. (Exercise:Give an initial model ofNatPred.) A possible so-
lution to this is to add axioms that collapse these non-standard values to a single
point:

specNatPred= sorts nat
ops . . .
∀m,n:nat

• . . .
• succ(error) = error
• pred(error) = error
• error +n = error
• n+error = error
• error×n = error
• n×error = error

Page: 79 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

80 2 Simple equational specifications

Unfortunately,NatPred now has only trivial models:error = 0×error = 0 and
soerror = succ(error) = succ(0), error = succ(error) = succ(succ(0)), etc. ut

The above example suggests that a more delicate treatment is required. A number
of approaches have been proposed; here we follow [GDLE84], which is fairly pow-
erful without sacrificing simplicity and elegance. The main ideas of this approach
are:

• Error values are distinguished from non-error (“OK”) values.
• In an error signature, operations that may produce errors when given OK ar-

guments (unsafeoperations) are distinguished from those that always preserve
OK-ness (safeoperations).

• In anerror algebra, each carrier is partitioned into an error part and an OK part.
Safe operations are required to produce OK results for OK arguments, and ho-
momorphisms are required to preserve OK-ness.

• In equations, variables that can take OK values only (safevariables) are distin-
guished from variables that can take any value (unsafevariables). Assignments
of values to variables are required to map safe variables to OK values.

Definition 2.7.17 (Error signature). An error signatureis a tripleΣ = 〈S,Ω ,safe〉
where:

• 〈S,Ω〉 is an ordinary signature; and
• safeis anS∗×S-sorted set of functions〈safew,s:Ωw,s→{tt, ff}〉w∈S∗,s∈S.

An operationf :s1× ·· ·× sn→ s in Σ is safeif safes1...sn,s(f) = tt; otherwise it is
unsafe. ut

Example 2.7.16 (revisited).An appropriate error signature forNatPred would
be:

ΣNatPred = sorts nat
ops 0:nat

succ:nat→ nat
pred:nat→ nat :unsafe
error:nat :unsafe

+ :nat×nat→ nat
× :nat×nat→ nat

Obviously,error is unsafe, andpred is unsafe since it produces an error when ap-
plied to 0; all the remaining operations are safe. (By convention, the safe operations
are those that are not explicitly marked as unsafe.) ut

In the rest of this section, letΣ = 〈S,Ω ,safe〉 be an error signature.

Definition 2.7.18 (Error algebra). An error Σ -algebra Aconsists of:

• an ordinaryΣ -algebraA; and
• anS-sorted set of functionsOK = 〈OKs: |A|s→{tt, ff}〉s∈S

Page: 80 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.7 Fiddling with the definitions 81

such that safe operations preserve OK-ness: for everyf :s1×·· ·×sn→ s in Σ such
that safes1...sn,s(f) = tt and a1 ∈ |A|s1, . . . ,an ∈ |A|sn such thatOKs1(a1) = · · · =
OKsn(an) = tt, OKs((f :s1× ·· · × sn→ s)A(a1, . . . ,an)) = tt. A value a ∈ |A|s for
s∈ S is anOK valueif OKs(a) = tt; otherwise it is anerror value. ut

We employ the usual notational conventions, e.g. writingfA in place of(f :s1×·· ·×
sn→ s)A.

Definition 2.7.19 (Error homomorphism). Let A andB be errorΣ -algebras. An
error Σ -homomorphism h:A→ B is anS-sorted functionh: |A| → |B| with the usual
homomorphism property (for allf :s1× ·· ·× sn→ s in Σ anda1 ∈ |A|s1, . . . ,an ∈
|A|sn, hs(fA(a1, . . . ,an)) = fB(hs1(a1), . . . ,hsn(an))) such thath preserves OK-ness:
for everys∈Sanda∈ |A|s such thatOKs(a) = tt (in A), OKs(hs(a)) = tt (in B). ut

Definition 2.7.20 (Error variable set). An error S-sorted variable set Xconsists
of anS-sorted setX such thatXs⊆X for all s∈ S, and anS-sorted set of functions
safe= 〈safes:Xs→{tt, ff}〉s∈S. A variablex:s in X is safeif safes(x) = tt; otherwise
it is unsafe. An assignmentof values in an errorΣ -algebraA to an errorS-sorted
variable setX is anS-sorted functionv:X→ |A| assigning OK values to safe vari-
ables: for everyx:s in X such thatsafes(x) = tt, OKs(vs(x)) = tt. ut

Definition 2.7.21 (Error algebra of terms).Let X be an errorS-sorted variable set.
Theerror Σ -algebra ETΣ (X) of terms with variables Xis defined in an analogous
way to the ordinary term algebraTΣ (X), with the following partition of theS-sorted
set of terms into OK and error values:

For all sortss∈ SandΣ -termst ∈ |ETΣ (X)|s, if t contains an unsafe variable
or operation thenOKs(t) = ff ; otherwiseOKs(t) = tt.

We adopt the same notational conventions for terms as before, dropping sort deco-
rations etc. when there is no danger of confusion. LetETΣ denoteETΣ (∅). ut

The definitions of term evaluation, error equation, satisfaction of an error equation
by an error algebra, error presentation, model of an error presentation, semantic
consequence, and initial model are analogous to the definitions given earlier in the
standard many-sorted algebraic framework (Definitions 1.4.5, 2.1.1, 2.1.2, 2.2.1,
2.2.2, 2.3.6 and 2.5.13 respectively). Because assignments are required to map safe
variables to OK values, an error equation may be satisfied by an error algebra even
if it is not satisfied when error values are substituted for safe variables.

Exercise 2.7.22.Spell out the details of these definitions. ut

As before, every error presentation has an isomorphism class of initial models,
and an analogous quotient construction gives an initial model.

Definition 2.7.23 (Congruence generated by a set of equations).Let Φ be a set of
errorΣ -equations. TheΣ -congruence≡Φ on ETΣ is defined byt ≡Φ t ′⇐⇒Φ |=Σ

∀∅• t = t ′ for all t, t ′ ∈ |ETΣ |. ≡Φ is called theΣ -congruence generated byΦ .
(NOTE: A Σ -congruence on an errorΣ -algebraA is just an ordinaryΣ -congruence
on the ordinaryΣ -algebra underlyingA.) ut

Page: 81 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

82 2 Simple equational specifications

Definition 2.7.24 (Quotient error algebra).Let A be an errorΣ -algebra, and let
≡ be aΣ -congruence onA. The definition ofA/≡, thequotient error algebra of
A modulo≡ , is analogous to that of the ordinary quotient algebraA/≡, with the
following partition of congruence classes into OK and error values:

For all sortss∈ Sand congruence classes[a]≡s ∈ |A/≡|s, if there is someb∈
[a]≡s such thatOKs(b) = tt (in A) thenOKs([a]≡s) = tt (in A/≡); otherwise
OKs([a]≡s) = ff . ut

Note that if there are both OK and error values in a congruence class, the class is
regarded as an OK value in the quotient.

Theorem 2.7.25 (Initial model theorem).The errorΣ -algebra ETΣ /≡Φ is an ini-
tial model of the error presentation〈Σ ,Φ〉. ut

Exercise 2.7.26.Sketch a proof of Theorem 2.7.25. (HINT : Take inspiration from
the proof of Theorem 2.5.14.) ut

Exercise 2.7.27.Try to find conditions analogous to “no junk” and “no confusion”
that characterise the initial models of an error presentation. ut

Example 2.7.16 (revisited).Using the approach outlined above, here is an im-
proved version of the specificationNatPred:

specNatPred= sorts nat
ops 0:nat

succ:nat→ nat
pred:nat→ nat :unsafe
error:nat :unsafe

+ :nat×nat→ nat
× :nat×nat→ nat

∀m,n:nat
• pred(succ(n)) = n
• pred(0) = error
• 0+n = n
• succ(m)+n = succ(m+n)
• 0×n = 0
• succ(m)×n = (m×n)+n

(By convention, variables in equations are safe unless otherwise indicated.) In initial
models ofNatPred, the error values of sortnat correspond exactly to “error mes-
sages”, i.e. ground terms containing at least one occurrence oferror. These terms
can be regarded as recording the sequence of events that took place since the error
occured. The record is accurate since the initial models ofNatPred donot satisfy
equations like∀∅• 0×error = 0, in contrast to the initial models of the earlier ver-
sion. To collapse the error values to a single point without affecting the OK values,
axioms can be added as follows:

Page: 82 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.7 Fiddling with the definitions 83

specNatPred= sorts nat
ops . . .
∀m,n:nat,k:nat:unsafe

• . . .
• pred(error) = error
• succ(error) = error
• error +k = error
• k+error = error
• error×k = error
• k×error = error

It is also possible to specifyerror recoveryusing this approach:

specNatPred= sorts nat
ops . . .

recover:nat→ nat
∀m,n:nat,k:nat:unsafe

• . . .
• recover(error) = 0
• recover(n) = n

In initial models of this version ofNatPred, recoveris the identity onnat except
thatrecover(error) gives the OK value 0. ut

Although only initial semantics of error presentations has been mentioned above,
the alternatives of reachable and final semantics apply as in the standard case. The
key points of the standard framework not mentioned here (e.g. analogues to the
soundness, completeness and incompleteness theorems) carry over to the present
framework as well.

Exercise 2.7.28.Find a definition of error signature morphism which makes the
Satisfaction Lemma hold, taking the natural definition of theσ -reductA′ σ of an
errorΣ ′-algebraA′ induced by an error signature morphismσ :Σ → Σ ′. ut

Although the approach to error specification presented above is quite attractive,
there are examples that cannot be treated in this framework.

Exercise 2.7.29.Consider the following specification ofbounded natural numbers:

specBoundedNat= sorts nat
ops 0:nat

succ:nat→ nat :unsafe
overflow:nat :unsafe

• succ(succ(succ(succ(succ(succ(0)))))) = overflow

The intention is to specify a (very) restricted subset of the natural numbers, where an
attempt to compute a number larger than 5 results in overflow. Show that an initial
model ofBoundedNat will have only one OK value. ChangeBoundedNat to
make its initial models have six OK values (corresponding to 0,succ(0), . . . ,succ5(0)).
What if the bound is 232 rather than 5? ut

Page: 83 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

84 2 Simple equational specifications

2.7.4 Dealing with partial functions: partial algebras

An obvious way to deal with partial functions is to simply change the definition of
algebra to allow operation names to be interpreted as partial functions. But for many
of the basic notions in the framework that depend on the definition of algebra, be-
ginning with the concepts of subalgebra and homomorphism, there are several ways
to extend the usual definition to the partial case. Choosing a coherent combination
of these definitions is a delicate matter. Here we follow the approach of [BW82b].

Throughout this section, letΣ = 〈S,Ω〉 be a signature.

Definition 2.7.30 (Partial algebra).A partial Σ -algebra Ais like an ordinaryΣ -
algebra, except that eachf :s1×·· ·×sn→ s in Σ is interpreted as apartial function
(f :s1×·· ·× sn→ s)A: |A|s1×·· ·× |A|sn → |A|s. The (total) Σ -algebra underlying
A is theΣ -algebraA⊥ defined as follows:

• |A⊥|s = |A|s]{⊥s} for everys∈ S; and
• (f :s1×·· ·×sn→ s)A⊥(a1, . . . ,an) =

⊥s if a j =⊥sj for some 1≤ j ≤ n
(f :s1×·· ·×sn→ s)A(a1, . . . ,an) if this is defined
⊥s otherwise

for every f :s1×·· ·×sn→ s anda1 ∈ |A⊥|s1, . . . ,an ∈ |A⊥|sn. ut

We employ the same notational conventions as before. Note that according to this
definition, the value of a constant need not be defined: a constantc:s is associated in
an algebraAwith a partial functioncA:{〈〉}→ |A|s, where{〈〉} is the 0-ary Cartesian
product.

Definition 2.7.31 (Homomorphism).Let A andB be partialΣ -algebras. Aweak
Σ -homomorphism h:A→ B is anS-sorted (total) functionh: |A| → |B| such that for
all f :s1×·· ·×sn→ s in Σ anda1 ∈ |A|s1, . . . ,an ∈ |A|sn,

if fA(a1, . . . ,an) is defined thenfB(hs1(a1), . . . ,hsn(an)) is defined, and
hs(fA(a1, . . . ,an)) = fB(hs1(a1), . . . ,hsn(an)).

If moreoverh satisfies the condition

if fB(hs1(a1), . . . ,hsn(an)) is defined thenfA(a1, . . . ,an) is defined

thenh is called astrongΣ -homomorphism. ut

Other possibilities would be generated by allowing homomorphisms to be partial
functions.

Exercise 2.7.32.Consider a partialΣ -algebraA and its underlying totalΣ -algebra
A⊥. Given anyΣ -congruence≡ on A⊥, removing all pairs involving⊥ yields a
strongΣ -congruence on A. Check that such strong congruences are exactly kernels
of strongΣ -homomorphisms, cf. Exercises 1.3.14 and 1.3.18. Check that strong
congruences are equivalence relations that preserve and reflect definedness of oper-
ations and are closed under defined operations. Kernels of weakΣ -homomorphisms

Page: 84 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.7 Fiddling with the definitions 85

areweakΣ -congruences: equivalence relations that are closed under defined oper-
ations. Spell out these definitions in detail. For any partialΣ -algebraA and weak
Σ -congruence≡ on A, generalise Definition 1.3.15 to define thequotient of A by
≡, writtenA/≡. Note that an operation is defined inA/≡ on a tuple of equivalence
classes provided that inA it is defined on at least one tuple of their respective ele-
ments. Check which of Exercises 1.3.18–1.3.23 carry over. ut

Definition 2.7.33 (Term evaluation).Let X be anS-sorted set of variables, letA be
a partialΣ -algebra, and letv:X→ |A| be a (total)S-sorted function assigning values
in A to variables inX. Since|A| ⊆ |A⊥|, this is anS-sorted functionv⊥:X→ |A⊥|,
and by Fact 1.4.4 there is a unique (ordinary)Σ -homomorphismv#

⊥:TΣ (X)→ A⊥
which extendsv⊥. Let s∈ Sand lett ∈ |TΣ (X)|s be aΣ -term of sorts; thevalue of t
in A under the valuation vis v#

⊥(t) if v#
⊥(t) 6=⊥s, and is undefined otherwise. ut

Satisfaction of an equation∀X • t = t ′, where the values oft and/ort ′ may be
undefined, can be defined in several different ways. Following [BW82b], we use
strongequality (also known asKleeneequality) whereby the equality holds if (for
any assignment of values to variables) the values oft andt ′ are either both defined
and equal, or are both undefined. The usual interpretation of definitional equations in
recursive function definitions (see for instance Example 4.1.25 below) makes them
hold as strong equations. An alternative isexistential equality(where= is usually
written

e=), whereby the equality holds only when the values oft andt ′ are defined
and equal. When strong equality is used, there is a need for an additional form
of axiom called adefinedness formula: ∀X • def(t) holds if for any assignment of
values to variables, the value oft is defined. These are superfluous with existential
equality since∀X • def(t) holds iff ∀X • t

e= t holds.

Exercise 2.7.34.Formalize the definitions of satisfaction of equations (using strong
equality) and of definedness formulae. ut

Using both equations and definedness formulae as axioms, the definitions of pre-
sentation, model of a presentation, semantic consequence, isomorphism, and initial
model (with respect toweakhomomorphisms) are analogous to those given earlier.

Exercise 2.7.35.Spell out the details of these definitions. ut

Theorem 2.7.36 (Initial model theorem).Any presentation〈Σ ,Φ〉 has an initial
model I, characterised by the following properties:

• I contains no junk;
• I is minimally defined, i.e. for all t∈ |TΣ |, tI is defined only ifΦ |=Σ ∀∅• def(t);

and
• I contains no confusion, i.e. for all t, t ′ ∈ |TΣ |s,s∈ S, tI and t′I are defined and

equal only ifΦ |=Σ ∀∅• t = t ′.

Proof sketch.Let Σ⊥ be the signature obtained by adding a constant⊥s:s to Σ for
each sorts∈ S. Define a congruence∼⊆ |TΣ⊥ |× |TΣ⊥ | as follows: fort1, t2 ∈ |TΣ⊥ |s
for somes∈ S, t1∼ t2 iff any of the following conditions holds:

Page: 85 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

86 2 Simple equational specifications

1. t1 contains⊥s′ andt2 contains⊥s′′ for somes′,s′′ ∈ S;
2. t1 contains⊥s′ for somes′ ∈ S, t2 ∈ |TΣ |s (so t2 does not contain⊥s′′ for any

s′′ ∈ S) andΦ 6|= def(t2), or vice versa
3. t1, t2 ∈ |TΣ |s, and eitherΦ 6|= def(t1) andΦ 6|= def(t2) or Φ |= t1 = t2.

I is constructed by taking the quotient ofTΣ⊥ by∼, and then regarding congruence
classes containing the constants⊥s as undefined values. ut

Exercise 2.7.37.Complete the above proof by showing that:

• ∼ is a congruence onTΣ⊥ ;
• I |= Φ ;
• I is an initial model of〈Σ ,Φ〉; and
• I has the properties promised in Theorem 2.7.36.

Show that any model of〈Σ ,Φ〉 satisfying the properties in Theorem 2.7.36 is iso-
morphic toI and is therefore an initial model of〈Σ ,Φ〉. ut

Exercise 2.7.38.Suppose that we modify Theorem 2.7.36 by replacing the phrase
“ tI and t ′I are defined and equal” with “I |=Σ ∀∅• t = t ′”. Give a counterexample
showing that this version of the theorem is false. ut

Exercise 2.7.39.A partial Σ -algebraA∈Mod[〈Σ ,Φ〉] is astrongly initial model of
〈Σ ,Φ〉 if for every minimally definedB ∈ Mod[〈Σ ,Φ〉] containing no junk, there
is a unique strongΣ -homomorphismh:A→ B. Show thatI is an initial model of
〈Σ ,Φ〉 iff I is a strongly initial model of〈Σ ,Φ〉. ut

Again, reachable and final semantics are applicable for partial algebras as well
as initial semantics, and the key points of the standard framework carry over with
appropriate changes (for instance, the equational calculus must be modified to deal
with definedness formulae as well as equations).

Example 2.7.16 (revisited).Here is a version of the specificationNatPred in
whichpred is specified to be a partial function:

specNatPred= sorts nat
ops 0:nat

succ:nat→ nat
pred:nat→ nat

+ :nat×nat→ nat
× :nat×nat→ nat

∀m,n:nat
• def(0)
• def(succ(n))
• pred(succ(n)) = n
• 0+n = n
• succ(m)+n = succ(m+n)
• 0×n = 0
• succ(m)×n = (m×n)+n

Page: 86 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.7 Fiddling with the definitions 87

In initial models ofNatPred, all operations behave as expected, and all are total
except forpredwhich is undefined only on 0.

Exercise. Show that∀m,n:nat• def(m+ n) and∀m,n:nat• def(m× n) are conse-
quences of the definedness axioms for 0 andsuccand the equations defining+ and
×, in reachable models ofNatPred. You will need to use induction, so first for-
mulate an appropriate induction rule scheme and convince yourself that it is sound.

Exercise.Suppose that the axiom∀∅• def(0) were removed fromNatPred. De-
scribe the initial models of the resulting presentation. ut

2.7.5 Partial functions: order-sorted algebras

Any partial function amounts to a total function on a restricted domain. The idea of
order-sorted algebrais to avoid partial functions by enabling the domain of each
function to be specified exactly. This is done by introducingsubsorts, which cor-
respond to subsets at the level of values, and requiring operations to behave in an
appropriate fashion when applied to a value of a subsort or when expected to deliver
a value of a supersort. A number of different approaches to order-sorted algebra
have been proposed, and their relative merits are still a matter for debate. Here we
follow the approach of [GM92].

Definition 2.7.40 (Order-sorted signature).An order-sorted signatureis a triple
Σ = 〈S,≤,Ω〉 where〈S,Ω〉 is an ordinary signature and≤ is a partial order on the
setSof sort names, such that wheneverf :s1×·· ·×sn→ s and f :s′1×·· ·×s′n→ s′

are operations (having the same name and same number of arguments) inΩ and
si ≤ s′i for all 1≤ i ≤ n, thens≤ s′. Whens≤ s′ for s,s′ ∈ S, we say thats is a
subsortof s′ (or equivalently,s′ is asupersortof s). The subsort ordering is extended
to sequences of sorts of equal length in the usual way:s1 . . .sn ≤ s′1 . . .s′n if si ≤ s′i
for all 1≤ i ≤ n. ut
The restriction onΩ ([GM92] calls this conditionmonotonicity) is a fairly natural
one, keeping in mind that the subsort ordering corresponds to subset on the value
level: restricting a function to a subset of its domain may diminish, but not enlarge,
its codomain. Note that an effect of this restriction is to rule out overloaded con-
stants.

Throughout the rest of this section, letΣ = 〈S,≤,Ω〉 be an order-sorted signature,
and letΣ̂ = 〈S,Ω〉 be the (ordinary) signature corresponding toΣ .

Definition 2.7.41 (Order-sorted algebra).An order-sortedΣ -algebra Ais an or-
dinaryΣ̂ -algebra, such that:

• for all s≤ s′ in Σ , |A|s⊆ |A|s′ ; and
• wheneverf :s1×·· ·×sn→ sand f :s′1×·· ·×s′n→ s′ are operations (having the

same name and same number of arguments) inΩ ands1 . . .sn ≤ s′1 . . .s′n, then
the function(f :s1×·· ·× sn→ s)A: |A|s1×·· ·× |A|sn → |A|s is the set-theoretic
restriction of the function(f :s′1×·· ·×s′n→ s′)A: |A|s′1×·· ·× |A|s′n→ |A|s′ . ut

Page: 87 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

88 2 Simple equational specifications

An effect of the second restriction ([GM92] calls this conditionmonotonicityas
well) is to avoid ambiguity in the evaluation of terms (see below).

Definition 2.7.42 (Order-sorted homomorphism).Let A andB be order-sortedΣ -
algebras. Anorder-sortedΣ -homomorphism h:A→B is an ordinarŷΣ -homomorphism,
such thaths(a) = hs′(a) for all a∈ |A|s whenevers≤ s′. Whenh has an inverse, it
is anorder-sortedΣ -isomorphismand we writeA∼= B. ut

Let X be anS-sorted set (of variables) such thatXs andXs′ are disjoint for any
s 6= s′.

Definition 2.7.43 (Order-sorted term algebra).Theorder-sortedΣ -algebra TΣ (X)
of terms with variables Xis just like T

Σ̂
(X), except that for any termt ∈ |TΣ (X)|s

such thats≤ s′, we also havet ∈ |TΣ (X)|s′ . Let TΣ = TΣ (∅). ut

Exercise 2.7.44.Check thatTΣ (X) is an order-sortedΣ -algebra. ut

Example 2.7.45.One way of reformulatingNatPred as an order-sorted specifi-
cation (see below) will involve introducing a sortnznat(non-zero natural numbers)
such thatnznat≤ nat, with operations 0:nat andsucc:nat→ nznat. According to
the definition of order-sorted term algebra, the termsucc(0) has sortnat as well as
nznat, which means thatsucc(succ(0)) is well-formed (and has sortnat as well as
nznat). ut

As the above example demonstrates, a given term may appear in more than one
carrier ofTΣ (X). The following condition onΣ ensures that this does not lead to
ambiguity.

Definition 2.7.46 (Regular order-sorted signature).Σ is regular if for any f :s1×
·· ·×sn→ s in Σ ands∗1 . . .s∗n≤ s1 . . .sn, there is a leasts′1 . . .s′ns′ such thats∗1 . . .s∗n≤
s′1 . . .s′n and f :s′1×·· ·×s′n→ s′ is in Σ . ut

Theorem 2.7.47 (Terms have least sorts).If Σ is regular, then for every term t∈
|TΣ (X)| there is a least sort s∈ S, written sort(t), such that t∈ |TΣ (X)|s. ut

Exercise 2.7.48.Prove Theorem 2.7.47. What happens whenX is anarbitrary S-
sorted set, i.e. if we remove the restriction thatXs andXs′ are disjoint for anys 6= s′?

ut

Now the definition of term evaluation is analogous to the usual one.

Fact 2.7.49.Suppose thatΣ is regular. Then, for any order-sortedΣ -algebra A and
S-sorted function v:X → |A|, there is exactly one order-sortedΣ -homomorphism
v#:TΣ (X)→ A which extends v, i.e. such that v#

s(x) = vs(x) for all s∈ S, x∈ Xs. ut

Exercise 2.7.50.Define term evaluation. ut

Page: 88 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.7 Fiddling with the definitions 89

Definition 2.7.51 (Order-sorted equation; satisfaction).Suppose thatΣ is reg-
ular, and let the equivalence relation≡ be the symmetric transitive closure of
≤ . Order-sortedΣ -equations∀X • t = t ′ are as usual, except that we require

sort(t) ≡ sort(t ′) (in other words,sort(t) and sort(t ′) are in the sameconnected
componentof 〈S,≤〉) instead ofsort(t) = sort(t ′). An order-sortedΣ -algebraA sat-
isfiesan order-sortedΣ -equation∀X • t = t ′, written A |=Σ ∀X • t = t ′, if the value
of t in |A|sort(t) and the value oft ′ in |A|sort(t ′) coincide, for everyS-sorted function
v:X→ |A|. ut

A problem with this definition is that satisfaction of order-sortedΣ -equations is not
preserved by order-sortedΣ -isomorphisms (compare Exercise 2.1.5). The following
condition onΣ ensures that this anomaly does not arise.

Definition 2.7.52 (Coherent order-sorted signature).〈S,≤〉 is filtered if for any
s,s′ ∈ S there is somes′′ ∈ Ssuch thats≤ s′′ ands′ ≤ s′′. 〈S,≤〉 is locally filteredif
each of its connected components is filtered.Σ is coherentif 〈S,≤〉 is locally filtered
andΣ is regular. ut

Exercise 2.7.53.Find Σ , A, B andϕ such thatΣ is regular,A |=Σ ϕ andA∼= B but
B 6|=Σ ϕ. Show that ifΣ is coherent then this is impossible. ut

The definitions of order-sorted presentation, model of an order-sorted presenta-
tion, semantic consequence, and initial model are analogous to those given earlier.
For every order-sorted presentation〈Σ ,Φ〉 such thatΣ is coherent, an initial model
may be constructed as a quotient ofTΣ [GM92]. There is a version of the equational
calculus that is sound and complete for coherent signatures [GM92], and the use
of term rewriting for proof as discussed in Section 2.6 is sound, provided that each
rewrite rulet→ t ′ is sort-decreasing, i.e.sort(t ′)≤ sort(t) [KKM88].

Example 2.7.16 (revisited).Here is a version of the specificationNatPred in
whichpred is specified to be a total function on the non-zero natural numbers:

specNatPred= sorts nznat≤ nat
ops 0:nat

succ:nat→ nznat
pred:nznat→ nat

+ :nat×nat→ nat
× :nat×nat→ nat

∀m,n:nat
• pred(succ(n)) = n
• 0+n = n
• succ(m)+n = succ(m+n)
• 0×n = 0
• succ(m)×n = (m×n)+n

In this version ofNatPred, there are terms that are not well-formed in spite of the
fact that each operator application seems to be to a value in its domain. For example,
consider the following “term”:

Page: 89 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

90 2 Simple equational specifications

pred(succ(0)+succ(0)).

According to the signature ofNatPred, succ(0)+ succ(0) is a term of sortnat;
it is not a term of sortnznat in spite of the fact that its value is non-zero. In the
term algebra,pred applies only to terms of sortnznat, thus the application ofpred
to succ(0)+succ(0) is not defined. One way of getting around this problem might
be to add additional operators to the signature ofNatPred:

specNatPred= sorts nznat≤ nat
ops . . .

+ :nznat×nat→ nznat
+ :nat×nznat→ nznat
× :nznat×nznat→ nznat

. . .

Thensucc(0)+succ(0) is a term of sortnznat, as desired. Unfortunately, this signa-
ture is not regular. (Exercise:Why not? What can be done to make it regular?)

An alternative is to use a so-calledretract, an additional operation for converting
from a sort to one of its subsorts:

specNatPred= sorts nznat≤ nat
ops . . .

r:nat→ nznat
∀m,n:nat,k:nznat

• . . .
• r(n) = n

Now, the termpred(r(succ(0)+ succ(0))) is well-formed, and is equal tosucc(0)
in all models ofNatPred. In the words of [GM92], inserting the retractr into
pred(r(succ(0)+succ(0))) gives it “the benefit of the doubt”, and the term is “vin-
dicated” by the fact that it is equal to a term that does not containr. The term
pred(r(0)) is also well-formed, but in the initial model ofNatPred this term is
equal only to other terms containing the retractr, and can thus be regarded as an
error message. The use of retracts (which can be inserted automatically) is well-
behaved under certain conditions on order-sorted presentations [GM92].

Another version ofNatPred is obtained by using anerror supersortfor the
codomain ofpred rather than a subsort for its domain:

Page: 90 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.7 Fiddling with the definitions 91

specNatPred= sorts nat≤ nat?
ops 0:nat

succ:nat→ nat
pred:nat→ nat?

+ :nat×nat→ nat
× :nat×nat→ nat

∀m,n:nat
• pred(succ(n)) = n
• 0+n = n
• succ(m)+n = succ(m+n)
• 0×n = 0
• succ(m)×n = (m×n)+n

The sortnat? may be thought of asnat extended by the addition of an error value
corresponding topred(0).

Here we have the same problem with ill-formed terms as before; an example is
the termsucc(pred(succ(0))). Again, retracts solve the problem. In this case, the
required retract is the operationr:nat?→ nat, defined by the axiom∀n:nat• r(n) =
n. ut

Exercise 2.7.54.Try to view the error algebra approach presented in Section 2.7.3
as a special case of order-sorted algebra. ut

2.7.6 Other options

The previous sections have mentioned only a few of the ways in which the standard
framework can be improved to make it more suitable for particular kinds of applica-
tions. A great many other variations are possible; a few of these are sketched below.

Example 2.7.55 (First-order predicate logic).Signatures may be modified to en-
able them to include (typed)predicate namesin addition to operation names,
e.g. ≤ :nat× nat. Atomic formulae are then formed by applying predicates
to terms; infirst-order predicate logic with equality, the predicate = :s× s is
implicitly available for any sorts. Formulae are built from atomic formulae using
logical connectives and quantifiers. Algebras are modified to include relations on
their carriers to interpret predicate names; the interpretation of the built-in equal-
ity predicate (if available) may be forced to be the underlying equality on values,
or it may merely be required to be a congruence relation. Homomorphisms are re-
quired to respect predicates as well as operations. The satisfaction of asentence(a
formula without free variables) by an algebra is as usual in first-order logic. See Ex-
ample 4.1.12 for details of the version of first-order predicate logic with equality we
will use. Presentations involving predicates and first-order axioms are appropriate
for the specification of programs inlogic programming languagessuch as Prolog,
where the Horn clause fragment of first-order logic is used for writing the programs

Page: 91 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

92 2 Simple equational specifications

themselves. Note that such presentations may have no models at all, but even if they
have some models, they may have no initial models (see Example 2.7.11) or no final
models (see Exercise 2.7.14), or even no reachable models. (Exercise:Give a spec-
ification with first-order axioms having some models but no reachable model.)ut

Example 2.7.56 (Higher-order functions).Higher-order functions (taking func-
tions as parameters and/or returning functions as results) can be accommodated by
interpreting certain sort names as (subsets of) function spaces. Given a setS of
(base) sorts, letS→ be the closure ofSunder formation of function types:S→ is the
smallest set such thatS⊆ S→ and for alls1, . . . ,sn,s∈ S→, s1×·· ·×sn→ s∈ S→.
Then a higher-order signatureΣ is a pair 〈S,Ω〉 where Ω is an S→-indexed
set of operation names. This determines an ordinary signatureΣ→ comprised of
the sort namesS→ and the operation names inΩ together with operation names
apply:(s1× ·· · × sn → s)× s1× ·· · × sn → s for every s1, . . . ,sn,s ∈ S→. Note
that, except for the various instances ofapply, all the operations inΣ→ are con-
stants, albeit possibly of “functional” sort. Ahigher-order Σ -algebra is just an
ordinary (total)Σ→-algebra, and analogously for the definitions of higher-order
Σ -homomorphism, reachable higher-orderΣ -algebra, higher-orderΣ -term, higher-
order Σ -equation, satisfaction of a higher-orderΣ -equation by a higher-orderΣ -
algebra, and higher-order presentation. A higher-orderΣ -algebraA is extensionalif
for all sortss1×·· ·×sn→ s∈ S→ and valuesf ,g∈ |A|s1×···×sn→s, f = g whenever
applyA(f ,a1, . . . ,an) = applyA(g,a1, . . . ,an) for all a1 ∈ |A|s1, . . . ,an ∈ |A|sn. In an
extensional algebraA, every carrier|A|s1×···×sn→s is isomorphic to a subset of the
function space|A|s1×·· ·× |A|sn → |A|s. A higher-orderΣ -algebraA is amodelof
a presentation〈Σ ,Φ〉 if A |=Σ Φ , A is extensional, andA is reachable. The reacha-
bility requirement (no junk) means that|A|s1×···×sn→s will almost never be the full
function space|A|s1 × ·· · × |A|sn → |A|s: only the functions that are denotable by
ground terms will be present in|A|s1×···×sn→s. Higher-order (equational) presenta-
tions always have initial models [MTW88]. ut

Example 2.7.57 (Polymorphic types).Programming languages such as Standard ML
[Pau96] can be used to definepolymorphic typessuch asα list (instances of which
includebool listand(bool list) list) andpolymorphic valuessuch ashead:∀α • α list→
α (which is then applicable to values of types such asbool list and(bool list) list).
To specify such types and functions, signatures are modified to containtype con-
structorsin place of sort names; for example,list is a unary type constructor and
bool is a nullary type constructor. Terms built using these type constructors andtype
variables(such asα above) are thepolymorphic typesof the signature. The setΩ

of operation names is then indexed by non-empty sequences of polymorphic types,
where f ∈Ωt1...tn,t meansf :∀FV(t1)∪ . . .∪FV(tn)∪FV(t)• t1×·· ·× tn→ t. There
are various choices for algebras over such signatures. Perhaps the most straight-
forward choice is to require each algebraA to incorporate a (single-sorted)alge-
bra of carriers Carr(A), having sets interpreting types as values and an operation
to interpret each type constructor. Then, for each operationf ∈ Ωt1...tn,t and for
each instantiation of type variablesi:V → |Carr(A)|, A has to provide a function
fA,i : i#(t1)×·· ·× i#(tn)→ i#(t). Various conditions may be imposed to ensure that

Page: 92 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.8 Bibliographical remarks 93

the interpretation of polymorphic operations isparametricin the sense of [Str67],
by requiring fA,i and fA,i′ to be appropriately related for different type variable in-
stantiationsi, i′. Another choice would be to interpret each type as the set of equiva-
lence classes of apartial equivalence relationon a model of the untypedλ -calculus
[BC88]. Axioms contain (universal) quantifiers for type variables in addition to
quantifiers for ordinary variables, as in System F [Gir89]; alternatively, type vari-
able quantification may be left implicit, as in Extended ML [KST97]. ut

Example 2.7.58 (Non-deterministic functions).Non-deterministic functions may
be handled by interpreting operation names in algebras as relations, or equivalently
as set-valued functions. Homomorphisms are required to preserve possible values
of functions: for any homomorphismh:A→ B and operationf :s1× ·· · × sn →
s, if a is a possible value offA(a1, . . . ,an) then hs(a) is a possible value of
fB(hs1(a1), . . . ,hsn(an)). Universally quantified inclusions between sets of possible
values may be used as axioms:t ⊆ t ′ means that every possible value oft is a possi-
ble value oft ′. ut

Example 2.7.59 (Recursive definitions).Following [Sco76], partial functions may
be specified as least solutions of recursive equations, where “least” is with respect
to an ordering on the space of functions of a given type. To accommodate this, we
can usecontinuous algebras, i.e. ordinary (total)Σ -algebras with carriers that are
complete partially ordered sets (so-calledcpos) and operation names interpreted as
continuous functionson these sets. See Example 3.3.14. The “bottom” element⊥
of the carrier for a sort, if it exists, represents the completely undefined value of that
sort. The order on carriers induces an order on (continuous) functions in the usual
fashion. A homomorphism between continuous algebras is required to be continu-
ous as a function between cpos. It is possible to define a language of axioms that
allows direct reference to least upper bounds of chains (see Example 4.1.22), and/or
to the order relation itself. Such techniques may also be used to specify infinite data
types such asstreams. ut

2.8 Bibliographical remarks

Much of the material presented here is well known, at least in its single-sorted
version, in universal algebra as a branch of mathematics. Standard references are
[Grä79] and [Coh65]. We approach this material from the direction of computer
science, see [Wec92] and [MT92], and present the fundamentals of equational spec-
ifications as developed in the 1970s [GTW76], [Gut75], [Zil74], see also [EM85]
for an extended monograph-style presentation.

The simplest and most limited form of a specification is a “bare” signature, and
this is what is used to characterise classes of algebras (program modules) in modu-
larisation systems for programming languages — see e.g. Standard ML [MTHM97],
[Pau96], where such characterisations are in fact called signatures.

Page: 93 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

94 2 Simple equational specifications

The first appearance of the Satisfaction Lemma (Lemma 2.1.8) in the algebraic
specification literature was in [BG80], echoing the semantic consequences of the
definition of (theory) interpretations in logic [End72]. This fundamental link be-
tween syntax and semantics will become one of the cornerstones of later develop-
ment starting in Chapter 4.

One topic that is only touched upon here (see e.g. Theorem 2.2.10) is the ex-
pressive power of specifications. See [BT87] for a comprehensive survey of what is
known about the expressive power of the framework presented in this chapter. The
main theorem is the one mentioned at the beginning of Section 2.7.

We make a distinction between presentations and theories that is not present in
some other work. This distinction surfaces in the definition of theory morphisms
(Definition 2.3.11). For two presentations (not necessarily theories)〈Σ ,Φ〉 and
〈Σ ′,Φ ′〉, [Gan83] takes a signature morphismσ :Σ → Σ ′ to be a specification mor-
phismσ :〈Σ ,Φ〉 → 〈Σ ′,Φ ′〉 if σ(Φ) ⊆ Φ ′. Such aσ is referred to as an “axiom-
preserving theory morphism” in [Mes89]. Exercise 2.3.15 shows that this is not
equivalent to our definition of theory morphism between the theories presented by
those presentations. Another possibility is to requireσ to map only thegroundequa-
tions inΦ to equations inClΣ ′(Φ ′), as in [Ehr82]. These alternative definitions seem
unsatisfactory since they make little or no sense on the level of models, in contrast
to the relationship between theory and model levels for theory morphisms given by
Proposition 2.3.13. We will later (Definition 5.5.1) definespecification morphisms,
as a generalisation of morphisms between presentations, relying on this relationship.

The many-sorted equational calculus is presented in [GM85] together with a
proof that it is sound and complete. This builds on the standard equational calculus
[Bir35], but the modifications needed to deal with empty carriers in the many-sorted
context came as a surprise at the time. Our choice of rules in Section 2.4 is different
from this standard version but the two systems are equivalent (Exercise 2.4.14) and
the proofs of soundness and completeness are analogous.

The initial algebra approach to specification (Section 2.5) is the classical one. It
originated with the seminal paper [GTW76], and was further developed by Hartmut
Ehrig and his group; see [EM85] for a comprehensive account.

Example 2.5.24 and Exercise 2.5.25 point at useful ways to make inductive
proofs easier by providing derived induction rule schemes, as possible for instance
in the logics of Larch [GH93] and CASL [Mos04] and their proof support systems
(LP [GG89] and HETS [MML07], respectively), see also Chapter 6 of [Far92].

The proof of the incompleteness theorem for initial semantics (Theorem 2.5.26)
from [MS85] follows [Nou81] where it was used to show that the equational calcu-
lus with a specific induction rule scheme is not complete. An alternative to adding
induction rules to the equational calculus is to restrict attention to so-calledω-
complete presentations; these are presentations〈Σ ,Φ〉 for which the equational
calculus itself yields all of theΣ -equations that hold in initial models of〈Σ ,Φ〉
[Hee86]. Then the problem becomes one of finding anω-complete presentation
corresponding to a given presentation. By the incompleteness theorem, this is not
always possible.

Page: 94 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.8 Bibliographical remarks 95

There is a substantial body of theory on term rewriting systems; Section 2.6 is
only the tip of the iceberg. For much more on the topic, and for the details of the
Knuth-Bendix completion algorithm [KB70] that have been omitted in Section 2.6,
see [DJ90], [Klo92], [BN98], [Kir99] and [Ter03]. See [KM87] or [DJ90] for a
discussion of proof by consistency, which originated with [Mus80]. Like most work
in this area, all these restrict attention to the single-sorted case. See [EM85] for a
treatment of the many-sorted case, up to the soundness and completeness theorems
for conversion, without our simplifying assumption (cf. Exercise 2.6.11).

In the case of reachable and final semantics, it is usual to look at reachable or
final extensionsof algebras (alternative terminology: hierarchical specifications),
rather than at the reachable or final interpretation of a completed specification. See
[BDP+79] or [WB82] for reachable semantics, and [GGM76] or [Wan79] for fi-
nal semantics. Under appropriate conditions, the reachable models of a presentation
form a complete lattice, with the initial model at one extreme and the final model
at the other; see [GGM76] and [BWP84]. For such hierarchical specifications, an
incompleteness theorem that is even stronger than Theorem 2.5.26 may be proved:
no sound proof system can derive allgroundequational consequences of such spec-
ifications, see [MS85].

The first attempt to specify errors by distinguishing error values from OK values
was [Gog78]. More details of the approach outlined in Section 2.7.3 can be found in
[GDLE84]. The final semantics of error presentations is discussed in [Gog85]. See
[BBC86] for an alternative approach which is able to deal with examples like the
one discussed in Exercise 2.7.29.

More details of the approach to partial algebras outlined in Section 2.7.4 can
be found in [BW82b]. WeakΣ -homomorphisms are called totalΣ -homomorphisms
there. Alternative approaches to the specification of partial algebras are presented in
[Rei87] and [Kre87], and more recently [Mos04]. See [Bur86] for a comprehensive
analysis of the various alternative definitions of the basic notions.

See [GM92], further refined in [Mes09], for more on the approach to order-
sorted algebra in Section 2.7.5. Alternative approaches include [Gog84], [Poi90]
and [Smo86] which is sometimes referred to as “universal” order-sorted algebra to
distinguish it from “overloaded” order-sorted algebra as presented here. A universal
order-sorted algebra contains a single universe of values, where a sort corresponds
to a subset of the universe and each operation name identifies a (single) function
on the universe. A compromise is in rewriting logic [Mes92] as implemented in
Maude [CDE+02]. See [GD94a] and [Mos93] for surveys comparing the differ-
ent approaches. [GD94a] discusses how some of the definitions and results in Sec-
tion 2.7.5 can be generalised by dropping or weakening the monotonicity require-
ments on order-sorted signatures and order-sorted algebras. Yet a different approach
to subsorting is taken in CASL [Mos04] where subsort coercions may be arbitrary
injective functions rather than merely inclusions.

First-order predicate logic has been used as a framework for algebraic specifica-
tion in various approaches, see for instance CIP-L [BBB+85] and CASL [Mos04].
See [Poi86], [MTW88], [Mei92] and [Qia93] for different approaches to the alge-
braic specification of higher-order functions. Frameworks that cater for the spec-

Page: 95 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

96 2 Simple equational specifications

ification of polymorphic types and functions are described in [MSS90], [Mos89]
and [KST97]. See [Nip86] for more on algebras with non-deterministic operations;
for a different approach using relation algebra, see [BS93]. See [WM97] for a
comprehensive overview. Soundness and completeness of term rewriting for non-
deterministic specifications is studied in [Hus92]. Continuous algebras and the use
of Scott-style domain-theoretic techniques in algebraic specification were first dis-
cussed in [GTWW77]. See [Sch86] or [GS90] for much more on domain theory
itself. Although these and other extensions to the standard framework have been ex-
plored separately, the few attempts that have been made to combine such extensions
(see e.g. [AC89] and [Mos04]) have tended to reveal new problems.

Page: 96 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

Chapter 3
Category theory

One of the main purposes of this book is to present a general, abstract theory of
specifications, which is independent from the exact details of the semantic struc-
tures (algebras) used to model particular aspects of program behaviour. Appropriate
mathematical tools are required to support the development of such a theory. The
basics of category theory provide us with just what we need: a simple, yet pow-
erful language that allows definitions and results to be formulated at a sufficiently
general, abstract level.

The most fundamental “categorical dogma” is that for many purposes it does not
really matter exactly what the objects we study are; more important are their mutual
relationships. Hence, objects should never be considered on their own, they should
always come equipped with an appropriate notion of amorphismbetween them. In
many typical examples, the objects are sets with some additional structure imposed
on them, and their morphisms are maps that preserve this structure. “Categorical
dogma” states that the interesting properties of objects may be formulated purely in
terms of morphisms, without referring to the internal structure of objects at all. As
a very simple example, consider the following two definitions.

Definition. Given two setsA andB, the Cartesian productof A andB is the set
A×B that consists of all the pairs of elements fromA andB, respectively:A×B =
{〈a,b〉 | a∈ A,b∈ B} ut

Definition. Given two setsA andB, aproductof A andB is a setP together with two
functionsπ1:P→ A andπ2:P→ B such that for any setC with functions f :C→ A
andg:C→B there exists a unique functionh:C→Psuch thath;π1 = f andh;π2 = g.

A

C

P B

�
�

�
�

�
�

�	

f

@
@

@
@

@
@
@R

g

�
π1

-
π2

?

∃!h

97

98 3 Category theory
ut

It is easy to see that the Cartesian product of any two sets is a product in the
sense of the latter definition, where the functionsπ1 andπ2 are the projections on
the first and second components respectively (HINT : Defineh:C→A×B by h(c) =
〈 f (c),g(c)〉 for all c∈C). Moreover, although a productP of two setsA andB does
not have to be their Cartesian productA×B since the elements ofP do not have to
be pairs of objects fromA andB, P is always isomorphic toA×B (there is a one-to-
one correspondence between elements ofP and ofA×B). Thus, the two definitions
may be viewed as equivalent for many purposes.

The reader may feel that the former definition (of the Cartesian product) is far
simpler than the latter (of a product). Indeed, to most of us, brought up to consider
set-theoretic concepts as the basis of all mathematics, this is in fact the case. How-
ever, the former definition suffers from a serious deficiency: it is formulated in terms
of elements and the membership relation for sets (which constitute the specific inter-
nal structure of sets). Consequently, it is very specifically oriented towards defining
the Cartesian product of sets and of sets only. If we now wanted to define the Carte-
sian product of, say, algebras (cf. Definition 1.2.9) we would have to reformulate
this definition substantially (in this case, by adding definitions of operations for
product algebras). To define the Cartesian product of structures of yet another kind,
yet another different version of this definition would have to be explicitly stated. It is
obviously desirable to avoid such repetition of the same story for different specific
kinds of objects whenever possible.

The latter definition (of a product) is quite different from this point of view. It
does not make reference to the internal structure of sets at all; it defines a product
of two sets entirely in terms of its relationships with these sets and with other sets.
To obtain a definition of a product of two algebras, it is enough to replace “set”
by “algebra” and “function” by “homomorphism”. The same would apply to other
kinds of structures, as long as there is an appropriate notion of a morphism between
them.

The conclusion we draw from this example is that, first of all, objects of any kind
should be considered together with an appropriate notion of a morphism between
them, and then, that the structure imposed on the collection of objects by these
morphisms should be exploited to formulate definitions at an appropriate level of
generality and abstraction.

Let us have a look at another example:

Definition. A function f :A→ B is surjectiveif for every b∈ B there existsa∈ A
such thatb = f (a). ut

Definition. A function f :A→B is anepimorphismif for any two functionsg,g′:B→
C, f ;g = f ;g′ impliesg = g′. ut

Definition. A function f :A→ B is a retraction if there exists a functiong:B→ A
such thatg; f = idB. ut

All the three definitions above are equivalent: a function is surjective if and only
if it is an epimorphism, if and only if it is a retraction. As with the previous example,

Page: 98 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.1 Introducing categories 99

one may argue that the first of these definitions is very much specific to sets, and so
not abstract and not general enough. The two other definitions lack this deficiency:
they do not refer to the internal structure of sets, but use functions (set morphisms)
to define the concept. However, the two definitions when applied to other kinds of
objects (and their morphisms) may well turn out not to be equivalent. We cannot
say that one of them is “right” and the other is “wrong”; they simply incorporate
different aspects of what for sets is the property of “being surjective”. The lesson to
draw from this is that one has to be cautious when generalising a certain property to
a more abstract setting. An attempt to formulate a definition at a more general level
should provide us with a better understanding of the essence of the property being
defined; it may well turn out, however, that there is more than one essence in it,
giving several non-equivalent ways to reformulate the definition in a more abstract
way.

Finding an adequate generalisation is not always easy. Sometimes even very sim-
ple notions we are accustomed to viewing as fundamental are difficult to formulate
in categorical terms, as they depend in an essential way on the internal structure of
the objects under consideration, which is exactly what we want to abstract from.
The usual set-theoretic union operation is an example of such a notion.

Once we succeed in providing a more general version of a certain notion, it may
be instantiated in many different ways. It is interesting to observe how often an
adequate generalisation of an important specific concept leads to interesting instan-
tiations in the context of objects (and morphisms between them) different from the
ones we started with. Indeed, interesting instantiations in other contexts may be
regarded as a test of the adequacy of the generalisation.

A more wide-ranging polemic on the advantages of category theory presented at
a rather intuitive level may be found in [Gog91b].

With these remarks in mind, this chapter introduces the basic concepts and results
of category theory. It is not our intention to provide a full-blown introductory text
on category theory; although a few concepts are introduced which will not be used
elsewhere in this book, we consciously refrain from discussing many important but
more involved concepts and results. Our aim in this chapter is to provide a brief but
comprehensive overview of the basics of category theory, both in order to make this
book self-contained and to provide a handy reference.

3.1 Introducing categories

3.1.1 Categories

Definition 3.1.1 (Category).A categoryK consists of:

• a collection|K | of K -objects;
• for eachA,B∈ |K |, a collectionK(A,B) of K -morphismsfrom A to B; and

Page: 99 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

100 3 Category theory

• for eachA,B,C∈ |K |, acomposition operation1 ; :K(A,B)×K(B,C)→K(A,C)

such that:

1. for all A,B,A′,B′ ∈ |K |, if 〈A,B〉 6= 〈A′,B′〉 thenK(A,B)∩K(A′,B′) = ∅;
2. (existence of identities) for eachA∈ |K |, there is a morphismidA ∈ K(A,A) such

that idA;g = g for all morphismsg ∈ K(A,B) and f ;idA = f for all morphisms
f ∈ K(B,A); and

3. (associativity of composition) for any f ∈K(A,B), g∈K(B,C) andh∈K(C,D),
f ;(g;h) = (f ;g);h. ut

Notation. We refer toobjectsandmorphismsinstead ofK -objects andK -morphisms
when K is clear from the context. We writef :A→ B (in K) for A,B ∈ |K |,
f ∈ K(A,B). For any f :A→ B, we will refer to A as thesourceor domain, and
to B as thetarget or codomainof f . The collection of all morphisms ofK will be
(ambigously) denoted byK as well, i.e.,K =

⋃
A,B∈|K |K(A,B). ut

The above is just one of several possible equivalent definitions of a category.
For example, the identities, the existence of which is required in (2), are sometimes
considered as part of the structure of a category.

Exercise 3.1.2.Prove that in any category, identities are unique. ut

The notion of a category is very general. Accepting the categorical dogma that
objects of any kind come equipped with a notion of morphism between them, it is
difficult to think of a collection of objects and accompanying morphisms that do
not form a category. Almost always there is a natural operation of morphism com-
position, which obeys two of the basic requirements above: it has identities and is
associative. Perhaps requirement (1), which allows us to unambigously identify the
source and target of any morphism, is the most technical and hence least intuitively
appealing. But even in cases where the same entity may be viewed as a morphism
between different objects, this entity can always be equipped with an explicit indi-
cation of the source and target of the morphism (cf. Example 3.1.6), thus satisfying
requirement (1).

In the rest of this subsection we give a number of examples of categories. We
start with some rather trivial examples, mainly of formal interest, and only then de-
fine some more typically considered categories. Further examples, which are often
more complex, may be found in the following sections of this chapter (and in later
chapters, see e.g. Section 10.3 for somewhat more complex examples).

Example 3.1.3 (Preorder categories).A binary relation≤ ⊆ X×X is apreorder
on X if:

• x≤ x for all x∈ X; and
• x≤ y∧y≤ z⇒ x≤ z for all x,y,z∈ X.

1 We will use semicolon ; to denote composition of morphisms in any category, just as we used
it for composition of functions and homomorphisms in the preceding chapters. Composition will
always be written in diagrammatic order:f ;g is to be read as “f followed byg”.

Page: 100 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.1 Introducing categories 101

A preordercategory is a category that has at most one morphism with any given
source and target.

Every preorder≤⊆ X×X gives rise to a preorder categoryK≤ where|K≤|= X
andK≤(x,y) has exactly one element ifx≤ y and is empty otherwise.

This definition does not identify the categoryK≤ unambigously, since different
elements may be used as morphisms inK≤(x,y) for x≤ y. However, we will not
worry here about the exact nature of morphisms (nor objects) in a category, and we
will treat this and similar definitions below as sufficient. More formally, all cate-
gories satisfying the above requirements are isomorphic in the technical sense to be
discussed in Section 3.4 (cf. Definition 3.4.68).

Here are some trivial examples of preorder categories:

0: (the empty category)

1:

.

���
��

A
AAK

id

2:

.

���
��

A
AAK

id

- .

���
��

A
AAK

id

3:
. - . - .� �6 (+ identities)

4: . - . - . - .� �6� �6
� �

?
(+ identities)

...
...

Exercise.How many morphisms doesn have? ut

Example 3.1.4 (Discrete category).A categoryK is discretewhenever for all
A,B∈ |K |, K(A,B) is empty ifA 6= B and contains exactly one element (the identity)
otherwise.

Any collection of objectsX gives rise to a discrete categoryKX where|KX|= X.
ut

Page: 101 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

102 3 Category theory

Example 3.1.5 (Monoid category).A categoryK is amonoidif K has exactly one
object.

A set X together with a function ; :X×X → X and a distinguished element
id ∈ X is amonoid〈X, ;, id〉 if (x;y);z= x;(y;z) andid;x = x;id = x for all x,y,z∈ X.
Every monoid〈X, ;, id〉 gives rise to a monoid (category) having morphismsX and
composition ; . ut

Example 3.1.6 (Set, the category of sets).The categorySetof sets with functions
as morphisms is defined as follows:

Objects ofSet: sets;
Morphisms ofSet: functions; however, to ensure that the requirements stated in

Definition 3.1.1 are satisfied (disregarding the particular mathematical represen-
tation of the concept of a function one uses), we will always consider functions
with explicitly given domain and codomain. Thus, a morphism in the category
Setwith sourceA and targetB is a triple〈A, f ,B〉, where f :A→ B is a function.

ut

Example 3.1.7 (SetS, the category ofS-sorted sets).For any setS, the category
SetS of S-sorted sets is defined as follows:

Objects ofSetS: S-sorted sets;
Morphisms ofSetS: S-sorted functions (with explicitly given domain and codomain).

ut

Example 3.1.8 (Alg(Σ), the category ofΣ -algebras).For any signatureΣ , the cat-
egoryAlg(Σ) of Σ -algebras is defined as follows:

Objects ofAlg(Σ): Σ -algebras;
Morphisms ofAlg(Σ): Σ -homomorphisms (with explicitly given domain and codomain).

ut

Example 3.1.9 (CPO, the category of complete partial orders).The category
CPO of complete partial orders2 and continuous functions between them is defined
as follows:

Objects ofCPO: complete partial orders, i.e., partially ordered sets〈X,≤〉 such
that any countable chainx0≤ x1≤ . . . in 〈X,≤〉 has a least upper bound

⊔
i≥0xi ;

Morphisms ofCPO: continuous functions, i.e., functions that preserve least upper
bounds of countable chains. ut

Exercise 3.1.10.Complete the above examples by formalising composition in the
obvious way. Indicate identities and prove associativity of composition. ut

Example 3.1.11 (AlgSig, the category of algebraic signatures).The category
AlgSig of (algebraic) signatures is defined as follows:

2 Cpos and continuous functions as defined here are often referred to asω-cpos andω-continuous
functions, respectively.

Page: 102 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.1 Introducing categories 103

Objects ofAlgSig: signatures;
Morphisms ofAlgSig: signature morphisms;
Composition inAlgSig: for any σ :Σ → Σ ′ and σ ′:Σ ′ → Σ ′′, their composition

σ ;σ ′:Σ → Σ ′′ is given by(σ ;σ ′)sorts = σsorts;σ ′sorts and(σ ;σ ′)ops = σops;σ ′ops,
cf. Exercise 1.5.3. ut

Exercise 3.1.12 (AlgSigder, the category of signatures with derived morphisms).
Recall the concept of a derived signature morphism from Definition 1.5.14. Define
the categoryAlgSigder of algebraic signatures with derived signature morphisms.
Use Exercise 1.5.18 to define composition of derived signature morphisms.ut

Example 3.1.13 (TΣ , the category of substitutions over a signatureΣ). Recall
(cf. Section 1.4) that for any signatureΣ = 〈S,Ω〉 andS-sorted set of variablesX,
TΣ (X) is the algebra of terms overΣ with variablesX. TΣ (X) is characterised up to
isomorphism by the property that for anyΣ -algebraA, anyS-sorted mapv:X→ |A|
uniquely extends to aΣ -homomorphismv#:TΣ (X)→ A (Facts 1.4.4 and 1.4.10).

For any algebraic signatureΣ , the categoryTΣ of substitutions overΣ is defined
as follows (cf. Exercise 1.4.9):

Objects ofTΣ : S-sorted sets (of variables);
Morphisms ofTΣ : for any setsX andY, a morphismθ from X to Y is a sub-

stitution of terms with variablesY for variablesX, i.e., anS-sorted function
θ :X→ |TΣ (Y)|;

Composition inTΣ : given any setsX, Y and Z, and morphismsθ :X → Y and
θ ′:Y→ Z in TΣ , i.e., functionsθ :X→ |TΣ (Y)| andθ ′:Y→ |TΣ (Z)|, their com-
positionθ ;θ ′:X→ Z is the functionθ ;θ ′:X→ |TΣ (Z)| defined by(θ ;θ ′)s(x) =
(θ ′)#

s(θs(x)) for all s∈ S, x∈ Xs. ut

Exercise 3.1.14 (TΣ /Φ , the category of substitutions overΣ modulo equations
Φ). Generalise the above definition of the category of substitutions by consider-
ing terms up to an equivalence generated by a set of equations. That is, for any
algebraic signatureΣ = 〈S,Ω〉 and setΦ of Σ -equations, for anyS-sorted set of
variablesX define two termst1, t2 ∈ |TΣ (X)|s (for any sorts∈ S) to be equivalent,
written t1 ≡ t2, if Φ `Σ ∀X • t1 = t2 (cf. Section 2.4). Now, by analogy with the
category of substitutions, define the categoryTΣ /Φ to haveS-sorted sets as ob-
jects and substitutions moduloΦ as morphisms. A substitution of terms moduloΦ

with variablesY for variablesX is anS-sorted functionθ :X→ (|TΣ (Y)|/≡). Com-
position in TΣ /Φ is defined analogously as inTΣ , by choosing a representative
of each of the equivalence classes assigned to variables: givenθ :X→ (|TΣ (Y)|/≡)
andθ ′:Y→ (|TΣ (Z)|/≡), θ ;θ ′:X→ (|TΣ (Z)|/≡) maps anyx∈X to (θ ′)#(t), where
θ(x) = [t]≡ (show that the result does not depend on the choice of the representative
t ∈ θ(x)). ut

Exercise 3.1.15 (TΣ ,Φ , the algebraic 〈Σ ,Φ〉-theory). Building on the definition
of the category of substitutions modulo a set of equations sketched above, abstract
away from the actual names of variables used in the objects ofTΣ /Φ by listing them
in some particular order, as in derived signatures (cf. Definition 1.5.13). That is, for

Page: 103 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

104 3 Category theory

any algebraic signatureΣ = 〈S,Ω〉 and setΦ of Σ -equations, define the category
TΣ ,Φ with sequencess1 . . .sn ∈ S∗ of sort names as objects. A morphism inTΣ ,Φ

from s1 . . .sn ∈ S∗ to s′1 . . .s′m∈ S∗ is ann-tuple〈[t1]≡, . . . , [tn]≡〉 of terms moduloΦ ,
where the equivalence≡ is sketched in Exercise 3.1.14 above, and fori = 1, . . . ,n,
ti ∈ |TΣ (Is′1...s′m

)|si , with Is′1...s′m
= { 1 :s′1, . . . , m :s′m}. The composition inTΣ ,Φ is

given by substitution on representatives of equivalence classes (the position of a
term in a tuple identifies the variable it is to be substituted for).TΣ ,Φ is usually
referred to as thealgebraic theoryoverΣ generated byΦ .3 ut

3.1.1.1 Foundations

In the above, and in the definition of a category in particular, we have very cau-
tiously used the non-technical termcollection, and talked ofcollectionsof objects
and morphisms. This allowed us to gloss over the issue of the choice of appropriate
set-theoretical foundations for category theory. Even a brief look at the examples
above indicates that we could not have been talking here just ofsets(in the sense
of Zermelo-Fraenkel set theory): we want to consider categories likeSet, where
the collection of objects consists of all sets, and so cannot be a set itself. Using
classes(collections of sets that are possibly too “large” to be sets themselves, as in
Bernays-G̈odel set theory) might seem more promising, since if we replace the term
“collection” by “class” in Definition 3.1.1 then at least examples of categories like
Set would be covered. However, this is not enough either, since even in this sim-
ple presentation of the basics of category theory we will encounter some categories
(like Cat, the category of “all” categories, and functor categories defined later in
this chapter) where objects themselves are proper classes and the collection of ob-
jects forms a “conglomerate” (a collection of classes that is too “large” to be a class,
cf. [HS73]). We refer to [B́en85] for a careful analysis of the basic requirements
imposed on a set theory underlying category theory.

Perhaps the most traditional solution to the problem of set-theoretic foundations
for category theory is sketched in [Mac71]. The idea is to work within a hierarchy of
set universes〈Un〉n≥0, where each universeUn, n≥ 0, is closed under the standard
set-theoretic operations, and is an element of the next universe in the hierarchy,
Un ∈ Un+1. Then there is a notion of category corresponding to each level of the
hierarchy, and one is required to indicate at which level of the hierarchy one is
working at any given moment.

However, in our view such pedantry would hide the intuitive appeal of “naive”
category theory. We will therefore ignore the issue of set-theoretic foundations for
category theory in the sequel, with just one exception: we define what it means for
a category to be (locally) small and use this to occasionally warn the reader about
potential foundational hazards.

3 In the literature, the algebraic theory overΣ generated byΦ is often defined with substitutions
considered as morphisms in the opposite direction, i.e., as the categoryTop

Σ ,Φ opposite toTΣ ,Φ

(cf. Definition 3.1.21 below).

Page: 104 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.1 Introducing categories 105

Definition 3.1.16 (Small category).A categoryK is locally smallif for any A,B∈
|K |, K(A,B) is a set (an element of the lowest-level universeU0); K is small if in
addition|K | is a set as well. ut

3.1.2 Constructing categories

In the examples of the previous subsection, each category was constructed “from
scratch” by explicitly defining its objects and morphisms and their composition.
Category theory also provides numerous ways of modifying a given category to
yield a different one, and of putting together two or more categories to obtain a
more complicated one. Some of the simplest examples are given in this subsection.

3.1.2.1 Subcategories

Definition 3.1.17 (Subcategory).A categoryK1 is asubcategoryof a categoryK2
if |K1| ⊆ |K2| andK1(A,B) ⊆ K2(A,B) for all objectsA,B ∈ |K1|, with compo-
sition and identities inK1 the same as inK2. K1 is a full subcategory ofK2 if
additionallyK1(A,B) = K2(A,B) for all A,B∈ |K1|. K1 is awidesubcategory of
K2 if |K1|= |K2|. ut

For any categoryK , any collectionX ⊆ |K | of objects ofK determines a full
subcategoryK X of K , defined by|K X|= X. Whenever convenient, ifK is evident
from the context, we will identify collectionsX ⊆ |K | with K X.

Example 3.1.18 (FinSet, the category of finite sets).The categoryFinSetof finite
sets is defined as follows:

Objects ofFinSet: finite sets;
Morphisms and composition inFinSet: as inSet.

FinSet is a full subcategory ofSet. ut

Example 3.1.19.The category of single-sorted signatures is a full subcategory of
the categoryAlgSig of (many-sorted) signatures.

The discrete category of sets is a subcategory of the category of sets with inclu-
sions as morphisms, which is a subcategory of the category of sets with injective
functions as morphisms, which is a subcategory ofSet.

For any signatureΣ and setΦ of Σ -equations, the classModΣ (Φ) of Σ -algebras
that satisfyΦ determines a full subcategory ofAlg(Σ), which we denote by
Mod(Σ ,Φ). ut

Exercise 3.1.20.Give an example of two categoriesK1, K2 such that|K1| ⊆ |K2|,
K1(A,B) ⊆ K2(A,B) for all objectsA,B∈ |K1|, with composition inK1 the same
as inK2, but such thatK1 is not a subcategory ofK2. ut

Page: 105 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

106 3 Category theory

3.1.2.2 Opposite categories and duality

One of the fundamental theorems of lattice theory (cf. e.g. [DP90]) is the so-called
duality principle. Any statement in the language of lattice theory has a dual, obtained
by systematically replacing greatest lower bounds by least upper bounds and vice
versa. The duality principle states that the dual of any theorem of lattice theory is
a theorem as well. In a sense, this allows the number of proofs in lattice theory to
be cut by half: proving a fact gives its dual “for free”. A very similar phenomenon
occurs in category theory; in fact, the duality principle of lattice theory may be
viewed as a consequence of a more general duality principle of category theory.
Replacing greatest lower bounds by least upper bounds and vice versa is generalised
here to the process of “reversing morphisms”.

Definition 3.1.21 (Opposite category).The opposite categoryof a categoryK is
the categoryKop where:

Objects ofKop: |Kop|= |K |;
Morphisms ofKop: Kop(A,B) = K(B,A) for all A,B∈ |Kop|;
Composition inKop: for f ∈ Kop(A,B) (i.e., f ∈ K(B,A)) andg∈ Kop(B,C) (i.e.,

g∈ K(C,B)), f ;g∈ Kop(A,C) is g; f ∈ K(C,A).

Kop: K :

A B C-
“ f ”

-
“g”

� �6
“ f ”;“ g”=“g; f ”

A B C�
f

�
g

�6 �
g; f ut

Exercise 3.1.22.Check that:

1. Kop is a category.
2. (Kop)op = K .
3. Identities inKop are the same as inK . ut

If W is a categorical concept (property, statement, . . .) then itsdual, co-W, is
obtained by reversing all the morphisms inW. This idea may be formalised in two
ways. The first is to introduce a formal language of category theory, and then de-
fine the operation of forming a dual as an operation on formal statements in this
language. The other is to formally interpretco-W in a categoryK asW in the cat-
egoryKop. Since formalising the language of category theory is beyond the scope
of this book (but cf. [Mac71] or [Hat82]), we take the second option here and will
rely on an intuitive understanding of duality in the sequel. For example, consider the
following property of objects in a category:

P(X) : for any objectY there is a morphismf :Y→ X.

Then:

co-P(X) : for any objectY there is a morphismf :X→Y.

Page: 106 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.1 Introducing categories 107

Note that indeedco-P(X) in any categoryK amounts toP(X) in Kop.
Since any category is the opposite of a certain category (namely, of its opposite),

the following fact holds:

Fact 3.1.23 (Duality principle). If W holds for all categories thenco-W holds for
all categories as well. ut

3.1.2.3 Product categories

Definition 3.1.24 (Product category).For any two categoriesK1 andK2, theprod-
uct categoryK1×K2 is defined by:

Objects ofK1×K2: |K1×K2|= |K1|× |K2| (the Cartesian product);
Morphisms ofK1×K2: for all A,A′ ∈ |K1| andB,B′ ∈ |K2|,

K1×K2(〈A,B〉,〈A′,B′〉) = K1(A,A′)×K2(B,B′);
Composition inK1×K2: for f :A→ A′ and f ′:A′ → A′′ in K1, g:B→ B′ and

g′:B′→ B′′ in K2, 〈 f ,g〉;〈 f ′,g′〉= 〈 f ; f ′,g;g′〉. ut

Exercise 3.1.25.Identify the category to which each semicolon in the above defini-
tion of composition inK1×K2 refers. Then show thatK1×K2 is indeed a category.

ut

Exercise 3.1.26.Define Kn, whereK is a category andn ≥ 1. What would you
suggest forn = 0? ut

3.1.2.4 Morphism categories

Definition 3.1.27 (Morphism category).For any categoryK , thecategoryK→ of
K -morphismsis defined by:

Objects ofK→: K -morphisms;
Morphisms ofK→: a morphism inK→ from f :A→A′ (in K) to g:B→B′ (in K) is

a pair〈k,k′〉 of K -morphisms wherek:A→B andk′:A′→B′ such thatk;g= f ;k′;
Composition inK→: 〈k,k′〉;〈l , l ′〉= 〈k;l ,k′;l ′〉. ut

The requirement in the definition of a morphism inK→ may be more illustra-
tively restated as the requirement that the following diagram commutes in the cate-
goryK :

A B

A′ B′

-k

-
k′

?

f

?

g

Page: 107 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

108 3 Category theory

For now, we will rely on an intuitive understanding of the concept of a diagram in
a category; see Section 3.2.5 for a formal definition. We say that a diagram in a
categorycommutes(or, is commutative) if for any two paths with the same source
and target nodes, the composition of morphisms along each of the two paths yields
the same result.

Drawing diagrams andchasinga diagram in order to prove that it is commutative
is one of the standard and intuitively most appealing techniques used in category
theory. For example, to justify Definition 3.1.27 above it is essential to show that
the composition of two morphisms inK→ as defined there yields a morphism in
K→. This may be done bypasting togethertwo diagrams like the one above along
a common edge, obtaining the following diagram:

A B

A′ B′

-k

-
k′

?

f

?

g

C

C′

-l

-
l ′

?

h

A simple argument may now be used to show that if the two simpler diagrams are
commutative then the above diagram obtained by pasting them together along the
edge labelled byg commutes as well:

f ;(k′;l ′) = (f ;k′);l ′ = (k;g);l ′ = k;(g;l ′) = k;(l ;h) = (k;l);h

Definition 3.1.28 (Slice category).Let K be a category withA∈ |K |. Thecategory
K↓A ofK -objects over A(or, theslice ofK over A) is defined by:

Objects ofK↓A: pairs〈X, f 〉 whereX ∈ |K | and f ∈ K(X,A);
Morphisms ofK↓A: a morphism from〈X, f 〉 to 〈Y,g〉 is a K -morphismk:X→ Y

such thatk;g = f :

X Y

A

A
A
A
A
A
AAU

f

�
�

�
�

�
���

g

-k

Composition inK↓A: as inK . ut

Exercise 3.1.29.Show thatK↓A may be constructed as a subcategory ofK→. Is it
full? ut

Exercise 3.1.30.DefineK↑A, the category ofK -objectsunder A. Compare(K↓A)op,
Kop↓A and(Kop↓A)op with K↑A. ut

Page: 108 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.1 Introducing categories 109

3.1.3 Category-theoretic definitions

In this section we will give a few simple examples of how certain special morphisms
may be characterised in a style that is typical for category-theoretic definitions. As
indicated in the introduction to this chapter, the idea is to abstract away from the “in-
ternal” properties of objects and morphisms, characterising them entirely in categor-
ical language by referring only to arbitrary objects and morphisms of the category
under consideration. Such definitions may be formulated for an arbitrary category,
and then instantiated to a particular one when necessary. We will also indicate a few
basic properties of the concepts we introduce that hold in any category.

Throughout this section, letK be an arbitrary but fixed category. Morphisms and
objects we refer to below are those ofK , unless explicitly qualified otherwise.

3.1.3.1 Epimorphisms and monomorphisms

Definition 3.1.31 (Epimorphism).A morphism f :A→ B is anepimorphism(or is
epi) if for all g:B→C andh:B→C, f ;g = f ;h impliesg = h.

A B C-
f -

g

-
h

� �
?

f ;g

� �6
f ;h

ut

Example 3.1.32.In Set, f is epi iff f is surjective. ut

There are “natural” categories in which epimorphisms need not be surjective. For
example:

Exercise 3.1.33.Recall the categoryCPO of complete partial orders and continu-
ous functions introduced in Example 3.1.9. Give an example of a continuous func-
tion that is an epimorphism inCPO even though it is not surjective. Try to charac-
terise epimorphisms in this category. ut

Definition 3.1.34 (Monomorphism).A morphismf :B→A is amonomorphism(or
is mono) if for all g:C→ B andh:C→ B, g; f = h; f impliesg = h.

C B A-
f-

g

-
h

� �
?

g; f

� �6
h; f

ut

Page: 109 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

110 3 Category theory

Example 3.1.35.In Set, f is mono iff f is injective. ut

Note that mono means the same as co-epi, i.e.,f is mono inK iff f is epi inKop.

Fact 3.1.36.

1. If f :A→ B and g:B→C are mono then f;g:A→C is mono.
2. For any f:A→ B and g:B→C, if f ;g:A→C is mono then f is mono.

Proof. The proof is rather straightforward, and significantly more complex proofs
will be omitted in the rest of this chapter. We present it here explicitly only as a
simple example of the style of argument, very common in category-theoretic proofs,
exploiting the most basic properties of composition in an arbitrary category.

1. According to Definition 3.1.34, we have to show that for anyh,h′:D → A if
h;(f ;g) = h′;(f ;g) thenh = h′. So, supposeh;(f ;g) = h′;(f ;g). Then, since com-
position is associative,(h; f);g = (h′; f);g. Consequently, sinceg is mono, by
Definition 3.1.34,h; f = h′; f . Thus, using the fact thatf is mono, we can indeed
deriveh = h′.

2. Similarly as in the previous case: suppose that for someh,h′:D→ A, h; f = h′; f .
Then also(h; f);g = (h′; f);g, and soh;(f ;g) = h′;(f ;g). Now, sincef ;g is mono,
it follows directly from the definition that indeedh = h′.

ut

Exercise 3.1.37.Dualise both parts of Fact 3.1.36. Formulate the dual proofs and
check that they are indeed sound. ut

3.1.3.2 Isomorphic objects

Definition 3.1.38 (Isomorphism).A morphism f :A→ B is an isomorphism(or is
iso) if there is a morphismf−1:B→ A such thatf ; f−1 = idA and f−1; f = idB. The
morphism f−1:B→ A is called theinverseof f , and the objectsA andB are called
isomorphic. We write f :A∼= B or justA∼= B.

A B
-

f

�

f−1

�
�

H
HHj

���
idA

�
�

�
���

HHH
idB

ut

Exercise 3.1.39.Show that the inverse of a morphism, if it exists, is unique. ut

Note that iso means the same as co-iso, that is, isomorphism is aself-dualcon-
cept.

Exercise 3.1.40.Check that iff :A→ B andg:B→C are iso thenf ;g:A→C is iso
as well. ut

In Set, a morphism is iso iff it is both epi and mono. However, this property does
not carry over to an arbitrary category:

Page: 110 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.2 Limits and colimits 111

Exercise 3.1.41.Show that if f is iso thenf is both epi and mono. The converse is
not true in general; give a counterexample. ut

Exercise 3.1.42.We say that a morphismf :A→ B is aretraction if there is a mor-
phismg:B→ A such thatg; f = idB. Dually, a morphismf :A→ B is acoretraction
if there is a morphismg:B→ A such thatf ;g = idA. Show that:

1. A morphism is iso iff it is both a retraction and a coretraction.
2. Every retraction is epi.
3. A morphism is iso iff it is an epi coretraction.

Dualise the above facts. ut

It is easy to see that any two isomorphic objects have the same “categorical prop-
erties”. Intuitively, such objects have abstractly the same structure and so are indis-
tinguishable within the given category (which does not mean that isomorphic objects
cannot have different “non-categorical” properties, cf. Example 1.3.12). Indeed, an
isomorphism and its inverse determine one-to-one mappings between morphisms
going into and coming out of isomorphic objects. Hence, categorical definitions of
objects define them only “up to isomorphism”. The following section provides typ-
ical examples of this phenomenon.

3.2 Limits and colimits

In this section we show how certain special objects in an arbitrary category together
with their “characteristic” morphisms may be defined in purely categorical terms by
so-calleduniversal properties; we hope that the reader will recognise the pattern in
the example definitions below. Sections 3.2.1–3.2.4 present some typical instances
of this, introducing the most commonly used cases of the generallimit construction
and its dual, which are then presented in their full generality in Section 3.2.5. In
most of the cases in this section we will explicitly spell out the duals of the con-
cepts introduced, since many of them have interesting instances in some common
categories (and are traditionally given independent names).

Throughout this section, letK be an arbitrary but fixed category. Morphisms and
objects we refer to are those ofK , unless explicitly qualified otherwise.

3.2.1 Initial and terminal objects

Definition 3.2.1 (Initial object). An objectI ∈ |K | is initial in K if for eachA∈ |K |
there is exactly one morphism fromI to A. ut

Example 3.2.2.The empty set∅ is initial in Set. The algebraTΣ of groundΣ -terms
is initial in Alg(Σ), for any signatureΣ ∈ |AlgSig|.

Page: 111 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

112 3 Category theory

Recall the definition of an initial model of an equational specification (Defini-
tion 2.5.13). For any signatureΣ and a setΦ of Σ -equations, the initial model
of 〈Σ ,Φ〉 (which exists by Theorem 2.5.14) is an initial object in the category
Mod(Σ ,Φ) (as defined in Example 3.1.19). ut

Exercise 3.2.3.What is an initial object inAlgSig? Look for initial objects in other
categories. ut

Fact 3.2.4.

1. Any two initial objects inK are isomorphic.
2. If I is initial in K and I′ is isomorphic to I then I′ is initial in K as well.

Proof. The proof is rather straightforward. We present it here explicitly only as a
simple example of the style of argument, very common in category-theoretic proofs,
which exploits universality (a special case of which is the property used in the def-
inition of an initial object). The requirement that thereexistsa morphism satisfying
a certain property is used to construct some diagrams, and then theuniquenessof
this morphism is used to show that the diagrams constructed commute.

1. Suppose thatI , I ′ ∈ |K | are two initial objects inK . Then, by the initiality ofI ,
there exists a morphismf : I → I ′. Similarly, by the initiality ofI ′, there exists a
morphismg: I ′→ I . Thus, we have constructed the following diagram:

I I ′
-

f

�
g

�
�

HHHj

���
idI

�
�

����

HHH
idI ′

Now, by the initiality ofI , there is auniquemorphism fromI to I , and soidI =
f ;g. Similarly, idI ′ = g; f . Thus f is an isomorphism (with inverseg) andI andI ′

are indeed isomorphic.
2. Suppose thatI ∈ |K | is initial in K , and leti: I → I ′ be an isomorphism with

inversei−1: I ′→ I . Consider an arbitrary objectA∈ |K |. By the “existence part”
of the initiality property ofI , we know that there exists a morphismf : I → A.
Hence, there exists a morphism fromI ′ to A as well, namelyi−1; f : I ′→ A. Then,
let f ′: I ′ → A be an arbitrary morphism fromI ′ to A. By the “uniqueness part”
of the initiality property ofI , f = i; f ′, and soi−1; f = i−1;(i; f ′) = (i−1;i); f ′ =
idI ′ ; f ′ = f ′. This shows thati−1; f is the only morphism fromI ′ to A, and so that
I ′ is indeed initial inK .

ut

The last fact indicates that the initiality property identifies an object up to iso-
morphism. As argued in Section 3.1.3.2, in category theory this is the most exact
characterisation of an object we may expect. In the following we will speak of “the”
initial object meaning an initial object identified up to isomorphism. We adopt the
same convention in the many similar cases introduced in the sequel.

Page: 112 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.2 Limits and colimits 113

3.2.1.1 Dually:

Definition 3.2.5 (Terminal object). An object1 ∈ |K | is terminal inK if for each
A∈ |K | there is exactly one morphism fromA to 1. ut

Note that terminal means the same as co-initial.

Exercise 3.2.6.Are there any terminal objects inSet, Alg(Σ) or AlgSig? What
about terminal objects inAlgSigder?

Recall the definition of a terminal (final) model of an equational specification
(Definition 2.7.12). Restate it using the notion of a terminal object as defined above.

ut

Exercise 3.2.7.Dualise Fact 3.2.4. ut

3.2.2 Products and coproducts

Definition 3.2.8 (Product).A productof two objectsA,B∈ |K | is an objectA×B∈
|K | together with a pair of morphismsπA:A×B→ A andπB:A×B→ B such that
for any objectC∈ |K | and pair of morphismsf :C→A andg:C→B there is exactly
one morphism〈 f ,g〉:C→ A×B such that the following diagram commutes:

A

C

A×B B

�
�

�
�

�
�

�	

f

@
@

@
@

@
@
@R

g

�
πA

-
πB

?

〈 f ,g〉

ut

Example 3.2.9.In Set, the Cartesian product ofA andB is a productA×B, where
πA, πB are the projection functions. For any signatureΣ , products inAlg(Σ) are
defined analogously (cf. Definition 1.2.9). ut

Exercise 3.2.10.What is the product of two objects in a preorder category? ut

Exercise 3.2.11.Show that any two products ofA,B∈ |K | are isomorphic. ut

Exercise 3.2.12.Suppose thatA,B∈ |K | have a product. Givenf :C→A andg:C→
B, and hence〈 f ,g〉:C→ A×B, show that for anyh:D→C, h;〈 f ,g〉= 〈h; f ,h;g〉.

ut

Exercise 3.2.13.Prove that:

1. A×B∼= B×A for anyA,B∈ |K |.

Page: 113 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

114 3 Category theory

2. (A×B)×C∼= A× (B×C) for anyA,B,C ∈ |K |. HINT : The following diagram
might be helpful:

A B C

A×B B×C

(A×B)×C A× (B×C)

?

?

?

?

@
@

@
@

@
@

@
@

@
@

@
@

@
@R

@
@

@
@

@
@@R

�
�

�
�

�
�

�
�

�
�

�
�

�
�	

�
�

�
�

�
��	

HH
HH

HH
HH

HH
HH

HH
HHj

��
��

��
��

��
��

��
���

-
�

ut

Exercise 3.2.14.Define the product of an arbitrary family ofK -objects. What is the
product of the empty family? ut

3.2.2.1 Dually:

Definition 3.2.15 (Coproduct).A coproductof two objectsA,B∈ |K | is an object
A+B∈ |K | together with a pair of morphismsιA:A→A+B andιB:B→A+B such
that for any objectC ∈ |K | and pair of morphismsf :A→C andg:B→C there is
exactly one morphism[f ,g]:A+B→C such that the following diagram commutes:

A

C

A+B B
�

�
�

�
�

�
��

f

@
@

@
@

@
@

@I

g

-
ιA

�
ιB

6

[f ,g]

ut

Example 3.2.16.In Set, the disjoint union of setsA andB is their coproductA+B,
whereιA, ιB are the injections. Similarly, inAlgSig, the (componentwise) disjoint
union of algebraic signaturesΣ andΣ ′ is their coproductΣ + Σ ′, whereιA, ιB are
the obvious injections. ut

Note that coproduct means the same as co-product.

Exercise 3.2.17.Dualise the exercises for products. ut

Page: 114 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.2 Limits and colimits 115

Exercise 3.2.18.For any algebraic signatureΣ = 〈S,Ω〉 and twoS-sorted setsX
andY, show that their disjoint unionX]Y is the coproduct ofX andY in the
categoryTΣ of substitutions overΣ (recall Example 3.1.13), where the coproduct
injections are the identity substitutions (of the corresponding variables fromX]Y
for variables inX and inY, respectively). Generalise this to the categoryTΣ /Φ of
substitutions overΣ modulo a setΦ of Σ -equations (cf. Exercise 3.1.14). Finally,
characterise coproducts in the categoryTΣ ,Φ , the algebraic theory overΣ generated
by Φ (Exercise 3.1.15). ut

3.2.3 Equalisers and coequalisers

We have defined above products and coproducts for arbitrary pairs of objects in a
category. In this section we deal with constructions for pairs of morphisms con-
strained to beparallel, i.e., pairs of morphisms that have the same source and the
same target.

Definition 3.2.19 (Equaliser).An equaliserof two parallel morphismsf :A→ B
andg:A→ B is an objectE ∈ |K | together with a morphismh:E→ A such that
h; f = h;g, and such that for any objectE′ ∈ |K | and morphismh′:E′→ A satisfying
h′; f = h′;g there is exactly one morphismk:E′→ E such thatk;h = h′:

A BE

E′

-
f

-
g

-
h

A
A
A
A
A
AAU

h′

��

��

��

�
��

k

ut

Exercise 3.2.20.Show that an equaliser off :A→ B andg:A→ B is unique up to
isomorphism. ut

Exercise 3.2.21.Show that every equaliser (to be more precise: its morphism part)
is mono, and every epi equaliser is iso. ut

Exercise 3.2.22.Construct equalisers of pairs of parallel morphisms inSet. Then,
for any signatureΣ , construct equalisers of pairs of parallel morphisms inAlg(Σ).
HINT : For any two functionsf ,g:A→B consider the set{a∈A | f (a) = g(a)}⊆A.

ut

3.2.3.1 Dually:

Definition 3.2.23 (Coequaliser).The dual notion to equaliser iscoequaliser. The
diagram now looks as follows:

Page: 115 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

116 3 Category theory

A B Q

Q′

-
f

-
g

-
h

�
�
�
�
�
���

h′

AA

AA

AA

A
AK

k

Exercise.Formulate explicitly the definition of a coequaliser. Then dualise the ex-
ercises for equalisers. ut

Exercise 3.2.24.What is the coequaliser of two morphisms inSet? What is the co-
equaliser of two morphisms inAlgSig? What is the coequaliser of two morphisms
in Alg(Σ)? HINT : Given two functionsf ,g:A→B consider the quotient ofB by the
least equivalence relation≡ onB such that for alla∈ A, f (a)≡ g(a). ut

Exercise 3.2.25.What is the coequaliser of two morphisms in the category of sub-
stitutionsTΣ ? ut

3.2.4 Pullbacks and pushouts

Definition 3.2.26 (Pullback).A pullbackof two morphismsf :A→C andg:B→C
having the same codomain is an objectP∈ |K | together with a pair of morphisms
j:P→ A andk:P→ B such thatj; f = k;g, and such that for any objectP′ ∈ |K | and
pair of morphismsj ′:P′ → A andk′:P′ → B satisfying j ′; f = k′;g there is exactly
one morphismh:P′→ P such that the following diagram commutes:

C

A B

P

@
@

@
@R

�
�

�
�	

�
�

�
�	

@
@

@
@R

f g

j k

P′

?

h

'

?

j ′

$

?

k′

ut

Exercise 3.2.27.Show that a pullback off :A→ C andg:B→ C is unique up to
isomorphism. ut

Page: 116 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.2 Limits and colimits 117

Exercise 3.2.28.Show that ifK has products (of all pairs of objects) and equalisers
(of all pairs of parallel morphisms) than it has pullbacks as well (i.e., all pairs of
morphisms with common target have pullbacks inK).

HINT : To construct a pullback off :A→C andg:B→C, first construct the prod-
uct A×B with projectionsπA:A×B→ A andπB:A×B→ B and then the equaliser
h:P→ A×B of πA; f :A×B→C andπB;g:A×B→C. ut

Exercise 3.2.29.Construct the pullback of two morphisms inSet, then inAlg(Σ),
and inAlgSig. ut

Exercise 3.2.30.Prove that ifK has a terminal object and all pullbacks (i.e., any
pair ofK -morphisms with common target has a pullback inK) then:

1. K has all (binary) products.
2. K has all equalisers. HINT : Get the equaliser off ,g:A→ B from the pullback of
〈idA, f 〉,〈idA,g〉:A→ A×B. ut

Exercise 3.2.31.Prove that pullbacks translate monomorphisms to monomorphisms:
if

.

.

.

.

? ?

-
f

-
g

is a pullback square andg is mono, thenf is mono as well. ut

Exercise 3.2.32.Consider the following diagram:

.

.

.

.

.

.

? ? ?

-

-

-

-

Prove that:

1. If the two squares are pullbacks then the outer rectangle is a pullback.
2. If the diagram commutes and the outer rectangle and right-hand square are both

pullbacks then so is the left-hand square. ut

3.2.4.1 Dually:

Definition 3.2.33 (Pushout).The dual notion to pullback ispushout. The diagram
now looks as follows:

Page: 117 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

118 3 Category theory

C

A B

P

@
@

@
@I

�
�

�
��

�
�

�
��

@
@

@
@I

f g

j k

P′

6
h

'-

j ′

$�

k′

Exercise.Spell out the definition of a pushout explicitly. Then dualise the exercises
for pullbacks. ut

Pushouts provide a basic tool for “putting together” structures of different kinds.
Given two objectsA andB, a pair of morphismsf :C→ A andg:C→ B indicates
a common source from which some “parts” ofA andB come. The pushout off
andg puts togetherA andB while identifying the parts coming from the common
source as indicated byf andg, but keeping the new parts disjoint (cf. the dual of
Exercise 3.2.28).

Example 3.2.34.Working inSet, consider:

A = {1,2,3}
B = {3,4,5}
C = {♣}
f = {♣ 7→ 2} :C→ A
g = {♣ 7→ 4} :C→ B

Then the pushout objectP is (up to isomorphism) given as follows:

P = {1′,{2′=4′′},3′,3′′,5′′}
j = {1 7→ 1′,2 7→ {2′=4′′},3 7→ 3′} :A→ P
k = {3 7→ 3′′,4 7→ {2′=4′′},5 7→ 5′′} :B→ P ut

Example 3.2.35.The general comments above about the use of pushouts for putting
together objects in categories apply in particular when one wants to combine alge-
braic signatures, as we will frequently do throughout the rest of the book. As a very
simple example of a pushout in the categoryAlgSig of algebraic signatures, con-
sider the signatureΣNat of natural numbers defined in Exercise 2.5.4. Then, let
ΣNatfib be its extension by a new operation namefib:nat→ nat and ΣNatmult

its extension by another operation namemult:nat×nat→ nat. We then have two
signature inclusions:

Page: 118 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.2 Limits and colimits 119

ΣNatfib←−↩ ΣNat ↪−→ ΣNatmult

Their pushout inAlgSig yields a signatureΣNatfib,mult which (up to isomorphism)
consists of the shared signatureΣNat (once, no repetitions!) together with each of
the operations added by the two extensions.

This is deceptively simple though, involving only single-sorted signature inclu-
sions that introduce different operation names.

Exercise. Give examples of pushouts inAlgSig with signatures involving more
than one sort, operation names that coincide, and signature morphisms that are not
injective on sorts and/or on operation names. ut

3.2.5 The general situation

The definitions introduced in the previous subsections followed a common, more
general pattern. As an example, let’s have another look at the definition of a pullback
(Definition 3.2.26; the notation below refers to the diagram there). Given a diagram
in the category at hand (the two morphismsf and g of which we construct the
pullback), we consider an objectP in this category together with morphisms going
from this object to the nodes of the diagram (j, k and an anonymousc:P→C) such
that all the resulting paths starting fromP commute (j; f = c = k;g — hencec may
remain anonymous). Moreover, from among all such objects we choose the one that
is in a sense “closest” to the diagram: for any objectP′ with morphisms from it to the
diagram nodes (j ′, k′ and an anonymousc′) satisfying the required commutativity
property (j ′; f = c′ = k′;g), P′ may be uniquely projected onto the chosen objectP
(via a morphismh) so that all the resulting paths starting fromP′ commute (h; j = j ′

andh;k= k′, which also impliesh;c= c′). This is usually referred to as theuniversal
propertyof pullbacks and, more generally, of arbitrarylimits as defined below. The
(dual) universal property of pushouts and, more generally, of arbitrarycolimits as
defined below, may be described by looking at objects with morphisms going from
the nodes of a diagram into them. We will formalise this in the rest of this section.

Definition 3.2.36 (Graph).Let ΣG be the following signature:

sorts node, edge
ops source:edge→ node

target:edge→ node

A ΣG-algebra is called agraph. (Note that these graphs may have multiple edges be-
tween any two nodes; such graphs are sometimes calledmultigraphs.) The category
Graph of graphs isAlg(ΣG). Given a graphG, we writee:n→mas an abbreviation
for n,m∈ |G|node, e∈ |G|edge, sourceG(e) = n andtargetG(e) = m. ut

Exercise 3.2.37.Construct an initial object, coproducts, coequalisers and pushouts
in Graph. ut

Page: 119 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

120 3 Category theory

Exercise 3.2.38.Define formally the categoryPath(G) of paths in a graphG,
where:

Objects ofPath(G): |G|node;
Morphisms ofPath(G): paths inG, i.e., finite sequencese1 . . .en of elements of
|G|edge such thatsourceG(ei+1) = targetG(ei) for i < n. Notice that we have to
allow for n = 0. ut

A diagram inK is a graph having nodes labelled withK -objects and edges la-
belled withK -morphisms with the appropriate source and target. Formally:

Definition 3.2.39 (Diagram).A diagram Din K consists of:

• a graphG(D);
• for each noden∈ |G(D)|node, an objectDn ∈ |K |; and
• for each edgee:n→m in G(D), a morphismDe:Dn→ Dm.

A diagramD is connectedif its graphG(D) is connected (that is, any two nodes
in G(D) are linked by a sequence of edges disregarding their direction, or fully
formally: if the total relation on the set of nodes ofG(D) is the only equivalence
between the nodes that links all nodes having an edge between them). ut

Exercise 3.2.40.Show how every small categoryK gives rise to a graphG(K) and
a diagramD(K). ut

Definition 3.2.41 (Cone and cocone).A coneα over a diagram D inK is a K -
objectX together with a family ofK -morphisms〈αn:X→ Dn〉n∈|G(D)|node

such that
for every edgee:n→m in the graphG(D) the following diagram commutes:

Dn Dm

X

�
�

�
�

�
���

αn

A
A
A
A
A
AAU

αm

-
De

Dually: A coconeα over a diagram D inK is a K -object X together with a
family of K -morphisms〈αn:Dn→ X〉n∈|G(D)|node

such that for every edgee:n→m
in the graphG(D) the following diagram commutes:

Dn Dm

X

�
�
�
�
�
���

αn

A
A

A
A

A
AAK

αm

-
De ut

Page: 120 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.2 Limits and colimits 121

In the following we will write cones simply as families〈αn:X→ Dn〉n∈|G(D)|node
,

omitting any explicit mention of the apexX, and similarly for cocones. The notation
is not quite justified only in the case when the diagram (and hence the family) is
empty; this will not lead to any misunderstanding.

Let D be a diagram inK with |G(D)|node= N and|G(D)|edge= E.

Definition 3.2.42 (Limit and colimit). A limit of D in K is a cone〈αn:X→ Dn〉n∈N

such that for any cone〈α ′n:X′→ Dn〉n∈N there is exactly one morphismh:X′→ X
such that for everyn∈ N the following diagram commutes:

X′ X

Dn

A
A
A
A
A
AAU

α ′n

�
�

�
�

�
���

αn

-h

If 〈αn:X→ Dn〉n∈N is a limit of D, we will refer toX as thelimit object of D (or
sometimes just thelimit of D), and to the morphismsαn, n∈ N, as the limitprojec-
tions.

Dually: A colimit of D in K is a cocone〈αn:Dn→ X〉n∈N such that for any
cocone〈α ′n:Dn→ X′〉n∈N there is exactly one morphismh:X → X′ such that for
everyn∈ N the following diagram commutes:

X′ X

Dn

A
A

A
A

A
AAK

α ′n

�
�
�
�
�
���

αn

� h

If 〈αn:Dn→ X〉n∈N is a colimit ofD, we will refer toX as thecolimit objectof D
(or sometimes just thecolimit of D), and to the morphismsαn, n∈N, as the colimit
injections. ut

Definition 3.2.43 (Completeness and cocompleteness).A categoryK is (finitely)
completeif every (finite) diagram inK has a limit. Dually,K is (finitely) cocomplete
if every (finite) diagram inK has a colimit. ut

Exercise 3.2.44.Define formally the categoryCone(D) of cones over a diagramD,
where:

Objects ofCone(D): cones overD;
Morphisms ofCone(D): a morphism fromα = 〈αn:X→ Dn〉n∈N to α ′= 〈α ′n:X′→ Dn〉n∈N

is aK -morphismh:X→ X′ such thatαn = h;α ′n for n∈ N.

Page: 121 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

122 3 Category theory

Prove that the limit ofD is a terminal object inCone(D). Note that this implies that
a limit of any diagram is unique up to isomorphism.

Present the category of objects over an object (cf. Definition 3.1.28) as the cate-
gory of cones over a certain diagram. ut

Exercise 3.2.45.Show that products, terminal objects, equalisers and pullbacks in
K are limits of simple diagrams inK . ut

Exercise 3.2.46.Construct inSeta limit of the diagram

A0 A1 A2 A3 · · ·�
f0 �

f1 �
f2 �

f3
ut

Exercise 3.2.47.Show that limiting cones arejointly mono: if 〈αn:X→ Dn〉n∈|G(D)|node

is a limit of D, then f = g whenever for alln∈ |G(D)|node, f ;αn = g;αn. ut

Exercise 3.2.48.Show that if K has a terminal object, binary products and all
equalisers then it is finitely complete. HINT : Given a finite diagram inK , first build
the product of all its objects, and then gradually turn it into a limit by “equalising”
the triangles formed by product projections and morphisms in the diagram.

Use Exercise 3.2.30 to conclude that ifK has a terminal object and all pullbacks
then it is finitely complete. ut

Exercise 3.2.49.Show that ifK has products of arbitrary families of objects and
all equalisers then it is complete. HINT : Proceed as in Exercise 3.2.48, but no-
tice that all the triangles involved may be “equalised” simultaneously in one step,
cf. [Mac71], Theorem V.2.1. ut

Exercise 3.2.50.A wide pullbackis the limit of a non-empty family of morphisms
with a common target. Show that if a category has a terminal object and all wide
pullbacks then it has products of arbitrary families of objects, and then conclude
that it is complete. HINT : Generalise Exercise 3.2.30 and use Exercise 3.2.49.ut

Exercise 3.2.51.Recall that for any categoryK and objectA∈ |K |, K↓A is the slice
category of objects overA (Definition 3.1.28).

Notice thatK↓Ahas a terminal object. Then show that binary products inK↓Aare
essentially given by the pullbacks inK (of morphisms toA) and similarly, arbitrary
non-empty products inK↓A are essentially given by wide pullbacks inK . Check
also that any (wide) pullback inK↓A is given by the corresponding (wide) pullback
in K (no morphisms toA added).

Conclude thatK↓A is finitely complete ifK has all pullbacks, andK↓A is com-
plete ifK has all wide pullbacks. ut

Exercise 3.2.52.Dualise the above exercises. ut

Exercise 3.2.53.Show that:

1. Set is complete and cocomplete.

Page: 122 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.3 Factorisation systems 123

2. FinSet is finitely complete and finitely cocomplete, but is neither complete nor
cocomplete.

3. Alg(Σ) is complete for any signatureΣ . (It is also cocomplete, but the proof is
harder — give it a try!)

4. AlgSig is cocomplete. (Is it complete?)

HINT : Use Exercise 3.2.49 and its dual, and the standard constructions of (co)products
and (co)equalisers in these categories hinted at in Examples 3.2.9, 3.2.16 and Ex-
ercises 3.2.22, 3.2.24. Check that, given a diagramD with nodesN and edgesE in
Set, its limit is (up to isomorphism) the set of families〈dn〉n∈N that are compati-
ble with D in the sense thatdn ∈ Dn for eachn∈ N anddm = De(dn) for each edge
e:n→m, with the obvious projections. Check that its colimit is (up to isomorphism)
the quotient of the disjoint union

⊎
n∈N Dn by the least equivalence relation that is

generated by all pairs〈dn,De(dn)〉 for e:n→m in E anddn ∈ Dn. ut

Exercise 3.2.54.Show thatAlgSigder is not finitely cocomplete. (HINT : Consider
a morphism mapping a binary operation to the projection on the first argument and
another morphism mapping the same operation to the projection on the second ar-
gument. Can such a pair of morphisms have a coequaliser?) ut

Exercise 3.2.55.When is a preorder category (finitely) complete and cocomplete?
ut

3.3 Factorisation systems

In this section we will interrupt our presentation of the basic concepts of category
theory and try to illustrate how they can be used to formulate some well-known
ideas at a level of generality and abstraction that ensures their applicability in many
specific contexts.

The concept on which we concentrate here is that ofreachability(cf. Section 1.2).
Recall that the original definition of a reachable algebra used the notion of a subalge-
bra (cf. Definition 1.2.7). Keeping in mind that in the categorical framework we deal
with objects identified up to isomorphism, we slightly generalise the standard for-
mulation and, for any signatureΣ ∈ |AlgSig|, say that aΣ -algebraB is a subalgebra
of A if there exists aninjectiveΣ -homomorphism fromB to A. A dual notion is that
of aquotient: aΣ -algebraB is a quotient of aΣ -algebraA if there exists asurjective
Σ -homomorphism fromA to B. Now, aΣ -algebraA is reachableif it has no proper
subalgebra (i.e., every subalgebra ofA is isomorphic toA), or equivalently, if it is
a quotient of the algebraTΣ of groundΣ -terms (cf. Exercise 1.4.14). In this formu-
lation, the above definitions may be used to introduce a notion of reachability in an
arbitrary category. However, we need an appropriate generalisation of the concept
of injective and surjective homomorphisms. A first attempt might be to use arbitrary
epimorphisms and monomorphisms for this purpose, but it soon turns out that these
concepts are not “fine enough” to ensure the properties we are after. An appropriate
refinement of these is given if the category is equipped with afactorisation system.

Page: 123 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

124 3 Category theory

Definition 3.3.1 (Factorisation system).Let K be an arbitrary category. Afactori-
sation systemfor K is a pair〈E,M〉, where:

• E is a collection of epimorphisms inK andM is a collection of monomorphisms
in K ;

• each ofE andM is closed under composition and contains all isomorphisms in
K ;

• every morphism inK has an〈E,M〉-factorisation: for eachf ∈ K , f = ef ;mf for
someef ∈ E andmf ∈ K ;

·

·

·
?

f

��

��

��	

ef

@@

@@

@@R

mf

• 〈E,M〉-factorisations are unique up to isomorphism: for anye,e′ ∈E andm,m′ ∈
M , if e;m= e′;m′ then there exists an isomorphismi such thate;i = e′ andi;m′ =
m.

·

·

·

·

?

f

�
�

�
��	

e

@
@

@
@@R

m

@
@

@
@@R

e′

�
�

�
��	

m′

� �

6

i

�-

� �

�

i−1 ut

Example 3.3.2. Sethas a factorisation system〈E,M〉, whereE is the collection of
all surjective functions andM is the collection of all injective functions. ut

Example 3.3.3.For any signatureΣ , Alg(Σ) has a factorisation system4 〈TEΣ ,TM Σ 〉,
whereTEΣ is the collection of all surjectiveΣ -homomorphisms andTM Σ is the col-
lection of all injectiveΣ -homomorphisms; see Exercise 1.3.23. ut

Consider an arbitrary categoryK equipped with a factorisation system〈E,M〉.

4 “T” in TEΣ andTM Σ indicates that we are dealing with ordinarytotal algebras here, as opposed
to partial and continuous algebras with the factorisation systems discussed below.

Page: 124 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.3 Factorisation systems 125

Lemma 3.3.4 (Diagonal fill-in lemma).For any morphisms f1, f2,e,m inK , where
e∈ E and m∈ M , if f1;m= e; f2 then there exists a unique morphism g such that
e;g = f1 and g;m= f2.

Proof sketch.The required “diagonal” is given byg= ef2;i;mf 1, as illustrated by the
diagram below; its uniqueness follows easily sincee is an epimorphism.

·

·

·

·

· ·

-e

-
m

?

f1

?

f2

AA

AA

AAU

ef1

��

��

���

mf1

AA

AA

AAU

mf2

��

��

���

ef2

� i

ut

Exercise 3.3.5.Show that ife∈ E ande; f ∈M for some morphismf ∈ K , thene
is an isomorphism. Dually, ifm∈M and f ;m∈ E for some morphismf ∈ K , then
m is an isomorphism. ut

Definition 3.3.6 (Subobject and quotient).Let A ∈ |K |. A subobjectof A is an
objectB∈ |K | together with a morphismm:B→ A such thatm∈M . A quotientof
A is an objectB∈ |K | together with a morphisme:A→ B such thate∈ E. ut

Definition 3.3.7 (Reachable object).An objectA ∈ |K | is reachableif it has no
proper subobject, i.e., if every morphismm∈M with targetA is an isomorphism.

ut

The categoryAlg(Σ) of Σ -algebras and the notion of a reachable algebra provide
an instance of the general concept of reachability introduced in the above definition.
The following theorem gives more general versions of well-known facts often labo-
riously proved in the standard algebraic framework.

Theorem 3.3.8.Assume thatK has an initial objectΛ . Then:

1. An object A∈ |K | is reachable iff it is a quotient of the initial objectΛ .
2. Every object in|K | has a reachable subobject which is unique up to isomorphism.
3. If A∈ |K | is reachable then for every B∈ |K | there exists at most one morphism

from A to B.
4. If A∈ |K | is reachable and f∈ K is a morphism with target A then f∈ E. ut

Exercise 3.3.9.Prove the theorem and identify the familiar facts about reachable
algebras generalised here. ut

One of the main results of Chapter 2, Theorem 2.5.14, states that any equational
specification has an initial model. This is just a special case of a more general result
which we formulate and prove for an arbitrary category with “reachability structure”
satisfying an additional, technical property that any object has up to isomorphism
only asetof quotients.

Page: 125 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

126 3 Category theory

Definition 3.3.10 (Co-well-powered category). Kis E-co-well-poweredif for any
A∈ |K | there exists asetof morphismsE ⊆ E such that for every morphisme∈ E
with sourceA there exist a morphisme′ ∈E and an isomorphismi such thate= e′;i.

ut

Definition 3.3.11 (Quasi-variety). A collection of objectsQ ⊆ |K | is a quasi-
variety if it is closed under subobjects and products of non-empty sets of objects
in Q. ut

Lemma 3.3.12 (Initiality lemma). Assume thatK has an initial object, isE-co-
well-powered, and any set of objects inK has a product. Then any non-empty quasi-
variety inK (considered as the corresponding full subcategory ofK) has an initial
object which is reachable inK .

Proof. Let Q⊆ |K | be a non-empty collection of objects closed under subobjects
and products of non-empty sets. LetQr be asetof reachable objects inQ such that
every reachable object inQ is isomorphic to an element ofQr (such a set exists since
K is E-co-well-powered). The reachable subobject of the product ofQr (which is
unique up to isomorphism) is a reachable initial object inQ. ut

It is now easy to check that in the context of Example 3.3.3 every class ofΣ -
algebras definable by a set ofΣ -equations is a non-empty quasi-variety, and hence
Lemma 3.3.12 indeed directly implies Theorem 2.5.14.

We conclude this section with two examples of categories naturally equipped
with a notion of reachability which is an instance of the general concept introduced
above.

Example 3.3.13.Recall Definitions 2.7.30 and 2.7.31 of partialΣ -algebras andΣ -
homomorphisms between them. For any signatureΣ , define the category of partial
Σ -algebras,PAlg(Σ), as follows:

Objects ofPAlg(Σ): partialΣ -algebras;
Morphisms ofPAlg(Σ): weakΣ -homomorphisms.

Define also the subcategoryPAlgstr(Σ) of partialΣ -algebras withstronghomo-
morphisms between them, as follows:

Objects ofPAlgstr(Σ): partialΣ -algebras;
Morphisms ofPAlgstr(Σ): strongΣ -homomorphisms.

The categoryPAlg(Σ) of partialΣ -algebras has a factorisation system〈PEΣ ,PMΣ 〉,
wherePEΣ is the collection of all epimorphisms inPAlg(Σ) andPMΣ is the collec-
tion of all monomorphisms inPAlg(Σ) that are strongΣ -homomorphisms.

Exercise. Characterise epimorphisms inPAlg(Σ) (they are not surjective in gen-
eral) and prove that〈PEΣ ,PMΣ 〉 is indeed a factorisation system forPAlg(Σ).
Check then that factorisation of a strongΣ -homomorphism in〈PEΣ ,PMΣ 〉 con-
sists of strongΣ -homomorphisms. Conclude that strong homomorphisms inPEΣ

andPMΣ , respectively, form a factorization system forPAlgstr(Σ). ut

Page: 126 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.4 Functors and natural transformations 127

Example 3.3.14.For any signatureΣ , define the category of continuousΣ -algebras,
CAlg(Σ), as follows:

Objects ofCAlg(Σ): continuousΣ -algebras, which are just like ordinary (total)
Σ -algebras, except that their carriers are required to be complete partial orders
and their operations are continuous functions (cf. Exercise 3.1.9);

Morphisms ofCAlg(Σ): continuousΣ -homomorphisms: a continuousΣ -homomorphism
from a continuousΣ -algebraA to a continuousΣ -algebraB is aΣ -homomorphism
h:A→ B which is continuous as a function between complete partial orders. We
say thath is full if it reflects the ordering, i.e., for alla,a′ ∈ |A|s, h(a) ≤B h(a′)
impliesa≤A a′.

The categoryCAlg(Σ) of continuousΣ -algebras has a factorisation system
〈CEΣ ,CMΣ 〉, whereCMΣ is the collection of all full monomorphisms inCAlg(Σ)
andCEΣ is the collection of allstrongly denseepimorphisms inCAlg(Σ). A con-
tinuousΣ -homomorphismh:A→ B is strongly dense ifB has no proper continuous
subalgebra which contains the set-theoretic image of|A| underh. (Note that the
expected notion of a continuous subalgebra is determined by the chosen collection
of factorisation monomorphismsCMΣ .) This is equivalent to the requirement that
every element of|B| is the least upper bound of a countable chain of least upper
bounds of countable chains of . . . of elements in the set-theoretic image of|A| un-
der h. Consequently, given a strongly dense continuous homomorphismh:A→ B,
every element of|B| is the least upper bound of a subset (not necessarily a chain
though) of the set-theoretic image of|A| underh, which yields the key argument to
show thatCAlg(Σ) is CEΣ -co-well-powered.

Exercise. Prove that〈CEΣ ,CMΣ 〉 is indeed a factorisation system forCAlg(Σ).
Also, try to construct an example of an epimorphism inCAlg(Σ) which is not
strongly dense. ut

Exercise 3.3.15.Characterise reachable algebras inPAlg(Σ) and inCAlg(Σ). In-
stantiate the facts listed in Theorem 3.3.8 to these categories. ut

3.4 Functors and natural transformations

As explained in the introduction to this chapter, for category theorists it is tanta-
mount to heresy to consider objects in the absence of morphisms between them. Up
to now we have departed from this dogma in our study of categories themselves;
in the previous sections of this chapter we have worked with categories without in-
troducing any notion of a morphism between them. We hasten here to correct this
lapse: morphisms between categories arefunctors, to be introduced in this section.
And by way of atonement we will also introducenatural transformations, which are
morphisms between functors.

Page: 127 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

128 3 Category theory

3.4.1 Functors

A category consists of a collection of objects and a collection of morphisms with
structure given by the choice of sources and targets of morphism, by the definition
of composition and by the identities that are assumed to exist. As in other standard
cases of collections with additional structure, morphisms between categories are
maps between the collections of objects and morphisms, respectively, that preserve
this structure.

Definition 3.4.1 (Functor). A functor F:K1 → K2 from a categoryK1 to a cate-
goryK2 consists of:

• a functionFOb j: |K1| → |K2|; and
• for eachA,B∈ |K1|, a functionFA,B:K1(A,B)→ K2(FOb j(A),FOb j(B))

such that:

• F preserves identities:FA,A(idA) = idFOb j(A) for all objectsA∈ |K |; and
• F preserves composition: for all morphismsf : A→ B and g : B→ C in K1,

FA,C(f ;g) = FA,B(f) ;FB,C(g). ut

Notation. We useF to refer to bothFOb j andFA,B for all A,B∈ |K1|. ut

In the literature, functors as defined above are sometimes referred to ascovariant
functors. Acontravariantfunctor is then defined in the same way except that it “re-
verses the direction of morphisms”, i.e., a contravariant functorF:K1→ K2 maps
a K1-morphism f :A→ B to aK2-morphismF(f):F(B)→ F(A). Even though we
will use this terminology sometimes, no new formal definition is required: a con-
travariant functor fromK1 to K2 is a (covariant) functor fromK1op to K2 (cf. e.g.
Examples 3.4.7 and 3.4.29 below).

Example 3.4.2 (Identity functor). A functor IdK :K → K is defined in the obvious
way. ut

Example 3.4.3 (Inclusion functor).If K1 is a subcategory ofK2 then the inclusion
I :K1 ↪→ K2 is a functor. ut

Example 3.4.4 (Constant functor).For anyA∈ |K2|, CA:K1 → K2 is a functor,
whereCA(B) = A for anyB∈ |K1| andCA(f) = idA for anyK1-morphismf . ut

Example 3.4.5 (Opposite functor).For any functorF:K1→ K2, there is a functor
Fop:K1op→ K2op which is the “same” asF, but is considered between the opposite
categories. ut

Example 3.4.6 (Powerset functor).P:Set→ Set is a functor, whereP(X) = {Y |
Y ⊆ X} for any setX, and for any functionf :X → X′, P(f):P(X) → P(X′) is
defined byP(f)(Y) = { f (y) | y∈Y}. ut

Page: 128 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.4 Functors and natural transformations 129

Example 3.4.7 (Contravariant powerset functor).P−1:Setop→ Set is a functor,
whereP−1(X) = {Y | Y ⊆ X} for any setX, and for any morphismf :X → X′

in Setop (i.e., any functionf :X′ → X), P−1(f):P−1(X)→ P−1(X′) is defined by
P−1(f)(Y) = {x′ ∈ X′ | f (x′) ∈Y}. ut

Example 3.4.8 (Sequence functor). Seq:Set→ Mon is a functor, whereMon is
the category of monoids with monoid homomorphisms as morphisms. For any set
X ∈ |Set|, Seq(X) = 〈X∗,ˆ,ε〉, whereX∗ is the set of all finite sequences of elements
from X, ˆ is sequence concatenation, andε is the empty sequence. Then, for any
function f :X → Y, Seq(f):Seq(X)→ Seq(Y) is the homomorphism defined by
Seq(f)(x1 . . .xn) = f (x1) . . . f (xn). ut

Example 3.4.9 (Reduct functor).For any signature morphismσ :Σ→Σ ′, σ :Alg(Σ ′)→
Alg(Σ) is a functor that takes eachΣ ′-algebraA′ to itsσ -reductA′ σ ∈ |Alg(Σ)| and
eachΣ ′-homomorphismsh′ to itsσ -reducth′ σ (cf. Definitions 1.5.4 and 1.5.8).ut

Example 3.4.10 (Forgetful functor).Let Σ = 〈S,Ω〉 be a signature. Then| |:Alg(Σ)→
SetS is the functor that takes eachΣ -algebraA∈ |Alg(Σ)| to its S-sorted carrier set
|A| ∈ |SetS| and eachΣ -homomorphism to its underlyingS-sorted function. (The
functor | | should really be decorated with a subscript identifying the signatureΣ

— we hope that leaving it out will not confuse the reader.) These special reduct
functors| | will be referred to asforgetful functors.

More generally, the term “forgetful functor” is used to refer to any functor that,
intuitively, forgets the structure of objects in a category, mapping any structured
object to its underlying unstructured set of elements. Thus, in addition to examples
that exactly fit the above definition (like the functor mapping any monoid to the set
of its elements) this also covers examples like the functor that maps any topological
space to the set of its points and the functor that forgets the metric of a metric space.

ut

Example 3.4.11 (Term algebra).For any signatureΣ = 〈S,Ω〉, there is a functor
TΣ :SetS→ Alg(Σ) that maps anyS-sorted setX to the term algebraTΣ (X), and any
S-sorted functionf :X→Y to the uniqueΣ -homomorphismf #:TΣ (X)→ TΣ (Y) that
extendsf . ut

Exercise 3.4.12.For any signatureΣ and setΦ of Σ -equations, define thequotient
functor /Φ :Alg(Σ)→ Alg(Σ) such that for anyΣ -algebraA, A/Φ is the quotient
of A by the least congruence' onA generated byΦ , that is, such thattA(v)' t ′A(v)
for eachΣ -equation∀X • t = t ′ in Φ and valuationv:X→ |A|. Make sure that what
you define is a functor! ut

Exercise 3.4.13.For any signatureΣ , define therestriction functorRΣ :Alg(Σ)→
Alg(Σ) such that for anyΣ -algebraA, RΣ (A) is the reachable subalgebra ofA.

More generally: letK be an arbitrary category with an initial object and a factori-
sation system, and letKR be the full subcategory ofK determined by the collection
of all reachable objects inK (cf. Section 3.3). Define a functorRK :K → KR that
maps anyA∈ |K | to the (unique up to isomorphism) reachable subobject ofA. ut

Page: 129 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

130 3 Category theory

Example 3.4.14 (Projection functor).For any two categoriesK1 andK2, the pro-
jection functorsΠK1 :K1 × K2 → K1 and ΠK2 :K1 × K2 → K2 are defined by
ΠK1(〈A,B〉) = A andΠK1(〈 f ,g〉) = f , andΠK2(〈A,B〉) = B andΠK2(〈 f ,g〉) = g.

ut

Example 3.4.15 (Hom-functor).Let K be a locally small category.Hom:Kop×
K → Set is a functor, whereHom(〈A,B〉) = K(A,B) and

Hom(〈 f :A′→ A,g:B→ B′〉︸ ︷︷ ︸
∈Kop×K(〈A,B〉,〈A′,B′〉)

)(h:A→ B︸ ︷︷ ︸
∈Hom(〈A,B〉)

) = f ;h;g︸ ︷︷ ︸
∈Hom(〈A′,B′〉)

.

B

A A′

B′-
g

� f

?

h

?

ut

Exercise 3.4.16 (Exponent functor).For any setX define a functor[→X]:Setop→
Set mapping any set to the set of all functions from it toX. That is, for any set
Y ∈ |Set|, [Y→X] is the set of all functions fromY to X and then for any morphism
f :Y→Y′ in Setop, which is a functionf :Y′→Y in Set, [f→X]: [Y→X]→ [Y′→X]
is defined by pre-composition withf as follows:[f→X](g) = f ;g. ut

Example 3.4.17 (Converting partial functions to total functions).Let Pfn be the
category of sets with partial functions and letSet⊥ be the subcategory ofSethaving
sets containing a distinguished element⊥ as objects and⊥-preserving functions as
morphisms. ThenTot:Pfn→ Set⊥ converts partial functions to total functions by
using⊥ to represent “undefined” as follows:

• Tot(X) = X]{⊥}

• Tot(f)(x) =
{

f (x) if f (x) is defined
⊥ otherwise

Exercise.Notice that strictly speaking the above definition is not well-formed: ac-
cording to the definition of disjoint union, ifX is non-empty thenX 6⊆X]{⊥}; thus,
given a partial functionf :X→ Y, Tot(f) as defined above need not be a function
from Tot(X) to Tot(Y). Restate this definition formally, using explicit injections
ι1:X→ X]{⊥} andι2:{⊥}→ X]{⊥} for each setX. ut

Example 3.4.18 (Converting partial algebras to total algebras).The same “to-
talisation” idea as used in the above Example 3.4.17 yields a totalisation functor
TotΣ :PAlgstr(Σ)→ Alg(Σ), for each signatureΣ , mapping partialΣ -algebras and
their strong homomorphisms to totalΣ -algebras and their homomorphisms (cf. Def-
initions 2.7.30 and 2.7.31, and Example 3.3.13).

Let Σ = 〈S,Ω〉 ∈ |AlgSig|. TotΣ :PAlgstr(Σ)→ Alg(Σ) is defined as follows:

Page: 130 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.4 Functors and natural transformations 131

• For any partialΣ -algebraA∈ |PAlgstr(Σ)|, TotΣ (A) ∈ |Alg(Σ)| is theΣ -algebra
whose carriers are obtained from the corresponding carriers ofA by adding a
distinguished element⊥, and whose operations are obtained from the operations
of A by making the result⊥ for arguments on which the latter are undefined, that
is:

– for each sort names∈ S, |TotΣ (A)|s = |A|s]{⊥}; and
– for each operation namef :s1× . . .×sn→ s in Σ , fTotΣ (A) is the function which

yields⊥ if any of its arguments is⊥, and fora1 ∈ |A|s1, . . . ,an ∈ |A|sn,

fTotΣ (A)(a1, . . . ,an) =
{

fA(a1, . . . ,an) if fA(a1, . . . ,an) is defined
⊥ otherwise.

• For any strongΣ -homomorphismh:A→ B (which is a family oftotal functions
between the corresponding carriers ofA andB), TotΣ (h):TotΣ (A)→ TotΣ (B) is
(the family of functions in)h extended to map⊥ to⊥.

Exercise.Check that for any strongΣ -homomorphismh:A→B, TotΣ (h):TotΣ (A)→
TotΣ (B) is indeed aΣ -homomorphism. Can you extendTotΣ toweakΣ -homomorphisms
between partial algebras? ut

Exercise 3.4.19.Do the above functors map monomorphisms to monomorphisms?
Do they map epimorphisms to epimorphisms? What about isomorphisms? (Co)limits?
(Co)cones? Anything else you can think of? ut

Definition 3.4.20 (Diagram translation).Given a functorF:K1 → K2 and a dia-
gramD in K1, thetranslation of D byF is defined as the diagramF(D) in K2 with
the same underlying graph asD and with the labels ofD translated byF:

• G(F(D)) = G(D);
• for eachn∈ |G(D)|node, F(D)n = F(Dn); and
• for eache∈ |G(D)|edge, F(D)e = F(De). ut

Exercise 3.4.21 (Diagrams as functors).A diagramD in K corresponds to a func-
tor from the categoryPath(G(D)) of paths in the underlying graph ofD to K . For-
malise this. HINT : Given a diagramD, define a functor that maps each pathe1 . . .en

in G(D) to De1; . . . ;Den. Do not forget the case wheren = 0.
Then, anticipating Definition 3.4.27, define the translation of a diagram by a

functor in terms of functor composition. ut

Definition 3.4.22 (Functor continuity and cocontinuity). A functor F:K1 → K2
is (finitely) continuousif it preserves the existing limits of all (finite) diagrams in
K1, that is, if for any (finite) diagramD in K1, F maps any limiting cone overD to
a limiting cone overF(D).

A functor F:K1→ K2 is (finitely) cocontinuousif it preserves the existing col-
imits of all (finite) diagrams inK1, that is, if for any (finite) diagramD in K1, F
maps any colimiting cocone overD to a colimiting cocone overF(D). ut

Page: 131 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

132 3 Category theory

Exercise 3.4.23.Assuming thatK1 is (finitely) complete, use Exercise 3.2.49 to
show that a functorF:K1 → K2 is (finitely) continuous if and only if it preserves
(finite) products and equalisers.

Similarly, show thatF:K1→ K2 is finitely continuous if and only if it preserves
terminal objects and all pullbacks, and it is continuous if and only if it preserves
terminal objects and all wide pullbacks. HINT : Exercises 3.2.48 and 3.2.50).

Dually, give similar characterisation of (finitely) cocontinuous functors, for in-
stance as those that preserve (finite) coproducts and coequalisers. ut

Exercise 3.4.24.Given a setX, show that the functor[→X]:Setop→ Setfrom Ex-
ercise 3.4.16 is continuous. HINT : Use Exercise 3.4.23: relying on the explicit con-
structions of (co)products and (co)equalisers inSet, show that the functor maps
any coproduct (disjoint union) of sets〈Xn〉n∈N to a product of sets of functions
[Xn→X], n∈N, and a coequaliser of functionsf ,g:X1→ X2 to an equaliser of (pre-
composition) functions(f ;),(g;): [X2→X]→ [X1→X].

You may also want to similarly check which of the examples of functors given
above are (finitely) (co)continuous. ut

Exercise 3.4.25.Consider a categoryK with a terminal object1 ∈ |K |. Given any
functorF:K → K ′, check thatF determines a functorF↓1:K → K ′↓F(1) from K to
the slice category ofK ′-objects overF(1) (Definition 3.1.28), where for any object
A∈ |K |, F↓1(A) = F(!A), with !A:A→ 1 being the unique morphism fromA to 1,
andF↓1 coincides withF on morphisms.

Suppose now thatK has all pullbacks (so that it is finitely complete) andF pre-
serves them (but we do not requireF to preserve the terminal object, so it does not
have to be finitely continuous). Show thatF↓1:K → K ′↓F(1) is finitely continuous.
HINT : Recall Exercise 3.2.51. By the discussion there, sinceF preserves pullbacks,
F maps products inK , which are pullback of morphisms to1, to pullbacks inK ′ of
morphisms toF(1) — and these are essentially products inK ′↓F(1). Moreover, by
the construction,F↓1 preserves the terminal object, and the conclusion follows by
Exercise 3.4.23.

Similarly, show that ifK has all wide pullbacks (so that it is complete) andF
preserves them thenF↓1:K → K ′↓F(1) is continuous. ut

Exercise 3.4.26.Recall the definition of the categoryTΣ ,Φ , the algebraic theory
generated by a setΦ of equations over a signatureΣ (cf. Exercise 3.1.15). Show
that those functors fromTop

Σ ,∅ to Set that preserve finite products (where products
in Top

Σ ,Φ , that is coproducts inTΣ ,Φ , are given by concatenation of sequences of sort
names, cf. Exercise 3.2.18, and products inSetare given by the Cartesian product)
are in a bijective correspondence withΣ -algebras in|Alg(Σ)|. Generalise this corre-
spondence further to product-preserving functors fromTop

Σ ,Φ to SetandΣ -algebras
in ModΣ (Φ). ut

Definition 3.4.27 (Functor composition).The categoryCat (the category of all
categories) is defined as follows:

Page: 132 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.4 Functors and natural transformations 133

Objects ofCat: categories5;
Morphisms ofCat: functors;
Composition inCat: If F:K1→K2 andG:K2→K3 are functors, thenF;G:K1→

K3 is a functor defined as follows:(F;G)Ob j = FOb j;GOb j and (F;G)A,B =
FA,B;GF(A),F(B) for all A,B∈ K1. ut

Example 3.4.28.In the following we will often use the functor| |:Cat → Set6

which for any categoryK ∈ |Cat| yields the collection|K | of the objects of this cat-
egory and for each functorF:K → K ′ yields its object part|F|= FOb j: |K | → |K ′|.

ut

Example 3.4.29. Alg:AlgSigop→ Cat is a functor, where:

• for anyΣ ∈ |AlgSig|, Alg(Σ) is the category ofΣ -algebras; and
• for any morphismσ :Σ→Σ ′ in AlgSig, Alg(σ) is the reduct functor σ :Alg(Σ ′)→

Alg(Σ). ut

Exercise 3.4.30.Define a functorAlgder:(AlgSigder)op→ Cat so thatAlgder(Σ) =
Alg(Σ) for any signatureΣ ∈ |AlgSigder|, and for any derived signature morphism
δ , Algder(δ) is theδ -reduct as sketched in Definition 1.5.16 and Exercise 1.5.17.

ut

Exercise 3.4.31.Define the categoryPoset (objects: partially-ordered sets; mor-
phisms: order-preserving functions). Define the functor fromPosetto Cat that maps
a partially-ordered set to the corresponding (preorder) category (cf. Example 3.1.3)
and an order-preserving function to the corresponding functor. ut

Exercise 3.4.32.Characterise isomorphisms inCat. Show that product categories
are products inCat. What are terminal objects, pullbacks and equalisers inCat?
Conclude thatCat is complete. HINT : Use constructions analogous to those inSet,
as summarised in Exercise 3.2.53. ut

Exercise 3.4.33.Prove thatAlg:AlgSigop→ Cat (cf. Example 3.4.29) is continu-
ous, that is, that it maps colimits in the categoryAlgSig of signatures to limits in the
categoryCat of all categories.

HINT : By Exercise 3.4.23 it is enough to show thatAlg maps coproducts of
signatures to products of the corresponding categories of algebras and coequalisers
of signature morphisms to equalisers of the corresponding reduct functors.

(Coproducts): Recall that by Exercise 3.2.16, a coproduct of signatures is in fact
their disjoint union. Now, it is easy to see that an algebra over a disjoint union
of a family of signatures may be identified with a tuple of algebras over the
signatures in the family. Since a similar fact holds for homomorphisms, the rest
of the proof in this case is straightforward (cf. Exercise 3.4.32). Notice that this
argument covers the coproduct of the empty family of signatures as well.

5 To be cautious about the set-theoretic foundations here, we should rather say:smallcategories.
6 Again, we should restrict attention to small categories here. Alternatively, in place ofSet we
could use the category of all discrete categories, inheriting all of the foundational problems ofCat.

Page: 133 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

134 3 Category theory

(Coequalisers): Recall (cf. Exercise 3.2.24) that a coequaliser of two signature
morphismsσ ,σ ′:Σ → Σ ′ is the natural projectionp:Σ ′ → (Σ ′/≡), where ≡
is the least equivalence relation onΣ ′ such thatσ(x) ≡ σ ′(x) for all sort and
operation namesx in Σ (this is just a sketch of the construction). Notice now
that (Σ ′/≡)-algebras correspond exactly to thoseΣ ′-algebras that have iden-
tical componentsσ(x) and σ ′(x) for all sort and operation namesx in Σ , or
equivalently, to those algebrasA′ ∈ |Alg(Σ ′)| for which A′ σ = A′ σ ′ . Moreover,
the correspondence is given by the functorp:Alg(Σ ′/≡)→ Alg(Σ ′). Since a
similar fact holds for homomorphisms, it is straightforward now to prove that

p = Alg(p) is an equaliser of σ = Alg(σ) and σ ′ = Alg(σ ′) (cf. Exer-
cises 3.4.32 and 3.2.22). ut

Exercise 3.4.34 (Amalgamation Lemma for algebras).Consider a pushout in the
categoryAlgSig of signatures:

Σ

Σ1 Σ2

Σ ′

@
@

@I

�
�

��

�
�

��

@
@

@I

σ1 σ2

σ ′1 σ ′2

Conclude from Exercise 3.4.33 above that for anyΣ1-algebraA1 andΣ2-algebraA2

such thatA1 σ1 = A2 σ2, there exists a uniqueΣ ′-algebraA′ such thatA′ σ ′1
= A1 and

A′ σ ′2
= A2.

Similarly, for any two homomorphismsh1:A11→ A12 in Alg(Σ1) andh2:A21→
A22 in Alg(Σ2) such thath1 σ1 = h2 σ2, there exists a uniqueΣ ′-homomorphism
h′:A′1→ A′2 such thath′ σ ′1

= h1 andh′ σ ′2
= h2. ut

Example 3.4.35.Recall Example 3.2.35 of a simple pushout of algebraic signa-
tures. LetN ∈ |Alg(ΣNat)| be the standard model of natural numbers. Build
N1 ∈ |Alg(ΣNatfib)| by adding toN the interpretation of the operationfib as
the standard Fibonacci function, andN2 ∈ |Alg(ΣNatmult)| by adding toN the
interpretation of the operationmult as multiplication. By construction we have
N1 ΣNat = N = N2 ΣNat and soN1 andN2 amalgamate to a unique algebraN′ ∈
|Alg(ΣNatfib,mult)| such thatN′ ΣNatfib = N1 andN′ ΣNatmult = N2. Clearly,N′ is
the only expansion ofN that definesfib as the Fibonacci function (asN1 does) and
mult as multiplication (asN2 does). ut

Exercise 3.4.36.Define initial objects and coproducts inCat. (HINT : This is easy.)
Try to define coequalisers and then pushouts inCat. (HINT : This is difficult.) ut

¡¡¡¡¡¡¡ c342.tex ======= ¿¿¿¿¿¿¿ 1.15

Page: 134 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.4 Functors and natural transformations 135

3.4.2 Natural transformations

Let F:K1→ K2 andG:K1→ K2 be two functors with common source and target
categories.

A transformation fromF to G should map the results ofF to the results ofG. This
means, that it should consists of a family of morphisms inK2, oneK2-morphism
from F(A) to G(A) for eachK1-objectA. An extra requirement to impose is that
this family should be compatible with the application ofF andG to K1-morphisms,
as formalised by the following definition:

Definition 3.4.37 (Natural transformation). A natural transformationfrom F to
G, τ:F→G7, is a family〈τA:F(A)→G(A)〉A∈|K1| of K2-morphisms such that for
anyA,B∈ |K1| andK1-morphismf :A→ B the following diagram commutes:

K1: K2:

A

B
?

f

F(A)

F(B)

G(A)

G(B)

-τA

-
τB

?

F(f)

?

G(f)

(this property is often referred to as thenaturalityof the familyτ).
Furthermore,τ is anatural isomorphismif for all A∈ |K1|, τA is iso (inK2). ut

Example 3.4.38.The identity transformationidF:F→ F, where(idF)A = idF(A), is
a natural isomorphism.

For any morphismf :A→ B in a categoryK2 and for any categoryK1, there
is a constant natural transformationcf :CA → CB between the constant functors
CA,CB:K1→ K2 (cf. Example 3.4.4) defined by(cf)o = f for all objectso∈ |K1|.

ut

Example 3.4.39.The family of singleton functionssing set: IdSet→ P, where for
any setX, sing setX:X→ P(X) is defined bysing setX(a) = {a}, is a natural trans-
formation.

Let ()∗= Seq;| |:Set→Setbe the functor given as the composition ofSeq:Set→
Mon (Example 3.4.8) with the forgetful functor| |:Mon → Set mapping any
monoid to its underlying carrier set. The family of singleton functionssing seq: IdSet→
()∗, where for any setX, sing seqX:X → X∗ is defined bysing seqX(a) = a
(sing seqmaps any element to the singleton sequence consisting of this element
only) is a natural transformation. ut
7 Some authors would use a dotted or double arrow here, writingτ:F →̇ G or τ:F⇒ G, respec-
tively. We prefer to use the same symbol for all morphisms, and also for natural transformations,
since they are morphisms in certain categories, see Definition 3.4.60 below.

Page: 135 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

136 3 Category theory

Exercise 3.4.40.Consider the functor()∗:Set→ Set mapping any setX to the
setX∗ of sequences overX (cf. Example 3.4.39 above). Show that the following
families of functions (indexed by setsX ∈ |Set|) yield natural transformations from
()∗ to ()∗:

• for eachk≥ 0, for n≥ 0 andx1, . . . ,xn ∈ X,
stutterkX(x1 . . .xn) = x1 . . .x1︸ ︷︷ ︸

k times

. . . xn . . .xn︸ ︷︷ ︸
k times

;

• for eachk≥ 0, for n≥ 0 andx1, . . . ,xn ∈ X,
repeatkX(x1 . . .xn) = x1 . . .xn︸ ︷︷ ︸ . . . x1 . . .xn︸ ︷︷ ︸︸ ︷︷ ︸

k times

;

• for n≥ 0 andx1, . . . ,xn ∈ X,
reverseX(x1 . . .xn) = xn . . .x1;

• for n≥ 0 andx1, . . . ,x2n+1 ∈ X,
oddsX(x1x2x3 . . .x2n) = x1x3 . . .x2n−1 and
oddsX(x1x2x3 . . .x2n+1) = x1x3 . . .x2n+1.

Check which of these functions also yield natural transformations fromSeqto Seq
(whereSeq:Set→Mon, cf. Example 3.4.8).

The above examples indicate a close link between polymorphic functions as en-
countered in functional programming languages (like Standard ML [MTHM97] or
Haskell [Pey03]) and natural transformations between functors representing poly-
morphic types. This property, often referred to as “parametric polymorphism” (as
opposed to “ad hoc polymorphism”) can be explored to derive some propeties of
polymorphic functions directly from their types [Wad89]. ut
Exercise 3.4.41.Recall (Exercise 3.4.26) the correspondence between product-
preserving functors fromTop

Σ ,Φ to Set andΣ -algebras in|Mod(Σ ,Φ)|. Show that
this correspondence extends to morphisms: eachΣ -homomorphism between alge-
bras gives rise to a natural transformation between the corresponding functors, and
vice versa, each natural transformation between such functors determines a homo-
morphism between the corresponding algebras. HINT : To prove that this yields a
bijective correspondence, first use the naturality condition for product projections
to show that for any natural transformationτ:F→ G between product-preserving
functorsF,G:Top

Σ ,Φ → Set, any sequences1 . . .sn of sort names (an object inTΣ ,Φ)
and any〈a1, . . . ,an〉 ∈ F(s1 . . .sn), τs1...sn(〈a1, . . . ,an〉) = 〈τs1(a1), . . . ,τsn(an)〉. ut

Natural transformations have been introduced as morphisms between functors.
The obvious thing to do next is to define composition of natural tranformations. Tra-
ditionally, two different composition operations for natural transformations are in-
troduced:verticalandhorizontalcomposition. The former is a straightforward com-
position of natural transformations between parallel functors. The latter is somewhat
more involved; in a sense, it shows how natural transformations “accumulate” when
functors are composed.

Definition 3.4.42 (Vertical composition).Let F1,F2,F3:K1→ K2 be three func-
tors with common source and target categories. Letτ:F1→ F2 andσ :F2→ F3 be
natural transformations:

Page: 136 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.4 Functors and natural transformations 137�

�

�

�

K1

�

�

�

�

K2

F1 -

F2 -

F3 -

?

τ

?

σ

Then thevertical compositionof τ andσ , τ;σ :F1→ F3, is defined by(τ;σ)A =
τA;σA (in K2) for all A∈ |K1|. ut

Exercise 3.4.43.Prove thatτ;σ is indeed a natural transformation. ut

Definition 3.4.44 (Horizontal composition).LetF1,F2:K1→K2 andG1,G2:K2→
K3 be two pairs of parallel functors. Letτ:F1→ F2 andσ :G1→ G2 be natural
transformations:�

�

�

�
K1

�

�

�

�
K2

�

�

�

�
K3

F1 -

F2 -

G1 -

G2 -
?

τ

?

σ

Then thehorizontal compositionof τ andσ , τ·σ :F1;G1→ F2;G2, is defined by
(τ·σ)A = G1(τA);σF2(A) = σF1(A);G2(τA) (in K3) for all A∈ |K1|:

F1(A)

F2(A)
?

τA

G1(F1(A))

G1(F2(A))
?

G1(τA)

G2(F1(A))

G2(F2(A))
?

G2(τA)

-
σF1(A)

-
σF2(A)

HH
HH

HH
HH

HH
HH

HH
HH

HH
HHj

(τ·σ)A

ut

Exercise 3.4.45.Prove that the above diagram commutes, and so(τ·σ)A is well-
defined. Then prove thatτ·σ is indeed a natural transformation. HINT :

Page: 137 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

138 3 Category theory

A

B G1(F1(B))

G1(F1(A)) G2(F2(A))

G2(F2(B))

G1(F2(A))

G1(F2(B))

?

f

?

G1(F1(f))

?

G2(F2(f))

?

G1(F2(f))

H
HHH

HHHHj
G1(τA)

HHH
HHH

HHj
G1(τB)

�
�

�
��σF2(A)

�
�

�
��

σF2(B)

-
(τ·σ)A

-
(τ·σ)B

ut

Definition 3.4.46 (Multiplication by a functor). A special case of the horizontal
composition of natural transformations is themultiplicationof a natural transforma-
tion by a functor. Under the assumptions of Definition 3.4.44, we define:

• τ·G1 = τ·idG1:F1;G1→ F2;G1, or more explicitly:(τ·G1)A = G1(τA) for A∈
|K1|;

• F1·σ = idF1·σ :F1;G1→ F1;G2, or more explicitly:(F1·σ)A = σF1(A) for A∈
|K1|. ut

Exercise 3.4.47.Show thatτ·σ = (τ·G1);(F2·σ) = (F1·σ);(τ·G2). ut

Exercise 3.4.48 (Interchange law).Consider any categoriesK1, K2, K3, func-
tors F1,F2,F3:K1 → K2 andG1,G2,G3:K2 → K3, and natural transformations
τ:F1→ F2, τ ′:F2→ F3, σ :G1→G2, andσ ′:G2→G3:�

�

�

�

K1

�

�

�

�

K2

�

�

�

�

K3

F1 -

F2 -

F3 -

G1 -

G2 -

G3 -

?

τ

?

τ ′

?

σ

?

σ ′

Show that(τ;τ ′)·(σ ;σ ′) = (τ·σ);(τ ′·σ ′). ut

Page: 138 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.4 Functors and natural transformations 139

3.4.3 Constructing categories, revisited

3.4.3.1 Comma categories

Definition 3.4.49 (Comma category).Let F:K1→K andG:K2→K be two func-
tors with a common target category. Thecomma category(F,G) is defined by:

Objects of(F,G): triples〈A1, f ,A2〉, whereA1∈ |K1|, A2∈ |K2| and f :F(A1)→
G(A2) is a morphism inK ;

Morphisms of(F,G): a morphism from〈A1, f ,A2〉 to 〈B1,g,B2〉 is a pair〈h1,h2〉
of morphisms whereh1:A1→B1 (in K1) andh2:A2→B2 (in K2) such that (the
middle part of) the following diagram commutes:

A1

B1
?

h1

F(A1)

F(B1)

G(A2)

G(B2)

-
f

-
g

?

F(h1)

?

G(h2)

A2

B2
?

h2

Composition in(F,G): 〈h1,h2〉;〈h1′,h2′〉= 〈h1;h1′,h2;h2′〉. ut

Exercise 3.4.50.Construct the categoryK→ of K -morphisms and the categoryK↓A
of K -objects overA∈ |K | as comma categories (cf. Definitions 3.1.27 and 3.1.28).
HINT : Consider categories(IdK , IdK) and (IdK ,C1

A), where IdK is the identity
functor onK andC1

A:1→ K is a constant functor from the terminal category1. ut

Example 3.4.51.Another way of presenting the categoryGraph is as the comma
category(IdSet,CP), whereCP:Set→ Set is the Cartesian product functor defined
by CP(X) = X×X andCP(f :X→Y)〈x1,x2〉= 〈 f (x1), f (x2)〉.

To see this, write an object in|(IdSet,CP)| as〈E,〈source:E→ N, target:E→ N〉,N〉.
ut

Exercise 3.4.52.Another way to present the category of signaturesAlgSig is as the
comma category(IdSet,()+), where()+:Set→ Set is the functor which for any
setX ∈ |Set| yields the setX+ of all finite non-empty sequences of elements from
X.

First, complete the definition of the functor()+. Then, notice thatX+ = X∗×X
and hence an object in|(IdSet,()+)|may be written as〈Ω ,〈arity:Ω → S∗,sort:Ω → S〉,S〉.
Indicate now why the category defined is almost, but not quite, the same as the cat-
egoryAlgSig of signatures (cf. Exercise 3.4.75 below). ut

Exercise 3.4.53.Prove that ifK1 andK2 are (finitely) complete categories,F:K1→
K is a functor, andG:K2→K is a (finitely) continuous functor, then the comma cat-
egory(F,G) is (finitely) complete. Moreover, the obvious projections from(F,G)
to K1 andK2, respectively, are (finitely) continuous. HINT : To construct a limit

Page: 139 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

140 3 Category theory

of a diagram in(F,G), start by building limits of the projections of the diagram to
K1 andK2, respectively, and then use the continuity property ofG to complete the
construction of the limit object in(F,G). If the notation in the proof gets too heavy,
use Exercise 3.2.49 and spell the details out for the construction of products and
equalisers.

Check that this construction of limits in(F,G) works for diagrams of any given
shape: ifK1 and K2 have limits of diagrams of a given shape, andG preserves
them, then(F,G) has limits of diagrams of this shape, and the projection functors
preserve them.

State and prove the analogous facts about cocompleteness of(F,G). HINT :
Clearly, appropriate colimits must exist inK1 and K2, but unlike with limits, it
is F that must preserve them. ut

Exercise 3.4.54.Use Exercises 3.4.50 and 3.4.53 to show that ifK is a (finitely)
complete category then so is the categoryK→ of morphisms inK .

Then, without looking at Exercise 3.2.51, use Exercises 3.4.50 and 3.4.53 to
prove that if a categoryK has limits of all (finite) non-empty connected diagrams
then so does the slice categoryK↓A of its objects overA∈ |K |, and that the obvious
forgetful functor fromK↓A to K preserves these limits. Notice though that this does
not generalise to arbitrary (finite) limits that exist inK↓A if K is (finitely) complete
by Exercise 3.2.51.

Check that your proof shows a stronger fact: without assuming the existence of
any limits inK , the forgetful functor fromK↓A to K createslimits of all non-empty
connected diagrams, that is: for any such diagramD↓A in K↓A, if its projectionD to
K has a limit inK then there is a unique cocone onD↓A in K↓A that projects to this
limit, and this cocone is a limit ofD↓A in K↓A. ut

Exercise 3.4.55.Show that ifK has all pullbacks and a terminal object (so, it is
finitely complete) and a functorF:K → K ′ preserves pullbacks, thenF also pre-
serves the limits of all finite non-empty connected diagrams. HINT : Put together
Exercises 3.4.25 and 3.4.54.

Similarly, show that ifK has all wide pullbacks and a terminal object (so, it is
complete) and a functorF:K → K ′ preserves wide pullbacks, thenF also preserves
the limits of all non-empty connected diagrams. ut

3.4.3.2 Indexed categories

We frequently need to deal not just with a single category, but rather with a family
of categories, “parameterised” by a certain collection of indices. The categories of
S-sorted sets (one for each setS) and the categories ofΣ -algebras (one for each
signatureΣ) are typical examples. A crucial property here is that all the categories in
such a family are defined in a uniform way, and consequently any change of an index
induces a smooth translation between the corresponding component categories. In
typical examples, the translation goes in the opposite direction than the change of
index, which leads to the following definition:

Page: 140 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.4 Functors and natural transformations 141

Definition 3.4.56 (Indexed category).An indexed category(over anindex category
Ind) is a functorC: Indop→ Cat. ut

Example 3.4.57. Alg:AlgSigop→Cat is an indexed category (cf. Example 3.4.29).
ut

Definition 3.4.58 (Grothendieck construction).Every indexed categoryC: Indop→
Cat gives rise to aflattenedcategoryFlat(C) defined as follows:

Objects ofFlat(C): pairs〈i,A〉 for all i ∈ |Ind | andA∈ |C(i)|;
Morphisms ofFlat(C): a morphism from〈i,A〉 to 〈 j,B〉 is a pair〈σ , f 〉:〈i,A〉 →
〈 j,B〉, where σ : i → j is an Ind -morphism andf :A→ C(σ)(B) is a C(i)-
morphism;

Composition inFlat(C): 〈σ , f 〉;〈σ ′, f ′〉= 〈σ ;σ ′, f ;C(σ)(f ′)〉. ut

Exercise 3.4.59.Show that ifInd is complete,C(i) are complete for alli ∈ |Ind |,
andC(σ) are continuous for allσ ∈ Ind , thenFlat(C) is complete.

HINT : Given a diagram in the flattened categoryFlat(C), first consider its ob-
vious projection on the index categoryInd . SinceInd is complete, this has a limit
l ∈ |Ind |. Using the functors assigned byC to the projection morphism of the limit,
“translate” all the nodes and edges of the diagram to the categoryC(l), thus ob-
taining a diagram inC(l). SinceC(l) is complete, it has a limit. Check that the
projection morphisms of the limit of the diagram constructed inInd when paired
with the corresponding projection morphisms of the limit of the diagram inC(l)
form the limit of the original diagram inFlat(C).

To make the construction manageable, consider only products and equalisers:
this is sufficient by Exercise 3.2.49. ut

3.4.3.3 Functor categories

Definition 3.4.60 (Functor category).Let K1 andK2 be categories8. The functor
category[K1→K2] is defined by:

Objects of[K1→K2]: functors fromK1 to K2;
Morphisms of[K1→K2]: natural transformations;
Composition in[K1→K2]: vertical composition. ut

Exercise 3.4.61.Define the categorySetS of S-sorted sets as a functor category.ut

Exercise 3.4.62.For any categoryK , define its morphism categoryK→ as the cate-
gory of functors[2→K]. ut

Exercise 3.4.63.Let K1 andK2 be categories. Show that ifK2 is (finitely) com-
plete then so is the functor category[K1→K2]. State and show the dual fact as well.
HINT : The limit of any diagram in[K1→K2] may be constructed “pointwise”, for

8 To be cautious about set-theoretic foundations, one may want to assume thatK1 is small.

Page: 141 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

142 3 Category theory

each object in|K1| separately. More precisely, using Exercise 3.2.49 to simplify
the notational burden: consider any family of functors〈Fn:K1→ K2〉n∈N. For each
X ∈ |K1|, let Q(X) ∈ |K2| with projections(πn)X:Q(X) → Fn(X), n ∈ N, be a
product of〈Fn(X)〉n∈N in K2. Check that there is a unique way to extendQ to a
functor Q:K1 → K2 so that allπn:Q→ Fn, n ∈ N, become natural transforma-
tions. Show thatQ with projections〈πn〉n∈N is a product of〈Fn:K1→ K2〉n∈N in
[K1→K2]. Then proceed similarly for equalisers: consider functorsF,F′:K1→ K2
and natural transformationsτ1,τ2:F→ F′. For eachX ∈ |K1|, let τX:Q(X)→ F(X)
be an equaliser of(τ1)X,(τ2)X:F(X)→ F′(X) in K2. This yields a unique functor
Q:K1 → K2 such thatτ:Q→ F is a natural transformation, which is an equaliser
of τ1,τ2 in [K1→K2]. ut

Exercise 3.4.64.Let K1, K1′ andK2 be categories. Show how any functorF:K1→
K1′ induces a functor(F;): [K1′→K2]→ [K1→K2]. Relying on the construction
outlined in Exercise 3.4.63 and assuming thatK2 is (finitely) complete, show that
this functor is (finitely) continuous.

Prove also that this yields a functor[→K2]:Catop→Cat9 (cf. Exercise 3.4.16).
ut

Exercise 3.4.65.For any categoryK , define a categoryFunct(K) of functors into
K as follows:

Objects ofFunct(K): functorsF:K ′→ K into K ;
Morphisms ofFunct(K): a morphism fromF:K1 → K to G:K2 → K is a pair
〈ΦΦ ,ρ〉, whereΦΦ :K1→ K2 is a functor andρ:F→ΦΦ ;G is a natural transforma-
tion (between functors fromK1 to K);

Composition inFunct(K): 〈ΦΦ ,ρ〉;〈ΦΦ ′,ρ ′〉= 〈ΦΦ ;ΦΦ ′,ρ;(ΦΦ ·ρ ′)〉.

Show how the categoryFunct(K) arises by the flattening construction of Defini-
tion 3.4.58 for the functor[→K] as defined in the previous exercise.10 ut

Exercise 3.4.66.Show that ifK is a (finitely) complete category then the category
Funct(K) of functors intoK is (finitely) complete as well. HINT : You may con-
struct the limits inFunct(K) directly, perhaps using Exercise 3.2.49. Alternatively,
rely on the construction ofFunct(K) by flattening (Definition 3.4.58) for the functor
[→K]:Catop→ Cat and on Exercise 3.4.59; recall thatCat is complete by Exer-
cise 3.4.32, for any categoryK1, [K1→K] is (finitely) complete by Exercise 3.4.63,
and for every functorF:K1→ K2, (F;): [K2→K]→ [K1→K] is (finitely) contin-
uous by Exercise 3.4.64. ut

Exercise 3.4.67.Show that if a categoryK1 has a factorisation system (cf. Sec-
tion 3.3) than for any categoryK2, the functor category[K2→K1] has a factorisa-
tion system as well.

HINT : Let 〈E1,M1〉 be a factorisation system forK1. DefineE = {ε ∈ [K2→K1] |
εA ∈ E1 for a ∈ |K2|} and M = {η ∈ [K2→K1] | ηA ∈ M1 for a ∈ |K2|}. Now,

9 Assuming thatK2 is small would help to resolve potential foundational problems here.
10 So, for foundational reasons, one may prefer to keep all categories small around here as well.

Page: 142 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.4 Functors and natural transformations 143

to construct an〈E,M〉-factorisation of a natural transformationτ:F → G be-
tween functorsF,G:K2 → K1, first for each objecta∈ |K2| obtain an〈E1,M1〉-
factorisation ofτA, sayτA = εA;ηA with εA∈E1andηA∈M1, andεA:F(A)→H(A),
ηA:H(A) → G(A) for someH(A) ∈ |K1|. Then use the diagonal fill-in lemma
(Lemma 3.3.4) to extend the mappingH: |K2| → |K1| to a functorH:K2 → K1
such thatε:F→ H andη :H→G are natural transformations. ut

3.4.3.4 Equivalence of categories

Definition 3.4.68 (Isomorphic categories).Two categoriesK1 andK2 areisomor-
phic if there are functorsF:K1→ K2 andF−1:K2→ K1 such thatF;F−1 = IdK1
andF−1;F = IdK2 . ut

In other words, we say that two categories are isomorphic if they are isomorphic
as objects ofCat. As with isomorphic objects of other kinds, we will view isomor-
phic categories as abstractly the same. It turns out, however, that in this case there
is a coarser relation which allows us to identify categories which have all the same
categorical properties, even though they may not be isomorphic.

Definition 3.4.69 (Equivalent categories). K1andK2 areequivalentif there are
functorsF:K1 → K2 andG:K2 → K1 and natural isomorphismsτ: IdK1 → F;G
andσ :G;F→ IdK2 . ut

To characterise equivalent categories, we need one more concept:

Definition 3.4.70 (Skeletal category).A categoryK is skeletaliff any two isomor-
phic K -objects are identical. Askeleton ofK is any maximal skeletal subcategory
of K . ut

Exercise 3.4.71.Prove that two categories are equivalent iff they have isomorphic
skeletons. ut

Thus, intuitively, two categories are equivalent if and only if they differ only in
the number of isomorphic copies of corresponding objects.

Example 3.4.72.The categoryFinSet of all finite sets is equivalent to its full sub-
category of all natural numbers, where any natural numbern is defined as the set
{0, . . . ,n−1} of all natural numbers smaller thann. In fact, the latter is a skeleton
of FinSet. Similarly, the categorySetof all sets is equivalent to its full subcategory
of all ordinals. ut

Exercise 3.4.73.Show that for any signatureΣ and setΦ of Σ -equations, the full
subcategory ofTΣ /Φ given by the finite sets of variables is equivalent to the cate-
goryTΣ ,Φ (cf. Exercises 3.1.14 and 3.1.15). ut

Exercise 3.4.74.Let K1 and K2 be equivalent categories. Show that ifK1 is
(finitely) (co)complete then so isK2. ut

Page: 143 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

144 3 Category theory

Exercise 3.4.75.Recall Exercise 3.4.52. As indicated there, categoriesAlgSig and
(IdSet,()+) are not isomorphic. Show that they are equivalent. Then, using Exer-
cises 3.4.74 and 3.4.53, conclude from this thatAlgSig is complete and cocomplete.

ut

3.5 Adjoints

Recall Facts 1.4.4 and 1.4.10:

Fact 1.4.4.For any Σ -algebra A and S-sorted function v:X→ |A| there is exactly
oneΣ -homomorphism v#:TΣ (X)→ A which extends v, i.e. such that v#

s(ιX(x)) =
vs(x) for all s∈ S, x∈ Xs, whereιX:X→ |TΣ (X)| is the embedding that maps each
variable in X to the corresponding term. ut

Fact 1.4.10.This property defines TΣ (X) up to isomorphism: if B is aΣ -algebra
andη :X→ |B| is an S-sorted function such that for anyΣ -algebra A and S-sorted
function v:X→ |A| there is a uniqueΣ -homomorphism v$:B→A such thatη ;|v$|=
v then B is isomorphic to TΣ (X). ut

The construction of the algebra ofΣ -terms is one example of anadjoint functor
(it is left adjoint to the functor| |:Alg(Σ)→ Setsorts(Σ)). The general concept of an
adjoint functor, to which this section is devoted, has many other important instances.
In fact, [Gog91b] goes so far as to say:

Any canonical construction from widgets to whatsits is an adjoint of another
functor, from whatsits to widgets.

3.5.1 Free objects

Let K1 andK2 be categories,G:K2→ K1 be a functor, andA1 be an object ofK1.

Definition 3.5.1 (Free object).A free object over A1 w.r.t. G is a K2-object A2
together with aK1-morphismηA1:A1→G(A2) such that for anyK2-objectB2 and
K1-morphism f :A1→ G(B2) there is a uniqueK2-morphism f #:A2→ B2 such
thatηA1;G(f #) = f .

Page: 144 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.5 Adjoints 145

K1 K2� G

A1 G(A2)

G(B2)

-ηA1

?

G(f #)

@
@

@
@

@
@@R

f

A2

B2
?

f #

ηA1 is called theunit morphism. ut

Example 3.5.2.Let Σ = 〈S,Ω〉 be an arbitrary signature. Consider the forgetful
functor | |:Alg(Σ)→ SetS. Fact 1.4.4 asserts that for anyS-sorted setX, the term
algebraTΣ (X) with the inclusionηX:X ↪→ |TΣ (X)| is a free object overX w.r.t. | |.

ut

Exercise 3.5.3.Define free monoids and the path categoriesPath(G) as free objects
w.r.t. some obvious functors. Then, look around at the areas of mathematics with
which you are familiar for more examples. For instance, check that free groups and
discrete topologies, (ideal) completion of partial orders, of ordered algebras, etc.
may be defined as free objects w.r.t. some straightforward functors. ut

Exercise 3.5.4.Prove that any free object overA1 w.r.t.G is an initial object in the
comma category(CA1,G), whereCA1:1→ K1 is the constant functor. Conclude
that a free object overA1 w.r.t.G is unique up to isomorphism. ut

Exercise 3.5.5.Prove that ifA2∈ |K2| is a free object overA1∈ |K1|w.r.t.G:K2→
K1, then for anyB2∈ |K2|, #:K1(A1,G(B2))→ K2(A2,B2) is a bijection.

Check that one consequence of this is that two morphismsg,h:A2→B2 coincide
(in K2) wheneverηA1;G(g) = ηA1;G(h) in K1. ut

3.5.2 Left adjoints

Let K1 andK2 be categories andG:K2 → K1 be a functor. So far we have con-
sidered free objects w.r.t.G one by one, without relating them with each other. One
crucial property is that the construction of free objects, if they exist, is functorial.

Proposition 3.5.6.If for any A1∈ |K1| there is a free object over A1 w.r.t. G, say
F(A1) ∈ |K2| with unit morphismηA1:A1→G(F(A1)) (in K1), then A1 7→ F(A1)
and f∈K1(A1,B1) 7→ (f ;ηB1)#∈K2(F(A1),F(B1)) determine a functorF:K1→
K2.

Page: 145 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

146 3 Category theory

K1 K2� G

A1 G(F(A1))

B1 G(F(B1))

-ηA1

-
ηB1

?

f

?

G(F(f))

F(A1)

F(B1)
?

F(f) = (f ;ηB1)#

Proof. F preserves identities: F(idA1) = (idA1;ηA1)# = idF(A1) follows from the fact
that the following diagram commutes:

A1

A1

G(F(A1))

G(F(A1))

?

idA1

?

idG(F(A1)) = G(idF(A1))

-ηA1

-
ηA1

F preserves composition: Since the following diagram commutes:

A1

B1

G(F(A1))

G(F(B1))
?

f

?

G(F(f))

-ηA1

-ηB1

C1 G(F(C1))
?

g

?

G(F(g))

-ηC1

�

��

G(F(f));G(F(g)) = G(F(f);F(g))

it follows thatF(f ;g) = (f ;g;ηC1)# = F(f);F(g). ut

Exercise 3.5.7.Prove thatη : IdK1 → F;G in Proposition 3.5.6 is a natural transfor-
mation. ut

Page: 146 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.5 Adjoints 147

Definition 3.5.8 (Left adjoint). Let F:K1→ K2 andG:K2→ K1 be functors and
η : IdK1 → F;G be a natural transformation.F is left adjoint toG with unit η if for
anyA1∈ |K1|, F(A1) with unit morphismηA1:A1→G(F(A1)) is a free object over
A1 w.r.t.G. ut

Before we give any examples, let us prove a very important property of left ad-
joints.

Proposition 3.5.9.A left adjoint toG is unique up to (natural) isomorphism: ifF
andF′ are left adjoints ofG with unitsη andη ′ respectively, then there is a natural
isomorphismτ:F→ F′ such thatη ;(τ·G) = η ′.

A1

G(F(A1))

G(F′(A1))

�
���

��*ηA1

HH
HHHHjη ′A1 ?

G(τA1) = (τ·G)A1

F(A1)

F′(A1)
?

τA1

Proof. First notice that for anyf ∈ K1(A1,B1), F(f) = (f ;ηB1)# and F′(f) =
(f ;η ′B1)

#′ .
Then, forA1 ∈ |K1|, defineτA1 = (η ′A1)

andτ
−1
A1 = (ηA1)#′ . ThenτA1;τ−1

A1 =
idF(A1) since the following diagrams commute:

A1

G(F(A1))

G(F′(A1))

G(F(A1))

�
�

�
�

�
�

��

ηA1

-
η ′A1

@
@

@
@

@
@

@R

ηA1

?

G(τA1)

?

G(τ−1
A1)

�

��

G(τA1;τ−1
A1)

A1

G(F(A1))

G(F(A1))

��
����*ηA1

H
HHH

HHj
ηA1 ?

G(idF(A1))

andτ
−1
A1 ;τA1 = idF′(A1) by a similar argument.

Finally, for f :A1→ B1 (in K1), the following diagrams commute:

Page: 147 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

148 3 Category theory

A1 G(F(A1))

G(F′(A1))

-ηA1

HH
HHH

HHHHj

η ′A1

?

G(τA1)

B1 G(F′(B1))

G(F(B1))

-
η ′B1

HHH
HHH

HHHj

ηB1

?

G(τ−1
B1)

?

f

?

G(F′(f))

A1 G(F(A1))-ηA1

?

G(F(f))

B1

G(F(B1))

HHH
HHH

HHHj

ηB1

?

f

Thus,F(f) = (f ;ηB1)# = τA1;F′(f);τ−1
B1 . This proves thatF(f);τB1 = τA1;F′(f), and

hence thatτ:F→ F′ is natural. ut

Example 3.5.10.For any signatureΣ = 〈S,Ω〉, the functorTΣ :SetS→ Alg(Σ)
is left adjoint to the forgetful functor| |:Alg(Σ) → SetS (cf. Examples 3.4.11
and 3.4.9).

The functorSeq:Set→ Mon is left adjoint to the forgetful functor| |:Mon →
Setwhich takes a monoid to its underlying set of elements. The unit issing seq: IdSet→
Seq;| | (cf. Examples 3.4.8 and 3.4.39).

The “free group” functorF:Set→ Grp is left adjoint to the forgetful functor
| |:Grp → Set. Also, the functor taking a setX to the discrete topology onX is left
adjoint to the forgetful functor| |:Top→ Set(cf. Exercise 3.5.3). ut

Exercise 3.5.11.Consider any algebraic signature morphismσ :Σ → Σ ′. Prove that
the reduct functor σ :Alg(Σ ′)→ Alg(Σ) has a left adjoint.

HINT : Formalise and complete the following construction. For anyΣ -algebraA,
let Σ(A) be an algebraic signature which extendsΣ by a constanta:s for each ele-
menta∈ |A|s, s∈ sorts(Σ), and letΣ ′(A) be a similar extension ofΣ ′ by a constant
a:σ(s) for eacha∈ |A|s, s∈ sorts(Σ). Consider the congruence≡A onTΣ(A) gener-
ated by the identities that hold inA. The congruence≡A may be translated byσ to
Σ ′(A)-terms, generating there a congruenceσ(≡A), and the algebraTΣ ′(A)/σ(≡A)
is (almost) the freeΣ ′-algebra overA.

Consider then a setΦ ′ of Σ ′-equations. Recall thatMod(Σ ′,Φ ′) is the full
subcategory ofAlg(Σ ′) with all Σ ′-algebras that satisfyΦ ′ as objects (cf. Exam-
ple 3.1.19). Prove that the reduct functorσ :Mod(Σ ′,Φ ′) → Alg(Σ) has a left
adjoint.

HINT : In the construction above, close the congruenceσ(≡A) so that for each
equation∀X′ • t = t ′ in Φ ′ and substitutionθ :X′ → |TΣ ′(A)|, it identifies the terms
t[θ] andt ′[θ] (cf. Exercise 1.4.9 for the notation used here).

Page: 148 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.5 Adjoints 149

Finally, for any setΦ of Σ -equations such thatΦ ′ |=Σ ′ σ(Φ), prove that the
reduct functor σ :Mod(Σ ′,Φ ′)→Mod(Σ ,Φ) has a left adjoint.

HINT : This is easy now (Proposition 2.3.13 ensures that the functor is well de-
fined). ut

Exercise 3.5.12.Generalise Exercise 3.5.11 to derived signature morphisms, with
reduct functors as introduced in Exercise 3.4.30. ut

Example 3.5.13.Let K be a category, and recall that1 is a category containing a
single object, saya. Let F:1→ K be left adjoint toCa:K → 1 (note that such a
functorF may not exist). ThenF(a) is an initial object inK . ut

Exercise 3.5.14.Let ∆ :K → K ×K be the “diagonal” functor such that∆(A) =
〈A,A〉 and∆(f :A→ B) = 〈 f , f 〉:∆(A)→ ∆(B). Prove thatK has all coproducts iff
∆ has a left adjoint. What is the unit? ut

Exercise 3.5.15.Formulate analogous theorems for coequalisers and pushouts and
prove them. Show how this may be done for any colimit. ut

Exercise 3.5.16.LetK be a category with an initial object and a factorisation system
and letKR be its full subcategory of reachable objects. Recall thatRK :K → KR is a
functor that maps any object to its reachable subobject (cf. Exercise 3.4.13). Show
that the inclusion functorI :KR→ K is left adjoint toRK . ut

Exercise 3.5.17.Show that left adjoints preserve colimits of diagrams. Do they pre-
serve limits as well? ut

Exercise 3.5.18.LetF:K2→K1 be left adjoint toG:K1→K2 with unit η : IdK1→
F;G. Consider two objectsA,B ∈ |K1| and suppose that for some epimorphism
e:A→ B there exists a morphismh:B→ G(F(A)) such thate;h = ηA. Prove that
F(e):F(A)→ F(B) is an isomorphism.

HINT :

A G(F(A))-
ηA

B G(F(B))-
ηB

�
�

�
�

�
���

e

?

h

G(C)

@
@

@
@

@
@@R

f

?

G(fA)

�
�

�
�

�
�

�
�

�
�

�
�

�
��

G(fB)
F(A)

C

F(B)

?

fA

�
�

�
�

�
���

F(e)

�
�

�
�

�
�

�
�

�
�

�
�

�
��

fB

Page: 149 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

150 3 Category theory

First show thatF(B) with e;ηB:A→G(F(B)) as the unit morphism is a free object
overA w.r.t.G. For this, use the following construction: for anyC∈ |K2| and f :A→
G(C), let fB:F(B)→ C be the unique morphism such thatηB;G(fB) = h;G(fA),
where in turnfA:F(A)→C is the unique morphism such thatηA;G(fA) = f . Now,
fB satisfies(e;ηB);G(fB) = f and moreover, it is the only morphism fromF(B) toC
with this property (use the fact thate is an epimorphism and the freeness ofF(B) to
prove the latter). Then, show the conclusion following the proof of the uniqueness
of left adjoints, cf. Proposition 3.5.9. ut

3.5.3 Adjunctions

Consider two categoriesK1 andK2 and functorsF:K1 → K2 andG:K2 → K1
such thatF is left adjoint toG with unit η : IdK1 → F;G.

Proposition 3.5.19.There is a natural transformationε:G;F→ IdK2 such that

(∗) : (G·η);(ε·G) = idG
(∗∗) : (η ·F);(F·ε) = idF

K1: K2:

G(A2) G(F(G(A2))) F(G(A2))

G(A2) A2

A1 F(A1)

G(F(A1)) F(G(F(A1))) F(A1)

-
ηG(A2)

HH
HHH

HHH
HHHj

idG(A2)

?

G(εA2)
(∗)

?

εA2

?

ηA1

-
εF(A1)

H
HHH

HHH
HHHHj

idF(A1)

?

F(ηA1)
(∗∗)

Proof idea.

• (∗) definesεA2:F(G(A2))→ A2 asεA2 = (idG(A2))#.
• Check naturality: To show that for allg:A2→ B2 in K2, εA2;g = F(G(g));εB2, it

is enough to prove that (inK1) ηG(A2);G(εA2;g) = ηG(A2);G(F(G(g));εB2).
• Check(∗∗): To prove thatF(ηA1);εF(A1) = idF(A1), it is enough to show that (in

K1) ηA1;G(F(ηA1);εF(A1)) = ηA1;G(idF(A1)). ut

Page: 150 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.5 Adjoints 151

Proposition 3.5.20.Consider functorsF:K1→ K2 andG:K2→ K1, and natural
transformationsη : IdK1 → F;G andε:G;F→ IdK2 such that

(∗) : (G·η);(ε·G) = idG
(∗∗) : (η ·F);(F·ε) = idF

ThenF is left adjoint toG with unit η .

Proof. For A1∈ |K1|, B2∈ |K2|, f :A1→G(B2), let f # = F(f);εB2:F(A1)→ B2.

• ηA1;G(f #) = ηA1;G(F(f));G(εB2) = f ;ηG(B2);G(εB2) = f ;idG(B2) = f .
• Suppose that for someg:F(A1)→ B2, ηA1;G(g) = f . Then: f # = F(f);εB2 =

F(ηA1;G(g));εB2 = F(ηA1);F(G(g));εB2 = F(ηA1);εF(A1);g = g. ut

Definition 3.5.21 (Adjunction). Let K1 andK2 be categories. Anadjunction from
K1 to K2 is a quadruple〈F,G,η ,ε〉 whereF:K1→ K2 andG:K2→ K1 are func-
tors andη : IdK1 → F;G andε:G;F→ IdK2 are natural transformations such that

(∗) : (G·η);(ε·G) = idG
(∗∗) : (η ·F);(F·ε) = idF ut

Fact 3.5.22.Equivalently, an adjunction may be given as either of the following:

• A functorG:K2→ K1 and for each A1∈ |K1|, a free object over A1 w.r.t. G;
• A functorG:K2→ K1 and its left adjoint. ut

Exercise 3.5.23 (Galois connection).Recall that any partial order gives rise to a
corresponding preorder category (cf. Example 3.1.3). Galois connections (Defini-
tion 2.3.3) arise as adjunctions between preorder categories:

Consider two partially ordered sets〈A,≤A〉 and〈B,≤B〉 and two order-preserving
functions f :A→ B andg:B→ A (i.e., for a,a′ ∈ A, if a≤A a′ then f (a) ≤B f (a′)
and forb,b′ ∈ B, if b≤B b′ theng(b)≤A g(b′)).

Show thatf andg (viewed as functors) form an adjunction between〈A,≤A〉 and
〈B,≤B〉 (viewed as categories) if and only if for alla∈ A andb∈ B:

a≤A g(b) iff f (a)≤B b

Then show that this is further equivalent to the requirement that:

• a≤A g(f (a)) for all a∈ A; and
• f (g(b))≤B b for all b∈ B.

View the Galois connection between sets of equations and classes of algebras on
a given signature defined in Section 2.3 (cf. Proposition 2.3.2) as a special case of
the above definition. That is, check that for any signatureΣ , the function mapping
any set ofΣ -equations to the class of allΣ -algebras that satisfy this set of equations
and the function mapping any class ofΣ -algebras to the set of allΣ -equations that
hold in this class form an adjunction between the powerset of the set ofΣ -equations
(ordered by inclusion) and the powerclass of the class ofΣ -algebras (ordered by
containment).

Page: 151 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

152 3 Category theory

Then check that the above definition of Galois connection coincides with the
more explicit Definition 2.3.3 of a Galois connection between〈A,≤A〉 and〈B,≥B〉
(note the opposite order forB). ut

Exercise 3.5.24.Dualise the development in this section. Begin with the following
definition, dual to Definition 3.5.1:

Definition. Let F:K1 → K2 be a functor and letA2 ∈ |K2|. A cofree object over
A2 w.r.t. F is aK1-objectA1 together with aK2-morphismεA2:F(A1)→ A2 such
that for anyK1-objectB1 andK2-morphism f :F(B1)→ A2 there is a uniqueK1-
morphismf #:B1→ A1 such thatF(f #);εA2 = f .

Then dually to Section 3.5.2 show how cofree objects induceright adjoints. Finally,
prove facts dual to Propositions 3.5.19 and 3.5.20, thus proving that right adjoints
and cofree objects give another equivalent definition of adjunction. ut

Exercise 3.5.25.Develop yet another equivalent definition (at least for small cate-
gories) of an adjunction, centering around the bijection #:K1(A1,G(A2))→K2(F(A1),A2)
using a generalised version of Hom-functors (cf. Example 3.4.15).

Proof sketch.

• For any small categoryK and two functorsF1:K1→K andF2:K2→K , define a
functorHomF1,F2:K1op×K2→SetbyHomF1,F2(〈A1,A2〉)= K(F1(A1),F2(A2))
andHomF1,F2(〈 f 1, f 2〉)(h) = F1(f 1);h;F2(f 2).

• Show that ifF:K1 → K2 is left adjoint toG:K2 → K1 then #:HomIdK1 ,G →
HomF,IdK2 is a natural isomorphism.

• Finally, prove that for any functorsF:K1→ K2 andG:K2→ K1, a natural iso-
morphism #:HomIdK1 ,G→ HomF,IdK2 shows thatF is left adjoint toG. ut

Exercise 3.5.26.Show that adjunctions compose: given any categoriesK1, K2 and
K3, and adjunctions〈F,G,η ,ε〉 from K1 to K2 and〈F′,G′,η ′,ε ′〉 from K2 to K3,
we have an adjunction of the form〈F;F′,G′;G, , 〉 from K1 to K3. Fill in the
holes! ut

3.6 Bibliographical remarks

Category theory has found very many applications in computer science, and the ma-
terial presented here covers just those fragments that we will require in later chap-
ters. Books on category theory for mathematicians include the classic [Mac71] as
well as the encyclopedic [HS73], with [AHS90] as a more recent favourite, the three-
volume handbook [Bor94], the modestly-sized textbook [Awo06], and many more.
An early book on category theory directed towards computer scientists is [AM75],
followed by [Pie91], [Poi92] and [BW95]. An interesting angle is in [RB88], where
categorical concepts are presented by coding them in ML.

Page: 152 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.6 Bibliographical remarks 153

Our terminology is mainly based on [Mac71], although we prefer to write com-
position in diagrammatic order, denoted by semicolon. The reader should be warned
that the terminology and notation in category theory is not completely standardized,
and differ from one author to another.

We have decided to keep to the basics, and have not ventured into many more
advanced topics, some of which are quite important for computer-science appli-
cations. In particular, Cartesian closed categories [BW95], [Mit96] and the Curry-
Howard isomorphism [SU06], categorical logic [LS86], monads [Man76], [Mog91],
[Pho92], fibrations [Jac99], and topoi [Joh02], [Gol06] all deserve attention.

We have presented somewhat more material than usual on certain topics that will
find application in some of the subsequent chapters. For example, in the material
on factorisation systems (with Section 3.3 taken from [Tar85]) and on indexed cat-
egories (with Section 3.4.3.2 based on [TBG91]), we include some exercises which
formulate facts that we will rely on later. We will work with indexed categories
throughout the book, sometimes implicitly, since we find them more natural for
these applications than equivalent formulations in terms of fibrations [Jac99].

We have deliberately chosen to use a notion of factorisation system based on
[HS73]. The later book [AHS90] uses a somewhat more general concept, where
factorisation morphisms are not required to be epi and mono, respectively, and there-
fore the uniqueness of the isomorphism between different factorisations of the same
morphisms — or equivalently, of the diagonal in Lemma 3.3.4 — must be required
explicitly. Although much of the material carries over, some results are simpler un-
der our assumptions: for instance, we rely on Exercise 3.3.5 which does not hold in
this form in the framework of [AHS90].

Our presentation of signatures, terms and algebras in Chapter 1 was elementary
and set-theoretic, and we retain this style throughout the book. But category the-
ory offers a whole spectrum of possibilities of doing universal algebra fruitfully
in a different style. Exercises 3.4.26 and 3.4.41 relate to a categorical “Lawvere-
style” presentation of some of the same concepts, see [Law63], [Man76], [BW85].
This was used in some early papers on algebraic specification, e.g. [GTWW75], but
as it abstracts away from the choice of operation names in the signature, it seems
less useful for applications to program specification. (This argument was put for-
ward already in [BG80], with the notion of “signed theory” from [GB78] called
to the rescue.) An alternative approach to specifications in this framework is given
by sketches, see [BW95], which present specifications as graphs with indicated dia-
grams, cones and cocones that in a functorial model of the graph are mapped to com-
mutative diagrams, limits and colimits, respectively. Commutative diagrams capture
equational requirements here, with (co)limiting (co)cones offering additional speci-
fication power. Another related approach takes the general notion of aT-algebra for
a functorT:K → K as its starting point, where aT-algebra on an objectA∈ |K | is a
morphism fromT(A) to A; this works smoothly ifT is a monad, see [Man76]. Such
abstract approaches offer natural generalisations based on semantic interpretation in
categories other thanSet, but again, in our view, abstraction from familiar concepts
and syntactic presentations makes them less convenient for practical use.

Page: 153 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

Page: 154 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

Chapter 4
Working within an arbitrary logical system

Several approaches to specification were discussed in Chapter 2. Each approach
involved a differentlogical systemas a part of its mathematical underpinnings. We
encountered different definitions of:

Signatures: “ordinary” many-sorted signatures, signatures containingbool, true
andfalse(for final and reachable semantics), error signatures, order-sorted sig-
natures;

Algebras (on a signatureΣ): “ordinary” Σ -algebras, errorΣ -algebras, partialΣ -
algebras, order-sortedΣ -algebras;

Logical sentences (on a signatureΣ): Σ -equations, conditionalΣ -equations, error
Σ -equations (with safe and unsafe variables),Σ -definedness formulae, order-
sortedΣ -equations; and

Satisfaction (of aΣ -sentence by aΣ -algebra): of aΣ -equation by a (total)Σ -algebra,
of an errorΣ -equation by an errorΣ -algebra, of aΣ -equation by a partialΣ -
algebra, of aΣ -definedness formula by a partialΣ -algebra, of an order-sorted
Σ -equation by an order-sortedΣ -algebra.

All of these choices can be combined to obtain many different logical systems and
hence different approaches to specification, e.g. partial error specifications with con-
ditional axioms. Not only that, but there are several alternative approaches to the
specification of partial algebras and at least half a dozen to the specification of error
handling. Furthermore, there are many other variations that have not been consid-
ered, including the following (some of them briefly mentioned in Section 2.7.6):

• polymorphic signatures which permit polymorphic type constructors (rather than
just sorts) and operations having polymorphic types;

• continuous algebras to handle infinite data objects such as streams;
• higher-order algebras to handle higher-order functions (i.e. functions taking func-

tions as arguments and/or yielding functions as results);
• relational structures to model specifications containing predicates;
• inequations and conditional inequations;
• first-order formulae, with and without equality;

155

156 4 Working within an arbitrary logical system

• various modal logics, including algorithmic, dynamic, and temporal logics, for
formulating properties of (possibly non-functional) programs.

Some of these variations depart quite considerably from the usual algebraic
framework presented in Chapters 1 and 2. But none of them (and very few of the
others considered in the literature) are artificial, resulting merely from a theoreti-
cian’s toying with formal definitions. All of them arise from the practical need to
specify different aspects of software systems, often reflected by diverse features of
different programming languages.

The resulting wealth of choice of definitions of the basic concepts is not a bad
thing. None of the logical systems used in specifications is clearly better than all the
others — and we should not expect that such a “best” system will ever be developed.
In theory, we can imagine putting all of the above concepts together, producing
a single logical system where signatures, algebras, sentences and the satisfaction
relation would cover as special cases all we have considered up to now. But the
result would be so huge and complex as to make it unmanageable. Moreover, what
would we do if one day somebody points out that yet another view of software is
important and should be reflected in specifications, and hence included in the logical
system we use? Scrap everything and start again?

Different specification tasks may call for different systems to express most con-
veniently the properties required. Moreover, different logical systems may be appro-
priate for describing different aspects of the same software system, and so a number
of logical systems may be useful in a single specification task. It is thus important
that the designer of a software system be able to choose which logical system(s) to
use.

An unfortunate effect of this necessary wealth of choice is that research on speci-
fication sometimes appears to be a confused mess, where everybody adopts a differ-
ent combination of basic definitions. This makes it difficult to build on the work of
others, to compare the results obtained for different logical systems, and to transfer
results from one system to another. This is even more disturbing when one realises
that such results include not only mathematical definitions and theorems, but also
practically useful tools supporting software specification, development and verifica-
tion produced at great expense of effort, time and money.

In fact, much of the work done turns out to be independent of the particular choice
of the basic definitions, although this is often not obvious. The main objective of this
chapter, and one of the main objectives of this book, is to lay out the mathematical
foundations necessary to make this independence explicit. We achieve this using the
notion of aninstitution which formalises the informal concept of a logical system
devised to fit the purposes of specification theory; see Section 4.1 below for the def-
inition. Our thesis is that building as much as possible on the notion of an institution
brings important benefits for both the theory and the practice of software specifica-
tion and development. On one hand, this allows much work on theories, results, and
practical tools to be done just once for many different specific logical systems; on
the other hand it forces, via abstraction, a better understanding of and deeper insight
into the real problems.

Page: 156 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.1 Institutions 157

A first example of this general approach is given in Section 4.2, where we recast
the fundamental ideas of the standard approach to specification from Chapter 2 in
the framework of an arbitrary institution.

It should be stressed that the notion of an institution captures only certain as-
pects of the informal concept of a logical system. In particular, it takes a model-
theoretic view of logical systems, and no direct attempt is made to accommodate
proof-theoretic concepts. See Section 9.1 for a discussion of how proof fits into the
picture.

When discussing different approaches to specification in Chapter 2, apart from
various basic notions of signature, algebra, sentence and satisfaction, we also con-
sidered different kinds of models (algebras satisfying a set of axioms) as particularly
interesting:

• the initial models;
• the reachable models satisfying∀∅• true 6= false;
• the final models in the category of reachable models satisfying∀∅• true 6= false.

These options, although important for the overall style of specification, are of a
different nature than the choice of the basic definitions embodied in the particular
institution used. We show in Section 4.3 how such “interesting models” may be
singled out in an arbitrary institution, thus suggesting that the choice here is in a
sense orthogonal to the choice of the underlying institution.

Our general programme is to strive to work in an arbitrary institution as much
as possible. However, the concepts involved in the basic theory of institutions are
often too general, and hence too weak, to express all that is necessary. When this
happens, it would be premature to give up, and switch to working in a particular
institution. The “game” is then to identify a (hopefully) minimal set of additional
assumptions under which the job can be done, covering most or all of the logical
systems of interest. This gives rise to an enriched notion of institution with some
additional structure that is relevant to the particular purpose we have in mind. A few
examples of this are given in Sections 4.4 and 4.5.

Before proceeding we should warn the reader that although working in an arbi-
trary institution is very important, it is only one side of the story. The other side is
to define an institution appropriate for the needs of the particular task at hand, and
quite often this is far from trivial. Indeed, in many areas of Computer Science, the
fundamental problem yet to be satisfactorily solved is the development of a logical
system appropriate for the aspects of computing addressed. An example of an area
for which a satisfactory, commonly accepted solution still seems to be outstanding
(despite numerous proposals and active research) is the theory of concurrency.

4.1 Institutions

Following Goguen and Burstall [GB92], we introduce the notion of aninstitution,
capturing some essential aspects of the informal concept of a “logical system”. The

Page: 157 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

158 4 Working within an arbitrary logical system

basic ingredients of an institution are: a notion of a signature in the system, and
then for each signature, notions of an algebra with this signature, of a logical sen-
tence over this signature, and finally a satisfaction relation between algebras and
sentences.

In contrast to classical logic and model theory, we are not content with consider-
ing logical systems “pointwise”, for an “arbitrary but fixed” signature. To capture the
process of building a specification and designing a software system, some means of
moving from one signature to another is required, that is, some notion of signature
morphism. These typically enable signatures to be extended by new components,
renaming and/or identifying others, as well as hiding some components used “inter-
nally” but not intended to be visible “externally”. Any signature morphism should
give rise to a translation of sentences and a translation of algebras determined by the
change of names involved. Furthermore, these translations must be consistent with
one another, preserving the satisfaction relation. As usual, when we switch from
syntax (signatures, sentences) to semantics (algebras), the direction of translation is
reversed.

The language of category theory is used in the definition to express the above
ideas. This concisely and elegantly captures structure arising from signature mor-
phisms, as well as forcing an appropriate level of generality and abstraction.

Definition 4.1.1 (Institution). An institutionINS consists of:

• a categorySignINS of signatures;
• a functorSenINS:SignINS→Set, giving a setSen(Σ) of Σ -sentencesfor each sig-

natureΣ ∈ |SignINS| and a functionSenINS(σ):SenINS(Σ)→ SenINS(Σ ′) trans-
lating Σ -sentences toΣ ′-sentences for each signature morphismσ :Σ → Σ ′;

• a functor ModINS:Signop
INS → Cat, giving a categoryMod(Σ) of Σ -models

for each signatureΣ ∈ |SignINS| and a functorModINS(σ):ModINS(Σ ′) →
ModINS(Σ) translatingΣ ′-models toΣ -models (andΣ ′-morphisms toΣ -morphisms)
for each signature morphismσ :Σ → Σ ′; and

• for eachΣ ∈ |SignINS|, asatisfaction relation|=INS,Σ ⊆ |ModINS(Σ)|×SenINS(Σ)

such that for any signature morphismσ :Σ → Σ ′ the translationsModINS(σ) of
models andSenINS(σ) of sentences preserve the satisfaction relation, that is, for
anyϕ ∈ SenINS(Σ) andM′ ∈ |ModINS(Σ ′)|:

M′ |=INS,Σ ′ SenINS(σ)(ϕ) iff ModINS(σ)(M′) |=INS,Σ ϕ

[Satisfaction condition]

ut

We will freely use standard terminology, and for example say that aΣ -modelM
satisfiesa Σ -sentenceϕ, or thatϕ holdsin M, wheneverM |=INS,Σ ϕ.

The term “model” (which we use following [GB92]) thereby becomes over-
loaded: it is used to refer both to objects in the categoryModINS(Σ) and to the
algebras which satisfy a given set of axioms (we will soon extend the latter termi-
nology to an arbitrary institution in Section 4.2, and then to an arbitrary structured

Page: 158 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.1 Institutions 159

specification in Chapter 5). Hopefully, this will not lead to confusion as the context
will always determine which of the two meanings is meant. If in doubt, we will use
“a Σ -model” (whereΣ is a signature) for the former, and “a model ofΦ” (whereΦ

is a set of sentences) for the latter meaning of the word.

Notation.

• When there is no danger of confusion, we will omit the subscriptINS when
referring to the components of an institutionINS. Similarly, the subscriptΣ on
the satisfaction relations will often be omitted.

• For any signature morphismσ :Σ→ Σ ′, the functionSen(σ):Sen(Σ)→Sen(Σ ′)
will be denoted simply byσ :Sen(Σ)→Sen(Σ ′) and the functorMod(σ):Mod(Σ ′)→
Mod(Σ) by σ :Mod(Σ ′)→ Mod(Σ). Thus for anyΣ -sentenceϕ ∈ Sen(Σ),
σ(ϕ) ∈ Sen(Σ ′) is its σ -translation to a Σ ′-sentence, and for anyΣ ′-model
M′ ∈ |Mod(Σ ′)|, M ′ σ ∈ |Mod(Σ)| is its σ -reduct to a Σ -model. We will also
refer toM′ as aσ -expansionof M′ σ . Using this notation, the satisfaction condi-
tion of Definition 4.1.1 may be expressed as follows:M′ |= σ(ϕ)⇐⇒M′ σ |= ϕ.

• For any signatureΣ , the satisfaction relation extends naturally to sets ofΣ -
sentences and classes1 of Σ -models. Namely, for any setΦ ⊆ Sen(Σ) of Σ -
sentences and modelM ∈ |Mod(Σ)|, M |= Φ meansM |= ϕ for all ϕ ∈Φ . Then,
for anyΣ -sentenceϕ ∈ Sen(Σ) and classM ⊆ |Mod(Σ)| of Σ -models,M |= ϕ

meansM |= ϕ for all M ∈M . Finally, we will also writeM |= Φ with the obvi-
ous meaning.

• For any signatureΣ , we will sometimes writeMod(Σ) for the class|Mod(Σ)| of
all Σ -models. ut

The definition of an institution as given above is very general and covers many
logical systems of interest, as illustrated by the examples below. Nevertheless, it
does impose some restrictions which should be made explicit before we proceed
further.

First, the assumption that the translations of sentences and models induced
by signature morphisms are functors may seem overly restrictive. In some situ-
ations it would be natural to relax the requirement of functoriality and assume
that Sen (and perhapsMod as well) is a functor only “up to some appropri-
ate equivalence”. For example, given two signature morphismsσ :Σ → Σ ′ and
σ ′:Σ ′→ Σ ′′, for any sentenceϕ ∈ Sen(Σ) it follows from the functoriality ofSen
thatSen(σ ;σ ′)(ϕ) = Sen(σ ′)(Sen(σ)(ϕ)) (or using the notational convention in-
troduced above,(σ ;σ ′)(ϕ) = σ ′(σ(ϕ))). This seems overly restrictive when, for
example, local identifiers or bound variables are used in sentences. All we really
care about here is that the two translations ofϕ to a Σ ′′-sentence aresemantically
equivalent: that (σ ;σ ′)(ϕ) andσ ′(σ(ϕ)) hold in the sameΣ ′′-models. A solution

1 We will be somewhat more careful about the set-theoretical foundations than in our presentation
of the basics of category theory in Chapter 3: we will refer to collections of sentences as “sets” and
to collections of models as “classes”, as in Chapter 2. This is consistent with the formal definition
of an institution above, and satisfactory for the logical systems formalised as institutions given as
examples (but see Example 4.1.46, footnote 16).

Page: 159 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

160 4 Working within an arbitrary logical system

is to consider sentences up to this semantic equivalence, and work in an institution
where sentences simplyare the corresponding equivalence classes. This solution
would resemble the usual practice inλ -calculi, where terms are considered “up to
α-conversion” (renaming of bound variables), meaning that terms are really classes
of mutuallyα-convertible syntactic terms.

The only explicit requirement in the definition of an institution is that the satis-
faction condition holds. Speaking informally, this deals with the situation where a
“small” signatureΣ and a “big” signatureΣ ′ are related by a signature morphism
σ :Σ → Σ ′, and we have a modelM′ ∈ |Mod(Σ ′)| over the “big” signature, and a
sentenceϕ ∈ Sen(Σ) over the “small” signature. There are then two ways to check
whetherM′ “satisfies”ϕ: we can either reduce the modelM′ to the “small” signature
and check whether the reduct satisfies the sentenceϕ, or translate the sentenceϕ to
the “big” signature and check whether the translated sentence holds in the model
M′.

“small”

“big”

Σ

Σ ′ M′

M′ σ

σ(ϕ)

ϕ

6

σ

|=Σ ′

|=Σ

?

6

The satisfaction condition states that these two alternatives are equivalent. This em-
bodies two fundamental assumptions. One is that the meaning of a sentence depends
only on the components used in the sentence, and does not depend on the context
in which the sentence is considered. The other is that the meaning of a sentence is
preserved under translation; as [GB92] say:

Truth is invariant under change of notation.

The latter requirement does not raise much doubt — we are not aware of any natu-
ral system in which it would not hold. The former, however, is sometimes violated.
There are natural logical systems where the meaning of a sentence depends on the
context in which it is used, or in other words on the signature over which the sen-
tence is considered. For instance, in logical systems involving quantifiers, the range
of quantification may implicitly depend on the signature, with quantified variables
ranging only over reachable values, so that “∃x• . . .” is interpreted as “there exists
an elementx which is the value of a ground term, such that . . . ” and similarly for
universal quantification. For such a logic the satisfaction condition does not hold
unless very strong restrictions are placed on signature morphisms.

Exercise 4.1.2.Give a concrete counterexample to the satisfaction condition for a
logical system similar to equational logic, but with the universally quantified vari-
ables in equations ranging only over reachable values. Show how the logical system
you give may be modified to make the satisfaction condition hold. HINT : The sat-
isfaction condition failed because the interpretation of universal quantification over

Page: 160 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.1 Institutions 161

reachable values implicitly depends on the signature; try to make this dependence
explicit! ut

4.1.1 Examples of institutions

Example 4.1.3 (Ground equational logic GEQ).The institutionGEQ of ground
equational logic is defined as follows:

• The categorySignGEQ is justAlgSig, the usual category of algebraic signatures.
• The functorSenGEQ:AlgSig→ Setgives:

– the set of groundΣ -equations for eachΣ ∈ |AlgSig|; and
– theσ -translation function taking groundΣ -equations to groundΣ ′-equations

for each signature morphismσ :Σ → Σ ′.

• The functorModGEQ:AlgSigop→ Cat is the functorAlg:AlgSigop→ Cat as
defined in Example 3.4.29, that is,ModGEQ gives:

– the categoryAlg(Σ) of Σ -algebras andΣ -homomorphisms for eachΣ ∈
|AlgSig|; and

– the reduct functor σ :Alg(Σ ′)→Alg(Σ) mappingΣ ′-algebras andΣ ′-homomorphisms
to Σ -algebras andΣ -homomorphisms for each signature morphismσ :Σ →
Σ ′.

• For eachΣ ∈ |AlgSig|, the satisfaction relation|=GEQ,Σ ⊆ |Alg(Σ)|×SenGEQ(Σ)
is the usual relation of satisfaction of a groundΣ -equation by aΣ -algebra.

The Satisfaction Lemma (Lemma 2.1.8) ensures that the required satisfaction con-
dition holds and so that the above definition indeed yields an institution. ut

Example 4.1.4 (Equational logic EQ).The institutionEQ of (ordinary) equational
logic is defined as follows:

• The categorySignEQ is justAlgSig.
• The functorSenEQ:AlgSig→ Setgives:

– the set ofΣ -equations for eachΣ ∈ |AlgSig|; and
– theσ -translation function takingΣ -equations toΣ ′-equations for each signa-

ture morphismσ :Σ → Σ ′.2

• The functorModEQ is Alg:AlgSigop→Cat, just likeModGEQ for ground equa-
tional logic.

2 The exact treatment of variables in equations requires special care to ensure that the translation
of equations along possibly non-injective signature morphisms is indeed functorial. The use of dis-
joint union in the translation of many-sorted sets of variables in Definition 1.5.10 causes problems
here. The simplest way to make this work is to assume that, in each equation, variables of different
sorts are distinct. See [GB92] for details.

Page: 161 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

162 4 Working within an arbitrary logical system

• For eachΣ ∈ |AlgSig|, the satisfaction relation|=EQ,Σ ⊆ |Alg(Σ)|×SenEQ(Σ)
is the usual relation of satisfaction of aΣ -equation by aΣ -algebra.

The Satisfaction Lemma (Lemma 2.1.8) again ensures that the required satisfaction
condition holds and so that the above definition indeed yields an institution.ut

There is an obvious sense in whichGEQ can be regarded as a “subinstitution”
of EQ. We will encounter further such cases below. We refrain from formulating a
notion of subinstitution because the concept turns out to be more subtle than it might
appear at first. We postpone a proper treatment of relationships between institutions
to Chapter 10 (in particular, see Exercise 10.4.8).

Exercise 4.1.5 (Reachable ground equational logic RGEQ).Define an institution
RGEQ of ground equational logic on reachable algebras, by modifying the definion
of GEQ so that only reachable algebras are considered as models. Do not forget to
adjust the definition of reduct functors!

Try to extend this to an institutionREQ of equational logic on reachable algebras
— and notice that the satisfaction condition cannot be ensured without modifying
the notion of an equation to include “data constructors” to determine the reachable
values for which the equation is to be considered, as already hinted at in Exer-
cise 4.1.2. ut

Example 4.1.6 (Partial equational logic PEQ).The institutionPEQ of partial
equational logic is defined as follows (cf. Section 2.7.4):

• SignPEQ is AlgSig again.
• SenPEQ:AlgSig→ Setgives:

– the set ofΣ -equations andΣ -definedness formulae for eachΣ ∈ |AlgSig|; and
– the σ -translation function takingΣ -equations andΣ -definedness formulae

to Σ ′-equations andΣ ′-definedness formulae for each signature morphism
σ :Σ → Σ ′.3

• ModPEQ:AlgSigop→ Cat gives:

– the categoryPAlg(Σ) of partialΣ -algebras and weakΣ -homomorphisms for
eachΣ ∈ |AlgSig| (cf. Example 3.3.13); and

– the reduct functor σ :PAlg(Σ ′)→ PAlg(Σ) defined similarly as in the total
case for each signature morphismσ :Σ → Σ ′.

• For eachΣ ∈ |AlgSig|, the satisfaction relation|=PEQ,Σ ⊆ |PAlg(Σ)|×SenPEQ(Σ)
is the satisfaction ofΣ -equations (with strong equality) andΣ -definedness for-
mulae by partialΣ -algebras.

Exercise.Proceeding similarly as in the proof of Satisfaction Lemma (Lemma 2.1.8),
show that the satisfaction condition holds forPEQ. ut

3 As in Example 4.1.4, care is needed with the treatment of variables and their translation under
signature morphisms, see footnote 2.

Page: 162 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.1 Institutions 163

Example 4.1.7 (Ground partial equational logic PGEQ).The institutionPGEQ
of ground partial equational logic is defined just like the institutionPEQ of partial
equational logic above, except that only ground equations and ground definedness
formulae are considered. ut

Exercise 4.1.8.Recalling the notion of existential equality for partial algebras from
Section 2.7.4, define institutionsPEQe andPGEQe of partial existence equational
logic and ground partial existence equational logic, respectively, modifying the def-
initions in Examples 4.1.6 and 4.1.7 by using existential equations of the form
∀X.t

e= t ′ and their ground versions only. ut

Example 4.1.9 (Propositional logic PROP).The institutionPROP of proposi-
tional logic is defined as follows:

• SignPROP is Set, the usual category of sets. In this context, for each “signature”
P∈ |Set|, we call elements ofP propositional variables.

• SenPROP:Set→ Setgives

– For eachP ∈ |Set|, SenPROP(P) is the least set that containsP, sentences
true andfalse, and is closed under the usual propositional connectives, that is,
if ϕ,ϕ ′ ∈ SenPROP(Σ) then alsoϕ ∨ϕ ′ ∈ SenPROP(Σ), ¬ϕ ∈ SenPROP(Σ),
ϕ ∧ϕ ′ ∈ SenPROP(Σ), andϕ ⇒ ϕ ′ ∈ SenPROP(Σ). 4

– For each functionσ :P→P′, SenPROP(σ) extendsσ to the translation of arbi-
trary propositional sentences with propositional variables inP to propositional
sentences with propositional variables inP′, preserving the propositional con-
nectives in the obvious way.

• ModPROP:Setop→ Cat gives:

– For each set of propositional variablesP ∈ |Set|, P-models are all functions
from P to {ff , tt}. These functions can be identified with subsets ofP, where
M:P→ {ff , tt} yields {p ∈ P | M(p) = tt}). Model morphisms are just in-
clusions of these sets, i.e., given twoP-modelsM1,M2:P→ {ff , tt}, we have
a (unique) morphism fromM1 to M2 if for all p ∈ P, M2(p) = tt whenever
M1(p) = tt.

– For each signature morphismσ :P→P′, the reduct functorModPROP(σ):ModPROP(P′)→
ModPROP(P) maps any modelM′:P′→{ff , tt} to σ ;M′:P→{ff , tt}.

• For eachP∈ |Set|, the satisfaction relation|=PROP,P⊆ |ModPROP(P)|×SenPROP(P)
is the usual relation of satisfaction of propositional sentences, that is, for anyP-
modelM:P→{ff , tt}, p∈ P andϕ,ϕ ′ ∈ SenPROP(P):

– M |=PROP,P p if and only if M(p) = tt,
– M |=PROP,P ϕ ∨ϕ ′ if and only if M |=PROP,P ϕ or M |=PROP,P ϕ ′,
– M |=PROP,P ¬ϕ if and only if M 6|=PROP,P ϕ,
– M |=PROP,P ϕ ∧ϕ ′ if and only if M |=PROP,P ϕ andM |=PROP,P ϕ ′.

4 We tacitly assume here thattrue, false, ∨, ∧,⇒, ¬ are new symbols (not inP), and rely on the
usual precedence rules and parentheses to make sure that no ambiguities in their “parsing” arise.

Page: 163 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

164 4 Working within an arbitrary logical system

– M |=PROP,P ϕ ⇒ ϕ ′ if and only if M |=PROP,P ϕ ′ or M 6|=PROP,P ϕ

– M |=PROP,P true, and
– M 6|=PROP,P false. ut

Exercise 4.1.10.Recall the specification of Boolean algebras in Example 2.2.4.
Note that one way to view the definitions in Example 4.1.9 is to define the set

of P-sentences as Boolean terms with variables fromP. Then, one can consider
the two-element Boolean algebraB with the carrier{ff , tt} (with trueB = tt and
falseB = ff). Furthermore, any propositional modelM:P→ {ff , tt} induces evalua-
tion of termsM]:SenPROP(P)→ |B|, with M](ϕ) = tt if and only if M |=PROP,P ϕ

as defined above.
Define another institution of propositional logic,PROPBA , where signatures and

sentences are as inPROP, but models use arbitrary Boolean algebras rather than just
B. That is, for any setP∈ |Set| of propositional variables, aP-model inPROPBA

consists of a Boolean algebraB together with valuationM:P→|B|, where we define
〈B,M〉 |=PROPBA ,P ϕ if and only if ϕB(M) = trueB (whereϕB(M) is the value of term
ϕ in B under valuationM).

Prove now that the semantic consequence relation (Definition 2.3.6, cf. Defini-
tion 4.2.5 below) inPROPandPROPBA coincide.

HINT : Clearly, if Ψ |=PROPBA ,P ϕ then alsoΨ |=PROP,P ϕ for any setP of
propositional variables,Ψ ⊆ SenPROP(P) andϕ ∈ SenPROP(P). Suppose now that
Ψ 6|=PROPBA ,P ϕ. Use the following lemma5:

Lemma. Given any Boolean algebra B and element b∈ |B| such that b6= trueB,
there exists a homomorphism h:B→ B from B to the two-element Boolean algebra
B such that h(b) = falseB.

Now, given any Boolean algebraB and valuationM:P→ |B| such that for all
ψ ∈Ψ , ψB(M) = trueB andϕB(M) 6= trueB, conclude using the above lemma that
(M;h)](ψ) = tt for all ψ ∈Ψ , while (M;h)](ϕ) = ff . ut

Exercise 4.1.11.Define the institution of intuitionistic propositional logic,PROPI ,
following the pattern ofPROPBA in Exercise 4.1.10, but using arbitrary Heyting
algebras (see Example 2.7.6) rather than just Boolean algebras.

Show that ifΨ |=PROPI ,P ϕ then alsoΨ |=PROP,P ϕ for any setP of propositional
variables,Ψ ⊆ SenPROP(P) and ϕ ∈ SenPROP(P), and give a counterexample to
show that the opposite implication fails in general. ut

Example 4.1.12 (First-order predicate logic with equality FOPEQ).The institu-
tion FOPEQ of first-order predicate logic with equality is defined as follows:

• SignFOPEQ, from now on denoted byFOSig, is the category offirst-order signa-
tureswhere we define:

5 The proof of this lemma is beyond the scope of this book, but see e.g. [RS63], I,8.5 and
II,5.2,(a)⇒(e).

Page: 164 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.1 Institutions 165

– A first-order signatureΘ is a triple〈S,Ω ,Π〉, whereSis a set (ofsort names),
Ω = 〈Ωw,s〉w∈S∗,s∈S is a family of sets (ofoperation nameswith their arities
and result sorts indicated — just as in algebraic signatures) andΠ = 〈Πw〉w∈S∗

is a family of sets (ofpredicateor relation nameswith their arities indicated).
– A first-order signature morphismθ :〈S,Ω ,Π〉 → 〈S′,Ω ′,Π ′〉 consists again

of three components: a functionθsorts:S→ S′, an S∗×S-indexed family of
functionsθops = 〈(θops)w,s:Ωw,s→Ω ′

θ∗sorts(w),θsorts(s)
〉w∈S∗,s∈S (these are as in

algebraic signature morphisms) andθpreds= 〈(θpreds)w:Πw→Π ′
θ∗sorts(w)〉w∈S∗ .

(As with algebraic signature morphisms, all the components of a first-order
signature morphismθ will be denoted byθ when there is no danger of ambi-
guity.)

• SenFOPEQ:FOSig→ Setgives:

– For each first-order signatureΘ = 〈S,Ω ,Π〉, SenFOPEQ(Θ) is the set of all
closed (i.e. without unbound occurrences of variables)first-order formulae
built out of atomic formulae using the standard propositional connectives (∨,
∧, ⇒, ⇔, ¬) and quantifiers (∀, ∃). The atomic formulaeare equalities of
the formt = t ′, wheret andt ′ are〈S,Ω〉-terms (possibly with variables) of
the same sort, atomic predicate formulae of the formp(t1, . . . , tn), wherep∈
Πs1...sn andt1, . . . , tn are terms (possibly with variables) of sortss1, . . . , sn,
respectively, and the logical constantstrue andfalse.

– For each first-order signature morphismθ :Θ→Θ ′, SenFOPEQ(θ) is the trans-
lation of first-orderΘ -sentences to first-orderΘ ′-sentences determined in the
obvious way by the renamingθ of sort, operation and predicate names inΘ

to the corresponding names inΘ ′.6

• ModFOPEQ:FOSigop→ Cat, from now on denoted byFOStr, gives:

– For each first-order signatureΘ = 〈S,Ω ,Π〉, the categoryFOStr(Θ) of first-
orderΘ -structuresis defined as follows:
· A first-orderΘ -structure A∈ |FOStr(Θ)| consists of a carrier set|A|s for

each sort names∈ S, a function fA: |A|s1× . . .×|A|sn → |A|s for each op-
eration namef ∈Ωs1...sn,s (these are the same as in〈S,Ω〉-algebras) and a
relationpA⊆ |A|s1× . . .×|A|sn for each predicate namep∈Πs1...sn. In the
following we write pA(a1, . . . ,an) for 〈a1, . . . ,an〉 ∈ pA.

· For any first-orderΘ -structuresA andB, afirst-orderΘ -morphismbetween
them,h:A→B, is a family of functionsh= 〈hs: |A|s→ |B|s〉s∈S which pre-
serves the operations (as ordinary〈S,Ω〉-homomorphisms do) and predi-
cates (i.e., forp∈ Πs1...sn anda1 ∈ |A|s1, . . . , an ∈ |A|sn, if pA(a1, . . . ,an)
thenpB(hs1(a1), . . . ,hsn(an)) as well). AΘ -morphism isstrongif it reflects
predicates as well, so that forp ∈ Πs1...sn anda1 ∈ |A|s1, . . . , an ∈ |A|sn,
pA(a1, . . . ,an) if and only if pB(hs1(a1), . . . ,hsn(an)).

6 As in Example 4.1.4, some care is needed with the exact treatment of quantified variables and
their translation under signature morphisms (cf. footnote 2) — again, the simplest solution is to
assume that, in each formula, variables of different sorts are distinct. See [GB92] for a careful
presentation.

Page: 165 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

166 4 Working within an arbitrary logical system

– For each first-order signature morphismθ :Θ → Θ ′, we have theθ -reduct
functorFOStr(θ):FOStr(Θ ′)→ FOStr(Θ) defined similarly as reduct func-
tors corresponding to algebraic signature morphisms.

• For eachΘ ∈ |FOSig|, the satisfaction relation|=FOPEQ,Θ ⊆ |FOStr(Θ)| ×
SenFOPEQ(Θ) s the usual relation of satisfaction of first-order sentences in first-
order structures, determined by the usual interpretation of∨, ∧, ⇒ and¬ as
disjunction, conjunction, implication and negation, respectively, of∀ and∃ as
universal and existential quantifiers, respectively, of equalitiest = t ′ as identity
of the values oft andt ′, of atomic predicate formulaep(t1, . . . , tn) as the value of
the predicate namedp in the structure on the values of the termst1, . . . , tn, and
of true andfalse.

Exercise.Work out all the details omitted from the above definition. Then, general-
ising the proof of the Satisfaction Lemma, show that the satisfaction condition holds
for FOPEQ. ut

Exercise 4.1.13 (First-order predicate logic FOP, first-order logic with equality
FOEQ). First-order predicate logic with equality contains some standard “sublog-
ics”. Define the institutionFOP of first-order predicate logic (without equality), by
referring to the same signatures and models as inFOPEQ, but limiting the sentences
to those that do not contain equality.

Define also the institutionFOEQ with signatures and models as in the institution
EQ of equational logic, but with first-order sentences (without predicates). ut

Exercise 4.1.14 (Infinitary logics).Define an institution of so-calledLω1ω logic,
which extends first-order predicate logic with equality by allowing conjunctions and
disjunctions ofcountablefamilies of formulae (but still only finitary quantification).
Extend this further by allowing quantification over countable sets of variables, ob-
taining an institution ofLω1ω1 logic. You may also want to define institutions ofLαβ

logics, for any infinite cardinal numbersα andβ such thatβ ≤α, with conjunctions
and disjunctions of sets of formulae of cardinality smaller thanα and quantification
over sets of variables of cardinality smaller thanβ . ut

Exercise 4.1.15 (Higher-order logics).Define an institution ofsecond-order logic,
which extends first-order logic by introducing variables ranging over predicates
(which in a model denote subsets of a product of the carrier sets) and quantification
over such (first-order) predicates. Then generalise this further to an institution of
higher-order logic, which introduces variables that range over (second-order) pred-
icates with arities that may include arities of first-order predicates, and predicates
with arities that may include arities of second-order predicates, etc., and allows for
quantification over such higher-order predicates. Without much additional effort,
you may want to extend this further, by allowing variables that range over func-
tions of an arbitrary higher-order type, and quantification over such functions. Note
though that this will be different from first-order logic for higher-order algebras as
sketched in Example 2.7.56, where quantification over higher-order function types
does not necessarily coincide with quantification overall functions of this type. ut

Page: 166 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.1 Institutions 167

Exercise 4.1.16 (First-order equational logic with boolean values FOEQBool).
Define an institutionFOEQBool which differs fromFOEQ by considering only
signatures that contain a subsignatureΣbool of truth values(Σbool has a special, dis-
tinguished sortbooland two constantstrue, false:bool) and assuming that signature
morphisms preserve and reflect symbols inΣbool and that algebras interpret them in
the standard way (the carrier of sortbool has exactly two distinct elements that are
values oftrueandfalse, respectively).

There is now an obvious equivalence between the categories of signatures of
FOPEQ andFOEQBool obtained by mapping each first-order signature to the al-
gebraic signature with the sortbool and constantstrue, false:bool added, and with
new operation namefp:s1× . . .×sn→ bool for each predicatep:s1× . . .×sn. First-
order structures give raise to algebras with the standard interpretation ofΣbool and
with functions fp that yield the value oftrue exactly on those arguments for which
the predicatep holds. Clearly, this yields a one-to-one correspondence between first-
order structures and algebras over the corresponding signatures. However, this does
not extend to model morphisms in general. (Exercise:Find a counterexample. No-
tice though that everystrongmorphism between first-order structures extends to a
homomorphism between their corresponding algebras.) We then consider transla-
tion of atomic sentencesp(t1, . . . , tn) to equalitiesp(t1, . . . , tn) = true, and extend it
further to arbitrary first-order sentences with predicates and equality in the obvious
way.

Prove that such translations of sentences and models preserve and reflect satis-
faction. ut

It is not much more difficult to define, for example, the institutionPFOPEQ of
partial first-order predicate logic with equality, or any other institution formalising
one of the many standard variants of the classical notions.

Exercise 4.1.17 (Partial first-order predicate logic with equality PFOPEQ).De-
fine the institutionPFOPEQ of partial first-order predicate logic with equality ac-
cording to the following sketch:

• SignPFOPEQ = FOSig.
• For eachΘ ∈ |FOSig|, partial first-orderΘ -sentences are defined in the same way

as usual first-orderΘ -sentences on atomic formulae which here includeatomic
definedness formulae def(t) for anyΘ -termt, in addition to equalities and atomic
predicate formulae. The translation of sentences along signature morphisms is
defined in the obvious way.

• For eachΘ ∈ |FOSig|, the models inModPFOPEQ(Θ) are like first-orderΘ -
structures except that the operations may be partial. Morphisms inModPFOPEQ(Θ)
are like first-orderΘ -morphisms but are required to preserve definedness of op-
erations, as weak homomorphisms of partial algebras do. The reduct functors are
defined similarly as for first-order structures.

• For each signatureΘ ∈ |FOSig|, the satisfaction relation|=PFOPEQ,Θ is defined
like the usual first-order satisfaction relation, building on the interpretation of
atomic equalities and definedness formulae which follows the interpretation of

Page: 167 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

168 4 Working within an arbitrary logical system

(strong) equations and definedness formulae in partial algebras as defined in
the institutionPEQ of partial equational logic and on the usual interpretation
of atomic predicate formulaep(t1, . . . , tn) which yieldsfalsewhen any oft1, . . . ,
tn is undefined. ut

Exercise 4.1.18 (Partial first-order logic with equality PFOEQ). Following Ex-
ercise 4.1.13, define the institutionPFOEQ of partial first-order logic with equality
with signatures and models inherited from the institutionPEQ of partial equational
logic, but with first-order sentences (without predicates). Similarly, define the insti-
tutionPFOPof partial first-order predicate logic (without equality). ut

Exercise 4.1.19 (Partial first-order equational logic with truth PFOEQTruth).
As in Exercise 4.1.16, define now an institutionPFOEQBool of partial first-order
logic with equality and built-in boolean values.

However, using partial functions predicates may be modelled differently (and
more faithfully when model morphisms are considered). Define an institutionPFOEQTruth
which differs fromPFOEQ by assuming that the signatures contain a subsignature
Σtruth (which has a special, distinguished sorttruth with a single constanttrue: truth),
that signature morphisms preserve and reflect symbols inΣtruth, and that algebras in-
terpret them in the standard way: the carrier of sorttruth has exactly one element
that is the value oftrue.

The equivalence of categories of signatures and the translation of sentences be-
tweenPFOPEQ andPFOEQTruth can now be given in essentially the same way
as in Exercise 4.1.16. Moreover, first-order partial structures are in one-to-one cor-
respondence with algebras over the corresponding algebraic signature, and this cor-
respondence may be described exactly as in Exercise 4.1.16 as well. The difference
is that now for arguments for which predicates do not hold, their corresponding op-
erations are undefined instead of yielding a non-truevalue. This allows us to extend
this correspondence to model morphisms as well.

Prove that such translations of sentences and models preserve and reflect satis-
faction. ut

Exercise 4.1.20.Recall the notion of a strong homomorphism between partial alge-
bras (Definition 2.7.31) and between first-order structures (given in Example 4.1.12).
For each of the institutions above with models that involve partial operations or
predicates (FOPEQ, FOP, PFOPEQ, PEQ, etc.) define a variant in which all
morphisms are strong. We will refer to these institutions asFOPEQstr , FOPstr ,
PFOPEQstr , PEQstr , etc. In particular, model morphisms inPFOPEQstr preserve
and reflect predicates as well as definedness of operations. ut

Exercise 4.1.21.Using the material in Sections 2.7.1, 2.7.3 and 2.7.5, respectively,
define institutions:EQ⇒ of conditional equations with signatures and models as in
EQ; Horn of Horn formulae built over signatures and models ofFOPEQ, where
sentences have the form∀X • ϕ1∧ . . .∧ϕn⇒ ϕ for atomic formulaeϕ1, . . . ,ϕn, ϕ;
ErrEQ of error equational logic; andOrdEQ of order-sorted equational logic;ut

Page: 168 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.1 Institutions 169

Example 4.1.22 (The institution CEQ of equational logic for continuous alge-
bras).We need some auxiliary definitions. LetΣ = 〈S,Ω〉 be an algebraic signature.

Recall (cf. Example 3.3.14) that a continuousΣ -algebraA∈ |CAlg(Σ)| consists
of carriers, which are complete partial orders〈|A|s,≤s〉 for s∈ S, and operations,
which are continuous functionsfA: |A|s1× . . .×|A|sn → |A|s for f :s1× . . .×sn→ s
in Σ .

For anyS-sorted setX (of variables), the (S-sorted) set|T∞
Σ

(X)| of infinitary Σ -
termsis the least set such that7:

• X ⊆ |T∞
Σ

(X)|;
• for each f :s1× . . .× sn → s in Σ , if t1 ∈ |T∞

Σ
(X)|s1, . . . , tn ∈ |T∞

Σ
(X)|sn then

f (t1, . . . , tn) ∈ |T∞
Σ

(X)|s; and
• for eachs∈ S, if for k≥ 0, tk ∈ T∞

Σ
(X)s, then

⊔
〈tk〉k≥0 ∈ |T∞

Σ
(X)|s.

Intuitively, |T∞
Σ

(X)| contains all the usual finitaryΣ -terms and in addition is closed
under formal “least upper bounds” of countable sequences of terms. Notice, how-
ever, that we do not provide|T∞

Σ
(X)|with the structure of a continuousΣ -algebra; in

particular, a term
⊔
〈tk〉k≥0 is just a formal expression here, not a least upper bound.

Then, for any continuousΣ -algebraA and valuation of variablesv:X→ |A|, we
define apartial functionv#: |T∞

Σ
(X)| → |A| which for any termt ∈ |T∞

Σ
(X)| yields

thevalue v#(t) of t (if defined):

• for x∈ X, v#(x) = v(x);
• for f :s1× . . .×sn→ sandt1 ∈ |T∞

Σ
(X)|s1, . . . ,tn ∈ |T∞

Σ
(X)|sn, v#(f (t1, . . . , tn)) is

defined if and only ifv#(t1), . . . ,v#(tn) are all defined, and thenv#(f (t1, . . . , tn)) =
fA(v#(t1), . . . ,v#(tn)); and

• for tk ∈ T∞
Σ

(X)s, k≥ 0, v#(
⊔
〈tk〉k≥0) is defined if and only if allv#(tk), k≥ 0,

are defined and form a chainv#(t0) ≤s v#(t1) ≤s . . ., and thenv#(
⊔
〈tk〉k≥0) =⊔

k≥0v#(tk) (where
⊔

on the right hand side stands for the least upper bound in
the cpo〈|A|s,≤s〉).

As usual, we writetA(v) for v#(t).
Finally, aninfinitary Σ -equationis a triple〈X, t, t ′〉, written∀X • t = t ′, whereX

is anS-sorted set of variables8 andt, t ′ ∈ |T∞
Σ

(X)|s for somes∈ S. A continuousΣ -
algebraA satisfiesan infinitaryΣ -equation∀X • t = t ′, writtenA |=CEQ,Σ ∀X • t = t ′,
if for all valuationsv:X→ |A|, tA(v) andt ′A(v) are both defined and equal.

We are now ready to define the institutionCEQ of equational logic for continu-
ous algebras:

• SignCEQ is AlgSig again.
• SenCEQ:AlgSig→ Setgives:

– the set of infinitaryΣ -equations for eachΣ ∈ |AlgSig|; and

7 For simplicity, we omit the decoration of terms by their target sorts. Formally, to avoid any
potential ambiguities, the definition should follow the pattern of Definition 1.4.1.
8 For s∈ S, the setsXs⊆X come from a fixed vocabulary of variables as in Definition 2.1.1 and
are mutually disjoint as in footnote 2.

Page: 169 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

170 4 Working within an arbitrary logical system

– the σ -translation function, mapping infinitaryΣ -equations to infinitaryΣ ′-
equations in the obvious way, for each signature morphismσ :Σ → Σ ′.

• ModCEQ:AlgSigop→ Cat gives:

– the categoryCAlg(Σ) of continuousΣ -algebras and continuousΣ -homomorphisms
for eachΣ ∈ |AlgSig|; and

– the reduct functor σ :CAlg(Σ ′)→ CAlg(Σ) defined similarly as in the case
of usual (discrete) algebras for each signature morphismσ :Σ → Σ ′.

• For eachΣ ∈ |AlgSig|, the satisfaction relation|=CEQ,Σ ⊆ |CAlg(Σ)|×SenCEQ(Σ)
is the relation of satisfaction of infinitaryΣ -equations by continuousΣ -algebras.

Exercise.Proceeding similarly as in the proof of the Satisfaction Lemma, show that
the satisfaction condition holds forCEQ.

Exercise. Show that even though we have introduced only infinitary equations as
sentences inCEQ, infinitary inequalities of the form∀X • t ≤ t ′ are expressible here
as well. (HINT : a≤ b iff atb = b.) ut

Exercise 4.1.23.For each of the institutionsINS defined above, define formally
its versionINSder based on the category of signatures with derived signature mor-
phisms as presented in Section 1.5.2 (cf. Exercises 3.1.12 and 3.4.30). ut

Example 4.1.24 (Three-valued first-order predicate logic with equality 3FOPEQ).
We sketch here the institution3FOPEQ of three-valued first-order predicate logic
with equality as an example of how the notion of an institution can cope with logical
systems based on multiple truth values, where the interpretation of sentences may
yield a number of values rather than just being true or false.

• Sign3FOPEQ is the categoryFOSigof first-order signatures.
• Sen3FOPEQ:Sign3FOPEQ→ Setgives:

– For eachΘ ∈ |FOSig|, Sen3FOPEQ(Θ) is the set of sentences of the form
ϕ is tt, ϕ is ff , or ϕ isundef, whereϕ is aΘ -sentence of partial first-order
predicate logic with equalityPFOPEQ (see Exercise 4.1.17).

– For each first-order signature morphismθ :Θ → Θ ′, we define the transla-
tion functionSen3FOPEQ(θ):Sen3FOPEQ(Θ)→ Sen3FOPEQ(Θ ′) in the obvi-
ous way using the translation of first-orderΘ -sentences toΘ ′-sentences in-
duced by the morphismθ .

• Mod3FOPEQ:Signop
3FOPEQ→ Cat is defined as usual for first-order logic, except

that operations in structures are partial functions and predicates are interpreted
as partial relations, which for any tuple of arguments may yield one of three
logical values:tt (for truth), ff (for falsity) and a “third truth value”undef (for
undefinedness).

• Atomic formulae, propositional connectives and quantifiers may be interpreted
over the three-element set of truth values{tt, ff ,undef} in a number of ways, see
for example [KTB91] and references there for a discussion. Here, we adopt the
following interpretation:

Page: 170 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.1 Institutions 171

– Atomic definedness formulae have the expected meaning:def(t) is tt if the
value oft is defined, and isff otherwise.

– Equalities are interpreted asstrict equalities: t = t ′ is tt if the values oft and
t ′ are defined and equal, isff if they are defined and different, and isundef
otherwise.

– The propositional connectives and quantifiers are interpreted as in Kleene’s
calculus (cf. [KTB91]). For example,ϕ ∨ϕ ′ is true if either ϕ or ϕ ′ is tt, is ff
if both ϕ andϕ ′ areff and isundefotherwise.

For anyϕ ∈ SenPFOPEQ(Θ) andM ∈ |Mod3FOPEQ(Θ)|, this gives theinterpre-
tation ofϕ in M, [[ϕ]]M ∈ {tt, ff ,undef}.
For each signatureΘ ∈ |FOSig|, the satisfaction relation|=3FOPEQ,Θ ⊆ |Mod3FOPEQ(Θ)|×
Sen3FOPEQ(Θ) is now defined in the obvious way: for anyM ∈ |Mod3FOPEQ(Θ)|
andϕ ∈ Sen3FOPEQ(Θ):

– M |=3FOPEQ,Θ ϕ is tt holds if and only if[[ϕ]]M = tt;
– M |=3FOPEQ,Θ ϕ is ff holds if and only if[[ϕ]]M = ff ; and
– M |=3FOPEQ,Θ ϕ isundefholds if and only if[[ϕ]]M = undef.

Exercise.Work out all the details omitted from the above definition; notice that, in
particular, model morphisms may be defined in a number of sensible ways. Then
show that the satisfaction condition holds. ut

Example 4.1.25 (The institution FPL of a logic for functional programs).The
institution FPL of a logic for a simple functional programming language with a
first-order monomorphic type system is defined as follows:

• A signatureSIG = 〈S,Ω ,D〉 consists of a setSof sort names, a family of sets of
operation namesΩ = 〈Ωw,s〉w∈S∗,s∈S, and a setD of sorts with value construc-
tors. Elements ofD have the form〈d,F 〉 with d ∈ SandF = 〈Fw,d〉w∈S∗ , where
Fw,d ⊆ Ωw,d for w∈ S∗, with no sort given more than one set of value construc-
tors, i.e.〈d,F 〉,〈d,F ′〉 ∈ D implies F = F ′. SoSIG consists of an ordinary
algebraic signature〈S,Ω〉 together with a set ofvalue constructorsfor some
of the sorts. Sorts with value constructors correspond to algebraic datatypes in
functional programming languages. In examples we use a CASL-like notation9,
for instance:

sort nat free with 0 | succ(nat)

addsnat to S, 0:natandsucc:nat→ nat to Ω , and〈nat,{0:nat,succ:nat→ nat}〉
to D. We assume for convenience that eachFPL signatureSIG contains the sort
boolwith value constructorstrueandfalse:

sort bool free with true| false

9 CASL notation: this would be writtenfree typenat ::= 0 | succ(nat) in CASL.

Page: 171 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

172 4 Working within an arbitrary logical system

• A model over a signatureSIG = 〈S,Ω ,D〉 is a partial〈S,Ω〉-algebraA such that
for each set10 of sorts with value constructors{〈d1,F1〉, . . . ,〈dn,Fn〉} ⊆ D, for
1≤ i ≤ n, each value constructor inFi is total and each elementa ∈ |A|di is
uniquely constructed from the values in|A| of sorts other thand1, . . . ,dn using
the value constructors inF1∪ ·· · ∪Fn; that is,〈|A|di 〉1≤i≤n is freely generated
by F1∪·· ·∪Fn from the carriers of the other sorts inA.
We assume that allFPL-models interpret the sortbool and its constructorstrue
andfalsein some standard way.
A SIG-morphism betweenSIG-modelsA andB is an〈S,Ω〉-homomorphism be-
tweenA andB viewed as partial〈S,Ω〉-algebras. It isstrongif it is strong when
viewed as a homomorphism between partial algebras, see Definition 2.7.31.

• The set|TSIG(X)| of FPL-terms overSIG = 〈S,Ω ,D〉 with variablesX and their
interpretation in anFPL-modelA are defined by extending the usual definition
of terms over〈S,Ω〉 and their interpretation by the following additional func-
tional programming constructs (local recursive function definitions and pattern-
matching case analysis, respectively):

– let fun f (x1:s1, . . . ,xn:sn):s′ = t ′ in t is anFPL-term of sorts with variables
in X if:
· s1, . . . ,sn,s′ ∈ S;
· t ′ is anFPL-term of sorts′ overSIG extended byf :s1×·· ·×sn→ s′ with

variables inX∪{x1:s1, . . . ,xn:sn}; and
· t is anFPL-term of sorts overSIG extended byf :s1×·· ·× sn→ s′ with

variables inX.
The value of such a term under a valuationv:X→|A| is determined as follows:
· extendA to give an algebrâA by interpreting f :s1× ·· · × sn→ s′ as the

least-defined partial functionfÂ such that for alla1 ∈ |A|s1, . . . ,an ∈ |A|sn,

the value offÂ(a1, . . . ,an) is the same as the value oft ′ in Â underv mod-
ified by mappingx1 to a1 and . . . andxn to an, whenever the latter is de-
fined.11

· the resulting value is then the value oft in Â underv.
– caset of pat1=>t1| · · · | patn=>tn is anFPL-term of sortswith variables inX

if:
· t is anFPL-term of some sorts′ overSIG with variables inX;
· for each 1≤ j ≤ n, patj is apatternoverSIG of sorts′, where a pattern is

an 〈S,Ω〉-term containing only variables and value constructors, with no
repeated variable occurrences; and

10 This definition is complicated because of the possible presence of mutually dependent sorts with
value constructors.Exercise:Check that imposing the same requirement for each sort with value
constructors separately is more permissive and would not capture the intended meaning. Check
also that it would be sufficient to consider only maximal sets of sorts with values constructors that
are mutually dependent.
11 The fact that this unambiguously definesfÂ, and that fÂ can be equivalently given via the
natural operational semantics of recursively-defined functions, is a standard result of denotational
semantics, see for instance [Sch86].

Page: 172 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.1 Institutions 173

· for each 1≤ j ≤ n, t j is anFPL-term of sorts with variables in the setX
extended by the variables ofpatj .

The value of such a term under a valuationv:X→|A| is determined as follows:
· obtain the valuea of t in A underv;
· find the leastj such thata matches patj yielding a valuationv′ of the vari-

ables inpatj , where matching a value against a pattern proceeds as follows:
· a variablex is matched by any valuea, yielding a valuation{x 7→ a};
· a patternf (p1, . . . , pm) is matched byayieldingv′ iff 12 a= fA(a1, . . . ,am)

and eachpi (1 ≤ i ≤ m) is matched byai yielding v′i , with v′ =
v′1∪·· ·∪v′m;

· the resulting value is that oft j in A under the extension ofv by v′ if such a
j exists; otherwise, the resulting value is undefined.

• Sentences overSIG are first-order sentences built over atomic formulae which
are equalities betweenFPL-terms overSIG of the same sort and definedness
assertions for such terms. Interpretation ofFPL-terms in a model determines
satisfaction of such sentences as inPFOEQ, see Exercises 4.1.17 and 4.1.18.
(Recall thatPFOEQ usesstrongequality, see Section 2.7.4.)
For convenience, we introducefunction definitionsof the form

fun f (x1:s1, . . . ,xn:sn):s= t

to abbreviate the formula

∀x1:s1, . . . ,xn:sn

• f (x1, . . . ,xn) = let fun f (x1:s1, . . . ,xn:sn):s= t in f (x1, . . . ,xn).

To make the scopes of identifiers clearer, this can be rewritten using a new oper-
ation nameg as

∀x1:s1, . . . ,xn:sn

• f (x1, . . . ,xn) = let fun g(x1:s1, . . . ,xn:sn):s= t ′ in g(x1, . . . ,xn)

wheret ′ is the result of replacingf by g in t. Such a recursive function defini-
tion is different from the equalityf (x1, . . . ,xn) = t: for instance,f (x1, . . . ,xn) =
f (x1, . . . ,xn) always holds whilefun f (x1:s1, . . . ,xn:sn):s = f (x1, . . . ,xn) holds
only when f is totally undefined.

• Given SIG = 〈S,Ω ,D〉 and SIG′ = 〈S′,Ω ′,D′〉, an FPL signature morphism
δ :SIG → SIG′ is a derived signature morphismδ :〈S,Ω〉 → 〈S′,Ω ′〉 (using
FPL-terms in place of ordinary terms in Definition 1.5.13), such that for each
〈d,F 〉 ∈ D, we have〈δ (d),F ′〉 ∈ D′ such thatδ restricted toF is determined
by a bijection fromF to F ′.
We require allFPL signature morphisms to preserve the sortbool and its con-
structorstrueandfalse.
Such signature morphisms go well beyond the usual renaming of sort and op-
eration names; here we allow (non-constructor) operations to be mapped to

12 This uniquely determines a result because non-variable patterns are of sorts that are freely gen-
erated by the value constructors and there are no repeated occurrences of variables in patterns.

Page: 173 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

174 4 Working within an arbitrary logical system

complicated terms involving programming constructs like recursion and pattern-
matching case analysis. This will be used in Chapters 6–9 to give examples,
starting with Example 6.1.6, that suggest how programs fit into the overall spec-
ification and development framework.
Such a signature morphism determines a translation ofSIG-sentences toSIG′-
sentences in the usual manner,13 and the same for the reduct fromSIG′-models
to SIG-models. Moreover, the satisfaction condition holds.

Exercise.Complete the above definition and prove the satisfaction condition.ut

Exercise 4.1.26.The functional programming constructs used above are inspired by
those in Standard ML [Pau96]. Add more constructs from Standard ML to the def-
inition of FPL. Try adding type definitions, polymorphism, higher-order functions,
exceptions.

It is easy to add built-in types other thanboolby basing the definition ofFPL on
an arbitrary algebraDT as inIMP (Example 4.1.32 below). ut

Exercise 4.1.27.Mutual recursion need not be added explicitly since it is already
expressible using local definitions of recursive functions. Show how. HINT : It may
be necessary to resort to copying function definitions, to make each function avail-
able for the definitions of the others. ut

Exercise 4.1.28.Consider anFPL-signatureSIG containing a sorts that is freely
generated by value constructors from other such sorts. Show how an equality op-
erationeqs:s× s→ bool may be defined using a recursive function definition with
pattern-matching case analysis. Use this to view conditionals of the form

if t1 = t2 then t elset ′

(wheret1, t2 areSIG-terms of sorts, andt, t ′ have the same sort) as an abbreviation
for

let fun eqs(x:s,y:s):bool= . . . in caseeqs(t1, t2) of true=>t| false=>t ′ ut

Exercise 4.1.29.One could also introduce a conditional of the formif ϕ then t elset ′

whereϕ is a formula. Spell out the details. This would be unusual as a programming
construct because branching is controlled by an arbitrary logical formula, allow-
ing terms that would be problematic from a programming point of view, such as
if def(t) then t ′ elset ′′ andif ∀x:s• t1 = t2 then t ′ elset ′′. Note that the meaning of
such a conditional would be different from the one introduced in Exercise 4.1.28
when the check for equality involves a term with no defined value. ut

13 Care is required to avoid unintended clashes oflet-bound operation names inSIG-terms with
operation names inSIG′. To avoid consequent problems with functoriality of sentence translation,
we can regardFPL-terms as being defined up to renaming oflet-bound operation names.

Moreover, as inFOPEQ (see Example 4.1.12), care is needed with the treatment of bound vari-
ables (which now also include variables in patterns and formal parameters inlet-bound operation
definitions), cf. footnote 6.

Page: 174 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.1 Institutions 175

Exercise 4.1.30.While FPL involves constructs borrowed from functional pro-
gramming languages, it puts them in a logical context involving equality, logical
connectives and quantifiers, which results in sentences capable not only of defining
functions, but also of specifying their properties. Identify the “programming part”
of FPL by defining its “subinstitution”FProg with the same signatures and mod-
els, but with sets of sentences restricted to function definitions (with satisfaction
relations inherited fromFPL as well). As function definitions may not be closed
under translation along arbitrary (derived) signature morphisms inFPL, restrict the
class of signature morphisms inFProg to the standard morphisms, where operation
names are mapped to operation names rather than to arbitrary terms. ut

Exercise 4.1.31. FPL, and its programming partFProg, relate to eager functional
programming languages like Standard ML because partial functions are required to
be strict. Formulate an analogous institution for lazy functional programming as in
Haskell. ut

The institutionsFPL andFProg will be used in the sequel to present examples
that are meant to appeal to the reader’s programming intuition. Later on, the connec-
tion with functional programming will be further enhanced by introducing notations
for defining ML-style modules inFPL (see Example 6.1.9 and Exercise 7.3.5 be-
low).

Example 4.1.32 (The institution IMP of a simple imperative language).The in-
stitution IMP of an imperative programming language with simple type definitions
is parameterised by an algebraDT on a signatureΣDT of primitive (built-in) data
types and functions of the language. The components ofIMP DT are defined as fol-
lows:

• A signatureΠ = 〈T,P〉 consists of a setT of type names and a setP of functional
procedure names with types of the forms1, . . . ,sn→ s, where each ofs1, . . . ,sn,s
is either a sort inΣDT or a type name inT. The names inT andP are distinct
from those inΣDT . ThusΠ ∪ΣDT is an algebraic signature — we will denote
it by ΠDT . Signature morphisms map type names to type names and procedure
names to procedure names preserving their types.

• There are two kinds of sentences over a signatureΠ = 〈T,P〉.
First, sentences can be type definitions of the form

type s= type-expr

wheres∈ T is a type name andtype-expris a type expression in a simple lan-
guage of types built over the sorts inΣDT and a unit typeunit using the opera-
tors+ (disjoint union) and× (Cartesian product). The type expressiontype-expr
may contain the type names as well, which provides for recursive type defini-
tions.14

Second, sentences can be procedure definitions of the form

14 Other type names fromT are excluded, to prevent mutual recursion in type definitions — with
some extra work this restriction can be removed.

Page: 175 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

176 4 Working within an arbitrary logical system

proc p(x1:s1, . . . ,xn:sn) = while-program; result expr:s

wherep:s1, . . . ,sn→ s is a procedure name inP, expr is aΠDT -term (with vari-
ables) of sorts, andwhile-programis a statement in a deterministic programming
language over the built-in data types and functions given inDT (while-program
may be empty, and so the program part of a procedure body may be omitted).
We assume that the usual iterative program constructions are provided: sequen-
tial statements, conditionals and while loops. This requires thatΣDT contains
the sortboolwith |DT|bool = {tt, ff}. The basic statements are well-typed assign-
ments (of expression values to formal parameters or variables scoped within each
procedure body).
Expressions may use projectionsproj1(v) andproj2(v) for valuesv of product
types of the forms1×s2, and pairing〈v1,v2〉 to build values of product types, as
well as boolean testsis-in 1(v) andis-in 2(v) for valuesv of union types of
the forms1 + s2 and the constant〈〉 of typeunit denoting the only element of
this type. The usual coercions between union types and their component types
may also be used. With a bit of additional complication we can also allow ex-
pressions to contain (recursive) procedure calls.

• A modelM over a signatureΠ = 〈T,P〉 has a carrier set|M|s for eachs∈ T. We
write |M|s for |DT|s if s is a sort name inΣDT .
We have the usual notion ofstate, where each state maps formal parameters and
variables to values of their sorts inM, or marks them as undefined. An obvious
operational semantics may be given that determines, for each statement and state,
a sequence of states that formally captures the execution of that statement starting
in that state.
Then,M assigns to each procedure namep:s1, . . . ,sn→ s in Pand every sequence
v1 ∈ |M|s1, . . . ,vn ∈ |M|sn of (actual parameter) values a formal execution which
has one of the following forms:

(Successful termination): a finite sequence of states and a valuev∈ |M|s;
(Unsuccessful termination): a finite sequence of states; or
(Divergence): an infinite sequence of states.

Given any such modelM, for any procedure namep:s1, . . . ,sn→ s in P we get a
partial functionpM: |M|s1×·· ·× |M|sn→ |M|s.
The models defined in this way form a discrete category.

• For any signatureΠ = 〈T,P〉 andΠ -modelM:

– M satisfies aΠ -sentence of the form

type s= type-expr

if |M|s is the least setD such thatD is the value of the type expression
type-exprin which the type names is interpreted asD and sort namess′ in
ΣDT are interpreted as|DT|s′ .

– M satisfies aΠ -sentence of the form

proc p(x1:s1, . . . ,xn:sn) = while-program; result expr:s

Page: 176 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.1 Institutions 177

if for all v1∈ |M|s1, . . . ,vn∈ |M|sn, M(p)(v1, . . . ,vn) is the formal execution of
the statementwhile-programstarting in the state{x1 7→ v1, . . . ,xn 7→ vn}, and
if the execution terminates successfully in a state in whichexprhas a defined
value thenM(p)(v1, . . . ,vn) contains this value as well.

Exercise.Complete the above definition and prove the satisfaction condition.ut

Exercise 4.1.33.Sentences inIMP are essentially programs; they provide no means
of writing loose specifications. Add sentences ofPFOPEQ for specifying properties
of the procedures ofIMP viewed as partial functions. A different way of achieving
a similar effect will be presented in Examples 10.1.9, 10.1.14 and 10.1.17. ut

Example 4.1.34 (The institution CDIAG of commutative diagrams).The follow-
ing example is of a rather non-standard character. We present a simple logical system
for stating that certain diagrams in a category with named objects and morphisms
commute. Sentences of the logical system allow one to require that morphisms pro-
duced by composition of series of (named) morphisms coincide.

• The category of signatures inCDIAG is the categoryGraph of graphs (see Def-
inition 3.2.36).

• A path equationin a graphG is a pair of paths inG with the same sources and
targets, respectively. For any graphG (a signature inSignCDIAG), G-sentences in
CDIAG are sets of path equations inG.

• A model over a graphG is a (small) categoryC with a diagramD of “shape”
G, i.e. (via Exercise 3.4.21) a functorD:Path(G)→ C. For any twoG-models
D1:Path(G)→ C1 and D2:Path(G)→ C2, a G-morphismin ModCDIAG (G)
from D1 toD2 is a functorF:C1→ C2 such thatD1;F = D2.

• For anyG-modelD:Path(G)→ C, a pathp from s to t in G determines a mor-
phismD(p):D(s)→D(t) in C. We say that aG-modelD:Path(G)→C satisfies
a path equation〈p,q〉 if D(p) = D(q). A G-model satisfies aG-sentenceΦ if it
satisfies all path equationsϕ ∈Φ .

Exercise.Complete the definition and prove the satisfaction condition forCDIAG .

Exercise.Reformulate the above definitions so that a sentence over a graphG would
be a subdiagram ofG used to denote the set of path equations inG which make the
subdiagram commute. ut

The last few examples show that the notion of institution covers much more than
what one usually connects with the concept of a logical system.

The next two examples are perhaps even more unusual: we show that the defini-
tion of an institution does not restrict the sentences of a logic to be syntactic objects,
and does not force models to provide semantic domains and operations used to de-
termine the meanings of the syntactic objects. Thus, the notion of an institution
covers systems in which such a distinction is entirely blurred.

Example 4.1.35.Consider an arbitrary categorySign and functorMod:Signop→
Cat. We think ofSignas a category of signatures and ofMod as yielding categories

Page: 177 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

178 4 Working within an arbitrary logical system

of models and reduct functors. To be cautious about foundations, we should make
sure thatMod yields only small categories.

We can now define an institutionINSSen(Mod) where “sentences” are classes of
models:

• The category of signatures ofINSSen(Mod) is Sign.
• The “sentence” functor ofINSSen(Mod) is defined as follows:

– For any signatureΣ ∈ |Sign|, a Σ -“sentence” ofINSSen(Mod) is a collection
M ⊆ |Mod(Σ)| of Σ -models.

– For any signature morphismσ :Σ→ Σ ′, theσ -translation of anyΣ -“sentence”
M ⊆ |Mod(Σ)| to a Σ ′-“sentence”σ(M) ⊆ |Mod(Σ ′)| is defined as the
coimage ofM w.r.t. theσ -reduct functor, i.e.σ(M) = {M′ ∈ |Mod(Σ ′)| |
Mod(σ)(M′) ∈M }.

• The model functor ofINSSen(Mod) is Mod.
• For each signatureΣ , the Σ -satisfaction relation ofINSSen(Mod) is just the

membership relation: for anyΣ -modelM ∈ |Mod(Σ)| andΣ -“sentence”M ⊆
|Mod(Σ)|, M |=INSSen(Mod),Σ

M if and only if M ∈M .

Exercise.Complete the definition and check the satisfaction condition. ut

Example 4.1.36.Consider an arbitrary categorySignand functorSen:Sign→ Set.
We think ofSignas a category of signatures and ofSenas yielding sets of sentences
and their translations.

We can now define an institutionINSMod(Sen) where “models” are sets of sen-
tences:

• The category of signatures ofINSMod(Sen) is Sign.
• The sentence functor ofINSMod(Sen) is Sen.
• The “model” functor ofINSMod(Sen) is defined as follows:

– For any signatureΣ ∈ |Sign|, aΣ -“model” of INSMod(Sen) is a setΦ ⊆Sen(Σ)
of Σ -sentences. The category ofΣ -“models” is just the preorder category
where the set of all such subsets is ordered by inclusion.

– For any signature morphismσ :Σ → Σ ′, theσ -reduct functor ofINSMod(Sen)

from the category ofΣ ′-“models” to the category ofΣ -“models” maps any
Σ ′-“model” Φ ′ ⊆ Sen(Σ ′) to its coimage{ϕ ∈ Sen(Σ) | Sen(σ)(ϕ) ∈Φ ′} ⊆
Sen(Σ); this obviously extends to a functor between the preorder categories
of Σ ′- andΣ -“models”.

• For each signatureΣ , the Σ -satisfaction relation ofINSMod(Sen) is (the inverse
of) the membership relation: for anyΣ -“model” Φ ⊆ Sen(Σ) and Σ -sentence
ϕ ∈ Sen(Σ), Φ |=INSMod(Sen),Σ

ϕ if and only if ϕ ∈Φ .

Exercise.Complete the definition and check the satisfaction condition. ut

Let us complete this list of examples by pointing out that the definition of insti-
tution admits a number of trivial situations:

Page: 178 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.1 Institutions 179

Example 4.1.37 (Trivial institutions).

• Recall that0 is the empty category. Hence, there is a unique (empty) functor from
0 to Set and a unique (empty) functor from0op = 0 to Cat. Together with the
empty family of relations, they form an empty institution (no signatures, hence
no sentences and no models).

• Given any categorySign and functorMod:Signop→ Cat, a trivial institution
with signaturesSign, with models given byMod, and with no sentences may be
constructed. Formally, the sentences of this institution are given by the functor
Sen∅:Sign→ Setwhich yields the empty set for each signature.

• Given any categorySign and functorSen:Sign→ Set, a trivial institution with
signaturesSign, with sentences given bySen, and with no models may be
constructed. Formally, the models of this institution are given by the functor
Mod0:Signop→ Cat which yields the empty category for each signature.

• Given any categorySignand functorsSen:Sign→ SetandMod:Signop→Cat,
two trivial institutions with signaturesSign, with sentences given bySen, and
with models given byMod may be constructed. One is obtained by making all
sentences false in all models, that is by defining each satisfaction relation to be
empty. The other is obtained by making all sentences hold in all models, that
is by definining each satisfaction relation to be total (i.e., for eachΣ ∈ |Sign|,
|=Σ = |Mod(Σ)|×Sen(Σ)). ut

4.1.2 Constructing institutions

In the examples of the previous subsection, each of the institutions was constructed
“from scratch” by explicitly defining its signatures, sentences, models and satisfac-
tion relations. This is often a rather tedious task (we have simplified it in many cases
by referring to the standard definitions) and then checking the satisfaction condition
is not always easy. In this subsection we will give some examples of constructions
leading from an institution to a more complex one. The complexity added by the
construction does not necessarily imply that the institution so obtained has any ex-
tra “expressive power”. We start with some examples of “formal juggling” with
institution components, very much in the spirit of Examples 4.1.35 and 4.1.36, and
only then show how adding propositional connectives to a logic may be viewed as a
construction of a new institution from an existing one.

Example 4.1.38.Sets of sentences of any institution may be regarded as single sen-
tences (with the obvious “conjunctive” interpretation).

For any institutionINS define the institutionINS∧ of sets ofINS-sentences as
follows:

• The category ofINS∧-signatures is the same as the categorySign of INS-
signatures.

• The sentence functorSenINS∧ is defined as follows:

Page: 179 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

180 4 Working within an arbitrary logical system

– For any signatureΣ ∈ |Sign|, SenINS∧(Σ) is the set of all setsΦ ⊆ SenINS(Σ)
of Σ -sentences inINS.

– For any signature morphismσ :Σ → Σ ′, the translation of aΣ -sentenceΦ in
INS∧ is its image w.r.t. theσ -translation function inINS: SenINS∧(σ)(Φ) =
{SenINS(σ)(ϕ) | ϕ ∈Φ} ⊆ SenINS(Σ ′).

• The model functor ofINS∧ is the same as the model functorMod:Signop→Cat
of INS.

• For any signatureΣ ∈ |Sign|, the satisfaction relation ofINS∧ gives the conjunc-
tive interpretation of (sets of) sentences: for anyΣ -modelM ∈ |Mod(Σ)| andΣ -
sentenceΦ ⊆SenINS(Σ), M |=INS∧,Σ Φ if and only if for all ϕ ∈Φ , M |=INS,Σ ϕ.

ut

Example 4.1.39.Signatures of any institution may be enriched to incorporate sen-
tences which restrict the class of models considered over the given signature.

For any institutionINS define the institutionINSSign+
with signatures enriched

by sentences as follows:

• Signatures ofINSSign+
are pairs〈Σ ,Φ〉, whereΣ ∈ |SignINS| is anINS-signature

andΦ ⊆ SenINS(Σ) is a set ofΣ -sentences. Then, anINSSign+
-signature mor-

phismσ :〈Σ ,Φ〉 → 〈Σ ′,Φ ′〉 is a signature morphismσ :Σ → Σ ′ in SignINS such
that for allϕ ∈Φ , σ(ϕ) ∈Φ ′. This defines a categorySign

INSSign+ of INSSign+
-

signatures (with composition inherited fromSignINS).
• Sentences ofINSSign+

are the same asINS-sentences: for anyINSSign+
-signature

〈Σ ,Φ〉, Sen
INSSign+ (〈Σ ,Φ〉) = SenINS(Σ), with the translation functions inher-

ited fromINS as well.
• Models of INSSign+

are again the same as models ofINS; we consider, how-
ever, only those models that satisfy the sentences in the given signature. For
any INSSign+

-signature〈Σ ,Φ〉, Mod
INSSign+ (〈Σ ,Φ〉) is the full subcategory

of ModINS(Σ) consisting of allΣ -models (inINS) that satisfy (according to
|=INS,Σ) all the sentences inΦ . The reduct functors are again inherited from
INS.

• The satisfaction relations ofINSSign+
are inherited fromINS.

Exercise. Spell out all the details of the above definition. In particular, check that
the reduct functors of the new institutionINSSign+

are well-defined (cf. Fact 4.2.24
below). ut

Example 4.1.40.For any institution, we can enlarge its categories of models by
considering models over extended signatures.

For any institutionINS, define the institutionINSMod+
with categories of models

containing models over extended signatures as follows:

• The category ofINSMod+
-signatures is the categorySignof INS-signatures.

• The sentence functor ofINSMod+
is the sentence functorSen:Sign→Setof INS.

• The model functorMod
INSMod+ :Signop→ Cat is defined as follows:

Page: 180 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.1 Institutions 181

– For any signatureΣ ∈ |Sign|, a Σ -model of INSMod+
is an INS-model

over an extension of the signatureΣ . Formally: aΣ -model in INSMod+
is

a pair〈σ :Σ → Σ ′,M′ ∈ |ModINS(Σ ′)|〉. A Σ -model morphism between two
suchΣ -models is again a pair〈σ ′, f 〉:〈σ1:Σ → Σ ′1,M

′
1 ∈ |ModINS(Σ ′1)|〉 →

〈σ2:Σ → Σ ′2,M
′
2 ∈ |ModINS(Σ ′2)|〉, which consists of anINS-signature mor-

phism σ ′:Σ ′1 → Σ ′2 such thatσ1;σ ′ = σ2 and a model morphismf :M′1 →
ModINS(σ ′)(M′2) in ModINS(Σ ′1).

– For any signature morphismσ :Σ1→Σ2, theσ -reduct functorMod
INSMod+ (σ)

maps anyΣ2-model〈σ2:Σ2→ Σ ′2,M
′
2 ∈ |ModINS(Σ ′2)|〉 to theΣ1-model〈σ ;σ2:Σ1→ Σ ′2,M

′
2 ∈ |ModINS(Σ ′2)|〉.

On model morphisms,Mod
INSMod+ (σ) is the identity.

• For each signatureΣ ∈ |Sign|, theΣ -satisfaction relation ofINSMod+
is deter-

mined by theΣ -satisfaction relation ofINS: for anyΣ -model〈σ :Σ → Σ ′,M′ ∈ |ModINS(Σ ′)|〉
and Σ -sentenceϕ ∈ Sen(Σ), 〈σ ,M′〉 |=

INSMod+
,Σ

ϕ if and only if M′ |=INS,Σ ′

Sen(σ)(ϕ), which by the satisfaction condition forINS is equivalent toModINS(σ)(M′) |=INS,Σ

ϕ.

Exercise. Complete the definition and check the satisfaction condition. Try to ex-
press the construction of the categories of models ofINSMod+

using the flattening
construction for indexed categories (Definition 3.4.58) and the machinery of comma
categories (Definition 3.4.49). ut

Example 4.1.41.For any institutionINS define the institutionINSprop by closing
the sets of its sentences under propositional connectives (with the usual interpreta-
tion) as follows:

• The category of signatures ofINSprop is just the categorySignof INS-signatures.
• The sentence functorSenINSprop:Sign→ Set is defined as follows:

– For any signatureΣ ∈ |Sign|, SenINSprop(Σ) is the least set that contains all
of the Σ -sentences ofINS and two special sentencestrue and false, and
is closed under the usual propositional connectives as introduced in Exam-
ple 4.1.9, that is, ifϕ,ϕ ′ ∈ SenINSprop(Σ) then alsoϕ ∨ϕ ′ ∈ SenINSprop(Σ),
¬ϕ ∈ SenINSprop(Σ), ϕ ∧ϕ ′ ∈ SenINSprop(Σ), andϕ ⇒ ϕ ′ ∈ SenINSprop(Σ).15

– For any signature morphismσ :Σ→Σ ′, theσ -translation functionSenINSprop(σ)
coincides withSenINS(σ) onSenINS(Σ) and preserves the propositional con-
nectives in the new sentences in the obvious way.

• The model functor ofINSprop is the model functorMod:Signop→ Cat of INS.
• For each signatureΣ ∈ |Sign|, theΣ -satisfaction relation ofINSprop is just the

same as theΣ -satisfaction relation ofINS for sentences inSenINS(Σ) and then,
for anyΣ -modelM ∈ |Mod(Σ)|, for the sentences built using the propositional
connectives, the satisfaction of such sentences inM is defined inductively as in
Example 4.1.9.

15 The remarks in footnote 4 apply as appropriate.

Page: 181 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

182 4 Working within an arbitrary logical system

Exercise. Show howPROP, the institution of propositional logic (see Exam-
ple 4.1.9) arises as the propositional closure of a simple institution with proposi-
tional variables as the only sentences. ut

In Section 4.4.2 below we define yet another similar construction on institutions
by showing how quantifiers may be introduced.

The constructions described in the examples above may naturally be viewed as
extensions of the original institution — this will be made formal in Section 10.2,
cf. Example 10.2.5. In Section 10.3 we will discuss how such extensions may be
combined using the limit construction in a suitable category of institutions.

These examples are about adding new sentences built using logical connectives
to an institution. The new sentences are added, even if the connectives were already
expressible in the following sense:

Definition 4.1.42.The institutionINS has negationif for every signatureΣ ∈ |Sign|
and Σ -sentenceϕ, there exists aΣ -sentenceψ such that for everyΣ -model M,
M |=Σ ϕ iff M 6|=Σ ψ. Any suchψ may be referred to as¬ϕ.

The properties ofhaving conjunction, having disjunctionandhaving implication
are defined in the analogous way, and similarly forhaving truth, having falsity,
having infinitary conjunctionetc. ut

Exercise 4.1.43.Suppose that the institutionINS has negation. Using the satisfac-
tion condition, show that for every signature morphismσ :Σ → Σ ′ andΣ -sentence
ϕ,¬σ(ϕ) may be taken to beσ(¬ϕ). Show a similar property for the other connec-
tives. ut

Example 4.1.44.For any institutionsINS1 = 〈Sign1,Sen1,Mod1,〈|=1,Σ1〉Σ1∈|Sign1|〉
and INS2 = 〈Sign2,Sen2,Mod2,〈|=2,Σ2〉Σ2∈|Sign2|〉, their sum INS1 + INS2 puts
INS1 and INS2 side by side without any “interaction”. Formally,INS1 + INS2 is
defined as follows:

• The category of signatures ofINS1+ INS2 is the disjoint unionSign1+Sign2 of
the categories of signatures ofINS1 and ofINS2.

• The sentence functorSenINS1+INS2:Sign1 +Sign2→ Setacts asSen1 on Sign1
and asSen2 on Sign2 (that is,SenINS1+INS2 is determined bySen1 and Sen2

according to the coproduct property ofSign1 +Sign2).
• The model functorModINS1+INS2:(Sign1 + Sign2)op→ Cat acts asMod1 on

Sign1 and asMod2 onSign2 (that is,ModINS1+INS2 is determined byMod1 and
Mod2 according to the coproduct property ofSign1 +Sign2).

• The family of satisfaction relations ofINS1 + INS2 is the union of the fam-
ilies of satisfaction relations ofINS1 and of INS2 (that is, for Σ1 ∈ |Sign1|,
|=INS1+INS2,Σ1 is |=1,Σ1, and forΣ2 ∈ |Sign2|, |=INS1+INS2,Σ2 is |=2,Σ2). ut

Example 4.1.45.Given institutionsINS1 = 〈Sign1,Sen1,Mod1,〈|=1,Σ1〉Σ1∈|Sign1|〉
and INS2 = 〈Sign2,Sen2,Mod2,〈|=2,Σ2〉Σ2∈|Sign2|〉, their product INS1× INS2 is
defined as follows:

Page: 182 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.1 Institutions 183

• The category of signatures ofINS1× INS2 is the productSign1×Sign2 of the
categories of signatures ofINS1 and ofINS2; thus a signature inINS1× INS2 is
a pair consisting of one signature fromINS1 and one fromINS2, and similarly
for signature morphisms.

• The sentence functorSenINS1×INS2:Sign1×Sign2→ Set is defined as follows:

– For any signature〈Σ1,Σ2〉 ∈ |Sign1×Sign2|, SenINS1×INS2(〈Σ1,Σ2〉)= Sen1(Σ1)+
Sen2(Σ2) is the disjoint union of the sets ofINS1-sentences overΣ1 and of
INS2-sentences overΣ2.

– For any signature morphism〈σ1,σ2〉:〈Σ1,Σ2〉→ 〈Σ ′1,Σ ′2〉, SenINS1×INS2(〈σ1,σ2〉)=
Sen1(σ1)+Sen2(σ2) acts asSen1(σ1) on INS1-sentences and asSen2(σ2) on
INS2-sentences over the signature〈Σ1,Σ2〉.

• The model functorModINS1×INS2:(Sign1×Sign2)op→ Cat is defined as fol-
lows:

– For any signature〈Σ1,Σ2〉 ∈ |Sign1×Sign2|, ModINS1×INS2(〈Σ1,Σ2〉)= Mod1(Σ1)×
Mod2(Σ2) is the product of the categories ofINS1-models overΣ1 and of
INS2-models overΣ2; thus a model inINS1× INS2 is a pair consisting of one
model fromINS1 and one fromINS2, and similarly for model morphisms.

– For any signature morphism〈σ1,σ2〉:〈Σ1,Σ2〉→ 〈Σ ′1,Σ ′2〉, ModINS1×INS2(〈σ1,σ2〉)=
Mod1(σ1)×Mod2(σ2) acts asMod1(σ1) on theINS1-components of〈Σ ′1,Σ ′2〉-
models and model morphisms and asMod2(σ2) on theINS2-components of
〈Σ ′1,Σ ′2〉-models and model morphisms.

• For any signature〈Σ1,Σ2〉 ∈ |Sign1×Sign2|, model〈M1,M2〉 ∈ |ModINS1×INS2(〈Σ1,Σ2〉)|
and sentencesϕ1 ∈Sen1(Σ1) andϕ2 ∈Sen2(Σ2), 〈M1,M2〉 |=INS1×INS2,〈Σ1,Σ2〉 ϕ1

if and only if M1 |=1,Σ1 ϕ1, and 〈M1,M2〉 |=INS1×INS2,〈Σ1,Σ2〉 ϕ2 if and only if
M2 |=2,Σ2 ϕ2. That is, satisfaction inINS1× INS2 is defined asINS1-satisfaction
for INS1-sentences (extracting theINS1-components ofINS1× INS2-models)
and asINS2-satisfaction forINS2-sentences (extracting theINS2-components of
INS1× INS2-models). ut

The next example indicates a technically correct but intuitively somewhat arti-
ficial way of dealing with the translation of sentences along signature morphisms.
The simple idea is that instead of actually translating sentences from one signa-
ture to another, we can always keep the original sentence over its original signature
together with a morphism “fitting” it to another signature.

Example 4.1.46.Consider an institutionINS = 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉 and
a functionNewSen: |Sign|→ |Set| together with a family of relations〈|=NewSen,Σ ⊆ |Mod(Σ)|×NewSen(Σ)〉Σ∈|Sign|.
Intuitively, for any signatureΣ , NewSen(Σ) is a set of new sentences overΣ with the
satisfaction relation|=NewSen,Σ . We define an institutionINS + NewSenby adding
these new sentences fitted to other signatures via signature morphisms:

• The category of signatures ofINS + NewSenis just the categorySign of INS-
signatures.

• The sentence functorSenINS+NewSen:Sign→ Set is defined as follows:

Page: 183 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

184 4 Working within an arbitrary logical system

– For any signatureΣ ∈ |Sign|, SenINS+NewSen(Σ) is the (disjoint) union of the
“old” sentencesSen(Σ) and the set16 of “new” sentences fitted to the sig-
natureΣ by a signature morphism. The latter are pairs〈ϕ ′,θ〉, written as
ϕ ′ through θ , with θ :Σ ′ → Σ andϕ ′ ∈ NewSen(Σ ′) for an arbitrary signa-
tureΣ ′.

– For any signature morphismσ :Σ → Σ1, SenINS+NewSen(σ) works asSen(σ)
on theINS-sentences; forθ :Σ ′→Σ andϕ ′ ∈NewSen(Σ ′), SenINS+NewSen(σ)(ϕ ′ through θ)=
ϕ ′ through θ ;σ .

• The model functor ofINS+NewSenis the model functorMod:Signop→Cat of
INS.

• For each signatureΣ ∈ |Sign|, the Σ -satisfaction relation ofINS + NewSenis
just the same as theΣ -satisfaction relation ofINS for the “old” Σ -sentences
and then, for anyΣ -model M ∈ |Mod(Σ)|, θ :Σ ′ → Σ and ϕ ′ ∈ NewSen(Σ ′),
M |=INS+NewSenϕ

′ through θ if and only if M θ |=NewSen,Σ ′ ϕ ′.

Exercise.Check the satisfaction condition. ut

We conclude this list of constructions on institutions with a sketch of how various
modal (and temporal) logics may be built over an arbitrary institution.

Example 4.1.47.Let INS = 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉 be an institution. We
define the institutionLTL INS of linear-time temporal logic overINS, using se-
quences of models fromINS as models and sentences fromINS as “state sentences”,
that is:

• The category of signatures ofLTL INS is Sign, the same as inINS.
• For each signatureΣ , a Σ -model in LTL INS is a countably infinite sequence

M = 〈Mn〉n≥0 of modelsMn ∈ |Mod(Σ)| for n≥ 0. Reducts of such models w.r.t.
a signature morphismσ are defined componentwise, using the reduct w.r.t.σ as
defined inINS. (We disregard model morphisms here, takingModLTL INS(Σ) to
be the discrete category.)

• For each signatureΣ , the set ofΣ -sentences inLTL INS is the least set that con-
tainstrue and all the sentences inSen(Σ) (calledstate sentencesin this context)
and is closed under negation, written¬ϕ, conjunction,ϕ ∧ψ, and two modal
operators:next time, Xϕ, anduntil, ϕ Uψ.

• For each signatureΣ , satisfaction is defined in terms of an auxiliary relation of
satisfaction at a given position in the temporal sequence; for each modelM =
〈Mn〉n≥0, and j ≥ 0 we define:

– for any state sentenceϕ, M |= j ϕ if M j |= ϕ (in INS);
– M |= j ¬ϕ if it is not the case thatM |= j ϕ;
– M |= j ϕ ∧ψ if M |= j ϕ andM |= j ψ;

16 This may lead to some foundational difficulties, since the collection of all signature morphisms
into Σ , and hence the collection of all newΣ -sentences, need not form a set. One argument for
ignoring these problems here is that we can typically limit the size of the category of signatures of
the institution we start with, for example assuming that the categorySign is small.

Page: 184 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.1 Institutions 185

– M |= j Xϕ if M |= j+1 ϕ; and
– M |= j ϕ Uψ if for somek≥ j, M |=k ψ and for all j ≤ i < k, M |=i ϕ.

We put nowM |=LTL INS,Σ ϕ if M |=0 ϕ.

Exercise.Complete the definition and check the satisfaction condition.

Exercise. Add other temporal modalities, like “eventually/finally” and “hence-
forth/globally”, either by defining them explicitly, or as abbreviations, for instance:
Fϕ ≡ trueUϕ, Gϕ ≡ ¬(F(¬ϕ)), etc.

Also, add “past” temporal modalities (previous, since, sometimes in the past,
always in the past, etc). ut

Exercise 4.1.48.Proceeding similarly as in Example 4.1.47, given an institution
INS, define the institutionMDL INS of modal logic:

• The category of signatures ofMDL INS is Sign, the same as inINS.
• For each signatureΣ , a Σ -model inMDL INS is a Kripke structure, i.e., a triple
〈W,;,M〉, which consists of a setW (of “possible worlds” or “state names”)
and a relation; ⊆W×W (“transition relation”) together with a familyM =
〈Mw〉w∈W of Σ -models inINS, Mw ∈ |Mod(Σ)| for w∈W. Again, we disregard
model morphisms.

• For each signatureΣ , the set ofΣ -sentences inMDL INS is the least set that
containstrue and all the sentences inSen(Σ) and is closed under negation¬ϕ,
conjunctionϕ ∧ψ, and the modal operator2ϕ.

• For each signatureΣ , satisfaction is defined in terms of an auxiliary relation of
satisfaction at a given world in a Kripke structure; here is the crucial clause:

– 〈W,;,M〉 |=w 2ϕ if for all v∈W such thatw ; v, 〈W,;,M〉 |=v ϕ.

Then a model satisfies a sentence inMDL INS if the sentence holds in the above
sense at each of its possible worlds.

Complete the definition and check the satisfaction condition.
To keep the definition closer toLTL INS, you may want to define a somewhat

different version of modal logic, where Kripke structures in addition indicate an
initial world, and then the satisfaction of a sentence in a model is determined by its
satisfaction at this initial world. You may also want to impose requirements on the
transition relation (for instance, that it is transitive, or that all possible worlds can
be reached from the initial world, etc.).

Combining the ideas behindMDL INS andLTL INS, define the institutionCTL ∗INS
of branching-time temporal logic, where signatures and models are as inMDL INS,
but sentences are closed under a variety of temporal operators used to quantify (sep-
arately) over paths in the Kripke structure and over worlds in these paths. HINT :
Distinguish two kinds of sentences: path sentences that are evaluated for a given
path in the Kripke structure; and state sentences that are evaluated for a given world
in the Kripke structure — or see [Eme90].

You may also start by defining a simpler institutionCTL INS where the use of
temporal operators is limited by requiring that quantification over paths and over

Page: 185 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

186 4 Working within an arbitrary logical system

worlds in these paths always happen together, so in fact we have only bundled
path/state temporal operators, like “for some path, always in this path”, “for some
path, eventually in this path”, etc. ut

Exercise 4.1.49.Consider an institutionMDL FOPEQ of modal logic built over first-
order predicate logic with equality. Note that this isnot the institution of first-order
modal logic, since quantification is internal to state sentences only and cannot be
interleaved with the modal operator. Define an institution of first-order modal logic
in which such an arbitrary interleaving of quantifiers, propositional connectives and
the modal operator is allowed. HINT : The trouble here is with moving valuations of
variables from one world to another in the definition of satisfaction. At least, define
such an institution assuming that the carriers of all models in any Kripke structure
coincide. Discuss possible generalisations.

Carry out similar constructions of first-order temporal logics that extendLTL FOPEQ,
CTL ∗FOPEQ andCTL FOPEQ, respectively. ut

4.2 Flat specifications in an arbitrary institution

Throughout this section we will deal with an arbitrary but fixed institution. This
means that we will be working with a logical system about which we know nothing
beyond what is given in the definition of an institution. For example, we will not
be able to refer to any particular components of signatures, any particular syntax
of sentences, any particular internal structure of models, or any particular definition
of satisfaction. Indeed, we cannot even be sure that signatures have components,
that sentences are syntactic entities in any sense, or that models have any internal
structure at all.

Given these limitations, one may think that there is very little that can be done.
However, the structure of an institution is rich enough to allow us to recast in these
terms the material on simple equational specifications presented in Sections 2.2
and 2.3 (this will be done in the present section, without repeating the discussion
and motivation) and then to proceed further into the theory of specifications and
software development.

Let us then fix an arbitrary institutionINS = 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉. We
start with the basic concepts built around the notion of satisfaction.

Definition 4.2.1 (ModΣ (Φ), ThΣ (M), ClΣ (Φ) andClΣ (M)). Let Σ be an arbitrary
signature.

• For any setΦ ⊆ Sen(Σ) of Σ -sentences, the classModΣ (Φ) ⊆ |Mod(Σ)| of
models ofΦ is defined as the class of allΣ -models that satisfy all the sentences
in Φ .17

17 Note the overloading of the term “model” as discussed after Definition 4.1.1. We continue to
follow the terminology of [GB92], hoping that this will not lead to any confusion.

Page: 186 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.2 Flat specifications in an arbitrary institution 187

• For any classM ⊆ |Mod(Σ)| of Σ -models, thetheory ofM is the setThΣ (M)⊆
Sen(Σ) of all theΣ -sentences that are satisfied by all the models inM .

• A set Φ ⊆ Sen(Σ) of Σ -sentences isclosedif Φ = ThΣ (ModΣ (Φ)). We will
write ClΣ (Φ) for ThΣ (ModΣ (Φ)) and refer toClΣ (Φ) as theclosure ofΦ .

• A classM ⊆ |Mod(Σ)| of Σ -models isclosedif M = ModΣ (ThΣ (M)). Closed
classes of models will be calleddefinable. The closure of M is the class
ModΣ (ThΣ (M)). ut

The basic properties of the above notions follow from the fact thatThΣ andModΣ

form a Galois connection:

Proposition 4.2.2.For any signatureΣ , the mappings ThΣ and ModΣ form a Ga-
lois connection between sets ofΣ -sentences and classes ofΣ -models ordered by
inclusion.

Proof. The proof is just the same (and just as easy) as in the equational case, cf.
Proposition 2.3.2. ut

Corollary 4.2.3. For any signatureΣ , setΦ ⊆ Sen(Σ) of Σ -sentences, and class
M ⊆ |Mod(Σ)| of Σ -models:

Φ ⊆ ThΣ (M) iff ModΣ (Φ)⊇M ut

Exercise 4.2.4.Construct counterexamples that show that under the assumptions of
Corollary 4.2.3 neither of the following implications holds:

ModΣ (Φ)⊆M implies ThΣ (M)⊆Φ

ThΣ (M)⊆Φ implies ModΣ (Φ)⊆M .

Prove that the former implication holds ifΦ is closed, and the latter ifM is closed
(i.e., is definable). ut

The satisfaction relation determines in the obvious way a consequence relation
between sentences of the institution:

Definition 4.2.5 (Semantic consequence).Let Σ be an arbitrary signature. AΣ -
sentenceϕ ∈ Sen(Σ) is a semantic consequenceof a set Φ ⊆ Sen(Σ) of Σ -
sentences, writtenΦ |=Σ ϕ, if ϕ ∈ClΣ (Φ), or equivalently, ifModΣ (Φ) |=Σ ϕ. ut

As usual, the subscriptΣ will often be omitted.
In the following we will often implicitly rely on three basic properties of semantic

consequence, namely that it is reflexive, closed under weakening, and transitive, in
the following sense:

Proposition 4.2.6.LetΣ be a signature. Consider anyΣ -sentencesϕ,ψ ∈ Sen(Σ),
and sets ofΣ -sentencesΦ ,Ψ ⊆ Sen(Σ), andΨϕ ⊆ Sen(Σ) for eachϕ ∈Φ . Then:

1. {ϕ} |=Σ ϕ.
2. If Φ |=Σ ϕ thenΦ ∪Ψ |=Σ ϕ.

Page: 187 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

188 4 Working within an arbitrary logical system

3. If Φ |=Σ ψ andΨϕ |=Σ ϕ for eachϕ ∈Φ then
⋃

ϕ∈Φ Ψϕ |=Σ ψ.

Proof. Directly from the definition. ut

Another important property of semantic consequence is that it is preserved by
translation along signature morphisms:

Proposition 4.2.7.For any signature morphismσ :Σ → Σ ′, setΦ ⊆ Sen(Σ) of Σ -
sentences, andΣ -sentenceϕ ∈ Sen(Σ),

Φ |=Σ ϕ implies σ(Φ) |=Σ ′ σ(ϕ).

In other words,σ(ClΣ (Φ))⊆ ClΣ ′(σ(Φ)).

Proof. LetM′ ∈ModΣ ′(σ(Φ)). Then by the satisfaction conditionM′ σ ∈ModΣ (Φ),
and so by the definition of the consequence relationM′ σ |= ϕ. Thus, by the satis-
faction condition again,M′ |= σ(ϕ), which shows that indeedσ(Φ) |= σ(ϕ). ut

In general, the reverse implication does not hold, that is, the consequence relation
is not reflected by translation along signature morphisms.

Exercise 4.2.8.Try to prove the opposite implication, and notice where the proof
breaks down. Then construct a counterexample showing thatσ(Φ) |= σ(ϕ) does
not imply thatΦ |= ϕ even in the standard equational institutionEQ. (HINT : See
Proposition 4.2.15 below.) ut

Corollary 4.2.9. Under the assumptions of Proposition 4.2.7, ClΣ ′(σ(ClΣ (Φ))) =
ClΣ ′(σ(Φ)). ut

The above corollary implies that when we want to “move” the closure of a set of
sentences from one signature to another, it is enough to move only the set itself; all
its consequences can be derived over the target signature as well.

Another consequence of Proposition 4.2.7 is that closure of a set of sentences is
reflected by translation along signature morphisms:

Corollary 4.2.10. For any signature morphismσ :Σ → Σ ′ and setΦ ′ ⊆ Sen(Σ ′) of
Σ ′-sentences, ifΦ ′ is closed then so isσ−1(Φ ′).

Proof. SupposeΦ ′ is closed and letϕ ∈ ClΣ (σ−1(Φ ′)). First, notice that since
σ(σ−1(Φ ′)) ⊆ Φ ′, ClΣ ′(σ(σ−1(Φ ′))) ⊆ ClΣ ′(Φ ′). Now, by Proposition 4.2.7,
σ(ϕ) ∈ ClΣ ′(σ(σ−1(Φ ′)))⊆ ClΣ ′(Φ ′) = Φ ′. Thus,ϕ ∈ σ−1(Φ ′). ut

Notice that the above does not imply that “closure commutes with inverse image”
in general; only one of the required inclusions holds:

Corollary 4.2.11. For any signature morphismσ :Σ → Σ ′, setΦ ′ ⊆ Sen(Σ ′) of Σ ′-
sentences, andΣ -sentenceϕ ∈ Sen(Σ), if σ−1(Φ ′) |= ϕ thenΦ ′ |= σ(ϕ). In other
words, ClΣ (σ−1(Φ ′))⊆ σ−1(ClΣ ′(Φ ′)). ut

Exercise 4.2.12.Show that the reverse inclusion does not hold in the standard equa-
tional institutionEQ. ut

Page: 188 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.2 Flat specifications in an arbitrary institution 189

Forming the closure of a set of sentences consists of two phases: first taking the
class of models the set defines, and then taking the theory of this class. Separation
of these two phases by translation along a signature morphism preserves the closure
to some extent only:

Proposition 4.2.13.For any signature morphismσ :Σ → Σ ′ and setΦ ′ ⊆ Sen(Σ ′)
of Σ ′-sentences,

ClΣ (σ−1(Φ ′))⊆ ThΣ (ModΣ ′(Φ
′) σ) = σ

−1(ClΣ ′(Φ
′))

where for any classM ⊆ |Mod(Σ ′)|, M σ = {M′ σ |M′ ∈M }.

Proof. For the first part, letϕ ∈ ClΣ (σ−1(Φ ′)). Then, by Corollary 4.2.11,Φ ′ |=Σ ′

σ(ϕ). Hence, by the satisfaction condition,ModΣ ′(Φ ′) σ |=Σ ϕ, and soϕ ∈ThΣ (ModΣ ′(Φ ′) σ).
SinceModΣ ′(Φ ′)= ModΣ ′(ClΣ ′(Φ ′)), this showsThΣ (ModΣ ′(Φ ′) σ)= ThΣ (ModΣ ′(ClΣ ′(Φ ′)) σ)⊇

ClΣ (σ−1(ClΣ ′(Φ ′)))⊇ σ−1(ClΣ ′(Φ ′)), and hence also proves one inclusion (“⊇”)
of the second part. For the opposite inclusion, considerϕ ∈ ThΣ (ModΣ ′(Φ ′) σ), that
is ModΣ ′(Φ ′) σ |=Σ ϕ. By the satisfaction condition,ModΣ ′(Φ ′) |=Σ ′ σ(ϕ), which

meansσ(ϕ) ∈ ClΣ ′(Φ ′), and so indeedϕ ∈ σ−1(ClΣ ′(Φ ′)). ut

Corollary 4.2.14. For any signature morphismσ :Σ → Σ ′ and setΦ ⊆ Sen(Σ) of
Σ -sentences, ClΣ (Φ)⊆ σ−1(ClΣ ′(σ(Φ))). ut

Just as the implication opposite to the one stated in Proposition 4.2.7 does not hold
in general, the inclusion opposite to the one above does not hold in general either.
This changes forsurjectivereduct functors.

Proposition 4.2.15.Consider a signature morphismσ :Σ → Σ ′ such that the reduct
functor σ :Mod(Σ ′)→Mod(Σ) is surjective on models. For any setΦ ⊆ Sen(Σ)
of Σ -sentences andΣ -sentenceϕ ∈ Sen(Σ),

Φ |=Σ ϕ iff σ(Φ) |=Σ ′ σ(ϕ).

Proof. We prove only the implication opposite to that of Proposition 4.2.7. LetM ∈
|Mod(Σ)| be an arbitraryΣ -model, and letM′ ∈ |Mod(Σ ′)| be aσ -expansion ofM,
i.e., M′ σ = M (such anM′ exists since σ is surjective on models). IfM |=Σ Φ

then by the satisfaction conditionM′ |=Σ ′ σ(Φ), and soM′ |=Σ ′ σ(ϕ). Thus, by the
satisfaction condition again,M |=Σ ϕ. ut

Corollary 4.2.16. Under the assumptions of Proposition 4.2.15, ClΣ (Φ)= σ−1(ClΣ ′(σ(Φ))).
ut

This shows that the surjectivity of the reduct functor ensures that moving along a
signature morphism is “sound” and “complete” as a strategy for deciding ifΦ |=Σ

ϕ by checking whether or notσ(Φ) |=Σ ′ σ(ϕ) — without this property, such a
strategy is still “complete” (the satisfaction condition ensures that no consequences
are lost) but is not always “sound” (new consequences between “old” sentences may
be added).

Page: 189 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

190 4 Working within an arbitrary logical system

Exercise 4.2.17.Provide an example showing that surjectivity ofσ :Mod(Σ ′)→
Mod(Σ) is not a necessary condition for the conclusions of Proposition 4.2.15 and
Corollary 4.2.16. ut

Exercise 4.2.18.Show that the inclusionClΣ (Φ) ⊆ σ−1(ClΣ ′(σ(Φ))), for any
σ :Σ → Σ ′ andΦ ⊆ Sen(Σ), directly implies (and, in fact, is equivalent to) Corol-
lary 4.2.11. However, the opposite inclusionClΣ (Φ)⊇ σ−1(ClΣ ′(σ(Φ))) does not
imply the opposite to the inclusion there: even under the assumptions of Propo-
sition 4.2.15 and Corollary 4.2.16, the inclusionClΣ (σ−1(Φ ′)) ⊇ σ−1(ClΣ ′(Φ ′))
may fail for a setΦ ′ ⊆ Sen(Σ ′) of Σ ′-sentences. (HINT : One way to construct a
counterexample is to addfalse to the set of sentences ofEQ for some, but not all
signatures.)

Show, however, that under the assumptions of Proposition 4.2.15, for any set
Φ ′⊆Sen(Σ ′) of Σ ′-sentences,ClΣ (σ−1(Φ ′))= ThΣ (ModΣ ′(Φ ′) σ) andClΣ (σ−1(Φ ′))=
σ−1(ClΣ ′(Φ ′)) provided that in additionσ : Sen(Σ)→ Sen(Σ ′) is surjective. Dis-
cuss why this fact does not seem very interesting. ut

The following generalisation of Proposition 4.2.15 underlies the key corollary
below.

Proposition 4.2.19.Letσ :Σ→ Σ ′ be a signature morphism. Suppose that a setΓ ⊆
Sen(Σ) of Σ -sentences exactly characterises theσ -reducts ofΣ ′-models that satisfy
a setΓ ′⊆Sen(Σ ′) of Σ ′-sentences, that is, ModΣ (Γ) = Mod(σ)(ModΣ ′(Γ ′)). Then
for any setΦ ⊆ Sen(Σ) of Σ -sentences andΣ -sentenceϕ ∈ Sen(Σ), Φ ∪Γ |=Σ ϕ

if and only ifσ(Φ)∪Γ ′ |=Σ ′ σ(ϕ).

Proof. For the “if” part, assume thatσ(Φ)∪Γ ′ |=Σ ′ σ(ϕ) and letM |=Σ Φ ∪Γ .
Then, sinceM ∈ ModΣ (Γ), there existsM′ ∈ ModΣ ′(Γ ′) with M′ σ = M. By the
satisfaction condition,M′ |=Σ ′ σ(Φ), henceM′ |=Σ ′ σ(Φ)∪Γ ′ and soM′ |=Σ ′ σ(ϕ)
as well. Thus, by the satisfaction condition again,M |=Σ ϕ.

For the “only if” part, asume thatΦ ∪Γ |=Σ ϕ and let M′ |=Σ ′ σ(Φ)∪Γ ′.
Then by the satisfaction condition,M′ σ |=Σ Φ and moreover, by the assumption,
M′ σ |=Σ Γ . Hence,M′ σ |=Σ Φ ∪Γ , and soM′ σ |=Σ ϕ as well, which by the satis-
faction condition again proves thatM′ |=Σ ′ σ(ϕ). ut

Corollary 4.2.20. Let σ :Σ → Σ ′ be a signature morphism. Suppose that a setΓ ⊆
Sen(Σ) of Σ -sentences exactly characterises theσ -reducts ofΣ ′-models, that is,
ModΣ (Γ) = Mod(σ)(|Mod(Σ ′)|). Then for any setΦ ⊆ Sen(Σ) of Σ -sentences
andΣ -sentenceϕ ∈ Sen(Σ), Φ ∪Γ |=Σ ϕ if and only ifσ(Φ) |=Σ ′ σ(ϕ). ut

Exercise 4.2.21.Show that Proposition 4.2.15 follows directly from Proposition 4.2.19
(or Corollary 4.2.20). Generalise Corollary 4.2.16 in a similar way. ut

Definition 4.2.22 (Presentation).For any signatureΣ , aΣ -presentation(also known
as aflat specification) is a pair〈Σ ,Φ〉whereΦ ⊆Sen(Σ). M ∈ |Mod(Σ)| is amodel
of a Σ -presentation〈Σ ,Φ〉 if M |= Φ . Mod[〈Σ ,Φ〉] denotes the class of all models
of the presentation〈Σ ,Φ〉, andMod[〈Σ ,Φ〉] the full subcategory ofMod(Σ) with
objects inMod[〈Σ ,Φ〉]. ut

Page: 190 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.2 Flat specifications in an arbitrary institution 191

Definition 4.2.23 (The category of theories).For any signatureΣ , aΣ -theory T is
a Σ -presentation〈Σ ,Φ〉 whereΦ is closed. AΣ -presentation〈Σ ,Ψ〉 presentsthe
Σ -theory〈Σ ,ClΣ (Ψ)〉.

For any theoriesT = 〈Σ ,Φ〉 andT ′ = 〈Σ ′,Φ ′〉, a theory morphismσ :T→ T ′ is
a signature morphismσ :Σ → Σ ′ such thatσ(ϕ) ∈Φ ′ for everyϕ ∈Φ .

The categoryThINS of theories inINS has theories as objects and theory mor-
phisms as morphisms, with identities and composition inherited from the category
SignINS of signatures ofINS. ut

The satisfaction condition implies the following important characterisation of
theory morphisms, analogous to that given for equational theory morphisms in
Proposition 2.3.13.

Proposition 4.2.24.For any signature morphismσ :Σ → Σ ′ and setsΦ ⊆ Sen(Σ)
andΦ ′ ⊆ Sen(Σ ′) of sentences, the following conditions are equivalent:

1. σ is a theory morphismσ :〈Σ ,ClΣ (Φ)〉 → 〈Σ ′,ClΣ ′(Φ ′)〉.
2. σ(Φ)⊆ ClΣ ′(Φ ′).
3. For every M′ ∈ModΣ ′(Φ ′), M′ σ ∈ModΣ (Φ).

Proof.

1⇒ 2: Obvious, sinceΦ ⊆ ClΣ (Φ).
2⇒ 3: ConsiderM′ ∈ModΣ ′(Φ ′). Then alsoM′ ∈ModΣ ′(ClΣ ′(Φ ′)), and so for all

ϕ ∈ Φ , M′ |= σ(ϕ) (sinceσ(ϕ) ∈ ClΣ ′(Φ ′)). Hence, by the satisfaction condi-
tion, M′ σ |= ϕ, and thus indeedM′ σ ∈ModΣ (Φ).

3⇒ 1: Consider anyϕ ∈ ClΣ (Φ). We have to show thatσ(ϕ) ∈ ClΣ ′(Φ ′), that
is that for allM′ ∈ ModΣ ′(Φ ′), M′ |= σ(ϕ). However, ifM′ ∈ ModΣ ′(Φ ′) then
M′ σ ∈ModΣ (Φ). Hence,M′ σ |= ϕ, and the conclusion follows from the satis-
faction condition. ut

Exercise 4.2.25.Define the categoryPresINS of presentations inINS, with mor-
phismsσ :〈Σ ,Φ〉 → 〈Σ ′,Φ ′〉 that are signature morphismsσ :Σ → Σ ′ such that
Φ ′ |= σ(ϕ) for all ϕ ∈ Φ . Check thatThINS is a full subcategory ofPresINS and
that the two categories are equivalent. ut

Exercise 4.2.26.Show that by Proposition 4.2.24 above, the mapping which to any
theory assigns the category of its models extends to a functorMod : Thop

INS→ Cat,
where:

• for any theoryT = 〈Σ ,Φ〉, Mod[T] is the full subcategory ofMod(Σ) with ob-
jects inMod[T] as in Definition 4.2.22; and

• for any theory morphismσ :T→T ′, Mod(σ) is the reduct functor σ :Mod[T ′]→
Mod[T]. ut

Many standard properties of theories (and presentations) investigated in the realm
of classical model theory may be formulated in the framework of an arbitrary insti-
tution. For example:

Page: 191 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

192 4 Working within an arbitrary logical system

Definition 4.2.27 (Consistency and completeness of a presentation).A presen-
tation〈Σ ,Φ〉 is consistentif it has a model, i.e. ifMod[〈Σ ,Φ〉] 6= ∅.

A presentation〈Σ ,Φ〉 is completeif it is a maximal consistent presentation, i.e.
if it is consistent and no presentation〈Σ ,Φ ′〉 such thatΦ ′ properly containsΦ is
consistent. ut

Proposition 4.2.28.A presentation〈Σ ,Φ〉 is consistent if and only if the theory
〈Σ ,ClΣ (Φ)〉 is consistent. Any complete presentation is a (consistent) theory.ut

Definition 4.2.29 (Conservative theory morphism).For any theoriesT = 〈Σ ,Φ〉
and T ′ = 〈Σ ′,Φ ′〉, a theory morphismσ :T → T ′ is conservativeif for every Σ -
sentenceϕ, ϕ ∈Φ wheneverσ(ϕ) ∈Φ ′.

A theory morphismσ :T → T ′ admits model expansionif the corresponding
reduct function σ :ModΣ ′(Φ ′)→ModΣ (Φ) is surjective, that is, for everyΣ -model
M such thatM |=Σ Φ , there exists aΣ ′-modelM′ such thatM′ |=Σ ′ Φ

′ andM′ σ = M.
ut

Exercise 4.2.30.As in Proposition 4.2.15, show that a theory morphismσ :T→ T ′

is conservative if it admits model expansion. Note that the opposite implication does
not hold by Exercise 4.2.17. ut

The careful reader has probably realised that in this section we have not even
mentioned model morphisms. Indeed, everything above works equally well if we
forget about the category structure provided on the collections of models in an in-
stitution. But this proves inadequate for some purposes; see for example the next
section where the category structure on models is exploited.

4.3 Constraints

As discussed in Section 2.5, the class of all models that satisfy a given presentation
often contains some models that intuitively are undesirable realisations of the pre-
sentation. Different methods are used to constrain the semantics of presentations so
that from among all its models only the ones that are “desirable” are selected: for
example, one may take its initial semantics, reachable semantics, final semantics,
etc. (cf. Sections 2.5 and 2.7.2). How do these fit into the institutional framework
introduced above? Let us consider initiality constraints18 first.

There is clearly no problem with expressing the basic concept of initial model
in an arbitrary institution: models over any signature form a category, hence the
class of models satisfying a given presentation determines a full subcategory of this
category — and we know what initiality means in any category (cf. Section 3.2.1).

Let INS = 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉 be an institution, fixed throughout this
section.

18 We use the term “constraint” here following the terminology of [BG80], [GB92]. Initiality and
data constraints as discussed and formally defined below have nothing to do with constraints as
used in “constraint logic programming” [JL87].

Page: 192 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.3 Constraints 193

Definition 4.3.1 (Initial model of a presentation).For any signatureΣ ∈ |Sign|
and setΦ ⊆ Sen(Σ) of sentences, theinitial modelof the presentation〈Σ ,Φ〉 is the
(unique up to isomorphism) initial object inModΣ (Φ) considered as a full subcate-
gory ofMod(Σ). ut

We might feel tempted to pursue a number of possibilities to incorporate the idea
of initiality into the institutional framework:

• We may hope to be able to modify all institutions of interest so that they yield
initial semantics directly, by changing the model functorMod to yield only the
initial models as models over any signature. Clearly, this fails: requiring initiality
only makes sense relative to a presentation. If sentences are not taken into ac-
count then for example the only initial models in the institutionEQ of equational
logic are ground term algebras.

• We can attempt to modify the satisfaction relation so that only the initial models
of a sentence will be defined to satisfy it. Quite obviously, this does not work,
since it would then be impossible to adequately define models of presentations
involving more than one sentence. Without modifying the satisfaction relation,
we could modify Definitions 4.2.1 and 4.2.22 and consider only initial models
of presentations by definingModΣ (Φ) to consist only of the initial models in
{M |M |= Φ} considered as a full subcategory ofMod(Σ). But this would make
the whole theory rather clumsy, and the various definitions would not fit together
as neatly as they do now. For example, Propositions 4.2.7 and 4.2.24 would no
longer hold. Worse, this would not allow the user to write axioms that are to be
interpreted in a loose, non-initial fashion, indicating that only certain parts of a
specification are to be interpreted in an initial way. See Example 4.3.2 below.

• We can view the requirement of initiality with respect to a presentation as just
anothersentence. This would be a rather complicated sentence, as it has to con-
tain other sentences within it, but in view of examples like 4.1.38 (not to men-
tion 4.1.35) there is no reason why this should bother us. This is the approach we
will take.

It is not sufficient to define initiality constraints simply as sets of sentences over
a given signature, and then to define their satisfaction via the notion of an initial
model. The problem is that we do not always want to constrain the entire model of
a presentation. As the following example illustrates, we need to be able to constrain
only a certain part of this model, that is, to impose initiality constraints on its reduct
to a certain subsignature.

Example 4.3.2.Recall Exercise 2.5.21 which concerned the specification of a func-
tion ch:nat→ nat that for each natural numbern chooses an arbitrary number that is
greater thann. As argued there, we certainly do not want to take the initial model of
the entire specification: the initial model would generate “artificial elements” of sort
nat (as the results of the functionch) and then artificial elements of sortboolas well
(as results of comparisons by< involving the artificial elements of sortnat). What
one would like is to first interpret the original specificationNat of natural num-
bers in an initial way, do the same for the specificationBool, add the operation

Page: 193 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

194 4 Working within an arbitrary logical system

< :nat×nat→ bool (which is defined by its axioms in a sufficiently complete
way) — it so happens that this would be the same as taking an initial model of these
specifications put together — and only then add an operationch:nat→ nat with the
corresponding axiom interpreted in the underlying logic, with no initiality restric-
tions intervening in any way at this stage. ut

By allowing initiality requirements to be “fitted” to larger signatures by signature
morphisms, along the lines of the construction presented in Example 4.1.46, we can
impose the initiality requirement on parts of models.

Definition 4.3.3 (Initiality constraint). Let Σ ∈ |Sign| be a signature. AΣ -initiality
constraintis a pair〈Φ ′,θ〉, written asinitial Φ ′ through θ , whereθ :Σ ′ → Σ is a
signature morphism andΦ ′ ⊆ Sen(Σ ′) is a set ofΣ ′-sentences. AΣ -modelM ∈
|Mod(Σ)| satisfiesa Σ -initiality constraintinitial Φ ′ through θ if its reductM θ ∈
|Mod(Σ ′)| is an initial model of〈Σ ′,Φ ′〉. ut

Now, such an initiality constraint may be regarded as just another sentence in a
presentation, and freely mixed with “ordinary” sentences.

Exercise 4.3.4.Redo Exercise 2.5.21 using initiality constraints. Discuss the pos-
sibility of achieving the same effect without the “fitting morphism” component in
initiality constraints. ut

The specification built in Exercise 4.3.4 is not a presentation inFOEQ — we
have to extend this institution by adding initiality constraints first. Indeed, given
an institutionINS we can always form a new institutionINSinit in which initiality
constraints are allowed as additional sentences. Such a construction is implicitly
involved whenever initiality constraints are used.

Definition 4.3.5 (Institution with initiality constraints). The institution INSinit

with initiality constraints inINS is defined as follows:

• The categorySignINSinit of signatures is justSign, the same as inINS.
• The functorSenINSinit gives:

– for each signatureΣ , the (disjoint) union of the setSen(Σ) of Σ -sentences in
INS and of the set ofΣ -initiality constraints;19 and

– for each signature morphismσ :Σ → Σ1, the translation functionSenINSinit (σ)
that works asSen(σ) on all the “old” Σ -sentences inINS, and for anyΣ -
initiality constraintinitial Φ ′ through θ , whereθ :Σ ′→Σ andΦ ′⊆Sen(Σ ′),
is defined bySenINSinit (σ)(initial Φ ′ through θ) = initial Φ ′ through θ ;σ .

• The functorModINSinit is justMod, the same as inINS.
• For each signatureΣ ∈ |SignINSinit |, theΣ -satisfaction relation|=INSinit ,Σ is the

same as theΣ -satisfaction relation inINS for theΣ -sentences fromINS, and is
given by Definition 4.3.3 forΣ -initiality constraints. ut

19 As in Example 4.1.46, this may lead to some foundational difficulties which we disregard here,
cf. footnote 16.

Page: 194 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.3 Constraints 195

Exercise 4.3.6.Present the above definition as an instance of the construction given
in Example 4.1.46. Notice that this is sufficient to conclude thatINSinit is indeed an
institution.

Show (referring for example to Exercise 4.3.4) that in general the translation of
an initiality constraint cannot be given without the “fitting morphism” component,
and so we would not be able to define an institution where only initiality constraints
with trivial (identity) fitting morphisms would be allowed. ut

Exercise 4.3.7.Working in the institutionEQ, follow Definition 4.3.3 and define
reachability constraintsthat are satisfied only by algebras having an indicated reduct
that is reachable. Note that axioms used in initiality constraints play no role here,
so you can adopt a syntax likereachable throughθ . Following Definition 4.3.5,
define an institutionEQreach extendingEQ by reachability constraints.

Assuming that each category of models inINS comes equipped with a factorisa-
tion system (Section 3.3), introduce reachability constraints forINS using Defini-
tion 3.3.7 and extendINS correspondingly. ut

The use of initiality constraints as introduced above is not always entirely satis-
factory. Often, rather than requiring that a certain part of a model is initial, we want
to require it to be afree extensionof some other part. Natural examples arise when
we want to specify data structures built on an arbitrary set of elements, like lists,
sets or bags of arbitrary elements. This involves imposing the requirement that an
algebra modelling the data structure is a free extension of its reduct to the sort of
elements. To formalise this, the concept of a data constraint is introduced below.

Definition 4.3.8 (Data constraint).Let Σ ∈ |Sign| be a signature.
A Σ -data constraintis a triple〈σ ,Φ ′,θ〉, written asdata Φ ′ over σ through θ ,

whereσ :Σ1→ Σ ′ andθ :Σ ′ → Σ are signature morphisms andΦ ′ ⊆ Sen(Σ ′) is a
set ofΣ ′-sentences.

A Σ -modelM ∈ |Mod(Σ)| satisfiesthe data constraintdata Φ ′ over σ through θ

if its reductM θ ∈ |Mod(Σ ′)| to aΣ ′-model is a free model ofΦ ′ w.r.t. the reduct
functor σ :Mod[〈Σ ,Φ ′〉]→Mod(Σ1) over(M θ) σ , with the identity as unit. That
is, M satisfiesdata Φ ′ over σ through θ if:

• M θ |=Σ ′ Φ ′; and
• for anyM′ ∈ModΣ ′(Φ ′) andΣ1-morphismf :M σ ;θ →M′ σ there exists a unique

Σ ′-morphismf #:M θ →M′ such thatf #
σ = f . ut

Exercise 4.3.9.Using data constraints, give a specification of finite bags of an arbi-
trary set of elements. ut

Exercise 4.3.10.Following the pattern of Definition 4.3.5 (and of Example 4.1.46),
define the institutionINSdata by adding data constraints as additional sentences to
INS. ut

Note that nowhere in the above has it been assumed that initial models of presen-
tations actually exist in general (nor that the reduct functor used in Definition 4.3.8

Page: 195 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

196 4 Working within an arbitrary logical system

has a left adjoint). We do know that in some institutions (for example, in the insti-
tutionEQ of equational logic and in the institutionPEQ of partial equational logic)
any set of sentences over a given signature has an initial model (see Theorem 2.5.14
for the case ofEQ). On the other hand, there are institutions in which some sets
of sentences do not have initial models; the institutionFOEQ of first-order logic
with equality is an example (see Example 2.7.11). Nevertheless, the above defini-
tions work for an arbitrary institution. If a setΦ ⊆ Sen(Σ) of Σ -sentences has no
initial model, then an initiality constraintinitial Φ through θ based on this set has
no model, even if the classModΣ (Φ) of models of this set of sentences is not empty.

Exercise 4.3.11.Any set of sentences in the equational institutionEQ has a model,
and moreover, it has an initial model. Show that neither of these properties carries
over to the institutionEQinit of initiality constraints inEQ. That is, give a presenta-
tion in EQinit that has no model. ut

Exercise 4.3.12.Recall the institutionHorn of Horn formulae from Exercise 4.1.21
and show that every set of sentences inHorn has an initial model. Discuss the inter-
pretation of predicates in initial models: notice that they hold “minimally”, meaning
that only positive cases need to be explicitly specified. Extend this analysis to data
constraints, and use this to specify the transitive and reflexive closure of an arbitrary
binary predicate. ut

Exercise 4.3.13.Working in the institutionEQ as in Exercise 4.3.7, follow Defini-
tion 4.3.8 and definegeneration constraintsgenerated overσ through θ that are
satisfied by algebrasA such thatA θ is generated in a suitable sense byA σ ;θ . Define
an institutionEQgen extendingEQ by generation constraints.

Assuming that each category of models inINS comes equipped with a factori-
sation system (Section 3.3), introduce generation constraints forINS anticipating
Definition 4.5.1 and extendINS correspondingly. ut

Exercise 4.3.14.Following Exercise 3.5.24, dualise the concept of data constraint.
A co-data constraintin an institutionINS can be written asco-dataΦ ′ over σ through θ ,
whereΦ ′, σ andθ are as in Definition 4.3.8. AΣ -modelM ∈ |Mod(Σ)| satisfies
co-dataΦ ′ over σ through θ if M θ is a cofree model ofΦ ′ w.r.t. the reduct func-
tor σ :Mod[〈Σ ′,Φ ′〉]→Mod(Σ1) over itsσ -reduct, with the identity as counit, that
is, if M θ |=Σ ′ Φ ′ and for anyM′ ∈ModΣ ′(Φ ′) andΣ1-morphism f :M′ σ →M σ ;θ

there exists a uniqueΣ ′-morphism f #:M′ → M θ such thatf #
σ = f . Extend this

definition to build an institutionINScodata by adding co-data constraints as addi-
tional sentences toINS.

Discuss the use of co-data constraints in standard institutions likeEQ and
FOPEQ. For instance, consider the following simple presentation:

Page: 196 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.4 Exact institutions 197

specStream= sorts elem,stream
ops hd:stream→ elem

tl:stream→ stream
cons:elem×stream→ stream

∀x:elem,∀s:stream
• hd(cons(x,s)) = x
• tl(cons(x,s)) = s

Check that any modelM of Stream that is cofree overE = |M|elem(w.r.t. the reduct
functor given by the obvious signature inclusion) is isomorphic to the algebraEω of
(countably) infinite streams of elements fromE, with the operations defined in the
standard way.

Much the same effect is achieved even when we remove the operationconsand
the two axioms from this presentation: check that ifΣ is a signature with sorts
elem,streamand operationshd:stream→ elem, tl:stream→ streamthen cofreeΣ -
models over their carrierE of sort elemare (up to isomorphism) the algebrasEω

of (countably) infinite streams of elements fromE, with hd and tl defined in the
standard way. Check then that in any such algebra the two axioms inStream define
the operationconsunambiguously. ut

4.4 Exact institutions

As illustrated in Sections 4.2 and 4.3, institutions provide a sufficient basis for much
of the standard machinery of specifications without the need for further assumptions.
Still, the structure and properties of a logical system exposed by the definition of an
institution are very limited, and do not provide an adequate basis for many other
aspects of the theory and practice of software specification and development. As
discussed in the introduction to this chapter, this should not discourage us from
working within the institutional framework. On the contrary, it is worth trying to find
some adequately abstract additional assumptions that are sufficient for the purpose
at hand. As always in mathematics, the main informal guideline to follow is to keep
the additional assumptions to a minimum. Part of the payoff is that this forces us to
work at a level of generality and abstraction that ensures a deeper understanding of
the essence of the studied phenomena, while at the same time covering as many of
the cases of potential interest as possible.

In this section and the next we will illustrate this strategy by presenting some
extensions to the notion of an institution by additional structure or properties that
are required to support study of more detailed properties of specifications.

The ways in which specifications (or programs, systems, or structures of any
kind) are put together is the very essence of the theory and methodology of software
specification and development. One of the basic tools for “putting things together”
is the categorical notion of colimit (cf. Section 3.2) with pushouts as a particularly
important special case; see for instance Section 6.3 below. Putting specifications

Page: 197 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

198 4 Working within an arbitrary logical system

together then involves taking colimits in the category of theories. It would be rather
inconvenient to have to establish the existence of a colimit for each diagram of
interest separately, so we normally require the category of theories to be cocomplete
(or at least finitely cocomplete). Checking this directly would be tedious — and this
is why the following general result is useful.

Theorem 4.4.1.For any institutionINS, if the categorySignINS of signatures in
INS is cocomplete then so is the categoryThINS of theories inINS.

Proof. Let D be a diagram inThINS with |G(D)|node= N andDn = 〈Σn,Φn〉 for
n ∈ N. Let D′ be the corresponding diagram inSignINS, henceD′n = Σn for n ∈
N. By the assumption of the theorem,D′ has a colimit, say〈αn:Σn→ Σ〉n∈N. Let
Φ = ClΣ (

⋃
n∈Nαn(Φn)). Then for eachn ∈ N, αn:〈Σn,Φn〉 → 〈Σ ,Φ〉 is a theory

morphism (this is obvious) and〈αn〉n∈N is a colimit ofD in ThINS. For: first notice
that it is a cocone onD (since it is a cocone onD′ in SignINS), and then consider
another cocone onD, say〈βn:〈Σn,Φn〉 → 〈Σ ′,Φ ′〉〉n∈N. By the construction, there
exists a unique signature morphismσ :Σ → Σ ′ such that for eachn∈N, αn;σ = βn.
To complete the proof, it is sufficient to show thatσ :〈Σ ,Φ〉 → 〈Σ ′,Φ ′〉 is a theory
morphism. By Proposition 4.2.24, it is enough to show thatσ(

⋃
n∈Nαn(Φn))⊆Φ ′.

This easily follows from the fact that for eachn∈ N, βn is a theory morphism, and
henceσ(αn(Φn)) = (αn;σ)(Φn) = βn(Φn)⊆Φ ′. ut

The above proof shows that in fact a stronger property holds: in any institution,
the category of theories has all of the colimits that the category of signatures has:
the forgetful functor mapping theories to their underlying signatureslifts colimits.
So, for instance:

Corollary 4.4.2. For any institutionINS, if the categorySignINS of signatures in
INS is finitely cocomplete then so is the categoryThINS of theories inINS. ut

Notice that the above theorem applies toany institution, regardless of the means
used to construct it. Hence, for example, if the categorySignINS of signatures in
an institutionINS is cocomplete, then not only is the categoryThINS of theories
in INS cocomplete, but so are the categoriesThINSinit , ThINSdata andThINScodata of
theories in the corresponding institutions with initiality constraints, data constraints
and co-data constraints respectively (cf. Definition 4.3.5, Exercise 4.3.10 and Exer-
cise 4.3.14).

Exercise 4.4.3.Assume that the category of signatures of a certain institution has
an initial object. What is then an initial object in the category of theories? ut

Example 4.4.4.Working in the institutionEQ of equational logic, recall Exam-
ple 3.2.35 of a simple pushout of algebraic signatures, and the setΦNat of equa-
tional axioms over the signatureΣNat given in Exercise 2.5.4. LetTNat be the
ΣNat-theory presented byΦNat. Let TNatfib be theΣNatfib-theory presented
by the axiomsΦNatfib that includeΦNat plus the following:

Page: 198 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.4 Exact institutions 199

fib(0) = succ(0)
fib(succ(0)) = succ(0)
∀n:nat• fib(succ(succ(n))) = fib(succ(n))+fib(n)

Finally, let TNatmult be theΣNatmult-theory presented by the axiomsΦNatmult

that includeΦNat plus the following:

∀n:nat•mult(0,n) = 0
∀n,m:nat•mult(succ(n),m) = mult(n,m)+m

Now, we have theory inclusions:

TNatfib←−↩ TNat ↪−→ TNatmult

with the corresponding signature inclusions given in Example 3.2.35. Their pushout
is theΣNatfib,mult-theoryTNatfib,mult presented by the union ofΦNat, ΦNatfib

andΦNatmult.
As in Example 3.2.35, this is deceptively simple, as only single-sorted theory

inclusions that introduce different operation names are involved.

Exercise. Give examples of pushouts in the category of equational theories with
signatures involving more than one sort, extensions with overlapping sets of opera-
tion names, and theory morphisms that are not injective on sort and/or on operation
names. Notice however that the extra complications come only from the construc-
tion of signature pushouts; the theories are defined in much the same way.

Exercise. Obviously, when giving the set of axioms forTNatfib,mult, ΦNat may
be omitted, as it is already included in the other sets of axioms. Try to generalise
this remark to “optimise” the construction of the colimit in the category of theories
given in the proof of Theorem 4.4.1. ut

We have seen how the assumption that the category of signatures of an institu-
tion is (finitely) cocomplete ensures that the institution provides means for “putting
theories together”. It is also interesting to investigate how this relates to “putting
models together”, which is what structured programming in the large is all about.
There is an important difference here: in the above, and in general when dealing
with specifications, we were interested in combining theories, i.e., sets of sentences.
In model-theoretic terms, this corresponds to combining classes of models. How-
ever, when the specified system is being built, we are interested in expanding and
combiningindividualmodels.

Example 4.4.5.Recall Example 4.4.4 of a simple pushout in the category of the-
ories of the institutionEQ of equational logic. Consider an arbitrary modelN of
TNat, anyΣNatmult-algebraN2 built by adding toN an interpretation offib such
that the axioms inΦNatfib are satisfied, and anyΣNatmult-algebraN2 built by
adding toN an interpretation ofmultsuch that the axioms inΦNatmult are satisfied.
Then, much as in Example 3.4.35 where specific such algebras were considered,N1

andN2 may be uniquely combined to aΣNatfib,mult-algebraN′ that expands them

Page: 199 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

200 4 Working within an arbitrary logical system

both. The key property now is that the algebras built in this way are models of the
theoryTNatfib,mult, and moreover, that all its models may be built in this way.ut

It turns out that the crucial link which ensures that constructions to combine theories
and to combine models work together smoothly, as in the above example, is the
continuity of the model functor in the underlying institution.

Definition 4.4.6 (Exact institution).An institutionINS is (finitely) exactif its cate-
gory of signaturesSignINS is (finitely) cocomplete and its model functorModINS:Signop

INS→
Cat is (finitely) continuous, mapping (finite) colimits inSignINS to limits in Cat.

ut

Example 4.4.7.All of the institutions defined in the examples and sketched in the
exercises in Section 4.1.1, with the major exception ofFPL (Example 4.1.25) and
perhaps those given in Examples 4.1.35, 4.1.36 and 4.1.37 where we know nothing
about the signature categories, are exact. See Exercises 3.2.53 and 3.4.33 for the
standard algebraic case of the equational institutionEQ — all of the other cases
require a similar argument. ut

Exercise 4.4.8.The abstract formulation of exactness above may somewhat hide the
role of this property in “putting models together”. Consider an exact institutionINS
and a diagramD in SignINS with colimit signatureΣ ′. Anticipating the crucial case
of preservation of signature pushouts treated in Definition 4.4.12, show that (up to
isomorphism of categories)ModINS(Σ ′) can be defined as follows, whereN is the
set of nodes inD:

• Σ ′-models are families〈Mn ∈ |ModINS(Dn)|〉n∈N that are compatible with signa-
ture morphisms inD in the sense thatMn = Mm De for each edgee:n→m in the
graph ofD; and

• Σ ′-morphisms between any suchΣ ′-models〈Mn〉n∈N and〈M′n〉n∈N are families
〈hn:Mn→M′n〉n∈N of morphisms inModINS(Dn), n∈N, that are compatible with
signature morphisms inD in the sense thathn = hm De for each edgee:n→m in
the graph ofD.

Moreover, for eachn∈ N, the reduct functor w.r.t. the colimit injection fromDn to
Σ ′ is just the projection of such families on then-th component.

HINT : Use Exercise 3.4.32 (and indirectly Exercise 3.2.53). ut

Exercise 4.4.9.Consider a finitely exact institution. Present initiality constraints
(Definition 4.3.3) as a special case of data constraints (Definition 4.3.8). Is the as-
sumption that the institution is finitely exact essential? ut

Exercise 4.4.10.An interesting standard institution with a cocomplete category of
signatures and a model functor that preserves “nearly all” finite colimits of signa-
tures is the institutionSSEQof single-sorted equational logic. Give a precise def-
inition of this institution and indicate which colimits of signature diagrams are not
preserved by the model functor. HINT : Consider the initial single-sorted signature.

ut

Page: 200 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.4 Exact institutions 201

Definition 4.4.11 (Semi-exact institution).An institution INS is semi-exactif
all pushouts exist in its category of signaturesSignINS and its model functor
ModINS:Signop

INS→ Cat preserves pushouts, mapping them to pullbacks inCat.
ut

A consequence of the assumption that the model functor of an institution pre-
serves signature pushouts is the well-knownAmalgamation Lemma.

Definition 4.4.12 (Amalgamation property).Let INS = 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉
be an institution and consider the following diagram inSign:

Σ

Σ1 Σ2

Σ ′

@
@

@@I

�
�

���

�
�

���

@
@

@@I

σ1 σ2

σ ′1 σ ′2

This diagramadmits amalgamationif:

• for any two modelsM1 ∈ |Mod(Σ1)| and M2 ∈ |Mod(Σ2)| such thatM1 σ1 =
M2 σ2, there exists a unique modelM′ ∈ |Mod(Σ ′)| such thatM′ σ ′1

= M1 and
M′ σ ′2

= M2 (we call suchM′ theamalgamationof M1 andM2); and
• for any two model morphismsf1:M11→ M12 in Mod(Σ1) and f2:M21→ M22

in Mod(Σ2) such that f1 σ1 = f2 σ2, there exists a unique model morphism
f ′:M′1→ M′2 in Mod(Σ ′) such thatf ′ σ ′1

= f1 and f ′ σ ′2
= f2 (we call suchf ′

theamalgamationof f1 and f2).

The institutionINS has the amalgamation propertyif all pushouts inSignexist and
every pushout diagram inSignadmits amalgamation. ut

Exercise 4.4.13.Show that if a diagram as in Definition 4.4.12 admits amalgama-
tion and is commutative then all models and morphisms inMod(Σ ′) are amalgama-
tions of pairs of (compatible) models and morphisms fromMod(Σ1) andMod(Σ2),
respectively. ut

Lemma 4.4.14 (Amalgamation Lemma).Any semi-exact institution has the amal-
gamation property. ut

The proof of the Amalgamation Lemma is based on the construction of pullbacks
in Cat, cf. Exercise 3.4.32; see also Exercise 3.4.34, which is the same result in
the standard algebraic framework. Note that the opposite implication also holds, so
semi-exactness is equivalent to the amalgamation property.

Clearly, every exact institution is finitely exact, and every finitely exact institu-
tion is semi-exact. However, the last property is strictly weaker: for example, the
institutionSSEQof single-sorted equational logic is semi-exact, but not finitely ex-
act (see Exercise 4.4.10). In semi-exact institutions coproducts of signatures need

Page: 201 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

202 4 Working within an arbitrary logical system

not exist, or if they exist, need not be preserved by the model functor. However,
if signature coproducts exist, the colimits for a large interesting class of signature
diagrams (exist and) are preserved:

Proposition 4.4.15.In any semi-exact institution, if the category of signatures has
an initial object then it is finitely cocomplete and the model functor maps colimits
of all finite non-empty connected diagrams of signatures to limits inCat.

Proof sketch.The first part (existence of colimits of finite signature diagrams) fol-
lows as usual, by dualising Exercise 3.2.48; the second part (preservation of limits
of finite non-empty connected signature diagrams) follows by Exercise 3.4.55.ut

Exercise 4.4.16.Define institutions:SSFOPEQof single-sorted first-order predi-
cate logic with equality,SSPFOPEQof single-sorted partial first-order predicate
logic with equality,SSCEQof single-sorted equational logic for continuous alge-
bras, etc. Check that all of these institutions have cocomplete categories of sig-
natures and are semi-exact. However, check that their model functors do not map
coproducts of their signatures to products of the corresponding model categories, so
these institutions are not (finitely) exact. ut

Exercise 4.4.17.Let INS be a (finitely) exact institution. Recall that there is a func-
tor ModTh :Thop

INS → Cat mapping theories to their model categories and theory
morphisms to the corresponding reduct functors (cf. Exercise 4.2.26). Prove that
ModTh preserves (finite) limits.

HINT : First use the satisfaction condition forINS and the Amalgamation Lemma
for signatures (Lemma 4.4.14) to prove the following generalisation of the Amalga-
mation Lemma:

Lemma (Amalgamation Lemma for theories).Let INS be a semi-exact institu-
tion. Consider a pushout in the categoryThINS of theories:

T

T1 T2

T ′

@
@

@@I

�
�

���

�
�

���

@
@

@@I

σ1 σ2

σ ′1 σ ′2

Then, for any two models M1∈Mod[T1] and M2∈Mod[T2] such that M1 σ1 = M2 σ2,
there exists a unique model M′ ∈ Mod[T ′] such that M′ σ ′1

= M1 and M′ σ ′2
= M2,

and similarly for morphisms.

To complete the proof thatModTh is finitely continuous, by Exercise 3.2.48 it is
enough to consider the initial theory and its category of models. To show that it
is continuous, by Exercise 3.4.23 it is enough to consider coproducts of arbitrary
families of theories and their categories of models. ut

Page: 202 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.4 Exact institutions 203

The trouble withFPL and with other institutions based on derived signature mor-
phisms (see Exercise 4.1.23) is more severe than with single-sorted institutions: they
are not semi-exact since not all pushouts exist in their signature categories, see Ex-
ercise 3.2.54. This motivates the following relaxation of semi-exactness, which is
important for applications later on.

Definition 4.4.18 (I-semi-exact institution).For any institutionINS, we say that a
collection I of signature morphisms inINS is closed under pushoutsif I contains
all the identities, is closed under composition (so thatI is a wide subcategory of
SignINS) and for any signature morphismσ :Σ → Σ1 and “I -extension ofΣ ” ι :Σ →
Σ ′ in I , there is a pushout inSign

Σ

Σ ′

Σ1

Σ ′1

6

ι

-
σ

-σ ′

6

ι ′

such thatι ′ ∈ I .
Moreover, if all such pushouts withι , ι ′ ∈ I admit amalgamation (i.e., the model

functor maps them to pullbacks inCat) we say thatINS is semi-exact w.r.t.I (or
I -semi-exact). ut

Exercise 4.4.19.As mentioned above, institutions with derived signature morphisms
do not have cocomplete signature categories. Check, however, that for example the
institutionGEQder is semi-exact w.r.t. the class of all inclusions (where inclusions
are derived signature morphisms that map anyn-ary operation namef to the term
f (1 , . . . , n), cf. Definition 1.5.14). Similarly, check thatGEQder is semi-exact
w.r.t. the class of inclusions that introduce only new constants. (Notice that in gen-
eral an institution may beI -semi-exact without beingI ′-semi-exact for someI ′ ⊆ I .)

For FPL, consider the classIFPL of signature morphismsδ :SIG→ SIG′ that are
injective renamings of sort and operation names such that no new value constructors
are added for “old” sorts (i.e. sorts inδ (SIG)). Show thatFPL is IFPL-semi-exact.
Notice that both parts of the assumption on these morphisms are essential. Give
an example of a non-injective renaming that does not have a pushout with another
FPL signature morphism. Give an example of an injective renaming that adds value
constructors for an old sort and does not have a pushout with anotherFPL signa-
ture morphism. Finally, give an example of a pushout in the the category ofFPL-
signatures that is not mapped by theFPL-model functor to a pullback inCat. HINT :
Consider two morphisms that add a new sort and a new unary value constructor for
a previously unconstrained sort, with the new sort as its argument sort. ut

Exercise 4.4.20.To complete the formal picture, note that the category of theories
in FPL is cocomplete even though its category of signatures is not. Discuss why
this is not useful for combining models over different signatures. HINT : Consider a

Page: 203 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

204 4 Working within an arbitrary logical system

simple signature with one sort and one binary operation, and two morphisms which
map this operation to the projections on the first and second argument respectively.
Then these two morphisms do not have a coequaliser inSignFPL while in ThFPL
their coequaliser is obtained by adding an equation to assert that the two projections
coincide. ut

We have introduced and studied amalgamation, exactness and semi-exactness as
purely technical properties of institutions. However, as hinted at by Example 4.4.5
and the examples it builds on, amalgamation, and hence semi-exactness and exact-
ness, provide a fundamental tool for combining models over different signatures.
The point is easiest to see in institutions with standard signatures, likeFOPEQ
or EQ, when all the morphisms are inclusions. In that case, generalising the simple
example of natural numbers and their extensions by the Fibonacci function and mul-
tiplication in Example 3.2.35, given signaturesΣ1 andΣ2 with Σ = Σ1∩Σ2, we get
Σ ′= Σ1∪Σ2 as the pushout signature. Now, the amalgamation property ensures that,
given aΣ1-modelM1 and aΣ2-modelM2 which give the same interpretation to all
of the common symbols (inΣ), we can put them together in the obvious way (gen-
eralising Example 4.4.5) to interpret all of the symbols in the combined signature
Σ ′. In the institutional context, this intuition applies as well, but the sharing require-
ment is expressed by insisting on a common reduct along the indicated signature
morphisms, and the combined signature is obtained using the pushout.

4.4.1 Abstract model theory

One of the ideas behind the definition of institution is that it is important to indi-
cate over which signature one is working. In classical logic, there are a number of
theorems in which the signature (orlanguage, as logicians would say) over which
formulae are constructed must be considered. Here is an example (for this, and for
a classical formulation of the Robinson consistency theorem mentioned below, see
e.g. [CK90]):

Theorem (Craig interpolation theorem). In first-order logic, for any two formu-
lae ϕ1 and ϕ2, if ϕ1 |= ϕ2 then there exists a formulaθ using only the common
symbols ofϕ1 andϕ2 — that is, those symbols that occur in both formulae — such
that ϕ1 |= θ andθ |= ϕ2. ut

In our view, this standard formulation is not very elegant: referring to “the com-
mon symbols ofϕ1 andϕ2” feels rather clumsy, even though it is easy enough to
make it precise in the case of first-order logic. In the institutional framework this
can be expressed in a more general and abstract way using colimits in the category
of signatures.

Definition 4.4.21 (Craig interpolation property). Let INS be an institution with a
finitely cocomplete categorySign of signatures.INS satisfies theCraig interpola-
tion propertyif for any pushout

Page: 204 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.4 Exact institutions 205

Σ

Σ1 Σ2

Σ ′

@
@

@@I

�
�

���

�
�

���

@
@

@@I

σ1 σ2

σ ′1 σ ′2

in Sign, and for anyΣ1-sentenceϕ1 ∈ Sen(Σ1) andΣ2-sentenceϕ2 ∈ Sen(Σ2), if
σ ′1(ϕ1) |=Σ ′ σ

′
2(ϕ2) then there exists aΣ -sentenceθ ∈Sen(Σ) (called aninterpolant

for ϕ1 andϕ2) such thatϕ1 |=Σ1 σ1(θ) andσ2(θ) |=Σ2 ϕ2. ut

Not only has “the common symbols ofϕ1 andϕ2” been captured by the simple cate-
gorical concept of a pushout here, but we were also forced to identify the signatures
over which the individual consequence relations are considered. In our view, this
is a much improved statement of the Craig interpolation property! Not only does
it seem more clear (of course, any comparison should be made with a fully formal
statement of the Craig interpolation theorem in the classical framework, not with the
presentation given above), it is also more abstract and may be used for any logical
system formalised as an institution, not just for first-order logic.

Here is another example, which states that consistent extensions of a complete
theory (cf. Definition 4.2.27) combine safely:

Definition 4.4.22 (Robinson consistency property).Let INS be an institution with
a finitely cocomplete categorySign of signatures.INS satisfies theRobinson con-
sistency propertyif for any pushout

Σ

Σ1 Σ2

Σ ′

@
@

@@I

�
�

���

�
�

���

@
@

@@I

σ1 σ2

σ ′1 σ ′2

in Sign, and for any completeΣ -theoryT = 〈Σ ,Φ〉 and consistent theoriesT1 =
〈Σ1,Φ1〉 andT2 = 〈Σ2,Φ2〉 such thatσ1:T → T1 andσ2:T → T2 are theory mor-
phisms, theΣ ′-presentation〈Σ ′,σ ′1(Φ1)∪σ ′2(Φ2)〉 is consistent. ut

Exercise 4.4.23.Adapt any standard proof of the Craig interpolation theorem to
show thatFOPEQ has the Craig interpolation property for those pushouts where
at least one ofσ1 or σ2 is injective on sorts. Construct a counterexample which
shows that the proof must break down if neitherσ1 norσ2 is injective on sort names
(injectivity on operation and predicate names does not have to be required). HINT :
See [Bor05].

Show also that the Craig interpolation theorem forFOPEQ implies the analo-
gous result for some of the subinstitutions ofFOPEQ (see Exercise 4.1.13), for

Page: 205 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

206 4 Working within an arbitrary logical system

instance forFOEQ. Note though that your argument will not work forFOP, first-
order predicate logic without equality — in fact, Craig interpolation may fail inFOP
when one of the morphisms involved is non-injective on operation names, even if all
the morphisms are injective on sort names. Of course, the standard proofs of Craig
interpolation easily adapt toFOP when the morphisms involved are injective (on
sort names as well as on operation names). ut

It is well known that equational logic does not have the interpolation property:

Counterexample 4.4.24.In EQ, consider the signatureΣ with three sortss, s1

ands2, and two constantsa,b:s. Let Σ1 andΣ2 extendΣ by a constante:s1 and
by a unary operationf :s1 → s2 respectively. LetΣ ′ be the union ofΣ1 and Σ2

(this is the pushout signature for the two signature inclusions). Consider the sen-
tences∀x:s2• a = b∈ SenEQ(Σ1) anda = b∈ SenEQ(Σ2). Clearly, overΣ ′ we have
∀x:s2• a = b |= a = b (since allΣ ′-algebras have non-empty carriers for all sorts).

Suppose that we have an interpolantθ ∈ SenEQ(Σ) for ∀x:s2• a = b anda = b,
so that∀x:s2• a = b |= θ overΣ1 andθ |= a = b overΣ2. Consider aΣ1-algebraA1

with the carrier of sorts2 empty and withaA1 6= bA1. Clearly,A1 |=Σ1 ∀x:s2• a = b,
and so alsoA1 |=Σ1 θ . Hence,A1 Σ |=Σ θ . Take a subalgebra ofA1 Σ with the empty
carrier of sorts1, which satisfiesθ , and consider its expansionA2 to aΣ2-algebra.
ThenA2 |=Σ2 θ butA2 6|=Σ2 a = b. Contradiction. ut

Exercise 4.4.25.It is often stated that equational logic has interpolation (at least for
pushouts w.r.t. injective signature morphisms) if one admits aset of interpolants,
rather than just a single interpolant sentenceθ as in Definition 4.4.21. Spell out this
property following Definition 4.4.21, but using a set of sentencesΘ ⊆ Sen(Σ) in
place of a single sentenceθ ∈Sen(Σ). It also makes sense then to replace the single
sentenceϕ1 ∈ Sen(Σ1) by a setΦ1⊆ Sen(Σ1).

Unfortunately, equational logic has this property only if we restrict attention to
algebras with non-empty carriers for all sorts. Carry out the proof for this case as-
suming that the signature morphisms considered are injective (HINT : see [Rod91])
and note where the assumption that the carriers are non-empty is important. Give a
counterexample which shows that in general no single interpolant can be sufficient
here. Extend this proof to the case where only one of the signature morphisms is
injective on sorts (HINT : see [RG00], [PŞR09]).

Check that Counterexample 4.4.24 shows that the institutionEQ of equational
logic (with models that admit empty carriers) does not have the interpolation prop-
erty, not even when sets of interpolants are allowed (and the morphisms involved
are signature inclusions).

Go through other examples of institutions in Section 4.1.1 and check which of
them have the interpolation property, either with a single interpolant, or with a set of
interpolants (at least for pushouts involving signature inclusions, where this notion
makes sense). ut

Of course, we cannot expect to be able to prove that either the Craig interpo-
lation or Robinson consistency properties are satisfied by an arbitrary institution

Page: 206 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.4 Exact institutions 207

— they simply do not hold for some logics. However, one may attempt to iden-
tify other conditions on the underlying institution which imply the two properties.
Along these lines, under some further technical assumptions, the two properties are
equivalent: an institution satisfying certain technical assumptions satisfies the Craig
interpolation property if and only if it satisfies the Robinson consistency property.
This reflects what is well-known in classical model theory, where the two properties
are indeed derivable from one another.

4.4.2 Free variables and quantification

In logic, formulae may contain free variables; such formulae are calledopen, as op-
posed toclosedformulae which have no free variables. To interpret an open formula,
one needs not only an interpretation for the symbols of the underlying signature (a
model) but also an interpretation for the free variables (a valuation of variables in
the model). This provides a natural way to deal with quantifiers. The need for open
formulae also arises in the study of specification languages. In fact, we will use them
to abstractly express the basic notion of behavioural equivalence in Section 8.5.3,
see Exercise 8.5.61.

Fortunately we do not have to change the notion of an institution to cope with
free variables — we can provide open formulae in the present framework. Note that
we use here the term “formula” rather than “sentence”, which is reserved for the
sentences of the underlying institution, corresponding to closed formulae.

Consider the institutionGEQ of ground equational logic (Example 4.1.3). Let
Σ = 〈S,Ω〉 be an algebraic signature. For anyS-indexed family of sets,X = 〈Xs〉s∈S,
defineΣ(X) to be the extension ofΣ by the elements ofX as new constants of the
appropriate sorts. Any sentence overΣ(X) may be viewed as an open formula over
Σ with free variablesX. Given aΣ -algebraA, to determine whether an openΣ -
formula with variablesX holds in A we have to first fix a valuation of variables
X into |A|. Such a valuation corresponds exactly to an expansion ofA to a Σ(X)-
algebra.

Given a translation of sentences along an algebraic signature morphismσ :Σ →
Σ ′ we can extend it to a translation of open formulae: we translate an openΣ -
formula with variablesX, which is aΣ(X)-sentence, to the correspondingΣ ′(X′)-
sentence, which is an openΣ ′-formula with variablesX′. HereX′ results fromX by
an appropriate renaming of sorts determined byσ (we also have to avoid unintended
”clashes” of variables and operation symbols).

The above ideas generalise to any semi-exact institutionINS = 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉.

Definition 4.4.26 (Open formula).Let Σ ∈ |Sign| be a signature inINS. Any pair
〈ϕ,θ〉, whereθ :Σ → Σ ′ is a signature morphism andϕ ∈ Sen(Σ ′), is anopenΣ -
formulawith variables “Σ ′ \θ(Σ)”. For anyΣ -modelM ∈ |Mod(Σ)|, avaluationof
variables “Σ ′ \θ(Σ)” into M is aΣ ′-modelM′ ∈ |Mod(Σ ′)| which is aθ -expansion
of M, i.e., such thatM′ θ = M. We say that〈ϕ,θ〉 holds in M under valuation M′ iff

Page: 207 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

208 4 Working within an arbitrary logical system

M′ |=Σ ′ ϕ. If σ :Σ → Σ1 is a signature morphism then we define the translation of
〈ϕ,θ〉 alongσ as〈σ ′(ϕ),θ ′〉, where

Σ

Σ ′

Σ1

Σ ′1

6

θ

-
σ

-σ ′

6

θ ′

is a pushout inSign. ut

Note the quotation marks around the “set of variables”Σ ′ \θ(Σ) in the above defini-
tion: sinceΣ ′ \θ(Σ) makes no sense in an arbitrary institution, it is only meaningful
as an aid to our intuition.

In the standard logical framework there may be no valuation of a set of variables
into a model containing an empty carrier. Similarly here, a valuation need not always
exist. For example, inGEQ if a signature morphismθ :Σ → Σ ′ is not injective then
someΣ -models have noθ -expansion.

There is a rather subtle problem with the above definition: pushouts are defined
only up to isomorphism, so strictly speaking the translation of open formulae is not
well-defined. The following exercise shows that (at least for semantic analysis) an
arbitrary pushout may be selected and so we may safely accept the above definition
of translation.

Exercise 4.4.27.Consider an isomorphismι :Σ ′1→ Σ ′′1 in Sign, with inverseι−1.
Since functors preserve isomorphisms,Sen(ι):Sen(Σ ′1)→ Sen(Σ ′′1) is a bijection
andMod(ι):Mod(Σ ′′1)→Mod(Σ ′1) is an isomorphism inCat. Show that moreover,
for anyψ ∈ Sen(Σ ′1) andM′1 ∈ |Mod(Σ ′1)|, M′1 |=Σ ′1

ψ ⇐⇒M′1 ι−1 |=Σ ′′1
ι(ψ). ut

Sometimes we want to restrict the class of signature morphisms that may be
used to construct open formulae. In fact, in the above remarks sketching how free
variables may be introduced intoGEQ we used just algebraic signature inclusions
ι :Σ ↪→ Σ ′ where the only new symbols inΣ ′ were constants. To guarantee that the
translation of open formulae is defined under such a restriction, we consider only
restrictions to a collectionI of signature morphisms that is closed under pushouts
(see Definition 4.4.18).

Examples of such collectionsI in AlgSig include: the collection of all algebraic
signature inclusions, the restriction of this to inclusionsθ :Σ ↪→ Σ ′ such thatΣ ′ con-
tains no new sorts, the further restriction of this by the requirement thatΣ ′ contains
new constants only (as above), the collection of all algebraic signature morphisms
which are surjective on sorts, the collection of all identities, and the collection of
all morphisms. Note that most of these permit variables denoting operations or even
sorts.

Page: 208 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.4 Exact institutions 209

4.4.2.1 Universal quantification

In the rest of this section we briefly sketch how to universally close the open formu-
lae introduced above.

Let I be a collection of signature morphisms that is closed under pushouts. Let
Σ be a signature and let〈ϕ,θ〉 be an openΣ -formula such thatθ ∈ I . Consider the
universal closure of〈ϕ,θ〉, written ∀θ • ϕ, as a newΣ -sentence. The satisfaction
relation and the translation of a sentence∀θ • ϕ along a signature morphism are
defined in the expected way:

• A Σ -model satisfies theΣ -sentence∀θ • ϕ if 〈ϕ,θ〉 holds in this model under
any valuation of the variables “Σ ′ \θ(Σ)”, that is, for anyM ∈ |Mod(Σ)|, M |=Σ

∀θ • ϕ if for all M′ ∈ |Mod(Σ ′)| such thatM′ θ = M, M′ |=Σ ′ ϕ.
• For any signature morphismσ :Σ → Σ1, σ(∀θ • ϕ) is ∀θ ′ • σ ′(ϕ), where

Σ

Σ ′

Σ1

Σ ′1

6

θ

-
σ

-σ ′

6

θ ′

is a pushout inSignsuch thatθ ′ ∈ I .

Note that in the above we have extended our underlying institutionINS. For-
mally:

Definition 4.4.28 (Institution with universally closed formulae).Let INS be an
institution, and letI be a collection of signature morphisms inINS that is closed
under pushouts such thatINS is I -semi-exact. Theextension ofINS by universal
closure w.r.t.I is the following institutionINS∀(I):

• SignINS∀(I) is SignINS.
• For any signatureΣ , SenINS∀(I)(Σ) is the disjoint union ofSenINS(Σ) with the

collection20 of all universal closures∀θ • ϕ of openΣ -formulae, whereθ ∈ I ;
for any signature morphismσ :Σ → Σ1, SenINS∀(I)(σ) is the function induced
by SenINS(σ) on SenINS(Σ) and by the notion of translation defined above on
universally closed openΣ -formulae.

• ModINS∀(I) is ModINS.

• The satisfaction relation inINS∀(I) is induced by the satisfaction relation ofINS
for INS-sentences and the notion of satisfaction for universally closed open for-
mulae as defined above. ut

The following theorem guarantees thatINS∀(I) is in fact an institution, modulo
the above remark about the definition of the translation of open formulae.

20 As usual, we disregard here the foundational problems which may arise ifI is not a set.

Page: 209 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

210 4 Working within an arbitrary logical system

Theorem 4.4.29 (Satisfaction condition for INS∀(I)). Let INS and I be as in Def-
inition 4.4.28. For any signature morphismσ :Σ → Σ1, openΣ -formula 〈ϕ,θ〉
(whereθ ∈ I), Σ1-model M1 ∈ |Mod(Σ1)|, and pushout

Σ

Σ ′

Σ1

Σ ′1

6

θ

-
σ

-σ ′

6

θ ′

in Signsuch thatθ ′ ∈ I ,

M1 σ |=Σ ∀θ • ϕ iff M1 |=Σ1 ∀θ
′ • σ

′(ϕ)

Proof.

(⇒) : Assume thatM1 σ |=Σ ∀θ • ϕ and let M′1 be a θ ′-expansion ofM1. Put
M′ = M′1 σ ′ . Obviously,M′ θ = M′1 θ ;σ ′ = M′1 σ ;θ ′ = M1 σ . Thus, sinceM1 σ |=Σ

∀θ • ϕ, M′ |=Σ ′ ϕ. Hence, by the satisfaction condition ofINS, M′1 |=Σ ′1
σ ′(ϕ),

which provesM1 |=Σ1 ∀θ ′ • σ ′(ϕ).
(⇐) : Assume thatM1 |=Σ1 ∀θ ′ • σ ′(ϕ) and letM′ be aθ -expansion ofM1 σ . Since

INS is I -semi-exact, there exists aθ ′-expansionM′1 of M1 such thatM′1 σ ′ =
M′. Then, sinceM1 |=Σ1 ∀θ ′ • σ ′(ϕ), M′1 |=Σ ′1

σ ′(ϕ). Thus, by the satisfaction
condition,M′ |=Σ ′ ϕ, which provesM1 σ |=Σ ∀θ • ϕ. ut

Example 4.4.30.Let I be the collection of algebraic signature inclusionsι :Σ ↪→ Σ ′

in AlgSig such thatΣ ′ \ Σ contains new constants only. The institutionGEQ∀(I)

essentially coincides with the institutionEQ of equational logic (modulo the details
of the notation used for sentences), as suggested already in Exercise 2.1.6. IfΣ ′ \Σ

is allowed to contain new operation names (not just constants), then quantification
along morphisms inI leads to a version of second-order logic. ut

Other quantifiers (there exists, there exists a unique, there exist infinitely many,
for almost all, . . .) may be introduced in the same manner as we have just introduced
universal quantifiers. Example 4.1.41 illustrates how one may introduce logical con-
nectives. By iterating these constructions one can, for example, derive the institution
of first-order logic from the institution of ground atomic formulae.

4.5 Institutions with reachability structure

An alternative to the standard initial algebra approach to specifications is to take
the reachable semantics of presentations, as discussed in Section 2.7.2, where from

Page: 210 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.5 Institutions with reachability structure 211

among all the algebras satisfying a presentation only thereachablealgebras are
selected. In Section 4.3 we argued that it is important to consider not just initial
algebras, but more generally, algebras that are free extensions of a specified part;
similarly, it is important here to consider not just reachable algebras, but more gen-
erally, algebras that are generated by some specified part. Given an algebraic signa-
ture Σ and a subsignatureΣ ′ ⊆ Σ , a Σ -algebraA is reachable fromΣ ′ if it has no
proper subalgebra with the sameΣ ′-reduct. (Exercise: Show that this is the same as
to require that the algebra is generated by the set of all its elements in the carriers of
the sorts inΣ ′, as defined in Exercise 1.2.6.) To generalise this notion to the frame-
work of an arbitrary institution we will proceed along the lines suggested by the
“categorical theory of reachability” presented in Section 3.3 based on factorisation
systems.

Definition 4.5.1 (Reachable model).Let 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉 be an in-
stitution. Assume that for each signatureΣ ∈ |Sign|, we have a factorisation system
〈EΣ ,MΣ 〉 for the categoryMod(Σ) of Σ -models.

Let σ :Σ ′ → Σ be a signature morphism. AΣ -model M ∈ |Mod(Σ)| is σ -
reachableif M has no proper submodel with an isomorphicσ -reduct, that is, if
any factorisation monomorphismm:N→M in MΣ such thatm σ is an isomorphism
in Mod(Σ ′) is in fact an isomorphism inMod(Σ). ut

Example 4.5.2.Recall that for any algebraic signatureΣ ∈ AlgSig, the categories
Alg(Σ), PAlg(Σ) and CAlg(Σ) of total, partial and continuous algebras come
equipped with factorisation systems (Examples 3.3.3, 3.3.13 and 3.3.14, respec-
tively). Hence, the above definition makes sense in the institutionsEQ of equational
logic, PEQ of partial equational logic andCEQ of equational logic for continuous
algebras, yielding the expected notions. ut

Exercise 4.5.3.Recall that by Definition 3.3.7 aΣ -model is reachable if it has no
proper submodel. Show that ifINS is finitely exact then reachability is a special
case ofσ -reachability as defined above. (HINT : Use the fact that there is an initial
signature with the singleton category1 of models.) ut

In Section 3.3 it was shown how the notion of reachability introduced there may
be related to an equivalent definition stated in terms of quotients of initial mod-
els (Theorem 3.3.8(1)). In the standard algebraic case, an algebra is reachable if
and only if it is isomorphic to a quotient of the algebra of ground terms (Exer-
cise 1.4.14). To give an analogous result forσ -reachability we have to be able to
build terms over a specified reduct of the given algebra (cf. Exercise 3.5.11). Given
such a construction, aΣ -algebraA is reachable fromΣ ′ ⊆ Σ if and only if evaluation
in A of Σ -terms over theΣ ′-reduct ofA is surjective, or equivalently, ifA is a natural
quotient of the algebra ofΣ -terms built overA Σ ′ . We introduce a generalisation of
the construction of term algebras to an arbitrary institution by requiring that reduct
functors induced by signature morphisms have left adjoints. Notice that only sig-
natures are involved in this definition, no sentences, and so this requirement indeed
corresponds to the mild assumption that free models (term algebras) may be built
along arbitrary signature morphisms.

Page: 211 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

212 4 Working within an arbitrary logical system

Definition 4.5.4 (Institution with reachability structure). An institution with reach-
ability structureis an institution〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉 together with:

• for each signatureΣ ∈ |Sign|, a factorisation system〈EΣ ,MΣ 〉 for the category
Mod(Σ) of Σ -models; and

• for each signature morphismσ :Σ ′ → Σ , a σ -free functor Fσ :Mod(Σ ′) →
Mod(Σ) which is left adjoint to theσ -reduct functor σ :Mod(Σ)→Mod(Σ ′)
with unit ησ : IdMod(Σ ′)→ Fσ () σ .

(As usual, sub- and superscripts will be omitted when convenient.) ut

Example 4.5.5.The institutionEQ of equational logic equipped with factorisation
systems for categories of algebras (cf. Example 3.3.3) has reachability structure —
the free functors are given by Exercise 3.5.11. ut

Exercise 4.5.6.Show that the institutionPEQ of partial equational logic with the
factorisation systems given by Example 3.3.13 for categories of partial algebras
forms an institution with reachability structure. (HINT : Free functors are rather triv-
ial here.)

Similarly, show that the institutionCEQ of equational logic for continuous al-
gebras with the factorisation systems given by Example 3.3.14 for categories of
continuous algebras forms an institution with reachability structure. (HINT : The
construction of free functors is much more difficult here — follow the construction
for ordinary algebras in Exercise 3.5.11, but when defining the new operations in a
free way remember that you have to extend the complete partial order to cover the
new values as well, ensuring continuity of the operations.) ut

Exercise 4.5.7.Let INS be a finitely exact institution. Prove that if every reduct
functor inINS has a left adjoint, then for every signatureΣ the categoryModINS(Σ)
of Σ -models has an initial object. (HINT : Use the fact that there is an initial signature
with the singleton category1 of models.) ut

The following theorem generalises well-known facts from the standard algebraic
setting. Just like its “predecessor” Theorem 3.3.8, it confirms our confidence in the
abstract definitions by showing how their different versions “click together” nicely.

Theorem 4.5.8.Let INS = 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉 be an institution with
reachability structure. Consider a signature morphismσ :Σ ′→ Σ .

1. A Σ -model M∈ |Mod(Σ)| is σ -reachable if and only if it is a natural quo-
tient of the free object over itsσ -reduct, that is, the counit morphismεM =
(idM σ

)#:Fσ (M σ)→M belongs toEΣ (cf. Exercise 3.5.24).

2. For anyσ -reachable model M∈ |Mod(Σ)|, any model N∈ |Mod(Σ)| and Σ ′-
model morphism f′:M σ → N σ , there exists at most oneΣ -model morphism
f :M→ N that extends f′ (i.e., such that fσ = f ′).

3. EveryΣ -model has a unique (up to isomorphism)σ -reachable submodel with an
isomorphicσ -reduct.

Page: 212 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.5 Institutions with reachability structure 213

4. If M ∈ |Mod(Σ)| is σ -reachable then for anyΣ -model morphism f:N→M such
that f σ is an isomorphism, f is a factorisation epimorphism (i.e., f∈ EΣ).

Proof.

1. (⇒) : Let Fσ (M σ) e−→ N
m−→ M be a factorisation ofεM:Fσ (M σ)→ M. Ar-

guing dually to Exercise 3.5.18 we can show thatm σ :N σ →M σ is an isomor-
phism. Hence, by theσ -reachability ofM, m is an isomorphism, which proves
thatεM ∈ EΣ .
(⇐) : Letm:N→M, m∈MΣ , with m σ being an isomorphism. Definef :Fσ (M σ)→
N by f = ((m σ)−1)#. ThenηM σ

;(f ;m) σ = idM σ
. By the freeness ofFσ (M σ),

this implies thatf ;m= εM. Thus, by the assumption thatεM ∈ EΣ and by Exer-
cise 3.3.5,m is an isomorphism.

2. Suppose thatf1, f2:M→N are such thatf1 σ = f2 σ = f ′. ThenηM σ
;(εM; f1) σ =

f ′ = ηM σ
;(εM; f2) σ , and soεM; f1 = εM; f2. Thus, we also havef1 = f2, since by

(1) aboveεM is an epimorphism.
3. Consider an arbitraryΣ -model M. Let Fσ (M σ) e−→ N

m−→ M be a factorisa-
tion of εM:Fσ (M σ) → M. Again, arguing dually to Exercise 3.5.18 we can
show thatm σ :N σ →M σ is an isomorphism. Moreover, by the naturality ofε,
Fσ (m σ);εM = εN;m, that isFσ (m σ);e;m= εN;m, and so (sincem is a monomor-
phism)εN = Fσ (m σ);e∈ EΣ . Thus, by (1) again,N is aσ -reachable submodel
of M.
To prove uniqueness up to isomorphism, consider a subobjectm1:N1→M with
m1 σ being an isomorphism andεN1:Fσ (N1 σ)→N1 in EΣ . ThenFσ (m1 σ);εM =
εN1;m1, and sinceFσ (m1 σ) is an isomorphism, we have two factorisations of

εM:Fσ (M σ)→ M, 〈Fσ (m1 σ)−1;εN1,m1〉 and〈e,m〉, which by the uniqueness
of factorisations implies thatN andN1 are isomorphic.

4. Let N
e−→ · m−→ M be a factorisation off :N→ M. Then, by naturality ofε,

εN;e;m= Fσ (f σ);εM. Now, sincef σ (and henceFσ (f σ)) is an isomorphism,
by σ -reachability ofM and (1) above,εN;e;m∈ EΣ . Thus, by Exercise 3.3.5,m
is an isomorphism, and sof ∈ EΣ . ut

4.5.1 The method of diagrams

In the standard algebraic framework, reachable algebras enjoy a number of use-
ful properties which make them especially easy to deal with. As a consequence
of the fact that we are able to “name” (using ground terms) all their elements,
reachable algebras are easy to describe using the most elementary logical sentences,
ground equations. To be more precise: for any algebraic signatureΣ and reachable
Σ -algebraA, the class

Ext(A) = {B∈ |Alg(Σ)| | there exists aΣ-homomorphismh:A→ B}

Page: 213 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

214 4 Working within an arbitrary logical system

is definable by the groundΣ -equations that hold inA, that is,Ext(A)= ModGEQ(ThGEQ({A})),
and moreover,A is initial in Ext(A). (We will refer to classes of algebras of the
form Ext(A) for a reachable algebraA asground varieties.) This gives a one-to-
one correspondence between ground equational theories and isomorphism classes
of reachable algebras (and furthermore, congruences on ground term algebras by
Exercise 1.4.14).

Unfortunately, not all algebras are reachable, and it is clear that this correspon-
dence does not carry over to arbitrary algebras: there are algebras that cannot be
characterised as initial models of equational theories. But there is a technical trick
that may help: if aΣ -algebraA is not reachable, then consider the signatureΣ(A)
obtained by adding toΣ the elements of|A| as constants of the appropriate sorts.
Now, the algebraA has an obvious expansion to a reachableΣ(A)-algebraE(A),
where the new constants are interpreted as the elements they correspond to. This
expansion has a number of useful properties:

• Any Σ -homomorphismh:A→ B determines unambiguously an expansion ofB
to a Σ(A)-algebraEh(B) where each new constant inΣ(A) is interpreted as the
value ofh on the corresponding element of|A|. Moreover, this expansion is in-
dependent from any decomposition ofh: for anyΣ -homomorphismsh1:A→C
andh2:C→ B such thath = h1;h2, the homomorphismh2 (or more precisely, its
underlying map) is aΣ(A)-homomorphism fromEh1(C) to Eh(B).

• Intuitively, the expansion does not introduce more structure than necessary to
makeA reachable; in particular, no new elements are added.

Putting all these together, anyΣ -algebraA may be characterised by the set of ground
equations on the signatureΣ(A) that hold inE(A). This technique, known asthe
method of diagrams, is one of the basic tools of classical model theory (cf. e.g.
[CK90]). We have already suggested its use in the construction of the free functor
corresponding to a signature morphism in Exercise 3.5.11.

In the following the method of diagrams is formulated in the context of an ar-
bitrary institution with reachability structure. We will assume that the institution
is finitely exact in order to be able to deal with reachability (not just reachability
relative to signature morphisms, cf. Exercises 4.5.3 and 4.5.7).

Definition 4.5.9 (The method of diagrams).Let INS = 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉
be a finitely exact institution with reachability structure.INS admits the method of
diagramsif:

• (Definability of ground varieties)
for every signatureΣ ∈ |Sign| and reachableΣ -modelM ∈ |Mod(Σ)|, the class

Ext(M) = {N ∈ |Mod(Σ)| | there exists aΣ-model morphismh:M→ N}

of extensions ofM is definable, that is,Ext(M) = ModΣ (Φ) for some setΦ ⊆
Sen(Σ).

• (Existence of diagrams)
for every signatureΣ ∈ |Sign| andΣ -modelM ∈ |Mod(Σ)|, there exists a signa-
tureΣ(M) ∈ |Sign| and signature morphismι :Σ → Σ(M) such that:

Page: 214 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.5 Institutions with reachability structure 215

– M has a reachableι-expansionE(M): there existsE(M) which is a reachable
Σ(M)-model such thatE(M) ι = M;

– ι-reduct is an isomorphism of the slice categoriesMod(Σ(M))↑E(M) and
Mod(Σ)↑M (see Exercise 3.1.30), that is, for anyΣ -model morphismf :M→
N, there exists a uniqueι-expansion ofN, Ef (N), such that f has anι-
expansionE(f):E(M)→Ef (N) and such that anyΣ -model morphismh:N→
N1 has a uniqueι-expansionE(h):Ef (N)→ Ef ;h(N1); and

– ι-reduct preserves the factorisation system onMod(Σ(M))↑E(M) as inherited
from Mod(Σ(M)), that is, for anyf :E(M)→N′ andh:N′→N′′, if h∈EΣ(M)
thenh ι ∈ EΣ and ifh∈MΣ(M) thenh ι ∈MΣ .

Then, Σ(M) is called thediagram signature for M(with signature inclusionι),
E(M) is called thediagram expansion of M, and finally the theory∆+(M) =
ThΣ(M)(Ext(E(M))) is called the (positive) diagram of M. ut

Example 4.5.10.The institutionsEQ of equational logic,PEQ of partial equational
logic, andCEQ of equational logic for continuous algebras admit the method of di-
agrams. Ground varieties inEQ are definable by sets of ground equations; ground
varieties ofPEQ are definable by sets of ground equations and ground definedness
formulae; ground varieties inCEQ are definable by sets of ground infinitary equa-
tions. For any (total, partial, or continuous)Σ -algebraA, the diagram signature for
A is formed by adding constants corresponding to all the elements of|A|. The dia-
gram expansion of a partial algebra is formed by requiring that the new constants
are defined and have the expected values. ut

Exercise 4.5.11.Show that in any institution that admits the method of diagrams,
and for any modelM, the class of models of the positive diagram ofM is the class of
all extensions of the diagram expansion ofM: ModΣ(M)(∆+(M)) = Ext(E(M)). ut

4.5.2 Abstract algebraic institutions

In Exercise 3.5.11 we suggested the use of the method of diagrams to prove that in
the standard algebraic framework, the reduct functor induced by a signature mor-
phism has a left adjoint. With some more effort, one can generalise this result and
prove that in the standard equational institution the reduct functor induced by athe-
ory morphism has a left adjoint:

Exercise 4.5.12.Prove that in the equational institutionEQ, for any theory mor-
phismσ :T→ T ′, the reduct functor σ :Mod[T ′]→Mod[T] has a left adjoint.

HINT : Formalise and complete the following construction: LetT = 〈Σ ,Φ〉 and
T ′ = 〈Σ ′,Φ ′〉. For anyΣ -algebraA ∈ Mod[T], let Σ(A) be its diagram signature,
and let

Page: 215 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

216 4 Working within an arbitrary logical system

Σ(A)

Σ ′Σ

Σ ′(A)-σ ′

6

ι

6

ι ′

-
σ

be a pushout in the category of signatures. Then, let∆+(A)⊆ SenEQ(Σ(A)) be the
positive diagram ofA. Consider the presentation〈Σ ′(A),σ ′(∆+(A))∪ ι ′(Φ ′)〉. By
Theorem 2.5.14, this has an initial model. Itsι ′-reduct is a free object overA. (See
also Exercise 3.5.11 for a slightly different line of reasoning.) ut
We will come back to a careful, more abstract analysis of this construction later (cf.
Theorem 4.5.18 below). For now, just notice that the construction not only uses the
fact that the equational institution admits the method of diagrams, but also relies
(directly or indirectly) on a number of simple facts about the reachability structure
of the equational institution. We capture some of these additional properties in the
following abstract definition:

Definition 4.5.13 (Abstract algebraic institution). An abstract algebraic institu-
tion is a finitely exact institutionINS = 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉 with reach-
ability structure that admits the method of diagrams, for which the following condi-
tions hold:

• For any signatureΣ ∈ |Sign|, the categoryMod(Σ) has all products (of sets of
models) and isEΣ -co-well-powered (Definition 3.3.10).

• For any signature morphismσ :Σ → Σ ′, theσ -reduct functor preserves submod-
els (i.e., for allm′ ∈MΣ ′ , m′ σ ∈MΣ) and products.

• (Abstraction condition) For any signatureΣ andΣ -modelsM,N ∈ |Mod(Σ)|, if
M andN are isomorphic then they satisfy exactly the sameΣ -sentences. ut

Example 4.5.14.The institutionsEQ of equational logic,PEQ of partial equational
logic, andCEQ of equational logic for continuous algebras are abstract algebraic
institutions. ut

Exercise 4.5.15.There is a certain asymmetry in the above definition: reduct func-
tors in abstract algebraic institutions are required to preserve submodels but are not
required to preserve quotients. Prove that inEQ, reduct functors preserve quotients
as well: for allσ :Σ → Σ ′ ande′ ∈ EΣ ′ , e′ σ ∈ EΣ . Show, however, that this is not
true in general inPEQ. ut

4.5.3 Liberal abstract algebraic institutions

In Section 4.3 we have shown that it is possible to restrict attention to initial models
of specifications written in an arbitrary institution, even if theories in the institution

Page: 216 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.5 Institutions with reachability structure 217

are not guaranteed to have initial models in general. Similarly, data constraints make
sense in an arbitrary institution even if reduct functors induced by theory morphisms
are not guaranteed to have left adjoints. This flexibility is useful, but nevertheless it
may be important to know whether or not a theory used in an initiality constraint has
an initial model, or whether a theory morphism used in a data constraint has a cor-
responding free functor. In some institutions this is always the case: the equational
institutionEQ is one example (cf. Theorem 2.5.14 and Exercise 4.5.12). In the rest
of this section we present a characterisation of institutions that have this property.
Of course, very little can be done in the framework of an arbitrary institution: how-
ever, abstract algebraic institutions as introduced above provide a sufficiently rich
background.

Definition 4.5.16 (Liberal institution). An institution INS admits initial modelsif
every theory inINS has an initial model.INS is liberal if for every theory morphism
σ :T→ T ′ in INS, theσ -reduct functor σ :Mod[T ′]→Mod[T] has a left adjoint.

Then, an abstract algebraic institutionINS admits reachable initial modelsif
every theory inINS has an initial model which is reachable.INS is strongly liberalif
for every theory morphismσ :T→ T ′ in INS, theσ -reduct functor σ :Mod[T ′]→
Mod[T] has a left adjointFσ :Mod[T]→ Mod[T ′] such that for anyM ∈ Mod[T],
Fσ (M) ∈Mod[T ′] is σ -reachable. ut

In the last part of the definition we have slightly abused notation by usingσ as both
a theorymorphism and asignaturemorphism (which in fact it is). It is important
that the notion ofσ -reachability used here is taken w.r.t. signature morphisms (cf.
Definition 4.5.1) without taking into account the theory context.

Exercise 4.5.17.Find an institution that admits initial models but does not admit
reachable initial models. HINT : Consider an algebraic signatureΣ with a unary
operation symbolf :s→ s. Show that the class ofΣ -algebras satisfying the axiom
∃!x:s• f (x) = x has an initial model which is not reachable, where∃! reads “there ex-
ists a unique”, that is,∃!x:s• f (x) = x stands for∃x:s• f (x) = x∧∀x1,x2:s• f (x1) =
x1∧ f (x2) = x2⇒ x1 = x2. ut

For abstract algebraic institutions, the requirements introduced in Definition 4.5.16
are pairwise equivalent.

Theorem 4.5.18.Let INS be an abstract algebraic institution.INS is liberal if and
only if it admits initial models.

Proof.

(⇒): Let T = 〈Σ ,Φ〉 be a theory. LetιΣ :Σ∅ → Σ be the only signature mor-
phism from the initial signatureΣ∅ to Σ . Then ιΣ :T∅ → T is a theory mor-
phism, whereT∅ = 〈Σ∅,ClΣ∅(∅)〉 is the initial theory, and so the reduct functor

ιΣ
:Mod[T]→Mod[T∅] has a left adjointFιΣ

:Mod[T∅]→Mod[T]. Now, there
is exactly oneΣ∅-model, sayM∅ ∈ |Mod[T∅]|, and moreover,FιΣ

(M∅) is an ini-
tial model ofT.

Page: 217 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

218 4 Working within an arbitrary logical system

(⇐): We follow the proof for the equational institutionEQ sketched in Exer-
cise 4.5.12. For any theory morphismσ :T → T ′, whereT = 〈Σ ,Φ〉 andT ′ =
〈Σ ′,Φ ′〉, and modelM ∈Mod[T], we construct a modelFσ (M) ∈Mod[T ′] with
unit ηM:M→ Fσ (M) σ that is free overM w.r.t. σ :Mod[T ′]→Mod[T].
Let Σ(M) be the diagram signature forM with signature inclusionι :Σ ↪→ Σ(M),
and let

Σ(M)

Σ ′Σ

Σ ′(M)-σ ′

6

ι

6

ι ′

-
σ

be a pushout in the category of signatures. Then, let∆+(M)⊆Sen(Σ(M)) be the
positive diagram ofM. Consider the presentation〈Σ ′(M),σ ′(∆+(M))∪ ι ′(Φ ′)〉.
By the assumption, it has an initial model, sayI . PutFσ (M) = I ι ′ . Then, since
by the satisfaction conditionI σ ′ |=Σ(M) ∆+(M), I σ ′ ∈ Ext(E(M)) (cf. Exer-
cise 4.5.11). Hence, there exists a (unique, sinceE(M) is reachable)Σ(M)-model
morphismη̂M:E(M)→ I σ ′ . PutηM = η̂M ι :M→ Fσ (M) σ .
First, notice that sinceI |=Σ ′(M) ι ′(Φ ′), Fσ (M) ∈ Mod[T ′]. Then, consider an
arbitrary modelN ∈Mod[T ′] and aΣ -model morphismf :M→ N σ .
By the definition of the diagram signature forM, N σ has a uniqueι-expansion
to a Σ(M)-model Ef (N σ) such that there exists aΣ(M)-model morphism
E(f):E(M)→ Ef (N σ) with E(f) ι = f . Amalgamation yields a uniqueΣ ′(M)-
modelEσ

f (N σ)∈ |Mod(Σ ′(M))| with Eσ
f (N σ) σ ′ = Ef (N σ) andEσ

f (N σ) ι ′ =
N. SinceN |=Σ ′ Φ ′, Eσ

f (N σ) |=Σ ′(M) ι ′(Φ ′). Then, sinceEf (N σ) ∈ Ext(E(M)),
Ef (N σ) |=Σ(M) ∆+(M), and soEσ

f (N σ) |=Σ ′(M) σ ′(∆+(M)). Consequently, we

get a uniqueΣ ′(M)-model morphism̂f ′: I → Eσ
f (N σ). Put f ′ = f̂ ′ ι ′ :Fσ (M)→

N. Notice thatη̂M; f̂ ′ σ ′ :E(M) → Ef (N σ). Hence, sinceE(M) is reachable,

η̂M; f̂ ′ σ ′ = E(f), and so we obtainηM; f ′ σ = f . Moreover, f ′ is the only mor-
phism with this property. To see this, suppose that for somef ′′:Fσ (M)→ N,
ηM; f ′′ σ = f . Then, by the amalgamation property (this time for model mor-

phisms) there exists aΣ ′(M)-model morphism̂f ′′: I→Eσ
f (N σ) such that̂f ′′ ι ′ =

f ′′ (and f̂ ′′ σ ′ = E(f ′′ σ): I σ ′ → Ef (N σ)). By initiality of I , f̂ ′′ = f̂ ′, and so
f ′′ = f ′, which completes the proof. ut

Theorem 4.5.19.Let INS be an abstract algebraic institution.INS is strongly lib-
eral if and only if it admits reachable initial models.

Proof. We extend the proof of the previous theorem, relying on the notation intro-
duced there.

Page: 218 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.5 Institutions with reachability structure 219

(⇒): The only additional remark needed is thatFιΣ
(M∅) is reachable if it isιΣ -

reachable (cf. Exercise 4.5.3).
(⇐): We have to additionally prove thatFσ (M) = I ι ′ is σ -reachable whenever

I is reachable. To see this, consider an arbitrary submodel ofI ι ′ with an iso-
morphicσ -reduct, saym:N→ I ι ′ , wherem∈ MΣ ′ andm σ :N σ → I σ ;ι ′ is an

isomorphism. Putf = ηM;(m σ)−1:M → N σ . Then f ;m σ = ηM, and som σ

has an expansion to aΣ(M)-model morphismE(m σ):Ef (N σ)→ EηM (I σ ;ι ′) =
I σ ′ . Then, as in the corresponding part of the proof of Theorem 4.5.18, we
get a uniqueΣ ′(M)-modelEσ

f (N σ) ∈ |Mod(Σ ′(M))| such thatEσ
f (N σ) σ ′ =

Ef (N σ) andEσ
f (N σ) ι ′ = N, and aΣ ′(M)-model morphism̂f ′: I → Eσ

f (N σ).
On the other hand, by the amalgamation property again, there exists a unique
Σ ′(M)-model morphism̂m:Eσ

f (N σ)→ I such that̂m σ ′ = E(m σ) andm̂ ι ′ = m.

By the initiality of I , f̂ ′;m̂ is the identity, and so is(f̂ ′;m̂) ι ′ = f̂ ′ ι ′ ;m. Thus, by
Exercise 3.3.5,m is an isomorphism — which completes the proof. ut

4.5.4 Characterising abstract algebraic institutions that admit
reachable initial models

From the very beginning of work on algebraic specifications it has been known that
the standard equational institutionEQ admits reachable initial models (cf. Theo-
rem 2.5.14). Moreover, the proof of this property generalises readily to the situation
where conditional equations (even with infinite sets of premises) are permitted as
axioms. On the other hand, Example 2.7.11 shows that if disjunction is permitted,
the property is lost. Indeed, in the standard algebraic framework the infinitary con-
ditional axioms, which define all non-empty quasi-varieties, form in some sense a
borderline beyond which one cannot be sure of the existence of reachable initial
models. We generalise this result to the framework of abstract algebraic institutions.

Theorem 4.5.20.Let INS be an abstract algebraic institution.INS admits reach-
able initial models if and only if every class of models definable inINS is closed
under products (of sets of models) and under submodels.

Proof.

(⇐): This follows directly by Lemma 3.3.12; just notice that any class of models
closed under products and submodels is anon-emptyquasi-variety (cf. Defini-
tion 3.3.11).

(⇒): Let 〈Σ ,Φ〉 be a presentation inINS. We show the required closure properties
of ModΣ (Φ).

(Submodels): Consider a modelM ∈ ModΣ (Φ) and its submodelm:N→ M,
m∈ MΣ . Let Σ(N) be a diagram signature forN with signature inclusion
ι :Σ → Σ(N), and let∆+(N)⊆ Sen(Σ(N)) be the positive diagram ofN. Re-
call thatModΣ(N)(∆+(N)) = Ext(E(N)), whereE(N) ∈ Mod(Σ(N)) is the

Page: 219 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

220 4 Working within an arbitrary logical system

diagram expansion ofN. The presentation〈Σ(N),∆+(N)∪ ι(Φ)〉 has a reach-
able initial model, sayI . We show thatI ι is isomorphic toN, which in partic-
ular impliesN ∈ModΣ (Φ).
Since I |=Σ(N) ∆+(N), there exists aΣ(N)-model morphismf :E(N) → I .
Moreover, sinceI is reachable,f ∈ EΣ(N) (by Theorem 3.3.8(4)) and hence
also f ι ∈ EΣ . Then, letEm(M) be the unique expansion ofM to a Σ(N)-
model with E(m):E(N) → Em(M) such thatE(m) ι = m. SinceM |= Φ ,
Em(M) |=Σ(N) ι(Φ), and, sinceEm(M) ∈ Ext(E(N)), Em(M) |=Σ(N) ∆+(N).
Hence, there is a (unique) morphismg: I→Em(M). Now, sinceE(N) is reach-
able, there exists at most one morphism fromE(N) to Em(M), and so we have
f ;g= E(m), which impliesf ι ;g ι = m∈MΣ . Sincef ι ∈EΣ , it follows from
Exercise 3.3.5 thatf ι :N→ I ι is indeed an isomorphism.

(Products): Consider any familyMi ∈ ModΣ (Φ), i ∈ J, whereJ is any set (of
indices). LetN with projectionsπi :N→Mi , i ∈ J, be the product of〈Mi〉i∈J.
We proceed similarly as in the previous case: letΣ(N) be a diagram signature
for N with signature inclusionι :Σ → Σ(N), and let∆+(N) ⊆ Sen(Σ(N))
be the positive diagram ofN. The presentation〈Σ(N),∆+(N)∪ ι(Φ)〉 has a
reachable initial model, sayI . We show thatI ι is isomorphic toN, which
implies thatN ∈ModΣ (Φ).
Just as in the previous case, there existsf :E(N)→ I with f ι ∈ EΣ .
Then, fori ∈ J, letEπi (Mi) be the uniqueΣ(N)-model such that there is an ex-
pansion ofπi to a Σ(N)-model morphismE(πi):E(N)→ Eπi (Mi). Eπi (Mi)
satisfies both∆+(N) and ι(Φ), and so there exists a morphismhi : I →
Eπi (Mi). Hence, by the definition of a product, there exists a (unique)Σ -model
morphismg: I ι →N such that fori ∈ J, hi ι = g;πi . Moreover, fori ∈ J, since
E(N) is reachable and so there is at most one morphism fromE(N) to Eπi (Mi),
f ;hi = E(πi). Consequently,(f ι ;g);πi = f ι ;hi ι = (f ;hi) ι = E(πi) ι = πi .
It follows that f ι ;g is an isomorphism, and thusf ι ∈ EΣ implies that
f ι :N→ I ι is an isomorphism as well. ut

Exercise 4.5.21.As we have mentioned earlier, institutions of single-sorted logics,
like those in Exercises 4.4.10 and 4.4.16, are only semi-exact, rather than finitely
exact.

Call an institutionINS almost abstract algebraicif it satisfies all the assump-
tions imposed on abstract algebraic institution except for the requirement of finite
exactness, instead of which we require that:

• INS is semi-exact; and
• for each signatureΣ ∈ |SignINS|, the categoryModINS(Σ) of Σ -models has an

initial object.

The above characterisation theorems nearly hold for almost abstract algebraic insti-
tutions:

Page: 220 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.6 Bibliographical remarks 221

• By direct inspection of their proofs, check that Theorem 4.5.20 as well as the
“if” parts of Theorems 4.5.18 and 4.5.19 hold for almost abstract algebraic insti-
tutions.

• Prove that the “only if” part of Theorem 4.5.18 holds for almost abstract alge-
braic institutions. HINT : To show that aΣ -theoryT has an initial model, consider
the identity signature morphism as a morphism from the emptyΣ -theory toT.
Then use Exercise 3.5.17.

• Show that the “only if” part of Theorem 4.5.19 does not hold for almost abstract
algebraic institutions. HINT : In SSEQ, the requirement ofσ -reachability is triv-
ial for any signature morphismσ . Consider the extension ofSSEQby sentences
involving the quantifier “there exists a unique”. ut

4.6 Bibliographical remarks

This chapter has its origins in the seminal work of Goguen and Burstall on insti-
tutions. The reader may have noticed that the main paper on institutions [GB92]
appeared later than many of its applications. The first appearance of institutions was
in the semantics of Clear [BG80], under the name “language”, and early versions of
[GB92] were widely circulated, with [GB84a] as an early published version. Most
of our terminology (signature, sentence, model, liberal institution, etc.) comes from
[GB92]. There is a minor technical difference with respect to the definition given in
[GB92]: we take the contravariant functorModINS to beModINS:Signop

INS → Cat
rather thanModINS:SignINS→Catop. This is consistent with the further refinement
of this definition in Chapter 10 as well as with the notion of an indexed category (cf.
Section 3.4.3 and [TBG91]).

A large number of variants, generalisations and extensions of the notion of in-
stitution have been considered. In some work where model morphisms are not im-
portant, institutions were considered with classes (rather than categories) of mod-
els, e.g. [BG80]. Somewhat dually, one way to bring deduction into the realm of
institutions is by considering categories (rather than sets) of sentences, where mor-
phisms capture proofs. These variants were present in some unpublished versions of
[GB92]; see also [MGDT07] for some elaboration on these possibilities.

One line of generalisation is to allow a space of truth values other than just the
standard two-valued set, leading to proposals like galleries [May85] or generalised
institutions [GB86]. General logics [Mes89] add an explicit notion of entailment
and proof to institutions, see Chapter 9 for developments in this direction. Founda-
tions [Poi88] include a similar idea, in addition imposing a rich indexed category
structure on sentences. Context institutions [Paw96] offer an explicit notion of con-
text and hence of open formulae and valuation as a part of the institution structure.
There have also been attempts to relax the satisfaction condition, with for instance
pre-institutions [SS93], [SS96], where the equivalence in the satisfaction conditions
is split into two separately-imposed implications. This captures logical systems in
which one or both of the directions of the satisfaction condition fail, as discussed

Page: 221 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

222 4 Working within an arbitrary logical system

before Exercise 4.1.2. This applies to the so-called ultra-loose approach to algebraic
specification [WB89], Extended ML [KST97] and various notions of behavioural
satisfaction, see Chapter 8. (In [Gog91a], the satisfaction condition is satisfied for
behavioural satisfaction but at the cost of restricting the notion of signature mor-
phism.) Overall though, in spite of all these proposed variants and generalisations,
most research has been based on the original notion, as we present it here.

The theory of institutions adopts a primarily model-theoretic view of logical sys-
tems. This does not preclude proof-theoretic investigation, see Chapter 9, but it does
exclude logical systems that are inherently not based on the Tarskian notion of sat-
isfaction of a sentence in a model. Typically such systems are centred around a
notion of logical consequence that is defined via deduction, in contrast to our Def-
inition 4.2.5. One such example would be non-monotonic logics [MT93], where
increasing the set of premises can render consequences invalid. Other examples in-
clude substructural logics such as linear logic [Gir87], where changing the number
of occurrences of premises, or their order, may affect deduction and change the set
of valid consequences. Clearly, such logics cannot be directly represented as insti-
tutions, but see for instance [CM97] which indicates how an institution for linear
logic can be defined by taking linear logic sequents (statements about consequence)
as individual sentences. A view of logic based on proof rules and deduction under-
lies so-called “general logical frameworks”, with Edinburgh LF [HHP93] as a prime
example. For proposals in this direction related to institutions, seeπ-institutions
[FS88] and also entailment systems [Mes89], [HST94], which re-emerge in Defini-
tion 9.1.2 below.

Sections 4.1.1 gives only the beginning of the long list of examples of logical
systems that have been formalised as institutions. Standard examples of institutions
(EQ, FOP, Horn , Horn without equality,EQ⇒) were in [GB92] with further stan-
dard algebraic variants in [Mos96b], andCEQ is from [Tar86b].

Dozens of other logical systems have been formalised as institutions. Some
examples: [Bor00] defines an institution of higher-order logic based on HOL;
[SML05] defines an institution with type class polymorphism; [Roş94] defines an
institution of order-sorted equational logic; [ACEGG91] defines a family of insti-
tutions of multiple-valued logics, including logical systems arising from fuzzy set
theory; [Dia00] defines an institution of constraint logic; [Cı̂r02] defines an insti-
tution with models that have both coalgebraic and algebraic components, and sen-
tences involving modal formulae; [FC96] defines an institution of temporal logic;
[LS00] defines an institution of hybrid systems based on the specification language
of HYTECH [HHWT97]; and [BH06a] defines the COL constructor-based obser-
vational logic institution based on viewing reachability and observability as dual
concepts. The semantics of basic specifications in CASL [ST04] defines an institu-
tion, the rest of the semantics being defined in an institution-independent fashion.
Alternatives to the standard CASL institution include: the institution underlying CO-
CASL, which includes cogeneration constraints, cofreeness constraints, and modal
formulae [MSRR06]; the institution underlying HASCASL, with partial higher or-
der functions, higher-order subtyping, shallow polymorphism, and type classes, de-
signed for specifying functional programs [SM09]; an institution of labelled tran-

Page: 222 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.6 Bibliographical remarks 223

sition logic for specifying dynamic reactive systems [RAC99]; and the institution
underlying CSP-CASL for describing systems of processes [Rog06]. The eight in-
stitutions involved inCafeOBJ [DF98] are defined in [DF02], with their combina-
tion leading to an institution via a version of the Grothendieck construction (Defi-
nition 3.4.58) that is applicable here [Dia02], and the Maude language [CDE+02]
is based on rewriting logic [Mes92] and on the institution of membership equa-
tional logic [Mes98] (with some technical nuances of their relationship pointed at
in [CMRM10]). Institutions for three different UML diagram types are defined in
[CK08a, CK08b, CK08c], with the relationships between them given by institu-
tion comorphisms (see Section 10.4 below). A spectrum of institutions capturing
some aspects of Semantic Web languages are defined and linked with each other in
[LLD06]. Different approaches to the specification of objects have led to the def-
inition of a number of institutions, including [SCS94] which defines an institution
of temporal logic for specifying object behaviour, [GD94b] which argues that an
institution based on hidden-sorted algebra is relevant, and [Zuc99] which shows
how to construct an institution with features for specifying dynamic aspects of sys-
tems using so-called “d-oids” from an institution for specifying static data. Finally,
some slightly non-standard examples include two institutions for graph colouring in
[Sco04], a way of viewing a database as an institution [Gog10], and a framework
based on institutions for typed object-oriented, XML and other data models [Ala02].

Some of the examples of constructions on institutions in Section 4.1.2 were in-
dependently introduced by others. For instance, [Mes89] constructs an institution
“out of thin air” starting with theories in an entailment system, the idea of which is
presented in Examples 4.1.36 and 4.1.40. Incidentally, a very interesting exercise is
to use the method of diagrams (Definition 4.5.9) to show how the construction of
models from theories recovers the institution for which the entailment system that
generates the theories was built.

Overall though, Section 4.1.2 only hints at the issue of how institutions should
be defined. In particular, we do not discuss here the notion of aparchment[GB86],
which offers one convenient way to present institutions in a concise and uniform
style, at the same time ensuring that the satisfaction condition holds. See also
[MTP97, MTP98] for variants of this notion and its use for combining presenta-
tions of logical systems.

The idea of data constraints originates in [BG80], but has been independently
introduced earlier by Reichel [Rei80], cf. [KR71]. Our treatment in Section 4.3 fol-
lows [GB92]. Definition 4.3.8 is essentially equivalent to the definition there, al-
though the technicalities are somewhat different; in particular, as in [ST88a], we do
not require the institution to be liberal. Hierarchy constraints [SW82], also known
as generating constraints [EWT83], are like data constraints but require that some
carriers are generated from other carriers rather than freeness, see Exercise 4.3.13.
Exercise 4.3.14 introduces a way to specify so-called co-inductive data types involv-
ing infinitary data. This has been mixed with algebraic techniques both in specifi-
cation, see COCASL [MSRR06] and in experimental programming languages, see
[Hag87] and Charity [CS92, CF92]. See [Rut00] for an introduction to a comprehen-

Page: 223 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

224 4 Working within an arbitrary logical system

sive coalgebraic approach to specification which provides an alternative perspective
to the material on behavioural specifications in Chapter 8 below.

Colimits of signatures and theories built over them have been used as a tool for
combining theories and specifications at least since [BG77, GB78]. This follows the
general ideas of [Gog73] and underlies for instance the semantics of Clear [BG80]
and the commercial Specware system [Smi06]; support for the use of colimits to
combine theories in a number of institutions is also offered by the HETS system
[MML07]. A category-theoretic approach to software engineering which makes ex-
tensive use of these ideas is [Fia05]. Theorem 4.4.1 originates with [GB92], gener-
alising a non-institutional version in [GB84b], and Corollary 4.4.2 is from [BG80].

The idea of amalgamation in model theory [CK90] refers to a subtler and deeper
property of certain theories than does the notion defined here. The use of amalga-
mation in algebraic specification, in connection with pushout-style parameterisation
mechanisms, originates with [EM85], following its introduction in [BPP85], see
also the Extension Lemma in [EKT+80, EKT+83]. In the context of an arbitrary
institution, it was first imposed as a requirement and linked with continuity of the
model functor in [ST88a], cf. [EWT83].

Limiting the amalgamation property to pushouts along a chosen collection of sig-
nature morphisms, as in Definition 4.4.18, is important not only because of examples
like those in Exercise 4.4.19. The range of relevant cases includes systems emerging
in practice. For instance, the institution of CASL [Mos04] admits amalgamation for
pushouts along most, but not all, CASL signature morphisms, due to problems with
the required unique interpretation of subsorting coercions, see [SMT+05].

There has been some confusion with the terminology surrounding exactness of
institutions in the literature. The term was first used in [Mes89], although for preser-
vation of signature pushouts (the amalgamation property) only. It became widely
used after [DGS93], where it meant that the model functor maps finite colimits of
signatures to limits inCat, so that neither infinite colimits nor existence of colimits
were covered (the latter also applies to semi-exactness as introduced there). This
was sometimes missed in the literature, leading to subtle mistakes in the presenta-
tion of some results. We decided to put all of these assumptions together under the
single requirement of “exactness”. The notion of an institution “with composable
signatures” was used in early versions of this chapter and in [Tar99] to mean the
same thing as exactness, and this terminology was adopted by other authors in a
few papers. The notion of exactness as used in category theory is different, although
for functors between so-called Abelian categories it implies preservation of finite
colimits.

The consequences of semi-exactness for preservation of finite connected colimits
of signature diagrams stated in Proposition 4.4.15 appear to be new in the literature
concerning institutions; they had not been clear to us until we were pointed to [CJ95]
and a result there which we give as Exercise 3.4.55.

Institutions with extra structure have been used as the basis for the definition of
the semantics of a number of specification languages, beginning with ASL [ST88a]
which required an exact institution. In [ST86], an institution-independent semantics
for the Extended ML specification language is sketched in terms of an “institution

Page: 224 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.6 Bibliographical remarks 225

with syntax”; this requires an additional functor which gives concrete syntactic rep-
resentations of sentences, together with a natural transformation which associates
these concrete objects with the “abstract” sentences they represent. In [ST04], the
semantics of CASL is based on an “institution with qualified symbols” [Mos00]
which requires considerable additional structure in order to support the operations
on signatures used in the semantics; these include union of signatures and generation
of signature morphisms from maps between symbols. Similar constructions on sig-
natures are available when the category of signatures is equipped with a so-called
inclusion system, which leads to the concept of an inclusive institution [DGS93],
[GR04] (see also Exercise 5.2.1 below).

Although the theory of institutions emerged originally in the context of algebraic
specification theory, it shares ideas and broad goals with abstract model theory as
pursued within mathematical logic, see [Bar74, BF85], which concentrates on the
study of definable classes of algebras (or rather first-order structures), abstracting
away from the structure of sentences and from proof-theoretic mechanisms. The
idea of developing an institutional version of abstract model theory, which also ab-
stracts away from the nature of models, was first put forward in [Tar86a], where
for instance the equivalence of the Craig interpolation and Robinson consistency
properties, mentioned in Section 4.4.1, was shown.

The Craig interpolation property (Definition 4.4.21) will be used frequently in
the sequel. In this formulation, it originates in [Tar86a]. Interpolation for first-order
logic is a standard result in model theory [CK90] but the delicacy of its status in
many-sorted first-order logic (see Exercise 4.4.23) was first pointed out in [Bor05].
There are several variants of the formulation of interpolation [DM00]. the general-
isation to arbitrary commuting squares of signature morphisms [Dia08] and sets of
interpolants (see the discussion in [DGS93]) is especially important. In particular,
sets of interpolants may always be found in the case of equational logic under the as-
sumption that carriers are non-empty [Rod91], but the necessity of this assumption
has been widely disregarded, see Exercise 4.4.25.

Our treatment of variables, open formulae and quantification in an arbitrary insti-
tution comes from [Tar86b, ST88a]; see the concept of syntactic operator in [Bar74]
for an earlier related idea. Section 4.5 is based on [Tar85], following [MM84] which
is in an institutional style but based on the standard notion of logical structure. In
[Tar86b], infinitary conditional “equations” were defined for an arbitrary abstract
algebraic institution and it was shown that sets of these sentences define quasi-
varieties, see [Mal71], thus obtaining a “syntactic” version of Theorem 4.5.20. Fur-
ther developments in institutional abstract model theory, with results and ideas that
refine those in Sections 4.4 and 4.5 and reach much further into classical model
theory than we have done here, are in [Dia08].

Page: 225 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

Page: 532 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

References

AC89. Egidio Astesiano and Maura Cerioli. On the existence of initial models for partial
(higher-order) conditional specifications. In Josep Dı́az and Fernando Orejas, editors,
Proceedings of the International Joint Conference on Theory and Practice of Software
Development, TAPSOFT’89, Barcelona,Lecture Notes in Computer Science, volume
351, pages 74–88. Springer, 1989.

AC01. David Aspinall and Adriana B. Compagnoni. Subtyping dependent types.Theoretical
Computer Science, 266(1–2):273–309, 2001.

ACEGG91. Jaume Agustı́-Cullell, Francesc Esteva, Pere Garcia, and Lluis Godo. Formalizing
multiple-valued logics as institutions. In Bernadette Bouchon-Meunier, Ronald R.
Yager, and Lotfi A. Zadeh, editors,Proceedings of the 3rd International Conference
on Information Processing and Management of Uncertainty in Knowledge-Based Sys-
tems, IPMU’90, Paris,Lecture Notes in Computer Science, volume 521, pages 269–
278. Springer, 1991.

AF96. Mário Arrais and Jośe Luiz Fiadeiro. Unifying theories in different institutions. In
Magne Haveraaen, Olaf Owe, and Ole-Johan Dahl, editors,Recent Trends in Data
Type Specification. Selected Papers from the 11th Workshop on Specification of Ab-
stract Data Types, Oslo, Lecture Notes in Computer Science, volume 1130, pages
81–101. Springer, 1996.

AG97. Robert Allen and David Garlan. A formal basis for architectural connection.ACM
Transactions on Software Engineering and Methodology, 6(3):213–249, 1997.

AH05. David Aspinall and Martin Hofmann. Dependent types. In Benjamin Pierce, editor,
Advanced Topics in Types and Programming Languages, chapter 2, pages 45–86. MIT
Press, 2005.

AHS90. Jǐri Adámek, Horst Herrlich, and George Strecker.Abstract and Concrete Categories:
The Joy of Cats. Wiley, 1990.

Ala02. Suad Alagic. Institutions: Integrating objects, XML and databases.Information and
Software Technology, 44(4):207–216, 2002.

AM75. Michael A. Arbib and Ernest G. Manes.Arrows, Structures and Functors: The Cate-
gorical Imperative. Academic Press, 1975.

Asp95. David Aspinall. Subtyping with singleton types. In Leszek Pacholski and Jerzy
Tiuryn, editors,Proceedings of the 8th International Workshop on Computer Science
Logic, CSL’94, Kazimierz,Lecture Notes in Computer Science, volume 933, pages
1–15. Springer, 1995.

Asp97. David Aspinall. Type Systems for Modular Programming and Specification. PhD
thesis, University of Edinburgh, Department of Computer Science, 1997.

Asp00. David Aspinall. Subtyping with power types. In Peter Clote and Helmut Schwichten-
berg, editors,Proceedings of the 14th International Workshop on Computer Science

533

534 References

Logic, Fischbachau,Lecture Notes in Computer Science, volume 1862, pages 156–
171. Springer, 2000.

Avr91. Arnon Avron. Simple consequence relations.Information and Computation, 92:105–
139, 1991.

Awo06. Steve Awodey.Category Theory. Oxford University Press, 2006.
Bar74. Jon Barwise. Axioms for abstract model theory.Annals of Mathematical Logic,

7:221–265, 1974.
BBB+85. Friedrich L. Bauer, Rudolf Berghammer, Manfred Broy, Walter Dosch, Franz Geisel-

brechtinger, Rupert Gnatz, E. Hangel, Wolfgang Hesse, Bernd Krieg-Brückner, Al-
fred Laut, Thomas Matzner, Bernd M̈oller, Friederike Nickl, Helmut Partsch, Peter
Pepper, Klaus Samelson, Martin Wirsing, and Hans Wössner. The Munich Project
CIP: Volume 1: The Wide Spectrum Language CIP-L, Lecture Notes in Computer
Science, volume 183. Springer, 1985.

BBC86. Gilles Bernot, Michel Bidoit, and Christine Choppy. Abstract data types with ex-
ception handling: An initial approach based on a distinction between exceptions and
errors.Theoretical Computer Science, 46(1):13–45, 1986.

BC88. Val Breazu-Tannen and Thierry Coquand. Extensional models for polymorphism.
Theoretical Computer Science, 59(1–2):85–114, 1988.

BCH99. Michel Bidoit, Maŕıa Victoria Cengarle, and Rolf Hennicker. Proof systems for struc-
tured specifications and their refinements. In Egidio Astesiano, Hans-Jörg Kreowski,
and Bernd Krieg-Br̈uckner, editors,Algebraic Foundations of Systems Specification,
chapter 11, pages 385–433. Springer, 1999.

BD77. R.M. Burstall and J. Darlington. A transformational system for developing recursive
programs.Journal of the Association for Computing Machinery, 24(1):44–67, 1977.

BDP+79. Manfred Broy, Walter Dosch, Helmut Partsch, Peter Pepper, and Martin Wirsing. Ex-
istential quantifiers in abstract data types. In Hermann A. Maurer, editor,Proceed-
ings of the 6th International Colloquium on Automata, Languages and Programming,
Graz,Lecture Notes in Computer Science, volume 71, pages 73–87. Springer, 1979.

Bén85. Jean B́enabou. Fibred categories and the foundations of naı̈ve category theory.Jour-
nal of Symbolic Logic, 50:10–37, 1985.

Ber87. Gilles Bernot. Good functors . . . are those preserving philosophy! In David H.
Pitt, Axel Poigńe, and David E. Rydeheard, editors,Proceedings of the 2nd Summer
Conference on Category Theory and Computer Science, Edinburgh,Lecture Notes in
Computer Science, volume 283, pages 182–195. Springer, 1987.

BF85. Jon Barwise and Solomon Feferman, editors.Model-Theoretic Logics. Springer,
1985.

BG77. R.M. Burstall and J.A. Goguen. Putting theories together to make specifications.
In Fifth International Joint Conference on Artificial Intelligence, pages 1045–1058,
Boston, 1977.

BG80. R.M. Burstall and J.A. Goguen. The semantics of Clear, a specification language.
In Dines Bjørner, editor,Proceedings of the 1979 Copenhagen Winter School on Ab-
stract Software Specification, Lecture Notes in Computer Science, volume 86, pages
292–332. Springer, 1980.

BG81. R.M. Burstall and J.A. Goguen. An informal introduction to specifications using
Clear. In R.S. Boyer and J.S. Moore, editors,The Correctness Problem in Computer
Science, pages 185–213. Academic Press, 1981. Also in:Software Specification Tech-
niques(eds. N. Gehani and A.D. McGettrick), Addison-Wesley, 1986.

BG01. Leo Bachmair and Harald Ganzinger. Resolution theorem proving. In John Alan
Robinson and Andrei Voronkov, editors,Handbook of Automated Reasoning, pages
19–99. Elsevier and MIT Press, 2001.

BH96. Michel Bidoit and Rolf Hennicker. Behavioural theories and the proof of behavioural
properties.Theoretical Computer Science, 165(1):3–55, 1996.

BH98. Michel Bidoit and Rolf Hennicker. Modular correctness proofs of behavioural imple-
mentations.Acta Informatica, 35(11):951–1005, 1998.

Page: 534 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

References 535

BH06a. Michel Bidoit and Rolf Hennicker. Constructor-based observational logic.Journal of
Logic and Algebraic Programming, 67(1–2):3–51, 2006.

BH06b. Michel Bidoit and Rolf Hennicker. Proving behavioral refinements of COL-
specifications. In Kokichi Futatsugi, Jean-Pierre Jouannaud, and José Meseguer, edi-
tors,Algebra, Meaning and Computation: Essays Dedicated to Joseph A. Goguen on
the Occasion of His 65th Birthday, Lecture Notes in Computer Science, volume 4060,
pages 333–354. Springer, 2006.

BHK90. Jan Bergstra, Jan Heering, and Paul Klint. Module algebra.Journal of the Association
for Computing Machinery, 37(2):335–372, 1990.

BHW94. Michel Bidoit, Rolf Hennicker, and Martin Wirsing. Characterizing behavioural se-
mantics and abstractor semantics. In Donald Sannella, editor,Proceedings of the
5th European Symposium on Programming, Edinburgh,Lecture Notes in Computer
Science, volume 788, pages 105–119. Springer, 1994.

BHW95. Michel Bidoit, Rolf Hennicker, and Martin Wirsing. Behavioural and abstractor spec-
ifications.Science of Computer Programming, 25(2-3):149–186, 1995.

Bir35. Garrett Birkhoff. On the structure of abstract algebras.Proceedings of the Cambridge
Philosophical Society, 31:433–454, 1935.

BL69. R.M. Burstall and P.J. Landin. Programs and their proofs: an algebraic approach. In
B. Meltzer and D. Michie, editors,Machine Intelligence 4, pages 17–43. Edinburgh
University Press, 1969.

BM04. Michel Bidoit and Peter D. Mosses, editors. CASL User Manual. Number 2900 in
Lecture Notes in Computer Science. Springer, 2004.

BN98. Franz Baader and Tobias Nipkow.Term Rewriting and All That. Cambridge Univer-
sity Press, 1998.

Bor94. Francis Borceaux.Handbook of Categorical Algebra. Cambridge University Press,
1994.

Bor00. Tomasz Borzyszkowski. Higher-order logic and theorem proving for structured spec-
ifications. In Didier Bert, Christine Choppy, and Peter D. Mosses, editors,Recent
Trends in Algebraic Development Techniques. Selected Papers from the 14th Interna-
tional Workshop on Algebraic Development Techniques, Cĥateau de Bonas,Lecture
Notes in Computer Science, volume 1827, pages 401–418. Springer, 2000.

Bor02. Tomasz Borzyszkowski. Logical systems for structured specifications.Theoretical
Computer Science, 286(2):197–245, 2002.

Bor05. Tomasz Borzyszkowski. Generalized interpolation in first order logic.Fundamenta
Informaticae, 66(3):199–219, 2005.

BPP85. Edward K. Blum and Francesco Parisi-Presicce. The semantics of shared submod-
ules specifications. In Hartmut Ehrig, Christiane Floyd, Maurice Nivat, and James W.
Thatcher, editors,Mathematical Foundations of Software Development. Proceedings
of the International Joint Conference on Theory and Practice of Software Develop-
ment. Volume 1: Colloquium on Trees in Algebra and Programming, Lecture Notes in
Computer Science, volume 185, pages 359–373. Springer, 1985.

BRJ98. Grady Booch, James Rumbaugh, and Ivar Jacobson.The Unified Modeling Language
User Guide. Addison-Wesley, 1998.

BS93. Rudolf Berghammer and Gunther Schmidt. Relational specifications. In C. Rauszer,
editor,Proc. XXXVIII Banach Center Semester on Algebraic Methods in Logic and
their Computer Science Applications, Banach Center Publications, volume 28, pages
167–190, Warszawa, 1993. Institute of Mathematics, Polish Academy of Sciences.

BST02. Michel Bidoit, Donald Sannella, and Andrzej Tarlecki. Architectural specifications
in CASL. Formal Aspects of Computing, 13:252–273, 2002.

BST08. Michel Bidoit, Donald Sannella, and Andrzej Tarlecki. Observational interpretation
of CASL specifications.Mathematical Structures in Computer Science, 18:325–371,
2008.

BT87. Jan Bergstra and John Tucker. Algebraic specifications of computable and semicom-
putable data types.Theoretical Computer Science, 50(2):137–181, 1987.

Page: 535 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

536 References

BT96. Michel Bidoit and Andrzej Tarlecki. Behavioural satisfaction and equivalence in con-
crete model categories. In Hélène Kirchner, editor,Proceedings of the 21st Interna-
tional Colloquium on Trees in Algebra and Programming, Linköping,Lecture Notes
in Computer Science, volume 1059, pages 241–256. Springer, 1996.

Bur86. Peter Burmeister. A Model Theoretic Oriented Approach to Partial Algebras.
Akademie-Verlag, 1986.

BW82a. Friedrich L. Bauer and Hans Wössner.Algorithmic Language and Program Develop-
ment. Springer, 1982.

BW82b. Manfred Broy and Martin Wirsing. Partial abstract data types.Acta Informatica,
18(1):47–64, 1982.

BW85. Michael Barr and Charles Wells.Toposes, Triples and Theories. Number 278 in
Grundlehren der mathematischen Wissenschaften. Springer, 1985.

BW95. Michael Barr and Charles Wells.Category Theory for Computing Science. Prentice
Hall, second edition, 1995.

BWP84. Manfred Broy, Martin Wirsing, and Claude Pair. A systematic study of models of
abstract data types.Theoretical Computer Science, 33(2–3):139–174, 1984.

Car88. Luca Cardelli. Structural subtyping and the notion of power type. InProceedings
of the 15th ACM Symposium on Principles of Programming Languages, San Diego,
pages 70–79, 1988.

CDE+02. Manuel Clavela, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martı́-Oliet,
Jośe Meseguer, and José F. Quesada. Maude: Specification and programming in
rewriting logic. Theoretical Computer Science, 285(2):187–243, 2002. See also
http://maude.cs.uiuc.edu/ .

Cen94. Maŕıa Victoria Cengarle.Formal Specifications with Higher-Order Parameterization.
PhD thesis, Ludwig-Maximilians-Universität München, Institut f̈ur Informatik, 1994.

CF92. Robin Cockett and Tom Fukushima. About Charity. Technical Report No. 92/480/18,
Department of Computer Science, University of Calgary, 1992.

CGR03. Carlos Caleiro, Paula Gouveia, and Jaime Ramos. Completeness results for fibred
parchments: Beyond the propositional base. In Martin Wirsing, Dirk Pattinson, and
Rolf Hennicker, editors,Recent Trends in Algebraic Development Techniques. Se-
lected Papers from the 16th International Workshop on Algebraic Development Tech-
niques, Frauenchiemsee,Lecture Notes in Computer Science, volume 2755, pages
185–200. Springer, 2003.

Chu56. Alonzo Church.Introduction to Mathematical Logic, Volume 1. Princeton University
Press, 1956.

Cı̂r02. Corina Ĉırstea. On specification logics for algebra-coalgebra structures: Reconciling
reachability and observability. InProceedings of the 5th International Conference on
Foundations of Software Science and Computation Structures. European Joint Con-
ferences on Theory and Practice of Software (ETAPS 2002), Grenoble,Lecture Notes
in Computer Science, volume 2303, pages 82–97. Springer, 2002.

CJ95. Aurelio Carboni and Peter Johnstone. Connected limits, familial representability and
Artin glueing. Mathematical Structures in Computer Science, 5(4):441–459, 1995.

CK90. Chen-Chung Chang and H. Jerome Keisler.Model Theory. North-Holland, third
edition, 1990.

CK08a. Maŕıa Victoria Cengarle and Alexander Knapp. An institution for OCL 2.0. Techni-
cal Report I0801, Institut f̈ur Informatik, Ludwig-Maximilians-Universiẗat München,
2008.

CK08b. Maŕıa Victoria Cengarle and Alexander Knapp. An institution for UML 2.0 in-
teractions. Technical Report I0808, Institut für Informatik, Ludwig-Maximilians-
Universiẗat München, 2008.

CK08c. Maŕıa Victoria Cengarle and Alexander Knapp. An institution for UML 2.0 static
structures. Technical Report I0807, Institut für Informatik, Ludwig-Maximilians-
Universiẗat München, 2008.

Page: 536 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

http://maude.cs.uiuc.edu/

References 537

CKTW08. Maria-Victoria Cengarle, Alexander Knapp, Andrzej Tarlecki, and Martin Wirsing. A
heterogeneous approach to UML semantics. In Pierpaolo Degano, Rocco de Nicola,
and Jośe Meseguer, editors,Concurrency, Graphs and Models, Essays Dedicated to
Ugo Montanari on the Occasion of His 65th Birthday, Lecture Notes in Computer
Science, volume 5065, pages 383–402. Springer, 2008.

CM97. Maura Cerioli and José Meseguer. May I borrow your logic? (Transporting logical
structures along maps).Theoretical Computer Science, 173(2):311–347, 1997.

CMRM10. Mihai Codescu, Till Mossakowski, Adrı́an Riesco, and Christian Maeder. Integrat-
ing Maude into Hets. In Mike Johnson and Dusko Pavlovic, editors,AMAST 2010,
Lecture Notes in Computer Science. Springer, 2010.

CMRS01. Carlos Caleiro, Paulo Mateus, Jaime Ramos, and Amı́lcar Sernadas. Combining log-
ics: Parchments revisited. In Maura Cerioli and Gianna Reggio, editors,Recent Trends
in Algebraic Development Techniques. Selected Papers from the 15th Workshop on Al-
gebraic Development Techniques joint with the CoFI WG Meeting, Genova,Lecture
Notes in Computer Science, volume 2267, pages 48–70. Springer, 2001.

Coh65. Paul M. Cohn.Universal Algebra. Harper and Row, 1965.
CS92. Robin Cockett and Dwight Spencer. Strong categorical datatypes I. In R.A.G. Seely,

editor,International Meeting on Category Theory 1991, Canadian Mathematical So-
ciety Proceedings. American Mathematical Society, 1992.

CSS05. Carlos Caleiro, Aḿılcar Sernadas, and Cristina Sernadas. Fibring logics: Past, present
and future. In Sergei N. Artemov, Howard Barringer, Artur S. d’Avila Garcez, Luı́s C.
Lamb, and John Woods, editors,We Will Show Them! Essays in Honour of Dov Gab-
bay, Volume One, pages 363–388. College Publications, 2005.

DF98. R̆azvan Diaconescu and Kokichi Futatsugi.CafeOBJ Report: The Language, Proof
Techniques, and Methodologies for Object-Oriented Algebraic Specification, AMAST
Series in Computing, volume 6. World Scientific, 1998.

DF02. R̆azvan Diaconescu and Kokichi Futatsugi. Logical foundations ofCafeOBJ. Theo-
retical Computer Science, 285:289–318, 2002.

DGS93. Řazvan Diaconescu, Joseph Goguen, and Petros Stefaneas. Logical support for mod-
ularisation. In Ǵerard Huet and Gordon Plotkin, editors,Logical Environments, pages
83–130. Cambridge University Press, 1993.

Dia00. R̆azvan Diaconescu. Category-based constraint logic.Mathematical Structures in
Computer Science, 10(3):373–407, 2000.

Dia02. R̆azvan Diaconescu. Grothendieck institutions.Applied Categorical Structures,
10(4):383–402, 2002.

Dia08. Řazvan Diaconescu.Institution-independent Model Theory. Birkhäuser, 2008.
DJ90. Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In Jan van

Leeuwen, editor,Handbook of Theoretical Computer Science. Volume B (Formal
Models and Semantics), pages 244–320. North-Holland and MIT Press, 1990.

DLL62. Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-proving.Communications of the ACM, 5(7):394–397, 1962.

DM00. Theodosis Dimitrakos and Tom Maibaum. On a generalised modularisation theorem.
Information Processing Letters, 74(1–2):65–71, 2000.

DMR76. Martin Davis, Yuri Matiyasevich, and Julia Robinson. Hilbert’s tenth problem. Dio-
phantine equations: Positive aspects of a negative solution. InMathematical Develop-
ments Arising from Hilbert Problems, Proceedings of Symposia in Pure Mathematics,
volume 28, pages 323–378, Providence, Rhode Island, 1976. American Mathematical
Society.

DP90. B.A. Davey and H.A. Priestley.Introduction to Lattices and Order. Cambridge Uni-
versity Press, 1990.

Ehr78. Hans-Dieter Ehrich. Extensions and implementations of abstract data type specifica-
tions. In J́ozef Winkowski, editor,Proceedings of the 7th Symposium on Mathemati-
cal Foundations of Computer Science, Zakopane,Lecture Notes in Computer Science,
volume 64, pages 155–164. Springer, 1978.

Page: 537 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

538 References

Ehr81. Hans-Dieter Ehrich. On realization and implementation. In Jozef Gruska and Michal
Chytil, editors,Proceedings of the 10th Symposium on Mathematical Foundations of
Computer Science, Štrbsḱe Pleso,Lecture Notes in Computer Science, volume 118,
pages 271–280. Springer, 1981.

Ehr82. Hans-Dieter Ehrich. On the theory of specification, implementation and parametriza-
tion of abstract data types.Journal of the Association for Computing Machinery,
29(1):206–227, 1982.

EKMP82. Hartmut Ehrig, Hans-Jörg Kreowski, Bernd Mahr, and Peter Padawitz. Algebraic
implementation of abstract data types.Theoretical Computer Science, 20:209–263,
1982.

EKT+80. Hartmut Ehrig, Hans-Jörg Kreowski, James Thatcher, Eric Wagner, and Jesse Wright.
Parameter passing in algebraic specification languages. Technical report, Technische
Universiẗat Berlin, 1980.

EKT+83. Hartmut Ehrig, Hans-Jörg Kreowski, James Thatcher, Eric Wagner, and Jesse Wright.
Parameter passing in algebraic specification languages.Theoretical Computer Sci-
ence, 28(1–2):45–81, 1983.

EM85. Hartmut Ehrig and Bernd Mahr.Fundamentals of Algebraic Specification 1, EATCS
Monographs on Theoretical Computer Science, volume 6. Springer, 1985.

Eme90. E. Allen Emerson. Temporal and modal logic. In Jan van Leeuwen, editor,Handbook
of Theoretical Computer Science. Volume B (Formal Models and Semantics), pages
995–1072. North-Holland and MIT Press, 1990.

End72. Herbert B. Enderton.A Mathematical Introduction to Logic. Academic Press, 1972.
EPO89. Hartmut Ehrig, Peter Pepper, and Fernando Orejas. On recent trends in algebraic

specification. In Giorgio Ausiello, Mariangiola Dezani-Ciancaglini, and Simona
Ronchi Della Rocca, editors,Proceeding of the 16th International Colloquium on
Automata, Languages and Programming, Stresa,Lecture Notes in Computer Science,
volume 372, pages 263–288. Springer, 1989.

EWT83. Hartmut Ehrig, Eric G. Wagner, and James W. Thatcher. Algebraic specifications
with generating constraints. InProceeding of the 10th International Colloquium on
Automata, Languages and Programming, Barcelona,Lecture Notes in Computer Sci-
ence, volume 154, pages 188–202. Springer, 1983.

Far89. Jordi Farŕes-Casals. Proving correctness of constructor implementations. In Antoni
Kreczmar and Grazyna Mirkowska, editors,Proceedings of the 14th Symposium on
Mathematical Foundations of Computer Science, Porabka-Kozubnik,Lecture Notes
in Computer Science, volume 379, pages 225–235. Springer, 1989.

Far90. Jordi Farŕes-Casals. Proving correctness wrt specifications with hidden parts. In
Hélène Kirchner and Wolfgang Wechler, editors,Proceedings of the 2nd International
Conference on Algebraic and Logic Programming, Nancy,Lecture Notes in Computer
Science, volume 463, pages 25–39. Springer, 1990.

Far92. Jordi Farŕes-Casals.Verification in ASL and Related Specification Languages. PhD
thesis, University of Edinburgh, Department of Computer Science, 1992.

FC96. Jośe Luiz Fiadeiro and José F́elix Costa. Mirror, mirror in my hand: A duality be-
tween specifications and models of process behaviour.Mathematical Structures in
Computer Science, 6(4):353–373, 1996.

Fei89. Loe M. G. Feijs. The calculusλπ. In Martin Wirsing and Jan A. Bergstra, editors,
Proceedings of the Workshop on Algebraic Methods: Theory, Tools and Applications,
Lecture Notes in Computer Science, volume 394, pages 307–328. Springer, 1989.

FGT92. William M. Farmer, Joshua D. Guttman, and F. Javier Thayer. Little theories. In
Deepak Kapur, editor,Proceedings of the 11th International Conference on Auto-
mated Deduction, Lecture Notes in Artificial Intelligence, volume 607, pages 567–
581, Saratoga Springs, 1992. Springer.

Fia05. Jośe Luiz Fiadeiro.Categories for Software Engineering. Springer, 2005.
Fit08. John S. Fitzgerald. The typed logic of partial functions and the Vienna Develop-

ment Method. In Dines Bjørner and Martin Henson, editors,Logics of Specification
Languages, pages 453–487. Springer, 2008.

Page: 538 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

References 539

FJ90. J. Fitzgerald and C.B. Jones. Modularizing the formal description of a database sys-
tem. InProceedings of the 3rd International Symposium of VDM Europe: VDM and
Z, Formal Methods in Software Development, Kiel, Lecture Notes in Computer Sci-
ence, volume 428, pages 189–210. Springer, 1990.

FS88. Jośe Luiz Fiadeiro and Aḿılcar Sernadas. Structuring theories on consequence. In
Donald Sannella and Andrzej Tarlecki, editors,Recent Trends in Data Type Specifica-
tion. Selected Papers from the 5th Workshop on Specification of Abstract Data Types,
Gullane,Lecture Notes in Computer Science, volume 332, pages 44–72. Springer,
1988.

Gab98. Dov M. Gabbay.Fibring Logics, Oxford Logic Guides, volume 38. Oxford University
Press, 1998.

Gan83. Harald Ganzinger. Parameterized specifications: Parameter passing and implemen-
tation with respect to observability.ACM Transactions on Programming Languages
and Systems, 5(3):318–354, 1983.

GB78. J.A. Goguen and R.M. Burstall. Some fundamental properties of algebraic theories:
a tool for semantics of computation. Technical Report 53, Department of Artificial
Intelligence, University of Edinburgh, 1978. Revised version appeared as [GB84b]
and [GB84c].

GB80. J.A. Goguen and R.M. Burstall. CAT, a system for the structured elaboration of cor-
rect programs from structured specifications. Technical Report CSL-118, Computer
Science Laboratory, SRI International, 1980.

GB84a. J.A. Goguen and R.M. Burstall. Introducing institutions. In Edmund Clarke and Dex-
ter Kozen, editors,Proceedings of the Workshop on Logics of Programs, Pittsburgh,
Lecture Notes in Computer Science, volume 164, pages 221–256. Springer, 1984.

GB84b. J.A. Goguen and R.M. Burstall. Some fundamental algebraic tools for the semantics
of computation. Part 1: Comma categories, colimits, signatures and theories.Theo-
retical Computer Science, 31:175–209, 1984.

GB84c. J.A. Goguen and R.M. Burstall. Some fundamental algebraic tools for the semantics
of computation. Part 2: Signed and abstract theories.Theoretical Computer Science,
31:263–295, 1984.

GB86. Joseph A. Goguen and Rod M. Burstall. A study in the functions of programming
methodology: Specifications, institutions, charters and parchments. In David H. Pitt,
Samson Abramsky, Axel Poigné, and David E. Rydeheard, editors,Proceedings of the
Tutorial and Workshop on Category Theory and Computer Programming, Guildford,
Lecture Notes in Computer Science, volume 240, pages 313–333. Springer, 1986.

GB92. J.A. Goguen and R.M. Burstall. Institutions: Abstract model theory for specification
and programming.Journal of the Association for Computing Machinery, 39(1):95–
146, 1992.

GD94a. Joseph Goguen and Răzvan Diaconescu. An Oxford survey of order sorted algebra.
Mathematical Structures in Computer Science, 4(3):363–392, 1994.

GD94b. Joseph A. Goguen and Rǎzvan Diaconescu. Towards an algebraic semantics for the
object paradigm. In Hartmut Ehrig and Fernando Orejas, editors,Recent Trends in
Data Type Specification. Selected Papers from the 9th Workshop on Specification of
Abstract Data Types joint with the 4thCOMPASS Workshop, Caldes de Malavella,
Lecture Notes in Computer Science, volume 785, pages 1–29. Springer, 1994.

GDLE84. Martin Gogolla, Klaus Drosten, Udo Lipeck, and Hans-Dieter Ehrich. Algebraic and
operational semantics of specifications allowing exceptions and errors.Theoretical
Computer Science, 34(3):289–313, 1984.

GG89. Stephen J. Garland and John V. Guttag. An overview of LP, the Larch Prover. InThird
International Conference on Rewriting Techniques and Applications, Chapel Hill,
Lecture Notes in Computer Science, volume 355, pages 137–151. Springer, 1989.
See alsohttp://nms.lcs.mit.edu/larch/LP/all.html .

GGM76. V. Giarratana, F. Gimona, and Ugo Montanari. Observability concepts in abstract data
type specifications. In Antoni Mazurkiewicz, editor,Proceedings of the 5th Sympo-

Page: 539 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

http://nms.lcs.mit.edu/larch/LP/all.html

540 References

sium on Mathematical Foundations of Computer Science, Gdánsk,Lecture Notes in
Computer Science, volume 45, pages 567–578. Springer, 1976.

GH78. John Guttag and James Horning. The algebraic specification of abstract data types.
Acta Informatica, 10:27–52, 1978.

GH93. John V. Guttag and James J. Horning.Larch: Languages and Tools for Formal Spec-
ification. Springer, 1993.

Gin68. Abraham Ginzburg.Algebraic Theory of Automata. Academic Press, 1968.
Gir87. Jean-Yves Girard. Linear logic.Theoretical Computer Science, 50:1–102, 1987.
Gir89. Jean-Yves Girard.Proofs and Types, Cambridge Tracts in Theoretical Computer Sci-

ence, volume 7. Cambridge University Press, 1989. Translated and with appendices
by Paul Taylor and Yves Lafont.

GLR00. Joseph Goguen, Kai Lin, and Grigore Roşu. Circular coinductive rewriting. InPro-
ceedings of the 15th International Conference on Automated Software Engineering,
Grenoble. IEEE Computer Society, 2000.

GM82. Joseph A. Goguen and José Meseguer. Universal realization, persistent interconnec-
tion and implementation of abstract modules. In Mogens Nielsen and Erik Meineche
Schmidt, editors,Proceeding of the 9th International Colloquium on Automata, Lan-
guages and Programming, Aarhus,Lecture Notes in Computer Science, volume 140,
pages 265–281. Springer, 1982.

GM85. Joseph Goguen and José Meseguer. Completeness of many sorted equational deduc-
tion. Houston Journal of Mathematics, 11(3):307–334, 1985.

GM92. Joseph Goguen and José Meseguer. Order-sorted algebra I: Equational deduction
for multiple inheritance, overloading, exceptions and partial operations.Theoretical
Computer Science, 105(2):217–273, 1992.

GM00. Joseph A. Goguen and Grant Malcolm. A hidden agenda.Theoretical Computer
Science, 245(1):55–101, 2000.

Gog73. Joseph Goguen. Categorical foundations for general systems theory. In F. Pichler and
R. Trappl, editors,Advances in Cybernetics and Systems Research, London, pages
121–130. Transcripta Books, 1973.

Gog74. J.A. Goguen. Semantics of computation. In Ernest G. Manes, editor,Proceedings
of the 1st International Symposium on Category Theory Applied to Computation and
Control, San Francisco,Lecture Notes in Computer Science, volume 25, pages 151–
163. Springer, 1974.

Gog78. Joseph Goguen. Abstract errors for abstract data types. In Erich Neuhold, editor,
Formal Description of Programming Concepts, pages 491–526. North-Holland, 1978.

Gog84. Martin Gogolla. Partially ordered sorts in algebraic specifications. InProceedings
of the 9th Colloquium on Trees in Algebra and Programming, pages 139–153. Cam-
bridge University Press, 1984.

Gog85. Martin Gogolla. A final algebra semantics for errors and exceptions. In Hans-
Jörg Kreowski, editor,Recent Trends in Data Type Specification. Selected Papers
from the 3rd Workshop on Theory and Applications of Abstract Data Types, Bremen,
Informatik-Fachberichte, volume 116, pages 89–103. Springer, 1985.

Gog91a. Joseph Goguen. Types as theories. In G.M. Reed, A.W. Roscoe, and R.F. Wachter,
editors,Topology and Category Theory in Computer Science, Oxford, pages 357–390.
Oxford University Press, 1991.

Gog91b. Joseph A. Goguen. A categorical manifesto.Mathematical Structures in Computer
Science, 1(1):49–67, 1991.

Gog96. Joseph A. Goguen. Parameterized programming and software architecture. In Murali
Sitaraman, editor,Proceedings of the Fourth International Conference on Software
Reuse, pages 2–11. IEEE Computer Society Press, 1996.

Gog10. Joseph Goguen. Information integration in institutions. In Larry Moss, editor,Think-
ing Logically: a Volume in Memory of Jon Barwise. CSLI, Stanford University, 2010.
To appear.

Gol06. Robert Goldblatt.Topoi: The Categorial Analysis of Logic. Dover, revised edition,
2006.

Page: 540 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

References 541

Gor95. Andrew D. Gordon. Bisimilarity as a theory of functional programming. InProceed-
ings of the 11th Annual Conference on Mathematical Foundations of Programming
Semantics. Electronic Notes in Theoretical Computer Science, 1:232–252, 1995.

GR02. Joseph A. Goguen and Grigore Roşu. Institution morphisms.Formal Aspects of
Computing, 13(3-5):274–307, 2002.

GR04. Joseph A. Goguen and Grigore Roşu. Composing hidden information modules over
inclusive institutions. InFrom Object-Orientation to Formal Methods. Essays in
Memory of Ole-Johan Dahl, Lecture Notes in Computer Science, volume 2635, pages
96–123. Springer, 2004.

Grä79. George A. Grätzer.Universal Algebra. Springer, second edition, 1979.
GS90. Carl Gunter and Dana Scott. Semantic domains. In Jan van Leeuwen, editor,Hand-

book of Theoretical Computer Science. Volume B (Formal Models and Semantics),
pages 633–674. North-Holland and MIT Press, 1990.

GTW76. Joseph Goguen, James Thatcher, and Eric Wagner. An initial algebra approach to
the specification, correctness and implementation of abstract data types. Technical
Report RC 6487, IBM Watson Research Center, Yorktown Heights NY, 1976. Also
in: Current Trends in Programming Methodology. Volume IV (Data Structuring)(ed.
R.T. Yeh), Prentice-Hall, 80–149, 1978.

GTWW73. Joseph Goguen, James Thatcher, Eric Wagner, and Jesse Wright. A junction between
computer science and category theory, I: Basic concepts and examples (part 1). Tech-
nical Report RC 4526, IBM Watson Research Center, Yorktown Heights NY, 1973.

GTWW75. Joseph Goguen, James Thatcher, Eric Wagner, and Jesse Wright. An introduction to
categories, algebraic theories and algebras. Technical Report RC 5369, IBM Watson
Research Center, Yorktown Heights NY, 1975.

GTWW77. Joseph Goguen, James Thatcher, Eric Wagner, and Jesse Wright. Initial algebra se-
mantics and continuous algebras.Journal of the Association for Computing Machin-
ery, 24(1):68–95, 1977.

Gut75. John Guttag.The Specification and Application to Programming of Abstract Data
Types. PhD thesis, University of Toronto, Department of Computer Science, 1975.

Hag87. Tatsuya Hagino.A Categorical Programming Language. PhD thesis, University of
Edinburgh, Department of Computer Science, 1987.

Häh01. Reiner Ḧahnle. Tableaux and related methods. In John Alan Robinson and Andrei
Voronkov, editors,Handbook of Automated Reasoning, pages 100–178. Elsevier and
MIT Press, 2001.

Hal70. Paul R. Halmos.Naive Set Theory. Undergraduate Texts in Mathematics. Springer,
1970.

Hat82. William Hatcher.The Logical Foundations of Mathematics. Foundations and Philos-
ophy of Science and Technology. Pergamon Press, 1982.

Hay94. Susumu Hayashi. Singleton, union and intersection types for program extraction.
Information and Computation, 109(1/2):174–210, 1994.

Hee86. Jan Heering. Partial evaluation andω-completeness of algebraic specifications.The-
oretical Computer Science, 43:149–167, 1986.

Hen91. Rolf Hennicker. Context induction: A proof principle for behavioural abstractions
and algebraic implementations.Formal Aspects of Computing, 3(4):326–345, 1991.

HHP93. Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
Journal of the Association for Computing Machinery, 40(1):143–184, January 1993.

HHWT97. Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HYTECH: A model
checker for hybrid systems.Software Tools for Technology Transfer, 1(1–2):110–
122, 1997.

Hig63. Phillip J. Higgins. Algebras with a scheme of operators.Mathematische Nachrichten,
27:115–132, 1963.

HLST00. Furio Honsell, John Longley, Donald Sannella, and Andrzej Tarlecki. Constructive
data refinement in typed lambda calculus. InProceedings of the 3rd International
Conference on Foundations of Software Science and Computation Structures. Euro-
pean Joint Conferences on Theory and Practice of Software (ETAPS 2000), Berlin,
Lecture Notes in Computer Science, volume 1784, pages 161–176. Springer, 2000.

Page: 541 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

542 References

Hoa72. C. A. R. Hoare. Proof of correctness of data representations.Acta Informatica,
1:271–281, 1972.

HS73. Horst Herrlich and George E. Strecker.Category Theory: An Introduction. Allyn and
Bacon, 1973.

HS96. Martin Hofmann and Donald Sannella. On behavioural abstraction and behavioural
satisfaction in higher-order logic.Theoretical Computer Science, 167:3–45, 1996.

HS02. Furio Honsell and Donald Sannella. Prelogical relations.Information and Computa-
tion, 178:23–43, 2002.

HST94. Robert Harper, Donald Sannella, and Andrzej Tarlecki. Structured presentations and
logic representations.Annals of Pure and Applied Logic, 67:113–160, 1994.

Hus92. Heinrich Hussmann. Nondeterministic algebraic specifications and nonconfluent term
rewriting. Journal of Logic Programming, 12(1–4):237–255, 1992.

HWB97. Rolf Hennicker, Martin Wirsing, and Michel Bidoit. Proof systems for struc-
tured specifications with observability operators.Theoretical Computer Science,
173(2):393–443, 1997.

Jac99. Bart Jacobs.Categorical Logic and Type Theory. Number 141 in Studies in Logic
and the Foundations of Mathematics. Elsevier Science, 1999.

JL87. Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. InProceedings of
the 14th ACM Symposium on Principles of Programming Languages, Munich, pages
111–119, 1987.

JNW96. Andŕe Joyal, Mogens Nielsen, and Glynn Winskel. Bisimulation from open maps.
Information and Computation, 127(2):164–185, 1996.

JOE95. Rosa M. Jiḿenez, Fernando Orejas, and Hartmut Ehrig. Compositionality and com-
patibility of parameterization and parameter passing in specification languages.Math-
ematical Structures in Computer Science, 5(2):283–314, 1995.

Joh02. Peter T. Johnstone.Sketches of an Elephant: A Topos Theory Compendium. Oxford
Logic Guides Series. Clarendon Press, 2002.

Jon80. Cliff B. Jones.Software Development: A Rigorous Approach. Prentice-Hall, 1980.
Jon89. Hans B.M. Jonkers. An introduction to COLD-K. In Martin Wirsing and Jan A.

Bergstra, editors,Proceedings of the Workshop on Algebraic Methods: Theory, Tools
and Applications, Lecture Notes in Computer Science, volume 394, pages 139–205.
Springer, 1989.

JR97. Bart Jacobs and Jan Rutten. A tutorial on (co)algebras and (co)induction.Bulletin of
the European Association for Theoretical Computer Science, 62:222–259, 1997.

KB70. Donald E. Knuth and Peter B. Bendix. Simple word problems in universal algebras.
In J. Leech, editor,Computational Problems in Abstract Algebra, pages 263–297.
Pergamon Press, 1970.

Kir99. Hélène Kirchner. Term rewriting. In Egidio Astesiano, Hans-Jörg Kreowski, and
Bernd Krieg-Br̈uckner, editors,Algebraic Foundations of Systems Specification, chap-
ter 9, pages 273–320. Springer, 1999.

KKM88. Claude Kirchner, H́elène Kirchner, and José Meseguer. Operational semantics of
OBJ-3. In Timo Lepisẗo and Arto Salomaa, editors,Proceedings of the 15th Inter-
national Colloquium on Automata, Languages and Programming, Tampere,Lecture
Notes in Computer Science, volume 317, pages 287–301. Springer, 1988.

Klo92. Jan Klop. Term rewriting systems. In Samson Abramsky, Dov Gabbay, and Tom
Maibaum, editors,Handbook of Logic in Computer Science. Volume 2 (Background:
Computational Structures), pages 1–116. Oxford University Press, 1992.

KM87. Deepak Kapur and David R. Musser. Proof by consistency.Artificial Intelligence,
31(2):125–157, 1987.

KR71. Heinz Kaphengst and Horst Reichel. Algebraische Algorithmentheorie. Technical
Report WIB 1, VEB Robotron, Zentrum für Forschung und Technik, Dresden, 1971.

Kre87. Hans-J̈org Kreowski. Partial algebras flow from algebraic specifications. In
T. Ottmann, editor,Proceedings of the 14th International Colloquium on Automata,
Languages and Programming, Karlsruhe,Lecture Notes in Computer Science, vol-
ume 267, pages 521–530. Springer, 1987.

Page: 542 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

References 543

KST97. Stefan Kahrs, Donald Sannella, and Andrzej Tarlecki. The definition of Extended
ML: A gentle introduction.Theoretical Computer Science, 173:445–484, 1997.

KTB91. Beata Konikowska, Andrzej Tarlecki, and Andrzej Blikle. A three-valued logic for
software specification and validation.Fundamenta Informaticae, 14(4):411–453,
1991.

Las98. Sławomir Lasota. Open maps as a bridge between algebraic observational equivalence
and bisimilarity. In Francesco Parisi-Presicce, editor,Recent Trends in Data Type
Specification. Selected Papers from the 12th International Workshop on Specification
of Abstract Data Types, Tarquinia,Lecture Notes in Computer Science, volume 1376,
pages 285–299. Springer, 1998.

Law63. F. William Lawvere. Functorial Semantics of Algebraic Theories. PhD thesis,
Columbia University, 1963.

LB88. Butler Lampson and Rod Burstall. Pebble, a kernel language for modules and abstract
data types.Information and Computation, 76(2/3):278–346, 1988.

LEW96. Jacques Loeckx, Hans-Dieter Ehrich, and Markus Wolf.Specification of Abstract
Data Types. John Wiley and Sons, 1996.

Lin03. Kai Lin. Machine Support for Behavioral Algebraic Specification and Verification.
PhD thesis, University of California, San Diego, 2003.

Lip83. Udo Lipeck. Ein algebraischer Kalk̈ul für einen strukturierten Entwurf von Daten-
abstraktionen. PhD thesis, Universität Dortmund, 1983.

LLD06. Dorel Lucanu, Yuan-Fang Li, and Jin Song Dong. Semantic Web languages—towards
an institutional perspective. In Kokichi Futatsugi, Jean-Pierre Jouannaud, and José
Meseguer, editors,Algebra, Meaning and Computation: Essays Dedicated to Joseph
A. Goguen on the Occasion of His 65th Birthday, Lecture Notes in Computer Science,
volume 4060, pages 99–123. Springer, 2006.

LS86. Joachim Lambek and Philip J. Scott.Introduction to Higher-Order Categorical Logic.
Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1986.

LS00. Hugo Lourenço and Aḿılcar Sernadas. An institution of hybrid systems. In Didier
Bert, Christine Choppy, and Peter D. Mosses, editors,Recent Trends in Algebraic
Development Techniques. Selected Papers from the 14th International Workshop on
Algebraic Development Techniques, Château de Bonas,Lecture Notes in Computer
Science, volume 1827, pages 219–236. Springer, 2000.

Luo93. Zhaohui Luo. Program specification and data refinement in type theory.Mathematical
Structures in Computer Science, 3(3):333–363, 1993.

Mac71. Saunders Mac Lane.Categories for the Working Mathematician. Springer, 1971.
Mac84. David B. MacQueen. Modules for Standard ML. InProceedings of the 1984 ACM

Conference on LISP and Functional Programming, pages 198–207, 1984.
MAH06. Till Mossakowski, Serge Autexier, and Dieter Hutter. Development graphs — proof

management for structured specifications.Journal of Logic and Algebraic Program-
ming, 67(1–2):114–145, 2006.

Mai72. Tom Maibaum. The characterization of the derivation trees of context free sets of
terms as regular sets. InProceedings of the 13th Annual IEEE Symposium on Switch-
ing and Automata Theory, pages 224–230, 1972.

Maj77. Mila E. Majster. Limits of the “algebraic” specification of abstract data types.ACM
SIGPLAN Notices, 12(10):37–42, 1977.

Mal71. Anatoly Malcev. Quasiprimitive classes of abstract algebras in the metamathematics
of algebraic systems. InMathematics of Algebraic Systems: Collected Papers, 1936-
67, number 66 in Studies in Logic and Mathematics, pages 27–31. North-Holland,
1971.

Man76. Ernest G. Manes.Algebraic Theories. Springer, 1976.
May85. Brian Mayoh. Galleries and institutions. Technical Report DAIMI PB-191, Aarhus

University, 1985.
Mei92. Karl Meinke. Universal algebra in higher types.Theoretical Computer Science,

100:385–417, 1992.

Page: 543 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

544 References

Mes89. Jośe Meseguer. General logics. In H.-D. Ebbinghaus, editor,Logic Colloquium ’87,
Granada, pages 275–329. North-Holland, 1989.

Mes92. Jośe Meseguer. Conditional rewriting logic as a unified model of concurrency.Theo-
retical Computer Science, 96(1):73–155, 1992.

Mes98. Jośe Meseguer. Membership algebra as a logical framework for equational specifica-
tion. In Francesco Parisi-Presicce, editor,Recent Trends in Data Type Specification.
Selected Papers from the 12th International Workshop on Specification of Abstract
Data Types, Tarquinia,Lecture Notes in Computer Science, volume 1376, pages 18–
61. Springer, 1998.

Mes09. Jośe Meseguer. Order-sorted parameterization and induction. In Jens Palsberg, editor,
Semantics and Algebraic Specification: Essays Dedicated to Peter D. Mosses on the
Occasion of His 60th Birthday, Lecture Notes in Computer Science, volume 5700,
pages 43–80. Springer, 2009.

MG85. Jośe Meseguer and Joseph Goguen. Initiality, induction and computability. In Mau-
rice Nivat and John C. Reynolds, editors,Algebraic Methods in Semantics, pages
459–541. Cambridge, 1985.

MGDT07. Till Mossakowski, Joseph Goguen, Rǎzvan Diaconescu, and Andrzej Tarlecki. What
is a logic? In Jean-Yves Beziau, editor,Logica Universalis: Towards a General The-
ory of Logic, pages 111–135. Birkhäuser, 2007.

MHST08. Till Mossakowski, Anne Haxthausen, Donald Sannella, and Andrzej Tarlecki. CASL
— the common algebraic specification language. In Dines Bjørner and Martin Hen-
son, editors,Logics of Specification Languages, pages 241–298. Springer, 2008.

Mid93. Aart Middeldorp. Modular properties of conditional term rewriting systems.Infor-
mation and Computation, 104(1):110–158, 1993.

Mil71. Robin Milner. An algebraic definition of simulation between programs. InPro-
ceedings of the 2nd International Joint Conference on Artificial Intelligence, pages
481–489, 1971.

Mil77. Robin Milner. Fully abstract models of typedλ -calculi. Theoretical Computer Sci-
ence, 4(1):1–22, 1977.

Mil89. Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.
Mit96. John C. Mitchell.Foundations of Programming Languages. MIT Press, 1996.
MM84. Bernd Mahr and Johann Makowsky. Characterizing specification languages which

admit initial semantics.Theoretical Computer Science, 31:49–60, 1984.
MML07. Till Mossakowski, Christian Maeder, and Klaus Lüttich. The heterogeneous tool set,

HETS. In Orna Grumberg and Michael Huth, editors,Proceedings of the 13th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems. European Joint Conferences on Theory and Practice of Software (ETAPS 2007),
Braga,Lecture Notes in Computer Science, volume 4424, pages 519–522. Springer,
2007. See alsohttp://www.informatik.uni-bremen.de/cofi/hets/ .

Mog91. Eugenio Moggi. Notions of computation and monads.Information and Computation,
93:55–92, 1991.

Moo56. Edward F. Moore. Gedanken-experiments on sequential machines. In Claude E.
Shannon and John McCarthy, editors,Annals of Mathematics Studies 34, Automata
Studies, pages 129–153. Princeton University Press, 1956.

Mos89. Peter D. Mosses. Unified algebras and modules. InProceedings of the 16th ACM
Symposium on Principles of Programming Languages, Austin, pages 329–343, 1989.

Mos93. Peter Mosses. The use of sorts in algebraic specifications. In Michel Bidoit and Chris-
tine Choppy, editors,Recent Trends in Data Type Specification. Selected Papers from
the 8th Workshop on Specification of Abstract Data Types joint with the 3rdCOM-
PASS Workshop, Dourdan,Lecture Notes in Computer Science, volume 655, pages
66–91. Springer, 1993.

Mos96a. Till Mossakowski. Different types of arrow between logical frameworks. In Fried-
helm Meyer auf der Heide and Burkhard Monien, editors,Proceedings of the 23rd
International Colloquium Automata, Languages and Programming, Paderborn,Lec-
ture Notes in Computer Science, volume 1099, pages 158–169. Springer, 1996.

Page: 544 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

http://www.informatik.uni-bremen.de/cofi/hets/

References 545

Mos96b. Till Mossakowski.Representations, Hierarchies and Graphs of Institutions. PhD
thesis, Universiẗat Bremen, 1996.

Mos00. Till Mossakowski. Specification in an arbitrary institution with symbols. In Didier
Bert, Christine Choppy, and Peter D. Mosses, editors,Recent Trends in Algebraic
Development Techniques. Selected Papers from the 14th International Workshop on
Algebraic Development Techniques, Château de Bonas,Lecture Notes in Computer
Science, volume 1827, pages 252–270. Springer, 2000.

Mos02. Till Mossakowski. Comorphism-based Grothendieck logics. In Krzysztof Diks and
Wojciech Rytter, editors,Proceedings of the 27th Symposium on Mathematical Foun-
dations of Computer Science, Warsaw,Lecture Notes in Computer Science, volume
2420, pages 593–604. Springer, 2002.

Mos03. Till Mossakowski. Foundations of heterogeneous specification. In Martin Wirsing,
Dirk Pattinson, and Rolf Hennicker, editors,Recent Trends in Algebraic Development
Techniques.. Selected Papers from the 16th International Workshop on Algebraic De-
velopment Techniques, Frauenchiemsee,Lecture Notes in Computer Science, volume
2755, pages 359–375. Springer, 2003.

Mos04. Peter D. Mosses, editor. CASL Reference Manual. Number 2960 in Lecture Notes in
Computer Science. Springer, 2004.

Mos05. Till Mossakowski. Heterogeneous Specification and the Heterogeneous Tool Set.
Habilitation thesis, Universität Bremen, 2005.

MS85. David MacQueen and Donald Sannella. Completeness of proof systems for equa-
tional specifications.IEEE Transactions on Software Engineering, SE-11(5):454–
461, 1985.

MSRR06. Till Mossakowski, Lutz Schröder, Markus Roggenbach, and Horst Reichel.
Algebraic-coalgebraic specification in COCASL. Journal of Logic and Algebraic Pro-
gramming, 67(1–2):146–197, 2006.

MSS90. Vincenzo Manca, Antonino Salibra, and Giuseppe Scollo. Equational type logic.
Theoretical Computer Science, 77(1–2):131–159, 1990.

MST04. Till Mossakowski, Donald Sannella, and Andrzej Tarlecki. A simple refinement lan-
guage for CASL. In Jośe Fiadeiro, editor,Recent Trends in Algebraic Development
Techniques.. Selected Papers from the 17th International Workshop on Algebraic De-
velopment Techniques, Barcelona,Lecture Notes in Computer Science, volume 3423,
pages 162–185. Springer, 2004.

MT92. Karl Meinke and John Tucker. Universal algebra. In Samson Abramsky, Dov Gab-
bay, and Tom Maibaum, editors,Handbook of Logic in Computer Science. Volume
1 (Background: Mathematical Structures), pages 189–409. Oxford University Press,
1992.

MT93. V. Wiktor Marek and Mirosław Truszczyński. Nonmonotonic Logics: Context-
Dependent Reasoning. Springer, 1993.

MT94. David B. MacQueen and Mads Tofte. A semantics for higher-order functors. In
Donald Sannella, editor,Proceedings of the 5th European Symposium on Program-
ming, Edinburgh,Lecture Notes in Computer Science, volume 788, pages 409–423.
Springer, 1994.

MT09. Till Mossakowski and Andrzej Tarlecki. Heterogeneous logical environments for
distributed specifications. In Andrea Corradini and Ugo Montanari, editors,Recent
Trends in Algebraic Development Techniques.. Selected Papers from the 19th Interna-
tional Workshop on Algebraic Development Techniques, Pisa,Lecture Notes in Com-
puter Science, volume 5486, pages 266–289. Springer, 2009.

MTD09. Till Mossakowski, Andrzej Tarlecki, and Răzvan Diaconescu. What is a logic trans-
lation?Logica Universalis, 3(1):95–124, 2009.

MTHM97. Robin Milner, Mads Tofte, Robert Harper, and David MacQueen.The Definition of
Standard ML (Revised). MIT Press, 1997.

MTP97. Till Mossakowski, Andrzej Tarlecki, and Wiesław Pawłowski. Combining and repre-
senting logical systems. In Eugenio Moggi and Giuseppe Rosolini, editors,Proceed-
ings of the 7th International Conference on Category Theory and Computer Science,

Page: 545 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

546 References

Santa Margherita Ligure,Lecture Notes in Computer Science, volume 1290, pages
177–196. Springer, 1997.

MTP98. Till Mossakowski, Andrzej Tarlecki, and Wiesław Pawłowski. Combining and rep-
resenting logical systems using model-theoretic parchments. In Francesco Parisi-
Presicce, editor,Recent Trends in Data Type Specification. Selected Papers from the
12th International Workshop on Specification of Abstract Data Types, Tarquinia,Lec-
ture Notes in Computer Science, volume 1376, pages 349–364. Springer, 1998.

MTW88. Bernhard M̈oller, Andrzej Tarlecki, and Martin Wirsing. Algebraic specifications of
reachable higher-order algebras. In Donald Sannella and Andrzej Tarlecki, editors,
Recent Trends in Data Type Specification. Selected Papers from the 5th Workshop on
Specification of Abstract Data Types, Gullane,Lecture Notes in Computer Science,
volume 332, pages 154–169. Springer, 1988.

Mus80. David Musser. On proving inductive properties of abstract data types. InProceedings
of the 7th ACM Symposium on Principles of Programming Languages, Las Vegas,
pages 154–162, 1980.

MW98. Alfio Martini and Uwe Wolter. A single perspective on arrows between institutions.
In Armando Haeberer, editor,Proceedings of the 7th International Conference on Al-
gebraic Methodology and Software Technology, Manaus,Lecture Notes in Computer
Science, volume 1548, pages 486–501. Springer, 1998.

Nel91. Greg Nelson, editor.Systems Programming in Modula-3. Prentice-Hall, 1991.
Nip86. Tobias Nipkow. Non-deterministic data types: Models and implementations.Acta

Informatica, 22(6):629–661, 1986.
NO88. Pilar Nivela and Fernando Orejas. Initial behaviour semantics for algebraic speci-

fications. In Donald Sannella and Andrzej Tarlecki, editors,Recent Trends in Data
Type Specification. Selected Papers from the 5th Workshop on Specification of Ab-
stract Data Types, Gullane,Lecture Notes in Computer Science, volume 332, pages
184–207. Springer, 1988.

Nou81. Farshid Nourani. On induction for programming logic: Syntax, semantics, and induc-
tive closure.Bulletin of the European Association for Theoretical Computer Science,
13:51–64, 1981.

Oka98. Chris Okasaki.Purely Functional Data Structures. Cambridge University Press,
1998.

ONS93. Fernando Orejas, Marisa Navarro, and Ana Sánchez. Implementation and behavioural
equivalence: A survey. In Michel Bidoit and Christine Choppy, editors,Recent Trends
in Data Type Specification. Selected Papers from the 8th Workshop on Specification of
Abstract Data Types joint with the 3rdCOMPASSWorkshop, Dourdan,Lecture Notes
in Computer Science, volume 655, pages 93–125. Springer, 1993.

Ore83. Fernando Orejas. Characterizing composability of abstract implementations. In
Marek Karpinski, editor,Proceedings of the 1983 International Conference on Foun-
dations of Computation Theory, Borgholm,Lecture Notes in Computer Science, vol-
ume 158, pages 335–346. Springer, 1983.

Pad85. Peter Padawitz. Parameter preserving data type specifications. In Hartmut Ehrig,
Christiane Floyd, Maurice Nivat, and James Thatcher, editors,TAPSOFT’85: Pro-
ceedings of the International Joint Conference on Theory and Practice of Software
Development. Volume 2: Colloquium on Software Engineering, Berlin,Lecture Notes
in Computer Science, volume 186, pages 323–341. Springer, 1985.

Pad99. Peter Padawitz. Proof in flat specifications. In Egidio Astesiano, Hans-Jörg Kreowski,
and Bernd Krieg-Br̈uckner, editors,Algebraic Foundations of Systems Specification,
chapter 10, pages 321–384. Springer, 1999.

Pau87. Laurence Paulson.Logic and Computation: Interactive Proof with Cambridge LCF.
Cambridge University Press, 1987.

Pau96. Laurence Paulson.ML for the Working Programmer. Cambridge University Press,
second edition, 1996.

Paw96. Wiesław Pawłowski. Context institutions. In Magne Haveraaen, Olaf Owe, and Ole-
Johan Dahl, editors,Recent Trends in Data Type Specification. Selected Papers from

Page: 546 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

References 547

the 11th Workshop on Specification of Abstract Data Types, Oslo,Lecture Notes in
Computer Science, volume 1130, pages 436–457. Springer, 1996.

Pet10. Marius Petria.Generic Refinements for Behavioural Specifications. PhD thesis, Uni-
versity of Edinburgh, School of Informatics, 2010.

Pey03. Simon Peyton Jones, editor.Haskell 98 Language and Libraries: The Revised Report.
Cambridge University Press, 2003.

Pho92. Wesley Phoa. An introduction to fibrations, topos theory, the effective topos and
modest sets. Technical Report ECS-LFCS-92-208, LFCS, Department of Computer
Science, University of Edinburgh, 1992.

Pie91. Benjamin C. Pierce.Basic Category Theory for Computer Scientists. MIT Press,
1991.

Plo77. Gordon D. Plotkin. LCF considered as a programming language.Theoretical Com-
puter Science, 5(3):223–255, 1977.

Poi86. Axel Poigńe. On specifications, theories, and models with higher types.Information
and Control, 68(1–3):1–46, 1986.

Poi88. Axel Poigńe. Foundations are rich institutions, but institutions are poor foundations.
In Hartmut Ehrig, Horst Herrlich, Hans-Jörg Kreowski, and Gerhard Preuß, editors,
Proceedings of the International Workshop on Categorical Methods in Computer Sci-
ence with Aspects from Topology, Berlin,Lecture Notes in Computer Science, volume
393, pages 82–101. Springer, 1988.

Poi90. Axel Poigńe. Parametrization for order-sorted algebraic specification.Journal of
Computer and System Sciences, 40:229–268, 1990.

Poi92. Axel Poigńe. Basic category theory. In Samson Abramsky, Dov Gabbay, and Tom
Maibaum, editors,Handbook of Logic in Computer Science. Volume 1 (Background:
Mathematical Structures), pages 413–640. Oxford University Press, 1992.

Pos47. Emil Post. Recursive unsolvability of a problem of Thue.Journal of Symbolic Logic,
12:1–11, 1947.

PS83. Helmuth Partsch and Ralf Steinbrüggen. Program transformation systems.ACM
Computing Surveys, 15(3):199–236, 1983.

PŞR09. Andrei Popescu, Traian Florin Şerbănuţ̆a, and Grigore Roşu. A semantic approach to
interpolation.Theoretical Computer Science, 410(12–13):1109–1128, 2009.

QG93. Xiaolei Qian and Allen Goldberg. Referential opacity in nondeterministic data re-
finement. ACM Letters on Programming Languages and Systems, 2(1–4):233–241,
1993.

Qia93. Zhenyu Qian. An algebraic semantics of higher-order types with subtypes.Acta
Informatica, 30(6):569–607, 1993.

RAC99. Gianna Reggio, Egidio Astesiano, and Christine Choppy. CASL-LTL: a CASL ex-
tension for dynamic systems — summary. Technical Report DISI-TR-99-34, DISI,
Universit̀a di Genova, 1999.

RB88. David Rydeheard and Rod Burstall.Computational Category Theory. Prentice Hall
International Series in Computer Science. Prentice Hall, 1988.

Rei80. Horst Reichel. Initially-restricting algebraic theories. In Piotr Dembiński, editor,
Proceedings of the 9th Symposium on Mathematical Foundations of Computer Sci-
ence, Lecture Notes in Computer Science, volume 88, pages 504–514, Rydzyna, 1980.
Springer.

Rei81. Horst Reichel. Behavioural equivalence — a unifying concept for initial and final
specification methods. InProceedings of the 3rd Hungarian Computer Science Con-
ference, pages 27–39, 1981.

Rei85. Horst Reichel. Behavioural validity of equations in abstract data types. InProceed-
ings of the Vienna Conference on Contributions to General Algebra, pages 301–324.
Teubner-Verlag, 1985.

Rei87. Horst Reichel.Initial Computability, Algebraic Specifications, and Partial Algebras.
Oxford University Press, 1987.

Page: 547 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

548 References

RG98. Grigore Roşu and Joseph A. Goguen. Hidden congruent deduction. In Ricardo Ca-
ferra and Gernot Salzer, editors,Proceedings of the 1998 Workshop on First-Order
Theorem Proving, Vienna, Lecture Notes in Artificial Intelligence, volume 1761,
pages 251–266. Springer, 1998.

RG00. Grigore Roşu and Joseph A. Goguen. On equational Craig interpolation.Journal of
Universal Computer Science, 6(1):194–200, 2000.

Rod91. Pieter Hendrik Rodenburg. A simple algebraic proof of the equational interpolation
theorem.Algebra Universalis, 28:48–51, 1991.

Rog06. Markus Roggenbach. CSP-CASL — a new integration of process algebra and alge-
braic specification.Theoretical Computer Science, 354(1):42–71, 2006.

Roş94. Grigore Roşu. The institution of order-sorted equational logic.Bulletin of the Euro-
pean Association for Theoretical Computer Science, 53:250–255, 1994.

Roş00. Grigore Roşu.Hidden Logic. PhD thesis, University of California at San Diego,
2000.

RRS00. Sergei Romanenko, Claudio Russo, and Peter Sestoft. Moscow ML owner’s manual.
Technical report, Royal Veterinary and Agricultural University, Copenhagen, 2000.
Available fromhttp://www.itu.dk/people/sestoft/mosml/manual.
pdf .

RS63. Helena Rasiowa and Roman Sikorski.The Mathematics of Metamathematics. Num-
ber 41 in Monografie Matematyczne. Polish Scientific Publishers, 1963.

Rus98. Claudio Russo.Types for Modules. PhD thesis, University of Edinburgh, Depart-
ment of Computer Science, 1998. Also in:Electronic Notes in Theoretical Computer
Science, 60, 2003.

Rut00. Jan J.M.M. Rutten. Universal coalgebra: A theory of systems.Theoretical Computer
Science, 249(1):3–80, 2000.

San82. Donald Sannella.Semantics, Implementation and Pragmatics of Clear, a Program
Specification Language. PhD thesis, University of Edinburgh, Department of Com-
puter Science, 1982.

SB83. Donald Sannella and Rod Burstall. Structured theories in LCF. In Giorgio Ausiello
and Marco Protasi, editors,Proceedings of the 8th Colloquium on Trees in Algebra
and Programming, L’Aquila, Lecture Notes in Computer Science, volume 159, pages
377–391. Springer, 1983.

Sch86. David Schmidt.Denotational Semantics: A Methodology for Language Development.
Allyn and Bacon, 1986.

Sch87. Oliver Schoett.Data Abstraction and the Correctness of Modular Programs. PhD
thesis, University of Edinburgh, Department of Computer Science, 1987.

Sch90. Oliver Schoett. Behavioural correctness of data representations.Science of Computer
Programming, 14(1):43–57, 1990.

Sch92. Oliver Schoett. Two impossibility theorems on behaviour specification of abstract
data types.Acta Informatica, 29(6/7):595–621, 1992.

Sco76. Dana Scott. Data types as lattices.SIAM Journal of Computing, 5(3):522–587, 1976.
Sco04. Giuseppe Scollo. An institution isomorphism for planar graph colouring. In Rudolf

Berghammer, Bernhard M̈oller, and Georg Struth, editors,Relational and Kleene-
Algebraic Methods in Computer Science. Selected Papers from the 7th International
Seminar on Relational Methods in Computer Science and 2nd International Workshop
on Applications of Kleene Algebra, Bad Malente,Lecture Notes in Computer Science,
volume 3051, pages 252–264. Springer, 2004.

SCS94. Aḿılcar Sernadas, José F́elix Costa, and Cristina Sernadas. An institution of ob-
ject behaviour. In Hartmut Ehrig and Fernando Orejas, editors,Recent Trends in
Data Type Specification. Selected Papers from the 9th Workshop on Specification of
Abstract Data Types joint with the 4thCOMPASS Workshop, Caldes de Malavella,
Lecture Notes in Computer Science, volume 785, pages 337–350. Springer, 1994.

Sel72. Alan Selman. Completeness of calculi for axiomatically defined classes of algebras.
Algebra Universalis, 2:20–32, 1972.

Page: 548 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

http://www.itu.dk/people/sestoft/mosml/manual.pdf
http://www.itu.dk/people/sestoft/mosml/manual.pdf

References 549

SH00. Christopher A. Stone and Robert Harper. Deciding type equivalence in a language
with singleton kinds. InProceedings of the 27th ACM Symposium on Principles of
Programming Languages, Boston, pages 214–227, 2000.

Sha08. Stewart Shapiro. Classical logic. In Edward N. Zalta, editor,The Stan-
ford Encyclopedia of Philosophy. CSLI, Stanford University, fall 2008 edi-
tion, 2008. Available fromhttp://plato.stanford.edu/archives/
fall2008/entries/logic-classical/ .

SM09. Lutz Schr̈oder and Till Mossakowski. HASCASL: Integrated higher-order specifica-
tion and program development.Theoretical Computer Science, 410(12–13):1217–
1260, 2009.

Smi93. Douglas R. Smith. Constructing specification morphisms.Journal of Symbolic Com-
putation, 15(5/6):571–606, 1993.

Smi06. Douglas R. Smith. Composition by colimit and formal software development. In Ko-
kichi Futatsugi, Jean-Pierre Jouannaud, and José Meseguer, editors,Algebra, Mean-
ing, and Computation, Essays Dedicated to Joseph A. Goguen on the Occasion of His
65th Birthday, Lecture Notes in Computer Science, volume 4060, pages 317–332.
Springer, 2006.

SML05. Lutz Schr̈oder, Till Mossakowski, and Christoph Lüth. Type class polymorphism
in an institutional framework. In José Fiadeiro, editor,Recent Trends in Algebraic
Development Techniques.. Selected Papers from the 17th International Workshop on
Algebraic Development Techniques, Barcelona,Lecture Notes in Computer Science,
volume 3423, pages 234–248. Springer, 2005.

Smo86. Gert Smolka. Order-sorted Horn logic: Semantics and deduction. Technical Report
SR-86-17, Universiẗat Kaiserslautern, Fachbereich Informatik, 1986.

SMT+05. Lutz Schr̈oder, Till Mossakowski, Andrzej Tarlecki, Bartek Klin, and Piotr Hoffman.
Amalgamation in the semantics of CASL. Theoretical Computer Science, 331(1):215–
247, 2005.

Spi92. J. Michael Spivey.The Z Notation: A Reference Manual. Prentice Hall International
Series in Computer Science, second edition, 1992.

SS93. Antonino Salibra and Guiseppe Scollo. A soft stairway to institutions. In Michel
Bidoit and Christine Choppy, editors,Recent Trends in Data Type Specification. Se-
lected Papers from the 8th Workshop on Specification of Abstract Data Types joint
with the 3rdCOMPASSWorkshop, Dourdan,Lecture Notes in Computer Science, vol-
ume 655, pages 310–329. Springer, 1993.

SS96. Antonino Salibra and Giuseppe Scollo. Interpolation and compactness in categories
of pre-institutions. Mathematical Structures in Computer Science, 6(3):261–286,
1996.

SST92. Donald Sannella, Stefan Sokołowski, and Andrzej Tarlecki. Toward formal devel-
opment of programs from algebraic specifications: Parameterisation revisited.Acta
Informatica, 29(8):689–736, 1992.

ST85. Donald Sannella and Andrzej Tarlecki. Program specification and development in
Standard ML. InProceedings of the 12th ACM Symposium on Principles of Pro-
gramming Languages, New Orleans, pages 67–77, 1985.

ST86. Donald Sannella and Andrzej Tarlecki. Extended ML: An institution-independent
framework for formal program development. In David H. Pitt, Samson Abramsky,
Axel Poigńe, and David E. Rydeheard, editors,Proceedings of the Tutorial and Work-
shop on Category Theory and Computer Programming, Guildford,Lecture Notes in
Computer Science, volume 240, pages 364–389. Springer, 1986.

ST87. Donald Sannella and Andrzej Tarlecki. On observational equivalence and algebraic
specification.Journal of Computer and System Sciences, 34:150–178, 1987.

ST88a. Donald Sannella and Andrzej Tarlecki. Specifications in an arbitrary institution.In-
formation and Computation, 76(2/3):165–210, 1988.

ST88b. Donald Sannella and Andrzej Tarlecki. Toward formal development of programs from
algebraic specifications: Implementations revisited.Acta Informatica, 25:233–281,
1988.

Page: 549 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

http://plato.stanford.edu/archives/fall2008/entries/logic-classical/
http://plato.stanford.edu/archives/fall2008/entries/logic-classical/

550 References

ST89. Donald Sannella and Andrzej Tarlecki. Toward formal development of ML programs:
Foundations and methodology. In Josep Dı́az and Fernando Orejas, editors,TAP-
SOFT’89: Proceedings of the International Joint Conference on Theory and Practice
of Software Development. Volume 2: Advanced Seminar on Foundations of Innovative
Software Development II and Colloquium on Current Issues in Programming Lan-
guages, Barcelona,Lecture Notes in Computer Science, volume 352, pages 375–389.
Springer, 1989.

ST97. Donald Sannella and Andrzej Tarlecki. Essential concepts of algebraic specification
and program development.Formal Aspects of Computing, 9:229–269, 1997.

ST04. Donald Sannella and Andrzej Tarlecki, editors. CASL semantics. In[Mos04]. 2004.
ST06. Donald Sannella and Andrzej Tarlecki. Horizontal composability revisited. In Ko-

kichi Futatsugi, Jean-Pierre Jouannaud, and José Meseguer, editors,Algebra, Mean-
ing and Computation: Essays Dedicated to Joseph A. Goguen on the Occasion of His
65th Birthday, Lecture Notes in Computer Science, volume 4060, pages 296–316.
Springer, 2006.

ST08. Donald Sannella and Andrzej Tarlecki. Observability concepts in abstract data
type specification, 30 years later. In Pierpaolo Degano, Rocco de Nicola, and José
Meseguer, editors,Concurrency, Graphs and Models: Essays Dedicated to Ugo Mon-
tanari on the Occasion of his 65th Birthday, Lecture Notes in Computer Science.
Springer, 2008.

Str67. Christopher Strachey. Fundamental concepts in programming languages. InNATO
Summer School in Programming, Copenhagen. 1967. Also in:Higher-Order and
Symbolic Computation13(1–2):11–49, 2000.

SU06. Morten H. Sørensen and Paweł Urzyczyn.Lectures on the Curry-Howard Isomor-
phism. Number 149 in Studies in Logic and the Foundations of Mathematics. Elsevier
Science, 2006.

SW82. Donald Sannella and Martin Wirsing. Implementation of parameterised specifica-
tions. In Mogens Nielsen and Erik Meineche Schmidt, editors,Proceeding of the
9th International Colloquium on Automata, Languages and Programming, Aarhus,
Lecture Notes in Computer Science, volume 140, pages 473–488. Springer, 1982.

SW83. Donald Sannella and Martin Wirsing. A kernel language for algebraic specification
and implementation. In Marek Karpinski, editor,Proceedings of the 1983 Interna-
tional Conference on Foundations of Computation Theory, Borgholm,Lecture Notes
in Computer Science, volume 158, pages 413–427. Springer, 1983.

SW99. Donald Sannella and Martin Wirsing. Specification languages. In Egidio Astesiano,
Hans-J̈org Kreowski, and Bernd Krieg-Brückner, editors,Algebraic Foundations of
Systems Specification, chapter 8, pages 243–272. Springer, 1999.

Tar85. Andrzej Tarlecki. On the existence of free models in abstract algebraic institutions.
Theoretical Computer Science, 37(3):269–304, 1985.

Tar86a. Andrzej Tarlecki. Bits and pieces of the theory of institutions. In David H. Pitt,
Samson Abramsky, Axel Poigné, and David E. Rydeheard, editors,Proceedings of the
Tutorial and Workshop on Category Theory and Computer Programming, Guildford,
Lecture Notes in Computer Science, volume 240, pages 334–360. Springer, 1986.

Tar86b. Andrzej Tarlecki. Quasi-varieties in abstract algebraic institutions.Journal of Com-
puter and System Sciences, 33(3):333–360, 1986.

Tar87. Andrzej Tarlecki. Institution representation. Unpublished note, Dept. of Computer
Science, University of Edinburgh, 1987.

Tar96. Andrzej Tarlecki. Moving between logical systems. In Magne Haveraaen, Olaf Owe,
and Ole-Johan Dahl, editors,Recent Trends in Data Type Specification. Selected Pa-
pers from the 11th Workshop on Specification of Abstract Data Types, Oslo,Lecture
Notes in Computer Science, volume 1130, pages 478–502. Springer, 1996.

Tar99. Andrzej Tarlecki. Institutions: An abstract framework for formal specification. In
Egidio Astesiano, Hans-Jörg Kreowski, and Bernd Krieg-Brückner, editors,Algebraic
Foundations of Systems Specification, chapter 4, pages 105–130. Springer, 1999.

Page: 550 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

References 551

Tar00. Andrzej Tarlecki. Towards heterogeneous specifications. In Dov Gabbay and Maarten
de Rijke, editors,Frontiers of Combining Systems 2, Studies in Logic and Computa-
tion, pages 337–360. Research Studies Press, 2000.

TBG91. Andrzej Tarlecki, Rod M. Burstall, and Joseph A. Goguen. Some fundamental alge-
braic tools for the semantics of computation. Part 3: Indexed categories.Theoretical
Computer Science, 91(2):239–264, 1991.

Ter03. Terese.Term Rewriting Systems, Cambridge Tracts in Theoretical Computer Science,
volume 55. Cambridge University Press, 2003.

Tho89. Simon Thompson. A logic for Miranda.Formal Aspects of Computing, 1(4):339–365,
1989.

TM87. Władysław M. Turski and Thomas S.E. Maibaum.Specification of Computer Pro-
grams. Addison-Wesley, 1987.

Tra93. Will Tracz. Parametrized programming in LILEANNA. InProceedings of the 1993
ACM/SIGAPP Symposium on Applied Computing, Indianapolis, pages 77–86, 1993.

TWW82. James Thatcher, Eric Wagner, and Jesse Wright. Data type specification: Parameteri-
zation and the power of specification techniques.ACM Transactions on Programming
Languages and Systems, 4(4):711–732, 1982.

Vra88. Jos L.M. Vrancken. The algebraic specification of semi-computable data types. In
Donald Sannella and Andrzej Tarlecki, editors,Recent Trends in Data Type Specifica-
tion. Selected Papers from the 5th Workshop on Specification of Abstract Data Types,
Gullane,Lecture Notes in Computer Science, volume 332, pages 249–259. Springer,
1988.

Wad89. Philip Wadler. Theorems for free! InProceedings of the 4th International ACM Con-
ference on Functional Programming Languages and Computer Architecture, London,
pages 347–359, 1989.

Wan79. Mitchell Wand. Final algebra semantics and data type extensions.Journal of Com-
puter and System Sciences, 19:27–44, 1979.

Wan82. Mitchell Wand. Specifications, models, and implementations of data abstractions.
Theoretical Computer Science, 20(1):3–32, 1982.

WB82. Martin Wirsing and Manfred Broy. An analysis of semantic models for algebraic
specifications. In Manfred Broy and Gunther Schmidt, editors,Theoretical Foun-
dations of Programming Methodology: Lecture Notes of an International Summer
School, Marktoberdorf 1981, pages 351–416. Reidel, 1982.

WB89. Martin Wirsing and Manfred Broy. A modular framework for specification and imple-
mentation. In Josep D́ıaz and Fernando Orejas, editors,TAPSOFT’89: Proceedings of
the International Joint Conference on Theory and Practice of Software Development.
Volume 1: Advanced Seminar on Foundations of Innovative Software Development I
and Colloquium on Trees in Algebra and Programming, Barcelona,Lecture Notes in
Computer Science, volume 351, pages 42–73. Springer, 1989.

WE87. Eric G. Wagner and Hartmut Ehrig. Canonical constraints for parameterized data
types.Theoretical Computer Science, 50:323–349, 1987.

Wec92. Wolfgang Wechler.Universal Algebra for Computer Scientists, EATCS Monographs
on Theoretical Computer Science, volume 25. Springer, 1992.

Wik. Wikipedia. Hash table. Available fromhttp://en.wikipedia.org/wiki/
Hash_table .

Wir82. Martin Wirsing. Structured algebraic specifications. InProceedings of the AFCET
Symposium on Mathematics for Computer Science, Paris, pages 93–107, 1982.

Wir86. Martin Wirsing. Structured algebraic specifications: A kernel language.Theoretical
Computer Science, 42(2):123–249, 1986.

Wir90. Martin Wirsing. Algebraic specification. In Jan van Leeuwen, editor,Handbook
of Theoretical Computer Science. Volume B (Formal Models and Semantics), pages
675–788. North-Holland and MIT Press, 1990.

Wir93. Martin Wirsing. Structured specifications: Syntax, semantics and proof calculus. In
Friedrich L. Bauer, Wilfried Brauer, and Helmut Schwichtenberg, editors,Logic and

Page: 551 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

http://en.wikipedia.org/wiki/Hash_table
http://en.wikipedia.org/wiki/Hash_table

552 References

Algebra of Specification: Proceedings of the NATO Advanced Study Institute, Mark-
toberdorf 1991, pages 411–442. Springer, 1993.

WM97. Michal Walicki and Sigurd Meldal. Algebraic approches to nondeterminism: An
overview.ACM Computing Surveys, 29(1):30–81, 1997.

Zil74. Steven Zilles. Abstract specification of data types. Technical Report 119, Computa-
tion Structures Group, Massachusetts Institute of Technology, 1974.

Zuc99. Elena Zucca. From static to dynamic abstract data-types: An institution transforma-
tion. Theoretical Computer Science, 216(1–2):109–157, 1999.

Page: 552 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

	Universal algebra
	Many-sorted sets
	Signatures and algebras
	Homomorphisms and congruences
	Term algebras
	Changing signatures
	Signature morphisms
	Derived signature morphisms

	Bibliographical remarks

	Simple equational specifications
	Equations
	Flat specifications
	Theories
	Equational calculus
	Initial models
	Term rewriting
	Fiddling with the definitions
	Conditional equations
	Reachable semantics
	Dealing with partial functions: error algebras
	Dealing with partial functions: partial algebras
	Partial functions: order-sorted algebras
	Other options

	Bibliographical remarks

	Category theory
	Introducing categories
	Categories
	Constructing categories
	Category-theoretic definitions

	Limits and colimits
	Initial and terminal objects
	Products and coproducts
	Equalisers and coequalisers
	Pullbacks and pushouts
	The general situation

	Factorisation systems
	Functors and natural transformations
	Functors
	Natural transformations
	Constructing categories, revisited

	Adjoints
	Free objects
	Left adjoints
	Adjunctions

	Bibliographical remarks

	Working within an arbitrary logical system
	Institutions
	Examples of institutions
	Constructing institutions

	Flat specifications in an arbitrary institution
	Constraints
	Exact institutions
	Abstract model theory
	Free variables and quantification

	Institutions with reachability structure
	The method of diagrams
	Abstract algebraic institutions
	Liberal abstract algebraic institutions
	Characterising abstract algebraic institutions that admit reachable initial models

	Bibliographical remarks

	References

