Donald Sannella and Andrzej Tarlecki

Foundations of Algebraic
Specification and Formal
Software Development

September 29, 2010

Springer

Page: v job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

Page: xiv job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

Contents

0 INtrodUucCtion oo e 1
[0.1 Modelling software systems as algebras........................ 1
0.2 SPECIICAIONS - - - -+« + v e e e et e e e e e 5
[0.3 Sottware developmeéntol 8
0.4 Generality and abstraction, 10
... 12
0.6 _Outlook. 14

I1 Universalalgebra........... i i 15
1.1 Many-sortedsgts 15
[[2_SIgNatures and IgeDFaSvvuereenreeeeaaaaaeeenns. 18
[T-37 " Homomorphisms and CONGIUENACESveeeeeeeeiiieennn.. 22
1.4 Termalgebraso i 27

ging SIg DS it e e 32

[[5.1_ SIgNature MOrPRISINS vveeeeeeeeeeenens. 32

S e 36
e T 38

2 Simple equational specifications.o i 41
L _EQUATIONS vvvvveeeee e e e et 41
2.2 FIAt SPECITICATIOMS .« .+ v v e e et e e e e e e e 44
2.3 TheorEs 50
2.4 Equationalcalculiso i 54
25 TNl mMOTEI5 - . . e ove et e e e et e 58
26 Termrewritingooo i 66
2.7 Fiddling With the JERMHONS « .« .« e v oeveee e 72

[2.7.1 Conditionalequations, 72
74

2.7.3 Dealing with partial functions: error algeras 78
.4 Dealing with partial functions: partial algefgras. 84

. artial functions: order-sorted algebras 87

XV

Xvi Contents

[2.7.6 _Otheroptions ..., 91
[2.8 BIDNOGraphiCal TEMATKS . . .« ..o et e e e e 93
[Categorytheory........ ... 97
3.1 Introducing CategoriBS.ot 99
BLL CalCQOTI®S - ..ttt e e e ens 99
3.1.2 Constructing categor|es ... 105
B1.3 Category-theoretic GeNMANSovvoeeeeeeeennnns. 109
3.2 Limitsand ColimIts oot e e e 111
[3.2.1 Initial and terminalobjeqgts 111
B.2.2_ProGuCts and COPrOGUCESvveenneeeennns. 113
3.2.3 Equalisersandcoequalisers............................ 115
B.2.4 PUNDACKS aNd PUSNOULS .+« e evveeee e e, 116

[3.4.3 Constructing categories, revisjted 139
.. 144
B5T Freeobjegtsovviiiiii i 144
B52 Teftadjoinsooviviniiii i 145
3.5.3 AdUNCliONS 150
[3:6 Bibliographical remarksooviiiiiiiiiiiiennnns 152
|4 Working within an arbitrary logical system| 155
BT INSHIUONE . . . o ov oottt 157
[4.1.1 Examplesofinstitutions i, 161
[4.1.2 Constructing Institutions 179
[4:2 Flat specifications in an arbitrary institufion. 186
ONSTTAINES . . . oo et 192
44 EXact INSHIULIONS .« o oot vt 197
[4.4.1 Abstractmodelthedry i 204
4.4.2 Free variables and quantification 207
A5 Tnstitutions With reachability STUCHIIe 210
451 Themethodofdiagraiscoovivinnnnn. 213
452 Abstract algebraic institufignsoovviiiiia, 215
0. Iberal abstract algebraic institutipns.. 216
45.4 Characterising abstract algebraic insfitutions that admit |
| reachable initlalmodelso 219
4.6 Bibliographicalremarks L 221

Page: xvi job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

Contents Xvii

[Structured SPEcCITICAtIONS.ttt 227
[5.1 Specification-building operatigns 228
5.2 Towards specificationTanguapesccoviiion... 234
B3 AN EXample ... 238
[5.4 A property-oriented semantics of specifications 243
ns 247

.6 Algebraic Taws for structured specificatibns 250
[B.7 Bibliographicalremarks i, 255

[6___Parametersation.t 257
6.1 Modelling parameterisedprogrdms............................. 258
6.2 Specifying parameterised programsc..coiiii.... 268
[6-3 Parameterised specificalibnscoiiiiiiiiiiiii... 274
6.4 Higher-order parameterisaion 278
0.0 Anexample e 285
[6:6 Bibliographical remarkscouuiirinrinnnnnn.. 288

/ Formal programdevelopment. i i 291
S 292
ns 300
7.3 Modular decompositionco it 307
7.4 EXaMIE ... e e 314
[75 Bibliographicalremarksoiiiiiiinneeanin. 320

8 Behavioural specifications o i 323
8.1 Motivatingexample. i e 324
[8.2 Behavioural equivalence and abstragtion 327

8.2.1 Behaviouralequivalence, 328

[8.4 Behaviouralimplementatigns. 346
3.4.1 Implementing specifications up to behavioural equivalence . 347

[8.4.2_Stepwise development and stafjlity 348

3.4. table and behaviourally trivial constructors. 351

4. obal stability and behavioural correctfiess.............. 356

3.4 12 363

[85 Topartialalgebras andbeypnd 364
...................... 364

8.5.2 ATargerexample 371

[8.5.3" Behavioural specifications in an arbitrary instittion 382

[8.6 Bibliographicalremarks L 394

Page: xvii job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

xviii Contents

9 Proofs for SpeciiCatiONS oottt e 399
9.1 Entallmentsystemns 400
[0.2_Proof in SEUCEUred SPECHICAHONS . . .+\ v eeeeeeenns 414
0.3 Entalment DEIWEEN SPECITICATONS . « .+« v e e e e e e, 427
[9.4 Correctness of constructor Iimplementagons. 435
9.5 Proof and parameterisation. i i 440
9.6 Proving behavioural properties 451

9.6. Behavioural consequence 451
[0.6.2_Behavioural CONSeqUeNCe Tor SPECiCa}ions 463
0.6.3 Behavioural Consequence between Specifications 466
9.6.4 Correctness of behavioural implementations.............. 470
[0.65_ Alarger example, FeVISTEA . - . -« -~ .eoeeneeeannns.. 472
[0-7 _BIDNOGrAPRICAI TEMATKS - - -+« v et ettt ee et e 479

10 Working with multiple logical systems. 483

[10.L Moving specifications between INSEUHDNS 484

S e 485

0 Dup S e e 489

[0.1.3 Migrating SPECHICATONS . « « « + « e v e eeee e 491

[10.2 Institution MOrpNISMSo 500

. e category Of INSHItULIONSot e e e 509

4 Tnsfitution COMOrpRISMS vt 517

[T0.5 BIDNOGIAPAICAI TEMATKS -« + « e v vt e e et e 528
Referenceb 533

Page: xviii job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

Chapter 1
Universal algebra

The most basic assumption of work on algebraic specification is that programs are
modelled as algebras. This point of view abstracts from the concrete details of code
and algorithms, and regards the input/output behaviour of functions and the repre-
sentation of data as primary. Representing programs in terms of sets (of data values)
and ordinary mathematical functions over these sets greatly simplifies the task of
reasoning about program correctness. See S€ctipn 0.1 for some illustrative exam-
ples and more introductory discussion on this point.

The branch of mathematics that deals with algebras in this general sense (as
opposed to the study of specific classes of algebras, such as groups and rings) is
calleduniversal algebraor sometimegeneral algebraHowever, work on univer-
sal algebra by mathematicians has concentrated almost exclusively on the special
case of single-sorted algebras with first-order total functions. The generalisation to
many-sortecbr heterogeneoualgebras is required to model programs that manip-
ulate several kinds asortsof data; further generalisations are necessary to handle
programs that fail to terminate on some inputs, that generate exceptions during exe-
cution, etc. This chapter summarizes the basic concepts and results of many-sorted
universal algebra that will be required for the rest of this book. Some extensions
useful for modelling more complex programs will be discussed later, in S¢ctipn 2.7.
In this chapter, all proofs are left as exercises for the reader.

1.1 Many-sorted sets

When using an algebra to model a program which manipulates several sorts of data,
it is natural to partition the underlying set of values in the algebra so that there is one
set of values for each sort of data. It is often convenient to manipulate such a family
of sets as a unit, in such a way that operations on this unit respect the “typing” of
data values.

The following sequence of definitions and notational conventions allow us to ma-
nipulate sorted families of sets (of functions, of relations, ...) in just the same way

15

16 1 Universal algebra

as ordinary sets (functions, relations, ...). Ordinary sets (functions, relations, ...)
correspond to the degenerate case in which there is just one sort, so these definitions
also serve to recall the notation and terminology of set theory to be used throughout
this book. LetShe a set; the notatiofKs)scs is a standard shorthand for the family
of objectsXs indexed bys € S, i.e. the function with domaifs which maps each
se Sto Xs.

Throughout this section, |I&be a set (of sorts).

Definition 1.1.1 (Many-sorted set)An S-sorted seis anS-indexed family of sets
X = (Xs)ses, Which isemptyif Xs is empty for alls € S. The emptyS-sorted set will
be written (ambiguously) ag. TheS-sorted seX is finiteif Xs is finite for alls€ S
and there is a finite s&C Ssuch thatXs = @ for all s S\ S

Let X = (Xs)ses andY = (Ys)scs be Ssorted sets. Union, intersection, Cartesian
product, disjoint union, inclusion (subset) and equalitXaindY are defined com-
ponentwise as follows:

XUY = (XsUYs)ses

XNY = (XsNVYs)scs

X XY = (Xs X Ys)ses

XY = (XsWVYs)ses (WhereXswYs = ({1} x Xs) U ({2} x Ys))

X CYiff (ifand only if) XsC Ysforallse S

X =Y iff XCY andY C X (equivalently, iffX andY are equal as functions).d0

Exercise 1.1.2Give a formal explanation of the above statement that “Ordinary
sets ... correspond to the degenerate case [of many-sorted sets] in which there is
just one sort”. How many-sorted sets are there? ad

Notation. It will be very convenient to pretend th&tC X wY andY C XwY. Al-
though this is never actually the case, it allows us to treat disjoint union in the same
way as ordinary union, the difference being that wikenY # @, XwY contains

two “copies” of the common elements and keeps track of which copy is ¥@nd

which fromY. To see that this does not cause problems, observe that there are in-
jective S-sorted functions (see the next definitioh)X — XwY andi2:Y — XWY
defined byils(x) = (1,x) for all s€ Sandx € Xs and similarly fori2. A pedant
would be able to correct what follows by simply inserting the functidnand/ori 2

where appropriate in expressions involvisg O

Exercise 1.1.3Extend the above definitions of union, intersection, product and dis-
joint union to operations ohindexed families ofS-sorted sets, for an arbitrary in-
dex set. For example, the definition for product(ig] (X)ici)s= { f:1 — Ui (Xi)s]|

f(i) e (X)sforalliel} foreachse S O

Definition 1.1.4 (Many-sorted function).Let X = (Xs)ses andY = (Ys)scs be S
sorted sets. Ais-sorted function X — Y is anSindexed family of functiond =
(fs: Xs — Ys)ses; X is called thedomain(or sourcg of f, andY is called itscodomain
(or targed). An S-sorted functionf: X — Y is anidentity (aninclusion surjective
injective bijective . ..) if for everys € S the functionfs: Xs — Ys is an identity (an

Page: 16 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

1.1 Many-sorted sets 17

inclusion, surjective, injective, bijective, ...). The identfysorted function orX
will be written asidy: X — X.

If f:X —Y andg:Y — Z areS-sorted functions then thesomposition fg: X —
Z is the S-sorted function defined by;g = (fs;gs)ses. That is, ifs€ Sandx € Xs
then(f;g)s(x) = gs(fs(x)) [

Let f:X — Y be anS-sorted function an&’ C X, Y’ CY beSsorted sets. The
image of X under fis the S-sorted seff (X') = (fs(X{))ses C Y, wherefs(X{) =
{fs(x) | x € X;} C Ys for all s€ S. The coimage of Y under fis the Ssorted set
f7LY') = (fg1(Y))ses € X, where f5(Y]) = {x € Xs| fs(X) € Y!} C Xs for all
sesS a

Definition 1.1.5 (Many-sorted binary relation). Let X = (Xs)ses and¥Y = (Ys)ses
be S-sorted sets. Ais-sorted binary relation between X angdwrittenRC X x Y,
is anS-indexed family of binary relationB = (Rs C Xs x Ys)scs. FOrse S x € X
andy €Ys, X Rsy (sometimes writtexx R y) means(x,y) € R.. O

The generalisation to-ary relations, fom > 0, is obvious. As usual, many-sorted
functions may be viewed as special many-sorted relations.

Definition 1.1.6 (Kernel of a many-sorted function).Let f: X — Y be anS-sorted
function. Thekernel of fis the S-sorted binary relation kéf) = (ker(fs))ses C
X x X where keffs) = {(x,y) | X,y € Xsand fs(x) = fs(y)} C Xs x Xs is the kernel
of fsforallse S O

Definition 1.1.7 (Many-sorted equivalence)Let X = (Xs)scs be anS-sorted set.
An S-sorted binary relatioR C X x X is anS-sorted equivalence (relation) oniiX
itis:

o reflexive:xRsX;

e symmetric:xRsy impliesyRsx; and

e transitive:xRyy andyRszimpliesxRsz

for all se Sandx,y,z e Xs. The symbol= is often used forgsorted) equivalence
relations.

Let = be anS-sorted equivalence oX. If s€ Sandx € Xs then theequivalence
class of x modulo= is the sefx]=, = {y € Xs | Xx=sy}. Thequotient of X modulo
= is theSsorted seiX/= = (Xs/=s)secs WhereXs/=s = {[X|=, | X € Xs} for all
sesS O

Example 1.1.8.Let S= {s1,%}, and letX andY be two S-sorted sets defined as
follows:

X = (Xs)scsWhereXs, = {0,A} andXs, = {&,0, &},

Y = (Ys)ses WhereYs, = {1,2,3} andYs, = {1,2,3}.

Let f: X — Y be theS-sorted function such that

1 This “diagrammatic” order of composition and the semicolon notation will be used consistently
throughout this book.

Page: 17 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

18 1 Universal algebra

f={0—1A—3}
f, ={&—10—2 &— 2}

(i.e., fs (O) = 1 andfs, (A) = 3; analogously forfs,). Then the kernel of is the
S-sorted equivalence relation Kéj = (ker(fs))scs where

ker(fsl) = {<D7D>7 <A7A>}
ker(fs,) = { (., %), (0, Q). (0. 4),(4,0), (N, 4)}.

The quotient ofX modulo ke(f) is the S-sorted seiX/ker(f) = (Xs/ker(fs))scs
where

X /ker(fy) = {{O},{A}}

Xs, /ker(fs,) = {{&}, {©, #}}. 0
Exercise 1.1.9Show that iff: X — Y is anS-sorted function, then kéf) is anS
sorted equivalence oX. O

Exercise 1.1.10Show that if = is anS-sorted equivalence oX then for allse S
andx,y € Xs, [X|=, = [Y]= iff X=sV. O

=s

Notation. Subscripts selecting components ®§orted sets (functions, relations,
...) are often omitted when there is no danger of confusion. Then Exg¢rcise|1.1.10
would read: “... for als € Sandx,y € Xs, [X= = [yl= iff x=y.” 0

1.2 Signatures and algebras

The functions and data types defined by a program have names. These names are
used to compute with and reason about the program, and to build larger programs
which rely on the functionality the program provides. The connection between a
program and an algebra used to model it is provided by these names, which are at-
tached to the corresponding components of the algebra. The set of names associated
with an algebra is called its signature. The signature of an algebra defirgsmth®

of the algebra by characterising the ways in which its components may legally be
combined; the algebra itself supplies themanticdy assigning interpretations to

the names in the signature.

Definition 1.2.1 (Many-sorted signature) A (many-sorted) signaturie a pairX =
(S Q), where:

e Sis a set (of sort names); and
e QisanS' x Ssorted set (of operation names)

whereS' is the set of finite (including empty) sequences of elemeng e will
sometimes writsorty X) for Sandopg X) for Q. X is asubsignaturef a signature
I'=(8,Q)if SC S andQys C Q) forallwe S',;se S O

Page: 18 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

1.2 Signatures and algebras 19

Many-sorted signatures will be referred toagebraicsignatures when it is neces-
sary to distinguish them from other kinds of signatures to be introduced later.

Notation. Sayingthatf:s; x--- x §; — sisinX = (S Q) means thas;...s; € S,
seSandf € Qg s, s Thenf is said to haveurity s;...s, andresult sort s The
abbreviationf: swill be used forf: e — s (e is the empty sequence). a

This definition of signature does not accommodate programs containing higher-
order functions, or functions returning multiple results. A possible extension to han-
dle higher-order functions is briefly discussed in Sedtion P.7.6. As for functions with
multiple results, a functioffi:s; x - -- x &, — t1 X - -« X try may be viewed as a family
of mfunctions

flisgx--xsy—tg fmist X -+ X S — t.

Generalising the definition of signature to handle such functions in a more di-
rect way is easy but makes subsequent developments somewhat messier in a non-
interesting way.

The definition aboveoespermit overloaded operation names, since itis possible
to have bothf:s; x --- x5y — sand f:t; x --- xty; — t in a signatureX, where
S1...SS# t1...tmt. A more restrictive definition of signature, adequate for most
purposes, would have a s@tof operation names (and a seof sort names) with
functionsarity: Q — S* andsort Q — S These two definitions are equivalent if
each operation name 1 is taken to be tagged with its arity and result sort.

In the rest of this section, I&l = (S Q) be a signature.

Definition 1.2.2 (Many-sorted algebra). A X-algebra Aconsists of:

e anS-sorted sefA| of carrier sets(or carriers); and
e for eachf:s; x --- x5, — sin X, a function (oroperation (f:s; x -+ x s —
S)a:|Als X -+ x |Alg, — [Als. O

If Ais aZXZ-algebra ands is a sort name irE then|A|s, the carrier set of sor$

in A, is the universe of data values of sartaccordingly, we often refer to the
elements of carrier sets a&alues If f:s; x --- x §, — sis in X then the operation
(fis1 x -+ x5 — s)a is a function on the corresponding carrier seté\off n=0

(i.e. f:9), then|Als, x --- x |Alg, is a singleton set containing the empty tugleand
then(f:s)a may be viewed as a constant denoting the vafus)a(()) € |Als. Notice
that(f:s x -+ x sy — s)a IS atotal functiorﬂ so algebras as defined here are only
appropriate for modelling programs containing total functions. See Seftionp 2.7.3—
[2.7.3 for several ways of extending the definitions to cope with partial functions.
Note also that there is no restriction on the cardinalitydf; in particular,|Ajs may

be empty and need not be countable.

Notation. LetAbe aX-algebraandlef:s; x--- x s, — sbeinX. We always write
fa in place of(f:s; x --- x 59 — s)a When there is no danger of confusion. When
n=20 (i.e. f:s), we write(f:s)a or fa in place of(f:s)a(()). O

2 All functions in this book are total except where they are explicitly designated as partial.

Page: 19 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

20 1 Universal algebra

Exercise 1.2.31f Q. s # @ for somes e S, then there are n¢5, ©2)-algebras having
an empty carrier of so. Characterise signatures for which all algebras have non-
empty carriers of all sorts. O

Example 1.2.4.LetS1 = {shapesuit} and letQ 1¢ shape= {bOX}, Q21 suit= {hearts,
Q1shapeshape= {POXify}, Q1shapesuisuit = { T}, andQ1ys = @ for all otherw €
Sl*;se Sl. ThenX1 = (S1,Q21) is a signature with sort nameshapeand suit
and operation namdmx shape hearts suit, boxify: shape— shapeand f: shapex
suit— suit We can preser1 in tabular form as follows (this notation will be used
later with the obvious meaning):

X1 = sorts shapesuit
ops box shape
hearts suit
boxify. shape— shape
f:shapex suit — suit

We define a£1-algebraAl as follows:

|Al|shape: {DaA}7

|Al|SUit - {*7 Qv ‘}a

boxas = O € |Al|shape

heartsy = Q € |AL]suit,

boxifys: |AL|shape— [Al|shape= {0 — O, A — O},

and fa1: [Al|shapex |Al|suit — |Allsuit is defined by the following table:

far|d|O|d
O |de|#|Q
NN

(NoTE: Reference will be made t81 andAl in examples throughout the rest of
this chapter.) O

Definition 1.2.5 (Subalgebra)Let A andB be X-algebrasB is asubalgebraof A

if:

e |B| C|AJ; and

o for fisy x---xsy —sin X andby € Blg,...,bnh € |Bls,, fa(b1,...,bn) =
fA(bl7' . 'abn)'

Bis apropersubalgebra oA if it is a subalgebra ofA and|B| # |A|. A subalgebra of
Ais determined by aB-sorted subsdB| of |A| which is closed under the operations
of Z, i.e. such that for each:sy x --- x sy — sin £ andby € |Bs;,...,bn € |B|s,,
fA(blv'“abn) € |B|S g

If B is a (proper) subalgebra @f thenB is “smaller” thanA in the sense that it
contains fewerdata valueghanA. Both A andB areX-algebras though, séandB
contain interpretations for exactly the same sort and operation names.

Page: 20 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

1.2 Signatures and algebras 21

Exercise 1.2.6Let A be aX-algebra. Show that the intersection of any family of
(carriers of) subalgebras #éfis a (carrier of a) subalgebra &f Use this to show
that for anyX C |A|, there is a least subalgebrasthat contains<. This is called
the subalgebra of A generated by. %ive an explicit construction of this algebra.
(HINT: Consider the family o&-sorted set¥; C |A|,i > 0, whereXp = X andX;1 is
obtained fromX; by adding the results of applying the operationé&\aé arguments

in X.) a
Definition 1.2.7 (Reachable algebra).et A be aX-algebraAis reachabldf Ahas
no proper subalgebra (equivalentlyAis generated by). O

By Exercis¢ 1.2)6, every algebra has a unique reachable subalgebra.

Example 1.2.8.Let £1 = (S1,21) andAl be as defined in Examfle 1.p.4. Define
aXl-algebraBl by

|Bl|shape: {O},

|Bl|suit: {@7‘}7

boXg1 = O € |Bl|shape

heartg; = Q € |B|suit,

boxifys; : |B1|shape— |Bl|shape= {0 — O},

fpi: |B:|-|shape>< |B1|suit — |B1|suit = {<D,@> — &, (0,8) — QQ}-

Bl is the subalgebra &1 generated by. That is,B1 is the reachable subalgebra
of AL. O

Definition 1.2.9 (Product algebra).Let A andB be X-algebras. Th@roduct alge-
bra Ax B is theX-algebra defined as follows:

e |AXxB|=|A| x|BJ;and
o foreachf:s; x--- x s —sin X and(ag,b1) € |[AxBlsy, ..., (@n,bn) € |[AX Blg,,
fAX5(<a1,b1>,...,<an,bn>) = (fA(al,...,an), fB(bl,n-,bn» € |A>< B|S.

This generalises to the produyg{Ai)ici of a family of X-algebras, indexed by an
arbitrary set (possibly empty), as follows:

o [[1{AYier] = [T{|A])ier; and
e for eachfisy x--- x5 —sin Z and f1 € [[1{(A)iellsys-- -, Tn € [[1{ADiel sy
fH<Ai>ie|(f1""’fn)(i): fAi(fl(i),...,fn(i)) foralliel. O

Exercise 1.2.10Definition[1.2.9 shows how tw&-algebras can be combined to
form a newX-algebra by taking the Cartesian product of their carriers. According
to Exercisg 1.2]6, the same thing can be done (with subalgebras of a fixed algebra)
using intersection. Try to formulate definitionswfionanddisjoint unionof alge-
bras, wheréAUB| = |A|U |B| and|Aw B| = |A| W |B| respectively. What happens?

O

Page: 21 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

22 1 Universal algebra

1.3 Homomorphisms and congruences

A homomorphism between algebras is the analogue of a function between sets, and
a congruence relation on an algebra is the analogue of an equivalence relation on a
set. An algebra has more structure than a set, so homomorphisms and congruences
are required to respect the additional structure (i.e. the behaviour of the operations).
Homomorphisms and congruences are important basic tools for relating algebras
and constructing new algebras from old ones.

Throughout this section, &t = (S Q) be a signature.

Definition 1.3.1 (Homomorphism).Let AandB be X-algebras. AZ-homomorphism
h:A — B is an Ssorted functionh:|A] — |B| which respects the operations of
X, i.e. such that for allf:s; x --- x sy — sin X anday € |Als;,...,an € |Als,,
hs(fa(as,...,an)) = fa(hs,(a1),...,hs,(an)). A Z-homomorphismh: A — B is an
identity (an inclusion surjective ...) if it is an identity (an inclusion, surjective,
...) when viewed as a&sorted function. O

Notation. If h: A — B is aX-homomorphism, thefh|: |A| — |B| denotesh viewed

as anS-sorted function. The only difference betweeand|h| is that in the case of

|h| we have “forgotten” that the additional condition required of a homomorphism
is satisfied. O

Informally, the homomorphism condition says that the behaviour of the opera-
tions inAis reflected in that of the operationsBn This condition can be expressed
in the form of a diagram as follows:

hs X"'th,]
|Alsy X -+ x |Alg, - Bls, X -+ x [Bls,

fa fs

A ~ |B
Al . B;

where(hs x---x hg)(as,,...,8s,) = (hs (as)), ..., hs,(as,)) forallag € |Als,...,an €

|Als,- The homomorphism condition amounts to the requirement that this diagram
commutesi.e. that composing the functions on the top and right-hand arrows gives
the same result as composing the functions on the left-hand and bottom arrows. Such
commuting diagrams will be used heavily in later chapters, particularly in CHgpter 3.

Example 1.3.2.Let £1 = (S1,21) andAl be as defined in Examgle 1.p.4. Define
aX1l-algebraCl by

Page: 22 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

1.3 Homomorphisms and congruences 23

|Cl|shape: |C1‘Suit = {17 2, 3}7

boxc1 = 1 € |Clshape

heartg; = 2 € |Cl]suit,

boxifye;: |Cl|shape— |Cl|shape= {1— 1,2— 3,3+— 1},

and fc1:[Cl1|shapex |C1|suit — |Clsuit is defined by the following table:

ool\.)l—‘ah

P
NIEININ
PN W[w

NN P~

Let hl:]Al| — |C1| be theSl-sorted function such that
hlshape= {0 — 1, A+ 3},
hlgyit={— 1,0 — 2 & — 2}.
It is easy to verify thahl:Al — C1 is aX1-homomorphism by checking the fol-
lowing:
hlshapdboxa1) = boxc:

) =
hlgui(hearts;) = heartg:

hlshapd bOXifya (O)) = boxify; (hlshapd O))
hlshapd bOXifya1 (A)) = boxifyes (hlshapd 2))

hlsuit(far (0,) = fc (hlshape(D) hlgyit(db))

h]-suit(fAl(D7@>) = f (hlshapém)»hlsult(@))

hlsuit(far (0, M) = fCl(hlshap&D)>hlsU|t(‘))

hlsuit(f 1(A,*)) = fCl(hlshape(A),hlsun())

hlsuit(f l(Aa@)) = fc (hlshape{A);hlsun())

hlsuit(fAl()) fCl(hlshape(A)ahlsun()) |

Exercise 1.3.3Let A be aZ—aIgebra. Show thatl 5 : A — A (the identityS-sorted
function) is aX-homomorphism. Leli: A— B andh’: B — C be X-homomorphisms.
Show thath|;|'|:|A] — |C| is aX-homomorphisnh;h’: A — C. O

Exercise 1.3.4Let h: A — B be aX-homomorphism, and le&¥’ be a subalgebra of
A. Let theimage of Aunder hbe theX-algebrah(A') defined as follows:
o [h(A)| =]h|(|A]); and
o foreachfis;x---xs—sinXandas €|Als,...,an € |As,, faa)(hs (@1), .-, hs,(an)) =
hS(fA’(aL 7an))
Showthah(A’) is a well-defined-algebra (in particular, thatthefuncudp(A/ |h(A)]s, %
x |h(A)|s, — |h(A)|s is well-defined for eachi:s; x --- x — sin X) and that
it is a subalgebra dB. Formulate a definition of theoimageof a subalgebr&’ of
B underh, and show that it is a subalgebra/af O

Exercise 1.3.5Let h: A — B be aX-homomorphism, and suppo¥eC |A|. Show
that the subalgebra d&8 generated byh|(X) C |B| is the image of the subalgebra
of A generated by. Show that it follows that ifi: A — B is surjective andA is
reachable theB is reachable. O

Page: 23 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

24 1 Universal algebra

Exercise 1.3.6LetB be areachablE-algebra. Show that for ary-algebraA, there
is at most on&-homomorphisnh: B — A, and that any-homomorphisni: A— B
is surjective. O

Definition 1.3.7 (Isomorphism).Let A andB be X-algebras. AX-homomorphism
h: A — B is aZ-isomorphismif it has an inverse, i.e. there isX&homomorphism
h~':B — A such thath;h~! = id|5 andh~*;h = id 5. (Exercise: Show that ifh~*
exists then it is unique.) ThelandB are calledsomorphicand we writeh: A= B
or justA= B. O

Exercise 1.3.8Leth: A=~ Bandh’: B C beX-isomorphisms. Show that their com-
position is aX-isomorphismh;': A= C. Show that= (as a binary relation o-
algebras) is reflexive and symmetric, and is therefore an equivalence relatian.

Two isomorphic algebras are typically regarded as indistinguishable for all practi-
cal purposes. It is easy to see why: the only way in which they can differ is in the
particular choice of data values in the carriers. The size of the carriers and the way
that the operations behave on the values in the carriers is exactly the same. For this
reason we are often satisfied with a definition of an algebra “up to isomorphism”,
i.e. a description of an isomorphism class of algebras in a context where one would
expect a definition of a single algebra. An example of this is in Fact 1.4.10 below.
The notion of isomorphism can be generalised to other kinds of structures, where
it embodies exactly the same concept of indistinguishability. See Chapter 3 for this
generalisation and for many more examples of definitions of objects “up to isomor-
phism”.

Example 1.3.9.Let £1 = (S1,21) andAl be as defined in Examfle 1.p.4. Define
aX1l-algebraD1 by

|D1|shape: {O,A},

|D1|suit: {17273}a

boxp1 = A € |D1|shape

heart$; = 2 € |D1]suit,

boxifyh;: |[D1|shape— |D1|shape= {0 — A, A = A},

and fp1:|D1|shapex |D1|suit — |D1|suit is defined by the following table:

fp1[1]2|3
o (233
A 11)3(12

Letil:|Al| — |D1] be theSl-sorted function such that

i1shape= {0~ A, A0}
i Lsuit = {*'—’ 1LO—24 '—>3}~

This defines & 1-homomorphisnil: Al — D1 which is aX 1-isomorphism, sé\1 =
D1. a

Page: 24 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

1.3 Homomorphisms and congruences 25

Exercise 1.3.10Show that a homomorphism is an isomorphism iff it is bijective.
O

Exercise 1.3.11Show that there is an injective homomorphism — B iff A is
isomorphic to a subalgebra Bf O

Example 1.3.12Let X = (S Q) be the signature

sorts s
ops as
fis—s

and defineZ-algebrasA andB by

|Als = Nat (the natural numbers)
an=0¢€|Als,
fal|Als — |Als= {n—n+1|ne Nat},

|B|s = {n € Nat| the Turing machine with Gdel numben halts on all input},
ag = the smallesh € |B|s,
fg:|B|s — |B|s = {n € |B|s — the smallesim € |B|s such tham > n}.

Leti: |A] — |B| be theS-sorted function such that
is(n) = the (n+ 1)St smallest element dB|s

for all n € |Als. The functionis is well-defined sincéB|s is infinite. This defines a
X-homomorphisni: A — B which is an isomorphism.

Although A = B, the X-algebrasA andB are not “the same” from the point of
view of computability: everything i\ is computable, in contrast 8 (|B|s is not
recursively enumerable arfg is not computable). Isomorphisms captateictural
similarity, ignoring what the values in the carriers are and what the operations actu-
ally compute. This example shows that, for some purposes, properties stronger than
structural similarity are important. O

Definition 1.3.13 (Congruence)Let A be aX-algebra. AX-congruence on As
an (S-sorted) equivalence= on |A| which respects the operations Bf for all
fisix---xsy—sinZanday, &) € [Als,,...,an,a, € |Als,, if a1 =5 & and ... and
an =s, ay thenfa(ay,...,an) =s fa(ay,...,an). O

Exercise 1.3.14Show that the intersection of any family Bfcongruences oA is
aX-congruence oA. Use this to show that for arfyrsorted binary relatioR on |A|
there is a least (with respect €9 X-congruence o& which includesR.
Show that the kernel of any-homomorphisnmh: A — B is aX-congruence oA.
Show that a surjectiv&-homomorphism is an isomorphism iff its kernel is the
identity. O

Definition 1.3.15 (Quotient algebra).Let A be aX-algebra, and let= be aX-
congruence oA. Thequotient algebra of A modules is theX-algebraA/= defined
by:

Page: 25 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

26 1 Universal algebra

e |A/=|=|Al/=; and

o foreachf:s;x---xsy—sanda; € [Als;,....an € [Als,, fa/=([a1]= . [an]=g,) =
[fA(al,...,an)}Es. O
Exercise 1.3.16 Show thatA/= in Definition[1.3.15 is a well-defined-algebra.
O

Example 1.3.17Let £1 = (S1,Q1) andAl be as defined in Examgle 1.p.4, and let
= = (=q)secs1 be theSl-sorted binary relation of\1| defined by

=shape™ {<Dv D>’ <A’ A>}
=it = { (%, 8), (D, 0), (0, &), (4,9, (4, 4)}.

This defines a congruence #d. Al/= is theX1-algebra defined by

|AL/=|shape= {{O}. {A}},

|AL/=]suit = {{®},{O, #}},

boxai /= = {0} € |AL/=|shape

heartsy /= = {©, #} € |AL/=|suit,

bOXifYAl/z: |AL/=|shape— |Al/=|shape= {{O} — {O},{A} — {O}},

andfay/=: |ALl/=|shapex |Al/=|suit — |Al/=|suit is defined by the following table:

fa=| {%} {O M}
{0} | {%} {0}
{A} O, 6}H{O. a} O

Exercise 1.3.18Let = be aX-congruence o, and leths(a) = [a]=, for s€ S
ac |Als. Show thaths: |Als — (|A|/=)s)sesis aX-homomorphisni: A— A/= with
ker(h) = =. O

Exercise 1.3.19Let h: A — B be aX-homomorphism. Show tha/ker(h) is iso-
morphic toh(A). (HINT: The isomorphism is given bjajiern) — hs(a) for s€ S,
ac|As) O

Exercise 1.3.20Let= be aX-congruence oA. Show that for anyE-homomorphism
h: A — B such thate C ker(h), there exists a uniquB-homomorphisng: A/= — B
such thats(a) = gs([al=,) forallse S ac |Als. O

Exercise 1.3.21Show that there is a surjective homomorphisA — B iff there is
a congruence= on A such thaB is isomorphic toA/=. O

Exercise 1.3.22Let A be aX-algebra, let= be a congruence oftand letB be a
subalgebra oA/=. Show that there is a subalgel@af A and congruence=" on
CsuchthaB=C/='. O

Exercise 1.3.23Let h: A — B be aX-homomorphism. Show that there is a unique
X-congruence= on A and a unique injectiv&-homomorphisnmg: A/= — B such
thaths(a) = gs([al=,) forallse S, ac |Als. O

Page: 26 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

1.4 Term algebras 27

1.4 Term algebras

For any signatur& there is a specia-algebra whose values are just well-formed
terms (i.e. expressions) built from the operation names.iA X-algebra of terms
with variables is similarly determined by a signatle= (S Q) and anSsorted
set of variables. These algebras are rather boring insofar as modelling programs is
concerned — the term algebra models a program which does no real computation.
But the homomorphisms from these algebrastteer algebras turn out to be very
useful technical tools, as shown by the definitions below.

Throughout this section, I&€ = (S Q) be a signature and let be anS-sorted
set (of variables), whenec Xs for s€ Smeans that the variables of sorts (written
x:s). Note that “overloading” of variable names is permitted here, since there is no
requirement thaXs andXy be disjoint fors#<s € S.

Definition 1.4.1 (Term algebra). The Z-algebra T (X) of terms with variables X
is theX-algebra defined as follows:

e |Tx(X)] is the least (with respect t0) S-sorted set of words (sequences) over the

alphabet
SuU U QWSUUXSU{:u(7'7)}
weSk s€S
s€S
such that:

— theword %:s" € [Tz (X)|s for all s€ Sandx € Xs; and
— forall f:s; x--- x5y —sin X and all wordd € |Ts (X)|s,;...,th € [Tz (X)]sn,
the word “f (ty,...,th):S" € |Tx(X)]s.

o forall fisy x--- x5 —sin X and all wordst; € [Tx(X)]s;,---,th € [Te(X)]sn,
o0 (t1; - -, ta) = (the word) “f (ty, ... ,tq):S" € [T (X)]s.

(Quotation marks are used here solely to emphasize that terms are words, and are
not part of the words they delimit.) < Sandt € [Tz (X)|s thent is a Z-term of
sort s with variables Xthefree variables of s the seFV(t) C X of variables that
actually occur irt: for s€ Sandx € X, x € FV(t)s if t contains the subwordk's”.

The Z-algebra of ground termss the X-algebraTy = Ty (&) of terms without
variables. Ifse Sandt € |Tx|s thent is agroundX-term m|

The values ofTx(X) are “fully-typed” terms formed using the variablesXnand
the operation names i, and the operations df (X) just build complicated terms
from simpler terms. Note that a terne | Ty (X)| need not contain all the variables
in X, and that some variables may occur more than on¢eTp is also called the
X-word algebra and its carriergTy| are sometimes called théerbrand universe
for X.

Example 1.4.2.Let X1 = (S1,Q1) be as defined in Examgle 1..4. THBn is the
X 1-algebra defined by

Page: 27 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

28 1 Universal algebra

|T21|3hape: { “ bOX(). Shapé,
“boxify(box): shape: shapé,
“boxify(boxify(box): shapg: shape: shapé,

| Tx1|suit = { “heartg): suit’,
“f(box): shapeheartg): suit): suit’,
“ f (boxify(box): shapg: shapehearts): suit): suit’,
“f(box):shape f (box): shapehearts): suit): suit): suit”,
o}

where the operations @k are the term formation operations

boxr,, = “box):shapé € |Ts1|shape
hearts;,, = “heartg):suit’ € |Tx1|suit,
bOXifyl'El: | Tx1|shape— | Tx1/shape
= {“box):shapé — “boxify(box): shape: shapé,
“boxify(box): shapg: shapé — “boxify(boxify(box): shapg: shapé: shapé,

b

and similarly forf:shapex suit— suit d

Notation. Sort decorations (e.g. $hapé in “box):shapé) are often unambigu-
ously determined, and they will usually be omitted when this is the case. When
Q. sNXs = & for somes € S, then variables of sogcannot be confused with con-
stants (0-ary operations) of sarind so we will usually drop the parentheses “()”

in the latter. We will omit quotation marks whenever it is clear from the context that
we are dealing with terms. Finally, in examples we will use infix notation for binary
operations when convenient. O

Example 1.4.2 (revisited).We repeat Examplg 1.4.2, making use of these nota-
tional conventions.

Let 1= (S1,Q1) be as defined in Exampe 1.p.4. Thén is theX1-algebra
defined by

|Ts1|shape= {box boxify(box), boxify(boxify(box)), ...},
|Tx1|suit = {hearts f (box hearts, f (boxify(box), hearts, f (box f(box hearts),...}

where the operations @k are the term formation operations

boxr,, = boXe |Tx1|shape
hearts;,, = heartse [Tz1|suit,

boxify . : | Tx1|shape— | Tx1lshape
= {box— boxify(box), boxify(box) — boxify(boxify(box)),...},

and similarly forf:shapex suit— suit O

Example 1.4.3.The notational conventions above will almost always be applicable.
They cannot be adopted from the outset (i.e. in Definifion [L.4.1) because of the
relatively rare examples where confusion can arise. For exampE2let(S2, Q2)

Page: 28 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

1.4 Term algebras 29

be the signature with sortss',t and operations:s, a:s, f:s—tandf:s —t (no
mistakes here, repetition of names is intented).

According to the definitionTxo|; = {“ f(a():s):t",“ f(a():§):t" }. If all sort dec-
orations were omitted then both of the terms in this set would becdta))” and
so|Tx2|t would have just this single element. The “outer” decoration can be omitted
but the “inner” decoration is required, thus e.§(&():s)".

Similarly, if X is anS2-sorted set of variables such tlat X, then “f(a():s)”
and “f(a:s)” are different terms ifTx2(X)|t, so the convention of writingd(): s’
as ‘a:s’ cannot be used.

Since the definitions permit variables and operation names (&@: s) and even
“or , or (), the custom of writing terms as sequences of symbols without explicit
separators can cause confusion. Luckily, such names never arise in practice and so
for the purposes of this book this problem can safely be forgotten. O

Fact 1.4.4.For any XZ-algebra A and S-sorted functionX — |A| there is exactly
oneX-homomorphism* Tx (X) — A that extends v, i.e. such thdi(w (x)) = vs(X)
forallse S, xe Xs, whereix: X — | Tz (X)| is the embedding that maps each variable
in X to its corresponding term.

S-sorted sets X-algebras
L
X e [Te(X) T=(X)

\ \
\ \
\ \

v v %
\ \
' '
A A O

The existence and uniquenessvbffollow easily from the requirement that ex-
tendsv (this fixes the value of for any variable as a term iffx (X)|) and that/*
is a X-homomorphism (this determines the value/bffor any termf (ty,...,tn) €
|Ts(X)| as a function of the values of for its immediate subterms,....t, €
|Tx (X)[). The homomorphism which results is the function which evaluBtesrms
based on the assignment of valued\ito variables inX given byv.

Definition 1.4.5 (Term evaluation).Let A be aX-algebraA and letv: X — |A| be an
S-sorted function. By Fa.4 there is a unigiaomomorphisnv”: Ty (X) — A
that extends. Letse Sand lett € |Tx(X)|s be aX-term of sorts; thevalue of t in A
under the valuation s V¥(t) € |Als. Whent € |Tx|s the value ot does not depend
onv; then thevalue of t in Ais @*(t) where: @ — |A| is the empty function.
To make the algebra explicit, we writg(v) for V#(t), andta for ta(@) whent is
ground. O

Page: 29 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

30 1 Universal algebra

Exercise 1.4.6Lett € |Tx(X)| be aX-term and letA be aX-algebra. Show that if
v:X — |A] andv: X — |A| coincide onFV(t), thenta(v) = ta(V). This follows from
another fact: forany e |Ts (X)], X CY (so that € |Tz(Y)[|) andv:Y — |A|, we have
ta(v) =ta(1;v), wheret: X — Y is the inclusion (and sov: X — |A|). O

Exercise 1.4.7Define evaluation of terms in an inductive fashion. Convince your-
self that the result is the same as that given by Definftion]1.4.5. O

Exercise 1.4.8Let h: A — B be aX-homomorphism, le¥: X — |A| be anS-sorted
function, and let € |Tx(X)| be aZ-term. Using Fadt 1.4}4, prove thatv*(t)) =
(v;h)#(t). Compare this with a proof of the same thing using your inductive defini-
tion of term evaluation from Exercise 1.1.7. O

Exercise 1.4.9Functions6:X — |Tz(Y)| are sometimes callegubstitutions(of
terms inTx (Y) for variables inX). Using Facf 1.4]4, define thetermt[6] resulting
from applying the substitutiofi to aX-termt € | Tz (X)|. Show that[ix] =t for any
t € |Tx(X)|, whereix maps each variable X to its corresponding term ifTz (X)|.
Define the compositio®;6’ of substitutionsd: X — [Tx(Y)| and6”:Y — |Tx(Z)],
and show thatt[6])[6’] =t]|6;0’] for any Z-termt and substitution® and6’. O

Notation. Supposeu € |Tx(Y)|s for some sors € S Then[x+— u] (when used as a
substitution{x:s} UX — | Tz (XUY)|) is shorthand for the functiofx:s— u}U{z—
z|ze X,z#x:s}. Fort € [Tg({x:s}UX)|, t[x+— u] € [Tz (XUY)| thus stands for the
term obtained by substitutingfor xin t. This notation generalises straightforwardly
to [Xg — Ug,...,Xn — Up] @ndt[xg — U1, ..., Xn — Up] providedx, ..., X, are distinct
variables. O

Fact 1.4.10.The property of ¥(X) in Fact[1.4.4 definess{X) up to isomorphism:
if B is a Z-algebra andn:X — |B| is an S-sorted function such that for ady
algebra A and S-sorted functionX — |A| there is a uniqueZ-homomorphism
v¥:B — A such that;|v¥| = v then B is isomorphic tos[X), wheren®: Ty (X) — B
is an isomorphism with inversé: B — Tz (X).

Page: 30 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

1.4 Term algebras 31

S-sorted sets X-algebras

Fact[1.4.4 says that the definition ©f (X) fixes the definition of the term evalu-
ation function “for free” (see Definition 1.4.5). Fdct 1.4.10 says that this property
is unique (up to isomorphism) f6: (X), so in fact the explicit definition oy (X)

is superfluous — it would be enough to defifieX) as “the” (unique up to iso-
morphism)X-algebra for which Definiti05 makes sengg(X) is a particular
example of dree object— see Sectioh 3|5 for more on this topic.

Example 1.4.111et X1 = (S1,Q1) be as defined in Example 1.p.4. Thén is
the X1-algebra described in Example 1]4.2. [Tdtbe theX1-algebra defined by

|T1|shape= {bOX box boxifybox boxify boxify. . .},
|T1suit = {heartsbox hearts fbox boxify hearts foox box hearts f f...}

where the operations dfl are the postfix term formation operations

boxr1 = boxe |T1|shape
hearts; = heartse |T1|syit,
boxifyr1:|T1|shape— |T1|shape= {bOx— box boxifybox boxify— box boxify boxify. ..},

and similarly for f:shapex suit — suit. ThenT1 satisfies the property dfys in
Facf1.4.4 (the fact that = @ here makes this easy to check — there is only one
functionv: @ — |Al| for any Z1-algebraAl), so by Fadt 1.4.30 (wherg @ — [T1]|
is the empty function)I 1 is isomorphic toTy1. The isomorphismz®: Ty, — T1
converts & 1-term to its postfix form. ad

Exercise 1.4.12Prove Factg 1.414 afd 1.4110. O

Exercise 1.4.13Let A be aX-algebra and lep: & — |A| be the empty function.
Show thatA is reachable iff the unique homomorphisaf : Tx — A is surjective,
i.e., iff every element inA| is the value of a groun&-term. O

Page: 31 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

32 1 Universal algebra

Exercise 1.4.14Show thafTy is reachable. Put this fact together with previous re-
sults to show that &-algebra is reachable iff it is isomorphic to a quotienTefand

that there is a one-to-one correspondence between isomorphism classes of reachable
X-algebras and congruencesBn O

Exercise 1.4.15L et G be a context-free grammar over an alphabeif terminal
symbols. Consider the signatufe = (Sg, Qg), whereSs is the set of non-terminal
symbols ofG and each productioX — Y;...Y; in G corresponds to an operation
in Qg with result sortX and arity given by the sequence of non-terminal symbols
inY1...Yn. The Zg-algebraAg has carriergAg|x = T* for all X € S, and for any
P:Xy X oo X Xp — X in Zg andag,...,an € T, pag(as,...,an) is the sequence
obtained by substituting; for the it non-terminal symbol on the right-hand side
of the production associated with Prove the following:

1. For anyX € S, the carrier of sorX in the reachable subalgebraf is the set
of sequences generated from the non-termihad G.

2. The algebrdy, is isomorphic to the algebra of parse tree€sof

3. The grammag is unambiguous iff the reachable subalgebragfs isomorphic
to TZG- O

1.5 Changing signatures

A signature morphism defines a mapping from the sort and operation names in one
signature to those in another signature, in such a way that the arity and result sort
of operations are respected. (This requirement is analogous to the requirement that
homomorphisms respect the behaviour of the operations.) Signature morphisms will
be used extensively in later chapters to mediate constructions involving multiple
signatures. The crucial point that makes these constructions work is that a signature
morphism fromX to X’ induces translations of syntax (terms — later, also logical
formulae) and semantics (algebras and homomorphisms) befivardX’.

Two kinds of signature morphisms are introduced in this section. Only the first
kind will be used in the rest of the book. The second kitetived signature mor-
phismsare introduced mainly as an example of one way in which a basic definition
could be modified. Such a modification would not affect later definitions and re-
sults, since these depend only on the induced translations of terms, algebras and
homomorphisms.

1.5.1 Signature morphisms

Definition 1.5.1 (Signature morphism)LetX = (S Q) andX’ = (S, Q') be signa-
tures. Asignature morphisns: £ — X' is a pairc = (Osorts, Oops) Whereosors S—

Page: 32 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

1.5 Changing signatures 33

S and ogps is a family of functions respecting the arities and result sorts of op-
eration names irE, that is Gops = (Gws: Qus — Q. () oios) wes' ses (Where

for w=s1...5 € S, 0211s(W) = Osorts(S1) - - - Osorts(Sn)). A signature morphism
0:X — X’ is asignature inclusions: X < X’ if osorts is an inclusion ands is

an inclusion for alw e Sf,se S O

Signature morphisms as defined above will be referred talgabraic signature
morphisms when it is necessary to distinguish them from other kinds of signature
morphisms to be introduced later. Note tlmgts and (the functions constituting)
Oopsare not required to be either surjective or injective.

Notation. Wheno:X — X', both osorts and ops (@nd its componentsys for all
w e S, se 9 will be denoted by. ad

Example 1.5.2.Let X = (S Q) be the signature

sorts polygonfigure trump

ops squarepolygon
boxify. polygon— polygon
boxify. polygon— figure
h: figure x trump— trump

Let X1 = (SL, Q1) be the signature defined in Example 1]2.4.
Deﬁnecsorts: S—> Sl andcopsz <GW,S: QW,S — Q1G§ort5(w)«,csorts<5)>W€9736S by

Osorts= {polygon— shapefigure— shapetrump+— suit},

O polygon= {Square— box}, polygonpolygon= {boxify— boxify},
Opolygonfigure = {POXify— boxify},

Ofigure trumptrump = {h— f},

andoys = @ for all otherw € S*,s€ S Theno: X — X1 is a signature morphism.
O

Exercise 1.5.3Leto: X — X’ ando’: X' — X" be signature morphisms. Let;0")sors=
Osorts Ogorts @Nd (0,0)ops = Oops Ggps (OF rather, to be more precis¢s;o’)ws =
Ows 0. for we Sf,;se §). Show that this defines a signature morphism
5™ 630rts(W), Osorts(S)

o0 X —Xx", |

In the rest of this section, let:X — X’ be a signature morphism, where
¥ =(SQ)andX’ = (S,Q'). As will be defined below, any such signature mor-
phism gives rise to a translation bfterms toX’-terms, and of’-algebras and ho-
momorphisms t&-algebras and homomorphisms. Note that the direction of trans-
lation of algebras and homomorphisms is “backwards” with respect to the direction
of the signature morphism, as the following figure indicates.

Page: 33 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

34 1 Universal algebra

c
) i
Syntax o
rterms ———————————— — X'-terms
X-algebras~—————————— X'-algebras
Semantics 7\0
X-homomorphisms+———————— X’-homomorphisms

Definition 1.5.4 (Reduct algebra)Let A’ be aX’-algebra. Thes-reduct of Ais the
Z-algebraA"c defined as follows:

o |Nols=|A]q forallse S and
o forall fis; x - x5 —sinZX,

ot 1 olsy X+ % Aoy = (] ols= O F)at gy % -+ X [L5y — & |-
O
If X is a subsignature of’, 0:X — X' is the signature inclusion, arml is a X’'-
algebra, them"c is a X-algebra which is jus&’ with some carriers and/or opera-
tions removed.

Notation. We sometimes writeé\"; for A"g wheno: X — X' is obvious, such as
wheno is a signature inclusion. O

Example 1.5.5.Let5: X — X1 be the signature morphism defined in Exarfiple 1.5.2
and letAl be theX1-algebra defined in Exam.4. Thatis is the Z-algebra
such that

|Al‘c|polygon: ‘A1‘6|figure: {D’A} = |A1‘shape

|A1‘c|trump: {*707‘} - |A1|suit7

squargy, =0 = boxa1,

boxifyAl‘G: |A1‘G|po|ygon—> |A1‘G|po|ygon: {0~ 0,A 0O}

= boxifyp,: |A1|shape_> |A1‘shape
bOXifyAl‘gi |Al‘6|polygon_’ |Al‘6|ﬁgure: {o~0,A— 0O}
= boxifyp,: [Al|shape— [Al|shape
hAl\G: |A1‘c‘figure>< ‘Al‘cr|trump—> |A1‘0'|trump: {O,%) — &, (0,0)—&,...}
= fa1: |'A\:|-|shape>< |A1|suit - ‘A1|s|%it«

Exercise 1.5.6 A X-algebraA can be regarded as a function mapping the names in
X to their interpretations; the-reduct ofA is then the compositiowr;A. Spell out
the details. O

Exercise 1.5.7Let 6:X — X’ be a signature morphism that is surjective on sort
names, and le¥' be aX’-algebra. Show that A"G is reachable theA' is reachable.

Give counterexamples showing that the opposite implication does not hold, and that
the implication itself does not hold if some sort name&irare not in the image of

X undero. O

Page: 34 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

1.5 Changing signatures 35

Definition 1.5.8 (Reduct homomorphism)Leth': A’ — B’ be aX’-homomorphism.

The o-reduct of K is the Ssorted functiom"c: \A"G\ — \B"G| such that(h"c,)S =

h’a(s) for all se S. (Exercise: Show thalh"(,:A"(y — B/‘c is aX-homomorphism.)
O

Exercise 1.5.9Define thec-reductz"c of a X’-congruence=' on aX’-algebra

A, and prove that it is Z-congruence OIA"G. Show thato-reduct distributes over
quotient, i.e.(A’/z’)‘cy = (A"G)/(z"c) for all X'-algebras’h and X’-congruences
=’ onA. O

The following definition of the translation of terms along a signature morphism
0:X — X’ may look somewhat daunting, but its simple upshot is to translate each
termt € |Tx(X)| to theZ’-term obtained by replacing each operation name ffbm
by its image undes. Some care must be taken in the treatment of variables: since
variables for different sorts are not required to be distinct, to make sure they are not
inadvertently identified by the translation, for each sbitt X’ we have to take a
disjoint union of the sets of variables of sorts mappes.to

Definition 1.5.10 (Term translation). Let X be anS-sorted set of variables. Define
X' = (X})geg to be theS-sorted set such that

Xy= | X foreachs €S.
o(s)=¢

Then (TZ,(X’))‘G is a Z-algebra. Leti: X — |(T£,(X’))‘G| be the obvious embed-
ding (if not for the disjoint union in the definition of’ and explicit decoration of
variables with sorts in term$,would coincide withix which maps each variable
to its corresponding term). Then by Fact 1]4.4 there is a unitthemomorphism

6:Tx(X) — (T (X))o extending:

S-sorted sets X-algebras
C 5%
X Te (X)] Tx(X)
\ \
\ \
\ \ \
. 5 =i
\ \
' '
[Tz (X))o (T (X))o
The translation of aX-term te |Tx(X)| by ¢ is the X/-term &(t) € [Tz/(X')|. To
keep the notation simple, we will write just(t) for & (t). O

Example 1.5.11let 0:X — X1 be the signature morphism defined in Exam-
ple[1.5.2, wher& = (S 2) andX1 = (S1,Q21). Let X be theS-sorted set of vari-
ablesx: polygonx: figure, y: figure, z trump. TheSl-sorted set of variablé§' in Def-

inition[1.5.10Q is therx: shapex': shapey: shapez suit, and

Page: 35 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

36 1 Universal algebra
o (h(boxify(x: polygon, h(x:figure 2))) = f (boxify(x), f(X,2)),

o (h(x: figure, h(boxify(boxify(square), z))) = f (X, f (boxify(boxify(box)), z)),
and so on. O

Exercise 1.5.12Lett € |Tx| be a groundE-term and letA’ be aX’-algebra. Show

that the value of is invariant under change of signature, oét), = tA,‘U.
Formulate and prove a more general version of this result in whitcdy contain

variables. O

1.5.2 Derived signature morphisms

A derived signature morphism fromto X’ is like an algebraic signature morphism

from X to X’ except that operation namesihare mapped téermsover X’. This

allows operation names iti to be mapped to combinations of operationginand

also handles the case where the order of arguments of the corresponding operations
in X andX’ are different.

Definition 1.5.13 (Derived signature)Let X = (S Q) be a signature. For any se-
guences;...s, € S, let g, s, be theS-sorted se:sl,...,@:sn. The derived
signature ofZ is the signatureL®e’ = (S Q9" where for eacts;...s, € S and
seS ng.r.sn,s = |TZ(IS1~-~Sn)|S- u

In the derived signature df, a X-termt of sorts with variablesls, . s, represents
an operatiort:s; X --- x § — S. The variable@:s in ls,..s, thus stands for the
ith argument ot. Note that a “bare” variabl¢i | € [Tx(Is,_s,)|s iS an operation
i:S1 % --- X &y — § in £9€7, corresponding to a projection function.

Definition 1.5.14 (Derived signature morphism).Let £ andX’ be signatures. A
derived signature morphisi#: X — X' is an algebraic signature morphisin —
(2/)der_ 0

Definition 1.5.15 (Derived algebra)Let X = (S Q) be a signature, and létbe a
X-algebra. Thelerived algebra of As the £9€"-algebraA%¢" defined as follows:
e |A%T = |A|; and
o foreacht:s; x - x s —sin L% anda € |A%"|g ... a0 € |[A%|g tader(ar, ..., 80) =
ta(v) € |A%"|g wherev is the S-sorted function{([1]:5) — ay,...,([n]:s) —
an}. O

In the rest of this section, lef:X — X’ be a derived signature morphism. The
following corresponds to Definition 1.5.4 for algebraic signature morphisms; later
exercises correspond to Definitigns 1]5.8 and 1]5.10 and related resullts.

Definition 1.5.16 (Reduct algebra w.r.t. a derived signature morphism)Let A’
be aX’-algebra. TheS-reduct of Ais theE—aIgebraA"(; defined as follows:

Page: 36 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

1.5 Changing signatures 37

o |Asls=|A5(forallse S and
o forall fis;x---xsy—sinX, fA’\a: ‘A,‘5|Sl XX |A/\5|sn—> |A’\5\s=3(f)(A/)aer.

Equivalently,A",; is the Z-algebra(A')%'|5, viewing § as the algebraic signature
morphismé: £ — (X7)%er, O

Exercise 1.5.17 (Reduct homomorphism w.r.t. a derived signature morphism).
What is theﬁ—reducth"(; of aX’-homomaorphisnt’: A' — B'? Prove thah"(;:A"a —
B"(; is aX-homomorphism. O

Exercise 1.5.18 (Term translation w.r.t. a derived signature morphism).Let
t € |Tx(X)| be aZ-term, whereX is anS-sorted set of variables. Defirit), the
translation ot by & (the result should be &'-term). O

Example 1.5.19Let X = (S Q) be the signature defined in Example 1]5.2, and let
X1 =(S1,21) be the signature defined in Example 1}2.4. BeE — X1 be the
derived signature morphism defined by

Jsorts = { polygon— shapefigure— shapetrump— suit},

O¢ polygon= {Square— boxify(box)},

5polygonp0|ygon: {bO_XifY’_’ : Shap_@a

Spolygonfigure = {boxify— boxify(boxify([1]: shapé)},

5figuretrumptrump = {h = f(bOXifY(ZShaIDF), f(:Shape:SUit))}a
andé,s = @ for all otherw e S*,se S

Let Al be theX1-algebra defined in Exam.4. Thati;s is the Z-algebra
such that

|A1‘6‘polygon: |A1‘5|figure: {O,A},

|A1‘6‘trump = {*7 @a ‘},

squarey, = 0,

bOXifyAl‘SZ |A1‘6|polygon—> ‘A1‘5|polygon= {I:! — D,A — A}

bOXifyAl‘(;: |A1‘5|polygon_> ‘A1‘6|figure: {O0—~0,A— 0O},

andhAl‘g: \A1‘5|ﬁgu,e X |A1‘5|t,ump — |A1‘5 ltrump is defined by the following table:

haij; |||
O |(&|Dd
AN VIV

Let X be theSsorted set of variables: polygonx:figure y:figure z.trump. A
correct solution to Exerci$e 1.5]18 would transt(tgoxify(x: polygon, h(x: figure, z))
(aX-term with variablex) to

f (boxify(boxify(boxify(x))), f (boxify(boxify(x)), f(boxify(X), f(X,2)))).

=4 (boxify(x:polygon) =4 (boxify(x:polygon) =6 (h(xfigurez))

Page: 37 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

38 1 Universal algebra

Exercise 1.5.20Repeat Exercisg 1.5/12 for the case of derived signature mor-
phisms. O

Exercise 1.5.21A more complex definition of derived signature morphi§nt —
X’ would allow a sort namein X to be mapped to &artesian product’sx - -- x s,
of sortss),...,s,in Z’. Give versions of the above definitions which permit thisl

Exercise 1.5.22 Another variation on the definition of derived signature morphism
would permit operation names K to be mapped to recursively defined functions
in terms of the operation namesh. Give versions of the above definitions which
would allow this. (HNT: Look at a book like[[Sch&6] before attempting this exer-
cise.) O

1.6 Bibliographical remarks

This chapter presents the basic notions of universal algebra that are required in the
sequel. There is a vast literature on universal algebra as a branch of mathematics,
and the concepts and results we need here are a tiny fraction of this. Applications of
universal algebra in computer science are widespread, going back at Iéast to [BL69].

For much more on universal algebra see ¢.gal®i or [Coh65] but note that
both of these handle only the single-sorted case. A presentation of some of this
material for a computer scientist audiencelis [Wec92], see lalso [MT92] where ap-
plications to some topics in computer science other than the ones covered in this
book are also indicated.

The style of presentation here is relaxed but it might still be too dense for some
readers, who might prefer the gentler style, with proofs of many of the results which
we omit here, in[[GTW76]/[EM85]/IMG85] or [LEWS6].

The generalisation from single-sorted to many-sorted algebras originates with
[Hig63]. First applications to computer science came later [Mai72], becoming
prominent with[GTW76]. The generalisation is straightforward from a purely math-
ematical standpoint, but there are a few subtle issues that will surface in later chap-
ters. For instance, we admit empty carrier sets in Definftion[1.2.2, unlike most logic
books and, for instance, [BTB7] arid [Mo$04]. Admitting empty carrier sets requires
more care in the presentation of rules for reasoning, see Exgrcise|2.4.10 below, but
it also makes some results smoother, see Exdrcise P.5.18.

There are different definitions of many-sorted signature in the literature. The one
here is quite general, allowing overloading of operation names etc., and originates
with [GTWW?73] and [Gog74]. In some early papers, signatures are called “oper-
ator domains”. Definitions that do not permit overloading are used in [EM85] and
[Wir9Q], but as remarked after Definitign 1.P.1, these definitions are equivalent if
each operation name is taken to be tagged with its arity and result sort.

Signature morphisms emerged around 1978 in the context of early work on the
semantics of parameterised specifications in the style of Defifiitior] 6.3.5 below, see

Page: 38 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

1.6 Bibliographical remarks 39

[Ehr7€] and [GB78]; Definitioi 1.5]1 is from the latter. Various variants and re-
strictions on this notion have been used in the meantime. One possible simplifying
assumption is to restrict attention to injective signature morphisms as in [BHK90],
or to bijective signature morphisms, which are sometimes referred to as “renam-
ings”. The notion of reduct, but only with respect to a signature inclusion, arises
in universal algebra. The generalisation from signature morphisms to derived sig-
nature morphisms originates in [GTW?76], and is related to the even more general
notion of (theory) interpretation in logi¢ [End72]. Since the 1970s, derived signa-
ture morphisms have made only sporadic appearances in the algebraic specification
literature, see for instance [SB83] and [HLSTOQ].

Page: 39 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

Page: 40 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

Chapter 2
Simple equational specifications

A specification is an unambiguous description of a signatiiend a class of-
algebras. Because we model programs as algebras, a specification amounts to a
characterisation of a class of programs. Each of these programs is regarded as a
correct realisation of the specification.

Given a signatur& (which, if finite, may be presented by simply listing its sort
names and its operation nhames with their arities and result sorts), there are two
basic techniques that may be used for describing a claksabdfebras. The first is
to simply give a list of all the algebras in the class. Unfortunately, we are almost
always interested imfinite classes of algebras, where this technique is useless. The
second is to describe the functional behaviour of the algebras in the class by listing
the properties (axioms) they are to satisfy. This is the fundamental specification
technique used in work on algebraic specification and the one that will be studied in
this chapter. The simplest and most common case is the one in which properties are
expressed in the form of universally quantified equations; in most of this chapter,
we restrict attention to this case. Sectjon 2.7 indicates other forms of axioms that
may be of use, along with some possible variations on the definitions of Chépter 1,
and further possibilities will be discussed in Chapfer 4. Since most of the results in
this chapter are fairly standard and proofs are readily available in the literature, most
proofs are left as exercises for the reader.

Chapter§ b anid 8 will cover additional techniques for describing classes of alge-
bras. All of these involve taking a class of algebras and performing a simple opera-
tion to obtain another class of algebras, often over a different signature. Using such
methods, complex specifications of classes of complex algebras may be built from
small and easily understood units.

2.1 Equations

Any given signature characterises the class of algebras over that signature. Although
this fixes the names of sorts and operations, it is an exceedingly limited form of de-

41

42 2 Simple equational specifications

scription since each such class contains a wide diversity of different algebras. Any
two algebras taken from such a class may have carrier sets of different cardinalities
and containing different elements; even if both algebras happen to have “match-
ing” carrier sets, the results produced by applying operations may differ. For most
applications it is necessary to focus on a subclass of algebras, obtained by impos-
ing axiomswhich serve as constraints on the permitted behaviour of operations.
One particularly simple form of axioms are equations, which constrain behaviour
by asserting that the value of two given terms i@ sameEquations have limited
expressive power, but this disadvantage is to some extent balanced by the simplicity
and convenience of reasoning in equational logic (see Sefigns 2.4 and 2.6).
Variables in equations will be taken from a fixed but arbitrary infinite&etWe
require 2" to be closed under finite disjoint union: {X;)i¢ is finite andX; C 2~
foralli eI, thend(X)iel € 2. We use variable names likgy, zin examples, and
so we assume that these are all4n Throughout this section, l&t = (S Q) be a
signature.

Definition 2.1.1 (Equation).A X-equationvXet =t’ consists of:

¢ afiniteS-sorted seX (of variables), such that; C 2 for allse€ S and
e two Z-termst,t’ € |Tx(X)|s for some sors€ S,

A X-equationv@et =t is called aground €-)equation a

Notation. The explicit quantification oveX in aZ-equationvX.t =t is essential,

as will become clear in Secti¢n 2.4. In spite of this fact, it is common in practice to
leave quantification implicit, writing =t’ in place ofVFV(t) UFV(t')«t =t’, and

we will follow this convention in examples when no confusion is possible. O

Definition 2.1.2 (Satisfaction).A X-algebraA satisfies(or, is a model of a X-
equationvX.t =t’, written A =5 VX« t =1/, if for every (S-sorted) functiorv: X —
A, ta(V) = ta(v).

A satisfies (or, is a model of) a s@tof X-equations, writte\ =5 @, if A=y @
for every equationp € ®. A classe’ of X-algebras satisfies®-equationy, written
o =x o, if Al=x ¢ for everyA € 7. Finally, a classe of X-algebras satisfies a
set® of X-equations, written# =5 @, if A=y P for everyA € o/ (equivalently,
if o =5 @ foreveryp € @, i.e. A=y ¢ for everyAc o/ andg €). O

The definition of satisfaction provides the syntax of equations with the obvious se-
mantics: an algebrA satisfies an equationX « t = t’ if for any given assignment of
values in|A| to the variables iX, the termg andt’ evaluate irA to the same value.

Notation. We sometimes writé= in place of=y whenZX is obvious. O

Exercise 2.1.3Recall X1 andAl from Examplg 1.2]4. Give somEl-equations
(both ground and non-ground) that are satisfieddy Give someX1-equations
(both ground and non-ground) that anet satisfied byAl. O

Page: 42 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.1 Equations 43

Exercise 2.1.41f X+t =1"is aX-equation an&X C X’ (andX, C Z foralls€ S),

it follows from Definition[2.1.] thatvX’«t = t’ is also aX-equation. Show that
Ay VXet =t implies thatA =5 YX'« t =1'. Give a counterexample showing that
the converse doe®ot hold. (HINT: ConsiderXs = @ and|Ajs = @ for somes € S)
Show that itdoeshold if X has only one sort. ad

Exercise 2.1.5Show that surjectiv&-homomorphisms preserve satisfactiortef
equations: ih: A— Bis a surjectivee-homomorphism theA =5 ¢ impliesB =5 ¢

for any Z-equationg. Show that injectivec-homomorphisms reflect satisfaction of
X-equations: ifh:A — B is an injectiveX-homomorphism theB =5 ¢ implies

A =5 ¢ for any X-equationg. Conclude thaE-isomorphisms preserve and reflect
satisfaction o -equations. O

Exercise 2.1.6Give an alternative definition & |=x VX« t =1’ via the satisfaction

of t =t’ viewed as a ground equation over an enlarged signatune.T(HDefi-
nition[2.1.2 involves quantification over valuations< — |A|. Consider how this
might be replaced by quantification over algebras having a signature obtained from
X by adding a constant for each variablexir) O

It is worth noting in passing the use of the word “class” above to refer to an arbi-
trary collection ofZ-algebras. We use this term since the collectio® @flgebras is
too “large” to form a set. Since the set/class distinction is peripheral to our concerns
here, we will not belabour it, except to mention that it would be possible to avoid the
issue entirely by restricting attention to algebras in which all carrier sets are subsets
of some large but fixed universal set of values.

A signature morphisng: X — X' gives rise to a translation &f-equations ta&’-
equations. This is essentially a simple matter of applying the translation on terms
induced byo to both sides of the equation.

Definition 2.1.7 (Equation translation). Let VXe«t =t’ be aX-equation, and let
0:X — X' be a signature morphism. Recall from Definitjon 1.5.10 that we then
haves(t),o(t') € [Ty (X')| where

Xy= |H X foreachs €S.
o(s)—8

The translation of VXet =t' by o is then theX’-equationc(¥X«t =t') =
VX'e o(t) = o(t’'). (The fact that2" is closed under finite disjoint union guaran-
tees that this is indeedX{-equation.) O

An important result which brings together some of the main definitions above is the
following:

Lemma 2.1.8 (Satisfaction Lemmal[[BG80))If 6:X — X' is a signature mor-
phism,¢ is a Z-equation and Ais a X’-algebra, then A=y o () iff A"G Ex 0.
O

Page: 43 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

44 2 Simple equational specifications

Wheng is a groundX-equation, it is easy to see that this follows directly from the
property established in Exercise 1.5.12. Whers injective (on both sort and op-
eration names), it seems intuitively clear that the Satisfaction Lemma should hold,
since the domain of quantification of variables is unchanged, the only difference
betweenp ando(¢) is the names used for sorts and operations, and the only differ-
ence betweeA andA"g (apart from sort/operation names) is thamight provide
interpretations for sort and operation names which do not appeafgn and so
cannot affect its satisfaction. Whenis non-injective the Satisfaction Lemma still
holds, but this is less intuitively obvious (particularly whenis non-injective on

sort names).

Exercise 2.1.9Take a signature morphisat X — X’ which is non-injective on sort
and operation names2aequation involving the sort and operation names for which
o is not injective, and &’-algebra, and check that the Satisfaction Lemma holds in
this case. O

Exercise 2.1.10Prove the Satisfaction Lemma, using Exer€ise 1]5.12. g

Exercise 2.1.11Define the translation of A-equation by a derived signature mor-
phismé: X — X/, and convince yourself that the Satisfaction Lemma also holds for
this case. O

The Satisfaction Lemma says that the translations of syntax (terms, equations) and
semantics (algebras) induced by signature morphisms are coherent with the defini-
tion of satisfaction. Said another way, the manner in which satisfaction of equations
by algebras varies according to the signature at hand fits exactly with these transla-
tions. Further discussion of the property embodied in the Satisfaction Lemma may
be found in Section 411.

2.2 Flat specifications

A signature together with a set of equations over that signature constitutes a simple
form of specification. We refer to theseftat (meaningunstructured specifications
in order to distinguish them from th&ructuredspecifications to be introduced in
Chaptef b, formed from simpler specifications using specification-building opera-
tions. As we shall see later, it is possible in some (but not all) cases to “flatten”
a structured specification to yield a flat specification describing the same class of
algebras.

Throughout this section, 1ét be a signature.

Definition 2.2.1 (Presentation) A presentatior{(also known as #at specificatioh
is a pair(Z, @) where® is a set off-equations (called thaxiomsof (X, ®)). A
presentatiofX, @) is sometimes referred to asapresentation O

The term “presentation” is chosen to emphasize the syntactic nature of the concept.
The idea is that a presentatialenotes(or presenty a semantic object which is

Page: 44 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.2 Flat specifications 45

inconvenient to describe directly. A reasonable objection to the definition above is
that it fails to include restrictions to ensure that presentations are truly syntactic
objects, namely thaX and @ arefinite, or at least effectively presentable in some
other sense (e.g. recursive or recursively enumerable). Although it would be possible
to impose such arestriction, we refrain from doing so in order to avoid placing undue
emphasis on issues of this kind.

Definition 2.2.2 (Model of a presentation) A modelof a presentatiofX, @) is a
X-algebraA such thai =y @. Mod[(X, ®)] is the class of all models ¢E, ®). O

Taking (X, @) to denote the semantic objédbd[(X, ®)] is sometimes called taking

its loose semanticsThe word “loose” here refers to the fact that this is not always
(in fact, hardly ever) an isomorphism class of algeba® € Mod[(Z,)] does
notimply thatA = B. In Sectiorf 2.5 we will consider the so-calliitial semantics

of presentations in which a further constraint is imposed on the models of a pre-
sentation, forcing every presentation to denote an isomorphism class of algebras.

Example 2.2.3.Let BooL = (¥BooL, ®BooL) be the presentation bel@v.

specBoor = sorts bool
ops true:bool
false bool
- __:bool— bool
__A__:boolx bool — bool
__=__:bool x bool— bool
Vp, g: bool
« —true = false
« —false= true
o« pPAtrue=p
« pA—-p=Tfalse
s p=q=-(pA—0)

DefineXBootv-algebrasAl, A2 andA3 as follows:

1 Here and in the sequel we follow the notation ok<L and itemize axioms in specifications,
marking them withe and introducing universal quantification over the variables only once for the
rest of the list of axioms. Note though that it may be important to keep some axioms outside of the
scope of quantification over some variables, see Exgrcisg 2.1.4.

Page: 45 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

46 2 Simple equational specifications

|AL|bool = {*} |A2]bool = {d, O, &} |A3|bool = {tt,ff }
truea; = * truen, = & trueaz = tt
falsgy = falsgy, = © falsey; = ff
—AL = {x %} a2 ={d— O, —a3 = {tt —ff,
Q= &, ff — tt}
A— A}
AAL* Apz|de| Q| Anz|tt|ff
* % & |(HOCO tt o |tt|ff
VIRIVIIVIIV] ff |ff|ff
& 400
=a1l* =p||0|d = a3 tt|ff
N & (SO tt|tt|ff
Q||| ff |ttt
A (SAS

Each of these algebras is a modelB®bor. (NOTE: Reference will be made to
BooL and to its model#\1, A2 andA3 in later sections of this chapter. The name
BootL has been chosen for the same reasobcad is used for the type of truth
values in programming languages; it is technically a misnomer since this is not a
specification of Boolean algebras, see Exarfiple P.2.4 below.)

Exercise. Show that the models defined and in fact all the modelBobL sat-
isfy Vp:boole —(p A —false) = —p. Define a model oBooL that does not satisfy
Vp:boole ——p=p. O

Example 2.2.4.Let BA = (¥BA, ®BA) be the following presentation.

Page: 46 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.2 Flat specifications 47

specBA = sorts bool
ops true:bool
false: bool
—=__:bool— bool
__V __:boolx bool— bool
__A__:bool x bool — bool
__=__:boolx bool — bool
vp,q,r:bool
s pV(qQVr)=(pva)Vr
s PA(QAT) = (PAT)AT
e PVg=qVvp
e PAQ=(dADPp
s pV(pAQ) =p
s PA(PVO)=p
s PV(QAT) = (pAT)V (PAT)
s PA(QVT)=(pVa)A(PVT)
e PV P =true
e PA—p="false
e P=0g=-pVvVqQ

Models of BA are calledBoolean algebrasOne such model is the following two-
valued Boolean algebi:

|B|b00| = {ttaﬁ}7
truep = tt,
falsep = ff,

-p = {tt— ff,ff — tt}

and
Vg tt|ff Ag|tt |ff =p|tt|ff
|ttt tt|tt|ff tt|tt|ff
ff |tt|ff ff |ff|ff ff |ttt

This is (essentially) the same A8 in Examplg 2.2]3. Note tha1 can be turned
into a (trivial) Boolean algebra in a similar way, but this is not the case Azth

Exercise.Given a Boolean algebtB, define a relatior<g C |B| x |B| by a <g biff
avpgb=b. Show that<g is a partial order withrueg andfalseg as its greatest and
least elements respectively, and withg b yielding the least upper bound afb
andaAg b yielding their greatest lower bound. (In fa¢iB|, <g) is a distributive
lattice with top and bottom elements and compleme#n) ad

Exercise 2.2.5Show that all Boolean algebras (the model8adf as introduced in
Exercisd 2.2}4) satisfy thae Morgan laws

Vp,g:boole =(pVvQg) = -pA—q
Vp,g:boole —=(pAQ) = —pV—q O

Page: 47 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

48 2 Simple equational specifications

The following characterisation of the expressive power of flat equational specifi-
cations is one of the classical theorems of universal algebra.

Definition 2.2.6 (Equationally definable class)A class.«s of X-algebras i®qua-
tionally definablaf &7 = Mod[(Z, ®)] for some setb of Z-equations. O

Definition 2.2.7 (Variety). A class.« of X-algebras islosed under subalgebras
if for any A € o and subalgebr® of A, B € /. Similarly, <7 is closed under
homomorphic imagei§for any A € o7 andX-homomorphisnh: A — B, h(A) € &7,
and< is closed under produci$ for any family (A € <7)ici, [1(A)iel € 7.

A non-empty class oE-algebras which is closed under subalgebras, homomor-
phic images, and products is calledaxiety. O

Proposition 2.2.8.Any equationally definable clagg of X-algebras is a variety.
O

Exercise 2.2.9Prove Propositiofi 2.2/8: show that for any presentatibnd),
Mod[(X, ®)] is closed under subalgebras, homomorphic images and products. For
example, formalise the following argument to show closure under subalgebras: if
AEx ¢ andB is a subalgebra of thenB =5 ¢ since removing values from the
carriers of an algebra does not affect the truth of universally quantified assertions
about its behaviour. Closure under products and under homomorphic images are not
much more difficult to prove. O

Theorem 2.2.10 (Birkhoff’s Variety Theorem [Bir35]). If X is a signature with a
finite set of sort names then a clagsof X-algebras is a variety ift7 is equationally
definable. O

The “if” part of this theorem is (a special case of) Proposifion 2.2.8. A complete
proof of the “only if” part is beyond the scope of this book; the curious reader
should consult e.g. [Wec92].

Example 2.2.11.Consider the signature

XY =sortss
ops O:s
__X__'SXS—S

and the classy of X-algebras satisfying the familiar cancellation law:
ifaZ0andaxb=axcthenb=c

The X-algebraA such that|Als is the set of natural numbers ang is ordinary
multiplication is in.Z. The X-algebraB such thatB|s = {0, 1, 2,3} and x 4 is mul-
tiplication modulo 4 is not ine7. (Exercise: Why not?) SinceB is a homomorphic
image ofA, this shows that7 is not a variety and hence is not equationally defin-
able. ad

Page: 48 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.2 Flat specifications 49

Exercise 2.2.12Formulate a definition of what it means for a clas€edlgebras to
be closed under homomaorphic coimages. Are varieties closed under homomorphic
coimages? O

Exercise 2.2.13Formulate definitions of what it means for a clasedlgebras to
be closed under quotients, and under isomorphisms. Show that closure under both
quotients and isomorphisms is equivalent to closure under homomorphic images.

O

The assumption in Theorgm 2.2, 10 that the set of sort namessifinite cannot
easily be omitted:

Exercise 2.2.14A family £ of X-algebras iglirectedif any two algebra®i,B; €
2 are subalgebras of soneec %. Define theunion |J % of such a family to be
the leastX-algebra such that eadh e & is a subalgebra of) % (the carrier of
U is the union of the carriers of all algebras4#, and the values of operations
on arguments are inherited from the algebragginthis is well-defined since? is
directed). Prove that since we consider equations with finite sets of variables only,
then for any presentatioft, @), Mod[(X, ®)] is closed under directed unionthat
is, given anydirectedfamily of algebras’ C Mod[(X, ®)], its union{J £ is also in
Mod[(X, ®)].

A generalisation of Theorefn 2.2]10 that we hint at here without a proof is that
for anysignatureX, a class o -algebras is equationally definable iff it is a variety
that is closed under directed unions. O

Exercise 2.2.15Consider a signature with an infinite set of sort names and no op-
erations. Letwi, be the class of all algebras over this signature that have non-empty
carriers for a finite set of sorts only, and let be the closure af#%;, under products

and subalgebras (this adds algebras where the carrier of each sort is either a single-
ton or empty). Check that’ is a variety. Prove, however, thaf is not definable by

any set of equations. INT: Use Exercisg 2.2.14. 0

Exercise 2.2.16Modify the definition of equation (Definitidn 2.7.1) so that infinite
sets of variables are allowed; it is enough to consider sets of variables that are finite
for each sort, but may be non-empty for infinitely many sorts. Extend the notion
of satisfaction (Definitiof 2.1}2) to such generalised equations in the obvious way.
Check that the class/ defined in Exercisg 2.2.115 is definable by such equations.
HINT: Consider all equations of the forX U {x,y:s} e x =y, for all sortssand sets

X of variables such thaty # @ for infinitely many sortss’.

Another generalisation of Theor¢m 2.7.10 that we want to hint at here is that for
any signatureX a class ofX-algebras is definable by such generalised equations
iff it is a variety. The proof of the “if” part is as easy as for ordinary equations
(Propositior{ 2.28). The proof of the “only if” part is also quite similar as in the
finitary case. O

A final remark to clarify the nuances in the many-sorted versions of Theo-
rem[2.2.ID is that the theorem holds famy signature (also with an infinite set

Page: 49 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

50 2 Simple equational specifications

of sort names) when we restrict attention to algebras with non-empty carriers of
all sorts: all varieties of such algebras (with closure under subalgebras limited to
subalgebras with non-empty carriers) are definable by equations with a finite set of
variables.

2.3 Theories

Any given equationally definable class of algebras has many different presentations;
in practice the choice of presentation is determined by various factors including the
need for simplicity and understandability and the desire for elegance. On the other
hand, such a class determines a single set of equations which uniquely identifies
it, called its theory. Since this is an infinite set, it is not a useful way of presenting
the class. However, it is a useful set to consider since it contains all axioms in all
presentations of the class, together with all their consequences.
Throughout this section, 1ét be a signature.

Definition 2.3.1 Modsx (®), Thy (<), Clz(®) and Clx(«)). For any setb of X-
equationsMods (@) (themodels ofd) denotes the class of &llalgebras satisfying
all the X-equations ind:

Modx (®) = {A| Ais aX-algebraand\ =y @} (= Mod[(X, D)]).

For any class# of X-algebras;Ths(«7) (thetheory of /) denotes the set of all
X-equations satisfied by eaghalgebra ine:

Thy (o) = {¢ | @ is aZ-equation and? |=x ¢}.

A set® of X-equations ilosedif @ = Thy(Modx(®)). Theclosureof a setd of
X-equations is the (closed) Bty (P) = Thy (Modx (®)). Analogously, a class?
of Z-algebras iglosedif &7 = Mody (Thg()), and theclosureof «7 is Cly (&) =
Mods (Thg(ﬂf)) O

Proposition 2.3.2.For any setsb and ¥ of X-equations and classes’, % of X-
algebras:

1. If & C ¥ then Mod:(®) O Modx (V).

2.1f B 2 o then Th (%) C Thy ().

3. ® C Thy(Mods (®)) and Mod: (Thy (&) 2 .

4. MOdz(Qb) = Mde(ThE(MOd2(¢))) and TI’E(,!Z{) = ThE(MOdE (Thz(%)))
5. Clg(®) and Clz (<) are closed.

Proof. Exercise (HINT: Propertie§ 4 and 5 follow from properties 1-3.) O

For any signature, the functionsThy andModsy constitute what is known in lattice
theory as a Galois connection.

Page: 50 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.3 Theories 51

Definition 2.3.3 (Galois connection)A Galois connectiolis given by two partially
ordered seté&\ andM (in Propositior] 2.3]2A is the set of all sets af-equations,
andM is the “set” of all classes df-algebras, both ordered by inclusion) and maps
__*:A—Mand__":M — A(hereMods andThy) satisfying properties correspond-

ing to[2.3.2(1)F2.3]2{3). An elemeat A (respme M) is calledclosedf a= (a*) "

(resp.m= (m")*). O

Some useful properties — including ones correspondifg to]P]3.2(4) an{l 2.3.2(5) —
hold for any Galois connection.

Exercise 2.3.4For any Galois connection and aayb € A andm € M, show that
the following properties hold:

l.a<amtiff a* >y m
2. If aandb are closed thea <a b iff a* >\ b*. (Show that the “if” part fails ifa
orbis not closed.)

Here,<a and<jy, are the orders oA andM respectively. a

Exercise 2.3.5For any Galois connection such t#eandM have binary least upper
bounds ((Ia, Lim) and greatest lower bounds4, My), and for anya,b € A, show
that the following properties hold:

1. (aI_IA b)* = a* My b*.
2. (anab)* >m a" Um b*.
(HINT: LIa satisfies the following properties for aayb, c € A:

e a<pallabandb<aalipb.
o If a<acandb<cthenalab<ac.

and analogously fofla, Liy andmy.) State and prove analogues[fo 1 &hd 2 for
anym,n € M, and instantiate all these general properties for the Galois connection
between sets of-equations and classes Bfalgebras. d

Definition 2.3.6 (Semantic consequencef X-equationg is a semantic conse-
quenceof a set® of X-equations, writterP =y ¢, if ¢ € Clz(P) (equivalently, if

M0d2(¢) ':Z (p) O
Notation. We will write @ |= ¢ instead ofP =5 ¢ when the signaturE is obvious.
O

The use of the double turnstile=) here is the same as its use in logie}= ¢ if the
equationg is satisfied in every algebra which satisfies all the equatiods iHere,

@ is a set ofassumptionsind ¢ is aconclusionwhich follows from. We refer to
this assemantic(or model-theoretix consequence to distinguish it from a similar
relation defined by means of “syntactic” inference rules in the next section.

Example 2.3.7.Recall Examplé 2.2]3. The exercise there shows:
PBOOL Expoo. Vp:boole =(p A —false) = —p
PBOOL f~xpoor, VP:boole ——p=p

Page: 51 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

52 2 Simple equational specifications

Then, referring to Examp[e 2.2.4, Exerdise 2.2.5 shows that the de Morgan laws are
semantical consequences of the set of axidiA. O

Exercise 2.3.8Prove that semantic consequence is preserved by translation along
signature morphisms: for any signature morphisni® — X', set® of X-equations,
andX-equationg,

if @ =5 ¢ theno(P) Ex o(@).

Equivalently,c(Cls(®)) C Cls/(o(P)). Show that the reverse inclusion does not
hold. O

Exercise 2.3.9Let 0: X — X’ be a signature morphism and k&t be a closed set
of X’-equations. Show that—1(@’) is a closed set af-equations. O

See Sectiofi 4]2 for some further results on semantic consequence and translation
along signature morphisms, presented in a more general context.

Definition 2.3.10 (Theory).A theoryis a presentatio(r, &) such thatb is closed.
A presentation X, @) (where® need not be closegyesentshe theory X, Clx (P)).
Atheory (X, @) is sometimes referred to agatheory, O

A theory morphism between two theories is a signature morphism between their
signatures that maps the equations in the source theory to equations belonging to
the target theory.

Definition 2.3.11 (Theory morphism).For any theorie$X, @) and(X’, &), athe-
ory morphismo: (£, ®) — (X', @’} is a signature morphisra: X — X’ such that
o (@) € @' for everyp € @; if moreovero is a signature inclusiog: X — X’ then
o (X, ®) — (X', @) is atheory inclusion O

Exercise 2.3.12Let ¢:(X,®) — (X', ®') and ¢': (X', ®') — (X", P") be the-
ory morphisms. Show that;o’:X — X" is a theory morphisnw;c’: (£, ®) —
<2//’ ¢//>. O

Proposition 2.3.13.Let 6:X — X’ be a signature morphismp be a set ofZ-
equations andp’ be a set of’-equations. Then the following conditions are equiv-
alent:

1. o is a theory morphisne: (X,Cls(P)) — (X', Cly/(D')).
2. 6(P) C Cly/ ().
3. For every A€ Mody/(9'), A|s € Modx (D).

Proof. Exercise (HINT: Use the Satisfaction Lemma, Lemfna 2]1.8.) 0

The fact thaf 2.3.73(2) impligs 2.3]13(1) gives a shortcut for checking if a signa-
ture morphism is a theory morphism: one need only check, for each axiom in some
presentatiorof the source theory, that the translation of that axiom is in the target
theory. The equivalence between 2.3.13(1) [and 23.13(3) is similar in spirit to the
Satisfaction Lemma, demonstrating a perfect correspondence between translation

Page: 52 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.3 Theories 53

of syntax (axioms) along a signature morphism and translation of semantics (mod-
els) in the opposite direction. This equivalence shows that there is a model-level
alternative to the axiom-level phrasing of Definition 2.3.11; in fact, we will take
this alternative in the case of structured specifications (Chiapter 5) where there is no
equivalent axiom-level characterisation (Exer¢ise $.5.4).

Example 2.3.14 Let X be the signature

Y = sortss,b
ops ttr:b
ffazb
notb—b
andbxb—b
__<__isxs—b

and recall the presentati@ooL = (£BooL, @BooL) from Exampl¢ 2.2]3. Define
a signature morphismr: X — XBooL by

Osorts = {S+— bool b +— bool},
o p = {ttr — true, ffa— false},
Obb = {not— —},

Obbb = {and»—» A},

Ossh = {<—> =1}

Let @ be the set o£-equations
P = {Vx:Se X < x = ttr, Vp:be and(p,ttr) = p}.

ThenClx () includesX-equations that were not i, such a®/p:b, x:se and(p, x <
x) = p. Similarly, by Examplg 2.3]7Clypoo.(@BooL) includes theXBootr-
equationvp:boole —(p A —false) = —p, but it doesnotincludeVp:boole ——p = p.
The presentation§X, Cls (®)) and (¥B0OL,ClspeoL(PBoOOL)) are theories —
the latter is the theory presentedBypoL. The signature morphisim: ¥ — XBooL
is a theory morphismo: (Z,Cly(®)) — (¥BooOL, Clypoo.(PBOOL)).

Recalling Exampl 2.2]4, the theory presentedlyis (CBA,Clypa (PBA)),
the theory of Boolean algebras, wi@lyg 4 (PBA) including for instance the de
Morgan laws (Exercige 2.3.5). The obvious signature morphigiiBooL — ZBA
is a theory morphism: (ZBooL, Clyg oo (PBOOL)) — (EBA,Clypa (PBA)).

These two theory morphisms can be composed, yielding the theory morphism
ol <2,C|£(€D)> — <2BA,C|EBA(@BA)>. O

Exercise 2.3.15Give presentationsX, @) and (X', &') and a theory morphism
0. (X,Clg(®)) — (X',Cls/(®")) such thaio (D) &'. Note that this doesot con-

tradict the equivalence betwelen 2.3.13(1) and 2]3.13(2). 0

Page: 53 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

54 2 Simple equational specifications

2.4 Equational calculus

As we have seen, each presentatibnd®) determines a theorZ, Cly (P)), where

Clz () containsd together with all of its semantic consequences. An obvious ques-
tion at this point is how to determine whether or not a giferquationvXe.t =1’
belongs to the se€lxz(P), i.e. how to decide if® =5 VXot =t'. The defini-
tion of Clz(®) does not provide an effective method: according to this, testing
@ =5 VXt =t’ involves constructing the (infinite!) claddody (®) and check-

ing whether or not/X.t =t’ is satisfied by each of the algebras in this class, that
is, checking for each algebrac Mody (&) and functionv: X — |A| (there may be
infinitely many such functions for a givef) thatta(v) = t,(v). An alternative is

to proceed “syntactically” by means wiference rulesvhich allow the elements of
Clz () to bederivedfrom the axioms in® via a sequence of formal proof steps.

Throughout this section, 1ét be a signature.

Definition 2.4.1 (Equational calculus).A X-equationg is a syntactic(or proof-
theoretig consequencef a set® of X-equations, writter -5 ¢, if this can be
derived by application of the following inference rules:

Axiom: PV =T VXet=t'€ @

Reflexivity: B eI =t Xs C Z for all se Sandt € [Tz (X)|
Symmetry: %

Transitivity: Py vX. t;:; X :f:,,vx' v=t"

Instantiation: PhrvXet="t 0:X — |Tx(Y)]

Dy VYet[0] =t'[0] 0

Exercise 2.4.2 (Admissibility of weakening and cut)Prove that if® -y VXet =t’
and® C @’ then®’ -y ¥Xeot =t'. (HINT: Simple induction on the structure of the
derivation of® k5 VXt =t'.) This shows that the following rule is admissle

. DLy VXet =t
Weakening: o G VX e T =1

2 A rule is admissiblein a formal system of rules if its conclusion is derivable in the system
provided that all its premises are derivable. This holds in particular if the rderigsablein the
system, that is, if it can be obtained by composition of the rules in the system.

Page: 54 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.4 Equational calculus 55

Prove that i’ -x ¢ and{@}U® 5 y thenPU P -5 y. (HINT: Use induction
on the structure of the derivation ¢f} U @ F5 y; for the case of the axiom rule,
use the fact that weakening is admissible.) This shows that the following rule is
admissible:

o Frre {p}udFry

Cu PUDFy v

Check that your proof can be generalised to show théttfy and¥, - ¢ for each
¢ € D thenUyeo ¥ V. O

Exercise 2.4.3 (Consequence is preserved by translatioighow that for any sig-
nature morphisno: X — X', set® of X-equations, and-equatione, if @ 5 @
theno (@) -y o(9). O

Example 2.4.4.Recall the presentatioBooL = (¥BooL,®BooL) from Exam-
ple[2.2.3. The following is a derivation @ BOOL oo, Vp:boole —(pA —false) =

®BOOL FrpooL Vp:boole pAtrue= p
PBOOL Fxpoor, VP:boole —=(p A —false) = ~(pAtrue) PBOOL Fxpoor, Vp:boole =(pAtrue) = —p

PBOOL Fxpoo, Vp:boole —=(pA —false) = —p

whereP is the derivation

PBOOL Fypoo, —false= true
®PBOOL Fypoo, Vp:boole p=p ®BOOL Fypoo,, Vp:boole —false= true

PBOOL Frpoo, Vp:boole pA —false= pAtrue
PBOOL Fxpoor, VP:boole =(p A —false) = ~(pAtrue)

Exercise.Tag each step above with the inference rule being applied. ad

Exercise 2.4.5Give a derivation 0ofPBOOL Fygoo;. Vp:b00le p= p = true.
A considerably more serious challenge is to give derivations for the de Morgan
laws from the axioms of Boolean algebra (see Exarple]2.2.4 and EXercige 2.2.5).
O

Page: 55 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

56 2 Simple equational specifications

On its own, the equational calculus is nothing more than a game with symbols;
its importance lies in the correspondence between the two reldtigrendtx. As
we shall see, there is an exact correspondengds bothsoundandcompletefor
=x. Soundness® tx ¢ = @ =5 @) is a vital property for any formal system: it
ensures that the inference rules cannot be used to derive an incorrect result.

Theorem 2.4.6 (Soundness of equational calculud)et @ be a set of-equations
and letg be aX-equation. If® -5 ¢ then® =5 ¢. O

Exercise 2.4.7 Prove Theorerp 2.4.6. Use induction on the depth of the derivation
of @ -5 ¢, showing that each rule in the system preserves the indicated property.
O

Example 2.4.8.By Theorenj 2.4]6, the formal derivation in Example 2.4.4 justifies
the claim in Example 2.3|7 th@BoOL =5goo., Vp:boole —(pA —false) = —p. On

the other hand, sinC@BOOL [£xpoor. VP:boole =—p = p, there can be no proof in
the equational calculus f@PBoOL Fypo0:. VP:b0OOle =—p = p. a

Itis a somewhat counter-intuitive fact (see [GM85]) that simplifying the calculus
by omitting explicit quantifiers in equations yields an unsound system. This is due
to the fact that algebras may have empty carrier sets. Any equation that includes a
guantified variablecswill be satisfied by any algebra having an empty carriesfor
even ifx appears on neither side of the equation. The instantiation rule is the only
one that can be used to change the set of quantified variables; it is designed to ensure
that quantified variables are eliminated only when it is sound to do so.

Exercise 2.4.9Formulate a version of the equational calculus without explicit
guantifiers on equations and show that it is unsounah tHConsider the signature
X with sortss, s and operationg:s— s, a:g, b:s, and sed = {f(x) = a, f (X) =
b} of Z-equations.

Show that® -y a = b in your version of the calculus. Then giveXaalgebra
A € Modg () such thatA ~x a = b.) Pinpoint where this proof of unsoundness
breaks down for the version of the equational calculus given in Defirfition| 2.411.

Exercise 2.4.10Show that the equational calculus without explicit quantifiers is
sound when the definition df-algebra is changed to require all carrier sets to be
non-empty, or when either of the following constraints¥is imposed:

1. X has only one sort.
2. All sorts inX arenon-void for each sort namein X, |Tx|s # @. a

Exercise 2.4.11Give an example of a signatulewhich satisfies neithér 2.410(1)
nor[2.4.10(2), for which the equational calculus without explicit quantifiers is sound.
O

Completeness® =5y ¢ = @ 5 ¢) is typically more difficult to achieve than
soundness: it means that the rules in the system are powerful enough to derive all
correct results. It is not as important as soundness, in the sense that a complete

Page: 56 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.4 Equational calculus 57

but unsound system is useless while (as we shall see in the sequel) a sound but
incomplete system is often the best that can be obtained. The equational calculus
happens to be complete fbfy:

Theorem 2.4.12 (Completeness of equational calculud)et ¢ be a set ofx-
equations and lep be aX-equation. If¢ =5 ¢ then® k5 .

Proof sketchSuppose® =5y VXet =t'. Define= C [Ty (X)| x |Tg(X)| by u=

U< ®ty¥Xeu=U; = is aZX-congruence offy(X). Tx(X)/= =5 @ so
T=(X)/=FEr ¥Xet=t',and thug =t i.e. P 5 VXet =t |
Exercise 2.4.13Fill in the gaps in the proof of Theorem 2.4]12. 0

There are several different but equivalent versions of the equational calculus. The
following exercise considers various alternatives to the congruence and instantiation
rules.

Exercise 2.4.14Show that the version of the equational calculus in Defin[tion P.4.1
is equivalent to the system obtained when the congruence and instantiation rules are
replaced by the following single rule:

Dy ¥Xet=t' foreachxe X, @y VYo O(X) = 6'(X)
Dy VYet[0] =t'[0]

Substitutivity: 6,6":X — [Tx(Y)|

Show that this is equivalent to the system having the following more restricted ver-

sion of the substitutivity rule:

@y VXU{XS}et =t Pty VWeu=U
@ by VXUYet[x— Ul =t'[x— U]

Substitutivity: uu € [Te(Y)ls

(HINT: The equivalence relies on the fact that the set of quantified variables in an
equation is finite.) Finally, show that both of the following rules may be derived in
any of these systems:

Dy VXet =t
Pty VXUYet =t

Dy VXU{XStet =t
D hyVXet =t

A consequence of the soundness and completeness theorems is that the equa-
tional calculus constitutesseemi-decision procedufer |=x: enumerating all deriva-
tions will eventually produce a derivation fab Fx ¢ if @ =5 ¢ holds, but if
@ -5 ¢ then this procedure will never terminate. This turns out to be the best we
can achieve:

Abstraction: YsC Z forallse S

Concretion: t,t' € |Te(X)| and| T (X)|s # @

O

Theorem 2.4.15.There is no decision procedure fgty.

Proof. Follows immediately from the undecidability of the word problem for semi-
groups|[[Pos47]. O

Page: 57 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

58 2 Simple equational specifications

Mechanised proof search techniques can be applied with considerable success to the
discovery of derivations (and under certain conditions, discussed in Sgcflon 2.6, a
decision proceduris possible) but Theoren 2.4]15 shows that such techniques can
provide no more than a partial solution.

2.5 Initial models

The class of algebras given by the loose semantics¥bpaesentation contains too
many algebras to be very useful in practice. In particular, Birkhoff’s Variety The-
orem guarantees that this class will always include degen&ratigebras having
a single value of each sort i, as well as (nearly alwaygj-algebras that are not
reachable. This unsatisfactory state of affairs is a consequence of the limited power
of equational axioms. A standard way out is to take the so-callgdl semanticsof
presentations, which selects a certain class of “best” models from among all those
satisfying the axioms. Various alternatives to this approach will be presented in the
sequel.

Throughout this section, I€£, @) be a presentation.

Exercise 2.5.1Verify the above claim concerning Birkhoff’s Variety Theorem, be-
ing specific about the meaning of “nearly always”. ad

There are two features that render certain models of presentations unfit for use in
practice. The mnemonic terms “junk” and “confusion” were coined_in [BG81] to
characterise these:

Definition 2.5.2 (Junk and confusion).Let A be a model of X, ®). We say that
A contains junkf it is not reachable, and th& contains confusioff it satisfies a
groundX-equation that is not i€lz (). ad

The intuition behind these terms should be readily apparent: “junk” refers to useless
values which could be discarded without being missed, and “confusion” refers to
the values of two ground terms being unnecessarily identified (confused).

Example 2.5.3.Recall the presentatioBooL = (¥Boor, ®BooL) and its mod-
elsAl, A2 andA3 from Examplé¢ 2.2]3A1 contains confusionAl =rpoo., true =
false & Clypoo.(@BoOL)) but not junk; A2 contains junk (there is no ground
XBooL-termt such thata, = & € |A2]00)) but not confusionA3 contains neither
junk nor confusion. There are modelsi®doL containing both junk and confusion.
(Exercise:Find one.) O

Exercise 2.5.4Consider the following specification of the natural numbers with
addition:

Page: 58 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.5 Initial models 59

specNAT = sorts nat
ops O:nat
succhnat— nat
__+__natx nat— nat
vm,n:nate 0+Nn=n
e SUCEM) 4 n = sucgm-+n)

List some of the models aNAT. Which of these contain junk and/or confusion?
(NoTE: For reference later in this sectiaBN AT refers to the signature &f AT and
®dNAT refers to its axioms.) O

Exercise 2.5.5According to Exercise 1.3.5, surjective homomorphisms reflect junk.
Show that injective homomorphisms preserve junk and reflect confusion, and that
all homomorphisms preserve confusion. It follows that isomorphisms preserve and
reflect junk and confusion. a0

Examples like the ones above suggest that often the algebras of interest are those
which contain neither junk nor confusion. Recall Exer¢ise 1]4.14, which charac-
terised reachabl&-algebras as those which are isomorphic to a quotierfzof
Accordingly, the algebras we want are all isomorphic to quotienis:pby Exer-
cisg2.5.b itis enough to consider just these quotient algebras themselves. Of course,
not all quotientsTy /= will be models of(X, &): this will only be the case wher:
identifies enough terms that the equationsbrare satisfied. But if= identifies
“too many” terms,Tx /= will contain confusion. There is exactly odecongruence
that yields a model ofX, &) containing no confusion:

Definition 2.5.6 (Congruence generated by a set of equationsJhe relation
=¢ C |Tx| x |Tx| is defined byt =¢ t/ <= @ 5y Voot =1/, for all t,t’ € |Ty|.
=¢ Is called theX-congruence generated Id. O

Exercise 2.5.7Prove that=4 is aX-congruence oiiy. O

Theorem 2.5.8 (Quotient construction).Tx /=4 is @ model of(X, &) containing
no junk and no confusion. O

Exercise 2.5.9Prove Theorerp 2.5.8. INT: Note thatTy /=¢ contains no junk by
Exercisg 1.4.14. Then show that for any terenTy (X) and substitutio: X — Ty,
tr, /=, (8') = [t[B]]=,, Where8'(x) = [0(x)]=,, for x € X. Use this to show that
Ty /=4 satisfies all the equations &b and contains no confusion. a

Example 2.5.10Recall the presentatidBooL = (XBooL, ®BooL) from Exam-
ple[2.2.3. The Mod€éls oo, /=aB0o. Of BoOL is defined as follows:

Page: 59 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

60

2 Simple equational specifications

|TZBOOL/E<PB00L ‘bool = {[true] =¢BooL’ [falSdE¢BOOL}
trueTZBOOL/E<PBOOL = [true]E¢BOOL
falseFEBOOL/EQDBOOL = [falqu@Boor_

"TrBooL/=#Boot

- {[true]zthOOL = [falsqubBOOL’ [falSdEIPBOOL = [true]ElPBOOL}

/\T):BOOL/E¢BOOL [true}ELDBooL [falsqquBOOL

[true]E‘PBOOL [true} =®BooL [falqu¢BOOL

[faISchDBOOL [faISdE¢BOOL [faISdE‘PBOOL

:>TEBOOL/E<PBOOL [true]szBOOL [falsqubBOOL

[true]Eqi'BOOL [true] =¢BooL [falSquSBOOL

[falsdzthOOL [true} =®BooL [true]zdeOOL
where

ftruel=, .., = {true,~falsetrueA true, ~(falseA true), ~(falsen —false),false= falsg.. .},
[falsg=, 5., = {false —true trueAfalse —(truetrue), ~(true A —false),true=-false...}.

The carrier setTsygoor/=aBoor|bool has just two elements since the axioms in
@BooL can be used to reduce each groutiBoor-term to true or false and
true Z¢poo. false Note that the “syntactic” nature Ofrp.o. IS preserved in

TsBoo./=®BooL, €.9. for eaclx [true]

=@BooL’

X' e [falsd =¢BooL

([true]

= " TrBooL/=@BooL Ed>B00L)'

O

Exercise 2.5.11Recall the presentatiotNaT = (¥NaT, ®PNAT) given in Exer-
cisg/2.5.44. Construct the modBlx ur/=anar Of NAT. O

Exercise 2.5.12Show that=¢ is the onlyX-congruence making Theordm 2]5.8

hold.

O

The special properties dfz /=¢ described by Theorefn 2.5.8 can be captured
very succinctly by saying thdls /=¢ is a so-callednitial modelof (X, ®).

Definition 2.5.13 (Initial model of a presentation). A X-algebraA is initial in
a classo/ of X-algebras ifA € & and for everyB € «/ there is a unique:-
homomorphisni: A— B. An initial model of (£, @) is aX-algebra that is initial in
Mod[(Z, ®)]. IMod[(Z, ®)] is the class of all initial models g, @). O

In the next chapter we will see that this definition can be generalised to a much
wider context than that of algebras and homomorphisms.

Theorem 2.5.14 (Initial model theorem).Tx /=4 is an initial model of(X, &).

Proof sketch. ¥/=¢ is amodel of £, @) by Theoren) 2.5]8. GiveB € Mod[(Z, ®)],
let @%: Ty — B be the unique homomorphism from the algebra of grolrerms

to B. SinceB |=5 ®, we have=¢ C K(2*), and by Exercise 1.3.20 there is a homo-
morphismh: Ty /=¢ — B, which is unique by Exercige 1.3.@Xercise:Fill in the
gaps in this proof.)

Page: 60

job: root

macro: svmono.cls

O

date/time: 29-Sep-2010/17:45

2.5 Initial models 61

Example 2.5.15Recall the presentatiddooL = (¥BooL, ®BooL) and its mod-
elsAl, A2 andA3 from Exampl¢ 2.2]3, and its modBlgoor,/=aBoor, from Exam-

ple[2.5.10, which is an initial model by Theorém 2.5.ZBooL-homomorphisms
from TrBooL/=@BoowL 10 Al, A2 andA3 are as follows:

hl:TEBOOL/ECPBOOL — Al h1b00| = {[true]E¢BOOL =%, [faISquPBOOL = *}7
h2:T2BOOL/E¢'BOOL — A2 h2b00| = {[true]EquooL = *’ [faISqE¢BOOL = Q?}v
h3:TZBOOL/Ed’BOOL — A3 h3b00| = {[true] = 17 [falsqzthOOL = O}

=¢BooL

(Exercise:Check uniqueness.)

Al is not an initial model: for examplezh: A1 — A2 and Zh:Al — A3. In
general, models containing confusion cannot be initial since homomorphisms pre-
serve confusion (Exercige 2.5.5). SimilarA? is not an initial model: for exam-
ple, Ah: A2 — A3, since there is no value 3|00 to whichh can map the “ex-
tra” value & € |A2|po0l. On the other handA3 is initial: for exampled!gl:A3 —

Al (whereglpool(1) = 9lpool(0) =), 3'g2:A3 — A2 (Whereg2poo(1) = & and
020001(0) = V), and3!g: A3 — TrBoor/ =dBoor. (Wheregnol(1) = [truel=, .., and
gboo'(o) = [falsng‘bBOOL)' U

Exercise 2.5.16Recall the model you constructed in Exergise 2)5.11 of the specifi-
cationN At of natural numbers with addition. Show that there is a unique homomor-
phism from this model to each of the models you considered in Ex¢rcis¢ 2.514.

Exercise 2.5.17Using Theorer 2.5.14, show th&t is an initial model of(X, @).
Contemplate how this relates to Fact 114.4 and Definftion[1.4.5. 0

Exercise 2.5.18Note that initial models of X, ®) may have empty carriers for
some sorts. Show that this is necessary: give an example of a preseiiatbh

such that no algebra is initial in the class of its models that have non-empty carriers
of all sorts. Link this with Exercise 1.2.3. O

Taking a presentatiodX, ®) to denote the clastMod[(X, ®)] of its initial
models is called taking it&itial semantics We know from Theorerq 2.5.14 that
IMod[(Z, ®)] is never empty. Although the motivation for wishing to exclude mod-
els containing junk and confusion was merely to weed out certain kinds of degener-
ate cases, the effect of this constraint is to restrict attention to an isomorphism class
of models:

Exercise 2.5.19Show that any two initial models of a presentation are isomorphic.
Conclude that the initial models of a presentation are exactly those containing no
junk and no confusion. O

For some purposes, restricting to an isomorphism class of models is clearly inap-
propriate. The following exercise demonstrates what can go wrong.

Exercise 2.5.20Consider the addition of a subtraction operatiamat x nat— nat
to the specificatioiNAT in Exercis¢ 2.514, with the axiomn:nate m— 0= mand
¥m, n:nate sucgm) — sucgn) = m— n. These axioms do not fix the value wf—n

Page: 61 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

62 2 Simple equational specifications

whenn > m; assume that we are willing to accept any value in this case, perhaps
because we are certain for some reason that it will never arise. Construct an initial
model of this specification. Why is this model unsatisfactory? Can you think of
a better model? What is the problem with restricting to an isomorphism class of
models of this specification? O

The phenomenon illustrated here arises in cases where operations are not defined
in a sufficiently completavay. Roughly speaking, a definition of an operation is
sufficiently complete when the value produced by the operation is defined for all
of the possible values of its arguments. See Definition §.1.22 below for a proper
definition of this term in a more general context.

One may argue that Exercise 2.5.20 is unconvincing, since the lack of sufficient
completeness arises there because we do not reallymeed to be defined as
a natural number when > m, and that this can be dealt with using one of the
approaches to partial functions below (Sections 2[7.3,]2.7[4, of 2.7.5). However, the
same phenomenon arises in other cases as well:

Exercise 2.5.21Give a specification of natural numbers with a function that for
each natural number chooses an arbitrary number that is greater thaHINT:
You may first extend the specificatidfaT of Exercisg 2.5}4 with a sotiool with
operations and axioms as BooL in Exampleg 2.2.3, and add a binary operation
__< __:natx nat— boolwith the following axioms:

Vn:nate 0 < sucgn) = true
Ymnate sucgm) < 0= false
Vm, n:nate sucgm) < sucgn) =m< n

The required functiorch: nat — nat may now be constrained by the obvious axiom
Vn:nate n < ch(n) = true.

Clearly, the definition oth cannot be sufficiently complete. Construct the initial
model of the resulting specification and check that it is not satisfactory. Referring
to other algebraic approaches presented in Sedfiong P.7.3, 2.7/4, and 2.7.5 below,
check that none of them offers a satisfactory solution either. ad

The above exercise indicates one of the most compelling reasons for considering
alternatives to initial semantics: requiring specifications to define all operations in
a sufficiently complete way is much too restrictive in many practical cases. Such
a requirement is also undesirable for methodological reasons, since it forces the
specifier of a problem to make decisions which are more appropriately left to the
implementor.

The comments above notwithstanding, there are certain common situations in
which initial semantics is appropriate and useful. In particular, the implicit “no junk”
constraint conveniently captures the “that’s all there is” condition which is needed
e.g. in inductive definitions of syntax.

Example 2.5.22. Consider the following specification of syntax for simple arith-
metic expressions:

Page: 62 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.5 Initial models 63

specEXPR = sorts expr
ops Xx,y,0:expr
plus minus exprx expr— expr
Ve €:expre pluse €) = plug€,e)

The axiom requires thgyntaxof addition to be commutative. In the initial seman-
tics of ExPR, the “no junk” condition ensures that the only expressions (value of
sortexpt) are those built from Q¢ andy usingplusandminus The “no confusion”
condition ensures that no undesired identification of expressions occurs: for exam-
ple, the syntax of addition is not associative and the syntax of subtraction is not
commutative. O

Exercise 2.5.23Write a specification of (finite) sets of natural numbers. The oper-
ations should includey: set singletonnat — setandU: setx set— set O

The “no junk” condition is more powerful than it might appear to be at first
glance. Imposing the constraint that every value be expressible as a ground term
makes it possible to use induction on the structure of terms to prove properties of all
the values in an algebra. This means that for reasoning about models of specifica-
tions containing no junk, such as initial models, it is sound to add an induction rule
scheme to the equational calculus presented in the previous section. Since the form
of the induction rule scheme varies according to the signature of the specification at
hand, this is best illustrated by means of examples.

Example 2.5.24 Recall the presentatioN AT = (XNAT, ®NAT) of natural num-
bers with addition given in Exerci§e 2.5.4. To simplify notationxlahdy stand for
variable names such thahatandy:natare not inX N AT andx:natdoes not appear
in the sortg XN Art)-sorted set of variableX used below. The following induction
rule scheme is sound for reachable model¥afr (and for reachable models of all
otherX N AT-presentations):

D FrNar P(O) PU {P(X)} l_ENATU{XZnat} P(SUCC{X)) U {P(X)a P(Y)} l_ZNATU{X,YZnat} P(X+ Y)
D FyNar VXNate P(X)

Here, P(x) stands for aZNAT U {x:nat}-equationvXet = t’; think of this as a
ENaAT-equation with free variablg:nat ThenP(0) stands for the&ENAT-equation
VXet[x — 0] = t'[x — 0], P(sucgx)) stands for theENaT U {x:nat}-equation
VXet[x — sucdx)] = t'[x — sucgx)] and analogously foP(y) andP(x+y), and
Vx:nate P(x) stands for theZNar-equationvX U {x:nat}«t = t’. The following
additional inference rule is needed to infer equations &X&nT U {x:nat} and
ENATU {x,y:nat} from N aT-equations:

DFy¥Xet=t'
Dby s VXet =t/

Exercise.Show that adding the two inference rules above to the equational calculus
gives a system that is sound for reachable modelsMNAT-presentations.

Page: 63 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

64 2 Simple equational specifications

The inference rule scheme above can be used for proving theorems such as as-
sociativity and commutativity of-. But note that the axioms fof fully define it
in terms of 0 andsucc it is possible to prove by induction on the structure of terms
that for every ground N AT-termt there is a ground N aT-termt’ such that’ does
not contain thet operation andb Fyn.r t =t'. (Exercise: Prove it. Note that this
is a proof at the meta-levelboutl-, not a derivation at the object levesingt.)
This shows that the third premise of the above induction rule scheme is redundant.
Eliminating it gives the following scheme, which is more obviously related to the
usual form of induction for natural numbers:

D FrNar P(O) PU {P(X)} FZNATU{XZnat} P(SUCC(X))
D Fynar VXNate P(X)

Taking P(x) to beVn, p:nate X+ (n+ p) = (x+n) + p, we have the following
derivation, which proves that addition is associative in initial model® af (Ex-
ercise: Supply the derivationB; andP,):

Py

@ U{Vn, p:nate x+ (nN+ p) = (X+n) + p}
@ FxNar VN, p:nate 0+ (n+ p) = (0+ n) +p FZNATU{X:H&I}
Vn, p:nate sucgx) + (n+ p) = (sucgx) +n) + p

@ Fynar VX, N, pinate X+ (N+ p) = (X+N)+p

Note that there are modelsBfaT containing junk which do not satisfix, n, p:nate X+
(n+ p) = (x+n) + p. Hence, this equation is not Iy, (PNAT) and induction
is required for its derivation. O

Exercise 2.5.25Recall the presentatioBooL = (¥BooL, #Bootr) from Exam-
ple[2.2.3. Give an induction rule scheme that is sound for reachable models of
XBooL-presentations. (MT: There will be five premises, one for each operation

in BooL.) Show that three of the premises are redundamnti{iHeliminate one op-
eration at a time), which gives the following rule scheme:

@ Fypoor P(true) D Frpoor. P(false
P Fypoor VX:boole P(X)

Use this to prove thatp:boole ——p = p holds in initial models oBoor. Prove that
the axiomvp:boole pA —p = falseis redundant for the initial semantics BooL,

Page: 64 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.5 Initial models 65
that is:
®BooL\ {Vp:boole pA—p=Tfalse} Frpoor, VP:boOl pA-p=false O

Adding an induction rule scheme appropriate to the signature at hand to the equa-
tional calculus gives a system that is sound for reasoning about initial models of
specifications, and is more powerful than the equational calculus on its own. How-
ever, the resulting system is not always complete. In fact, it turns out that complete-
ness is unachievable in general: theradsound proof system that is complete for
reasoning about initial models of arbitrary specifications. In order to prove that this
is the case, it is necessary to formalize what we mean by the term “proof system”.
For our purposes it will suffice to assume that any proof system has a recursively
enumerable set of theorems. See [Chu56] for a discussion of the philosophical con-
siderations (e.g. finiteness of proofs, decidability of the correctness of individual
proof steps) underlying this assumption.

Theorem 2.5.26 (Incompleteness for initial semantics)There is a presentation
(X, @) such that there is no proof system which is sound and complete with respect
to satisfaction of equations in the class of initial model$Xf®).

Proof ([MS85]).As a consequence of Matiyasevich’s theorem, the set of equations
which hold in the standard model of the natural numbers (wigubg +, x and—,

such thaim—n = 0 whenn > m) is not recursively enumerable [DMR76, Sect. 8].
Therefore, this cannot be the set of theorems produced by any proof system. It is
easy to construct a (single-sorted) presentation having this as an initial niéxiel. (
ercise: Construct it.) Since all the initial models of a presentation are isomorphic
(Exercisg 2.5.7)9) and since isomorphisms preserve and reflect satisfaction of equa-
tions (Exercis¢ 2.1]5), this completes the proof. O

The fact that completeness cannot be achieved is of no real importance in practice:
the equational calculus together with induction is perfectly adequate for normal use.
But the failure of completeness does mean that care must be taken to distinguish
between satisfactior£) and provability) in theoretical work. It is important to
recognize that model-theoretic satisfaction is the relation of primary importance,
since it embodiegruth. Provability is merely an approximation to truth, albeit one
that is of great importance for practical use since it is based on mechanical syntactic
manipulation. The failure of completeness means that the approximation cannot be
exact, but by being sound it errs on the side of safety.

Exercise 2.5.27Show that the equational calculus (without added induction rule
schemes) is complete with respect to satisfactiggroafindequations in initial mod-
els of specifications. a0

The additional specification techniques introduced in Chapter 5 will lead to a widen-
ing of the gap between satisfaction and provability. In particular, even completeness
with respect to satisfaction of ground equations will be impossible to retain.

A generalisation of the concept of initial model is needed to give a fully satis-
factory specification of classes of models that are naturally parametric with respect

Page: 65 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

66 2 Simple equational specifications

to some basic data. An example is the definition of terms in Setign 1.4, which is
parametric in arS-sorted set of variables. Another is the specification of sets (see
Exercisd 2.5.23): it should be possible to specify sets without building in a specifi-
cation of the kind of values in the sets (in this case, natural numbers).

Exercise 2.5.28Suppose that all information about the natural numbers is removed
from the specification of sets you gave in Exergise 2]5.23, by deleting operations
on natural numbers likeuccand changing the sort namet to elem Construct an
initial model of the resulting specification. Why is this model unsatisfactory?1

The required concept is that offiiee model extending a given algebra, which cap-
tures the idea of initialityelative toa fixed part of the model. See Sect|on|3.5 for
the details, Sectiopn 4.3 for the use of this concept in the context of specifications,
and Chapter]6 for much more on the general topic of parameterisation.

2.6 Term rewriting

Although there is no decision procedure feg (Theorenj 2.4.15), there is a class of
specifications for which consequence can be decided. The idea is similar to the one
behind the strategy used in mathematics for proving that an equation follows from a
set of equational axioms: one applies the axioms in an attempt to reduce both sides
of the equation to a common result, and if this is successful then the equation follows
from the axioms. An essential ingredient of this strategy is the use of equations as
directedsimplificationor rewrite rules

Throughout this section, |&f = (S Q) be a signature, and 1& be anS-sorted
set of variables such thxt C 2 forallse S

Assumption. For simplicity of presentation, we assume throughout this section that
eitherX has only one sort, or all sorts Faare non-void (see Exercise 2.4.10). Under
this assumption, the version of the equational calculus without explicit quantifiers
is sound, and all references to the calculus below are to this version. See Exer-
ciseq 2.6.1]1 ar[d 2.6.26 for hints on how to do away with this assumption. O

Definition 2.6.1 (Context).A X-context for sort & Sis a termC € |Tg(X W O:s)|
containing one occurrence of the distinguished variablg/e writeC[] to suggest
thatC should be viewed as a term with a hole in it. Substitution of a texriTx (X)|s
in C[] gives the ternC[O:s— t] € |Tx(X)|, writtenC|t]. O

Definition 2.6.2 (Rewrite rule). A X-rewrite rule r of sort s= Sconsists of twar-
termst,t’ € |Tx(X)]s, writtent — t’. The Z-equation determined byis Eq(r) =get

t =t’; by the assumption, we can dispense with explicit quantification of variables
in equations. AZ-rewrite ruler =t — t’ of sortsdetermines a set oéduction steps
C[t[6]] — C[t'[6]] for all Z-contextsC[] for sortsand substitutions: X — |Tx (X)];

this defines the relatior-, C |Tx(X)| x |Tx(X)|, the one-step reduction relation
generated by.rThe inverse of one-step reductien, is one-step expansiowritten

r—. O

Page: 66 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.6 Term rewriting 67

A reduction stepu —; U according to a rewrite rule=t — t’ is an application of
aninstance 18] — t’[6] of r to replace thesubterm {6] of u (corresponding to the
“hole” in C[]) by t’[8]. The subternt[6] of uis called aredex(short for “reducible
expression”).

Definition 2.6.3 (Term rewriting system).A X-term rewriting system i a set of
X-rewrite rules. Theet ofZ-equations determined byiREq(R) = {Eq(r) | r € R}.
Theone-step reduction relation generated bysRhe relation

—r o= U= (©TX)Ix[T(X)).
reR
The inverse of one-step reductionr is one-step expansiomwritten g—. O

Given a setb of X-equations, &-term rewriting systenR will be of greatest rele-
vance to® whenCly(®) = Clz (Eq(R)). One way to obtain such ais to use the
equations themselves as rewrite rules by selectingriamtationfor each equation
t=t": eithert —t' ort’ — t. For reasons that will become clear below, the most use-
ful orientation is the one in which the right-hand side of the rule is “simpler” than
the left-hand side. It is not always obvious how to measure simplicity of terms — in
fact, this is a major issue in the theory of term rewriting — and sometimes there is
no satisfactory orientation, as in the case of an equation sutch-as= m-+n.

In the rest of this section, |&® be aX-term rewriting system.

Definition 2.6.4 (Reduction—§% and convertibility ~g). The reduction relation
—& C T (X)| x [Tz (X)| generated by i the transitive reflexive closure efr. In
other wordst —xt’ if t =t’ or there existterms, ... ,ty € [Tx(X)|,n> 0, such that
t —rt1 —Rr - —rtyp —rt’; then we say thdtreduces to’t The inverse of reduction
—k isexpansionwritten 5« . Theconvertibility relation~gr C |Tx (X)| x | Tz (X)|
generated by ks the symmetric transitive reflexive closure ofg . In other words,
t ~gt’if t =t or there exist termg,...,t, € [Tx(X)|, n > 0, such that —rt; or
tret1, andty —rto ortygre—ty, and ..., and, —rt’ ort, r—t’; then we say that
convertstot O

Exercise 2.6.5Check that~g is aX-congruence ofix (X). m|

Example 2.6.6.Recall the presentatioBoor = (¥Boor, ®#BooL) from Exam-
ple[2.2.3. The followingCBooL-term rewriting systeniR BooL obviously satisfies
ClygooL(@Bo0OL) = Clypoo(Eq(RBoOL)):

RBoor = {—true — false —false— true, pAtrue — p, pAfalse— false
pA-p— false p=q— —~(pA-0q)}.

(Observe that in the rulp = g — —(pA —Qq), the right-hand side is not obviously
simpler than the left-hand side.) We have (for example):

Page: 67 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

68 2 Simple equational specifications

—(pA (9= —falsg) —rpoo. ~(PA~(qA——false))
—RBooL ﬁ(p/\ﬁ(Q/\ﬁtrue))
—RBooL _‘(p/_‘(q/\fa|se))
—RBooL _‘(p/\ ﬂfalse)

—RBoo. "(PAtrue)
—RBooL P

(ateach step, the redex reduced by the step is underlined)yso(q=- —false)) =5 zoo.L
—-p, and

j(p/\ (q = false)) RBooLS ﬁ(p/\ (q = jU'UE))
~—~RBooL _‘(pA ﬂ(q AN ﬂﬂtrue))
—RBooL _‘(pA _‘(q A\ —|false))
RBoo.— ~(PA-((qAtrue) A —false))
—RBoor "(PA-((qAtrue) Atrue))
—RBooL ﬂ(p/\ﬂ(q/\true))
s0—(pA(g=false)) ~rpooL ~(PA-(gAtrue)). O

Exercise 2.6.7 Recall the presentatidRAT = (ENAT, @NAT) given in Exercisg 2.5]4.
Give aXNAT-term rewriting systenRN AT such thaClgn 4r (PNAT) = Clgnar (EQ(RNAT)),
and practice reducing and converting sQB€AT-terms usingR N AT. O

The convertibility relation generated R/coincides with equality provable from
Eq(R). This fact is captured by the following two theorems.

Theorem 2.6.8 (Soundness of convertibility)lf t ~gt’ then EqR) Fx t =t'.

Proof sketchConsider a reduction stefjt[0]] — C[t’[6]]. This corresponds to a
derivation involving: an application of the axiom rule, to derg(R) -t =t’; an
application of instantiation, to derieq(R) - t[6] =t'[6]; and repeated applications
of reflexivity and congruence, to derit&y(R) - C[t[6]] = C[t'[6]]. The definition of
~Rr as the symmetric transitive reflexive closure-ek corresponds directly to
applications of the symmetry, transitivity and reflexivity ruldsxércise:Fill in the
gaps in this proof.) O

Lemma 2.6.9.Suppose,t’ € [Tz (X)|sfor se S. Ift~rt’ then:

1. C[t] ~r C|[t] for any Z-context ¢] for sort s.
2. (6] ~rt'[6] for any substitutior®: X — |Tx(X)].

Proof. Exercise:Do it. a

Theorem 2.6.10 (Completeness of convertibility)f Eq(R) 5 t =t’ then t~gt’.

Proof sketchBy induction on the depth of the derivation Bf(R) -yt =t’. The
most interesting case is when the last step is an application of the congruence rule:

EqR Frti=t) EqR) Frth =t}
EqR) Fx f(t1,...,tn) = f(t1,...,t))

Page: 68 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.6 Term rewriting 69

wheref:s; x -+ x 5, — s. By the inductive assumptioty, ~gt; and ... and, ~gr

ti. Then, by repeated application of Lemina 2[6.9(1), we hiftets... t)) ~r
f(t,to.. ., th) ~r--- ~r f(t3,15. .., 1)) (using first the context (O:sy, to.. . ., tn), then
f(t,0:%,...,th), then ..., therf(t],15,...,0:5,)). When the last step of the deriva-
tion of Eq(R) x t =t’ is an application of the instantiation rule, the result follows
directly by Lemma 2.6]9{2) Exercise: Complete the proof.) O

Exercise 2.6.11Try to get rid of the need for the assumption Bnmade at the
beginning of this section in all the definitions and results above. This will involve
rewriting terms of the forn{X)t using rewrite rules of the formXet — t’, in both
cases with explicit variable declarations. O

Given the exact correspondence between convertibility and provable equality, a
decision procedure fdr~rt’ amounts to a decision procedure bty t =t’, pro-
videdClx(®) = Clz(Eq(R)). The problem with testing~grt’ by simply applying
the definition is that the “path” frorhto t’ may include both reduction steps and
expansion steps, and may be of arbitrary length. But whisatisfies certain condi-
tions, it is sufficient to test just singlepath having the special form—jt" g—t’,
which yields a simple and efficient decision procedure for convertibility.

Definition 2.6.12 (Normal form). A Z-termt € Tx(X) is anormal form (for R)if
there is no ternt’ such that —gt’. O

Definition 2.6.13 (Termination). A X-term rewriting systenR is terminating(or
strongly normalising if there is no infinite reduction sequente—rt; —r---;
that is, whenevet; —rty —gr -+, there is some (finiteh > 1 such that, is a
normal form. a

The usual way to show that a term rewriting systRris terminating is to demon-
strate that each rule iR reduces the complexity of terms according to some
carefully-chosen measure.

Definition 2.6.14 (Confluence)A X-term rewriting systenRis confluen{or Church-
Rosse) if whenevert —t; andt —jto, there is a terntz such that; —5 tz and
o *)E 13. O

Definition 2.6.15 (Completeness)A X-term rewriting systeniR is completdf it is
both terminating and confluent. O

Completeness of a term rewriting system should not be confused with completeness
of a proof system, as in for example Theoffem 2.5.10 above.

Exercise 2.6.16Suppose thaR is a completeZ-term rewriting system, and letc
|Tx(X)| be aX-term. Show that there is a unique normal foNfRr(t) € |Tz(X)|
such that —5 NFg(t).

HINT: An abstract reduction systewpnsists of a se together with a binary
relation — C A x A. A Z-term rewriting systenR is a particular example, where
A= |Tx(X)] and — is —gr. Concepts such as normal form and confluence make
sense in the context of any abstract reduction system, and the required property
holds in this more abstract setting. O

Page: 69 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

70 2 Simple equational specifications

Example 2.6.17.The term rewriting systenRBooL from Example 2.6J6 is both
terminating and confluent, and is therefore complete. As the reduction sequence in
Examplg 2.66 showNFrpoo.(—(PA (q= —falsg)) = —p.

The term rewriting systel@BooL’ = RBooLU {pAq— A p} is not termi-
nating: PAQ—RBoor’ NP —RBoor’ PAd—RBoor’ ANP —RBoor’ ** -

The term rewriting systef®RBoor” = RBooLU {(pAQ) AT — pA(qAT)}is
not confluent{ pA—=p) AqQ —gpoo. falseAqand(pA—p) Ad —grBoor” PA(=PA
g), and bothfalseAgandp A (—=pAq) are normal forms. O

Exercise 2.6.18Is your term rewriting systenRN At from Exercisg 2.6]7 com-
plete? If not, find an alternative term rewriting system¥ortr that is complete. O

Exercise 2.6.19A X-term rewriting systenR is weakly confluenif whenever

t —rt; andt —rty, there is a terntz such thatt; —5 ts andt, —i t3. Find a

term rewriting system that is weakly confluent but not confluentngH Weak con-
fluence plus termination implies confluence, so don't bother looking at terminating
term rewriting systems.) Weak confluence is a much easier condition to check than
confluence, so the usual way to prove that a term rewriting system is confluent is to
show that it is weakly confluent and terminating. O

In view of the obvious analogy between reduction and computaiég(t) can
be thought of as thealueof t; sinceNFg(t) need not be a ground term, this is a
more general notion of computation than the usual one.

Exercise 2.6.20Convince yourself thailFg: | Tz (X)| — |Tz(X)| is computable for
any finite complete term rewriting systeR— perhaps try to implement it in your
favourite programming language. O

Theorem 2.6.21 (Decision procedure for convertibility).If R is complete, then
t ~ptiff NFR(t) = NFR(t/). O

Exercise 2.6.22Prove Theorerf 2.6.21. (NT: The proof does not depend on the
definition of —g, but only on the assumption thRtis complete.) ad

Sincet ~rt’ iff Eq(R) Fx t =t (by soundness and completeness of convertibility)
iff Eq(R) =xt =1t (by soundness and completeness of the equational calculus),
Theorenj 2.6.21 constitutes a decision procedure for consequence:

Corollary 2.6.23 (Decision procedure forEq(R) =x t =t'). If R is complete, then
EqR) =5 t =t/ iff NFRr(t) = NFR(t'). O

Example 2.6.24 Since the term rewriting syste®BooL from Example[2.6]6

is complete (see Examp[e 2.6]17), Corollary 2.6.23 can be used to prove that
EQ(RBOOL) ’:ZBOOL _‘(p/\ (q = —\fa|SE)) =p= (p/_‘p): NFRBOOL(_‘(p/\ (q =

—falsg)) = —-p=NFgrBooL(P= (PA—P)). SINCEClsR0r.(PBOOL) = Clypeon(Eq(RBOOL)),
this proves thatbBooL Expoo. —(PA (= —false) = p= (pA—p).

Exercise. Give a derivation ofPBOOL Fxpoo. ~(PA (= —falsg) = p= (pA
—p) in the equational calculus. Compare this with the above proof. O

Page: 70 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.6 Term rewriting 71

Exercise 2.6.25Recall your complete term rewriting system fiSrat from Ex-
ercise[2.6.18. Use this to prove th@NAT =yn . sucgsucg0)) + sucgn) =
sucgsucgsucgn))), and that®d NAT Eynar SUCEM) + Sucgn) = sucgsucgm+
n), O

Exercise 2.6.26Lett — t’ be aX-rewrite rule of sorts. The following restrictions
are often imposed:

o t& X and
o FV(') CFV(1).

Show that, if these restrictions are imposed on rewrite rules, then Corollary]2.6.23
holds even without the assumption dhmade at the beginning of this section.
(These restrictions seem harmless since almost no complete term rewriting system
contains rules that violate them.) O

Exercise 2.6.27Equality of terms in the equational theory of a rewriting systems is
also decidable under somewhat weaker requirements than those in Cgrollary 2.6.23.
A term-rewriting systenR is weakly normalisingf for each termt there is a finite
reduction sequence Rleading fromt to a normal formR is semi-completéd it is
weakly normalising and confluent.

Generalising Exercige 2.6]16, show thaRik a semi-complet&-term rewriting
system, then for ang-termt € |Tx(X)| there is a unique normal forfNFg(t) €
[Tz (X)| such thatt —% NFr(t). Moreover, convince yourself that the function
NFg: |Tz(X)| — |Tx(X)]| is then computable. Finally, show that the property cap-
tured by Corollary 2.6.33 holds for all semi-complete term rewriting sysmsJ

By Corollary|2.6.28, the problem of deciding consequesde s ¢ is reduced to
the problem of finding a finite complete term rewriting sys®such thaCly (®) =

Clz(Eq(R)). Clearly, by Theorerh 2.4.15, this is not always possible. Buktfneth-
Bendix completion algorithroan sometimes be used to produce sucR given &
together with an order relation on terms. The algorithm works by pinpointing causes
of failure of (weak) confluence and adding rules to correct them, where the supplied
term ordering is used to orient these new rules. The algorithm is iterative and may
fail to terminate; it may also fail because the ordering supplied is inadequate.

The Knuth-Bendix completion algorithm can also be used to reason about ini-
tial models of specifications, using a method knowrinakictionless inductiorr
proof by consistency his method is based on the observation that an equiatidh
holds in the initial models ofX, @) iff there is no ground equatiasi= s such that
®£s=5 anddU{t =t'} = s=¢. (Exercise: Prove this fact.) Given a com-
plete term rewriting system such thatCly(®) = Clz(Eq(R)) (perhaps produced
using the Knuth-Bendix algorithm), the Knuth-Bendix algorithm is used to produce
a complete term rewriting systeRi for @ U {t =t} by extendingR. It is then pos-
sible to test iR andR have the same normal forms for grouBeterms; if so, then
t =t’ holds in the initial models ofZ, ®).

Page: 71 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

72 2 Simple equational specifications

2.7 Fiddling with the definitions

In principle, the specification framework presented in the preceding sections is pow-
erful enough for any conceivable computational application. This is made precise
by a theorem in[[BT87] (cf.[[Vra88]) which states that for every reachablmi-
computableX-algebraA there is a presentatiofX’, @’) with finite &' such that

A= A/‘; for some initial modeA € IMod[(X’, @')]. (See[[BT8Y] for the definition

of semi-computable algebra.) In spite of this fact, there are several reasons why this
framework is inconvenient for use in practice.

One deficiency becomes apparent as soon as one attempts to write specifications
that are somewhat larger than the examples we have seen so far. In order to be un-
derstandable and usable, large specifications must be built up incrementally from
smaller specifications. Specification mechanisms designed to cope with such prob-
lems of scale are presented in Chapfer 5. These methods also solve the problem
illustrated by Exercisg 2.5.20, see Exer¢ise 5]1.11.

Another difficulty arises from the relatively low level of equational logic as a
language for describing constraints to be satisfied by the operations of an algebra.
When using equational axioms, it is often necessary to write a dozen equations to
express a property that can be formulated much more clearly using a single ax-
iom in some more powerful logic. Some properties that are easy to express in more
powerful systems are not expressible at all using equations. Similar awkwardness
is caused by the limitations of the type system used here, in comparison with the
polymorphic type systems of modern programming languages such as Standard ML
[Pau96]. Finally, the present framework is only able to cope conveniently with al-
gebras comprised dbtal anddeterministidunctions operating on data values built
by finitary compositions of such functions, a limitation which rules out its use for
very many programs of interest.

All these difficulties can be addressed by making appropriate modifications to the
standard framework presented in the preceding sections. An example was already
given in Section 1.5]2 where it was shown how signature morphisms could be re-
placed by derived signature morphisms. This section is devoted to a sketch of some
other possible modifications. The presentation is very brief and makes no attempt
to be truly comprehensive; the interested reader will find further details (and further
citations) in the cited references.

2.7.1 Conditional equations

The most obvious kind of modification to make is to replace the use of equational
axioms by formulae in a more expressive language. Some care is required since
a number of the results presented above depend on the use of equational axioms.
A relatively unproblematic choice is to use equations that apply only when certain
pre-conditions (expressed as equations) are satisfied.

LetX = (S Q) be a signature.

Page: 72 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.7 Fiddling with the definitions 73

Definition 2.7.1 (Conditional equation).A (positive) conditionak-equationyXet; =
ti A... Ath =t = to = t; consists of:

¢ afinite S-sorted seKX (of variables), such thats C 2" for all s€ S and

e for each 0< j < n (wheren > 0), twoZ—termstj,tj IS |T2(X)|sj for some sort
sj €S

A Z-algebraA satisfiesa conditionalZ-equationvXet; =tj A... Ath =t = to =

ty if for every (Ssorted) functionv:X — |A|, if (t1)a(v) = (t})a(v) and ... and

(th)a(v) = (th)a(v) then(to)a(v) = (to)a(V). 0

Note that variables in the condition & t] A ... Aty =1t)) that do not appear in
the consequentd = tj) can be seen as existentially quantified: for example, the
conditional equatioiva,biteax b= 1= axa ! =1 is equivalent to the formula
Vate (3biteax b= 1) = axa ! = 1in ordinary first-order logic.

Exercise 2.7.2Define the translation of conditiondl-equations by a signature
morphismo:X — X’. O

The remaining definitions of Sections .142.5 require only superficial changes, and
most results go through with appropriate modifications.

Let (X,®) be a presentation, wher® is a set of conditional-equations.
Mod[(X, ®)] is not always a variety, as is (almost) shown by Exarfiple 2,2.11; in
this sense, the power of conditional equations is strictly greater than that of ordinary
equations.

Exercise 2.7.3The cancellation law given in Examgle 2.2.11 is not a conditional
equation. Give a version of this example that uses only conditional equations.
(HINT: Equality can be axiomatized as an operagops x s— bool.) O

In spite of this increase in expressive power, there is a proof system that is sound
and complete with respect to conditional equational consequence |[Sel72], and the
quotient construction can be used to construct an initial model gb) [MT92] (cf.
Lemmg 3.3.1R below). Term rewriting with conditional rewrite rules is possible, but
there are some complications, see [KI092] and [MId93].

Exercise 2.7.4[Sel72] gives a proof system that is sound and complete for condi-
tional equational consequence in the single-sorted case. Extend this to the many-
sorted case, where explicit quantifiers are required for the same reason as in the
equational calculus. O

Exercise 2.7.5Recall Exercis¢ 2.5.21 concerning the specification of a function
ch:nat — nat that for each natural numberchooses an arbitrary number that is
greater tham. Modify this, using a conditional equation to madtechoose an arbi-
trary number that igessthann when 0< n. O

Example 2.7.6.LetHA = (*HA,®HA) be the following presentaticﬁ.

3 We use the same symbe} for implication in conditional equations and for an operation in the
presentation below — the usual symbols are used for other propositional connectives as well, as in
Exampld 2.ZJ4. We use extra space around implication in the conditional equations below in order
to make them easier to read.

Page: 73 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

74 2 Simple equational specifications

specHA = sorts bool

ops true:bool
false: bool
—__:bool— bool
__V __:boolx bool — bool
__A__:boolx bool — bool
__=__:bool x bool— bool

vp,q,r:bool
s pV(qQVr)=(pvaVr
s PA(QAT) = (PAG)AT
e PVg=0qVvp
e PAQ=0gADP
s pV(pAQ)=p
s PA(PVA)=p
e PV true =true
e pVfalse=p
s (pv(rAg)=p) = ((q=pVr=(Q=p))
«((@q=pVvr=(@=p) = (pv(AQ=p)
o =p=(p=false)

Models of HA are calledHeyting algebras

Exercise.Recall the presentatioR A of Boolean algebras in Examgle 2.4. Show
that every Boolean algebra is a Heyting algebra. Then repeat the exercise in Ex-
amplg[2.2.)4, building for every Heyting algetiaa lattice(|H|, <y) with top and
bottom elements. Check that the conditional axioms concerning the implication
can now be captured by requiring thiat q <y pis equivalent to <y q= p. Show

that the lattice is distributive.

Give an example of a Heyting algebra that is not Boolean. Check which of the
axioms of the presentatiddA do not follow fromHA..

Prove that amquationalpresentation with the same modelsth4 can be given.
HINT: Use Theorenmi 2.2.10. Or consider the following properties of the implica-
tion: p= p=true,qA(q=p) =qAPp, PV (= p) =q=p, andg= (pATr) =
@=pA@=r). O

2.7.2 Reachable semantics

In Sectior] 2., the motivation given for taking a presentatibn®) to denote the
classiMod[(X, ®)] of its initial models was the desire to exclude models containing
junk and confusion. The need to exclude models containing confusion stems mainly
from the use of equational axioms, which make it impossible to rule out degenerate
models having a single value of each sorEinf a more expressive language is used

for axioms, or if degenerate models are ruled out by some other means, then models
containing confusion need not be excluded.

Page: 74 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.7 Fiddling with the definitions 75

Example 2.7.7.Consider the following specification of sets of natural numbers (a
variant of the one in Exerci$e 2.5]23):

specSETNAT = sorts bool, nat, set

ops true:bool
false bool
__V __:bool x bool — bool
O:nat
succhnat— nat
eg natx nat — bool
g set
add nat x set— set
__€__:natx set— bool

Vp:bool, m,n:nat, S: set
o pVirue=true
« pvfalse=p
« eq(n,n) = true
« eq(0,sucan)) = false
« eq(sucan),0) = false
« eqg(sucgm),sucgn)) = eq(m,n)
e Nec g ="false
« meaddn,S =eqmn)vmeS

There are many different models 8£TNAT, including algebras having a single
value of each sort. Suppose we restrict attention to algebras that do not satisfy the
equationva . true = false this excludes such degenerate models (see the exercise
below). Consider the following two equations:

Commutativity ofadd Vm, n:nat, Siset add(m,add(n,S)) = add(n,add(m,S))
Idempotency ohdd Vn:nat, S:set add(n,add(n,S)) = add(n,S)

The models oBSETNAT that do not satisfy@ e true = falsemay be classified ac-
cording to which of these two equations they satisfy.

“List-like” algebras: addis neither commutative nor idempotent.

“Set-like” algebras:addis both commutative and idempotent.

“Multiset-like” algebras: addis commutative but not idempotent.

“List-like” algebras without repeated adjacent entriesld is idempotent but not
commutative.

There are also “hybrid” models &FETNAT, e.g. those in whickadd is commuta-
tive but is only idempotent fon # 0. The initial models oBETN AT are “list-like”

algebras. Adding the commutativity and idempotency requiremeris TN AT as
additional axioms would eliminate all but the “set-like” algebras.

Exercise. Show that restricting attention to modelsSifTN AT that do not satisfy
the equatiorv@ e true = false eliminates all but “sensible” realisations of sets of
natural numbers, by forcineg(sucé”(0), sucé'(0)) = trueiff m= niff succé"(0) =

Page: 75 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

76 2 Simple equational specifications

sucd'(0), anda € add(a;,add(ay, ...,add(ap, @) ...)) = trueiff eq(a,a;) = trueor
. oreq(a,ap) = true, for m,n, p > 0. Note thatm,n and p are ordinary integers
here,notvalues of the somat, andsucé”(0) meanssucg...succ0)...). O
N———

mtimes

Consideration of examples like the one above suggests various alternatives to
taking the initial semantics of specifications. One choice is to require signatures to
include the sorbool and the constantsue andfalse and to exclude models satis-
fying V@« true = false This might be termed taking tr&andard loose semantics
of specifications. Another choice is to additionally exclude models containing junk:

Definition 2.7.8 (Reachable semantics).et X = (S Q) be a signature such that
bool € S andtrue:bool andfalse bool are in Q. A reachable standard modelf

a presentatiofXZ, @) is a reachable-algebraA such thatA =y & and A }£x
Ve true = false RMod(Z, ®)] is the class of all reachable standard models of
(X,). Taking (£, ®) to denoteRMod (X, ®)] is called taking itsreachable se-
mantics O

The motivation for excluding models containing junk is the same as in the case of
initial semanticsRMod (X, ®)] is not always an isomorphism class of models, as
Examplg 2.7]7 demonstrates (the classification given there wasl forodels that

do not satisfyv e« true = false but the same applies to the reachable models in this
class). There is still a problem when operations are not defined in a sufficiently com-
plete way, although the problem is less severe than in the case of initial semantics.

Exercise 2.7.9Reconsider the problem posed in Exerdise 2]5.20, by writing a
reachable model specification of natural numbers including a subtraction operation
__— __:natx nat— natwith the axioms/m:nate m— 0= mandvm, n:nate suc¢m) —
sucgn) = m—n. Recall from Exercisg 2.5.20 the assumption that we are willing to
accept any value fam— n whenn > m, which is why the axioms do not constrain

the value ofm—n in this case. List some of the reachable standard models of this
specification, and decide whether the models you considered in EXercisg 2.5.20 are
reachable standard models (ignoring the difference in signatures). From an intuitive
point of view, is this an adequate class of models for this specification? O

Exercise 2.7.10Definition[2.7.8 permits algebrasc RMod (X, ®)] with values of
sortbool other thantruey andfalse,. This is ruled out if all operations delivering
results in sorbool are defined in a sufficiently complete way to yield eittrete or
falseon each argument that is definable by a ground term. Check that the specifi-
cation SETNAT in Examplg 2.7]7 ensures this property and so all of its reachable
models have a two-element carrier of shobl. Give an example of a specification

for which this is not the case. O

The equational calculus is sound for reasoning about the reachable standard models
of presentations, sind@Mod (X, ®)] C Mod[(X, ®)] for any presentatio(X, @). It
is sound to add induction rule schemes such as those given in Seclion 2.5; these are

Page: 76 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.7 Fiddling with the definitions 77

sound for any class of reachable models. Completeness is unachievable, for exactly
the same reason as in the case of initial semantics; the proof of Thgoren) 2.5.26 can
be repeated in this context almost without change. Finally, the techniques of term
rewriting presented in Sectipn 2.6 remain sound.

Initial semantics cannot be used for specifications with axioms that are more
expressive than (infinitary) conditional equations [Tar86b], in the sense that initial
models of such specifications are not guaranteed to exist. To illustrate the problem,
the following example shows what can go wrong when the language of axioms is
extended to permit disjunctions of equations.

Example 2.7.11.Consider the following specification:

SPecSTATUS = sorts status
ops single status
married status
widowedstatus
« widowed= singleV widowed= married

where disjunction of equations has the obvious interpretation. There are three kinds
of algebras ilMod[StATUS]:

1. Those satisfyingingle= widowed= married.
2. Those satisfyingingle= widowed# married
3. Those satisfyingingle=# widowed= married.

None of these is an initial model &raTus: there are no homomorphisms from
algebras in the first class to algebras in either of the other two classes, and no homo-
morphisms in either direction between algebras in the second and third classes.

In contrast, reachable semantics can be used for specifications with axioms of any
form (once a definition of satisfaction of such axioms by algebras has been given,
of course). Such flexibility is a distinct advantage of this approach.

Another alternative to initial semantics deserves brief mention.

Definition 2.7.12 (Final semantics)Let X = (S Q) be a signature such thiapol e
Sandtrue: bool andfalse bool are inQ. A X-algebraA € RMod(Z, ®)] is afinal
(or termina) model of (X, @) if for every B € RMod (X, @)] there is a unique-
homomorphisnmh: B — A. Taking (£, ®) to denote the class of its final models is
called taking itdinal semantics O

As in the case of initial semantics, the final models of a presentation form an iso-
morphism class. Recall that a model of a presentation is initial iff it contains no
junk and no confusion (Exercige 2.5/19). We can give a similar characterisation
of final models as the models containing no junk analximal confusiona final
model A satisfies as many ground equations as possible, subject to the restriction
thatA (£ Vs« true = false(imposed on all reachable standard models).

Example 2.7.13 Recall the specificatioSETNAT from Example[2.7]7, and the
classification of models dfETNAT according to the commutativity and idempo-
tence ofadd The final models oS ETNAT are in the class of “set-like” algebras, in
whichaddis both commutative and idempoteriExgrcise: Why?) O

Page: 77 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

78 2 Simple equational specifications

Not all presentations with equational axioms have final models, but it is possible
to give conditions on the form of presentations that guarantee the existence of final
models|[[BDP 79].

Exercise 2.7.14Find a variation on the specificatid®iraTus in Example[ml
that has no final models.

When reachable or final semantics of presentations is used with equational or
conditional equational axioms, sometimes more operations are required in specifi-
cations than in the case of initial semantics. These additional operations are needed
to provide ways of “observing” values of sorts other thaool, in order to avoid
degenerate models. For example, the presence of the opeggiiv&xamplg 2.7 [7
ensures thasuc¢"(0) = succ'(0) only if m= n in all models that do not satisfy
V& e true = false it would not be needed if we were interested only in the initial
models ofSETNAT. Such operations are not required if inequations are allowed as
axioms.

Exercise 2.7.15Recall the presentatidNaT given in Exercis¢ 2.5|4. Augment this
with the sortbool and constantsrue, false bool (to make reachable and final se-
mantics applicable), and show that final models of the resulting specification have
a single value of somat. Add an operatiorevennat — bool, with the following
axioms:

V&« everf0) = true
V&« everisucg0)) = false
Vn:nate ever{sucgsucgn))) = evergn)

Show that final models of the resulting specification have exactly two values of sort
nat. Replaceevenwith __<__:natx nat— bool, with appropriate axioms, and show
that final models of the resulting specification satsfig¢"(0) = sucé'(0) iff m=n.

(We have already seen that this is the cagsgihat x nat— boolis added in place

of <) O

Although the inclusion of additional operations tends to make specifications longer,
it is not an artificial device. In practice, one would expect each sort to come with
an assortment of operations for creating and manipulating values of that sort, so
specifications such asAT are less natural thaNAT augmented with operations

like < and/oreq

2.7.3 Dealing with partial functions: error algebras

An obvious inadequacy of the framework(s) presented above stems from the use of
total functions in algebras to interpret the operation names in a signature. Since par-
tial functions are not at all uncommon in Computer Science applications — a very
simple example being the predecessor funcpiat nat — nat, which is undefined

on 0 — a great deal of work has gone into ways of lifting this restriction. Three
main approaches are discussed below:

Page: 78 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.7 Fiddling with the definitions 79

Error algebras (this subsection): Predecessor is regarded as a total function, with
pred(0) specified to yield aerror value.

Partial algebras (Sectipn 2.7.4): Predecessor is regarded as a partial function.

Order-sorted algebras (Sectfon 2]7.5): Predecessor is regarded as a total function
on a sub-domain that excludes the value 0.

A fourth approach is to use ordinary (total) algebras, leaving the valpeedfO)
unspecified. This is more an attempt to avoid the issue than a solution, and it is
workable only in frameworks that deal adequately with non-sufficiently-complete

definitions; see Exercises 2.5/P0, 217.9,[and 5]1.11.

The most obvious way of adding error values to algebras does not work, as the
following example demonstrates.

Example 2.7.16.Consider the following specification of the natural numbers, where
pred(0) is specified to yield an error:

specNATPRED = sorts nat
ops O:nat
succnat— nat
pred nat— nat
error: nat
__+__:natx nat— nat
__X __natx nat— nat
¥m, n: nat
« pred(sucgn)) =n
« pred(0) = error

¢« 0+n=n
« sucgm) 4+ n = sucgm-+n)
«eOxn=0

e SUCEM) x N= (MxNn)+n

Initial models of NATPRED will have many “non-standard” values of sorat, in
addition to the intended onerfor). For example, the axioms &fATPRED do not

force the ground termgred(error) andpred(error) 4+ 0 to be equal to any “normal”
value, or toerror. (Exercise: Give an initial model ofNATPRED.) A possible so-
lution to this is to add axioms that collapse these non-standard values to a single
point:

specNATPRED = sorts nat
ops
¥Ym, n: nat
e ...
« sucgerror) = error
« pred(error) = error
e €rror +n = error
« N+ error = error
e rror x n= error
« N X error = error

Page: 79 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

80 2 Simple equational specifications

Unfortunately, NATPRED now has only trivial modelsarror = 0 x error = 0 and
soerror = sucderror) = sucg0), error = sucderror) = suc¢sucg0)), etc. O

The above example suggests that a more delicate treatment is required. A number
of approaches have been proposed; here we follow [GDLE84], which is fairly pow-
erful without sacrificing simplicity and elegance. The main ideas of this approach
are:

Error values are distinguished from non-error (“OK”) values.
In an error signature operations that may produce errors when given OK ar-
guments (nsafeoperations) are distinguished from those that always preserve
OK-ness ¢afeoperations).

¢ In anerror algebra each carrier is partitioned into an error part and an OK part.
Safe operations are required to produce OK results for OK arguments, and ho-
momorphisms are required to preserve OK-ness.

e In equations, variables that can take OK values oséfdvariables) are distin-
guished from variables that can take any values@fevariables). Assignments
of values to variables are required to map safe variables to OK values.

Definition 2.7.17 (Error signature). An error signatureis a tripleX = (S, Q, safe
where:

e (S Q) is an ordinary signature; and
e safeis anS" x S-sorted set of functionésafe, s: Qus — {tt,ff }wes ses.

An operationf:s; x --- x sy — sin L is safeif safg, ¢ ¢(f) = tt; otherwise it is
unsafe O

Example 2.7.16 (revisited).An appropriate error signature fof ATPRED would
be:

YXNATPRED = sorts nat

ops O:nat
succnat— nat
pred nat— nat :unsafe
error: nat :unsafe

__+__:natx nat— nat
__X __.natx nat— nat

Obviously,error is unsafe, angbred is unsafe since it produces an error when ap-
plied to 0O; all the remaining operations are safe. (By convention, the safe operations
are those that are not explicitly marked as unsafe.) ad

In the rest of this section, le&t = (S Q, safeé be an error signature.
Definition 2.7.18 (Error algebra). An error X-algebra Aconsists of:

e an ordinaryX-algebraA; and
e anS-sorted set of function®K = (OKs: |Als — {tt,ff })scs

Page: 80 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.7 Fiddling with the definitions 81

such that safe operations preserve OK-ness: for efzesyx - -- x §; — sin X such
thatsafg, ¢ <(f) =ttanda € |Als,...,an € |Als, such thatOKg (a1) = -+ =
OKs,(an) = tt, OKs((f:sy X -+- x Sy — s)a(ay,...,an)) = tt. A valuea € |Als for
se Sis anOK valueif OKg(a) = tt; otherwise it is arerror value O

We employ the usual notational conventions, e.g. wrifin@ place of(f:s; x --- x
Sh— S)A-

Definition 2.7.19 (Error homomorphism). Let A andB be errorX-algebras. An
error Z-homomorphism A — B is anS-sorted functiorh: |A| — |B| with the usual
homomorphism property (for all:s; x --- x sy — sin £ anday € |Als,,...,an €
|Als,, hs(fa(as,...,an)) = fa(hs(a1),...,hs,(an))) such thah preserves OK-ness:
for everys € Sanda € |Als such thaDKg(a) =tt (in A), OKs(hs(a)) =tt (inB). O

Definition 2.7.20 (Error variable set). An error S-sorted variable set Xonsists
of anS-sorted seK such thatXs C 2" for all se€ S, and anS-sorted set of functions
safe= (safe: Xs — {tt,ff })scs. A variablex:sin X is safeif safg(x) = tt; otherwise

it is unsafe An assignmenbf values in an erroE-algebraA to an errorSsorted
variable seX is anS-sorted function: X — |A| assigning OK values to safe vari-
ables: for every:sin X such thasafg(x) = tt, OKs(vs(x)) = tt. O

Definition 2.7.21 (Error algebra of terms).Let X be an errofS-sorted variable set.
Theerror X-algebra ET(X) of terms with variables Xs defined in an analogous
way to the ordinary term algebfia (X), with the following partition of theS-sorted
set of terms into OK and error values:

For all sortss € SandX-termst € |ETs(X)]s, if t contains an unsafe variable
or operation the®K(t) = ff; otherwiseOKg(t) = tt.

We adopt the same notational conventions for terms as before, dropping sort deco-
rations etc. when there is no danger of confusion.EE&t denoteE Ty (&). O

The definitions of term evaluation, error equation, satisfaction of an error equation
by an error algebra, error presentation, model of an error presentation, semantic
consequence, and initial model are analogous to the definitions given earlier in the
standard many-sorted algebraic framework (Definitions 1L[4.5,]12.1.T) P.1.2, 2.2.1,
[2.2.2]2.3p and 2.5.1.3 respectively). Because assignments are required to map safe
variables to OK values, an error equation may be satisfied by an error algebra even
if it is not satisfied when error values are substituted for safe variables.

Exercise 2.7.22Spell out the details of these definitions. O

As before, every error presentation has an isomorphism class of initial models,
and an analogous quotient construction gives an initial model.

Definition 2.7.23 (Congruence generated by a set of equationtpt & be a set of
error X-equations. Th&-congruencesg onETy is defined byt =¢ t' <= & =5
Voet =t for all t,t’ € |ETg|. =¢ is called theX-congruence generated k.
(NOTE: A XZ-congruence on an erra-algebraA is just an ordinary2-congruence
on the ordinanZ-algebra underlying\.) O

Page: 81 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

82 2 Simple equational specifications

Definition 2.7.24 (Quotient error algebra).Let A be an errorX-algebra, and let
= be aX-congruence or\. The definition ofA/=, the quotient error algebra of
A modulo =, is analogous to that of the ordinary quotient algedfas, with the
following partition of congruence classes into OK and error values:

For all sortsse Sand congruence classgg=, € |A/=|s, if there is somé €
[a]= such thatOKg(b) = tt (in A) thenOKs([a]=,) = tt (in A/=); otherwise
OK([al=,) = ff. 0

Note that if there are both OK and error values in a congruence class, the class is
regarded as an OK value in the quotient.

Theorem 2.7.25 (Initial model theorem).The errorX-algebra ET /=4 is an ini-
tial model of the error presentatioff,). O

Exercise 2.7.26Sketch a proof of Theorefn 2.7125. it : Take inspiration from
the proof of Theorer 2.5.14.) 0

Exercise 2.7.27Try to find conditions analogous to “no junk” and “no confusion”
that characterise the initial models of an error presentation. O

Example 2.7.16 (revisited).Using the approach outlined above, here is an im-
proved version of the specificatiofaTPRED:

specNATPRED = sorts nat

ops O:nat
succhat— nat
pred nat— nat :unsafe
error: nat :unsafe

__+__inatx nat— nat

__X __Ihatx nat— nat
Ym, n: nat

« pred(sucgn)) =n

« pred(0) = error

«0+n=n
« sucgm) +n=sucgm-+n)
«eOxn=0

e sucEm) x n=(Mxn)+n

(By convention, variables in equations are safe unless otherwise indicated.) In initial
models ofNATPRED, the error values of sortat correspond exactly to “error mes-
sages”, i.e. ground terms containing at least one occurrenegaf These terms

can be regarded as recording the sequence of events that took place since the error
occured. The record is accurate since the initial modeSfPRED do not satisfy
equations like7@« 0 x error = 0, in contrast to the initial models of the earlier ver-

sion. To collapse the error values to a single point without affecting the OK values,
axioms can be added as follows:

Page: 82 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.7 Fiddling with the definitions 83

specNATPRED = sorts nat

ops

¥m, n: nat, k: natunsafe
e ...
« pred(error) = error
« sucderror) = error
« error +k = error
« k+error = error
« error x k= error
« kx error = error

It is also possible to specifgrror recoveryusing this approach:

specNATPRED = sorts nat

ops ...

recovernat — nat

v¥m, n: nat, k: natunsafe

e ...

« recoveferror) =0
« recovefn) =n

In initial models of this version oNATPRED, recoveris the identity omat except
thatrecoveferror) gives the OK value 0. O

Although only initial semantics of error presentations has been mentioned above,
the alternatives of reachable and final semantics apply as in the standard case. The
key points of the standard framework not mentioned here (e.g. analogues to the
soundness, completeness and incompleteness theorems) carry over to the present
framework as well.

Exercise 2.7.28Find a definition of error signature morphism which makes the
Satisfaction Lemma hold, taking the natural definition of theeductA"c, of an
errorX’-algebrad’ induced by an error signature morphigmz — X’. a

Although the approach to error specification presented above is quite attractive,
there are examples that cannot be treated in this framework.

Exercise 2.7.29Consider the following specification bbunded natural numbers

specBOUNDEDNAT = sorts nat
ops O:nat
succnat— nat :unsafe
overflownat :unsafe
« sucgsucdsucdgsucgsucgsucd0)))))) = overflow

The intention is to specify a (very) restricted subset of the natural numbers, where an
attempt to compute a number larger than 5 results in overflow. Show that an initial
model of BouNnDEDNAT will have only one OK value. Chand@oUNDEDNAT to

make its initial models have six OK values (corresponding su6c0), .. .,suc(0)).
What if the bound is & rather than 5? i

Page: 83 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

84 2 Simple equational specifications

2.7.4 Dealing with partial functions: partial algebras

An obvious way to deal with partial functions is to simply change the definition of

algebrato allow operation names to be interpreted as partial functions. But for many

of the basic notions in the framework that depend on the definition of algebra, be-

ginning with the concepts of subalgebra and homomorphism, there are several ways

to extend the usual definition to the partial case. Choosing a coherent combination

of these definitions is a delicate matter. Here we follow the approach of [BW82b].
Throughout this section, &t = (S Q) be a signature.

Definition 2.7.30 (Partial algebra).A partial X-algebra Ais like an ordinaryX-

algebra, except that eadhs; x --- x s, — sin X is interpreted as partial function

(fispx -+ xS — 9)al|Als, X --- X |Als, — |Als. The(total) Z-algebra underlying
Ais theX-algebraA,; defined as follows:

o |A|s=|AlsW{Ls} foreveryse S and
o (fisggx--xs—59)a (as,...,an) =

lg if aj = Ls; forsome 1< j<n

(fispx - x5y —S)a(a,...,an) if this is defined

1s otherwise
foreveryfis; x--- xsy —sanday € |A||s,....an € |A|[s,. O

We employ the same notational conventions as before. Note that according to this
definition, the value of a constant need not be defined: a cors&istassociated in

an algebra with a partial functiorca: {()} — |Als, where{() } is the 0-ary Cartesian
product.

Definition 2.7.31 (Homomorphism).Let A and B be partialX-algebras. Aweak
X-homomorphism A — B is anS-sorted (total) functiom: |A| — |B| such that for
all f:syx---xsy—sinZandag € [Alg,....an € |Als,,

if fa(as,...,an)is defined thenfg(hs, (a1),...,hs,(an)) is definedand
hs(fA(a17 AR an)) = fB(hS:L(al)v L) hSn (an))

If moreoverh satisfies the condition
if fg(hs,(a1),...,hs,(an)) is defined thenfa(ay,...,a,) is defined
thenh is called astrongXZ-homomorphism ad

Other possibilities would be generated by allowing homomorphisms to be partial
functions.

Exercise 2.7.32Consider a partiat-algebraA and its underlying totat-algebra

A, . Given anyX-congruence= on A, removing all pairs involvingl yields a
strongX-congruence on ACheck that such strong congruences are exactly kernels

of strong Z-homomorphisms, cf. Exerciseés 1.3.14 and 1]3.18. Check that strong
congruences are equivalence relations that preserve and reflect definedness of oper-
ations and are closed under defined operations. Kernels of ¥xaknomorphisms

Page: 84 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.7 Fiddling with the definitions 85

areweakX-congruencesequivalence relations that are closed under defined oper-
ations. Spell out these definitions in detail. For any paffialgebraA and weak
X-congruence= on A, generalise Definitiof 1.3.15 to define thaotient of A by

=, written A/=. Note that an operation is definedAji= on a tuple of equivalence
classes provided that i it is defined on at least one tuple of their respective ele-

ments. Check which of Exercises 1.3.18-1.B.23 carry over. 0

Definition 2.7.33 (Term evaluation).Let X be anS-sorted set of variables, I&tbe
a partialZ-algebra, and let: X — |A| be a (total)S-sorted function assigning values
in A to variables inX. Since|A| C |A| |, this is anS-sorted functiorv, : X — |A, |,
and by Fact 1.4]4 there is a unique (ordinafiyhomomorphismv/? : Tz (X) — A|
which extends/, . Letse€ Sand lett € [Tx(X)|s be aX-term of sorts; thevalue of t
in A under the valuation is V¥ (t) if V¥ (t) # L, and is undefined otherwise. O

Satisfaction of an equatioviX«t =t’, where the values df and/ort’ may be
undefined, can be defined in several different ways. Following [BW82b], we use
strongequality (also known akKleeneequality) whereby the equality holds if (for
any assignment of values to variables) the valugsanfdt’ are either both defined
and equal, or are both undefined. The usual interpretation of definitional equations in
recursive function definitions (see for instance Exarpiple 4,1.25 below) makes them
hold as strong equations. An alternativeeigstential equalitf{where= is usually
written =), whereby the equality holds only when the value$ ahdt’ are defined
and equal. When strong equality is used, there is a need for an additional form
of axiom called adefinedness formulda’X e def(t) holds if for any assignment of
values to variables, the value bfs defined. These are superfluous with existential
equality sincevX .« def(t) holds iff ¥X+ t =t holds.

Exercise 2.7.34Formalize the definitions of satisfaction of equations (using strong
equality) and of definedness formulae. O

Using both equations and definedness formulae as axioms, the definitions of pre-
sentation, model of a presentation, semantic consequence, isomorphism, and initial
model (with respect taveakhomomorphisms) are analogous to those given earlier.

Exercise 2.7.35Spell out the details of these definitions. O

Theorem 2.7.36 (Initial model theorem).Any presentatioqX, @) has an initial
model I, characterised by the following properties:

e | contains no junk;

¢ |is minimally definedi.e. for allt € |Tx|, t; is defined only ifP |=x V&« def(t);
and

e | contains no confusion, i.e. for allt’ € |Tx|s,s€ S, { and { are defined and
equal only if® =5 Vet =t'.

Proof sketchLet X, be the signature obtained by adding a constapsto X for
each sors € S Define a congruence C [Ty, | x |Tg, | as follows: forty, to € [Ty |s
for somes € S t; ~ ty iff any of the following conditions holds:

Page: 85 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

86 2 Simple equational specifications

1.t; containslLy andt, containsLy for somes, s’ € S

2.1; contains Ly for somes € S t; € |Tx|s (sot, does not contain_g for any
s’ € § and® £~ def(tp), or vice versa

3.11,t2 € |Tx|s, and eitherd (= def(ty) and @ (- def(ty) or @ =t =to.

I is constructed by taking the quotientf by ~, and then regarding congruence
classes containing the constantsas undefined values. a

Exercise 2.7.37Complete the above proof by showing that:

~ is a congruence of ;

| = &;

| is an initial model of X, &); and

| has the properties promised in Theoifem 2.J7.36.

Show that any model ofZ, ®) satisfying the properties in Theor¢ém 2.7.36 is iso-
morphic tol and is therefore an initial model ¢, &). O

Exercise 2.7.38Suppose that we modify Theordm 2.7.36 by replacing the phrase
“t) andt| are defined and equal” with ‘=5 V&«t =t’". Give a counterexample
showing that this version of the theorem is false. O

Exercise 2.7.39A partial X-algebraA € Mod[(Z, ®)] is astrongly initial model of
(X, @) if for every minimally definedB € Mod[(X, ®)] containing no junk, there
is a unique strong-homomorphismh: A — B. Show thatl is an initial model of
(X,) iff | is a strongly initial model of X, ®). O

Again, reachable and final semantics are applicable for partial algebras as well
as initial semantics, and the key points of the standard framework carry over with
appropriate changes (for instance, the equational calculus must be modified to deal
with definedness formulae as well as equations).

Example 2.7.16 (revisited).Here is a version of the specificatiddATPRED in
which predis specified to be a partial function:

specNATPRED = sorts nat
ops O:nat
succnat— nat
pred: nat— nat
__+__natx nat— nat
__X __:natx nat— nat
¥Ym, n: nat
« def(0)
« def(sucgn))
« pred(sucgn)) =n

¢« 0+n=n
» sucgm) +n=sucgm-+n)
«eOxn=0

e SUCEmM) x n=(Mxn)+n

Page: 86 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.7 Fiddling with the definitions 87

In initial models of NATPRED, all operations behave as expected, and all are total
except forpredwhich is undefined only on 0.

Exercise. Show thatvm, n:nate def(m+ n) andvm, n:nate def(mx n) are conse-
guences of the definedness axioms for 0 sunctand the equations defining and

x, in reachable models &f ATPRED. You will need to use induction, so first for-
mulate an appropriate induction rule scheme and convince yourself that it is sound.

Exercise.Suppose that the axiokz . def(0) were removed frolNATPRED. De-
scribe the initial models of the resulting presentation. O

2.7.5 Partial functions: order-sorted algebras

Any partial function amounts to a total function on a restricted domain. The idea of
order-sorted algebras to avoid partial functions by enabling the domain of each
function to be specified exactly. This is done by introducsdpsorts which cor-
respond to subsets at the level of values, and requiring operations to behave in an
appropriate fashion when applied to a value of a subsort or when expected to deliver
a value of a supersort. A number of different approaches to order-sorted algebra
have been proposed, and their relative merits are still a matter for debate. Here we
follow the approach of [GM92].

Definition 2.7.40 (Order-sorted signature).An order-sorted signaturés a triple

X =(5<,Q) where(S Q) is an ordinary signature and is a partial order on the
setSof sort names, such that wheneves; x --- x s, — sandf:s; x --- x g, — ¢
are operations (having the same name and same number of argumefts)nieh

s <gforall 1<i<n, thens<s.Whens<s forss €S we say thasis a
subsortof &' (or equivalentlys’ is asupersorof s). The subsort ordering is extended
to sequences of sorts of equal length in the usual way:s, <s)...s,if 5 < g
forall1<i<n. O

The restriction o2 ([GM92] calls this conditiormonotonicity is a fairly natural
one, keeping in mind that the subsort ordering corresponds to subset on the value
level: restricting a function to a subset of its domain may diminish, but not enlarge,
its codomain. Note that an effect of this restriction is to rule out overloaded con-
stants.

Throughout the rest of this section, Bt= (S, <, Q) be an order-sorted signature,
and letf = (S Q) be the (ordinary) signature correspondindto

Definition 2.7.41 (Order-sorted algebra).An order-sortedX-algebra Ais an or-
dinary X-algebra, such that:

e foralls<s'inZX, |AsC|Aly; and

e wheneverf:s; x--- x5, — sandf:s; x --- x §, — s are operations (having the
same name and same number of arguments) @ands;...s, <s...s,, then
the function(f:sy x --- x sy — S)al|Als, X --- X |Als, — |Als is the set-theoretic
restriction of the functiorif:s; x -+ x s, — S)a[Alg x -+ x |Alg — [Alg. O

Page: 87 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

88 2 Simple equational specifications

An effect of the second restriction ([GM92] calls this conditiomonotonicityas
well) is to avoid ambiguity in the evaluation of terms (see below).

Definition 2.7.42 (Order-sorted homomorphism) Let A andB be order-sorted -
algebras. Amorder-sorted-homomorphism:A — Bis an ordinanZ-homomorphism,
such thaths(a) = hy (@) for all a € |Als whenevers < s. Whenh has an inverse, it

is anorder-sortedX-isomorphismand we writeA = B. O

Let X be anS-sorted set (of variables) such thétand Xy are disjoint for any
s#£5¢.

Definition 2.7.43 (Order-sorted term algebra) Theorder-sortedr-algebra T (X)
of terms with variables Xs just like Tz (X), except that for any terme [Ty (X)]s
such thas < &, we also have € [Tz (X)|y. Let Ty = Tx(2). O

Exercise 2.7.44Check thaflx (X) is an order-sorted’-algebra. O

Example 2.7.45.0ne way of reformulatingNATPRED as an order-sorted specifi-
cation (see below) will involve introducing a sarznat(non-zero natural numbers)
such thatnznat< nat, with operations hat andsuccnat — nznat According to
the definition of order-sorted term algebra, the taumd0) has sorhat as well as
nznat which means thasucqsucg0)) is well-formed (and has sortat as well as
nznaj. O

As the above example demonstrates, a given term may appear in more than one
carrier of Tz (X). The following condition onX ensures that this does not lead to
ambiguity.

Definition 2.7.46 (Regular order-sorted signature)X is regularif for any f:s; x
X —sinZands)...s,<s;...5, thereisalead, ...s,s such thas;...s; <
S)...s,andf:s; x---xg, —disinZ. 0

Theorem 2.7.47 (Terms have least sorts)f X is regular, then for every termd
|Tx(X)| there is a least sort s S, written sorft), such that te [Ty (X)|s. O

Exercise 2.7.48Prove Theoreri 2.7.47. What happens wheis anarbitrary S
sorted set, i.e. if we remove the restriction tkgandXy are disjoint for anys # s'?
O

Now the definition of term evaluation is analogous to the usual one.

Fact 2.7.49.Suppose thaX is regular. Then, for any order-sortet--algebra A and
S-sorted function:X — |A|, there is exactly one order-sortetthomomorphism
V¥ Ty (X) — A which extends v, i.e. such thd(x) = vs(x) foralls€ S, xe Xs. O

Exercise 2.7.50Define term evaluation. a

Page: 88 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.7 Fiddling with the definitions 89

Definition 2.7.51 (Order-sorted equation; satisfaction).Suppose thak is reg-
ular, and let the equivalence relatios be the symmetric transitive closure of
< . Order-sortedX-equationsvYXet =t are as usual, except that we require
sort(t) = sort(t’) (in other words,sort(t) andsort(t’) are in the sameonnected
componenbdf (S <)) instead ofort(t) = sort(t’). An order-sortecc-algebraA sat-
isfiesan order-sorted-equationVXet =t/, written A =y VXet =t/, if the value
of t in |Alsoryry @and the value of in |Alsq) coincide, for everys-sorted function
v:X — |A]. O

A problem with this definition is that satisfaction of order-soriz@quations is not
preserved by order-sortédisomorphisms (compare Exercjse 2]1.5). The following
condition onX ensures that this anomaly does not arise.

Definition 2.7.52 (Coherent order-sorted signature)(S, <) is filtered if for any
s,§ € Sthere is soma” € Ssuch thas < §’ ands <¢". (S <) is locally filteredif
each of its connected components is filteteds coherenif (S <) is locally filtered
andX is regular. ad

Exercise 2.7.53Find X, A, B and ¢ such that® is regular,A =5 ¢ andA = B but
B 45 ¢. Show that ifX is coherent then this is impossible. a

The definitions of order-sorted presentation, model of an order-sorted presenta-
tion, semantic consequence, and initial model are analogous to those given earlier.
For every order-sorted presentatigh &) such that is coherent, an initial model
may be constructed as a quotienflef[GM92]. There is a version of the equational
calculus that is sound and complete for coherent signatures [GM92], and the use
of term rewriting for proof as discussed in Sectjor] 2.6 is sound, provided that each
rewrite rulet — t’ is sort-decreasingi.e. sort(t’) < sort(t) [KKM88].

Example 2.7.16 (revisited).Here is a version of the specificatiGRATPRED in
which predis specified to be a total function on the non-zero natural numbers:

specNATPRED = sorts nznat< nat
ops O:nat
succnat— nznat
pred: nznat— nat
__+__:natx nat— nat
__X __:natx nat— nat

vYm, n: nat
« pred(sucgn)) =n
¢« 0+n=n
« sucgm) +n=sucdm-+n)
e 0Oxn=0

e sucdm) x n=(mxn)+n

In this version ofNATPRED, there are terms that are not well-formed in spite of the
fact that each operator application seems to be to a value in its domain. For example,
consider the following “term”:

Page: 89 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

90 2 Simple equational specifications
pred(sucq0) + sucg0)).

According to the signature df ATPRED, sucg0) + sucq0) is a term of sornat,

it is not a term of sorhznatin spite of the fact that its value is non-zero. In the
term algebrapred applies only to terms of sortiznat thus the application gfred

to sucg0) + succO) is not defined. One way of getting around this problem might
be to add additional operators to the signatur&afPRED:

specNATPRED = sorts nznat< nat
ops ...
__+__:nznatx nat— nznat
__+__:natx nznat— nznat
__X __:nznatx nznat— nznat

Thensucq0) +sucdO) is a term of sorhznat as desired. Unfortunately, this signa-
ture is not regular.Exercise: Why not? What can be done to make it regular?)

An alternative is to use a so-callegtract, an additional operation for converting
from a sort to one of its subsorts:

specNATPRED = sorts nznat< nat
ops ...

r:nat— nznat

¥m, n: nat k: nznat

.r(n)=n

Now, the termpred(r (sucg0) + sucq0))) is well-formed, and is equal tsucg0)
in all models of NATPRED. In the words of [GM9P], inserting the retractinto
pred(r (sucg0) + sucg0))) gives it “the benefit of the doubt”, and the term is “vin-
dicated” by the fact that it is equal to a term that does not contaifhe term
pred(r(0)) is also well-formed, but in the initial model @f ATPRED this term is
equal only to other terms containing the retracand can thus be regarded as an
error message. The use of retracts (which can be inserted automatically) is well-
behaved under certain conditions on order-sorted presentétions [GM92].

Another version ofNATPRED is obtained by using aarror supersortfor the
codomain ofpredrather than a subsort for its domain:

Page: 90 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.7 Fiddling with the definitions 91

specNATPRED = sorts nat < nat?
ops O:nat
succnat— nat
pred nat— nat?
__+__:natx nat— nat
__X __:natx nat— nat

vm, n: nat
« pred(sucgn)) =n
¢« 0+n=n
 sucgm) +n = sucgm-+n)
e Oxn=0

e sucdm) x n=(mxn)+n

The sortnat? may be thought of asat extended by the addition of an error value
corresponding tpred(0).

Here we have the same problem with ill-formed terms as before; an example is
the termsucgpred(sucg0))). Again, retracts solve the problem. In this case, the
required retract is the operatiomat? — nat, defined by the axiorin:nate r(n) =
n. O

Exercise 2.7.54Try to view the error algebra approach presented in Seftion2.7.3
as a special case of order-sorted algebra. O

2.7.6 Other options

The previous sections have mentioned only a few of the ways in which the standard
framework can be improved to make it more suitable for particular kinds of applica-
tions. A great many other variations are possible; a few of these are sketched below.

Example 2.7.55 (First-order predicate logic) Signatures may be modified to en-
able them to include (typeddredicate namesn addition to operation names,
e.g. ._<__:natx nat Atomic formulae are then formed by applying predicates
to terms; infirst-order predicate logic with equalifythe predicate _=__:sx sis
implicitly available for any sors. Formulae are built from atomic formulae using
logical connectives and quantifiers. Algebras are modified to include relations on
their carriers to interpret predicate names; the interpretation of the built-in equal-
ity predicate (if available) may be forced to be the underlying equality on values,
or it may merely be required to be a congruence relation. Homomorphisms are re-
quired to respect predicates as well as operations. The satisfactisenfencda
formula without free variables) by an algebra is as usual in first-order logic. See Ex-
amplg 4.1.1P for details of the version of first-order predicate logic with equality we
will use. Presentations involving predicates and first-order axioms are appropriate
for the specification of programs Ingic programming languagesuch as Prolog,
where the Horn clause fragment of first-order logic is used for writing the programs

Page: 91 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

92 2 Simple equational specifications

themselves. Note that such presentations may have no models at all, but even if they
have some models, they may have no initial models (see Example]2.7.11) or no final
models (see Exercife 2.7]14), or even no reachable moHgkscfse: Give a spec-
ification with first-order axioms having some models but no reachable model.)

Example 2.7.56 (Higher-order functions).Higher-order functions (taking func-
tions as parameters and/or returning functions as results) can be accommodated by
interpreting certain sort names as (subsets of) function spaces. GiverSaket
(base) sorts, €5~ be the closure a&under formation of function type&™ is the
smallest set such th&C S~ and for allsy,...,$,S€S7, S X -+ XS —SE S,
Then ahigher-order signatureX is a pair (S Q) where Q is an S~-indexed
set of operation names. This determines an ordinary signatureomprised of
the sort nameS&~ and the operation names {@ together with operation names
apply.(s1 X ++- X8 — S) XS X -+ X & — s for everysy,...,s,s€ S~. Note
that, except for the various instancesagiply, all the operations irE~ are con-
stants, albeit possibly of “functional” sort. Aigher-order X-algebrais just an
ordinary (total)X—-algebra, and analogously for the definitions of higher-order
X-homomorphism, reachable higher-ordealgebra, higher-ordeX-term, higher-
order X-equation, satisfaction of a higher-ordErequation by a higher-ordex-
algebra, and higher-order presentation. A higher-odatgebraA is extensionaif

for all sortss; x --- x sy — s€ S~ and valuesf,g € |Alg x...xs,—s, T = gwhenever
applya(f,as,...,an) = applys(g,as,...,an) for all a; € |Als,...,an € |Als,. In an
extensional algebra, every carrieffAls, «...xs,—s IS isomorphic to a subset of the
function spacgA|s, x --- x |Als, — |Als. A higher-orderZ-algebraA is amodelof

a presentatiofZ, @) if A=z &, Ais extensional, and is reachable. The reacha-
bility requirement (no junk) means thg|s,xs,—s Will almost never be the full
function spacdAls, x --- x |Als, — |Als: only the functions that are denotable by
ground terms will be present id\s, ...xs,—s. Higher-order (equational) presenta-
tions always have initial models [MTW83]. O

Example 2.7.57 (Polymorphic types)Programming languages such as Standard ML
[Pau96] can be used to defipelymorphic typesuch asx list (instances of which
includebool listand(bool list) list) andpolymorphic valuesuch aheadva. alist —

o (which is then applicable to values of types suclbasl list and (bool list) list).

To specify such types and functions, signatures are modified to cdgytncon-
structorsin place of sort names; for examplést is a unary type constructor and
boolis a nullary type constructor. Terms built using these type constructortypad
variables(such asx above) are th@olymorphic type®f the signature. The s&?

of operation names is then indexed by non-empty sequences of polymorphic types,
wheref € Q, 1,+ meansf:VFV(t1)U...UFV(ty) UFV(t)ety x --- xty — t. There

are various choices for algebras over such signatures. Perhaps the most straight-
forward choice is to require each algel#ao incorporate a (single-sortedjge-

bra of carriers Cari(A), having sets interpreting types as values and an operation
to interpret each type constructor. Then, for each operatien<, i+ and for

each instantiation of type variabl&s/ — |Carr(A)|, A has to provide a function
faii#(t1) x -+ x i*(tn) — i*(t). Various conditions may be imposed to ensure that

Page: 92 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.8 Bibliographical remarks 93

the interpretation of polymorphic operationspgrametricin the sense of [Str67],

by requiringfaj and f5 i to be appropriately related for different type variable in-
stantiations, i’. Another choice would be to interpret each type as the set of equiva-
lence classes ofpartial equivalence relatiomn a model of the untypetl-calculus
[BC88]. Axioms contain (universal) quantifiers for type variables in addition to
quantifiers for ordinary variables, as in Systemi_F [Gir89]; alternatively, type vari-
able quantification may be left implicit, as in Extended ML [KST97]. O

Example 2.7.58 (Non-deterministic functions)Non-deterministic functions may

be handled by interpreting operation names in algebras as relations, or equivalently
as set-valued functions. Homomorphisms are required to preserve possible values
of functions: for any homomorphish: A — B and operationf:s; x --- X 3 —

s, if a is a possible value offa(ay,...,a,) then hs(a) is a possible value of
fa(hs,(a1), ..., hs,(an)). Universally quantified inclusions between sets of possible
values may be used as axioms: t’ means that every possible valuet @ a possi-

ble value oft’. O

Example 2.7.59 (Recursive definitions)-ollowing [Sco76], partial functions may

be specified as least solutions of recursive equations, where “least” is with respect
to an ordering on the space of functions of a given type. To accommodate this, we
can usecontinuous algebras.e. ordinary (total)>-algebras with carriers that are
complete partially ordered sets (so-callgzbg and operation names interpreted as
continuous functionsn these sets. See Example 3.8.14. The “bottom” element

of the carrier for a sort, if it exists, represents the completely undefined value of that
sort. The order on carriers induces an order on (continuous) functions in the usual
fashion. A homomorphism between continuous algebras is required to be continu-
ous as a function between cpos. It is possible to define a language of axioms that
allows direct reference to least upper bounds of chains (see Examplg 4.1.22), and/or
to the order relation itself. Such techniques may also be used to specify infinite data
types such astreams a0

2.8 Bibliographical remarks

Much of the material presented here is well known, at least in its single-sorted
version, in universal algebra as a branch of mathematics. Standard references are
[Gra79] and [Coh65]. We approach this material from the direction of computer
science, seé [WecB?2] arnd [MT92], and present the fundamentals of equational spec-
ifications as developed in the 1970s [GTW76], [Gut75], [Zil74], see &lso [EM85]
for an extended monograph-style presentation.

The simplest and most limited form of a specification is a “bare” signature, and
this is what is used to characterise classes of algebras (program modules) in modu-
larisation systems for programming languages — see e.g. Standard ML [MTHM97],
[Pau96], where such characterisations are in fact called signatures.

Page: 93 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

94 2 Simple equational specifications

The first appearance of the Satisfaction Lemma (Lefnma]2.1.8) in the algebraic
specification literature was in [BGBO], echoing the semantic consequences of the
definition of (theory) interpretations in logic [End72]. This fundamental link be-
tween syntax and semantics will become one of the cornerstones of later develop-
ment starting in Chaptéf 4.

One topic that is only touched upon here (see e.g. Theprem P.2.10) is the ex-
pressive power of specifications. See [BT87] for a comprehensive survey of what is
known about the expressive power of the framework presented in this chapter. The
main theorem is the one mentioned at the beginning of Sectipn 2.7.

We make a distinction between presentations and theories that is not present in
some other work. This distinction surfaces in the definition of theory morphisms
(Definition [2.3.1]). For two presentations (not necessarily theofEs®) and
(X', @', [Gan83] takes a signature morphigmX — X’ to be a specification mor-
phismo: (X, &) — (X', @) if o(P) C P'. Such ac is referred to as an “axiom-
preserving theory morphism” in_[Mes89]. Exerc[se 2.8.15 shows that this is not
equivalent to our definition of theory morphism between the theories presented by
those presentations. Another possibility is to requite map only thegroundequa-
tions in® to equationsirCly/ (®'), as in [Ehr82]. These alternative definitions seem
unsatisfactory since they make little or no sense on the level of models, in contrast
to the relationship between theory and model levels for theory morphisms given by
Propositior] 2.3.713. We will later (Definitidn 5.5.1) defisecification morphisms
as a generalisation of morphisms between presentations, relying on this relationship.

The many-sorted equational calculus is presented in [GM85] together with a
proof that it is sound and complete. This builds on the standard equational calculus
[Bir35], but the modifications needed to deal with empty carriers in the many-sorted
context came as a surprise at the time. Our choice of rules in Sgctjon 2.4 is different
from this standard version but the two systems are equivalent (Exgrcise| 2.4.14) and
the proofs of soundness and completeness are analogous.

The initial algebra approach to specification (Sedfiof 2.5) is the classical one. It
originated with the seminal papér [GTW?76], and was further developed by Hartmut
Ehrig and his group; see [EMB5] for a comprehensive account.

Example[2.5.24 and Exercige 2.5.25 point at useful ways to make inductive
proofs easier by providing derived induction rule schemes, as possible for instance
in the logics of Larch[[GH93] and &s5L [Mos04] and their proof support systems
(LP [GG89] and H TS [MMLQ7], respectively), see also Chapter 6 of [Far92].

The proof of the incompleteness theorem for initial semantics (Thejorem 2.5.26)
from [MS85] follows [Nou81] where it was used to show that the equational calcu-
lus with a specific induction rule scheme is not complete. An alternative to adding
induction rules to the equational calculus is to restrict attention to so-called
complete presentations; these are presentati@ng) for which the equational
calculus itself yields all of th&-equations that hold in initial models ¢&, @)
[Hee86]. Then the problem becomes one of findingaanomplete presentation
corresponding to a given presentation. By the incompleteness theorem, this is not
always possible.

Page: 94 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

2.8 Bibliographical remarks 95

There is a substantial body of theory on term rewriting systems; Sectipn 2.6 is
only the tip of the iceberg. For much more on the topic, and for the details of the
Knuth-Bendix completion algorithm [KB70] that have been omitted in Se€tign 2.6,
see [DJ90], [[KIo9P], [[BN9B], [[Kir99] and/[Ter03]. See [KM87] or_[DJ90] for a
discussion of proof by consistency, which originated with [Muis80]. Like most work
in this area, all these restrict attention to the single-sorted case._Seel|[EM85] for a
treatment of the many-sorted case, up to the soundness and completeness theorems
for conversion, without our simplifying assumption (cf. Exer¢ise 2]6.11).

In the case of reachable and final semantics, it is usual to look at reachable or
final extensionof algebras (alternative terminology: hierarchical specifications),
rather than at the reachable or final interpretation of a completed specification. See
[BDP™79] or [WB82Z] for reachable semantics, and [GGM76] [or [Wan79] for fi-
nal semantics. Under appropriate conditions, the reachable models of a presentation
form a complete lattice, with the initial model at one extreme and the final model
at the other; see [GGMY6] and [BWFE84]. For such hierarchical specifications, an
incompleteness theorem that is even stronger than Thgorem|2.5.26 may be proved:
no sound proof system can derive gdbundequational consequences of such spec-
ifications, see [MS85].

The first attempt to specify errors by distinguishing error values from OK values
was [Gog78]. More details of the approach outlined in Se¢tion]2.7.3 can be found in
[GDLEB84]. The final semantics of error presentations is discusseéd in [Gog85]. See
[BBCS86] for an alternative approach which is able to deal with examples like the
one discussed in Exercise 2.1.29.

More details of the approach to partial algebras outlined in Seftion| 2.7.4 can
be found in[[BW82b]. WeakE-homomorphisms are called totBthomomorphisms
there. Alternative approaches to the specification of partial algebras are presented in
[Rei87] and [Kre8¥], and more recently [Mos$04]. See [Bur86] for a comprehensive
analysis of the various alternative definitions of the basic notions.

See [GM9?2], further refined irl_[MesD9], for more on the approach to order-
sorted algebra in Sectign 2.7.5. Alternative approaches include [Gog84]. [Poi90]
and [Smo86] which is sometimes referred to as “universal” order-sorted algebra to
distinguish it from “overloaded” order-sorted algebra as presented here. A universal
order-sorted algebra contains a single universe of values, where a sort corresponds
to a subset of the universe and each operation name identifies a (single) function
on the universe. A compromise is in rewriting logic [Mes92] as implemented in
Maude [CDE 02]. See[[GD94a] and [Mos93] for surveys comparing the differ-
ent approached. [GD944a] discusses how some of the definitions and results in Sec-
tion[2.7.% can be generalised by dropping or weakening the monotonicity require-
ments on order-sorted signatures and order-sorted algebras. Yet a different approach
to subsorting is taken in &L [Mos04] where subsort coercions may be arbitrary
injective functions rather than merely inclusions.

First-order predicate logic has been used as a framework for algebraic specifica-
tion in various approaches, see for instance CIP-L [BB8] and GisL [Mos04].

See [P0i86],[[MTW83], [Mei9P] and [Qia93] for different approaches to the alge-
braic specification of higher-order functions. Frameworks that cater for the spec-

Page: 95 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

96 2 Simple equational specifications

ification of polymorphic types and functions are described in [M$S90], [Mos89]
and [KST97]. See [Nip86] for more on algebras with non-deterministic operations;
for a different approach using relation algebra, see [BS93]. See [WM97] for a
comprehensive overview. Soundness and completeness of term rewriting for non-
deterministic specifications is studied in [Hus92]. Continuous algebras and the use
of Scott-style domain-theoretic techniques in algebraic specification were first dis-
cussed in[[GTWW?77]. See [Sch86] ar [G$90] for much more on domain theory
itself. Although these and other extensions to the standard framework have been ex-
plored separately, the few attempts that have been made to combine such extensions
(see e.g/JAC89] and [Mos04]) have tended to reveal new problems.

Page: 96 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

Chapter 3
Category theory

One of the main purposes of this book is to present a general, abstract theory of
specifications, which is independent from the exact details of the semantic struc-
tures (algebras) used to model particular aspects of program behaviour. Appropriate
mathematical tools are required to support the development of such a theory. The
basics of category theory provide us with just what we need: a simple, yet pow-
erful language that allows definitions and results to be formulated at a sufficiently
general, abstract level.

The most fundamental “categorical dogma” is that for many purposes it does not
really matter exactly what the objects we study are; more important are their mutual
relationships. Hence, objects should never be considered on their own, they should
always come equipped with an appropriate notion ofaphismbetween them. In
many typical examples, the objects are sets with some additional structure imposed
on them, and their morphisms are maps that preserve this structure. “Categorical
dogma” states that the interesting properties of objects may be formulated purely in
terms of morphisms, without referring to the internal structure of objects at all. As
a very simple example, consider the following two definitions.

Definition. Given two setsA and B, the Cartesian producbf A andB is the set
A x B that consists of all the pairs of elements frénandB, respectivelyA x B =
{(a,b) |ac AbeB} O

Definition. Given two set#\ andB, aproductof AandBis a seP together with two
functionsri: P — A andm,: P — B such that for any se with functionsf:C — A
andg: C — Bthere exists a unique functidnC — P such thah;m; = f andh;m, = g.

C

Jth 9

\
\
\
\
\
\
,
1 P o

97

98 3 Category theﬁry

It is easy to see that the Cartesian product of any two sets is a product in the
sense of the latter definition, where the functiensand ; are the projections on
the first and second components respectivelyi(t Defineh:C — Ax Bby h(c) =
(f(c),0(c)) for all c € C). Moreover, although a produBtof two setsA andB does
not have to be their Cartesian prodéck B since the elements & do not have to
be pairs of objects from andB, P is always isomorphic té x B (there is a one-to-
one correspondence between elemen afd ofA x B). Thus, the two definitions
may be viewed as equivalent for many purposes.

The reader may feel that the former definition (of the Cartesian product) is far
simpler than the latter (of a product). Indeed, to most of us, brought up to consider
set-theoretic concepts as the basis of all mathematics, this is in fact the case. How-
ever, the former definition suffers from a serious deficiency: it is formulated in terms
of elements and the membership relation for sets (which constitute the specific inter-
nal structure of sets). Consequently, it is very specifically oriented towards defining
the Cartesian product of sets and of sets only. If we now wanted to define the Carte-
sian product of, say, algebras (cf. Definitjon 1]2.9) we would have to reformulate
this definition substantially (in this case, by adding definitions of operations for
product algebras). To define the Cartesian product of structures of yet another kind,
yet another different version of this definition would have to be explicitly stated. Itis
obviously desirable to avoid such repetition of the same story for different specific
kinds of objects whenever possible.

The latter definition (of a product) is quite different from this point of view. It
does not make reference to the internal structure of sets at all; it defines a product
of two sets entirely in terms of its relationships with these sets and with other sets.
To obtain a definition of a product of two algebras, it is enough to replace “set”
by “algebra” and “function” by “homomorphism”. The same would apply to other
kinds of structures, as long as there is an appropriate notion of a morphism between
them.

The conclusion we draw from this example is that, first of all, objects of any kind
should be considered together with an appropriate notion of a morphism between
them, and then, that the structure imposed on the collection of objects by these
morphisms should be exploited to formulate definitions at an appropriate level of
generality and abstraction.

Let us have a look at another example:

Definition. A function f: A — B is surjectiveif for every b € B there exista € A
such thab = f(a). O

Definition. A function f: A— Bis anepimorphisnif for any two functionsy,g': B —
C, f;g=f;d impliesg=¢d. O

Definition. A function f: A — B is aretractionif there exists a functiog:B — A
such thag; f = idg. O

All the three definitions above are equivalent: a function is surjective if and only
ifitis an epimorphism, if and only if it is a retraction. As with the previous example,

Page: 98 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.1 Introducing categories 99

one may argue that the first of these definitions is very much specific to sets, and so
not abstract and not general enough. The two other definitions lack this deficiency:
they do not refer to the internal structure of sets, but use functions (set morphisms)
to define the concept. However, the two definitions when applied to other kinds of
objects (and their morphisms) may well turn out not to be equivalent. We cannot
say that one of them is “right” and the other is “wrong”; they simply incorporate
different aspects of what for sets is the property of “being surjective”. The lesson to
draw from this is that one has to be cautious when generalising a certain property to
a more abstract setting. An attempt to formulate a definition at a more general level
should provide us with a better understanding of the essence of the property being
defined; it may well turn out, however, that there is more than one essence in it,
giving several non-equivalent ways to reformulate the definition in a more abstract
way.

Finding an adequate generalisation is not always easy. Sometimes even very sim-
ple notions we are accustomed to viewing as fundamental are difficult to formulate
in categorical terms, as they depend in an essential way on the internal structure of
the objects under consideration, which is exactly what we want to abstract from.
The usual set-theoretic union operation is an example of such a notion.

Once we succeed in providing a more general version of a certain notion, it may
be instantiated in many different ways. It is interesting to observe how often an
adequate generalisation of an important specific concept leads to interesting instan-
tiations in the context of objects (and morphisms between them) different from the
ones we started with. Indeed, interesting instantiations in other contexts may be
regarded as a test of the adequacy of the generalisation.

A more wide-ranging polemic on the advantages of category theory presented at
a rather intuitive level may be found in [Gog91b].

With these remarks in mind, this chapter introduces the basic concepts and results
of category theory. It is not our intention to provide a full-blown introductory text
on category theory; although a few concepts are introduced which will not be used
elsewhere in this book, we consciously refrain from discussing many important but
more involved concepts and results. Our aim in this chapter is to provide a brief but
comprehensive overview of the basics of category theory, both in order to make this
book self-contained and to provide a handy reference.

3.1 Introducing categories

3.1.1 Categories
Definition 3.1.1 (Category).A categoryK consists of:

e acollection|K| of K-objects
o for eachA B ¢ |K|, a collectionK (A, B) of K-morphismgrom A to B; and

Page: 99 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

100 3 Category theory

o foreachA, B,C € K|, acomposition operatidh; : K (A,B) x K (B,C) — K(A,C)
such that:

1. forallA,B,A',B € |K|, if (A,B) # (A',B’) thenK(A,B)NK(A,B') = ;

2. (existence of identitigdor eachA € |K|, there is a morphisnita € K(A,A) such
thatida;g = g for all morphismsg € K(A,B) and f;ida = f for all morphisms
f e K(B,A); and

3. (associativity of compositigror any f € K(A,B), g € K(B,C) andh € K(C,D),
f(g:h) = (f;9);h. O

Notation. We refer toobjectsandmorphismsnstead oK -objects and -morphisms
when K is clear from the context. We writé:A — B (in K) for A/B € |K|,
f € K(A,B). For any f: A — B, we will refer to A as thesourceor domain and
to B as thetarget or codomainof f. The collection of all morphisms & will be
(ambigously) denoted big as well, i.e.K = Uagek| K(A,B). O

The above is just one of several possible equivalent definitions of a category.
For example, the identities, the existence of which is requirgd in (2), are sometimes
considered as part of the structure of a category.

Exercise 3.1.2Prove that in any category, identities are unique. d

The notion of a category is very general. Accepting the categorical dogma that
objects of any kind come equipped with a notion of morphism between them, it is
difficult to think of a collection of objects and accompanying morphisms that do
not form a category. Almost always there is a natural operation of morphism com-
position, which obeys two of the basic requirements above: it has identities and is
associative. Perhaps requiremént (1), which allows us to unambigously identify the
source and target of any morphism, is the most technical and hence least intuitively
appealing. But even in cases where the same entity may be viewed as a morphism
between different objects, this entity can always be equipped with an explicit indi-
cation of the source and target of the morphism (cf. Exainple]3.1.6), thus satisfying
requirement{(f1).

In the rest of this subsection we give a humber of examples of categories. We
start with some rather trivial examples, mainly of formal interest, and only then de-
fine some more typically considered categories. Further examples, which are often
more complex, may be found in the following sections of this chapter (and in later
chapters, see e.g. Sect[on 0.3 for somewhat more complex examples).

Example 3.1.3 (Preorder categories)A binary relation< C X x X is apreorder
on Xif:

e x<xforallxe X; and
o X<yAny<z=x<zforallxy,zeX.

1 We will use semicolon ; to denote composition of morphisms in any category, just as we used
it for composition of functions and homomorphisms in the preceding chapters. Composition will
always be written in diagrammatic orddryg is to be read asf‘followed byg".

Page: 100 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.1 Introducing categories 101

A preordercategory is a category that has at most one morphism with any given
source and target.

Every preordex C X x X gives rise to a preorder categdfy: where|K<| =X
andK < (x,y) has exactly one elementif< y and is empty otherwise.

This definition does not identify the categdfy unambigously, since different
elements may be used as morphism&ina(x,y) for x <'y. However, we will not
worry here about the exact nature of morphisms (nor objects) in a category, and we
will treat this and similar definitions below as sufficient. More formally, all cate-
gories satisfying the above requirements are isomorphic in the technical sense to be
discussed in Sectign 3.4 (cf. Definitipn 3.4.68).

Here are some trivial examples of preorder categories:

(0 (the empty category)
1

id
2

id id

3: \ ' ' (+ identities)
_ j

(+ identities)

\
S

Exercise.How many morphisms doeshave? O

Example 3.1.4 (Discrete category)A categoryK is discrete whenever for all
A Be [K|,K(A, B) is empty ifA+# B and contains exactly one element (the identity)
otherwise.
Any collection of objectX gives rise to a discrete categdfy where|Kx| = X.
O

Page: 101 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

102 3 Category theory

Example 3.1.5 (Monoid category)A categoryK is amonoidif K has exactly one
object.

A set X together with a function ; X x X — X and a distinguished element
id € X isamonoid(X,;,id) if (x;y);z=x;(y;z) andid;x = x;id = x for all x,y,z€ X.
Every monoid(X,;,id) gives rise to a monoid (category) having morphisénand
composition ;. O

Example 3.1.6 (Set, the category of setsfhe categongSetof sets with functions
as morphisms is defined as follows:

Objects ofSet sets;

Morphisms ofSet functions; however, to ensure that the requirements stated in
Definition[3.1.] are satisfied (disregarding the particular mathematical represen-
tation of the concept of a function one uses), we will always consider functions
with explicitly given domain and codomain. Thus, a morphism in the category
Setwith sourceA and targeB is a triple (A, f,B), wheref: A — Bis a function.

O

Example 3.1.7 (Set, the category ofS-sorted sets).For any setS, the category
Sef> of Ssorted sets is defined as follows:

Obijects ofSef>: S-sorted sets;
Morphisms ofSef: S-sorted functions (with explicitly given domain and codomain).
0

Example 3.1.8 (AlgX), the category ofX-algebras).For any signaturg&, the cat-
egoryAlg(X) of Z-algebras is defined as follows:

Objects ofAlg(X): X-algebras;
Morphisms ofAlg(X): X-homomorphisms (with explicitly given domain and codomain).
O

Example 3.1.9 (CPO, the category of complete partial orders)The category
CPO of complete partial ordefand continuous functions between them is defined
as follows:

Objects of CPO: complete partial orders, i.e., partially ordered sgfs<) such
that any countable chaig < x; <...in (X, <) has a least upper boud}- o ;;
Morphisms ofCPO: continuous functions, i.e., functions that preserve least upper
bounds of countable chains. ad

Exercise 3.1.10Complete the above examples by formalising composition in the
obvious way. Indicate identities and prove associativity of composition. O

Example 3.1.11 (AlgSig, the category of algebraic signatures)he category
AlgsSig of (algebraic) signatures is defined as follows:

2 Cpos and continuous functions as defined here are often referreatemss ando-continuous
functions, respectively.

Page: 102 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.1 Introducing categories 103

Objects ofAlgSig: signatures;

Morphisms ofAlgSig: signature morphisms;

Composition inAlgSig: for any 6:X — X’ and ¢’: X’ — X”, their composition
0;0:Z — X" is given by (0;0")sorts = Osorts Osorts @aNd (00")ops = oops;cr{)ps,
cf. Exercis¢_1.5]3. ad

Exercise 3.1.12 (AlgSitf", the category of signatures with derived morphisms).
Recall the concept of a derived signature morphism from Defir{ition 1.5.14. Define
the categonAlgSig®® of algebraic signatures with derived signature morphisms.
Use Exercisg 1.5.18 to define composition of derived signature morphismst

Example 3.1.13 (T, the category of substitutions over a signatureX). Recall
(cf. Sectior] 1.}4) that for any signatuke= (S Q) andS-sorted set of variableX,
Ty (X) is the algebra of terms over with variablesX. Ty (X) is characterised up to
isomorphism by the property that for allyalgebraA, anyS-sorted may: X — |A|
uniquely extends to &-homomorphismv*: Ty (X) — A (Fact§ 1.4}4 and 1.4.1L0).

For any algebraic signatupg, the categoryl » of substitutions oveE is defined
as follows (cf. Exercisg 1.4.9):

Objects of Tx: Ssorted sets (of variables);

Morphisms ofTx: for any setsX andY, a morphismé from X to Y is a sub-
stitution of terms with variable¥ for variablesX, i.e., anSsorted function
0:X — [T=(Y)];

Composition inTy: given any setsX, Y and Z, and morphism®:X — Y and
0":Y — Zin Ty, i.e., functionsd: X — |Tx(Y)| and6:Y — |Tx(Z)], their com-
position6;6’: X — Z is the functiond;0": X — |Tx(Z)| defined by(8;0)s(x) =
(6")%(6s(x)) forallse S x € Xs. 0

Exercise 3.1.14 (E/®, the category of substitutions over modulo equations

®). Generalise the above definition of the category of substitutions by consider-
ing terms up to an equivalence generated by a set of equations. That is, for any
algebraic signatur&€ = (S Q) and setd of XZ-equations, for anys-sorted set of
variablesX define two termg,t; € |Tx (X)|s (for any sorts € S) to be equivalent,
written t; = tp, if @ by VXety =t (cf. Section 2.4). Now, by analogy with the
category of substitutions, define the categ®ry/® to haveS-sorted sets as ob-
jects and substitutions modutb as morphisms. A substitution of terms moddio

with variablesy for variablesX is anS-sorted functiord: X — (|Tg(Y)|/=). Com-
position inTx /&P is defined analogously as ihy, by choosing a representative

of each of the equivalence classes assigned to variables: given- (|Tz(Y)|/=)
ando”:Y — (|Tx(2)|/=), 6;8": X — (|Tx(Z)| /=) maps ank € X to (8")¥(t), where

0(x) = [t]= (show that the result does not depend on the choice of the representative
t € 6(x)). O

Exercise 3.1.15 (E,, the algebraic (X, ®)-theory). Building on the definition

of the category of substitutions modulo a set of equations sketched above, abstract
away from the actual names of variables used in the objedts 6P by listing them

in some particular order, as in derived signatures (cf. Definjition 7.5.13). That is, for

Page: 103 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

104 3 Category theory

any algebraic signaturE = (S Q) and set® of X-equations, define the category
Tx ¢ With sequences; ...s, € S* of sort names as objects. A morphismTig ¢

froms;...s,€ S tos; ... g, € S isann-tuple([t1]=, ..., [ta]=) of terms moduloib,
where the equivalences is sketched in Exercige 3.1]14 above, and ferl, .
ti € [Te(lg. g)ls, With Iy ¢ = = {[1]d,,...,[m]:g,}. The composition mT; D |s

given by substitution on representatlves of equivalence classes (the position of a
term in a tuple identifies the variable it is to be substituted fd5).o is usually
referred to as thalgebraic theoryoverX generated by@ﬁ a0

3.1.1.1 Foundations

In the above, and in the definition of a category in particular, we have very cau-
tiously used the non-technical tercollection and talked otcollectionsof objects

and morphisms. This allowed us to gloss over the issue of the choice of appropriate
set-theoretical foundations for category theory. Even a brief look at the examples
above indicates that we could not have been talking here justts{in the sense

of Zermelo-Fraenkel set theory): we want to consider categoriesSétewhere

the collection of objects consists of all sets, and so cannot be a set itself. Using
classeqcollections of sets that are possibly too “large” to be sets themselves, as in
Bernays-@del set theory) might seem more promising, since if we replace the term
“collection” by “class” in Definitio 3.1.]L then at least examples of categories like
Setwould be covered. However, this is not enough either, since even in this sim-
ple presentation of the basics of category theory we will encounter some categories
(like Cat, the category of “all” categories, and functor categories defined later in
this chapter) where objects themselves are proper classes and the collection of ob-
jects forms a “conglomerate” (a collection of classes that is too “large” to be a class,
cf. [HS73]). We refer to[[Bn8%] for a careful analysis of the basic requirements
imposed on a set theory underlying category theory.

Perhaps the most traditional solution to the problem of set-theoretic foundations
for category theory is sketched [n [Mac¢71]. The idea is to work within a hierarchy of
set universesUn)n>0, Where each univerdg,, n > 0, is closed under the standard
set-theoretic operations, and is an element of the next universe in the hierarchy,
Un € Unt1. Then there is a notion of category corresponding to each level of the
hierarchy, and one is required to indicate at which level of the hierarchy one is
working at any given moment.

However, in our view such pedantry would hide the intuitive appeal of “naive”
category theory. We will therefore ignore the issue of set-theoretic foundations for
category theory in the sequel, with just one exception: we define what it means for
a category to be (locally) small and use this to occasionally warn the reader about
potential foundational hazards.

3 In the literature, the algebraic theory ovmenerated byb is often defined with substitutions
considered as morphisms in the opposite direction, i.e., as the catﬁ%wpposite toTx ¢

(cf. Definition@ below).

Page: 104 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.1 Introducing categories 105

Definition 3.1.16 (Small category)A categoryK is locally smallif for any A,B
K|, K(A,B) is a set (an element of the lowest-level univelgg; K is smallif in
addition|K| is a set as well. O

3.1.2 Constructing categories

In the examples of the previous subsection, each category was constructed “from
scratch” by explicitly defining its objects and morphisms and their composition.
Category theory also provides numerous ways of modifying a given category to
yield a different one, and of putting together two or more categories to obtain a
more complicated one. Some of the simplest examples are given in this subsection.

3.1.2.1 Subcategories

Definition 3.1.17 (Subcategory)A categoryK1 is asubcategorpf a categonk?2
if |K1| C |K2| andK1(A,B) C K2(A,B) for all objectsA,B € |K1|, with compo-
sition and identities irK1 the same as iK2. K1 is afull subcategory oK2 if
additionallyK1(A,B) = K2(A,B) for all A,B € |[K1|. K1 is awide subcategory of
K2 if [K1| =|K2|. O

For any categorK, any collectionX C |K| of objects ofK determines a full
subcategory(‘x of K, defined bylK \xl = X. Whenever convenient, K is evident
from the context, we will identify collections C |K| with K \x-

Example 3.1.18 (FinSet, the category of finite setsyhe categoryinSet of finite
sets is defined as follows:

Objects ofFinSet finite sets;
Morphisms and composition ifinSet as inSet

FinSetis a full subcategory oet O

Example 3.1.19.The category of single-sorted signatures is a full subcategory of
the categonAlgSig of (many-sorted) signatures.

The discrete category of sets is a subcategory of the category of sets with inclu-
sions as morphisms, which is a subcategory of the category of sets with injective
functions as morphisms, which is a subcategoreff

For any signatur& and setb of X-equations, the clasdody (P) of X-algebras
that satisfy® determines a full subcategory @flg(X), which we denote by
Mod (X, @). O

Exercise 3.1.20Give an example of two categori&d, K2 such thatK1| C |K2]|,

K1(A,B) C K2(A,B) for all objectsA,B € |[K1|, with composition inK1 the same
as inK2, but such thak1 is nota subcategory df2. O

Page: 105 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

106 3 Category theory

3.1.2.2 Opposite categories and duality

One of the fundamental theorems of lattice theory (cf. €.a. [DP90]) is the so-called
duality principle Any statement in the language of lattice theory has a dual, obtained
by systematically replacing greatest lower bounds by least upper bounds and vice
versa. The duality principle states that the dual of any theorem of lattice theory is
a theorem as well. In a sense, this allows the number of proofs in lattice theory to
be cut by half: proving a fact gives its dual “for free”. A very similar phenomenon
occurs in category theory; in fact, the duality principle of lattice theory may be
viewed as a consequence of a more general duality principle of category theory.
Replacing greatest lower bounds by least upper bounds and vice versa is generalised
here to the process of “reversing morphisms”.

Definition 3.1.21 (Opposite category)The opposite categorpf a categonK is
the categorK °P where:

Objects ofK°P: |K%| = [K];

Morphisms ofK°P: K°P(A,B) = K(B,A) for all A,B € |K°|;

Composition irK°P: for f € K°P(A B) (i.e., f € K(B,A)) andg € K°?(B,C) (i.e.,
g€ K(C,B)), f;ge K®P(AC)isg;f € K(C,A).

K ©P: K:
" f” 1 g" f g
A - B - C A = B C
“frrgi="gf" o f =

Exercise 3.1.22Check that:
1. K°P s a category.
2. (KOP)oP — K,
3. Identities inK°P are the same as K. O

If W is a categorical concept (property, statement, ...) thedutd, co-W, is
obtained by reversing all the morphisms\ih This idea may be formalised in two
ways. The first is to introduce a formal language of category theory, and then de-
fine the operation of forming a dual as an operation on formal statements in this
language. The other is to formally interpe-W in a categoryK asW in the cat-
egoryK°P, Since formalising the language of category theory is beyond the scope
of this book (but cf.[[Mac7/1] or [Hat82]), we take the second option here and will
rely on an intuitive understanding of duality in the sequel. For example, consider the
following property of objects in a category:

P(X) : for any objecty there is a morphisnfi:Y — X.
Then:
co-P(X) : for any objecty there is a morphisnfi: X — Y.

Page: 106 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.1 Introducing categories 107

Note that indeedo-P(X) in any categorK amounts td?(X) in K°P.
Since any category is the opposite of a certain category (namely, of its opposite),
the following fact holds:

Fact 3.1.23 (Duality principle). If W holds for all categories theaoW holds for
all categories as well. O

3.1.2.3 Product categories

Definition 3.1.24 (Product category)For any two categorid§1 andK2, theprod-
uct categonK1 x K2 is defined by:

Objects ofK1 x K2: |K1 x K2| = |[K1]| x |K2| (the Cartesian product);
Morphisms ofK1 x K2: forall A/A’ € |K1| andB,B' € |[K2],
K1 x K2((A,B),(A,B)) = K1(AA) x K2(B,B');
Composition irK1 x K2: for f:A — A and f":A' — A” in K1, g:B — B’ and
g:B' —B"inK2, (f,g);(f',d) = (f;f,g4d). 0

Exercise 3.1.25ldentify the category to which each semicolon in the above defini-
tion of composition irK1 x K2 refers. Then show th#tl x K2 is indeed a category.
O

Exercise 3.1.26Define K", whereK is a category anah > 1. What would you
suggest fon = 0? O

3.1.2.4 Morphism categories

Definition 3.1.27 (Morphism category).For any categorK, the categoryK — of
K-morphismgs defined by:

Objects ofK™: K-morphisms;

Morphisms ofK —: a morphismirkK —~ from f:A— A’ (inK)tog:B — B (inK) is
apair(k, k') of K-morphisms wherk: A— Bandk': A’ — B’ such thak;g= f;K;

Composition irK ~: (k,K');{I,1") = (k;I,K;I"). O

The requirement in the definition of a morphismKn” may be more illustra-
tively restated as the requirement that the following diagram commutes in the cate-
goryK:

A k

B

A/

Page: 107 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

108 3 Category theory

For now, we will rely on an intuitive understanding of the concept of a diagram in
a category; see Sectipn 3.5 for a formal definition. We say that a diagram in a
categorycommutegor, is commutativeif for any two paths with the same source
and target nodes, the composition of morphisms along each of the two paths yields
the same result.

Drawing diagrams anchasinga diagram in order to prove that it is commutative
is one of the standard and intuitively most appealing techniques used in category
theory. For example, to justify Definitidn 3.1]27 above it is essential to show that
the composition of two morphisms i~ as defined there yields a morphism in
K. This may be done bpasting togethetwo diagrams like the one above along
a common edge, obtaining the following diagram:

A k ~ B ! ~C

A/ k/ B/ I/ > C/
A simple argument may now be used to show that if the two simpler diagrams are
commutative then the above diagram obtained by pasting them together along the
edge labelled bg commutes as well:

£ (K1) = (£:K)1" = (kg);l" =k;(g;l") = k;(1;h) = (k1);h

Definition 3.1.28 (Slice category)LetK be a category withh € |K|. Thecategory
K | A of K-objects over Aor, theslice ofK over A is defined by:

Objects ofK |A: pairs(X, f) whereX € |[K| andf € K(X,A);
Morphisms ofK |A: a morphism from(X, f) to (Y,qg) is aK-morphismk: X — Y
such thak;g = f:
K

X Y

Composition irK |A: as inK. O

Exercise 3.1.29Show thatk | A may be constructed as a subcategorKof. Is it
full? O

Exercise 3.1.30DefineK 1A, the category oK -objectsunder A CompareK | A)°P,
K°P| A and (K °P| A)°P with K TA. 0

Page: 108 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.1 Introducing categories 109

3.1.3 Category-theoretic definitions

In this section we will give a few simple examples of how certain special morphisms
may be characterised in a style that is typical for category-theoretic definitions. As
indicated in the introduction to this chapter, the idea is to abstract away from the “in-
ternal” properties of objects and morphisms, characterising them entirely in categor-
ical language by referring only to arbitrary objects and morphisms of the category
under consideration. Such definitions may be formulated for an arbitrary category,
and then instantiated to a particular one when necessary. We will also indicate a few
basic properties of the concepts we introduce that hold in any category.

Throughout this section, l&t be an arbitrary but fixed category. Morphisms and
objects we refer to below are thoselof unless explicitly qualified otherwise.

3.1.3.1 Epimorphisms and monomorphisms

Definition 3.1.31 (Epimorphism).A morphismf: A — B is anepimorphisnior is
epi) if for all g:B — C andh:B — C, f;g= f;himpliesg=h.

fig
/ f g \
A B C
_ "
f:h
O
Example 3.1.32In Set f is epi iff f is surjective. ad

There are “natural” categories in which epimorphisms need not be surjective. For
example:

Exercise 3.1.33Recall the categor€PO of complete partial orders and continu-
ous functions introduced in Examgjle 3]1.9. Give an example of a continuous func-
tion that is an epimorphism iBPO even though it is not surjective. Try to charac-
terise epimorphisms in this category. O

Definition 3.1.34 (Monomorphism).A morphismf: B — Ais amonomorphisnfor
is mong if for all g:C — Bandh:C — B, g;f = h;f impliesg = h.

o f

K g f \

C

_

NS

h; f

Page: 109 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

110 3 Category theory

Example 3.1.35.In Set f is mono iff f is injective. O
Note that mono means the same as co-epi,fi.s.mono inK iff f is epiinK°P.

Fact 3.1.36.

1. If f:A— B and gB — C are mono then;f: A— C is mono.
2. Forany fA—Band gB— C, if f;g:A— C is mono then f is mono.

Proof. The proof is rather straightforward, and significantly more complex proofs
will be omitted in the rest of this chapter. We present it here explicitly only as a
simple example of the style of argument, very common in category-theoretic proofs,
exploiting the most basic properties of composition in an arbitrary category.

1. According to Definitior] 3.1.34, we have to show that for dm':D — A if
h;(f;g) = H;(f;g) thenh=h'. So, supposk;(f;g) =h';(f;g). Then, since com-
position is associative(h; f);g = (h';f);g. Consequently, sincg is mono, by
Definition|3.1.34h; f = h'; f. Thus, using the fact thdtis mono, we can indeed
deriveh=H'.

2. Similarly as in the previous case: suppose that for saimeD — A, h;f = H;f.
Then alsah; f);g = (h';f);g, and sdh;(f;g) = I;(f;g). Now, sincef ;g is mono,
it follows directly from the definition that indedu= h'.

O

Exercise 3.1.37Dualise both parts of Faft 3.1|36. Formulate the dual proofs and
check that they are indeed sound. O

3.1.3.2 Isomorphic objects

Definition 3.1.38 (Isomorphism).A morphismf: A — B is anisomorphisim(or is

iso) if there is a morphisnf ~1:B — A such thatf; f~1 =ida and f ~1;f = idg. The
morphismf~1:B — Alis called thenverseof f, and the object andB are called
isomorphic We write f: A= B or justA = B.

O
Exercise 3.1.39Show that the inverse of a morphism, if it exists, is unique. O

Note that iso means the same as co-iso, that is, isomorphisrsei-dualcon-
cept.

Exercise 3.1.40Check that iff: A— B andg: B — C are iso therf;g: A— Cis iso
as well. O

In Set a morphism is iso iff it is both epi and mono. However, this property does
not carry over to an arbitrary category:

Page: 110 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.2 Limits and colimits 111

Exercise 3.1.41Show that iff is iso thenf is both epi and mono. The converse is
not true in general; give a counterexample. O

Exercise 3.1.42We say that a morphisrfi: A — B is aretractionif there is a mor-
phismg: B — A such thag; f = idg. Dually, a morphismf: A — B is acoretraction
if there is a morphisng: B — A such thatf;g = ida. Show that:

1. A morphism is iso iff it is both a retraction and a coretraction.
2. Every retraction is epi.
3. Amorphism is iso iff it is an epi coretraction.

Dualise the above facts. a

Itis easy to see that any two isomorphic objects have the same “categorical prop-
erties”. Intuitively, such objects have abstractly the same structure and so are indis-
tinguishable within the given category (which does not mean that isomorphic objects
cannot have different “non-categorical” properties, cf. Exarpiple 1.3.12). Indeed, an
isomorphism and its inverse determine one-to-one mappings between morphisms
going into and coming out of isomorphic objects. Hence, categorical definitions of
objects define them only “up to isomorphism”. The following section provides typ-
ical examples of this phenomenon.

3.2 Limits and colimits

In this section we show how certain special objects in an arbitrary category together
with their “characteristic” morphisms may be defined in purely categorical terms by
so-calleduniversal propertieswe hope that the reader will recognise the pattern in
the example definitions below. Sectigns 3,2.1-3.2.4 present some typical instances
of this, introducing the most commonly used cases of the geli@iatonstruction
and its dual, which are then presented in their full generality in Seftion|3.2.5. In
most of the cases in this section we will explicitly spell out the duals of the con-
cepts introduced, since many of them have interesting instances in some common
categories (and are traditionally given independent names).

Throughout this section, l&t be an arbitrary but fixed category. Morphisms and
objects we refer to are those I§f unless explicitly qualified otherwise.

3.2.1 Initial and terminal objects

Definition 3.2.1 (Initial object). An objectl € |K|isinitial in K if for eachA € |K|
there is exactly one morphism frohto A. O

Example 3.2.2.The empty se® is initial in Set The algebrdy of groundX-terms
is initial in Alg(X), for any signature € |AlgSig.

Page: 111 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

112 3 Category theory

Recall the definition of an initial model of an equational specification (Defini-
tion [2.5.13). For any signaturE and a setd of Z-equations, the initial model
of (X,®) (which exists by Theoreth 2.5]14) is an initial object in the category

Mod (X, ®) (as defined in Examp|e 3.1]19). 0
Exercise 3.2.3What is an initial object irAlgSig? Look for initial objects in other
categories. O
Fact 3.2.4.

1. Any two initial objects ik are isomorphic.
2. If lisinitial in K and I is isomorphic to | then’lis initial in K as well.

Proof. The proof is rather straightforward. We present it here explicitly only as a
simple example of the style of argument, very common in category-theoretic proofs,
which exploits universality (a special case of which is the property used in the def-
inition of an initial object). The requirement that therdstsa morphism satisfying

a certain property is used to construct some diagrams, and themitdpgenes®f

this morphism is used to show that the diagrams constructed commute.

1. Suppose thdt |’ € |[K| are two initial objects irK. Then, by the initiality ofl,
there exists a morphisrf| — I’. Similarly, by the initiality ofl’, there exists a
morphismg:1” — I. Thus, we have constructed the following diagram:

f
id|<>| — |/<>id,,
g

Now, by the initiality ofl, there is auniquemorphism froml to I, and sad, =
f;g. Similarly,id,, = g; f. Thusf is an isomorphism (with inversg) andl and!’
are indeed isomorphic.

2. Suppose that € |K| is initial in K, and leti:l — |’ be an isomorphism with
inversei~1:1’ — |. Consider an arbitrary objegtc |K|. By the “existence part”
of the initiality property ofl, we know that there exists a morphisinl — A.
Hence, there exists a morphism frofio A as well, namely~1;f:1’ — A. Then,
let f':1” — A be an arbitrary morphism fro{ to A. By the “uniqueness part”
of the initiality property ofl, f =i;f’, and soi—1;f =i7%;(i;f") = (i %i);f' =
id,/;f/ = f’. This shows thait; f is the only morphism front to A, and so that
I”is indeed initial inK.

a

The last fact indicates that the initiality property identifies an object up to iso-
morphism. As argued in Secti¢n 3.1]3.2, in category theory this is the most exact
characterisation of an object we may expect. In the following we will speak of “the”
initial object meaning an initial object identified up to isomorphism. We adopt the
same convention in the many similar cases introduced in the sequel.

Page: 112 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.2 Limits and colimits 113

3.2.1.1 Dually:

Definition 3.2.5 (Terminal object). An object1 € |K]| is terminal inK if for each
A€ |K| there is exactly one morphism froAuto 1. O

Note that terminal means the same as co-initial.

Exercise 3.2.6 Are there any terminal objects ifiet Alg(X) or AlgSig? What
about terminal objects iAlgSigi®'?
Recall the definition of a terminal (final) model of an equational specification
(Definition[2.7.12). Restate it using the notion of a terminal object as defined above.
O

Exercise 3.2.7Dualise Fadi 3.2]4. O

3.2.2 Products and coproducts

Definition 3.2.8 (Product).A productof two objectsA, B € |K| is an objecAx B €
|K| together with a pair of morphisnms.: A x B — A andng: A x B — B such that
for any objecC € |K | and pair of morphism$:C — A andg:C — Bthere is exactly
one morphism{f,g):C — A x B such that the following diagram commutes:

¢
|
f (1.9 N\
\
}
A A AxB = B

O

Example 3.2.9.In Set the Cartesian product é andB is a productA x B, where
7a, mg are the projection functions. For any signatdreproducts inAlg(X) are
defined analogously (cf. Definition 1.2.9). O

Exercise 3.2.10What is the product of two objects in a preorder category? O
Exercise 3.2.11Show that any two products & B < |K| are isomorphic. O

Exercise 3.2.12Suppose thah, B € |K| have a product. Giveh:C — Aandg:C —
B, and hencéf,g):C — A x B, show that for any: D — C, h;(f,g) = (h; f,h;g).
O

Exercise 3.2.13Prove that:
1. AxB=BxAforanyA Be |K]|.

Page: 113 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

114 3 Category theory

2. (AxB)xC=Ax (BxC) foranyA,B,C € |[K|. HINT: The following diagram
might be helpful:

A B C O
Exercise 3.2.14Define the product of an arbitrary family &f-objects. What is the
product of the empty family? O
3.2.2.1 Dually:

Definition 3.2.15 (Coproduct).A coproductof two objectsA, B € |K| is an object
A+B € |K| together with a pair of morphismg: A— A+ Bandiz:B— A+ B such
that for any objec€ € |[K| and pair of morphismé$:A — C andg:B — C there is
exactly one morphisti,g]: A+ B — C such that the following diagram commutes:

A B
O

Example 3.2.16.In Set the disjoint union of setd andB is their coproducA+ B,
whereia, 1g are the injections. Similarly, iklgSig, the (componentwise) disjoint
union of algebraic signatures andX’ is their coproduc + X', wheretia, 1 are
the obvious injections. a0

Note that coproduct means the same as co-product.

Exercise 3.2.17Dualise the exercises for products. a

Page: 114 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.2 Limits and colimits 115

Exercise 3.2.18For any algebraic signatu® = (S Q) and twoS-sorted setX
andY, show that their disjoint unioilX WY is the coproduct oX andY in the
categoryT s of substitutions oveE (recall Examplé¢ 3.1.13), where the coproduct
injections are the identity substitutions (of the corresponding variables Xrent

for variables inX and inY, respectively). Generalise this to the categdgy/ & of
substitutions oveZ modulo a setp of X-equations (cf. Exercide 3.1]14). Finally,
characterise coproducts in the categdsys, the algebraic theory over generated

by @ (Exercisd 3.1.15). g

3.2.3 Equalisers and coequalisers

We have defined above products and coproducts for arbitrary pairs of objects in a
category. In this section we deal with constructions for pairs of morphisms con-
strained to beparallel, i.e., pairs of morphisms that have the same source and the
same target.

Definition 3.2.19 (Equaliser).An equaliserof two parallel morphisms:A — B

andg:A — B is an objectE € |K| together with a morphisrh:E — A such that
h; f = h;g, and such that for any objeEt € |K| and morphisniY: E’ — A satisfying
W;f = h';g there is exactly one morphiskaE’ — E such thak;h =h':

E/
/
k / H
/
/ f
E A B
h g O
Exercise 3.2.20Show that an equaliser df A — B andg: A — B is unique up to
isomorphism. O

Exercise 3.2.21Show that every equaliser (to be more precise: its morphism part)
is mono, and every epi equaliser is iso. O

Exercise 3.2.22Construct equalisers of pairs of parallel morphism$&éat Then,
for any signatureZ, construct equalisers of pairs of parallel morphismAlim(X).
HINT: For any two functiond,g: A — B consider the setac A| f(a) =g(a)} C A

O

3.2.3.1 Dually:

Definition 3.2.23 (Coequaliser).The dual notion to equaliser equaliser The
diagram now looks as follows:

Page: 115 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

116 3 Category theory

f \
g h

A

Exercise. Formulate explicitly the definition of a coequaliser. Then dualise the ex-
ercises for equalisers. O

Exercise 3.2.24What is the coequaliser of two morphisms3et? What is the co-
equaliser of two morphisms iAlgSig? What is the coequaliser of two morphisms
in Alg(X)? HINT: Given two functionsf, g: A — B consider the quotient & by the
least equivalence relatios on B such that for ala € A, f(a) = g(a). O

Exercise 3.2.25What is the coequaliser of two morphisms in the category of sub-
stitutionsT 5 ? a

3.2.4 Pullbacks and pushouts

Definition 3.2.26 (Pullback).A pullbackof two morphismsf: A — C andg:B — C
having the same codomain is an objBot |K| together with a pair of morphisms
j:P— Aandk:P — B such thatj; f = k;g, and such that for any objeBt € |K| and
pair of morphisms’:P’ — A andk’: P’ — B satisfyingj’;f = k’;g there is exactly
one morphisnh: P — P such that the following diagram commutes:

O

VAN
N

Exercise 3.2.27Show that a pullback of:A — C andg:B — C is unique up to
isomorphism. O

k/

T~ ——

O

Page: 116 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.2 Limits and colimits 117

Exercise 3.2.28Show that ifK has products (of all pairs of objects) and equalisers
(of all pairs of parallel morphisms) than it has pullbacks as well (i.e., all pairs of
morphisms with common target have pullback&in

HINT: To construct a pullback of: A— C andg: B — C, first construct the prod-
uct A x B with projectionsma: A x B— Aandzrg: A x B— B and then the equaliser
h:P — AxBof ma; f:Ax B— Candng;g:Ax B— C. O

Exercise 3.2.29Construct the pullback of two morphisms $et, then inAlg(X),
and inAlgSig. O

Exercise 3.2.30Prove that ifK has a terminal object and all pullbacks (i.e., any
pair of K-morphisms with common target has a pullbackinthen:

1. K has all (binary) products.
2. K has all equalisers. INT: Get the equaliser of, g: A — B from the pullback of
(ida,), (ida,9):A— Ax B. O

Exercise 3.2.31Prove that pullbacks translate monomorphisms to monomorphisms:
if
f

-

g
is a pullback square arglis mono, thenf is mono as well. O

Exercise 3.2.32Consider the following diagram:

Prove that:

1. If the two squares are pullbacks then the outer rectangle is a pullback.
2. If the diagram commutes and the outer rectangle and right-hand square are both
pullbacks then so is the left-hand square. O

3.2.4.1 Dually:

Definition 3.2.33 (Pushout).The dual notion to pullback isushout The diagram
now looks as follows:

Page: 117 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

118 3 Category theory

k/

Exercise.Spell out the definition of a pushout explicitly. Then dualise the exercises
for pullbacks. O

Pushouts provide a basic tool for “putting together” structures of different kinds.
Given two objectA andB, a pair of morphismg:C — A andg:C — B indicates
a common source from which some “parts” dfand B come. The pushout of
andg puts togetheA and B while identifying the parts coming from the common
source as indicated bl andg, but keeping the new parts disjoint (cf. the dual of

Exercisq 3.2.28).
Example 3.2.34 Working in Set, consider:

A={1,23}
B={34,5}
C={&}

f={®#—2} :C—A
g={%—4} C—B

Then the pushout objeétis (up to isomorphism) given as follows:

P: {1/7{2/:4//}73/’3//75//}
j={1—1,2—{2=4"},3—-3} :A—P
k={3—3"4— {2=4"} 5—~5'} B—>P O

Example 3.2.35.The general comments above about the use of pushouts for putting
together objects in categories apply in particular when one wants to combine alge-
braic signatures, as we will frequently do throughout the rest of the book. As a very
simple example of a pushout in the categédgSig of algebraic signatures, con-
sider the signatur&Nat of natural numbers defined in Exerc[se 2\5.4. Then, let
XNATs, be its extension by a new operation nafitienat — nat and XN ATy

its extension by another operation namalt nat x nat — nat We then have two
signature inclusions:

Page: 118 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.2 Limits and colimits 119
X NATfp «— ENAT —— ENATmuit

Their pushout irAlgSig yields a signatur& N ATip myie Which (up to isomorphism)
consists of the shared signatWB& AT (once, no repetitions!) together with each of
the operations added by the two extensions.

This is deceptively simple though, involving only single-sorted signature inclu-
sions that introduce different operation names.

Exercise. Give examples of pushouts ilgSig with signatures involving more
than one sort, operation names that coincide, and signature morphisms that are not
injective on sorts and/or on operation names. O

3.2.5 The general situation

The definitions introduced in the previous subsections followed a common, more
general pattern. As an example, let's have another look at the definition of a pullback
(Definition[3.2.26; the notation below refers to the diagram there). Given a diagram
in the category at hand (the two morphisrhsand g of which we construct the
pullback), we consider an objektin this category together with morphisms going
from this object to the nodes of the diagramK and an anonymous P — C) such

that all the resulting paths starting frafhcommute (;f = ¢ = k;g — hencec may
remain anonymous). Moreover, from among all such objects we choose the one that
is in a sense “closest” to the diagram: for any obatith morphisms from it to the
diagram nodesj(, k' and an anonymous) satisfying the required commutativity
property (’;f = ¢ = K;g), P may be uniquely projected onto the chosen obfect
(via a morphisnh) so that all the resulting paths starting fréthcommute f;j = j’
andh;k =K, which also implieh;c =). This is usually referred to as thmiversal
propertyof pullbacks and, more generally, of arbitrdirpits as defined below. The
(dual) universal property of pushouts and, more generally, of arbitralignits as
defined below, may be described by looking at objects with morphisms going from
the nodes of a diagram into them. We will formalise this in the rest of this section.

Definition 3.2.36 (Graph).Let Xg be the following signature:

sorts node edge
ops sourceedge— node
target edge— node

A Xg-algebra is called graph (Note that these graphs may have multiple edges be-
tween any two nodes; such graphs are sometimes aallétijraphs) The category
Graph of graphs isAlg(Xg). Given a grapl, we writee:n — mas an abbreviation

for n,me |G|node € € |Gledge SOUrCe;(€) = n andtargeig(e) = m. O

Exercise 3.2.37Construct an initial object, coproducts, coequalisers and pushouts
in Graph. O

Page: 119 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

120 3 Category theory

Exercise 3.2.38Define formally the categorfath(G) of paths in a graplG,
where:

Objects ofPath(G): |G|node

Morphisms ofPath(G): paths inG, i.e., finite sequences; ...e, of elements of
|Gledge SUch thatsources(e 1) = targeig(e) for i < n. Notice that we have to
allow forn=0. O

A diagram inK is a graph having nodes labelled withobjects and edges la-
belled withK-morphisms with the appropriate source and target. Formally:

Definition 3.2.39 (Diagram).A diagram Din K consists of:

e agraphG(D);
e for each node € |G(D)|node an objecD,, € [K|; and
e for each edge:n — min G(D), a morphisnDe: Dy — D

A diagramD is connectedf its graphG(D) is connected (that is, any two nodes
in G(D) are linked by a sequence of edges disregarding their direction, or fully
formally: if the total relation on the set of nodes G{D) is the only equivalence
between the nodes that links all nodes having an edge between them). O

Exercise 3.2.40Show how every small categoK gives rise to a grap®(K) and
a diagranD(K). O

Definition 3.2.41 (Cone and cocone)A conea over a diagram D inK is aK-
objectX together with a family oK -morphisms{on: X — Dn)ne|G(D)[y0q SUCH that
for every edge:n — min the graphG(D) the following diagram commutes:

X

On Om

Dn

De Drm

Dually: A coconea over a diagram D inK is a K-objectX together with a
family of K-morphisms({an:Dn — X)ne|(D))0q SUCh that for every edgen — m
in the graphG(D) the following diagram commutes:

X

O Olm

Dn

D
De " O

Page: 120 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.2 Limits and colimits 121

In the following we will write cones simply as famili€®t: X — Dn)ne|G(D)noger
omitting any explicit mention of the apeg, and similarly for cocones. The notation
is not quite justified only in the case when the diagram (and hence the family) is
empty; this will not lead to any misunderstanding.

Let D be a diagram ik with [G(D)|node= N and|G(D)|edge= E.

Definition 3.2.42 (Limit and colimit). A limit of D in K is a cong/on: X — Dp)nen
such that for any coné;,: X’ — Dp)nen there is exactly one morphismX’ — X
such that for every € N the following diagram commutes:

o Qn

Dn

If (on: X — Dn)nen is a limit of D, we will refer to X as thelimit objectof D (or
sometimes just thiémit of D), and to the morphisma,,, n € N, as the limitprojec-
tions

Dually: A colimit of D in K is a cocone{on: Dy — X)nen such that for any
cocone(ay;: D — X' nen there is exactly one morphisimn X — X’ such that for
everyn € N the following diagram commutes:

oy n

Dn

If {atn:Dn — X)nen is @ colimit of D, we will refer toX as thecolimit objectof D
(or sometimes just theolimit of D), and to the morphismg;,, n € N, as the colimit
injections O

Definition 3.2.43 (Completeness and cocompleteness8)categoryK is (finitely)
completdf every (finite) diagram irkK has a limit. DuallyK is (finitely) cocomplete
if every (finite) diagram irK has a colimit. ad

Exercise 3.2.44Define formally the categor@oneD) of cones over a diagrai,
where:

Objects ofCong(D): cones oveD;
Morphisms ofCone(D): amorphism fromo = (0n: X — Dp)nen to o = (ot: X’ — Dp)nen
is aK-morphismh: X — X’ such that, = h;ey, forn € N.

Page: 121 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

122 3 Category theory

Prove that the limit oD is a terminal object ifCone(D). Note that this implies that
a limit of any diagram is unique up to isomorphism.

Present the category of objects over an object (cf. Defirfiion 3.1.28) as the cate-
gory of cones over a certain diagram. O

Exercise 3.2.45Show that products, terminal objects, equalisers and pullbacks in
K are limits of simple diagrams iK. O

Exercise 3.2.46Construct inSeta limit of the diagram

fo f]_ f2 f3
Ag A A = Az = 0
Exercise 3.2.47Show that limiting cones ageintly mona if (on: X — Dn)ne|G(D)|noge
is a limit of D, thenf = g whenever for alh € |G(D)|node f;0n = g;0n. O

Exercise 3.2.48Show that ifK has a terminal object, binary products and all
equalisers then it is finitely completeinr: Given a finite diagram i, first build
the product of all its objects, and then gradually turn it into a limit by “equalising”
the triangles formed by product projections and morphisms in the diagram.

Use Exercisg 3.2.30 to conclude thaKithas a terminal object and all pullbacks
then it is finitely complete. O

Exercise 3.2.49Show that ifK has products of arbitrary families of objects and
all equalisers then it is complete.ikir: Proceed as in Exercige 3.2]48, but no-
tice that all the triangles involved may be “equalised” simultaneously in one step,
cf. [Mac71], Theorem V.2.1. ad

Exercise 3.2.50A wide pullbackis the limit of a non-empty family of morphisms
with a common target. Show that if a category has a terminal object and all wide
pullbacks then it has products of arbitrary families of objects, and then conclude
that it is complete. KNT: Generalise Exercige 3.2]30 and use Exeicise 3.2.4Q.

Exercise 3.2.51Recall that for any categoiy and objeci € |[K|, K |Ais the slice
category of objects ovek (Definition[3.1.28).

Notice thatk | A has a terminal object. Then show that binary producksjiA are
essentially given by the pullbacks k (of morphisms teA) and similarly, arbitrary
non-empty products i |A are essentially given by wide pullbacks kh Check
also that any (wide) pullback ik | A is given by the corresponding (wide) pullback
in K (no morphisms té\ added).

Conclude thaK | A is finitely complete ifK has all pullbacks, anH{ | A is com-
plete ifK has all wide pullbacks. ad

Exercise 3.2.52Dualise the above exercises. a

Exercise 3.2.53Show that:

1. Setis complete and cocomplete.

Page: 122 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.3 Factorisation systems 123

2. FinSetis finitely complete and finitely cocomplete, but is neither complete nor
cocomplete.

3. Alg(X) is complete for any signatut®. (It is also cocomplete, but the proof is
harder — give it a try!)

4. AlgSig is cocomplete. (Is it complete?)

HINT: Use Exercisg 3.2.49 and its dual, and the standard constructions of (co)products
and (co)equalisers in these categories hinted at in Exarnple$[3.2.9] 3.2.16 and Ex-
ercise$ 3.2.32, 3.2.p4. Check that, given a diagbawith nodesN and edge€ in

Set its limit is (up to isomorphism) the set of familiéd,)nen that are compati-

ble with D in the sense that, € Dy, for eachn € N anddy, = De(dy) for each edge

e:n— m, with the obvious projections. Check that its colimit is (up to isomorphism)

the quotient of the disjoint uniol,.y Dn by the least equivalence relation that is
generated by all pair&,, De(dn)) for en — min E andd,, € Dy, O

Exercise 3.2.54Show tha’rAIgSigder is not finitely cocomplete. (HiT: Consider

a morphism mapping a binary operation to the projection on the first argument and
another morphism mapping the same operation to the projection on the second ar-
gument. Can such a pair of morphisms have a coequaliser?) O

Exercise 3.2.55When is a preorder category (finitely) complete and cocomplete?
O

3.3 Factorisation systems

In this section we will interrupt our presentation of the basic concepts of category
theory and try to illustrate how they can be used to formulate some well-known
ideas at a level of generality and abstraction that ensures their applicability in many
specific contexts.

The concept on which we concentrate here is thegathability(cf. Sectior 1.p).
Recall that the original definition of a reachable algebra used the notion of a subalge-
bra (cf. Definitior] 1.2.]7). Keeping in mind that in the categorical framework we deal
with objects identified up to isomorphism, we slightly generalise the standard for-
mulation and, for any signatuge < |AlgSig|, say that &-algebraB is a subalgebra
of A if there exists arnjectiveX-homomorphism fronB to A. A dual notion is that
of aquotient a X-algebraB is a quotient of &-algebraA if there exists &urjective
X-homomorphism fronAA to B. Now, aX-algebraA is reachablef it has no proper
subalgebra (i.e., every subalgebrafois isomorphic toA), or equivalently, if it is
a quotient of the algebrg: of groundX-terms (cf. Exercisp 1.4.14). In this formu-
lation, the above definitions may be used to introduce a notion of reachability in an
arbitrary category. However, we need an appropriate generalisation of the concept
of injective and surjective homomorphisms. A first attempt might be to use arbitrary
epimorphisms and monomorphisms for this purpose, but it soon turns out that these
concepts are not “fine enough” to ensure the properties we are after. An appropriate
refinement of these is given if the category is equipped witictorisation system

Page: 123 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

124 3 Category theory

Definition 3.3.1 (Factorisation system)Let K be an arbitrary category. factori-
sation systenfor K is a pair(E,M), where:

e E is a collection of epimorphisms & andM is a collection of monomorphisms
inK;

e each ofE andM is closed under composition and contains all isomorphisms in
K;

e every morphism irK has anlE, M)-factorisation: for eacti € K, f = ef;m; for
somees € E andm; € K;

N

e (E,M)-factorisations are unique up to isomorphism: for ayg/ € E andm,m €
M, if m= €;m then there exists an isomorphismsuch that;i = € andi;m =
m.

O

Example 3.3.2. Sehas a factorisation syste(i, M), whereE is the collection of
all surjective functions ani is the collection of all injective functions. ad

Example 3.3.3.For any signaturg, Alg(X) has a factorisation systE}hTEg,TM =)
whereTE is the collection of all surjectivE-homomorphisms an@M y is the col-
lection of all injectiveZ-homomorphisms; see Exerc|se 1.3.23. g

Consider an arbitrary categolky equipped with a factorisation syste(, M).

4“T”in TEy andTM 5 indicates that we are dealing with ordinaoyal algebras here, as opposed
to partial and continuous algebras with the factorisation systems discussed below.

Page: 124 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.3 Factorisation systems 125

Lemma 3.3.4 (Diagonal fill-in lemma).For any morphisms;f f2,e, m inK, where
ec E and me M, if f1;m= g;f, then there exists a unique morphism g such that
eg= frand gm= f,.

Proof sketchThe required “diagonal” is given by= ey,;i;ms1, as illustrated by the
diagram below; its uniqueness follows easily sieés an epimorphism.

. e > -
\ /
\ % otz
S U N
/ \
/ m, mfz\
Y/ \4
’ m)]

Exercise 3.3.5Show that ife € E ande;f € M for some morphisnf € K, thene
is an isomorphism. Dually, im€ M and f;m € E for some morphisnf € K, then
mis an isomorphism. ad

Definition 3.3.6 (Subobject and quotient).Let A € |K|. A subobjectof A is an
objectB € |K| together with a morphism: B — A such tham e M. A quotientof
Ais an objecB € |K | together with a morphisre A — B such thae € E. O

Definition 3.3.7 (Reachable object)An objectA € |K]| is reachableif it has no
proper subobject, i.e., if every morphisme M with targetA is an isomorphism.
O

The categonAlg (X) of Z-algebras and the notion of a reachable algebra provide
an instance of the general concept of reachability introduced in the above definition.
The following theorem gives more general versions of well-known facts often labo-
riously proved in the standard algebraic framework.

Theorem 3.3.8.Assume tha has an initial objectA. Then:

1. An object Ac |K| is reachable iff it is a quotient of the initial objedt.

2. Every object K| has a reachable subobject which is unique up to isomorphism.

3. If A€ |K| is reachable then for every B |K | there exists at most one morphism
from A to B.

4. 1f A< |K] is reachable and £ K is a morphism with target Athend E. O

Exercise 3.3.9Prove the theorem and identify the familiar facts about reachable
algebras generalised here. O

One of the main results of Chapfgr 2, Theofem 2]5.14, states that any equational
specification has an initial model. This is just a special case of a more general result
which we formulate and prove for an arbitrary category with “reachability structure”
satisfying an additional, technical property that any object has up to isomorphism
only asetof quotients.

Page: 125 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

126 3 Category theory

Definition 3.3.10 (Co-well-powered category). Ks E-co-well-poweredf for any
A € |[K]| there exists aetof morphismsE C E such that for every morphisme E
with sourceA there exist a morphis € E and an isomorphisiinsuch thae = €';i.

O

Definition 3.3.11 (Quasi-variety). A collection of objectsQ C |K| is a quasi-
variety if it is closed under subobjects and products of non-empty sets of objects
in Q. O

Lemma 3.3.12 (Initiality lemma). Assume thaK has an initial object, isE-co-
well-powered, and any set of objectdirhas a product. Then any non-empty quasi-
variety inK (considered as the corresponding full subcategori{ phas an initial
object which is reachable iK.

Proof. Let Q C |K| be a non-empty collection of objects closed under subobjects
and products of non-empty sets. 1@t be asetof reachable objects i@ such that
every reachable object @ is isomorphic to an element ¢f; (such a set exists since

K is E-co-well-powered). The reachable subobject of the produ®,ofwhich is
unigue up to isomorphism) is a reachable initial objedDin ad

It is now easy to check that in the context of Exanjple 3.3.3 every clas of
algebras definable by a set Bfequations is a non-empty quasi-variety, and hence
Lemmg 3.3.12 indeed directly implies Theorem 2.5.14.

We conclude this section with two examples of categories naturally equipped
with a notion of reachability which is an instance of the general concept introduced
above.

Example 3.3.13Recall Definitionsg 2.7.30 arjd 2.7]31 of partialgebras and-
homomorphisms between them. For any signatiirdefine the category of partial
X-algebrasPAlg(X), as follows:

Objects of PAIg(X): partial Z-algebras;
Morphisms ofPAIg(X): weakX-homomorphisms.

Define also the subcategoPAlg,, (X) of partial X-algebras wittstronghomo-
morphisms between them, as follows:

Objects ofPAlg,, (X): partial Z-algebras;
Morphisms ofPAlgg, (X): strongZ-homomorphisms.

The categoryPAlg(X) of partialZ-algebras has a factorisation systépy, PMy),
wherePE;y is the collection of all epimorphisms PAIg(X) andPMj is the collec-
tion of all monomorphisms iRAIg(Z) that are strong-homomorphisms.

Exercise. Characterise epimorphisms RAIg(Z) (they are not surjective in gen-
eral) and prove tha{PEx,PMy) is indeed a factorisation system fBAIg(X).
Check then that factorisation of a strodghomomorphism inlPEs,PMy) con-
sists of strongZ-homomorphisms. Conclude that strong homomorphisni3Ep
andPMy, respectively, form a factorization system fAlgg, (X). O

Page: 126 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.4 Functors and natural transformations 127

Example 3.3.14 For any signatur&, define the category of continuoisalgebras,
CAlg(ZX), as follows:

Objects of CAlg(X): continuousZ-algebras which are just like ordinary (total)
X-algebras, except that their carriers are required to be complete partial orders
and their operations are continuous functions (cf. Exefcise|3.1.9);

Morphisms ofCAIg(X): continuousZ-homomorphisms continuousg-homomorphism
from a continuoux-algebraAto a continuoug-algebraB is aX-homomorphism
h: A— B which is continuous as a function between complete partial orders. We
say thath is full if it reflects the ordering, i.e., for all, & € |Als, h(a) <g h(&)
impliesa<a d'.

The categoryCAIg(X) of continuousX-algebras has a factorisation system
(CEx,CMy), whereCMy is the collection of all full monomorphisms BAIg(X)
andCE;y is the collection of alktrongly densepimorphisms irCAlg(X). A con-
tinuousX-homomorphisnh: A — B is strongly dense iB has no proper continuous
subalgebra which contains the set-theoretic imagéAptinderh. (Note that the
expected notion of a continuous subalgebra is determined by the chosen collection
of factorisation monomorphisnSM x.) This is equivalent to the requirement that
every element ofB]| is the least upper bound of a countable chain of least upper
bounds of countable chains of ... of elements in the set-theoretic imdge wf-
derh. Consequently, given a strongly dense continuous homomorghidm- B,
every element ofB| is the least upper bound of a subset (not necessarily a chain
though) of the set-theoretic image |é{ underh, which yields the key argument to
show thatCAIlg(X) is CEx-co-well-powered.

Exercise. Prove that(CEx,CMy) is indeed a factorisation system fGAIg(X).
Also, try to construct an example of an epimorphismdAlg(X) which is not
strongly dense. O

Exercise 3.3.15Characterise reachable algebraskig(X) and inCAIg(X). In-
stantiate the facts listed in Theorém 3]3.8 to these categories. g

3.4 Functors and natural transformations

As explained in the introduction to this chapter, for category theorists it is tanta-
mount to heresy to consider objects in the absence of morphisms between them. Up
to now we have departed from this dogma in our study of categories themselves;
in the previous sections of this chapter we have worked with categories without in-
troducing any notion of a morphism between them. We hasten here to correct this
lapse: morphisms between categoriesfaretors to be introduced in this section.

And by way of atonement we will also introdunatural transformationswhich are
morphisms between functors.

Page: 127 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

128 3 Category theory

3.4.1 Functors

A category consists of a collection of objects and a collection of morphisms with
structure given by the choice of sources and targets of morphism, by the definition
of composition and by the identities that are assumed to exist. As in other standard
cases of collections with additional structure, morphisms between categories are
maps between the collections of objects and morphisms, respectively, that preserve
this structure.

Definition 3.4.1 (Functor). A functor F: K1 — K2 from a categorK1 to a cate-
gory K2 consists of:

e afunctionFopj: |[K1| — |[K2|; and
e for eachA B e |[K1|, a functionFag:K1(A B) — K2(Fobj(A),Fobj(B))

such that:

e F preserves identitie§ia a(ida) = idFObj(A) for all objectsA € |[K|; and
e F preserves composition: for all morphisnis A— B andg: B — C in K1,
Fac(f;9) =Fag(f);Fsc(9). O

Notation. We useF to refer to bothFopj andFapg for all A,B € [K1|. |

In the literature, functors as defined above are sometimes referreddoariant
functors. Acontravariantfunctor is then defined in the same way except that it “re-
verses the direction of morphisms”, i.e., a contravariant funét&l — K2 maps
aK1l-morphismf:A — B to aK2-morphismF(f):F(B) — F(A). Even though we
will use this terminology sometimes, no new formal definition is required: a con-
travariant functor fronK1 to K2 is a (covariant) functor fronk1°P to K2 (cf. e.g.

Example$ 3.417 ar{d 3.4]29 below).

Example 3.4.2 (Identity functor). A functorldk : K — K is defined in the obvious
way. O

Example 3.4.3 (Inclusion functor).If K1 is a subcategory d€2 then the inclusion
I:K1 — K2 is a functor. O

Example 3.4.4 (Constant functor).For anyA € |K2|, Ca:K1 — K2 is a functor,
whereCa(B) = Afor anyB € |K1| andCx(f) =ida for anyK1-morphismf. O

Example 3.4.5 (Opposite functor) For any functor: K1 — K2, there is a functor
FOP:K1°P — K2°P which is the “same” aF, but is considered between the opposite
categories. O

Example 3.4.6 (Powerset functor)®: Set— Setis a functor, wheré?(X) = {Y |
Y C X} for any setX, and for any functionf:X — X', P(f):P(X) — P(X') is
defined by?(f)(Y)={f(y) |ye Y} O

Page: 128 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.4 Functors and natural transformations 129

Example 3.4.7 (Contravariant powerset functor).?_;: SefP — Setis a functor,
whereP_;(X) = {Y | Y C X} for any setX, and for any morphisnf:X — X’
in Sef® (i.e., any functionf: X" — X), P_1(f):P_1(X) — P_1(X’) is defined by
P_a(f)Y)={XeX | f(X)eY} O

Example 3.4.8 (Sequence functor). Se§et— Mon is a functor, whereévon is

the category of monoids with monoid homomorphisms as morphisms. For any set
X € |Set, Seq X) = (X*,", €), whereX* is the set of all finite sequences of elements
from X, " is sequence concatenation, and the empty sequence. Then, for any
function f:X — Y, Seq f):SeqX) — SedY) is the homomorphism defined by
Seq f)(Xp...Xn) = F(x1)... F(Xn). O

Example 3.4.9 (Reduct functor)For any signature morphisax X — X', |5:Alg(X’) —
Alg(Z) is a functor that takes each-algebraA’ to its o-reductq|; € |Alg(X)| and
eachZ’-homomorphismé’ to its o-reducthy| (cf. Definitiong 1.5.1 an.8).D

Example 3.4.10 (Forgetful functor).Let X = (S Q) be a signature. Then|: Alg(X) —
Sefis the functor that takes ea¢halgebraA € |Alg(X)| to its S-sorted carrier set
|A| € |Sef| and eachz-homomorphism to its underlying-sorted function. (The
functor|_| should really be decorated with a subscript identifying the signafure
— we hope that leaving it out will not confuse the reader.) These special reduct
functors|_| will be referred to agorgetful functors

More generally, the term “forgetful functor” is used to refer to any functor that,
intuitively, forgets the structure of objects in a category, mapping any structured
object to its underlying unstructured set of elements. Thus, in addition to examples
that exactly fit the above definition (like the functor mapping any monoid to the set
of its elements) this also covers examples like the functor that maps any topological
space to the set of its points and the functor that forgets the metric of a metric space.

O

Example 3.4.11 (Term algebra)For any signatur& = (S Q), there is a functor
Tr:Sef — Alg(X) that maps ang-sorted seX to the term algebrdy (X), and any
S-sorted functiorf: X — Y to the uniqueZ-homomorphisnf#: Ts (X) — Tz (Y) that
extendsf. O

Exercise 3.4.12For any signatur& and setd of X-equations, define thguotient
functor_/®:Alg(X) — Alg(X) such that for anyE-algebraA, A/® is the quotient
of Aby the least congruence on A generated byp, that is, such theti(v) ~ tj(v)
for eachZ-equationvX.t =t in @ and valuation: X — |A|. Make sure that what
you define is a functor! O

Exercise 3.4.13For any signature, define therestriction functorRyz: Alg(X) —
Alg(Z) such that for any-algebraA, Ry (A) is the reachable subalgebrafof

More generally: leK be an arbitrary category with an initial object and a factori-
sation system, and l&tg be the full subcategory d€ determined by the collection
of all reachable objects iK (cf. Sectior] 3.3). Define a functdtk:K — Kg that
maps amyA € |K| to the (unique up to isomorphism) reachable subobjegt of O

Page: 129 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

130 3 Category theory

Example 3.4.14 (Projection functor).For any two categoriei1 andK2, the pro-
jection functorsllk;:K1 x K2 — K1 and Ilk,:K1 x K2 — K2 are defined by
k1 ((A,B)) = AandIlk, ((f,9)) = f, andIk2 ((A,B)) = B andIlk ((f,9)) = 0.

O

Example 3.4.15 (Hom-functor).Let K be a locally small categorjdom: K°P x
K — Setis a functor, wherélom((A,B)) = K(A,B) and

Hom({f:A' - AgB—B))(hA—B)= fhg
N—— ~——
€KOPxK((AB),(ABY) €HOM((AB)) cHom((A,B))
f
A A
|
|

g O

Exercise 3.4.16 (Exponent functor)For any seX define a functof —X]: Sef? —
Set mapping any set to the set of all functions from itXo That is, for any set
Y € |Set, [Y—X] is the set of all functions fron¥ to X and then for any morphism
f:Y — Y’ in SefP, which is a functionf: Y’ — Y in Set [f =X]:[Y=X] — [Y'—=X]
is defined by pre-composition withas follows:[f —X](g) = f;0. a

Example 3.4.17 (Converting partial functions to total functions).Let Pfn be the
category of sets with partial functions and &#t, be the subcategory ðaving
sets containing a distinguished elemenas objects and -preserving functions as
morphisms. Theot: Pfn — Set, converts partial functions to total functions by
using_L to represent “undefined” as follows:

e Tot(X)=Xw{Ll}
f(x) if f(x) is defined
o Tot(f)(x) = {J_ otherwise

Exercise. Notice that strictly speaking the above definition is not well-formed: ac-
cording to the definition of disjoint union, X is non-empty theiX € X {_L}; thus,
given a partial functiorf: X — Y, Tot(f) as defined above need not be a function
from Tot(X) to Tot(Y). Restate this definition formally, using explicit injections
11: X — Xw{L}andi:{L} — Xw{L} for each seX. O

Example 3.4.18 (Converting partial algebras to total algebras)The same “to-
talisation” idea as used in the above Exanjple 3]4.17 yields a totalisation functor
Tots: PAlgg, () — Alg(Z), for each signatur&, mapping partiak-algebras and
their strong homomorphisms to totelalgebras and their homomorphisms (cf. Def-

initions[2.7.3D anfl 2.7.31, and Example 3.8.13).

LetX = (S Q) € |AlgSig|. Tots: PAlgg, (X) — Alg(Z) is defined as follows:

Page: 130 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.4 Functors and natural transformations 131

e For any partial-algebraA € |PAlgg, (X)|, Tots (A) € |Alg(X)] is theX-algebra
whose carriers are obtained from the corresponding carriefslyf adding a
distinguished element, and whose operations are obtained from the operations
of A by making the result. for arguments on which the latter are undefined, that
is:

— for each sort namee S, |Totxz (A)|s = |Alsw{L}; and
— foreach operation nanfes; x ... x sy — sin X, frq, (a) is the function which
yields L if any of its arguments id., and foray € |Als,,...,an € |Als,,

fa(as,...,an) if fa(as,...,an) is defined
Frots () (@1, -+, 20) = { il otherwise

e For any strongc-homomorphisnh: A — B (which is a family oftotal functions
between the corresponding carriersfcdindB), Totx (h): Totx (A) — Totx(B) is
(the family of functions inh extended to map. to L.

Exercise.Check that for any strong-homomorphisni: A — B, Totx (h): Toty (A) —
Totx (B) is indeed &-homomorphism. Can you extefidty to weakX-homomorphisms
between partial algebras? O

Exercise 3.4.19Do the above functors map monomorphisms to monomorphisms?
Do they map epimorphisms to epimorphisms? What about isomorphisms? (Co)limits?
(Co)cones? Anything else you can think of? O

Definition 3.4.20 (Diagram translation). Given a functor: K1 — K2 and a dia-
gramD in K1, thetranslation of D byF is defined as the diagraR(D) in K2 with
the same underlying graph Bsand with the labels ob translated by:

e G(F(D)) =G(D);
e for eachn € |G(D)|node F(D)n = F(Dp); and
e for eache € |G(D)|edge F(D)e = F(De). O

Exercise 3.4.21 (Diagrams as functorsp diagramD in K corresponds to a func-
tor from the categoryPath(G(D)) of paths in the underlying graph &fto K. For-
malise this. HNT: Given a diagranD, define a functor that maps each peth. . e,
in G(D) to De,; . .. ;De,. Do not forget the case whene= 0.

Then, anticipating Definitiof_3.4.27, define the translation of a diagram by a
functor in terms of functor composition. ad

Definition 3.4.22 (Functor continuity and cocontinuity). A functor F: K1 — K2
is (finitely) continuousif it preserves the existing limits of all (finite) diagrams in
K1, that is, if for any (finite) diagran® in K1, F maps any limiting cone oveD to
a limiting cone oveF (D).

A functor F: K1 — K2 is (finitely) cocontinuousf it preserves the existing col-
imits of all (finite) diagrams irk1, that is, if for any (finite) diagranD in K1, F
maps any colimiting cocone overto a colimiting cocone ovef(D). O

Page: 131 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

132 3 Category theory

Exercise 3.4.23Assuming thatk1 is (finitely) complete, use Exercie 3.2/49 to
show that a functoF: K1 — K2 is (finitely) continuous if and only if it preserves
(finite) products and equalisers.

Similarly, show thaft: K1 — K2 is finitely continuous if and only if it preserves
terminal objects and all pullbacks, and it is continuous if and only if it preserves
terminal objects and all wide pullbacksini: Exercise$ 3.2.48 arjd 3.2]50).

Dually, give similar characterisation of (finitely) cocontinuous functors, for in-
stance as those that preserve (finite) coproducts and coequalisers. O

Exercise 3.4.24Given a seK, show that the functdr —X]: SefP — Setfrom Ex-
ercisg 3.4.76 is continuous.ikir: Use Exercisg 3.4.23: relying on the explicit con-
structions of (co)products and (co)equalisersSet, show that the functor maps
any coproduct (disjoint union) of set3)nen to @ product of sets of functions
[Xn—X], n€ N, and a coequaliser of functiorisg: X; — X, to an equaliser of (pre-
composition) functiongf;_), (g;—): [Xo—X] — [X1—X].

You may also want to similarly check which of the examples of functors given
above are (finitely) (co)continuous. a0

Exercise 3.4.25Consider a categori{ with a terminal objectl € |K|. Given any
functorF:K — K’, check thaf determines a functdf;:K — K’|F(1) fromK to
the slice category dk’-objects oveF (1) (Definition[3.1.28), where for any object
A€ K|, F|1(A) = F(!a), with Ia:A — 1 being the unique morphism froMto 1,
andF |, coincides withF on morphisms.

Suppose now tha has all pullbacks (so that it is finitely complete) afgre-
serves them (but we do not requifeo preserve the terminal object, so it does not
have to be finitely continuous). Show that :K — K’|F(1) is finitely continuous.
HINT: Recall Exercisg 3.2.51. By the discussion there, sihpeeserves pullbacks,

F maps products i, which are pullback of morphisms tig to pullbacks irK’ of
morphisms td=(1) — and these are essentially productKiiF(1). Moreover, by

the constructionF|; preserves the terminal object, and the conclusion follows by
Exercisd 3.4.23.

Similarly, show that ifK has all wide pullbacks (so that it is complete) &nd
preserves them thef;: K — K’|F(1) is continuous. O

Exercise 3.4.26Recall the definition of the categofls ¢, the algebraic theory
generated by a seb of equations over a signatue (cf. Exercisg 3.1.75). Show
that those functors frorit gf’g to Setthat preserve finite products (where products
in T3, that is coproducts il s o, are given by concatenation of sequences of sort
names, cf. Exercide 3.2]18, and productSeétare given by the Cartesian product)
are in a bijective correspondence whhalgebras ifAlg(X)|. Generalise this corre-
spondence further to product-preserving functors fﬂt%ﬁp to SetandX-algebras

in Mody (). O

Definition 3.4.27 (Functor composition).The categoryCat (the category of all
categories) is defined as follows:

Page: 132 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.4 Functors and natural transformations 133

Objects ofCat: categorig$

Morphisms ofCat: functors;

Composition inCat: If F:K1 — K2 andG:K2 — K3 are functors, thek;G:K1 —
K3 is a functor defined as followsF;G)onj = Fobj;Gobj and (F;G)ag =
FA,B;GF(A),F(B) for all A B eK1. O

Example 3.4.28In the following we will often use the functor |:Cat — Seﬁ
which for any categorK € |Cat| yields the collectioriK | of the objects of this cat-
egory and for each functét. K — K’ yields its object partF| = Fop;: K| — |K’[.

O

Example 3.4.29. AlgAlgSig°® — Cat is a functor, where:

e foranyZX € |AlgSig|, Alg(X) is the category oE-algebras; and
e forany morphisno: X — X’ in AlgSig, Alg (o) is the reduct functhG:AIg(E’) —
Alg(XZ). O

Exercise 3.4.30Define a functorlg?®': (AlgSigi®")°P — Cat so thatAlg?®'(X) =

Alg(X) for any signature < |AlgSig®®'|, and for any derived signature morphism

8, Algde'(8) is thes-reduct as sketched in Definitipn 1.5/16 and Exerfcise 1,.5.17.
O

Exercise 3.4.31Define the categoryoset (objects: partially-ordered sets; mor-
phisms: order-preserving functions). Define the functor fRmetto Cat that maps

a partially-ordered set to the corresponding (preorder) category (cf. Example 3.1.3)
and an order-preserving function to the corresponding functor. O

Exercise 3.4.32Characterise isomorphisms @at. Show that product categories
are products irCat. What are terminal objects, pullbacks and equaliserGat?
Conclude tha€Cat is complete. HNT: Use constructions analogous to thos&at,
as summarised in Exercise 3.2.53. O

Exercise 3.4.33Prove thatAlg: AlgSig®® — Cat (cf. Examplg 3.4.29) is continu-
ous, that is, that it maps colimits in the categétgSig of signatures to limits in the
categoryCat of all categories.

HINT: By Exercisd 3.4.23 it is enough to show thilg maps coproducts of
signatures to products of the corresponding categories of algebras and coequalisers
of signature morphisms to equalisers of the corresponding reduct functors.

(Coproducty: Recall that by Exercise 3.2.[16, a coproduct of signatures is in fact
their disjoint union. Now, it is easy to see that an algebra over a disjoint union
of a family of signatures may be identified with a tuple of algebras over the
signatures in the family. Since a similar fact holds for homomorphisms, the rest
of the proof in this case is straightforward (cf. Exer¢ise 34.32). Notice that this
argument covers the coproduct of the empty family of signatures as well.

5 To be cautious about the set-theoretic foundations here, we should rathemsdigategories.

6 Again, we should restrict attention to small categories here. Alternatively, in plaSetafie
could use the category of all discrete categories, inheriting all of the foundational probl€at of

Page: 133 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

134 3 Category theory

(Coequalisers Recall (cf. Exercis¢ 3.2.24) that a coequaliser of two signature
morphismso,c’: X — X' is the natural projectiop: X’ — (X'/=), where =
is the least equivalence relation @& such thato(x) = ¢’(x) for all sort and
operation namex in X (this is just a sketch of the construction). Notice now
that (X’/=)-algebras correspond exactly to thaSealgebras that have iden-
tical componentss(x) and ¢’(x) for all sort and operation namesin X, or
equivalently, to those algebras e |Alg(X’)| for which A"G = A"G/. Moreover,
the correspondence is given by the funclgf Alg(X’/=) — Alg(X’). Since a
similar fact holds for homomorphisms, it is straightforward now to prove that
,‘p = Alg(p) is an equaliser Ot‘g = Alg(o) and_|, = Alg(c’) (cf. Exer-

cise34.32 arfd 3.222). 0

Exercise 3.4.34 (Amalgamation Lemma for algebras)XConsider a pushout in the
categoryAlgSig of signatures:

2/
YN
by X
o e
X

Conclude from Exercide 3.433 above that for ahyalgebraA; andX;-algebraA;
such thaiAl‘[,1 = Az\oz, there exists a unique’-algebrad’ such tha‘A"Gi =A; and
Aoy = Ao.

Similarly, for any two homomorphisnis;: Aj; — Agz in Alg(X1) andhy: Ayg —
Ay in Alg(X;) such thathl‘gl = hz\cz, there exists a uniqu&’-homomorphism
h:A} — A, such that'|;; = hy andhl|; = h. 0

Example 3.4.35Recall Examplé¢ 3.2.35 of a simple pushout of algebraic signa-
tures. LetN € |Alg(XNAT)| be the standard model of natural numbers. Build
N; € |Alg(ENaTyp)| by adding toN the interpretation of the operatidib as

the standard Fibonacci function, af € |Alg(ZNATmy)| by adding toN the
interpretation of the operatiomult as multiplication. By construction we have
Nl‘ZNAT =N= NZ‘ZNAT and soN; andN, amalgamate to a unique algebac

|Alg (ENATfip, murr)| such thaIN’FNATfib = N; and N/‘ENATmuIt = N,. Clearly, N’ is

the only expansion dfl that definedib as the Fibonacci function (¢ does) and
multas multiplication (af\, does). O

Exercise 3.4.36Define initial objects and coproducts@at. (HINT: This is easy.)
Try to define coequalisers and then pushouBan. (HINT: This is difficult.) O

iiiiiii C342.tex ======= ¢ ¢.¢.6é.éé 1.15

Page: 134 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.4 Functors and natural transformations 135

3.4.2 Natural transformations

Let F:K1 — K2 andG: K1 — K2 be two functors with common source and target
categories.

A transformation fronf to G should map the results &fto the results o6. This
means, that it should consists of a family of morphism&& oneK2-morphism
from F(A) to G(A) for eachK1-objectA. An extra requirement to impose is that
this family should be compatible with the applicationFodndG to K1-morphisms,
as formalised by the following definition:

Definition 3.4.37 (Natural transformation). A natural transformatiorfrom F to
G, ©:F — /| is a family (a: F(A) — G(A)) acjk1 Of K2-morphisms such that for
anyA B € |K1| andK1-morphismf: A — B the following diagram commutes:

K1: K2:

A F(A) LSRN

f F(f) G(f)
B F(B) — % G(B)

(this property is often referred to as thaturality of the family 7).
Furthermorez is anatural isomorphisnif for all A€ |K1|, 7aisiso (inK2). O

Example 3.4.38.The identity transformatioidg: F — F, where(idr)a = idg(a), is
a natural isomorphism.

For any morphismf: A — B in a categoryK2 and for any categorKl, there
is a constant natural transformaticp:Co — Cg between the constant functors
Ca,Cs:K1 — K2 (cf. Examplg 3.4]4) defined kg), = f for all objectso € |K1|.

O

Example 3.4.39.The family of singleton functionsing set Id s¢t — P, where for
any setX, sing set;: X — P(X) is defined bysing set; (a) = {a}, is a natural trans-
formation.

Let(_)* =Seq|_|: Set— Setbe the functor given as the compositiorSeq Set—
Mon (Example[3.4]8) with the forgetful functdr|:Mon — Set mapping any
monoid to its underlying carrier set. The family of singleton functising seqld se;—
(L)*, where for any seK, singseg;:X — X* is defined bysingseg(a) = a
(sing.segmaps any element to the singleton sequence consisting of this element
only) is a natural transformation. ad

7 Some authors would use a dotted or double arrow here, writifg> G or 7:F = G, respec-
tively. We prefer to use the same symbol for all morphisms, and also for natural transformations,
since they are morphisms in certain categories, see Defi.4.60 below.

Page: 135 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

136 3 Category theory

Exercise 3.4.40Consider the functof_)*:Set— Set mapping any seX to the
setX* of sequences oveX (cf. Examplg 3.4.39 above). Show that the following
families of functions (indexed by se¥sc |Set) yield natural transformations from
() to ()"
e foreachk> 0, forn> 0 andxy,..., X, € X,
stuttel (X1...Xn) = X1...X1... Xn. .. Xn;
—_— =
k times k times
e foreachk >0, forn> 0 andxy,...,x, € X,
repeak (Xq...%n) = X1.. . Xn--. X1 - Xn;
—— =

— —
k times

e forn>0andxy,..., X, € X,
revers(Xi...Xn) = Xn...X1;

e forn>0andxy,...,Xon 1 € X,
odds((X1XoX3 . . . Xon) = X1X3...Xon—1 @nd
OddS((X1X2X3 .. .X2n+1) = X1X3...Xon+1-

Check which of these functions also yield natural transformations 8eqto Seq
(whereSeq Set— Mon, cf. Examplég 3.4]8).

The above examples indicate a close link between polymorphic functions as en-
countered in functional programming languages (like Standard/ML [MTHM97] or
Haskell [PeyORB]) and natural transformations between functors representing poly-
morphic types. This property, often referred to as “parametric polymorphism” (as
opposed to “ad hoc polymorphism”) can be explored to derive some propeties of
polymorphic functions directly from their types [Wad89]. O

Exercise 3.4.41Recall (Exercisd 3.4.26) the correspondence between product-
preserving functors fronT 3, to Setand X-algebras inMod (X, ®)|. Show that
this correspondence extends to morphisms: gatiomomorphism between alge-
bras gives rise to a natural transformation between the corresponding functors, and
vice versa, each natural transformation between such functors determines a homo-
morphism between the corresponding algebrasiTH To prove that this yields a
bijective correspondence, first use the naturality condition for product projections
to show that for any natural transformatiorF — G between product-preserving
functorsF,G:Tg‘?d, — Set any sequencs; ... s, of sort names (an object ifix o)
and any(ay,...,an) € F(S1...%), Ts;..5,((a1,...,8n)) = (T, (a1),..., T, (@)). O
Natural transformations have been introduced as morphisms between functors.
The obvious thing to do next is to define composition of natural tranformations. Tra-
ditionally, two different composition operations for natural transformations are in-
troducedyverticalandhorizontalcomposition. The former is a straightforward com-
position of natural transformations between parallel functors. The latter is somewhat
more involved; in a sense, it shows how natural transformations “accumulate” when
functors are composed.

Definition 3.4.42 (Vertical composition).Let F1,F2,F3: K1 — K2 be three func-
tors with common source and target categoriesatEl — F2 ando:F2 — F3 be
natural transformations:

Page: 136 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.4 Functors and natural transformations 137

)

—— F1—

KL | —F2 —| K2

T P

Then thevertical compositiorof T ando, 7;6:F1 — F3, is defined by(t;6)a =
Ta;0a (in K2) for all A € |[K1|. O

Exercise 3.4.43Prove thatr;o is indeed a natural transformation. O

Definition 3.4.44 (Horizontal composition)LetF1, F2: K1 — K2 andG1,G2: K2 —
K3 be two pairs of parallel functors. Let F1 — F2 andc:G1 — G2 be natural
transformations:

— F1— —Gl—
K1 T K2 o K3
— F2 — —G2—

Then thehorizontal compositiof T ando, 7-0:F1,G1 — F2;G2, is defined by
(T-G)A = Gl(TA);sz(A) = GFl(A);GZ(TA) (inK3) forallAe |K1|

F1(A) GL(F1(A)) F1A) - G2(F1(A))
\\
~
~.
A G1(za) (1:0)a \\\ G2(1p)
~
N
F2(A) G1(F2(A)) oo - G2(F2(A)

O

Exercise 3.4.45Prove that the above diagram commutes, andrso)a is well-
defined. Then prove thato is indeed a natural transformationinNg :

Page: 137 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

138 3 Category theory

A GL(FL(A)) (TOn | Garaa)
OF2(A)
Gl(TA)
f GL(FL(f)) GL(F2(A) G2(F2(1))
GL(F2(f))
B G1(F1(B)) Tk | | GaFae)
G1() OF2(e)
G1(F2(B))

O

Definition 3.4.46 (Multiplication by a functor). A special case of the horizontal
composition of natural transformations is tieltiplicationof a natural transforma-
tion by a functor. Under the assumptions of Definifion 3.4.44, we define:

e 7-Gl=1idg;1:F1;,G1 — F2;G1, or more explicitly:(7-G1)p = G1(1p) for Ae

|K1[;
e Floo =idr1-0:F1,G1 — FL,G2, or more explicitly:(F1.0)a = Ogya) for A€
|K1]. O
Exercise 3.4.47Show thatr-c = (7-G1);(F2-0) = (F1.0);(t-G2). O

Exercise 3.4.48 (Interchange law)Consider any categoridsl, K2, K3, func-
torsF1,F2,F3:K1 — K2 andG1,G2,G3:K2 — K3, and natural transformations
T.F1—F2,7:F2— F3,0:G1 — G2, ando’":G2 — G3:

S Y W e
T c
Y Y

KIiI|—F2—| K2 |—G2—— | K3
T/ G/
Y Y
—— F3 — —— G3—
NI N _/
Show that(z;7")-(0;0") = (t-0);(7'-0”). O

Page: 138 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.4 Functors and natural transformations 139

3.4.3 Constructing categories, revisited

3.4.3.1 Comma categories

Definition 3.4.49 (Comma category)Let F:K1 — K andG: K2 — K be two func-
tors with a common target category. Tetemma categoryF, G) is defined by:

Objects of(F,G): triples(Al, f,A2), whereAl € |K1|, A2 ¢ |K2| and f:F(Al) —
G(A2) is a morphism irK;

Morphisms of(F,G): a morphism fromAl, f,A2) to (B1,g,B2) is a pair(h1,h2)
of morphisms wherél:Al — Bl (in K1) andh2: A2 — B2 (in K2) such that (the
middle part of) the following diagram commutes:

f

Al F(A1) G(A2) A2
h1 F(h1) G(h2) h2
B1 F(B1) g G(B2 B2
Composition iNF,G): (h1,h2);(hl’,h2") = (h1;h1’ h2;h2’). 0

Exercise 3.4.50Construct the categoiy— of K-morphisms and the categdfyj A

of K-objects oveA € |K| as comma categories (cf. Definitidns 3.1.27 and 3]1.28).
HINT: Consider categoriefld,ldk) and (IdK,C}\), whereldk is the identity
functor onK andC%:1 — K is a constant functor from the terminal categtry O

Example 3.4.51 Another way of presenting the categdByaph is as the comma
category(ld set, CP), whereCP: Set— Setis the Cartesian product functor defined
by CP(X) =X x X andCP(f:X — Y)(x1,x2) = (f(x1), f(x2)).
To see this, write an object j(ld s¢;, CP)| as(E, (sourceE — N, target E — N),N).
O

Exercise 3.4.52Another way to present the category of sighatukksSig is as the
comma categoryld set, (_)7), where(_)*: Set— Setis the functor which for any
setX € |Set yields the seX™ of all finite non-empty sequences of elements from
X.

First, complete the definition of the functor)*. Then, notice thaX™ = X* x X
and hence an object jid s, ())| may be written a¢Q, (arity: @ — S*;sort Q2 — S), S).
Indicate now why the category defined is almost, but not quite, the same as the cat-
egoryAlgSig of signatures (cf. Exercige 3.4]75 below). O

Exercise 3.4.53Prove that iK1 andK2 are (finitely) complete categorids,K1 —

K is a functor, and>: K2 — K is a (finitely) continuous functor, then the comma cat-
egory(F,G) is (finitely) complete. Moreover, the obvious projections fréfG)

to K1 andK2, respectively, are (finitely) continuous.iir: To construct a limit

Page: 139 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

140 3 Category theory

of a diagram in(F,G), start by building limits of the projections of the diagram to

K1 andK2, respectively, and then use the continuity propert&db complete the
construction of the limit object ifF, G). If the notation in the proof gets too heavy,
use Exercis€ 3.2.49 and spell the details out for the construction of products and
equalisers.

Check that this construction of limits ifF, G) works for diagrams of any given
shape: ifK1 and K2 have limits of diagrams of a given shape, @doreserves
them, then(F,G) has limits of diagrams of this shape, and the projection functors
preserve them.

State and prove the analogous facts about cocompleteneds @f. HINT:
Clearly, appropriate colimits must exist Kil and K2, but unlike with limits, it
is F that must preserve them. O

Exercise 3.4.54Use Exercisep 3.4.50 ahd 3.4.53 to show tha is a (finitely)
complete category then so is the categdry of morphisms irk.

Then, without looking at Exercide 3.2]51, use Exercjses 3.4.5(0 and |3.4.53 to
prove that if a categoriK has limits of all (finite) non-empty connected diagrams
then so does the slice categdtyA of its objects oveA € |K|, and that the obvious
forgetful functor fromK |Ato K preserves these limits. Notice though that this does
not generalise to arbitrary (finite) limits that existdn A if K is (finitely) complete
by Exercis¢ 3.2.51.

Check that your proof shows a stronger fact: without assuming the existence of
any limits inK, the forgetful functor fronkK |Ato K createdimits of all non-empty
connected diagrams, that is: for any such diagBamin K | A, if its projectionD to
K has a limit inK then there is a unique cocone D, in K | A that projects to this
limit, and this cocone is a limit dD 5 in K |A. 0

Exercise 3.4.55Show that ifK has all pullbacks and a terminal object (so, it is
finitely complete) and a functdf:K — K’ preserves pullbacks, théhalso pre-
serves the limits of all finite non-empty connected diagramstti Put together
Exercise§ 3.4.25 and 3.4]154.

Similarly, show that ifK has all wide pullbacks and a terminal object (so, it is
complete) and a functd¥: K — K’ preserves wide pullbacks, thénalso preserves
the limits of all non-empty connected diagrams. O

3.4.3.2 Indexed categories

We frequently need to deal not just with a single category, but rather with a family
of categories, “parameterised” by a certain collection of indices. The categories of
S-sorted sets (one for each s®tand the categories df-algebras (one for each
signatureX) are typical examples. A crucial property here is that all the categories in
such a family are defined in a uniform way, and consequently any change of an index
induces a smooth translation between the corresponding component categories. In
typical examples, the translation goes in the opposite direction than the change of
index, which leads to the following definition:

Page: 140 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.4 Functors and natural transformations 141

Definition 3.4.56 (Indexed category)An indexed categorfover anindex category
Ind) is a functorC: Ind°P — Cat. O

Example 3.4.57. AlgAlgSig®® — Cat is an indexed category (cf. Example 3.4.29).
O

Definition 3.4.58 (Grothendieck construction) Every indexed categoi@: Ind °° —
Cat gives rise to dlattenedcategoryFlat(C) defined as follows:

Objects ofFlat(C): pairs(i,A) for alli € |Ind| andA € |C(i)|;

Morphisms ofFlat(C): a morphism from(i,A) to (j,B) is a pair(c, f): (i,A) —
(j,B), whereo:i — j is anInd-morphism andf:A — C(o)(B) is a C(i)-
morphism;

Composition irFlat(C): (o, f);(o’, ') = (c;0’, ;C(0)(f')). O

Exercise 3.4.59Show that ifInd is completeC(i) are complete for all € |Ind|,
andC(o) are continuous for al € Ind, thenFlat(C) is complete.

HINT: Given a diagram in the flattened categétiat(C), first consider its ob-
vious projection on the index categaryd. Sincelnd is complete, this has a limit
| € |Ind|. Using the functors assigned Byto the projection morphism of the limit,
“translate” all the nodes and edges of the diagram to the categ@iy thus ob-
taining a diagram irC(l). SinceC(l) is complete, it has a limit. Check that the
projection morphisms of the limit of the diagram constructedinich when paired
with the corresponding projection morphisms of the limit of the diagrar@(ih
form the limit of the original diagram ifrlat(C).

To make the construction manageable, consider only products and equalisers:

this is sufficient by Exercide 3.2.49. 0

3.4.3.3 Functor categories

Definition 3.4.60 (Functor category).Let K1 andK2 be categori@ Thefunctor
category|[K1—K?2] is defined by:

Objects of[K1—K2]: functors fromK1 to K2;
Morphisms of[K1—K2]: natural transformations;
Composition iNK1—K2]: vertical composition. O

Exercise 3.4.61Define the categorgef of Ssorted sets as a functor categoryl

Exercise 3.4.62For any categorK, define its morphism categok/— as the cate-
gory of functorg2—K]. O

Exercise 3.4.63Let K1 andK2 be categories. Show thatk2 is (finitely) com-
plete then so is the functor categdi§l —K2]. State and show the dual fact as well.
HINT: The limit of any diagram ifK1—K2] may be constructed “pointwise”, for

8 To be cautious about set-theoretic foundations, one may want to assurké tisamall.

Page: 141 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

142 3 Category theory

each object inK1| separately. More precisely, using Exerdise 32.49 to simplify
the notational burden: consider any family of funct@g: K1 — K2)nen. For each

X € |K1|, let Q(X) € |[K2| with projections(mn)x:Q(X) — Fn(X), n€ N, be a
product of (F,(X))nen in K2. Check that there is a unique way to extédo a
functor Q:K1 — K2 so that allm,:Q — Fn, n € N, become natural transforma-
tions. Show thaf) with projections(m,)nen is a product of(Fn: K1 — K2)pen in
[K1—K2]. Then proceed similarly for equalisers: consider funckis: K1 — K2
and natural transformatiors, 7: F — F'. For eachX € |K1|, let 7x: Q(X) — F(X)

be an equaliser oft)x, (72)x: F(X) — F/(X) in K2. This yields a unique functor
Q:K1 — K2 such thatr: Q — F is a natural transformation, which is an equaliser
of 11,72 in [Kl—>K2]. O

Exercise 3.4.64LetK1, K1’ andK2 be categories. Show how any funckaikK1 —
K1’ induces a functofF;_): [K1'—K2] — [K1—K2]. Relying on the construction
outlined in Exercisg 3.4.63 and assuming tKatis (finitely) complete, show that
this functor is (finitely) continuous.
Prove also that this yields a functor—K2]: Cat® — Caf’|(cf. Exercis¢ 3.4.16).
O

Exercise 3.4.65For any categorK, define a categorffunct(K) of functors into
K as follows:

Objects ofFunct(K): functorsF:K’ — K into K;

Morphisms ofFunct(K): a morphism fromF:K1 — K to G:K2 — K is a pair
(P, p), whered:K1 — K2 is a functor angp: F — ;G is a natural transforma-
tion (between functors fro{1 to K);

Composition inFunct(K): (®@,p);(®,p") = (®; P, p;(P-p')).

Show how the categorfyunct(K) arises by the flattening construction of Defini-
tion[3.4.58 for the functof —K | as defined in the previous exerdiS. 0

Exercise 3.4.66Show that ifK is a (finitely) complete category then the category
Funct(K) of functors intoK is (finitely) complete as well. HiT: You may con-
struct the limits inFunct(K) directly, perhaps using Exercise 3.7.49. Alternatively,
rely on the construction dfunct(K) by flattening (Definitiof 3.4.58) for the functor
[—K]:Cat®? — Cat and on Exercisg 3.4.59; recall th@at is complete by Exer-
cise[3.4.3p, for any categokl, [K1—K] is (finitely) complete by Exercide 3.4J63,
and for every functoF: K1 — K2, (F;_): [K2—K] — [K1—K] is (finitely) contin-
uous by Exercisg 3.4.p4. 0

Exercise 3.4.67Show that if a categorKl has a factorisation system (cf. Sec-
tion[3.3) than for any categoty2, the functor categorjk2—K1] has a factorisa-
tion system as well.

HINT: Let (E1,M1) be afactorisation system f&il. DefineE = {e € [K2—K1] |
ea € Elforac |[K2|} andM = {n € [K2—K1] | na € M1 for a € |K2|}. Now,

9 Assuming thak2 is small would help to resolve potential foundational problems here.
10 50, for foundational reasons, one may prefer to keep all categories small around here as well.

Page: 142 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.4 Functors and natural transformations 143

to construct an(E,M)-factorisation of a natural transformationF — G be-
tween functord=, G: K2 — K1, first for each objeca € |K2| obtain an(E1,M1)-
factorisation ofta, sayta = ea;na with g5 € ELandna € M1, andea: F(A) — H(A),
na:H(A) — G(A) for someH(A) € |K1|. Then use the diagonal fill-in lemma
(Lemma[3.3.4) to extend the mappihy |K2| — |K1| to a functorH:K2 — K1
such that:F — H andn:H — G are natural transformations. O

3.4.3.4 Equivalence of categories

Definition 3.4.68 (Isomorphic categories)Two categorie&1 andK2 areisomor-
phicif there are functor§:K1 — K2 andF~1:K2 — K1 such thafF;F~! = Idk
andF~L:F = Idks. O

In other words, we say that two categories are isomorphic if they are isomorphic
as objects ofat. As with isomorphic objects of other kinds, we will view isomor-
phic categories as abstractly the same. It turns out, however, that in this case there
is a coarser relation which allows us to identify categories which have all the same
categorical properties, even though they may not be isomorphic.

Definition 3.4.69 (Equivalent categories). KlandK2 are equivalentif there are
functorsF:K1 — K2 andG:K2 — K1 and natural isomorphismsIdg; — F;G
ando:G;F — Idko. a

To characterise equivalent categories, we need one more concept:

Definition 3.4.70 (Skeletal category)A categoryK is skeletaliff any two isomor-
phic K-objects are identical. Akeleton oK is any maximal skeletal subcategory
of K. O

Exercise 3.4.71Prove that two categories are equivalent iff they have isomorphic
skeletons. O

Thus, intuitively, two categories are equivalent if and only if they differ only in
the number of isomorphic copies of corresponding objects.

Example 3.4.72.The categoryFinSet of all finite sets is equivalent to its full sub-
category of all natural numbers, where any natural numhisrdefined as the set
{0,...,n—1} of all natural numbers smaller tham In fact, the latter is a skeleton
of FinSet Similarly, the categorgetof all sets is equivalent to its full subcategory
of all ordinals. O

Exercise 3.4.73Show that for any signaturE and set® of X-equations, the full
subcategory o 5 /® given by the finite sets of variables is equivalent to the cate-

gory Ts o (cf. Exercise$ 3.1.14 and 3.1]15). O
Exercise 3.4.74Let K1 and K2 be equivalent categories. Show thatKf is
(finitely) (co)complete then so K$2. O

Page: 143 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

144 3 Category theory

Exercise 3.4.75Recall Exercisg 3.4.52. As indicated there, categokigSig and
(Idse, ()1) are not isomorphic. Show that they are equivalent. Then, using Exer-
ciseg 3.4.74 ar{d 3.4.53, conclude from this tigSig is complete and cocomplete.

0

3.5 Adjoints

Recall FactE 1.414 and 1.4]110:

Fact 1.4.4.For any XZ-algebra A and S-sorted functionX — |A| there is exactly
one X-homomorphism® Ty (X) — A which extends v, i.e. such that(i(x)) =
vs(X) for all s € S, xe Xs, whereix: X — [Tz (X)| is the embedding that maps each
variable in X to the corresponding term. O

Fact 1.4.10.This property definess{X) up to isomorphism: if B is &-algebra
andn:X — |B| is an S-sorted function such that for aByalgebra A and S-sorted
function vX — |A| there is a unique&-homomorphism%B — A such that;|v®| =
v then B is isomorphic tos[X). O

The construction of the algebra bBfterms is one example of adjoint functor
(it is left adjointto the functor|_|:Alg(X) — Sef°™¥)). The general concept of an
adjoint functor, to which this section is devoted, has many other important instances.
In fact, [Gog91b] goes so far as to say:

Any canonical construction from widgets to whatsits is an adjoint of another
functor, from whatsits to widgets.

3.5.1 Free objects

LetK1 andK2 be categories:: K2 — K1 be a functor, ané1 be an object oK1.

Definition 3.5.1 (Free object).A free object over A w.rt. G is a K2-object A2
together with &1-morphismmnai: A1 — G(A2) such that for anK2-objectB2 and
K1-morphismf:Al — G(B2) there is a uniqué&2-morphismf#: A2 — B2 such
thatna;G(f#) = f.

Page: 144 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.5 Adjoints 145

G

K1 K2
AL— . G(A2) A2
\ \

\ \

\ \

f }G(f#) }f#

\ \

¥ Y

G(B2) B2

Na1 is called theunit morphism a

Example 3.5.2.Let X = (S Q) be an arbitrary signature. Consider the forgetful
functor| |:Alg(Z) — Sef’. Fac{1.4.4 asserts that for aBysorted seK, the term
algebraly (X) with the inclusionnx: X — | Tz (X)] is a free object oveX w.r.t. | |.

O

Exercise 3.5.3Define free monoids and the path categoRath(G) as free objects
w.r.t. some obvious functors. Then, look around at the areas of mathematics with
which you are familiar for more examples. For instance, check that free groups and
discrete topologies, (ideal) completion of partial orders, of ordered algebras, etc.
may be defined as free objects w.r.t. some straightforward functors. ad

Exercise 3.5.4Prove that any free object ovAd w.r.t. G is an initial object in the
comma categoryCas,G), whereCas:1 — K1 is the constant functor. Conclude
that a free object ovekl w.r.t. G is unique up to isomorphism. O

Exercise 3.5.5Prove that ifA2 € |K2| is a free object oveAl € |K1| w.r.t. G:K2 —
K1, then for anyB2 € |K2|, #:K1(A1,G(B2)) — K2(A2,B2) is a bijection.

Check that one consequence of this is that two morphisim#\2 — B2 coincide
(in K2) whenevema1;G(g) = na1;G(h) in K1. O

3.5.2 Left adjoints

Let K1 andK2 be categories an@:K2 — K1 be a functor. So far we have con-
sidered free objects w.r& one by one, without relating them with each other. One
crucial property is that the construction of free objects, if they exist, is functorial.

Proposition 3.5.6.If for any Al € |[K1| there is a free object overlAw.r.t. G, say
F (A1) € |K2| with unit morphismmai: Al — G(F(Al1)) (in K1), then AL — F (A1)
and fe K1(AL,B1) — (f;ne1)* € K2(F(AL),F(B1)) determine a functoF: K1 —
K2.

Page: 145 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

146 3 Category theory
G
K1 - K2
AL T | G(F(AD) F(AL)
i i
f G(F(1)) F() = (fmey)*
\ \
' '
Bl 781 ~G(F(B1)) F(B1)

Proof. F preserves identities (ida1) = (ida1;na1)* = idr(a) follows from the fact

that the following diagram commutes:

Al UIN

idat

Al Na1

G(F(A1)

idg(r(a1)) = G(idr(az))

G(F(AD)

F preserves compositiosince the following diagram commutes:

AL—L . G(F(AL) —
f G(F(f))
81—+ G(F(B1))

g G(F(9))
c1—™ . gEcy) —

it follows thatF(f;g) = (f;0;nc1)* = F(f);F(g).

O

Exercise 3.5.7 Prove that:1dx; — F;G in Propositiorj 3.5)6 is a natural transfor-

mation.

Page: 146 job: root macro: svmono.cls

O

date/time: 29-Sep-2010/17:45

3.5 Adjoints 147

Definition 3.5.8 (Left adjoint). Let F:K1 — K2 andG:K2 — K1 be functors and
n:ldg1 — F;G be a natural transformatiof.is left adjoint toG with unitn if for
anyAl € |K1|, F(AL) with unit morphismnai: Al — G(F(AL)) is a free object over
Al w.rt.G. O

Before we give any examples, let us prove a very important property of left ad-
joints.

Proposition 3.5.9.A left adjoint toG is unique up to (natural) isomorphism:
andF' are left adjoints ofG with unitsn andn’ respectively, then there is a natural
isomorphisnt: F — F’ such thatm;(7-G) = n'.

G(F(A1)) F(AL)
Na1
Al G(TAl) = (’C~G)A1 TAL
G(F/(AL)) F(A1)

Proof. First notice that for anyf € K1(AL1,B1), F(f) = (f;ng1)* and F/(f) =
(Fingy)”.

Then, forAl e |K1|, defineta; = (nx,)* and 7ot = (na1)? . Thentar;tt =
idr(a1) since the following diagrams commute:

G(F(AL)) TN

G (‘L’A]_;Tgll)
i G(ta) G(F(AL))
Na1
A1L G(F'(A1)) Al G(idr(a1)
Na1
NA1 Gt G(F(A1))

G(F‘(Al)) —

andrA’ll;rAl = idr(a1) by a similar argument.
Finally, for f: A1 — B1 (in K1), the following diagrams commute:

Page: 147 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

148 3 Category theory

Al L ~ G(F(AL)) Al AL ~ G(F(AL))
o G (o)
f G(F"(Al)) f
G(F/(f)) G(F(f))
B1 ey G(F (B1)) B1
U G(7a1) Ne1
G(F(B)) G(F(B1)

Thus,F(f) = (f;ne1)* = tas;F(); 151 This proves tha(f);te1 = ta;F'(), and
hence that:F — F' is natural. O

Example 3.5.10For any signatureZ = (S), the functorTy:Sef — Alg(Z
is left adjoint to the forgetful functof_|:Alg(Z) — Sef (cf. Examples 3.4.11

and34.).
The functorSeq Set— Mon is left adjoint to the forgetful functor_|: Mon —
Setwhich takes a monoid to its underlying set of elements. The usiihgseqld ggt—
Seq|_| (cf. Example$ 3.4]8 arjd 3.4]39).
The “free group” functor~: Set— Grp is left adjoint to the forgetful functor
|_|:Grp — Set Also, the functor taking a sét to the discrete topology oX is left
adjoint to the forgetful functof_|: Top — Set(cf. Exercis¢ 3.5]3). 0

Exercise 3.5.11Consider any algebraic signature morphisnt — X’. Prove that
the reduct functOL‘G:Alg(Z’) — Alg(X) has a left adjoint.

HINT: Formalise and complete the following construction. For BrgigebraA,
let Z(A) be an algebraic signature which exteiby a constang: s for each ele-
menta € |Als, s€ sortdX), and letX’(A) be a similar extension &’ by a constant
a:o(s) for eacha € |Als, s€ sortyX). Consider the congruenegs on Ty () gener-
ated by the identities that hold i The congruencesp may be translated by to
Z'(A)-terms, generating there a congruemde=a), and the algebray:(a) /o (=a)
is (almost) the freec’-algebra oveA.

Consider then a se®’ of X’-equations. Recall thatlod (X', @’) is the full
subcategory ofAlg(X’) with all X’-algebras that satisf$p’ as objects (cf. Exam-
ple). Prove that the reduct functds:Mod(Z’, @) — Alg(Z) has a left
adjoint.

HINT: In the construction above, close the congrueacea) so that for each
equationvX’et =t’ in @’ and substitutiord: X’ — |Ty(n), it identifies the terms
t[6] andt’[6] (cf. Exercisg 1.4]9 for the notation used here).

Page: 148 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.5 Adjoints 149

Finally, for any set® of X-equations such thab’ =5 o(®), prove that the
reduct fUﬂCtOL‘gZ Mod (X', @') — Mod (X, ®) has a left adjoint.

HINT: This is easy now (Propositign 2.3]|13 ensures that the functor is well de-
fined). O

Exercise 3.5.12Generalise Exercide 3.5]11 to derived signature morphisms, with
reduct functors as introduced in Exerdise 3.4.30. O

Example 3.5.13Let K be a category, and recall thatis a category containing a
single object, say. Let F:1 — K be left adjoint toC5:K — 1 (note that such a
functorF may not exist). Thefr(a) is an initial object inkK. O

Exercise 3.5.14Let A:K — K x K be the “diagonal” functor such that(A) =
(A,A) andA(f:A— B) = (f, f):A(A) — A(B). Prove thaK has all coproducts iff
A has a left adjoint. What is the unit? O

Exercise 3.5.15Formulate analogous theorems for coequalisers and pushouts and
prove them. Show how this may be done for any colimit. O

Exercise 3.5.16LetK be a category with an initial object and a factorisation system
and letK g be its full subcategory of reachable objects. RecallBhatk — Kris a
functor that maps any object to its reachable subobject (cf. Exgrcise|3.4.13). Show
that the inclusion functor. Kgr — K is left adjoint toRk . a

Exercise 3.5.17Show that left adjoints preserve colimits of diagrams. Do they pre-
serve limits as well? O

Exercise 3.5.18LetF:K2 — K1 be left adjoint tdG: K1 — K2 with unitn:ldx; —
F;G. Consider two object®\,B € |K1| and suppose that for some epimorphism
e A — B there exists a morphistm B — G(F(A)) such thateh = na. Prove that
F(e):F(A) — F(B) is an isomorphism.

HINT:
B+ G(F(B)) F(B)
. i F(e)
A" G F(A)
G(fe) e
\ G "
G(C) C

Page: 149 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

150 3 Category theory

First show thaf(B) with eng: A — G(F(B)) as the unit morphism is a free object
overAw.r.t. G. For this, use the following construction: for a@y |K2| andf: A —

G(C), let fg:F(B) — C be the unique morphism such thag;G(fg) = h;G(fa),
where in turnfa: F(A) — Cis the unigue morphism such thgk;G(fa) = f. Now,

fg satisfied e;ng);G(fg) = f and moreover, it is the only morphism frdriB) to C

with this property (use the fact thais an epimorphism and the freenes$-¢B) to
prove the latter). Then, show the conclusion following the proof of the uniqueness
of left adjoints, cf. Proposition 3.5.9. g

3.5.3 Adjunctions

Consider two categorie€l andK2 and functors=: K1 — K2 andG:K2 — K1
such thaf is left adjoint toG with unitn:1dgx; — F;G.

Proposition 3.5.19.There is a natural transformatios: G;F — Idk, such that

(%) : (Gn)i(e:G) =idg
(k) (n-F);(Fe) =idg
K1: K2:
G(r2) 160, G(FG(A2) F(G(A2)
(*)
idea) G(ea2) &po
G(A2) A2
Al F(A1)
NAa1 F(na1) idF(a)
()
G(F(A1)) F(G(F(A1))) = ~ F(A1)
Proof idea.

o (x) defineseaz: F(G(A2)) — A2 aseaz = (idg(az))".

e Check naturality To show that for alh: A2 — B2 in K2, ea2;0 = F(G(Qg));€p2, it
is enough to prove that (K1) 1ga2);G(€a2;9) = N (a2);G(F(G(0));€82)-

e Check(xx): To prove thatF(na1);&r(a1) = idr(a1), it is enough to show that (in
K1) na1;G(F(na1);€r(a1)) = Na1;G(idraz))- g

Page: 150 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.5 Adjoints 151

Proposition 3.5.20.Consider functor$-: K1 — K2 andG:K2 — K1, and natural
transformations):ldx; — F;G ande: G;F — Id k2 such that

(*) 1 (Gn)i(e:G) =idg
(k) (n-F);(F-e) =idg

ThenF is left adjoint toG with unitn.
Proof. ForAl € |[K1|, B2 € |[K2|, f: A1 — G(B2), let f# = F(f);eg: F(Al) — B2.
o NaLG(f¥) = nai;G(F(f));G(erz) = fing(sz):Glerz) = fiidge) = f.

e Suppose that for somg F(Al) — B2, na1;G(g) = f. Then: f# = F(f);ez =
F(na1;:G(9));€82 = F(na1);F(G(9)):€82 = F(NA1);€F(A1):9 = O- O
Definition 3.5.21 (Adjunction). Let K1 andK2 be categories. Aadjunction from

K1 to K2 is a quadrupléF, G, n, €) whereF:K1 — K2 andG:K2 — K1 are func-
tors andn:ldx; — F;G ande: G;F — ldk, are natural transformations such that

(%) : (Gn);(e:G) =idg
(%) : (n-F);(F-e) =ide 0

Fact 3.5.22.Equivalently, an adjunction may be given as either of the following:

e AfunctorG:K2 — K1 and for each A € |[K1|, a free object over Aw.r.t. G;
e AfunctorG:K2 — K1 and its left adjoint. ad

Exercise 3.5.23 (Galois connectionRecall that any partial order gives rise to a
corresponding preorder category (cf. Exanjple 3.1.3). Galois connections (Defini-
tion[2.3.3) arise as adjunctions between preorder categories:

Consider two partially ordered se&, <) and(B, <g) and two order-preserving
functionsf:A— Bandg:B — A (i.e.,, fora,a@ € A, if a<a a thenf(a) <g f(a)
and forb,b’ € B, if b <g b’ theng(b) <a g(b)).

Show thatf andg (viewed as functors) form an adjunction betw&@n<,) and
(B, <g) (viewed as categories) if and only if for @lc A andb € B:

a<ag(b) iff f(a)<ghb

Then show that this is further equivalent to the requirement that:

e a<ag(f(a))forallacA; and
e f(g(b)) <gbforallbeB.

View the Galois connection between sets of equations and classes of algebras on
a given signature defined in Sectjon]2.3 (cf. Propos[tion P.3.2) as a special case of
the above definition. That is, check that for any signafir¢he function mapping
any set of£-equations to the class of allalgebras that satisfy this set of equations
and the function mapping any classXfalgebras to the set of all-equations that
hold in this class form an adjunction between the powerset of the 3eegiiations
(ordered by inclusion) and the powerclass of the clasE-afgebras (ordered by
containment).

Page: 151 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

152 3 Category theory

Then check that the above definition of Galois connection coincides with the
more explicit Definitior] 2.3]3 of a Galois connection betwean<a) and (B, >g)
(note the opposite order f&). O

Exercise 3.5.24Dualise the development in this section. Begin with the following
definition, dual to Definitiof 3.5]1:

Definition. Let F:K1 — K2 be a functor and leA2 € |K2|. A cofree object over
A2 w.rt. F is aK1-objectAl together with &2-morphismeay: F(Al) — A2 such
that for anyK1-objectB1 andK2-morphismf:F(B1) — A2 there is a uniqu&1-
morphismf#:B1 — A1l such thaF(f#);ep = f.

Then dually to Section 3.5.2 show how cofree objects indigte adjoints Finally,
prove facts dual to Propositiofs 3.5.19 and 3}5.20, thus proving that right adjoints
and cofree objects give another equivalent definition of adjunction. O

Exercise 3.5.25Develop yet another equivalent definition (at least for small cate-
gories) of an adjunction, centering around the bijectidfi{Al, G(A2)) — K2(F(Al),A2)
using a generalised version of Hom-functors (cf. Exarpple 3/4.15).

Proof sketch.

e Forany small categorg and two functor§1: K1 — K andF2: K2 — K, define a
functorHomgy p2: K19P x K2 — Setby Homgg r2((A1,A2)) = K (F1(AL),F2(A2))
andHomegy g2((f1, £2))(h) = F1(f1);h;F2(f2).

e Show that ifF:K1 — K2 is left adjoint toG:K2 — K1 then #Homyg,, ¢ —
Homg \q,., is @ natural isomorphism.

e Finally, prove that for any functofs: K1 — K2 andG: K2 — K1, a natural iso-
morphism #Homyg,, ¢ — HOME 14, Shows thaF is left adjoint toG. a

Exercise 3.5.26Show that adjunctions compose: given any categdtiek2 and
K3, and adjunctionsF,G, n, €) from K1 to K2 and(F',G’,n’,€') from K2 to K3,
we have an adjunction of the forii;F',G’;G, _,) from K1 to K3. Fill in the
holes! O

3.6 Bibliographical remarks

Category theory has found very many applications in computer science, and the ma-
terial presented here covers just those fragments that we will require in later chap-
ters. Books on category theory for mathematicians include the classic [Mac71] as
well as the encyclopedic [HSI73], with[AHS90] as a more recent favourite, the three-
volume handbook [Bor94], the modestly-sized textbaok [Awo06], and many more.
An early book on category theory directed towards computer scientists is [AM75],
followed by [Pie91],[Poi92] and [BW95]. An interesting angle is[in [RB88], where
categorical concepts are presented by coding them in ML.

Page: 152 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

3.6 Bibliographical remarks 153

Our terminology is mainly based on [Mac71], although we prefer to write com-
position in diagrammatic order, denoted by semicolon. The reader should be warned
that the terminology and notation in category theory is not completely standardized,
and differ from one author to another.

We have decided to keep to the basics, and have not ventured into many more
advanced topics, some of which are quite important for computer-science appli-
cations. In particular, Cartesian closed categofies [BW95], [Mit96] and the Curry-
Howard isomorphism [SUQ6], categorical logic [L$86], monads [Man¥ 6], [Mbg91],
[Pho92], fibrations [Jac99], and topbi [Joh02], [Gadl06] all deserve attention.

We have presented somewhat more material than usual on certain topics that will
find application in some of the subsequent chapters. For example, in the material
on factorisation systems (with Section]3.3 taken from [Tar85]) and on indexed cat-
egories (with Section 3.4.3.2 based bn [TBG91]), we include some exercises which
formulate facts that we will rely on later. We will work with indexed categories
throughout the book, sometimes implicitly, since we find them more natural for
these applications than equivalent formulations in terms of fibrations [Jac99].

We have deliberately chosen to use a notion of factorisation system based on
[HS73]. The later book [AHS90] uses a somewhat more general concept, where
factorisation morphisms are not required to be epi and mono, respectively, and there-
fore the uniqueness of the isomorphism between different factorisations of the same
morphisms — or equivalently, of the diagonal in Lermma 3.3.4 — must be required
explicitly. Although much of the material carries over, some results are simpler un-
der our assumptions: for instance, we rely on Exeicise|3.3.5 which does not hold in
this form in the framework of [AHSS0].

Our presentation of signatures, terms and algebras in Cligpter 1 was elementary
and set-theoretic, and we retain this style throughout the book. But category the-
ory offers a whole spectrum of possibilities of doing universal algebra fruitfully
in a different style. Exercisdgs 3.4]26 gnd 3.4.41 relate to a categorical “Lawvere-
style” presentation of some of the same concepts,[see [Law63], [Manh76], [BW85].
This was used in some early papers on algebraic specificatior, e.q. [GTWW?75], but
as it abstracts away from the choice of operation names in the signature, it seems
less useful for applications to program specification. (This argument was put for-
ward already in[[BG80], with the notion of “signed theory” from [GB78] called
to the rescue.) An alternative approach to specifications in this framework is given
by sketches, see [BW95], which present specifications as graphs with indicated dia-
grams, cones and cocones that in a functorial model of the graph are mapped to com-
mutative diagrams, limits and colimits, respectively. Commutative diagrams capture
equational requirements here, with (co)limiting (co)cones offering additional speci-
fication power. Another related approach takes the general notiof-@figebra for
afunctorT:K — K as its starting point, whereTe-algebra on an objeét € |K| is a
morphism fromT (A) to A; this works smoothly ifT is a monad, seé [Man6]. Such
abstract approaches offer natural generalisations based on semantic interpretation in
categories other tha®et but again, in our view, abstraction from familiar concepts
and syntactic presentations makes them less convenient for practical use.

Page: 153 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

Page: 154 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

Chapter 4
Working within an arbitrary logical system

Several approaches to specification were discussed in Chgpter 2. Each approach
involved a differentogical systenas a part of its mathematical underpinnings. We
encountered different definitions of:

Signatures: “ordinary” many-sorted signatures, signatures contabuong true
andfalse (for final and reachable semantics), error signatures, order-sorted sig-
natures;

Algebras (on a signatut®): “ordinary” X-algebras, erroZ-algebras, partial-
algebras, order-sortedt-algebras;

Logical sentences (on a signatwe X-equations, conditional-equations, error
X-equations (with safe and unsafe variableS)definedness formulae, order-
sortedX-equations; and

Satisfaction (of &-sentence by &-algebra): of &-equation by a (totaly-algebra,
of an errorX-equation by an erroE-algebra, of aZ-equation by a partiak-
algebra, of aX-definedness formula by a partigtalgebra, of an order-sorted
X-equation by an order-sortédtalgebra.

All of these choices can be combined to obtain many different logical systems and

hence different approaches to specification, e.g. partial error specifications with con-
ditional axioms. Not only that, but there are several alternative approaches to the
specification of partial algebras and at least half a dozen to the specification of error
handling. Furthermore, there are many other variations that have not been consid-
ered, including the following (some of them briefly mentioned in Se¢tion[2.7.6):

e polymorphic signatures which permit polymorphic type constructors (rather than
just sorts) and operations having polymorphic types;

e continuous algebras to handle infinite data objects such as streams;

o higher-order algebras to handle higher-order functions (i.e. functions taking func-
tions as arguments and/or yielding functions as results);

e relational structures to model specifications containing predicates;

e ineqguations and conditional inequations;

o first-order formulae, with and without equality;

155

156 4 Working within an arbitrary logical system

e various modal logics, including algorithmic, dynamic, and temporal logics, for
formulating properties of (possibly non-functional) programs.

Some of these variations depart quite considerably from the usual algebraic
framework presented in Chaptéfs 1 and 2. But none of them (and very few of the
others considered in the literature) are artificial, resulting merely from a theoreti-
cian’s toying with formal definitions. All of them arise from the practical need to
specify different aspects of software systems, often reflected by diverse features of
different programming languages.

The resulting wealth of choice of definitions of the basic concepts is not a bad
thing. None of the logical systems used in specifications is clearly better than all the
others — and we should not expect that such a “best” system will ever be developed.
In theory, we can imagine putting all of the above concepts together, producing
a single logical system where signatures, algebras, sentences and the satisfaction
relation would cover as special cases all we have considered up to now. But the
result would be so huge and complex as to make it unmanageable. Moreover, what
would we do if one day somebody points out that yet another view of software is
important and should be reflected in specifications, and hence included in the logical
system we use? Scrap everything and start again?

Different specification tasks may call for different systems to express most con-
veniently the properties required. Moreover, different logical systems may be appro-
priate for describing different aspects of the same software system, and so a number
of logical systems may be useful in a single specification task. It is thus important
that the designer of a software system be able to choose which logical system(s) to
use.

An unfortunate effect of this necessary wealth of choice is that research on speci-
fication sometimes appears to be a confused mess, where everybody adopts a differ-
ent combination of basic definitions. This makes it difficult to build on the work of
others, to compare the results obtained for different logical systems, and to transfer
results from one system to another. This is even more disturbing when one realises
that such results include not only mathematical definitions and theorems, but also
practically useful tools supporting software specification, development and verifica-
tion produced at great expense of effort, time and money.

In fact, much of the work done turns out to be independent of the particular choice
of the basic definitions, although this is often not obvious. The main objective of this
chapter, and one of the main objectives of this book, is to lay out the mathematical
foundations necessary to make this independence explicit. We achieve this using the
notion of aninstitution which formalises the informal concept of a logical system
devised to fit the purposes of specification theory; see S¢ctipn 4.1 below for the def-
inition. Our thesis is that building as much as possible on the notion of an institution
brings important benefits for both the theory and the practice of software specifica-
tion and development. On one hand, this allows much work on theories, results, and
practical tools to be done just once for many different specific logical systems; on
the other hand it forces, via abstraction, a better understanding of and deeper insight
into the real problems.

Page: 156 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.1 Institutions 157

A first example of this general approach is given in Sedtioh 4.2, where we recast
the fundamental ideas of the standard approach to specification from Chapter 2 in
the framework of an arbitrary institution.

It should be stressed that the notion of an institution captures only certain as-
pects of the informal concept of a logical system. In particular, it takes a model-
theoretic view of logical systems, and no direct attempt is made to accommodate
proof-theoretic concepts. See Secfiorj 9.1 for a discussion of how proof fits into the
picture.

When discussing different approaches to specification in Chpter 2, apart from
various basic notions of signature, algebra, sentence and satisfaction, we also con-
sidered different kinds of models (algebras satisfying a set of axioms) as particularly
interesting:

¢ the initial models;
e the reachable models satisfyikg . true # false
¢ the final models in the category of reachable models satisfyimgtrue + false

These options, although important for the overall style of specification, are of a
different nature than the choice of the basic definitions embodied in the particular
institution used. We show in Sectipn 4.3 how such “interesting models” may be
singled out in an arbitrary institution, thus suggesting that the choice here is in a
sense orthogonal to the choice of the underlying institution.

Our general programme is to strive to work in an arbitrary institution as much
as possible. However, the concepts involved in the basic theory of institutions are
often too general, and hence too weak, to express all that is necessary. When this
happens, it would be premature to give up, and switch to working in a particular
institution. The “game” is then to identify a (hopefully) minimal set of additional
assumptions under which the job can be done, covering most or all of the logical
systems of interest. This gives rise to an enriched notion of institution with some
additional structure that is relevant to the particular purpose we have in mind. A few
examples of this are given in Sectigns|4.4 4.5.

Before proceeding we should warn the reader that although working in an arbi-
trary institution is very important, it is only one side of the story. The other side is
to define an institution appropriate for the needs of the particular task at hand, and
quite often this is far from trivial. Indeed, in many areas of Computer Science, the
fundamental problem yet to be satisfactorily solved is the development of a logical
system appropriate for the aspects of computing addressed. An example of an area
for which a satisfactory, commonly accepted solution still seems to be outstanding
(despite numerous proposals and active research) is the theory of concurrency.

4.1 Institutions

Following Goguen and Burstall [GB92], we introduce the notion ofretitution,
capturing some essential aspects of the informal concept of a “logical system”. The

Page: 157 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

158 4 Working within an arbitrary logical system

basic ingredients of an institution are: a notion of a signature in the system, and
then for each signature, notions of an algebra with this signature, of a logical sen-
tence over this signature, and finally a satisfaction relation between algebras and
sentences.

In contrast to classical logic and model theory, we are not content with consider-
ing logical systems “pointwise”, for an “arbitrary but fixed” signature. To capture the
process of building a specification and designing a software system, some means of
moving from one signature to another is required, that is, some notion of signature
morphism. These typically enable signatures to be extended by new components,
renaming and/or identifying others, as well as hiding some components used “inter-
nally” but not intended to be visible “externally”. Any signature morphism should
give rise to a translation of sentences and a translation of algebras determined by the
change of names involved. Furthermore, these translations must be consistent with
one another, preserving the satisfaction relation. As usual, when we switch from
syntax (signatures, sentences) to semantics (algebras), the direction of translation is
reversed.

The language of category theory is used in the definition to express the above
ideas. This concisely and elegantly captures structure arising from signature mor-
phisms, as well as forcing an appropriate level of generality and abstraction.

Definition 4.1.1 (Institution). An institutionINS consists of:

e a categonBignyg of signatures

e afunctorSenys: Signys — Set giving a seSen X) of X-sentence®r each sig-
natureX € |Signys| and a functiorBenns(o): Senns(X) — Senys(Z’) trans-
lating X-sentences t&’-sentences for each signature morphisnt — X’;

e a functor Mod.Ns:Signﬂ\ﬁ’S — Cat, giving a categoryMod(X) of X-models
for each signature € |Signyg| and a functorModns(o):Mod s (Z') —
Mod ns(X) translatingZ’-models taZ-models (andt’-morphisms t&-morphisms)
for each signature morphisot X — X’; and

e foreachX € |Signys|, asatisfaction relation=ns » < |Modns(Z)| x Senns(X)

such that for any signature morphismX — X’ the translationsModys (o) of
models andSenys(o) of sentences preserve the satisfaction relation, that is, for
any ¢ € Senys(X) andM’ € [Modns (Z')[:

M’ Eins zr Senns(0)(¢) iff Modins(o) (M) Fins,x @
[Satisfaction conditioh

O

We will freely use standard terminology, and for example say th&traodel M
satisfiesa X-sentencep, or thate holdsin M, wheneveM |=ns s .

The term “model” (which we use followind [GB92]) thereby becomes over-
loaded: it is used to refer both to objects in the cateddodns(X) and to the
algebras which satisfy a given set of axioms (we will soon extend the latter termi-
nology to an arbitrary institution in Sectipn #.2, and then to an arbitrary structured

Page: 158 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.1 Institutions 159

specification in Chaptéi 5). Hopefully, this will not lead to confusion as the context
will always determine which of the two meanings is meant. If in doubt, we will use
“a X-model” (whereX is a signature) for the former, and “a model®dt (where @

is a set of sentences) for the latter meaning of the word.

Notation.

e When there is no danger of confusion, we will omit the subsdii{® when
referring to the components of an institutitwS. Similarly, the subscripE on
the satisfaction relations will often be omitted.

e For any signature morphisot X — X/, the functionSen(c): SenX) — SenX’)
will be denoted simply by: SenX) — Sen(X’) and the functoMod (c):Mod (X') —
Mod(X) by ,‘G:Mod(z’) — Mod(X). Thus for anyX-sentencep € SenX),
o(p) € SenY’) is its o-translationto a X’-sentence, and for an’-model
M’ € |Mod(X')], M/‘G € |Mod(Z)]| is its o-reductto a X-model. We will also
refer toM’ as ac-expansiorof M"g. Using this notation, the satisfaction condi-
tion of Definition|4.1.1 may be expressed as folloWg}= o (@) <— M"(, = o.

e For any signature’, the satisfaction relation extends naturally to setsEef
sentences and clasﬁem‘ X-models. Namely, for any sep C Sen(X) of X-
sentences and modél € [Mod(X)|, M = @ meanM = ¢ for all ¢ € &. Then,
for any Z-sentencep € SenX) and class# C |Mod(X)| of Z-models, # = ¢
meanM = ¢ for all M € .. Finally, we will also write.# |= & with the obvi-
ous meaning.

e For any signatur&, we will sometimes writdlod(X) for the clasgMod (X)| of
all X-models. ad

The definition of an institution as given above is very general and covers many
logical systems of interest, as illustrated by the examples below. Nevertheless, it
does impose some restrictions which should be made explicit before we proceed
further.

First, the assumption that the translations of sentences and models induced
by signature morphisms are functors may seem overly restrictive. In some situ-
ations it would be natural to relax the requirement of functoriality and assume
that Sen (and perhapsviod as well) is a functor only “up to some appropri-
ate equivalence”. For example, given two signature morphisns — X’ and
o’:X' — X", for any sentence € SenX) it follows from the functoriality ofSen
thatSen(o;0’)(¢) = Sen(c’)(Sen(o)(¢)) (or using the notational convention in-
troduced above(o;06’)(¢) = 6’(c())). This seems overly restrictive when, for
example, local identifiers or bound variables are used in sentences. All we really
care about here is that the two translationspdb a X”-sentence areemantically
equivalent that (c;6”)(¢) ando’(c(¢)) hold in the same”-models. A solution

1 We will be somewhat more careful about the set-theoretical foundations than in our presentation
of the basics of category theory in Chayter 3: we will refer to collections of sentences as “sets” and
to collections of models as “classes”, as in Chapter 2. This is consistent with the formal definition

of an institution above, and satisfactory for the logical systems formalised as institutions given as

examples (but see Exam.46, foot@e 16).

Page: 159 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

160 4 Working within an arbitrary logical system

is to consider sentences up to this semantic equivalence, and work in an institution
where sentences simp8re the corresponding equivalence classes. This solution
would resemble the usual practiceircalculi, where terms are considered “up to
a-conversion” (renaming of bound variables), meaning that terms are really classes
of mutually a-convertible syntactic terms.

The only explicit requirement in the definition of an institution is that the satis-
faction condition holds. Speaking informally, this deals with the situation where a
“small” signatureX and a “big” signatureZ’ are related by a signature morphism
0:X — X', and we have a mod&ll’ € |[Mod(X’)| over the “big” signature, and a
sentencep € SenX) over the “small” signature. There are then two ways to check
whetheM’ “satisfies”@: we can either reduce the modié to the “small” signature
and check whether the reduct satisfies the sentenoetranslate the sentengeto
the “big” signature and check whether the translated sentence holds in the model
M’

“big” bl M Fx o(e)
(o)
“small” x Mls s (0]

The satisfaction condition states that these two alternatives are equivalent. This em-
bodies two fundamental assumptions. One is that the meaning of a sentence depends
only on the components used in the sentence, and does not depend on the context
in which the sentence is considered. The other is that the meaning of a sentence is
preserved under translation; as [GB92] say:

Truth is invariant under change of notation.

The latter requirement does not raise much doubt — we are not aware of any natu-
ral system in which it would not hold. The former, however, is sometimes violated.
There are natural logical systems where the meaning of a sentence depends on the
context in which it is used, or in other words on the signature over which the sen-
tence is considered. For instance, in logical systems involving quantifiers, the range
of quantification may implicitly depend on the signature, with quantified variables
ranging only over reachable values, so thate"...” is interpreted as “there exists

an elemenk which is the value of a ground term, such that ...” and similarly for
universal quantification. For such a logic the satisfaction condition does not hold
unless very strong restrictions are placed on signature morphisms.

Exercise 4.1.2Give a concrete counterexample to the satisfaction condition for a
logical system similar to equational logic, but with the universally quantified vari-
ables in equations ranging only over reachable values. Show how the logical system
you give may be modified to make the satisfaction condition hold.THThe sat-
isfaction condition failed because the interpretation of universal quantification over

Page: 160 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.1 Institutions 161

reachable values implicitly depends on the signature; try to make this dependence
explicit! O

4.1.1 Examples of institutions

Example 4.1.3 (Ground equational logic GEQ)The institutionGEQ of ground
equational logic is defined as follows:

e The categonbignge is justAlgSig, the usual category of algebraic signatures.
e The functorSerzeq: AlgSig — Setgives:

— the set of ground@-equations for each < |AlgSig|; and
— theo-translation function taking grountb-equations to groundl’-equations
for each signature morphisot X — X',

e The functorModgeq: AlgSig® — Cat is the functorAlg: AlgSig® — Cat as
defined in Examplg 3.4.29, that Modgeq gives:

— the categoryAlg(Z) of X-algebras and®-homomorphisms for eack <
|AlgSig|; and
— thereduct functQ[‘G:AIg(Z’) — Alg(X) mappingz’-algebras and’-homomorphisms
to X-algebras and-homomorphisms for each signature morphisnt —
X
e ForeactE € |AlgSig|, the satisfaction relatioh=geg x C |Alg(X)| x Serzeq(X)
is the usual relation of satisfaction of a groutebquation by &-algebra.

The Satisfaction Lemma (Lemrfia 2]1.8) ensures that the required satisfaction con-
dition holds and so that the above definition indeed yields an institution. O

Example 4.1.4 (Equational logic EQ)The institutionEQ of (ordinary) equational
logic is defined as follows:

e The categonfigng is justAlgSig.
e The functorSen:q: AlgSig — Setgives:

— the set o-equations for each < |AlgSig|; and
— theo-translation function taking-equations t&’-equations for each signa-
ture morphismo: £ — £’

e The functorModgq is Alg: AlgSig®? — Cat, just like Modgeq for ground equa-
tional logic.

2 The exact treatment of variables in equations requires special care to ensure that the translation
of equations along possibly non-injective signature morphisms is indeed functorial. The use of dis-
joint union in the translation of many-sorted sets of variables in Defirfifion 7.5.10 causes problems
here. The simplest way to make this work is to assume that, in each equation, variables of different
sorts are distinct. See [GBO2] for details.

Page: 161 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

162 4 Working within an arbitrary logical system

e For eachr € |AlgSig|, the satisfaction relatiof=gq » < |Alg(X)| x Sereg(X)
is the usual relation of satisfaction ofaequation by &-algebra.

The Satisfaction Lemma (Lemrpa 2]1.8) again ensures that the required satisfaction
condition holds and so that the above definition indeed yields an institutiond

There is an obvious sense in whi@EQ can be regarded as a “subinstitution”
of EQ. We will encounter further such cases below. We refrain from formulating a
notion of subinstitution because the concept turns out to be more subtle than it might
appear at first. We postpone a proper treatment of relationships between institutions

to Chaptef 10 (in particular, see Exerdise 10.4.8).

Exercise 4.1.5 (Reachable ground equational logic RGEQefine an institution
RGEQ of ground equational logic on reachable algebras, by modifying the definion
of GEQ so that only reachable algebras are considered as models. Do not forget to
adjust the definition of reduct functors!

Try to extend this to an institutioREQ of equational logic on reachable algebras
— and notice that the satisfaction condition cannot be ensured without modifying
the notion of an equation to include “data constructors” to determine the reachable
values for which the equation is to be considered, as already hinted at in Exer-
cise[4.1.D. O

Example 4.1.6 (Partial equational logic PEQ).The institutionPEQ of partial
equational logic is defined as follows (cf. Sectjon 2.7.4):

e Signegq is AlgSig again.
e Serpeg:AlgSig — Setgives:

— the set oZ-equations an&-definedness formulae for eaZhe |AlgSig|; and

— the o-translation function takingt-equations and-definedness formulae
to X’-equations andt’-definedness formulae for each signature morphism
0.z — 2B

e Modpgq: AlgSig®® — Cat gives:

— the categoryAlg(X) of partial X-algebras and weaX-homomorphisms for

eachX € |AlgSig| (cf. Exampld 3.3.13); and
— the reduct functOL‘G:PAlg():’) — PAIg(Z) defined similarly as in the total

case for each signature morphismr — X’
e ForeactE € |AlgSig|, the satisfaction relatiop=peg » C |PAIg(X)| x Serpeg(X)

is the satisfaction oE-equations (with strong equality) ar¥tdefinedness for-
mulae by partiak-algebras.

Exercise.Proceeding similarly as in the proof of Satisfaction Lemma (Lefnma]2.1.8),
show that the satisfaction condition holds REQ. ad

S Asin Exampl, care is needed with the treatment of variables and their translation under
signature morphisms, see footnE}e 2.

Page: 162 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.1 Institutions 163

Example 4.1.7 (Ground partial equational logic PGEQ).The institutionPGEQ
of ground partial equational logic is defined just like the institufREQ of partial
equational logic above, except that only ground equations and ground definedness
formulae are considered. O

Exercise 4.1.8Recalling the notion of existential equality for partial algebras from
Sectior] 2.7 4, define institutio®EQ® andPGEQ?® of partial existence equational
logic and ground partial existence equational logic, respectively, modifying the def-
initions in Exampleg 4.1]6 ar[d 4.1.7 by using existential equations of the form
vX.t =t" and their ground versions only. O

Example 4.1.9 (Propositional logic PROP).The institution PROP of proposi-
tional logic is defined as follows:

e Signerop IS Set the usual category of sets. In this context, for each “signature”
P € |Set, we call elements dP propositional variables
e Serprop: Set— Setgives

— For eachP € |Set, Serprop(P) is the least set that contaifs sentences
true andfalse, and is closed under the usual propositional connectives, that is,
if @,¢" € Serprop(X) then alsop Vv ¢’ € Serprop(X), ~¢ € Serprop(Z),

@A ¢ € Serbrop(X), andp = ¢’ € Serbrop(Z).[f

— For each functiow: P — P, Serprop(0) extendss to the translation of arbi-
trary propositional sentences with propositional variabldstmpropositional
sentences with propositional variable$s¥h preserving the propositional con-
nectives in the obvious way.

e Modpgrop: Sef? — Cat gives:

— For each set of propositional variables |Set, P-models are all functions
from P to {ff,tt}. These functions can be identified with subset®ofvhere
M:P — {ff,tt} yields {p € P | M(p) = tt}). Model morphisms are just in-
clusions of these sets, i.e., given tRemodelsM1, M,: P — {ff tt}, we have
a (unique) morphism fronM; to My if for all p € P, My(p) = tt whenever
My (p) = tt.
— Foreach signature morphismP — P', the reduct functoModprop(0): Modprop(P') —
Modprop(P) maps any modeéWl’: P’ — {ff it} to o;M’: P — {ff tt}.

e For eacltP ¢ |Set, the satisfaction relatiog-prop,pr € [Modprop(P)| x Serprop(P)
is the usual relation of satisfaction of propositional sentences, that is, fdP-any
modelM: P — {ff,tt}, p€ P andg, ¢’ € Serprop(P):

— M =propp pifand only if M(p) = tt,

— M =propp ¢ V¢ if and only if M =propp ¢ OF M [=propp ¢’
— M [=propp —¢ if and only if M “propp @,

— M =propp ¢ A @' if and only if M [=propp ¢ andM propp @'

4 We tacitly assume here thaiue, false, V, A, =, — are new symbols (not i), and rely on the
usual precedence rules and parentheses to make sure that no ambiguities in their “parsing” arise.

Page: 163 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

164 4 Working within an arbitrary logical system

— M [=propp ¢ = ¢’ if and only if M =propp ¢’ Or M Epropp @
- M):pRop_p true, and

- M %pRop.p false. O

Exercise 4.1.10Recall the specification of Boolean algebras in Exarpple2.2.4.

Note that one way to view the definitions in Example 4.1.9 is to define the set
of P-sentences as Boolean terms with variables fidanThen, one can consider
the two-element Boolean algebBawith the carrier{ff,tt} (with trueg = tt and
falseg = ff). Furthermore, any propositional moddt P — {ff,tt} induces evalua-
tion of termsM¢: Serprop(P) — |B|, with M#(¢) = tt if and only if M =propp ¢
as defined above.

Define another institution of propositional logRROPPA, where signatures and
sentences are asiROP, but models use arbitrary Boolean algebras rather than just
B. That is, for any seP € |Set of propositional variables, B-model inPROPPA
consists of a Boolean algetBdogether with valuatioM: P — |B|, where we define
(B,M) FEpropsa p ¢ if and only if g (M) = trueg (Wheregg(M) is the value of term
@ in B under valuatiorM).

Prove now that the semantic consequence relation (Defirfition] 2.3.6, cf. Defini-
tion[4.2.5 below) iPROP andPROPP* coincide.

HINT: Clearly, if ¥ ':PROPBA)P ¢ then also¥ |=propp ¢ for any setP of
propositional variablesl C Serprop(P) and¢ € Sensrop(P). Suppose now that
¥ Wpropea p 9- Use the following Iemrrﬁ

Lemma. Given any Boolean algebra B and element kB| such that b# trueg,
there exists a homomorphismBi— B from B to the two-element Boolean algebra
B such that lib) = falsep.

Now, given any Boolean algebi® and valuationM:P — |B| such that for all
y eV, yg(M) = trueg andgg(M) # trueg, conclude using the above lemma that
(M;h)¥(y) = tt for all y € ¥, while (M;h)?(¢) = ff. 0

Exercise 4.1.11Define the institution of intuitionistic propositional logieROP',
following the pattern oPROPPA in ExercisO, but using arbitrary Heyting
algebras (see Examgle 2.]7.6) rather than just Boolean algebras.

Show that iff’ =ppop p @ then alsat [=propp ¢ for any seP of propositional
variables,¥ C SerpRop(P) and ¢ € Serprop(P), and give a counterexample to
show that the opposite implication fails in general. O

Example 4.1.12 (First-order predicate logic with equality FOPEQ).The institu-
tion FOPEQ of first-order predicate logic with equality is defined as follows:

e Signeopeg, from now on denoted bFOSig, is the category dfirst-order signa-
tureswhere we define:

5 The proof of this lemma is beyond the scope of this book, but seele.g. [RS63], 1,8.5 and
11,5.2,(a)=(e).

Page: 164 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.1 Institutions 165

— Afirst-order signatured is a triple(S, Q,IT), whereSis a set (okort name}
Q = (Qus)wes ses is a family of sets (obperation namesvith their arities
and result sorts indicated — just as in algebraic signatures)laad ITy)wes:
is a family of sets (opredicateor relation namesvith their arities indicated).

— A first-order signature morphism: (S Q,IT) — (S,Q’,IT’) consists again
of three components: a functighors S — S, anS* x Sindexed family of
functions Ogps = ((Bops)ws: Lws — 'Qé;ons(w),esons(s)>W63*75€S (these are as in

algebraic signature morphisms) afgeds= ((Opreds)w: Iw — ngorts(w>>weg.

(As with algebraic signature morphisms, all the components of a first-order
signature morphism will be denoted byd when there is no danger of ambi-
guity.)

e Senopeq: FOSig— Setgives:

— For each first-order signatut® = (S Q,1II), Senopeq(®) is the set of all
closed (i.e. without unbound occurrences of variabfesj-order formulae
built out of atomic formulae using the standard propositional connectives (
A, =, <,) and quantifiersY(, 3). The atomic formulaeare equalities of
the formt = t/, wheret andt’ are (S Q)-terms (possibly with variables) of
the same sort, atomic predicate formulae of the fg(t,...,t,), wherep €
ITs, s, andty, ..., t, are terms (possibly with variables) of soss ..., s,
respectively, and the logical constantse andfalse.

— For each first-order signature morphién® — @', Sertopeg(0) is the trans-
lation of first-order®-sentences to first-ordé¥’-sentences determined in the
obvious way by the renamin@ of sort, operation and predicate name®in
to the corresponding names@i[ﬂ

e Modgopeq: FOSIig®P — Cat, from now on denoted biFOStr, gives:

— For each first-order signatué = (S, Q,II), the category-OStr(®) of first-
order ®-structuress defined as follows:

A first-order @-structure Ac |FOStr(®)| consists of a carrier s¢A|s for
each sort namse S, a functionfa:|Als, x ... x |Als, — |Als for each op-
eration name € Qg 5, s (these are the same as(Q)-algebras) and a
relationpa C |Als; X ... x |Als, for each predicate namee I, _s,. In the
following we write pa(a, .. .,an) for (a1,...,an) € pa.
For any first-orde®-structureA andB, afirst-order®-morphismbetween
them,h: A — B, is a family of functionsh = (hs:|Ajs — |B|s)scs Which pre-
serves the operations (as ordina8/Q)-homomorphisms do) and predi-
cates (i.e., fop € I, s, anday € |Als,, ..., an € |Als,, If pa(as,....an)
thenpg(hs, (a1), .. .,hs,(an)) as well). A@-morphism isstrongif it reflects
predicates as well, so that fgre ITs, s, anday € |Als;, ..., 8n € |Als,,
pa(ay,...,an) ifand only if pe(hs, (a1), ..., hs,(an)).

6 Asin Exampl, some care is needed with the exact treatment of quantified variables and
their translation under signature morphisms (cf. footfigte 2) — again, the simplest solution is to

assume that, in each formula, variables of different sorts are distinct!_Seel[GB92] for a careful

presentation.

Page: 165 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

166 4 Working within an arbitrary logical system

— For each first-order signature morphigim® — @', we have thef-reduct
functorFOStr(6): FOStr(®') — FOStr(®) defined similarly as reduct func-
tors corresponding to algebraic signature morphisms.

e For each® < |FOSig|, the satisfaction relatiofi=ropege C |[FOStr(0©)| x
Senopeq(@) s the usual relation of satisfaction of first-order sentences in first-
order structures, determined by the usual interpretation,of, = and — as
disjunction, conjunction, implication and negation, respectivelyy @hd 3 as
universal and existential quantifiers, respectively, of equalities’ as identity
of the values of andt’, of atomic predicate formulag(ty, ... ,t,) as the value of
the predicate namep in the structure on the values of the tertps. . ., t,, and
of true andfalse.

Exercise.Work out all the details omitted from the above definition. Then, general-
ising the proof of the Satisfaction Lemma, show that the satisfaction condition holds
for FOPEQ. O

Exercise 4.1.13 (First-order predicate logic FOP, first-order logic with equality
FOEQ). First-order predicate logic with equality contains some standard “sublog-
ics”. Define the institutiorOP of first-order predicate logic (without equality), by
referring to the same signatures and models 8OREQ, but limiting the sentences
to those that do not contain equality.

Define also the institutioROEQ with signatures and models as in the institution
EQ of equational logic, but with first-order sentences (without predicates). O

Exercise 4.1.14 (Infinitary logics).Define an institution of so-called,,, logic,
which extends first-order predicate logic with equality by allowing conjunctions and
disjunctions oftountablefamilies of formulae (but still only finitary quantification).
Extend this further by allowing quantification over countable sets of variables, ob-
taining an institution ot ¢, logic. You may also want to define institutionslaofg
logics, for any infinite cardinal numbeosandf such thaf < ¢, with conjunctions

and disjunctions of sets of formulae of cardinality smaller thaand quantification
over sets of variables of cardinality smaller than O

Exercise 4.1.15 (Higher-order logics)Define an institution ofecond-order logic
which extends first-order logic by introducing variables ranging over predicates
(which in a model denote subsets of a product of the carrier sets) and quantification
over such (first-order) predicates. Then generalise this further to an institution of
higher-order logi¢ which introduces variables that range over (second-order) pred-
icates with arities that may include arities of first-order predicates, and predicates
with arities that may include arities of second-order predicates, etc., and allows for
quantification over such higher-order predicates. Without much additional effort,
you may want to extend this further, by allowing variables that range over func-
tions of an arbitrary higher-order type, and quantification over such functions. Note
though that this will be different from first-order logic for higher-order algebras as
sketched in Example 2.766, where quantification over higher-order function types
does not necessarily coincide with quantification @léfunctions of this type. O

Page: 166 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.1 Institutions 167

Exercise 4.1.16 (First-order equational logic with boolean values FOEQBo0I).
Define an institutiorFOEQBool which differs fromFOEQ by considering only
signatures that contain a subsignatliggy of truth values(Xyoo has a special, dis-
tinguished sorbooland two constantsue, false bool) and assuming that signature
morphisms preserve and reflect symbol&ijgo and that algebras interpret them in
the standard way (the carrier of stdol has exactly two distinct elements that are
values oftrue andfalse respectively).

There is now an obvious equivalence between the categories of signatures of
FOPEQ andFOEQBool obtained by mapping each first-order signature to the al-
gebraic signature with the sdibol and constanttrue, false bool added, and with
new operation namé,:s; x ... x s, — boolfor each predicatg:s; x ... x s,. First-
order structures give raise to algebras with the standard interpretat&yptind
with functions f,, that yield the value ofrue exactly on those arguments for which
the predicate holds. Clearly, this yields a one-to-one correspondence between first-
order structures and algebras over the corresponding signatures. However, this does
not extend to model morphisms in gener&xércise: Find a counterexample. No-
tice though that evergtrongmorphism between first-order structures extends to a
homomorphism between their corresponding algebras.) We then consider transla-
tion of atomic sentencey(ty, .. .,tn) to equalitiesp(ts, . . .,t,) = true, and extend it
further to arbitrary first-order sentences with predicates and equality in the obvious

way.
Prove that such translations of sentences and models preserve and reflect satis-
faction. O

It is not much more difficult to define, for example, the institutPROPEQ of
partial first-order predicate logic with equality, or any other institution formalising
one of the many standard variants of the classical notions.

Exercise 4.1.17 (Partial first-order predicate logic with equality PFOPEQ)De-
fine the institutionPFOPEQ of partial first-order predicate logic with equality ac-
cording to the following sketch:

[SigrbpopEQ = FOSIg

e Foreact® € |[FOSig|, partial first-orde®-sentences are defined in the same way
as usual first-orde®-sentences on atomic formulae which here inclatimic
definedness formulae def for any®-termt, in addition to equalities and atomic
predicate formulae. The translation of sentences along signature morphisms is
defined in the obvious way.

e For each® € |[FOSig|, the models inModpropeq(@) are like first-order®-
structures except that the operations may be partial. MorphisMedpropeq(©)
are like first-ordel®-morphisms but are required to preserve definedness of op-
erations, as weak homomorphisms of partial algebras do. The reduct functors are
defined similarly as for first-order structures.

e For each signatur® < |FOSig|, the satisfaction relatiof=propeqe is defined
like the usual first-order satisfaction relation, building on the interpretation of
atomic equalities and definedness formulae which follows the interpretation of

Page: 167 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

168 4 Working within an arbitrary logical system

(strong) equations and definedness formulae in partial algebras as defined in
the institutionPEQ of partial equational logic and on the usual interpretation

of atomic predicate formulap(ts, . . .,t,) which yieldsfalsewhen any oty, ...,

tn is undefined. a

Exercise 4.1.18 (Patrtial first-order logic with equality PFOEQ). Following Ex-
ercisq 4.1.13, define the instituti®FOEQ of partial first-order logic with equality
with signatures and models inherited from the institulREQ of partial equational
logic, but with first-order sentences (without predicates). Similarly, define the insti-
tution PFOP of partial first-order predicate logic (without equality). O

Exercise 4.1.19 (Partial first-order equational logic with truth PFOEQTruth).
As in Exercisg 4.1.16, define now an institutiBROEQBool of partial first-order
logic with equality and built-in boolean values.

However, using partial functions predicates may be modelled differently (and
more faithfully when model morphisms are considered). Define an institBE@EQTruth
which differs fromPFOEQ by assuming that the signatures contain a subsignature
Zwuth (Which has a special, distinguished south with a single constaritue: truth),
that signature morphisms preserve and reflect symbdlg jf, and that algebras in-
terpret them in the standard way: the carrier of $arth has exactly one element
that is the value ofrue.

The equivalence of categories of signatures and the translation of sentences be-
tweenPFOPEQ andPFOEQTruth can now be given in essentially the same way
as in Exercisg 4.1.16. Moreover, first-order partial structures are in one-to-one cor-
respondence with algebras over the corresponding algebraic signature, and this cor-
respondence may be described exactly as in Exdrcise 4.1.16 as well. The difference
is that now for arguments for which predicates do not hold, their corresponding op-
erations are undefined instead of yielding a tarevalue. This allows us to extend
this correspondence to model morphisms as well.

Prove that such translations of sentences and models preserve and reflect satis-
faction. O

Exercise 4.1.20Recall the notion of a strong homomorphism between partial alge-
bras (Definitiof 2.7.31) and between first-order structures (given in Example}4.1.12).
For each of the institutions above with models that involve partial operations or
predicates FOPEQ, FOP, PFOPEQ, PEQ, etc.) define a variant in which all
morphisms are strong. We will refer to these institutiond=&PEQg;,, FOPst,
PFOPEQy;,, PEQg, etc. In particular, model morphisms RFOPEQ,, preserve

and reflect predicates as well as definedness of operations. O

Exercise 4.1.21Using the material in Sectiofs 2.7[1, 2]7.3 and 2.7.5, respectively,
define institutionsEQ~ of conditional equations with signatures and models as in
EQ; Horn of Horn formulae built over signatures and modeld—F@IPEQ, where
sentences have the foriXe« @1 A ... A @y = ¢ for atomic formulaeps, ..., ¢n, @;
ErrEQ of error equational logic; an@rdEQ of order-sorted equational logic;0

Page: 168 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.1 Institutions 169

Example 4.1.22 (The institution CEQ of equational logic for continuous alge-
bras). We need some auxiliary definitions. LBt= (S Q) be an algebraic signature.

Recall (cf. Examplg 3.3.14) that a continudlilgebraA € [CAlg(X)| consists
of carriers, which are complete partial ordéf8|s, <s) for s€ S, and operations,
which are continuous functiorfa: |Als, x ... x |Als, — [Alsfor fisg x...x sy —s
inX.

For anyS-sorted seX (of variables), the&sorted) setT;’ (X)| of infinitary X-
termsis the least set such tffht

o XCITEX;

e foreachf:sy x...xs —sin X, if t1 € [T (X)]s;, ..., th € [T (X)|s, then
f(t1,...,ta) € |Tx (X)|s; and

e foreachse S, if for k> 0,tx € Tg ' (X)s, then| [(tk) k=0 € | T (X)]s.

Intuitively, | Tz (X)| contains all the usual finitar¥-terms and in addition is closed
under formal “least upper bounds” of countable sequences of terms. Notice, how-
ever, that we do not provid@;’ (X)| with the structure of a continuous-algebra; in
particular, a tern |(tx)k>0 is just a formal expression here, not a least upper bound.

Then, for any continuous-algebraA and valuation of variableg X — |A|, we
define apartial functionv*: [T (X)| — |A| which for any ternt € [T (X)| yields
thevalue V(t) of t (if defined):

e forxe X, V¥ (x) = v(x);

o for fis; x...x s — sandty € [TZ(X)ls,, - -+ tn € [T (X) |s VV(F(ta, ... tn)) is
defined if and only i##(ty), ..., V¥(tn) are all defined, and thesf(f (t1,...,t,)) =
fa(V¥(t1),...,V¥(tn)); and

o fort € T2 (X)s, k> 0, V¥((t)k=0) is defined if and only if alv¥(ty), k > 0,
are defined and form a chaiff(ty) <s V¥(t1) <s ..., and therv*(| J(tk)k=0) =
Lo V¥(tk) (where[| on the right hand side stands for the least upper bound in
the cpo(|Als, <s)).

As usual, we writea (V) for v¥(t).

Finally, aninfinitary X-equationis a triple (X,t,t’), written¥X e+t =t’, whereX
is anS-sorted set of variabl@s&ndt,t’ € |Te°(X)|s for somes € S A continuousk-
algebraA satisfiesan infinitaryX-equationvXe t =t’, written A |=ceq s VXet =t/,
if for all valuationsv: X — |A|, ta(v) andt,(v) are both defined and equal.

We are now ready to define the instituti®iEQ of equational logic for continu-
ous algebras:

e Signceq is AlgSig again.
e Serceq:AlgSig — Setgives:

— the set of infinitaryZ-equations for eack € |AlgSig|; and

7 For simplicity, we omit the decoration of terms by their target sorts. Formally, to avoid any
potential ambiguities, the definition should follow the pattern of Definftion 1.4.1.

8 Forse S the setXs C 2 come from a fixed vocabulary of variables as in Defini.l.l and
are mutually disjoint as in footno@ 2.

Page: 169 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

170 4 Working within an arbitrary logical system

— the o-translation function, mapping infinitar-equations to infinitarZ’-
equations in the obvious way, for each signature morplism — X'

e Modcgq:AlgSig® — Cat gives:

— the categorfAlg(Z) of continuousE-algebras and continuoltishomomorphisms
for eachX € |AlgSig|; and
— the reduct functOL‘G:CAIg(E’) — CAIlg(X) defined similarly as in the case

of usual (discrete) algebras for each signature morphiskh— X’.

e Foreach < |AlgSig|, the satisfaction relatioh=ceq » C |CAIg(X)| x Serceq(X)
is the relation of satisfaction of infinitady-equations by continuous-algebras.

Exercise.Proceeding similarly as in the proof of the Satisfaction Lemma, show that
the satisfaction condition holds f@EQ.

Exercise. Show that even though we have introduced only infinitary equations as
sentences iICEQ, infinitary inequalities of the form'X.«t <t’ are expressible here
aswell. (HNT: a<biff aub=Db.) a0

Exercise 4.1.23For each of the institutiontiNS defined above, define formally
its versionINS®" based on the category of signatures with derived signature mor-

phisms as presented in Sectjon 1.5.2 (cf. Exer§ises 3.1.12 and|3.4.30). O

Example 4.1.24 (Three-valued first-order predicate logic with equality 3SFOPEQ).

We sketch here the instituticddFOPEQ of three-valued first-order predicate logic
with equality as an example of how the notion of an institution can cope with logical
systems based on multiple truth values, where the interpretation of sentences may
yield a number of values rather than just being true or false.

e Signzropeq IS the categoryOSig of first-order signatures.
e Senropreq: Signzropeg — Setgives:

— For each® € |FOSig|, Sersropeq(@) is the set of sentences of the form
o istt, ¢ isff, or ¢ isundef, whereg is a ®-sentence of partial first-order
predicate logic with equalitPFOPEQ (see Exercisg 4.1.1L7).

— For each first-order signature morphigm® — @’, we define the transla-
tion function Sersropeq(0): Sensropeq(@) — Sersropeq(®’) in the obvi-
ous way using the translation of first-ord@rsentences t®’-sentences in-
duced by the morphisré.

e Modsropeo: Signg,EOPEQ — Cat is defined as usual for first-order logic, except
that operations in structures are partial functions and predicates are interpreted
as partial relations which for any tuple of arguments may yield one of three
logical valuestt (for truth), ff (for falsity) and a “third truth valuetundef (for
undefinedness).

e Atomic formulae, propositional connectives and quantifiers may be interpreted
over the three-element set of truth valyésff, undef} in a number of ways, see
for example[[KTB91] and references there for a discussion. Here, we adopt the
following interpretation:

Page: 170 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.1 Institutions 171

— Atomic definedness formulae have the expected meadifgt) is tt if the
value oft is defined, and iff otherwise.

— Equalities are interpreted africt equalitiest =t’ is tt if the values oft and
t’ are defined and equal, 6 if they are defined and different, anduadef
otherwise.

— The propositional connectives and quantifiers are interpreted as in Kleene’s
calculus (cf.[[KTB91]). For examplep v ¢’ is trueif either ¢ or ¢’ istt, is ff
if both ¢ and¢’ areff and isundefotherwise.

For anyg € Serpropeq(@) andM € [Modsropeq(®)|, this gives thenterpre-

tation of ¢ in M, [o]m € {tt,ff,undef}.

For each signatur® < |FOSig|, the satisfaction relatiob=3ropeqe < |M0od3zropeq(®)| X
Sersropeq(@) is now defined in the obvious way: for aM/c [Modzropeq(@)|

andg € Sersropeq(0):

- M >:3FOPEQ,® @ istt holds if and only if[@]m = tt;
— M E=3ropege ¢ isff holds if and only iff¢]m = ff; and
— M E=3ropege ¢ isundefholds if and only if[¢]m = undef.

Exercise.Work out all the details omitted from the above definition; notice that, in
particular, model morphisms may be defined in a number of sensible ways. Then
show that the satisfaction condition holds. O

Example 4.1.25 (The institution FPL of a logic for functional programs).The
institution FPL of a logic for a simple functional programming language with a
first-order monomorphic type system is defined as follows:

e A signatureSIG = (S, Q,D) consists of a sé of sort names, a family of sets of
operation name® = (Qys)wes scs, and a seD of sorts with value construc-
tors. Elements oD have the form(d,.#) with d € Sand.# = (Fyd)wes:, Where
Fud € Qug for we S, with no sort given more than one set of value construc-
tors, i.e.(d,#),(d,.Z’) € D implies # = .#'. SoSIG consists of an ordinary
algebraic signaturéS, Q) together with a set ofalue constructorgor some
of the sorts. Sorts with value constructors correspond to algebraic datatypes in
functional programming languages. In examples we usesLdike notatio@
for instance:

sort natfree with 0| sucgnat)

addsnatto S, 0:natandsuccnat— natto 2, and(nat, {0:nat, succnat — nat})
to D. We assume for convenience that e&€t. signatureSIG contains the sort
boolwith value constructorsue andfalse

sort bool free with true| false

9 CasL notation: this would be writtefree type nat::= 0| sucdnat) in CASL.

Page: 171 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

172 4 Working within an arbitrary logical system

e A model over a signaturglG = (S, Q,D) is a partial(S, Q)-algebraA such that
for each s¢t| of sorts with value constructofgdy,.#1), ..., (dn,-Zn) } C D, for
1 <i < n, each value constructor itf; is total and each elemeate Ay is
uniquely constructed from the values |y of sorts other thawl;,...,d, using
the value constructors i1 U --- U.%y; that is, (|Ag) 1<i<n iS freely generated
by #1U---U.%, from the carriers of the other sortsAn
We assume that aitPL-models interpret the sobool and its constructorsue
andfalsein some standard way.
A SIG-morphism betwee61G-modelsA andB is an (S, Q)-homomorphism be-
tweenA andB viewed as partial{S Q)-algebras. It istrongif it is strong when
viewed as a homomorphism between partial algebras, see Def[nition|2.7.31.
e The sefTsig(X)| of FPL-terms ovelSIG = (S Q, D) with variablesX and their
interpretation in arFPL-model A are defined by extending the usual definition
of terms over(S, Q) and their interpretation by the following additional func-
tional programming constructs (local recursive function definitions and pattern-
matching case analysis, respectively):

— letfun f(x1:s1,...,X:S):S =t'int is anFPL-term of sorts with variables

in X if:

- S1,...,5,5€S
t’ is anFPL-term of sorts’ overSIG extended byf:s; x --- x 5, — & with
variables inX U {x1:s1,...,Xn:Sn}; and
t is anFPL-term of sorts overSIG extended byf:s; x -+ x §, — 8 with
variables inX.

The value of such a term under a valuatoX — |A| is determined as follows:
extendA to give an algebra by interpretingf:s; x --- x s, — < as the
least-defined partial functiofy, such that for alpy € |Als;,...,an € |Als,,

the value offz(ay,...,an) is the same as the value tfin A underv mod-
ified by mappingx; to a; and... andx, to a,, whenever the latter is de-

finedt] ~
- the resulting value is then the valuetah A underv.
— caset of pat;=>ty| ---| pat,=>t, is anFPL-term of sortswith variables inX

if:
- tis anFPL-term of some sor$’ overSIG with variables inX;

for each 1< j <n, pat; is apatternoverSIG of sorts, where a pattern is
an (S Q)-term containing only variables and value constructors, with no
repeated variable occurrences; and

10 This definition is complicated because of the possible presence of mutually dependent sorts with
value constructor€xercise: Check that imposing the same requirement for each sort with value
constructors separately is more permissive and would not capture the intended meaning. Check
also that it would be sufficient to consider only maximal sets of sorts with values constructors that
are mutually dependent.

11 The fact that this unambiguously definég and thatf; can be equivalently given via the
natural operational semantics of recursively-defined functions, is a standard result of denotational
semantics, see for instan¢e [Sch86].

Page: 172 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.1 Institutions 173

for each 1< j <n, tj is anFPL-term of sorts with variables in the seX
extended by the variables pét;.
The value of such a term under a valuatioK — |A| is determined as follows:

obtain the valua of t in A underv;

find the least such that matches patyielding a valuation/ of the vari-

ables inpat;, where matching a value against a pattern proceeds as follows:
a variablex is matched by any valug yielding a valuation{x — a};
apatternf (ps, ..., pm) is matched byyieldingVv iffa: fa(as,...,am)
and eachp; (1 <i < m) is matched bya; yielding v{, with vV =
ViU Uvyy,

the resulting value is that of in A under the extension afby V' if such a

j exists; otherwise, the resulting value is undefined.

e Sentences ove$IG are first-order sentences built over atomic formulae which
are equalities betweelRPL-terms overSIG of the same sort and definedness
assertions for such terms. InterpretationF#fL-terms in a model determines
satisfaction of such sentences asPROEQ, see Exercisgs 4.1]17 ahd 4.1.18.
(Recall thatPFOEQ usesstrongequality, see Sectign 2.7.4.)

For convenience, we introdudenction definition®f the form

fun f(x1:s1,...,%:S):s=t
to abbreviate the formula

VX1:S1,...,%n:Sh
o f(X1,..., %) =letfun f(xi:s1,...,Xn:Sn):s=tin f(X1,...,%n).

To make the scopes of identifiers clearer, this can be rewritten using a new oper-
ation nameg as

VX1:S1,- .+, Xn:Sh
o f(Xq,...,%) =letfun g(x1:s1, ..., X:S):s=t"in g(Xq,...,%n)

wheret’ is the result of replacing by g in t. Such a recursive function defini-
tion is different from the equality (xi, ..., %) =t: for instance f (xa,...,Xn) =
f(X1,...,%) always holds whilgfun f(x1:s1,...,%:Sh):s= f(X1,..., %) holds
only whenf is totally undefined.

e Given SIG = (SQ,D) and SIG' = (S,Q’,D’), an FPL signature morphism
6:SIG — SIG' is a derived signature morphis@: (S Q) — (S,Q’) (using
FPL-terms in place of ordinary terms in Definitipn 1.5.13), such that for each
(d,.#) € D, we have(6(d), #') € D' such thatd restricted to# is determined
by a bijection from% to .%".

We require allFPL signature morphisms to preserve the dmbl and its con-
structorgtrue andfalse

Such signature morphisms go well beyond the usual renaming of sort and op-
eration names; here we allow (non-constructor) operations to be mapped to

12 This uniquely determines a result because non-variable patterns are of sorts that are freely gen-
erated by the value constructors and there are no repeated occurrences of variables in patterns.

Page: 173 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

174 4 Working within an arbitrary logical system

complicated terms involving programming constructs like recursion and pattern-
matching case analysis. This will be used in Chagft¢[s 6-9 to give examples,
starting with Examplg 6.1]6, that suggest how programs fit into the overall spec-
ification and development framework.

Such a signature morphism determines a translatiosi@fsentences t81G’-
sentences in the usual manf@and the same for the reduct froBhG’-models

to SIG-models. Moreover, the satisfaction condition holds.

Exercise.Complete the above definition and prove the satisfaction conditiomnl

Exercise 4.1.26The functional programming constructs used above are inspired by
those in Standard ML [PauB6]. Add more constructs from Standard ML to the def-
inition of FPL. Try adding type definitions, polymorphism, higher-order functions,

exceptions.
It is easy to add built-in types other thinol by basing the definition dFPL on
an arbitrary algebr®T as inIMP (Examplg 4.1.32 below). O

Exercise 4.1.27Mutual recursion need not be added explicitly since it is already
expressible using local definitions of recursive functions. Show hawr Hit may

be necessary to resort to copying function definitions, to make each function avail-
able for the definitions of the others. O

Exercise 4.1.28Consider ar-PL-signatureSIG containing a sors that is freely
generated by value constructors from other such sorts. Show how an equality op-
erationeq;: s x s — bool may be defined using a recursive function definition with
pattern-matching case analysis. Use this to view conditionals of the form

if t1 =t> thent elset’

(wherety, t, areSIG-terms of sorfs, andt,t’ have the same sort) as an abbreviation
for

let fun eqy(x:s,y:s):bool= ... in caseeq(ty,tp) of true=>t| false=>t’ O

Exercise 4.1.290ne could also introduce a conditional of the fdfnp then't elset’
whereg is a formula. Spell out the details. This would be unusual as a programming
construct because branching is controlled by an arbitrary logical formula, allow-
ing terms that would be problematic from a programming point of view, such as
if def(t) thent’ elset” andif Vx:se t; =t; thent’ elset”. Note that the meaning of
such a conditional would be different from the one introduced in Exefcise 4.1.28
when the check for equality involves a term with no defined value. O

13 Care is required to avoid unintended clashetetbound operation names BiG-terms with
operation names i8IG’. To avoid consequent problems with functoriality of sentence translation,
we can regar@PL-terms as being defined up to renamindetfbound operation names.

Moreover, as iFOPEQ (see Examplg 4.1.12), care is needed with the treatment of bound vari-
ables (which now also include variables in patterns and formal parametetshiound operation
definitions), cf. footnotE]G.

Page: 174 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.1 Institutions 175

Exercise 4.1.30While FPL involves constructs borrowed from functional pro-
gramming languages, it puts them in a logical context involving equality, logical
connectives and quantifiers, which results in sentences capable not only of defining
functions, but also of specifying their properties. Identify the “programming part”
of FPL by defining its “subinstitution’FProg with the same signatures and mod-
els, but with sets of sentences restricted to function definitions (with satisfaction
relations inherited fromFPL as well). As function definitions may not be closed
under translation along arbitrary (derived) signature morphisrR®In, restrict the

class of signature morphismsHhiProg to the standard morphisms, where operation
names are mapped to operation hames rather than to arbitrary terms. ad

Exercise 4.1.31. FPland its programming paRProg, relate to eager functional
programming languages like Standard ML because partial functions are required to
be strict. Formulate an analogous institution for lazy functional programming as in
Haskell. O

The institutiond=PL andFProg will be used in the sequel to present examples
that are meant to appeal to the reader’s programming intuition. Later on, the connec-
tion with functional programming will be further enhanced by introducing notations
for defining ML-style modules ifFPL (see Examplg 6.7.9 and Exercjse 7.3.5 be-
low).

Example 4.1.32 (The institution IMP of a simple imperative language)The in-
stitutionIMP of an imperative programming language with simple type definitions
is parameterised by an algeld®d on a signatur&pt of primitive (built-in) data
types and functions of the language. The componenit8|Bfpt are defined as fol-
lows:

e Asignaturell = (T,P) consists of a séf of type names and a setf functional
procedure names with types of the fosm. .., s, — s, where each oy, ...,s,,S
is either a sort inCpt or a type name ifM. The names im andP are distinct
from those inXpt. ThusIT U Xpt is an algebraic signature — we will denote
it by ITp7. Signature morphisms map type names to type names and procedure
names to procedure names preserving their types.

e There are two kinds of sentences over a signaliire (T,P).
First, sentences can be type definitions of the form

type s= type-expr

wheres € T is a type name antype-expris a type expression in a simple lan-
guage of types built over the sortsiipt and a unit typaunit using the opera-
tors+ (disjoint union) andx (Cartesian product). The type expressigpe-expr
may contain the type nangas well, which provides for recursive type defini-

tions[14

Second, sentences can be procedure definitions of the form

14 Other type names from are excluded, to prevent mutual recursion in type definitions — with
some extra work this restriction can be removed.

Page: 175 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

176 4 Working within an arbitrary logical system
proc p(Xi:S1, ..., %n:Sn) = While-programresult expr. s

wherep:si,...,S — Sis a procedure hame B, expris allpt-term (with vari-
ables) of sors, andwhile-programis a statement in a deterministic programming
language over the built-in data types and functions givebTin(while-program
may be empty, and so the program part of a procedure body may be omitted).
We assume that the usual iterative program constructions are provided: sequen-
tial statements, conditionals and while loops. This requires XYpat contains
the sortboolwith |DT |peo1 = {tt, ff }. The basic statements are well-typed assign-
ments (of expression values to formal parameters or variables scoped within each
procedure body).
Expressions may use projectiopso j4(v) andproj,(v) for valuesv of product
types of the forms; x s, and pairing(v1, v2) to build values of product types, as
well as boolean tesfs-in 1(v) andis-in 2(v) for valuesv of union types of
the forms; + s, and the constan of typeunit denoting the only element of
this type. The usual coercions between union types and their component types
may also be used. With a bit of additional complication we can also allow ex-
pressions to contain (recursive) procedure calls.

e A modelM over a signaturél = (T,P) has a carrier séM|s for eachse T. We
write |M|s for |DT|s if sis a sort name iXpr.
We have the usual notion efate where each state maps formal parameters and
variables to values of their sorts M, or marks them as undefined. An obvious
operational semantics may be given that determines, for each statement and state,
a sequence of states that formally captures the execution of that statement starting
in that state.
Then,M assigns to each procedure nams, ..., S, — sin P and every sequence
Vi € [M|g,...,Vnh € |M|g, Of (actual parameter) values a formal execution which
has one of the following forms:

(Successful terminatign a finite sequence of states and a valee|M|s;
(Unsuccessful terminatign a finite sequence of states; or
(Divergencg: an infinite sequence of states.

Given any such modé\, for any procedure namgs,...,S, — sin Pwe geta
partial functionpm:|Mls, x --- x [M|s, — |[Mls.
The models defined in this way form a discrete category.

e For any signaturél = (T,P) andIT-modelM:

— M satisfies dI-sentence of the form
type s = type-expr

if [M|s is the least seD such thatD is the value of the type expression
type-exprin which the type nams is interpreted a® and sort names' in
Xpr are interpreted dOT|y.

— M satisfies d1-sentence of the form

proc p(X1:S1, .-, %n:Sn) = While-programresult expr. s

Page: 176 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.1 Institutions 177

ifforall vo € [M|s,, ...,Vn € [M|s,, M(P)(V1,...,Vn) is the formal execution of
the statemenivhile-programstarting in the stat¢x; — vi,..., Xy — Vn}, and
if the execution terminates successfully in a state in wiigbr has a defined
value therM(p)(v1,...,Vn) contains this value as well.

Exercise.Complete the above definition and prove the satisfaction conditiom

Exercise 4.1.33Sentences itMP are essentially programs; they provide no means
of writing loose specifications. Add sentence®&OPEQ for specifying properties
of the procedures dMP viewed as partial functions. A different way of achieving

a similar effect will be presented in Exampfes 10.[.9, 10]1.14and 1D.1.17.0

Example 4.1.34 (The institution CDIAG of commutative diagrams).The follow-

ing example is of a rather non-standard character. We present a simple logical system
for stating that certain diagrams in a category with named objects and morphisms

commute. Sentences of the logical system allow one to require that morphisms pro-

duced by composition of series of (named) morphisms coincide.

e The category of signatures €DIAG is the categorgraph of graphs (see Def-
inition [3.2.36).

e A path equatiorin a graphG is a pair of paths ir with the same sources and
targets, respectively. For any grah{(a signature irSigncp,ac), G-sentences in
CDIAG are sets of path equations@

e A model over a grapl@ is a (small) categorf with a diagramD of “shape”
G, i.e. (via Exercis¢ 3.4.21) a functér. Path(G) — C. For any twoG-models
D1:Path(G) — C1 and D2:Path(G) — C2, a G-morphismin Modcpag (G)
from D1 toD2 is a functor: C1 — C2 such thaD1;F = D2.

e For anyG-modelD: Path(G) — C, a pathp from stot in G determines a mor-
phismD(p):D(s) — D(t) in C. We say that &-modelD: Path(G) — C satisfies
a path equationip,q) if D(p) = D(q). A G-model satisfies &-sentenceb if it
satisfies all path equatiose .

Exercise.Complete the definition and prove the satisfaction conditiorCiotAG .

Exercise.Reformulate the above definitions so that a sentence over a Graphld
be a subdiagram @ used to denote the set of path equation& which make the
subdiagram commute. O

The last few examples show that the notion of institution covers much more than
what one usually connects with the concept of a logical system.

The next two examples are perhaps even more unusual; we show that the defini-
tion of an institution does not restrict the sentences of a logic to be syntactic objects,
and does not force models to provide semantic domains and operations used to de-
termine the meanings of the syntactic objects. Thus, the notion of an institution
covers systems in which such a distinction is entirely blurred.

Example 4.1.35.Consider an arbitrary categoBign and functorMod: Sign°® —
Cat. We think ofSignas a category of signatures andwdd as yielding categories

Page: 177 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

178

4 Working within an arbitrary logical system

of models and reduct functors. To be cautious about foundations, we should make
sure thaMod yields only small categories.

We can now define an institutidhSSe"™od) where “sentences” are classes of
models:

e The category of signatures BhSSe"™°d) js Sign.
e The “sentence” functor dNSSe™Mod) is defined as follows:

— For any signatur& e |Sign|, a Z-“sentence” ofiNSS¢™°d) s 3 collection

A C [Mod(X)| of Z-models.

— For any signature morphisan £ — X', theo-translation of any-“sentence”

C |Mod(X)| to a X’'-“sentence”o(.#) C |Mod(ZX’)| is defined as the
coimage of.# w.r.t. theo-reduct functor, i.ec(.#) = {M’ € [Mod(X’)] |
Mod(o)(M') € .4'}.

e The model functor ofNSS®™od) js Mod.

e For each signatur&, the X-satisfaction relation ofNSS®™°d) s just the
membership relation: for an¥-modelM € [Mod(X)| and X-“sentence”.# C
IMod (Z)[, M = gsermod) 5 - if and only if M € ..

Exercise.Complete the definition and check the satisfaction condition. a0

Example 4.1.36.Consider an arbitrary categoBign and functorSen Sign — Set
We think of Signas a category of signatures andsahnas yielding sets of sentences
and their translations.

We can now define an institutiabSMod(

Sen \where “models” are sets of sen-

tences:

e The category of signatures tSM0d(Sen s Sign,
e The sentence functor diRSMOd(SeN js Sen
e The “model” functor ofINSMod(Sen s defined as follows:

— For any signaturg ¢ |Sign|, aZ-“model” of INSMOU(SeD js a setd C Sen(X)

of X-sentences. The category df“models” is just the preorder category
where the set of all such subsets is ordered by inclusion.

For any signature morphispt £ — X', the o-reduct functor of NSMod
from the category of’-“models” to the category oE-“models” maps any
X'-*model” @’ C SenX’) to its coimage{ ¢ € SenX) | Seno)(¢p) € &'} C
SenX); this obviously extends to a functor between the preorder categories
of X’- andX-“models".

Sen)

For each signatur®, the Z-satisfaction relation ofNSM°4(Se s (the inverse
of) the membership relation: for any-“model” & C Sen(X) and X-sentence
¢ € SenZk), @ = gMmodsen y @ ifand only if ¢ € .

Exercise.Complete the definition and check the satisfaction condition. O

Let us complete this list of examples by pointing out that the definition of insti-

tution admits a number of trivial situations:

Page: 178 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.1 Institutions 179

Example 4.1.37 (Trivial institutions).

e RecallthaDis the empty category. Hence, there is a unique (empty) functor from
0 to Setand a unique (empty) functor frol@PP = 0 to Cat. Together with the
empty family of relations, they form an empty institution (no signatures, hence
no sentences and no models).

e Given any categongign and functorMod: Sign®® — Cat, a trivial institution
with signaturesSign, with models given byMod, and with no sentences may be
constructed. Formally, the sentences of this institution are given by the functor
Serny: Sign — Setwhich yields the empty set for each signature.

e Given any categorgign and functorSen Sign — Set, a trivial institution with
signaturesSign, with sentences given b$en and with no models may be
constructed. Formally, the models of this institution are given by the functor
Modg: Sign°® — Cat which yields the empty category for each signature.

¢ Given any categorgign and functorsSen Sign — SetandMod: Sign°? — Cat,
two trivial institutions with signatureSign, with sentences given b8en and
with models given byMod may be constructed. One is obtained by making all
sentences false in all models, that is by defining each satisfaction relation to be
empty. The other is obtained by making all sentences hold in all models, that
is by definining each satisfaction relation to be total (i.e., for e&eh|Sign|,

Er =|Mod(Z)| x SenX)). O

4.1.2 Constructing institutions

In the examples of the previous subsection, each of the institutions was constructed
“from scratch” by explicitly defining its signatures, sentences, models and satisfac-
tion relations. This is often a rather tedious task (we have simplified it in many cases
by referring to the standard definitions) and then checking the satisfaction condition
is not always easy. In this subsection we will give some examples of constructions
leading from an institution to a more complex one. The complexity added by the
construction does not necessarily imply that the institution so obtained has any ex-
tra “expressive power”. We start with some examples of “formal juggling” with
institution components, very much in the spirit of Examples 4]1.35 and 4.1.36, and
only then show how adding propositional connectives to a logic may be viewed as a
construction of a new institution from an existing one.

Example 4.1.38.Sets of sentences of any institution may be regarded as single sen-
tences (with the obvious “conjunctive” interpretation).

For any institutionINS define the institutiodlNS” of sets ofINS-sentences as
follows:

e The category ofiNS”-signatures is the same as the categ8ign of INS-
signatures.
e The sentence funct@enys~ is defined as follows:

Page: 179 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

180 4 Working within an arbitrary logical system

— For any signatur& < |Sign|, Senys (X) is the set of all set® C Senys(X)
of X-sentences ifNS.

— For any signature morphisot X — X', the translation of £-sentenceb in
INS” is its image w.r.t. thes-translation function iHNS: Senyg (0)(®) =
{Senns(o)(e) | ¢ € P} < Senns ().

e The model functor ofNS" is the same as the model funciod: Sign°® — Cat
of INS.

e For any signatur& € |Sign|, the satisfaction relation dNS” gives the conjunc-
tive interpretation of (sets of) sentences: for arynodelM € [Mod (X)| andX-
sentenceb C Senns(X), M = ysn » P ifand onlyifforallg € @, M =ins 5 @

O

Example 4.1.39.Signatures of any institution may be enriched to incorporate sen-
tences which restrict the class of models considered over the given signature.

For any institutionNS define the institutionNSS9"" with signatures enriched
by sentences as follows:

o Signatures ofNSS9"" are pairg X, @), whereX € |Signys| is anINS-signature
and® C Senns(Z) is a set ofX-sentences. Then, aNSSigrﬁ-signature mor-
phismo: (X, ®) — (X', @) is a signature morphism: X — X’ in Signyg such
thatfor allg € @, 6(¢) € @' This defines a categoign, csigr+ Of INSSion” .
signatures (with composition inherited fraBignys).

e Sentences dNSS9" are the same dblS-sentences: for anNSS9" -signature
(Z, @), Sen csignt ((£, P)) = Senns(Z), with the translation functions inher-
ited fromINS as well.

e Models of INSS9"" are again the same as modelsINfS; we consider, how-
ever, only those models that satisfy the sentences in the given signature. For
any INSS9" _signature (X, &), Mod | ssign ({Z,P)) is the full subcategory
of Modns(X) consisting of allX-models (inINS) that satisfy (according to
Eins x) all the sentences i. The reduct functors are again inherited from
INS.

e The satisfaction relations #RSS9"" are inherited fromNS.

Exercise. Spell out all the details of the above definition. In particular, check that

the reduct functors of the new institutidNSS9"" are well-defined (cf. Fact 4.2.04
below). a0

Example 4.1.40For any institution, we can enlarge its categories of models by
considering models over extended signatures.

For any institutiorNS, define the institutiofNSMod" with categories of models
containing models over extended signatures as follows:

e The category ofNSM°d+-signatures is the categoBign of INS-signatures.
e The sentence functor d1SM°4" is the sentence funct&en Sign— Setof INS.
e The model functoMod, \ coa+: Sign°P — Cat is defined as follows:

Page: 180 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.1 Institutions 181

— For any signatureX € |Sign|, a X-model of INSM2" s an INS-model
over an extension of the signatuke Formally: aX-model inINSMod” ig
a pair(c:X — X',M" € [Mod|ns(Z')|). A £-model morphism between two
suchX-models is again a paifo’, f): (01: X — X1,M] € [Modins(Z7)]) —
(02:X — X5, M; € [Modns(Z5)[), which consists of atNS-signature mor-
phism¢’:Z; — X} such thatoi;6’ = 6, and a model morphisnfi: M; —
MOd|Ns(G/)(Mé) in MOd|NS(Ei).
— Forany signature morphisat X; — X5, thec-reduct functoMoleSMod+ (o)
maps any;-model(oy: £ — X5, M5 € [Modns(Z5)]) to theZi-model(o;02: £1 — X5, M5 € [Modins(Z5)]).
On model morphismsylod | voq+ () is the identity.

e For each signatur® € |Sign|, the XZ-satisfaction relation ofNSMed™ is deter-
mined by theZ-satisfaction relation dNS: for anyX-model(c: X — X/, M’ € |[Modns(Z'))
and Z-sentencep € SenX), (o,M’) Finsoat ¢ @ if and only if M E=ins .z
Sen(c) (@), which by the satisfaction condition &S is equivalent tdodns (o) (M) EiNs z
Q.

Exercise. Complete the definition and check the satisfaction condition. Try to ex-
press the construction of the categories of modelgMod” using the flattening
construction for indexed categories (Definitjon 3.4.58) and the machinery of comma
categories (Definitioh 3.4.49). g

Example 4.1.41.For any institutionINS define the institutiodNSP™P by closing
the sets of its sentences under propositional connectives (with the usual interpreta-
tion) as follows:

e The category of signatures IMSP™P is just the categor§ign of INS-signatures.
e The sentence funct@enyseror: Sign — Setis defined as follows:

— For any signatur& < |Sign|, Sennseor(X) is the least set that contains all
of the X-sentences ofNS and two special sentencesie and false, and
is closed under the usual propositional connectives as introduced in Exam-
ple[4.1.9, that is, ifp, ¢’ € Senyseor(X) then alsop v ¢ € Senyspron(Z),
- € Sennsror(X), A @' € Senyspor(X), andp = ¢’ € SenNsprop(Z)é

— For any signature morphisa1 X — X', thec-translation functior8enyspror (o)
coincides withSenyns(o) on Senys(X) and preserves the propositional con-
nectives in the new sentences in the obvious way.

e The model functor ofNSP™P is the model functoMod: Sign°? — Cat of INS.

e For each signatur® € |Sign|, the Z-satisfaction relation ofNSP™P is just the
same as th&-satisfaction relation ofNS for sentences i$enys(X) and then,
for any X-modelM € |Mod(X)|, for the sentences built using the propositional
connectives, the satisfaction of such sentencéd is defined inductively as in

Examplg 4.1.0.

15 The remarks in footno@ 4 apply as appropriate.

Page: 181 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

182 4 Working within an arbitrary logical system

Exercise. Show howPROP, the institution of propositional logic (see Exam-
ple[4.1.9) arises as the propositional closure of a simple institution with proposi-
tional variables as the only sentences. O

In Sectior] 4.42 below we define yet another similar construction on institutions
by showing how quantifiers may be introduced.

The constructions described in the examples above may naturally be viewed as
extensions of the original institution — this will be made formal in Secfion]10.2,
cf. Example 10.2]5. In Sectign 10.3 we will discuss how such extensions may be
combined using the limit construction in a suitable category of institutions.

These examples are about adding new sentences built using logical connectives
to an institution. The new sentences are added, even if the connectives were already
expressible in the following sense:

Definition 4.1.42.The institutionINS has negatiotif for every signature € |Sign|
and X-sentencep, there exists &-sentencey such that for every=-model M,
M =x @ iff M (A5 w. Any suchy may be referred to ase.

The properties ofiaving conjunctiophaving disjunctiorandhaving implication
are defined in the analogous way, and similarly fi@wving truth having falsity
having infinitary conjunctioretc. O

Exercise 4.1.43Suppose that the institutidiNS has negation. Using the satisfac-
tion condition, show that for every signature morphisn — X’ and X-sentence
¢, o (@) may be taken to be(—¢). Show a similar property for the other connec-
tives. O

Example 4.1.44 For any institution$NS; = (Sign,, Sen,Mody, (1.5,) 5, ¢[signy |)
and INS, = <Sign2,Ser12,Mod2,(hz,&)&e‘ggnﬂ), their sumINS; + INS, puts
INS; andINS; side by side without any “interaction”. Formallj\NS; + INS; is
defined as follows:

e The category of signatures IS + INS; is the disjoint uniorSign, + Sign, of
the categories of signaturesIdfS; and ofINS,.

e The sentence funct®enns, +ins,: Sign + Sign, — Setacts asSen on Sign,
and asSerp on Sign, (that is, Senys, 1ins, is determined bySen and Sen
according to the coproduct property ®ign, + Sign,).

e The model functoModns, +ins,: (Sign, + Sign,)°P — Cat acts asMod; on
Sign, and asMod> on Sign, (that is,Mod s, +iNs, iS determined byMod; and
Mod; according to the coproduct property ®ign, + Sign,).

e The family of satisfaction relations dNS; + INS, is the union of the fam-
ilies of satisfaction relations ofNS; and of INS; (that is, forX; € |Sign|,

E=INS, +INS,.x; 1S 1,5, and forX; € [Sign,|, EiNs; +iNs,, 5, 1S F2,5,)- g

Example 4.1.45Given institutionsINS; = (Signy, Sen;,Mod1, (F1.5;) 5, ¢sign,|)
andINS, = <Sign2,Serp,Mod27<|:2,;2>22€|5ignz‘>, their product INS; x INS; Is
defined as follows:

Page: 182 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.1 Institutions 183

e The category of signatures tf1S; x INS; is the productSign; x Sign, of the
categories of signatures tiS; and ofINSy; thus a signature ifNS; x INS; is
a pair consisting of one signature frdidS; and one fromNS,, and similarly
for signature morphisms.

e The sentence funct@enns, «Ins,: Sign, x Sign, — Setis defined as follows:

— Forany signatureXy, o) € |Sign; x Sign,|, Senns, xins, ((Z1,X2)) = Sen (1) +
Sen(X,) is the disjoint union of the sets ®NS;-sentences oveX; and of
INS,-sentences over,.

— For any signature morphis(oy, 62): (X1, X2) — (£1,X5), Senns, xIns, ((01,02)) =
Sen(o1) + Senp(o2) acts aSen (o1) onINS;-sentences and &y (o2) on
INS,-sentences over the signatysg, X»).

e The model functoMod s, xins,: (Sign, x Sign,)°? — Cat is defined as fol-
lows:

— Forany signaturéXy, X,) € |Sign; x Signy|, Modns, xins, ((Z1, X2)) =Mod1(X1) %
Mod2(X,) is the product of the categories BfiS;-models overZ; and of
INS,-models over,; thus a model ilNS; x INS; is a pair consisting of one
model fromINS; and one fromNS,, and similarly for model morphisms.

— For any signature morphis(oy, 62): (X1, X2) — (£1,X5), Mod|ns, xINs, ((01,02)) =
Mod1(01) x Modx(02) acts adMod(o1) on thelNS;-components ofX], £5)-
models and model morphisms andMsd(o2) on theINSz-components of
(Z1,X5)-models and model morphisms.

e Forany signaturéX,, X) € |Sign x Sign,|, model(M1, M) € [Modins, xiNs, ((Z1,X2))]
and sentenceg; € Sen (X1) andg, € Senp(X,), (M1, M2)):|N51X|N527<21322> 0l
if and only if My =15, @1, and (M1, M2) =ins, xINS,,(2,5,) 92 If and only if
M =25, @2. That is, satisfaction ifNS1 x INS; is defined agNS;-satisfaction
for INS3-sentences (extracting tHBS;-components ofNS; x INS,;-models)
and adNS;-satisfaction folNS;-sentences (extracting theS,-components of
INS1 x INS2-models). a

The next example indicates a technically correct but intuitively somewhat arti-
ficial way of dealing with the translation of sentences along signature morphisms.
The simple idea is that instead of actually translating sentences from one signa-
ture to another, we can always keep the original sentence over its original signature
together with a morphism “fitting” it to another signature.

Example 4.1.46 Consider an institutiofNS = (Sign, SenMod, (}=x) r¢|sign) @and

afunctionNewSen Sign| — |Set together with a family of relation§=newser € [Mod(Z)| x NewSeqX)) r¢|sign -
Intuitively, for any signatur&, NewSefl) is a set of new sentences o¥ewith the

satisfaction relatior=newsers. We define an institutiotNS + NewSerby adding

these new sentences fitted to other signatures via signature morphisms:

e The category of signatures @IS + NewSeris just the categorpign of INS-
signatures.
e The sentence funct@enys . newsenSign — Setis defined as follows:

Page: 183 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

184 4 Working within an arbitrary logical system

— For any signatur& € |Sign|, Senns.newsetZ) is the (disjoint) union of the
“old” sentencesSen(X) and the s of “new” sentences fitted to the sig-
natureX by a signature morphism. The latter are pdigs, 0), written as
¢’ through 6, with 6: X — X and ¢’ € NewSe(X') for an arbitrary signa-
tureX’.
— For any signature morphisot X — X1, Senns.inewsetO) Works asSen o)
on thelNS-sentences; fof: X’ — ¥ and¢’ € NewSe(X'), Sennsnewseh o) (¢ through 6) =
¢’ through 9;0.

e The model functor ofNS + NewSeris the model functoMod: Sign°® — Cat of
INS.

e For each signatur& € |Sign|, the X-satisfaction relation ofNS + NewSeris
just the same as thE-satisfaction relation ofNS for the “old” X-sentences
and then, for any-modelM € |Mod(Z)|, 6: X' — X and ¢’ € NewSe('),

M Einsinewser®’ through 6 if and only if M‘g ENewsers’ ¢’
Exercise.Check the satisfaction condition. a

We conclude this list of constructions on institutions with a sketch of how various
modal (and temporal) logics may be built over an arbitrary institution.

Example 4.1.47Let INS = (Sign,SenMod, (=x)s¢|sign) b€ an institution. We

define the institutiorL.TL |ys of linear-time temporal logic ovelNS, using se-

quences of models frofS as models and sentences friWs as “state sentences”,
that is:

e The category of signatures bfL |ys is Sign, the same as ifiNS.

For each signatur&, a X-model inLTL |ns is a countably infinite sequence
M = (Mn)n>0 of modelsM,, € [Mod(X)| for n > 0. Reducts of such models w.r.t.
a signature morphisra are defined componentwise, using the reduct varas
defined inINS. (We disregard model morphisms here, takiigd ., (X) to

be the discrete category.)

e For each signaturg, the set off-sentences ihTL |ys is the least set that con-
tainstrue and all the sentences Ben(X) (calledstate sentences this context)
and is closed under negation, writtetp, conjunction,p A y, and two modal
operatorsnext time X¢, anduntil, ¢ U y.

e For each signaturg, satisfaction is defined in terms of an auxiliary relation of
satisfaction at a given position in the temporal sequence; for each rivbdel
(Mn)n>0, andj > 0 we define:

— for any state sentengg M =g if M;j = ¢ (in INS);
- M ! —gifitis not the case thaWl |=! ;
- ME oAyt ME! g andM E! v;

16 This may lead to some foundational difficulties, since the collection of all signature morphisms
into X, and hence the collection of all neli+sentences, need not form a set. One argument for
ignoring these problems here is that we can typically limit the size of the category of signatures of
the institution we start with, for example assuming that the cate§myis small.

Page: 184 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.1 Institutions 185

- ME! Xgif M "1 ¢; and _
— MElpUyifforsomek> j,M =K yandforallj <i <k ME o.

We put nowM ELTL nNs.Z @ if M ':0 .
Exercise.Complete the definition and check the satisfaction condition.

Exercise. Add other temporal modalities, like “eventually/finally” and “hence-
forth/globally”, either by defining them explicitly, or as abbreviations, for instance:
Fo =trueU ¢, Go = —(F(—9)), etc.

Also, add “past” temporal modalities (previous, since, sometimes in the past,
always in the past, etc). O

Exercise 4.1.48Proceeding similarly as in Example 4.1.47, given an institution
INS, define the institutioMDL |ys of modal logic:

e The category of signatures BfDL \s is Sign, the same as ilNS.

e For each signaturg, a X-model inMDL |\s is a Kripke structure, i.e., a triple
(W,~, M), which consists of a sat/ (of “possible worlds” or “state names”)
and a relatiom C W x W (“transition relation”) together with a famili =
(Mw)wew Of Z-models inINS, My, € [Mod(X)| for w € W. Again, we disregard
model morphisms.

e For each signature&, the set ofX-sentences itMDL |\s is the least set that
containstrue and all the sentences BenX) and is closed under negatiorp,
conjunctiong A v, and the modal operatare.

e For each signaturg, satisfaction is defined in terms of an auxiliary relation of
satisfaction at a given world in a Kripke structure; here is the crucial clause:

- (W,~,M) =¥ Oe if for all ve W such thatv~ v, (W,~, M) " ¢.

Then a model satisfies a sentencdbDL s if the sentence holds in the above
sense at each of its possible worlds.

Complete the definition and check the satisfaction condition.

To keep the definition closer tolL |ys, you may want to define a somewhat
different version of modal logic, where Kripke structures in addition indicate an
initial world, and then the satisfaction of a sentence in a model is determined by its
satisfaction at this initial world. You may also want to impose requirements on the
transition relation (for instance, that it is transitive, or that all possible worlds can
be reached from the initial world, etc.).

Combining the ideas behifdDL s andLTL |ys, define the institutio©TL f‘;\,s
of branching-time temporal logic, where signatures and models areNBlinys,
but sentences are closed under a variety of temporal operators used to quantify (sep-
arately) over paths in the Kripke structure and over worlds in these paths.: H
Distinguish two kinds of sentences: path sentences that are evaluated for a given
path in the Kripke structure; and state sentences that are evaluated for a given world
in the Kripke structure — or seg [Em€e90].

You may also start by defining a simpler instituti@iL ys where the use of
temporal operators is limited by requiring that quantification over paths and over

Page: 185 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

186 4 Working within an arbitrary logical system

worlds in these paths always happen together, so in fact we have only bundled
path/state temporal operators, like “for some path, always in this path”, “for some
path, eventually in this path”, etc. O

Exercise 4.1.49Consider an institutioMDL ropeg 0of modal logic built over first-
order predicate logic with equality. Note that thisist the institution of first-order
modal logic, since quantification is internal to state sentences only and cannot be
interleaved with the modal operator. Define an institution of first-order modal logic
in which such an arbitrary interleaving of quantifiers, propositional connectives and
the modal operator is allowed.IMT: The trouble here is with moving valuations of
variables from one world to another in the definition of satisfaction. At least, define
such an institution assuming that the carriers of all models in any Kripke structure
coincide. Discuss possible generalisations.

Carry out similar constructions of first-order temporal logics that ext&hd-opeq,
CTL fopeq andCTL ropeq, respectively. O

4.2 Flat specifications in an arbitrary institution

Throughout this section we will deal with an arbitrary but fixed institution. This
means that we will be working with a logical system about which we know nothing
beyond what is given in the definition of an institution. For example, we will not

be able to refer to any particular components of signatures, any particular syntax
of sentences, any particular internal structure of models, or any particular definition
of satisfaction. Indeed, we cannot even be sure that signatures have components,
that sentences are syntactic entities in any sense, or that models have any internal
structure at all.

Given these limitations, one may think that there is very little that can be done.
However, the structure of an institution is rich enough to allow us to recast in these
terms the material on simple equational specifications presented in Sectipns 2.2
and[2.3 (this will be done in the present section, without repeating the discussion
and motivation) and then to proceed further into the theory of specifications and
software development.

Let us then fix an arbitrary institutidNS = (Sign, SenMod, (=x) s¢(sign) - We
start with the basic concepts built around the notion of satisfaction.

Definition 4.2.1 Mods (®), Th(.#), Cls(®) and Clg(#)). Let X be an arbitrary
signature.

e For any setd C SenX) of X-sentences, the claddody(P) C |Mod(X)| of
models ofp is defined as the class of &itmodels that satisfy all the sentences
in [

17 Note the overloading of the term “model” as discussed after Defi4.l.1. We continue to
follow the terminology of[[GB9P], hoping that this will not lead to any confusion.

Page: 186 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.2 Flat specifications in an arbitrary institution 187

e Forany class# C [Mod(X)| of Z-models, theheory of # is the sefThy (.#) C
Sen(X) of all the Z-sentences that are satisfied by all the model#in

e Asetd C SenX) of X-sentences islosedif @ = Thy(Modx(P)). We will
write Clx (&) for The (Mods (<)) and refer toCly () as theclosure ofd.

e Aclass.# C |Mod(Z)| of Z-models isclosedif .# = Mods (Ths (.#)). Closed
classes of models will be calledefinable The closure of .#Z is the class
Modyx (Thz (%)) O

The basic properties of the above notions follow from the factThatandMody
form a Galois connection:

Proposition 4.2.2.For any signatureX, the mappings Thiand Mod: form a Ga-
lois connection between sets Bfsentences and classes Xfmodels ordered by
inclusion.

Proof. The proof is just the same (and just as easy) as in the equational case, cf.
Propositiod 2.3]2. g

Corollary 4.2.3. For any signatureX, set® C Sen(X) of Z-sentences, and class
C |Mod(X)| of Z-models:

® CThe(#) iff Mods(®) 2.4 0

Exercise 4.2.4Construct counterexamples that show that under the assumptions of
Corollary[4.2.3 neither of the following implications holds:

Modyx (®) C .# implies Thy(.#) C @
Thy (#) C & implies Modx(®) C ..

Prove that the former implication holdsdf is closed, and the latter i#Z is closed
(i.e., is definable). O

The satisfaction relation determines in the obvious way a consequence relation
between sentences of the institution:

Definition 4.2.5 (Semantic consequencelet X be an arbitrary signature. A-
sentencep € SenX) is a semantic consequenad a set® C SenX) of X-
sentences, writtef® =5 ¢, if ¢ € Clg (), or equivalently, iMods (®) =5 ¢. O

As usual, the subscrif will often be omitted.

In the following we will often implicitly rely on three basic properties of semantic
consequence, namely that it is reflexive, closed under weakening, and transitive, in
the following sense:

Proposition 4.2.6.Let X be a signature. Consider arB-sentence®, v € Sen(X),
and sets of-sentence®, ¥ C Sen(X), and¥, C SenX) for eachg € &. Then:

1L{o}Ex 0.
2. If® 'ZZ ¢ thend UW¥ ':Z Q.

Page: 187 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

188 4 Working within an arbitrary logical system

3.1f @ =y yand¥, =5 ¢ for each € @ thenUyco ¥y Fx V.
Proof. Directly from the definition. O

Another important property of semantic consequence is that it is preserved by
translation along signature morphisms:

Proposition 4.2.7.For any signature morphismg: X — X', set® C SenX) of X-
sentences, anl-sentencep € SenX),

@ =5 ¢ implies o(P) =5 o(9).

In other words,c(Clg(®)) C Cly/(o(D)).

Proof. LetM’ € Mods/ (o(®)). Then by the satisfaction conditicM(‘G € Modz (),
and so by the definition of the consequence relals'rbp, = ¢. Thus, by the satis-
faction condition againV’ = o (@), which shows that indeedl(®) = o(p). O

In general, the reverse implication does not hold, that is, the consequence relation
is not reflected by translation along signature morphisms.

Exercise 4.2.8Try to prove the opposite implication, and notice where the proof
breaks down. Then construct a counterexample showingatt@t) = o(¢) does
not imply that® = ¢ even in the standard equational institutie®. (HINT: See

Propositiof 4.2.75 below.) O
Corollary 4.2.9. Under the assumptions of Proposition 4]2.7yC6(Clx (D)) =
Clg: (a(D)). =

The above corollary implies that when we want to “move” the closure of a set of
sentences from one signature to another, it is enough to move only the set itself; all
its consequences can be derived over the target signature as well.

Another consequence of Propositjon 4]2.7 is that closure of a set of sentences is
reflected by translation along signature morphisms:

Corollary 4.2.10. For any signature morphismr: £ — X’ and set®’ C SenX’) of
X’-sentences, @' is closed then so is—1(P').

Proof. Supposed’ is closed and letp € Clz(c~1(®')). First, notice that since
o(c (@) C @, Clp(c(c 1)) C Clg/(®'). Now, by Proposnlor-?
o(¢) € Cly/(c(c7 (@) C Cly/(P') = @'. Thus,p € 6~ 1(P').

Notice that the above does not imply that “closure commutes with inverse image”
in general; only one of the required inclusions holds:

Corollary 4.2.11. For any signature morphism: X — X', set®’ C Sen(X’) of X'-
sentences, anl-sentencep € SenX), if 6 1(d') = ¢ thend®’ |= 5 (). In other
words, Ck (o~ 1(®')) € o Y(Clg (D). O

Exercise 4.2.12Show that the reverse inclusion does not hold in the standard equa-
tional institutionEQ. O

Page: 188 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.2 Flat specifications in an arbitrary institution 189

Forming the closure of a set of sentences consists of two phases: first taking the
class of models the set defines, and then taking the theory of this class. Separation
of these two phases by translation along a signature morphism preserves the closure
to some extent only:

Proposition 4.2.13.For any signature morphisra: X — X’ and set®’ C SenX’)
of X’-sentences,

Clz(o~(@")) € The(Mody/(@')[¢) = 6~ *(Cly/(2'))

where for any class# C [Mod(Z')|, #|c = {M'|c |[M" € .4}

Proof. For the first part, letp € Clx(c~%(®')). Then, by Corollary 4.2.31¢' =5

o (). Hence, by the satisfaction conditidﬂodg(db’)‘g Ex ¢,and sap € Thy (Mods: (®)]).

SinceMody (®') = Mody/ (Cly (@')), this showsThg (Mody/ (@) |6) = Thr (Mody: (Cly (27))|6) 2

Clg(c~(Clg/(@'))) 2 6 (Cly (@), and hence also proves one inclusiof

of the second part. For the opposite inclusion, consxjdeﬂ'h;(ModZ/(CP’)‘c), that

is Modg(cb’)‘a Ex ¢. By the satisfaction conditioiMods: (®') =5 (@), which

meanso (@) € Cly/ (@), and so indee¢ € 6~ (Cly/ (P')). O

Corollary 4.2.14. For any signature morphisrr: X — X’ and set® C SenX) of
X-sentences, G(®) C 6~ (Cly/(c(P))). O

Just as the implication opposite to the one stated in Propogitior) 4.2.7 does not hold
in general, the inclusion opposite to the one above does not hold in general either.
This changes fosurjectivereduct functors.

Proposition 4.2.15.Consider a signature morphisat X — X’ such that the reduct
functor_|o: Mod(X’) — Mod(ZX) is surjective on models. For any sétC Sen(X)
of Z-sentences anB-sentencep € SenX),

PEre iff o(P) =y o(e)

Proof. We prove only the implication opposite to that of Proposifion 4.2.7 NLet
[Mod(X)| be an arbitraryt-model, and leM’ € |[Mod (X')| be ac-expansion oM,
ie., M"G = M (such anM’ exists sinc&‘<j is surjective on models). M =5 &

then by the satisfaction conditidt’ =5 6(®), and saV’ =5 6(@). Thus, by the

satisfaction condition agai =5 ¢. O
Corollary 4.2.16. Under the assumptions of Propositjon 4.2.15 @) = 6~(Cly (o(®))).
O

This shows that the surjectivity of the reduct functor ensures that moving along a
signature morphism is “sound” and “complete” as a strategy for decididghfx

¢ by checking whether or nat(®) =5 o(¢) — without this property, such a
strategy is still “complete” (the satisfaction condition ensures that no consequences
are lost) but is not always “sound” (new consequences between “old” sentences may
be added).

Page: 189 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

190 4 Working within an arbitrary logical system

Exercise 4.2.17Provide an example showing that surjectivitng: Mod(X') —
Mod (X) is not a necessary condition for the conclusions of Propodition 4.2.15 and

Corollary[4.2.1p. g

Exercise 4.2.18Show that the inclusiorCly (®) C o~ 1(Cly/(c(P))), for any

6:X — X and® C Sen(X), directly implies (and, in fact, is equivalent to) Corol-
lary[4.2.11. However, the opposite inclusiGiz (®) 2 6~(Cly (c(P))) does not
imply the opposite to the inclusion there: even under the assumptions of Propo-
sition[4.2.15 and Corollary 4.2.]L6, the inclusiGh: (6~ (®')) D 6~ (Clg/(P'))

may fail for a set®’ C SenX’) of X’-sentences. (HiT: One way to construct a
counterexample is to addlseto the set of sentences BfQ for some, but not all
signatures.)

Show, however, that under the assumptions of Propodition 4.2.15, for any set
@' C Sen2’) of r'-sentence<lx (o~ (') = Thy (Mody (') |6) andCly (o~ (")) =
o~ 1(Clg/(@")) provided that in additions : Sen(X) — Sen(X’) is surjective. Dis-
cuss why this fact does not seem very interesting. O

The following generalisation of Propositipn 4.2.15 underlies the key corollary
below.

Proposition 4.2.19.Leto: X — X’ be a signature morphism. Suppose that d 3¢t
Sen(X) of X-sentences exactly characterises theeducts off’-models that satisfy
asetl” C Sen(X’) of ¥’-sentences, thatis, Medl") = Mod (o) (Mody/(I'’)). Then
for any setd C SenX) of Z-sentences an8i-sentencep € SenX), PUT 5 ¢
if and only ifo(®@)UT" =5 o ().

Proof. For the “if” part, assume that(®)UI" =5 o(¢) and letM |=x @ UT".
Then, sinceM € Mods (I"), there existdV’ € Mody/(I"") with M"(, = M. By the
satisfaction conditiorM’ =5/ o(®), henceM’ =5/ o(P)UT” and sdM’ =5/ 6 (@)
as well. Thus, by the satisfaction condition agaih=»x ¢.

For the “only if” part, asume thatb UI" =5 ¢ and letM’ Eyx o(@)UI".
Then by the satisfaction conditiofv/l/‘(7 Er @ and moreover, by the assumption,
M"G EsI. HenceM"G Es ®@UTI', and sd\/l"(, Es ¢ as well, which by the satis-
faction condition again proves thil' =5 o(@). O
Corollary 4.2.20. Let 0: X — X’ be a signature morphism. Suppose that alset

SenX) of X-sentences exactly characterises theeducts ofX’-models, that is,
Modsx (I') = Mod(o)(|[Mod(X")|). Then for any setb C SenX) of X-sentences

andZ-sentencep € SenX), ®UTI 5 ¢ ifand only ifo(®) =5 o(9). O
Exercise 4.2.21Show that Propositidn 4.2.]L5 follows directly from Proposifion 4.2.19
(or Corollary[4.2.2D). Generalise Corolldry 4.2.16 in a similar way. g

Definition 4.2.22 (Presentation)For any signatur&, aX-presentatior{also known
as aflat specificatiohis a pair(X, @) where® C Sen(X). M € |[Mod(X)| is amodel
of a Z-presentationX, @) if M = &. Mod[(Z, ®)] denotes the class of all models
of the presentatiofr, @), andMod[(X, ®)] the full subcategory oMod (X) with
objects inMod[(X, P)]. O

Page: 190 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.2 Flat specifications in an arbitrary institution 191

Definition 4.2.23 (The category of theories)ror any signatur&, aX-theory Tis
a X-presentationX, @) where® is closed. AX-presentation X, ¥) presentshe
X-theory(X,Clz(¥)).

For any theorie§ = (X, ®) andT’' = (X', @'), atheory morphisno: T — T’ is
a signature morphismr: £ — X’ such thaio (@) € &' for everyo € &.

The categoryThys of theories inINS has theories as objects and theory mor-
phisms as morphisms, with identities and composition inherited from the category
Signs of signatures ofNS. O

The satisfaction condition implies the following important characterisation of
theory morphisms, analogous to that given for equational theory morphisms in

Propositiorf 2.3.7]3.

Proposition 4.2.24.For any signature morphisra: X — X’ and setsp C SenX)
and®’ C SenX’) of sentences, the following conditions are equivalent:

1. o is a theory morphisno: (X,Clx(®)) — (X', Cly/(D')).
2.0(®) C Clg/ (D).
3. For every M € Mody/(2'), M'|s € Modx ().

Proof.

[@M={2: Obvious, sinceb C Cly(P).

2={3 ConsideM’ € Modys/(®'). Then alsdM’ € Mody: (Cly/(®')), and so for all
@ € ®, M = () (sincec(p) € Cls/(@')). Hence, by the satisfaction condi-
tion, M'|s |= ¢, and thus indeeM’|s € Modg ().

B={I: Consider anyp € Clz(®P). We have to show that(¢) € Cly/(P’), that
is that for allM’ € Mody/ (®'), M’ |= o(¢). However, ifM" € Mody/ (®') then
M"G € Mody (D). Hence,M"cy E ¢, and the conclusion follows from the satis-
faction condition. O

Exercise 4.2.25Define the categorfPresns of presentations inNS, with mor-
phismso: (X,®) — (X', ®') that are signature morphisnts £ — X’ such that
@' = o(g) for all ¢ € ®. Check thafTh|ys is a full subcategory oPresys and
that the two categories are equivalent. O

Exercise 4.2.26Show that by Propositidn 4.2.24 above, the mapping which to any
theory assigns the category of its models extends to a fuivzadr: Thf’,\'l’S — Cat,
where:

e for any theoryT = (X, @), Mod([T] is the full subcategory dflod (X) with ob-
jects inMod[T] as in Definitior] 4.2.22; and

e forany theory morphisro: T — T/, Mod (o) is the reduct functQ[‘G: Mod[T'] —
Mod[T]. O

Many standard properties of theories (and presentations) investigated in the realm
of classical model theory may be formulated in the framework of an arbitrary insti-
tution. For example:

Page: 191 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

192 4 Working within an arbitrary logical system

Definition 4.2.27 (Consistency and completeness of a presentatior). presen-
tation (X, @) is consistentf it has a model, i.e. iMod[(X,)] # .

A presentation X, @) is completef it is a maximal consistent presentation, i.e.
if it is consistent and no presentati¢h, ®’) such that®’ properly containsp is
consistent. O

Proposition 4.2.28.A presentation(X, @) is consistent if and only if the theory
(X,Clx (D)) is consistent. Any complete presentation is a (consistent) theory.

Definition 4.2.29 (Conservative theory morphism)For any theorie§ = (X, &)
and T’ = (X', @’), a theory morphisno: T — T’ is conservativef for every X-
sentencep, ¢ € & whenevero () € @'.

A theory morphismo:T — T’ admits model expansioifi the corresponding
reduct functiorl‘o: Mody/ (@) — Mods (D) is surjective, that is, for every-model
M such thaM =5 @, there exists &’-modelM’ such thaM’ =5/ &’ andM"cr =M.

O

Exercise 4.2.30As in Propositiof 4.2.15, show that a theory morphisrT — T’
is conservative if it admits model expansion. Note that the opposite implication does
not hold by Exercisg 4.2.17. g

The careful reader has probably realised that in this section we have not even
mentioned model morphisms. Indeed, everything above works equally well if we
forget about the category structure provided on the collections of models in an in-
stitution. But this proves inadequate for some purposes; see for example the next
section where the category structure on models is exploited.

4.3 Constraints

As discussed in Sectign 2.5, the class of all models that satisfy a given presentation
often contains some models that intuitively are undesirable realisations of the pre-
sentation. Different methods are used to constrain the semantics of presentations so
that from among all its models only the ones that are “desirable” are selected: for
example, one may take its initial semantics, reachable semantics, final semantics,
etc. (cf. Sectiong 2|5 arjd 2.J.2). How do these fit into the institutional framework
introduced above? Let us consider initiality constrifsst.

There is clearly no problem with expressing the basic concept of initial model
in an arbitrary institution: models over any signature form a category, hence the
class of models satisfying a given presentation determines a full subcategory of this
category — and we know what initiality means in any category (cf. Seftion 3.2.1).

LetINS = (Sign, SenMod, (=x)s¢(sign) be an institution, fixed throughout this
section.

18 We use the term “constraint” here following the terminologylof [BGE0]. [GB92]. Initiality and
data constraints as discussed and formally defined below have nothing to do with constraints as
used in “constraint logic programming” [JL87].

Page: 192 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.3 Constraints 193

Definition 4.3.1 (Initial model of a presentation).For any signature& € |Sign|
and setb C Sen(X) of sentences, thiaitial modelof the presentatiofX, @) is the
(unique up to isomorphism) initial object Mody (®) considered as a full subcate-
gory ofMod(Z). O

We might feel tempted to pursue a number of possibilities to incorporate the idea
of initiality into the institutional framework:

e We may hope to be able to modify all institutions of interest so that they yield
initial semantics directly, by changing the model fundiwd to yield only the
initial models as models over any signature. Clearly, this fails: requiring initiality
only makes sense relative to a presentation. If sentences are not taken into ac-
count then for example the only initial models in the institutte® of equational
logic are ground term algebras.

e We can attempt to modify the satisfaction relation so that only the initial models
of a sentence will be defined to satisfy it. Quite obviously, this does not work,
since it would then be impossible to adequately define models of presentations
involving more than one sentence. Without modifying the satisfaction relation,
we could modify Definition$ 4.2]1 arjd 4.2]22 and consider only initial models
of presentations by defininglods (&) to consist only of the initial models in
{M | M = &} considered as a full subcategoryMbd (X). But this would make
the whole theory rather clumsy, and the various definitions would not fit together
as neatly as they do now. For example, Proposifions]4.2.7 and4.2.24 would no
longer hold. Worse, this would not allow the user to write axioms that are to be
interpreted in a loose, non-initial fashion, indicating that only certain parts of a
specification are to be interpreted in an initial way. See Example]4.3.2 below.

e We can view the requirement of initiality with respect to a presentation as just
anothersentenceThis would be a rather complicated sentence, as it has to con-
tain other sentences within it, but in view of examples [ike 4]1.38 (not to men-
tion[4.1.35) there is no reason why this should bother us. This is the approach we
will take.

It is not sufficient to define initiality constraints simply as sets of sentences over
a given signature, and then to define their satisfaction via the notion of an initial
model. The problem is that we do not always want to constrain the entire model of
a presentation. As the following example illustrates, we need to be able to constrain
only a certain part of this model, that is, to impose initiality constraints on its reduct
to a certain subsignature.

Example 4.3.2.Recall Exercisg 2.5.21 which concerned the specification of a func-
tion ch: nat— natthat for each natural numberchooses an arbitrary number that is
greater tham. As argued there, we certainly do not want to take the initial model of
the entire specification: the initial model would generate “artificial elements” of sort
nat(as the results of the functiar) and then artificial elements of sdrbol as well

(as results of comparisons kByinvolving the artificial elements of sonaf). What

one would like is to first interpret the original specificatidinT of natural num-
bers in an initial way, do the same for the specificatidmoL, add the operation

Page: 193 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

194 4 Working within an arbitrary logical system

__< __:natx nat— bool (which is defined by its axioms in a sufficiently complete
way) — it so happens that this would be the same as taking an initial model of these
specifications put together — and only then add an operatiorat — natwith the
corresponding axiom interpreted in the underlying logic, with no initiality restric-
tions intervening in any way at this stage. ad

By allowing initiality requirements to be “fitted” to larger signatures by signature
morphisms, along the lines of the construction presented in Example}4.1.46, we can
impose the initiality requirement on parts of models.

Definition 4.3.3 (Initiality constraint). LetX € |Sign| be a signature. A-initiality
constraintis a pair(®’, 8), written asinitial &’ through 6, where6:X’ — X is a
signature morphism and’ C SenX’) is a set ofX’-sentences. A-modelM €
|[Mod (X)| satisfiesa Z-initiality constraintinitial @’ through 6 if its reductM|e €

[Mod(X’)| is an initial model of(X/, @'). O

Now, such an initiality constraint may be regarded as just another sentence in a
presentation, and freely mixed with “ordinary” sentences.

Exercise 4.3.4Redo Exercisg 2.5.21 using initiality constraints. Discuss the pos-
sibility of achieving the same effect without the “fitting morphism” component in
initiality constraints. O

The specification built in Exercige 4.8.4 is not a presentatioRGEQ — we
have to extend this institution by adding initiality constraints first. Indeed, given
an institutionINS we can always form a new institutidhIS™" in which initiality
constraints are allowed as additional sentences. Such a construction is implicitly
involved whenever initiality constraints are used.

Definition 4.3.5 (Institution with initiality constraints). The institutionINS™"
with initiality constraints inINS is defined as follows:

e The categorysign,ginit Of signatures is jusbign, the same as ifNS.
e The functorSenygnit gives:

— for each signaturg, the (disjoint) union of the s&@enX) of X-sentences in
INS and of the set of-initiality constraint§-and

— for each signature morphisen £ — X, the translation functioBenyginit (o)
that works asSeno) on all the “old” Z-sentences inNS, and for anyZ-
initiality constraintinitial &’ through 6, wheref: X’ — X and®’ C Sen(Y’),
is defined bySengnit (o)(initial @’ through 6) = initial &’ through 6;c.

e The functorMod ginit is justMod, the same as iNS.

e For each signaturg < |Sign,ginit|, the Z-satisfaction relationk= gt 5 is the
same as th&-satisfaction relation iiNS for the Z-sentences frontNS, and is
given by Definitior] 4.3 3 foE-initiality constraints. 0

B Asin Exampl6, this may lead to some foundational difficulties which we disregard here,

cf. footnotqu.

Page: 194 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.3 Constraints 195

Exercise 4.3.6 Present the above definition as an instance of the construction given
in Exampld 4.1.46. Notice that this is sufficient to conclude IN&™" is indeed an
institution.

Show (referring for example to Exercise 4]3.4) that in general the translation of
an initiality constraint cannot be given without the “fitting morphism” component,
and so we would not be able to define an institution where only initiality constraints
with trivial (identity) fitting morphisms would be allowed. O

Exercise 4.3.7Working in the institutionEQ, follow Definition[4.3.3 and define
reachability constraintshat are satisfied only by algebras having an indicated reduct
that is reachable. Note that axioms used in initiality constraints play no role here,
so you can adopt a syntax likeachable through 6. Following Definition[4.3.5,
define an institutioEQ™2°" extendingEQ by reachability constraints.

Assuming that each category of modeld$N& comes equipped with a factorisa-
tion system (Sectiop 3.3), introduce reachability constraint$N& using Defini-
tion[3.3.7T and extentNS correspondingly. O

The use of initiality constraints as introduced above is not always entirely satis-
factory. Often, rather than requiring that a certain part of a model is initial, we want
to require it to be dree extensiomf some other part. Natural examples arise when
we want to specify data structures built on an arbitrary set of elements, like lists,
sets or bags of arbitrary elements. This involves imposing the requirement that an
algebra modelling the data structure is a free extension of its reduct to the sort of
elements. To formalise this, the concept of a data constraint is introduced below.

Definition 4.3.8 (Data constraint).Let X € |Sign| be a signature.

A X-data constrainis a triple(c, @', 8), written asdata ¢’ over ¢ through 6,
wherec:X; — X’ and6: X’ — X are signature morphisms adel C Sen(X’) is a
set ofX’-sentences.

A X-modelM € |Mod (X)| satisfieghe data constraintata ¢’ over ¢ through 6
if its reductM|e € [Mod(X')| to aX’-model is a free model o’ w.r.t. the reduct
functor,‘c: Mod[(X,®')] — Mod(Z;) over(M‘e) &, With the identity as unit. That
is, M satisfiesdata @' over o through 0 if:

° M‘g ':E’ @'; and
e foranyM’ € Mods/ (®’) andX;-morphismf:M ‘0-;9 — M"G there exists a unique
£'-morphismf#:M|g — M’ such thatf#|; = f. 0

Exercise 4.3.9Using data constraints, give a specification of finite bags of an arbi-
trary set of elements. ad

Exercise 4.3.10Following the pattern of Definition 4.3.5 (and of Example 4.1.46),
define the institutionNSY2® by adding data constraints as additional sentences to
INS. O

Note that nowhere in the above has it been assumed that initial models of presen-
tations actually exist in general (nor that the reduct functor used in Defifitior] 4.3.8

Page: 195 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

196 4 Working within an arbitrary logical system

has a left adjoint). We do know that in some institutions (for example, in the insti-
tution EQ of equational logic and in the institutidPEQ of partial equational logic)

any set of sentences over a given signature has an initial model (see Theorein 2.5.14
for the case oEQ). On the other hand, there are institutions in which some sets
of sentences do not have initial models; the instituff@DEQ of first-order logic

with equality is an example (see Example 2.7.11). Nevertheless, the above defini-
tions work for an arbitrary institution. If a s& C Sen(X) of X-sentences has no
initial model, then an initiality constrairnmitial & through 6 based on this set has

no model, even if the clasdods (P) of models of this set of sentences is not empty.

Exercise 4.3.11Any set of sentences in the equational institutit® has a model,

and moreover, it has an initial model. Show that neither of these properties carries
over to the institutiorEQ™" of initiality constraints inEQ. That is, give a presenta-

tion in EQ that has no model. O

Exercise 4.3.12Recall the institutiotHorn of Horn formulae from Exercide 4.1.21

and show that every set of sentenceblorn has an initial model. Discuss the inter-
pretation of predicates in initial models: notice that they hold “minimally”, meaning
that only positive cases need to be explicitly specified. Extend this analysis to data
constraints, and use this to specify the transitive and reflexive closure of an arbitrary
binary predicate. ad

Exercise 4.3.13Working in the institutionEQ as in Exercisg¢ 4.3]7, follow Defini-
tion[4.3.8 and defingeneration constraintgenerated overc through 6 that are
satisfied by algebra& such thaA‘g is generated in a suitable senseﬂq)y;g. Define
an institutionEQ9®" extendingEQ by generation constraints.

Assuming that each category of modeldNG comes equipped with a factori-
sation system (Sectign 3.3), introduce generation constraintdN®mnticipating
Definition[4.5.] and extenliNS correspondingly. O

Exercise 4.3.14Following Exercis¢ 3.5.24, dualise the concept of data constraint.
A co-data constrainin an institutionINS can be written aso-data @’ over o through 0,
where®’, o and 6 are as in Definitiofi 4.3]8. £-modelM € [Mod (X)| satisfies
co-data®’ over o through 0 if M‘e is a cofree model ofd’ w.r.t. the reduct func-
tor,‘g: Mod[(X’, &')] — Mod (X1) over itso-reduct, with the identity as counit, that
is, if Mg =5/ @’ and for anyM’ € Mody/ (®') anle-morphismf:M"G — Moy
there exists a uniquE’-morphismf#:M’ — M‘e such thatf#‘c = f. Extend this
definition to build an institutioNS°%? by adding co-data constraints as addi-
tional sentences tiNS.

Discuss the use of co-data constraints in standard institutionsBi®eand
FOPEQ. For instance, consider the following simple presentation:

Page: 196 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.4 Exact institutions 197

SPEeCSTREAM = sorts elemstream
ops hd:stream— elem
tl: stream— stream
conselemx stream— stream
vx: elemVs:. stream
« hd(congx,s)) = x
« ti(congx,s)) =s

Check that any mod&ll of STREAM that is cofree oveE = |M|gjem(W.r.t. the reduct
functor given by the obvious signature inclusion) is isomorphic to the algebat
(countably) infinite streams of elements frdmwith the operations defined in the
standard way.

Much the same effect is achieved even when we remove the opecatisand
the two axioms from this presentation: check thakifis a signature with sorts
elemstreamand operationd: stream— elem tl: stream— streamthen cofreer-
models over their carrieE of sortelemare (up to isomorphism) the algebra¥
of (countably) infinite streams of elements frdi with hd andtl defined in the
standard way. Check then that in any such algebra the two axioftxinam define
the operatiortonsunambiguously. ad

4.4 Exact institutions

As illustrated in Sectiorfs 4.2 ahd #.3, institutions provide a sufficient basis for much
of the standard machinery of specifications without the need for further assumptions.
Still, the structure and properties of a logical system exposed by the definition of an
institution are very limited, and do not provide an adequate basis for many other
aspects of the theory and practice of software specification and development. As
discussed in the introduction to this chapter, this should not discourage us from
working within the institutional framework. On the contrary, it is worth trying to find
some adequately abstract additional assumptions that are sufficient for the purpose
at hand. As always in mathematics, the main informal guideline to follow is to keep
the additional assumptions to a minimum. Part of the payoff is that this forces us to
work at a level of generality and abstraction that ensures a deeper understanding of
the essence of the studied phenomena, while at the same time covering as many of
the cases of potential interest as possible.

In this section and the next we will illustrate this strategy by presenting some
extensions to the notion of an institution by additional structure or properties that
are required to support study of more detailed properties of specifications.

The ways in which specifications (or programs, systems, or structures of any
kind) are put together is the very essence of the theory and methodology of software
specification and development. One of the basic tools for “putting things together”
is the categorical notion of colimit (cf. Sectipn B.2) with pushouts as a particularly
important special case; see for instance Sedtioh 6.3 below. Putting specifications

Page: 197 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

198 4 Working within an arbitrary logical system

together then involves taking colimits in the category of theories. It would be rather
inconvenient to have to establish the existence of a colimit for each diagram of
interest separately, so we normally require the category of theories to be cocomplete
(or at least finitely cocomplete). Checking this directly would be tedious — and this
is why the following general result is useful.

Theorem 4.4.1.For any institutionINS, if the categorySignyg of signatures in
INS is cocomplete then so is the categdityys of theories inINS.

Proof. Let D be a diagram irThys with |G(D)|noge = N and Dy = (X, @y) for
ne N. Let D’ be the corresponding diagram 8igns, henceDj, = X, for n €
N. By the assumption of the theoref®, has a colimit, sayot,: £, — X)nen- Let
@ = Clz(Unen@n(Pn)). Then for eacm € N, ain: (Zn, &) — (Z,P) is a theory
morphism (this is obvious) an@n)nen is a colimit of D in Thys. For: first notice
that it is a cocone ol (since it is a cocone oB’ in Signyyg), and then consider
another cocone oD, say{fn: (Zn, @n) — (X', ®’))nen. By the construction, there
exists a unique signature morphigmX — X’ such that for each € N, a0 = Bn.
To complete the proof, it is sufficient to show tfat(X, @) — (X', @') is a theory
morphism. By Propositioh 4.2.P4, it is enough to show t@t),-yon(Pn)) € P
This easily follows from the fact that for eache N, 3, is a theory morphism, and
henceo (on(®n)) = (an;0)(Pn) = Bn(Pn) C P'. O

The above proof shows that in fact a stronger property holds: in any institution,
the category of theories has all of the colimits that the category of signatures has:
the forgetful functor mapping theories to their underlying signatlifisscolimits
So, for instance:

Corollary 4.4.2. For any institutionINS, if the categorySignys of signatures in
INS is finitely cocomplete then so is the categ®hyns of theories inINS. ad

Notice that the above theorem appliestyyinstitution, regardless of the means
used to construct it. Hence, for example, if the catedsignyg of signatures in
an institutionINS is cocomplete, then not only is the categdiyns of theories
in INS cocomplete, but so are the categofTégyginit, Thygdaa and Thyscodata OF
theories in the corresponding institutions with initiality constraints, data constraints
and co-data constraints respectively (cf. Definifion 4.3.5, Exefrcise 4.3.10 and Exer-

ciseZ3.1H).

Exercise 4.4.3 Assume that the category of signatures of a certain institution has
an initial object. What is then an initial object in the category of theories? O

Example 4.4.4.Working in the institutionEQ of equational logic, recall Exam-
ple[3.2.3% of a simple pushout of algebraic signatures, and th@XNetr of equa-
tional axioms over the signatuleNar given in Exercis¢ 2.5/4. LEENAT be the
XNaT-theory presented b¥pNAT. Let TN AT, be theXNaTg,-theory presented
by the axiomsPN ATy, that include®N AT plus the following:

Page: 198 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.4 Exact institutions 199

fib(0) = sucq0)
fib(sucq0)) = sucg0)
vn:nat. fib(sucgsucgn))) = fib(sucgn)) + fib(n)

Finally, let TN ATy be theXN ATy -theory presented by the axiond®N AT mye
that included®N AT plus the following:

Vn:nate mult(0,n) =0
¥n, m:nate mult(sucdgn), m) = mult(n,m) +m

Now, we have theory inclusions:

TNATfp «— TNAT —— TNATmuit

with the corresponding signature inclusions given in Exainple 3.2.35. Their pushout
is the ZNATfjp myir-theory T N ATsip muit presented by the union @NAT, @NATy,
and®N ATyt

As in Examplg 3.2.35, this is deceptively simple, as only single-sorted theory
inclusions that introduce different operation names are involved.

Exercise. Give examples of pushouts in the category of equational theories with
signatures involving more than one sort, extensions with overlapping sets of opera-
tion names, and theory morphisms that are not injective on sort and/or on operation
names. Notice however that the extra complications come only from the construc-
tion of signature pushouts; the theories are defined in much the same way.

Exercise. Obviously, when giving the set of axioms fOiN ATfip mui, PNAT may

be omitted, as it is already included in the other sets of axioms. Try to generalise
this remark to “optimise” the construction of the colimit in the category of theories
given in the proof of Theorefn 4.4.1. 0

We have seen how the assumption that the category of signatures of an institu-
tion is (finitely) cocomplete ensures that the institution provides means for “putting
theories together”. It is also interesting to investigate how this relates to “putting
models together”, which is what structured programming in the large is all about.
There is an important difference here: in the above, and in general when dealing
with specifications, we were interested in combining theories, i.e., sets of sentences.
In model-theoretic terms, this corresponds to combining classes of models. How-
ever, when the specified system is being built, we are interested in expanding and
combiningindividual models.

Example 4.4.5.Recall Exampl¢ 4.4]4 of a simple pushout in the category of the-
ories of the institutiorEQ of equational logic. Consider an arbitrary modelof
TNAT, any XN ATy -algebraN; built by adding toN an interpretation ofib such
that the axioms inPN ATy, are satisfied, and anyN AT -algebraN, built by
adding toN an interpretation afult such that the axioms i@ N AT, ; are satisfied.
Then, much as in Examgle 3.4]35 where specific such algebras were condiered,
andN, may be uniquely combined to 2N ATy, mui-@lgebraN’ that expands them

Page: 199 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

200 4 Working within an arbitrary logical system

both. The key property now is that the algebras built in this way are models of the
theory T N ATyip mui, @and moreover, that all its models may be built in this wayl

It turns out that the crucial link which ensures that constructions to combine theories
and to combine models work together smoothly, as in the above example, is the
continuity of the model functor in the underlying institution.

Definition 4.4.6 (Exact institution). An institutionINS is (finitely) exactif its cate-
gory of signatureSignys is (finitely) cocomplete and its model functdiod ns: Signis —
Cat is (finitely) continuous, mapping (finite) colimits Bign,ys to limits in Cat.

O

Example 4.4.7.All of the institutions defined in the examples and sketched in the
exercises in Sectidn 4.].1, with the major exceptioffBL (Examplg 4.1.25) and
perhaps those given in Examples 4.1[35, 4]1.36 and 4.1.37 where we know nothing
about the signature categories, are exact. See Exefcises| 3.2.63 anfl 3.4.33 for the
standard algebraic case of the equational instituE@— all of the other cases
require a similar argument. O

Exercise 4.4.8The abstract formulation of exactness above may somewhat hide the
role of this property in “putting models together”. Consider an exact instituhGh

and a diagran in Signyg With colimit signatureX’. Anticipating the crucial case

of preservation of signature pushouts treated in Definftion 4.4.12, show that (up to
isomorphism of categories)iodns(X’) can be defined as follows, whekeis the

set of nodes iD:

e X’-models are familie$Mn € |[Modns(Dn)|)nen that are compatible with signa-
ture morphisms iD in the sense tha#l, = Mm‘De for each edge:n — min the
graph ofD; and

e X’-morphisms between any sugh-models(My)nen and (Mf)nen are families
(hn: My — M)))nen of morphisms ilMod s (Dy), n € N, that are compatible with
signhature morphisms iD in the sense thdt, = hm‘De for each edge:n — min
the graph oD.

Moreover, for eact € N, the reduct functor w.r.t. the colimit injection froBy, to
X' is just the projection of such families on theh component.

HINT: Use Exercisg 3.4.32 (and indirectly Exerdise 3.2.53). 0

Exercise 4.4.9Consider a finitely exact institution. Present initiality constraints
(Definition[4.3.3) as a special case of data constraints (Defirjition| 4.3.8). Is the as-
sumption that the institution is finitely exact essential? O

Exercise 4.4.10An interesting standard institution with a cocomplete category of
signatures and a model functor that preserves “nearly all” finite colimits of signa-
tures is the institutioBSEQ of single-sorted equational logic. Give a precise def-
inition of this institution and indicate which colimits of signature diagrams are not
preserved by the model functoritr: Consider the initial single-sorted signature.

O

Page: 200 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.4 Exact institutions 201

Definition 4.4.11 (Semi-exact institution). An institution INS is semi-exactif
all pushouts exist in its category of signaturBgnyg and its model functor
Modns: Signﬁﬁ’S — Cat preserves pushouts, mapping them to pullback3ah

O

A consequence of the assumption that the model functor of an institution pre-
serves signature pushouts is the well-knaWwnalgamation Lemma

Definition 4.4.12 (Amalgamation property).LetINS = (Sign,SenMod, (=x) r<|sign|)
be an institution and consider the following diagransign:

2/
2N
2 2
)

This diagramadmits amalgamatioit:

¢ for any two modeldVl; € |[Mod(X1)| and Mz € |Mod(X3)| such thathIl‘(yl =
Mz\az, there exists a unique model’ € [Mod(X’)| such thatv’ o =Mz and
M"Gé = M (we call suchM’ theamalgamatiorof M; andMy); and

e for any two model morphismé;: M1 — M1z in Mod(Z1) and fz: M1 — Maz
in Mod(Zy) such thatfl‘f,l = fz‘(,z, there exists a uniqgue model morphism
f’:M] — M5 in Mod(Z’) such thatf"ai = f; and f"cé = f, (we call suchf’
theamalgamatiorof f; and fy).

The institutionINS has the amalgamation properifyall pushouts inSign exist and
every pushout diagram iBign admits amalgamation. O

Exercise 4.4.13Show that if a diagram as in Definitipn 4.4]12 admits amalgama-
tion and is commutative then all models and morphisnidandl (') are amalgama-
tions of pairs of (compatible) models and morphisms fidod (1) andMod (X3),
respectively. O

Lemma 4.4.14 (Amalgamation Lemma)Any semi-exact institution has the amal-
gamation property. O

The proof of the Amalgamation Lemma is based on the construction of pullbacks
in Cat, cf. Exercisd 3.4.32; see also Exerdise 3}4.34, which is the same result in
the standard algebraic framework. Note that the opposite implication also holds, so
semi-exactness is equivalent to the amalgamation property.

Clearly, every exact institution is finitely exact, and every finitely exact institu-
tion is semi-exact. However, the last property is strictly weaker: for example, the
institution SSEQof single-sorted equational logic is semi-exact, but not finitely ex-
act (see Exercige 4.4]10). In semi-exact institutions coproducts of signatures need

Page: 201 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

202 4 Working within an arbitrary logical system

not exist, or if they exist, need not be preserved by the model functor. However,
if signature coproducts exist, the colimits for a large interesting class of signature
diagrams (exist and) are preserved:

Proposition 4.4.15.In any semi-exact institution, if the category of signatures has
an initial object then it is finitely cocomplete and the model functor maps colimits
of all finite non-empty connected diagrams of signatures to limi€&an

Proof sketchThe first part (existence of colimits of finite signature diagrams) fol-
lows as usual, by dualising Exercise 3.2.48; the second part (preservation of limits
of finite non-empty connected signature diagrams) follows by Exercise B.4.55.

Exercise 4.4.16Define institutionsSSFOPEQof single-sorted first-order predi-

cate logic with equalitySSPFOPEQof single-sorted partial first-order predicate
logic with equality, SSCEQ of single-sorted equational logic for continuous alge-
bras, etc. Check that all of these institutions have cocomplete categories of sig-
natures and are semi-exact. However, check that their model functors do not map
coproducts of their signatures to products of the corresponding model categories, so
these institutions are not (finitely) exact. a0

Exercise 4.4.17Let INS be a (finitely) exact institution. Recall that there is a func-
tor ModTh:Thﬁ\’fS — Cat mapping theories to their model categories and theory
morphisms to the corresponding reduct functors (cf. Exefcise 4.2.26). Prove that
Mod+h preserves (finite) limits.

HINT: First use the satisfaction condition itNS and the Amalgamation Lemma
for signatures (Lemnfa 4.4]14) to prove the following generalisation of the Amalga-
mation Lemma:

Lemma (Amalgamation Lemma for theories).Let INS be a semi-exact institu-
tion. Consider a pushout in the categariiys of theories:

T/
T T2
T

Then, for any two models{M Mod[T;] and My € Mod[T,] such that M‘Gl = Mz\cz,
there exists a unique model’ Mod[T’| such that M|s; = Mz and M"c,é = My,
and similarly for morphisms.

To complete the proof thaflodh is finitely continuous, by Exercide 3.2]48 it is
enough to consider the initial theory and its category of models. To show that it
is continuous, by Exercide 3.4]23 it is enough to consider coproducts of arbitrary
families of theories and their categories of models. O

Page: 202 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.4 Exact institutions 203

The trouble with=PL and with other institutions based on derived signature mor-
phisms (see Exercife 4.1]23) is more severe than with single-sorted institutions: they
are not semi-exact since not all pushouts exist in their signature categories, see Ex-
ercisg 3.2.54. This motivates the following relaxation of semi-exactness, which is
important for applications later on.

Definition 4.4.18 (I-semi-exact institution).For any institutiolNS, we say that a
collection| of signature morphisms ilNS is closed under pushouté | contains
all the identities, is closed under composition (so that a wide subcategory of
Signs) and for any signature morphiso1 X — X; and “-extension o” 1: X —
X’ in |, there is a pushout iBign

hol X
1 v
X Py}

such that’ e 1.

Moreover, if all such pushouts withi’ € | admit amalgamation (i.e., the model
functor maps them to pullbacks Dat) we say thaiNS is semi-exact w.r.tl (or
I-semi-exagt O

Exercise 4.4.19As mentioned above, institutions with derived signature morphisms
do not have cocomplete signature categories. Check, however, that for example the
institution GEQ®" is semi-exact w.r.t. the class of all inclusions (where inclusions
are derived signature morphisms that map asary operation namé to the term
f([],...,[n]), cf. Definition). Similarly, check th&EQ%" is semi-exact

w.r.t. the class of inclusions that introduce only new constants. (Notice that in gen-
eral an institution may ble-semi-exact without beintj-semi-exact for somg C 1.)

For FPL, consider the clagsp, of signature morphismé:SIG — SIG' that are
injective renamings of sort and operation names such that no new value constructors
are added for “old” sorts (i.e. sorts &(SIG)). Show that~PL is | gp_ -semi-exact.
Notice that both parts of the assumption on these morphisms are essential. Give
an example of a non-injective renaming that does not have a pushout with another
FPL signature morphism. Give an example of an injective renaming that adds value
constructors for an old sort and does not have a pushout with arfeiiesigna-
ture morphism. Finally, give an example of a pushout in the the categdfiPlof
signatures that is not mapped by feL-model functor to a pullback i@at. HINT:
Consider two morphisms that add a new sort and a new unary value constructor for
a previously unconstrained sort, with the new sort as its argument sort. O

Exercise 4.4.20To complete the formal picture, note that the category of theories
in FPL is cocomplete even though its category of signatures is not. Discuss why
this is not useful for combining models over different signaturastTHConsider a

Page: 203 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

204 4 Working within an arbitrary logical system

simple signature with one sort and one binary operation, and two morphisms which

map this operation to the projections on the first and second argument respectively.
Then these two morphisms do not have a coequalis&ign-p, while in Thgp

their coequaliser is obtained by adding an equation to assert that the two projections
coincide. O

We have introduced and studied amalgamation, exactness and semi-exactness as
purely technical properties of institutions. However, as hinted at by Exgmplé 4.4.5
and the examples it builds on, amalgamation, and hence semi-exactness and exact-
ness, provide a fundamental tool for combining models over different signatures.
The point is easiest to see in institutions with standard signaturesFkeEQ
or EQ, when all the morphisms are inclusions. In that case, generalising the simple
example of natural numbers and their extensions by the Fibonacci function and mul-
tiplication in Exampl¢ 3.2.35, given signatutBsand X with £ = X; N X, we get
XY’ = X;UX, as the pushout signature. Now, the amalgamation property ensures that,
given aX;-modelM; and aX,-modelM, which give the same interpretation to all
of the common symbols (i%), we can put them together in the obvious way (gen-
eralising Examplé 4.4]5) to interpret all of the symbols in the combined signature
X', In the institutional context, this intuition applies as well, but the sharing require-
ment is expressed by insisting on a common reduct along the indicated signature
morphisms, and the combined signature is obtained using the pushout.

4.4.1 Abstract model theory

One of the ideas behind the definition of institution is that it is important to indi-
cate over which signature one is working. In classical logic, there are a number of
theorems in which the signature (@nguage as logicians would say) over which
formulae are constructed must be considered. Here is an example (for this, and for
a classical formulation of the Robinson consistency theorem mentioned below, see
e.g. [CK90)):

Theorem (Craig interpolation theorem). In first-order logic, for any two formu-
lae @1 and ¢y, if @1 = @2 then there exists a formulé using only the common
symbols ofp; and g, — that is, those symbols that occur in both formulae — such
thatg; =6 and 0 | @s. O

In our view, this standard formulation is not very elegant: referring to “the com-
mon symbols ofp; and ¢,” feels rather clumsy, even though it is easy enough to
make it precise in the case of first-order logic. In the institutional framework this
can be expressed in a more general and abstract way using colimits in the category
of signatures.

Definition 4.4.21 (Craig interpolation property). Let INS be an institution with a
finitely cocomplete categor8ign of signaturesINS satisfies theCraig interpola-
tion propertyif for any pushout

Page: 204 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.4 Exact institutions 205

4\
2)Y
o1 o2
b))

in Sign, and for anyX;-sentencep; € Sen(X;) and Xy-sentencep, € SenX,), if
01(91) =5 05(92) then there exists B-sentenc® € Sen(X) (called arinterpolant
for @1 and¢y) such thatp, =5, 61(0) andoz(0) =5, @2. O

Not only has “the common symbols @f and¢,” been captured by the simple cate-
gorical concept of a pushout here, but we were also forced to identify the signatures
over which the individual consequence relations are considered. In our view, this
is a much improved statement of the Craig interpolation property! Not only does
it seem more clear (of course, any comparison should be made with a fully formal
statement of the Craig interpolation theorem in the classical framework, not with the
presentation given above), it is also more abstract and may be used for any logical
system formalised as an institution, not just for first-order logic.

Here is another example, which states that consistent extensions of a complete
theory (cf. Definitior] 4.2.37) combine safely:

Definition 4.4.22 (Robinson consistency property).et INS be an institution with
a finitely cocomplete categoigign of signaturesINS satisfies théRobinson con-
sistency propertyf for any pushout

2/
AN
X1 b}
X
in Sign, and for any complet&-theory T = (X, ®) and consistent theorieg =

(Z1,d1) and T, = (Xp, ®,) such thatoy: T — Ty ando,: T — T, are theory mor-
phisms, ther’-presentatiofX’, o1 (P1) U 05(P2)) is consistent. O

Exercise 4.4.23Adapt any standard proof of the Craig interpolation theorem to
show thatFOPEQ has the Craig interpolation property for those pushouts where
at least one ob or o> is injective on sorts. Construct a counterexample which
shows that the proof must break down if neitlsemor o> is injective on sort names
(injectivity on operation and predicate names does not have to be requined). H
Seel[Bor05].
Show also that the Craig interpolation theorem F®PEQ implies the analo-

gous result for some of the subinstitutionsEDPEQ (see Exercisg 4.1.13), for

Page: 205 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

206 4 Working within an arbitrary logical system

instance folFOEQ. Note though that your argument will not work fBOP, first-

order predicate logic without equality — in fact, Craig interpolation may faH@P

when one of the morphisms involved is non-injective on operation names, even if all
the morphisms are injective on sort names. Of course, the standard proofs of Craig
interpolation easily adapt tBOP when the morphisms involved are injective (on
sort names as well as on operation names). O

Itis well known that equational logic does not have the interpolation property:

Counterexample 4.4.24In EQ, consider the signaturE with three sortss, s;
andsy, and two constanta,b:s. Let X, and X, extendX by a constant:s; and
by a unary operatiorf:s; — s, respectively. Let’ be the union off; and X,
(this is the pushout signature for the two signature inclusions). Consider the sen-
tencesvx:sye a=b € Sergg(Z1) anda=b € Sergq(X>). Clearly, overz’ we have
Vx:spe a=b |=a= b (since allX’-algebras have non-empty carriers for all sorts).
Suppose that we have an interpolént Sergq(X) for Vxis;e a=b anda= Db,
so thatvx:s,e a=b = 6 overX; and6 = a= b overZXZ,. Consider &;-algebra’;
with the carrier of sors, empty and withaa, # ba,. Clearly,A; =5, VXise a=Db,
and so als@\; =5, 6. HenceAl‘z Er 6. Take a subalgebra @fl‘; with the empty
carrier of sorts;, which satisfie®, and consider its expansi@y to a X,-algebra.
ThenA; =5, 6 butA; -5, a=b. Contradiction. O

Exercise 4.4.251t is often stated that equational logic has interpolation (at least for
pushouts w.r.t. injective signature morphisms) if one admigetaof interpolants
rather than just a single interpolant sentefices in Definitior] 4.4.21. Spell out this
property following Definitior] 4.4.71, but using a set of senten®eS Ser(X) in
place of a single sentenéec SenX). It also makes sense then to replace the single
sentencep; € Sen(X;) by a setd; C Sen(Xy).

Unfortunately, equational logic has this property only if we restrict attention to
algebras with non-empty carriers for all sorts. Carry out the proof for this case as-
suming that the signature morphisms considered are injectiver(tsee [Rod91])
and note where the assumption that the carriers are non-empty is important. Give a
counterexample which shows that in general no single interpolant can be sufficient
here. Extend this proof to the case where only one of the signature morphisms is
injective on sorts (MNT: see[[RGOD], [PSR09]).

Check that Counterexamgle 4.4.24 shows that the instit#Qrof equational
logic (with models that admit empty carriers) does not have the interpolation prop-
erty, not even when sets of interpolants are allowed (and the morphisms involved
are signature inclusions).

Go through other examples of institutions in Secfion 4.1.1 and check which of
them have the interpolation property, either with a single interpolant, or with a set of
interpolants (at least for pushouts involving signature inclusions, where this notion
makes sense). O

Of course, we cannot expect to be able to prove that either the Craig interpo-
lation or Robinson consistency properties are satisfied by an arbitrary institution

Page: 206 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.4 Exact institutions 207

— they simply do not hold for some logics. However, one may attempt to iden-
tify other conditions on the underlying institution which imply the two properties.
Along these lines, under some further technical assumptions, the two properties are
equivalent: an institution satisfying certain technical assumptions satisfies the Craig
interpolation property if and only if it satisfies the Robinson consistency property.
This reflects what is well-known in classical model theory, where the two properties
are indeed derivable from one another.

4.4.2 Free variables and quantification

In logic, formulae may contain free variables; such formulae are cafled as op-
posed talosedformulae which have no free variables. To interpret an open formula,
one needs not only an interpretation for the symbols of the underlying signature (a
model) but also an interpretation for the free variables (a valuation of variables in
the model). This provides a natural way to deal with quantifiers. The need for open
formulae also arises in the study of specification languages. In fact, we will use them
to abstractly express the basic notion of behavioural equivalence in Sgction 8.5.3,
see Exercise 8.5.61.

Fortunately we do not have to change the notion of an institution to cope with
free variables — we can provide open formulae in the present framework. Note that
we use here the term “formula” rather than “sentence”, which is reserved for the
sentences of the underlying institution, corresponding to closed formulae.

Consider the institutioGEQ of ground equational logic (Example 4.L.3). Let
X = (S Q) be an algebraic signature. For @ndexed family of setsX = (Xs)ses,
defineX(X) to be the extension o by the elements oK as new constants of the
appropriate sorts. Any sentence o¥¥iX) may be viewed as an open formula over
X with free variablesX. Given aX-algebraA, to determine whether an oper
formula with variablesX holds in A we have to first fix a valuation of variables
X into |A]. Such a valuation corresponds exactly to an expansightofa X (X)-
algebra.

Given a translation of sentences along an algebraic signature morphBm-

X’ we can extend it to a translation of open formulae: we translate an Bpen
formula with variablesX, which is aX (X)-sentence, to the correspondifig X')-
sentence, which is an opé¥-formula with variable<’. HereX’ results fromX by
an appropriate renaming of sorts determinedt{yve also have to avoid unintended
"clashes” of variables and operation symbols).
The above ideas generalise to any semi-exact institUtl8n= (Sign, SenMod, (=x) s¢|sign|)-

Definition 4.4.26 (Open formula).Let X € |Sign| be a signature itNS. Any pair
(p,0), wheref: X — X' is a signature morphism angle SenX’), is anopenZX-
formulawith variables ="\ 6(X)". For anyX-modelM € [Mod(X)|, avaluationof
variables '\ 6(X)" into M is aX’-modelM’ € |[Mod (X’)| which is af-expansion
of M, i.e., such thaM"e = M. We say thatg, 8) holds in M under valuation Wff

Page: 207 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

208 4 Working within an arbitrary logical system

M’ 5 @. If 0:X — X3 is a signature morphism then we define the translation of
(p,0) alongo as(c’(¢),0’), where

/

c
b3l I
6 0’
X o X1
is a pushout irSign. O

Note the quotation marks around the “set of variab®s(6 () in the above defini-
tion: sinceX’\ 6(X) makes no sense in an arbitrary institution, it is only meaningful
as an aid to our intuition.

In the standard logical framework there may be no valuation of a set of variables
into a model containing an empty carrier. Similarly here, a valuation need not always
exist. For example, iGEQ if a signature morphism: X — X’ is not injective then
someX-models have n@-expansion.

There is a rather subtle problem with the above definition: pushouts are defined
only up to isomorphism, so strictly speaking the translation of open formulae is not
well-defined. The following exercise shows that (at least for semantic analysis) an
arbitrary pushout may be selected and so we may safely accept the above definition
of translation.

Exercise 4.4.27Consider an isomorphism X; — X7 in Sign, with inverset 1.
Since functors preserve isomorphisrB@n(1): SenX;) — SenZy) is a bijection
andMod(1):Mod(Z{') — Mod(Z7) is an isomorphism iiCat. Show that moreover,
foranyy € Sen(Z;) andM; € [Mod (£7)[, My =y W <= Mi| 1 sy t(y). O

Sometimes we want to restrict the class of signature morphisms that may be
used to construct open formulae. In fact, in the above remarks sketching how free
variables may be introduced in@EQ we used just algebraic signature inclusions
1.2 — X' where the only new symbols ifi' were constants. To guarantee that the
translation of open formulae is defined under such a restriction, we consider only
restrictions to a collectioh of signature morphisms that is closed under pushouts
(see Definition 4.4.78).

Examples of such collectiorisin AlgSig include: the collection of all algebraic
signature inclusions, the restriction of this to inclusien& — X’ such that’ con-
tains no new sorts, the further restriction of this by the requiremenfthadntains
new constants only (as above), the collection of all algebraic signature morphisms
which are surjective on sorts, the collection of all identities, and the collection of
all morphisms. Note that most of these permit variables denoting operations or even
sorts.

Page: 208 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.4 Exact institutions 209

4.4.2.1 Universal quantification

In the rest of this section we briefly sketch how to universally close the open formu-
lae introduced above.

Let | be a collection of signature morphisms that is closed under pushouts. Let
X be a signature and Iéfp, 0) be an operE-formula such tha® € |. Consider the
universal closure ofg, 6), written V0. ¢, as a newZ-sentence. The satisfaction
relation and the translation of a sentent®s ¢ along a signature morphism are
defined in the expected way:

e A X-model satisfies th&-sentence’6.« ¢ if (¢,0) holds in this model under
any valuation of the variable” \ 6(X)”, that is, for anyM € |[Mod (X)|, M Ex
V6. ¢ if for all M’ € [Mod(Z')| such thaM’|g =M, M’ =5 ¢.

e For any signature morphiso: X — X1, 6(V6+ @) is V0« 6'(¢), where

G/

b3l I
] 0’
b 5 b3

is a pushout irBign such tha#®’ c I.

Note that in the above we have extended our underlying institubis For-
mally:

Definition 4.4.28 (Institution with universally closed formulae).Let INS be an
institution, and let be a collection of signature morphismsINS that is closed
under pushouts such thldS is I-semi-exact. The&xtension ofNS by universal
closure w.r.tl is the following institutionNS"("):

e Sign,gvo) IS Signs.

e For any signatureZ, Senyqvi) (£) is the disjoint union ofSenys(X) with the
collectio@ of all universal closure¥6. ¢ of openX-formulae, where € I;
for any signature morphisra: X — X, Sen,qvi) (o) is the function induced
by Senns(o) on Senns(X) and by the notion of translation defined above on
universally closed opeB-formulae.

° MOdINSV(l) is MOd|N3.

e The satisfaction relation ilNS"(") is induced by the satisfaction relation16fS
for INS-sentences and the notion of satisfaction for universally closed open for-
mulae as defined above. O

The following theorem guarantees tHaIS"(") is in fact an institution, modulo
the above remark about the definition of the translation of open formulae.

20 As usual, we disregard here the foundational problems which may atis®ribt a set.

Page: 209 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

210 4 Working within an arbitrary logical system

Theorem 4.4.29 (Satisfaction condition for IN8")). Let INS and| be as in Def-
inition [4.4.28. For any signature morphisim: X — X1, open XZ-formula (¢, 6)
(whereb € 1), £1-model M € |[Mod(Z1)|, and pushout

/

X/ X
0 o’
r)

in Signsuch thatd’ e 1,
Mifo s ¥0ep il My s, 6/ /()

Proof.

(=): Assume thaﬂvll‘g =r V0e @ and letM] be a6’-expansion ofM;. Put
M’ = Mj|q. Obviously,M"g = Mi‘e;of = M’l‘o;ef = Ml‘c,. Thus, sinceMl‘c, Ex
V0@, M =5 @. Hence, by the satisfaction condition IS, M; Fxy o'(p),
which provedM =5, V6'« 6’(9).

(«<): Assume thaM; =5, V6'« ¢’(¢) and letM’ be af-expansion oM. Since
INS is I-semi-exact, there exists &{-expansionM; of My such thatMj|, =
M’. Then, sinceM; =5, V0'« 6'(¢p), M Fxy o’(¢p). Thus, by the satisfaction
condition,M’ =5/ @, which provele‘G ErVOeo. O

Example 4.4.30Let| be the collection of algebraic signature inclusions — X’

in AlgSig such thatX’ \ £ contains new constants only. The institutiGEQ" (")
essentially coincides with the instituti@Q of equational logic (modulo the details

of the notation used for sentences), as suggested already in Ee Z1\eIf

is allowed to contain new operation names (not just constants), then quantification
along morphisms i leads to a version of second-order logic. a0

Other quantifiers (there exists, there exists a unique, there exist infinitely many,
for almostall, ...) may be introduced in the same manner as we have just introduced
universal quantifiers. Examgle 4.1]41 illustrates how one may introduce logical con-
nectives. By iterating these constructions one can, for example, derive the institution
of first-order logic from the institution of ground atomic formulae.

4.5 Institutions with reachability structure

An alternative to the standard initial algebra approach to specifications is to take
the reachable semantics of presentations, as discussed in $ectipn 2.7.2, where from

Page: 210 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.5 Institutions with reachability structure 211

among all the algebras satisfying a presentation onlyr¢laghablealgebras are
selected. In Section 4.3 we argued that it is important to consider not just initial
algebras, but more generally, algebras that are free extensions of a specified part;
similarly, it is important here to consider not just reachable algebras, but more gen-
erally, algebras that are generated by some specified part. Given an algebraic signa-
ture X and a subsignaturE’ C X, a X-algebraA is reachable fromX’ if it has no

proper subalgebra with the saliereduct. Exercise: Show that this is the same as

to require that the algebra is generated by the set of all its elements in the carriers of
the sorts int’, as defined in Exercie 1.2.6.) To generalise this notion to the frame-
work of an arbitrary institution we will proceed along the lines suggested by the
“categorical theory of reachability” presented in Secfior} 3.3 based on factorisation
systems.

Definition 4.5.1 (Reachable model)Let (Sign, SenMod, (=x)s¢|sign) b€ an in-
stitution. Assume that for each signat@res |Sign|, we have a factorisation system
(Ex,Mg) for the categoriMod (X) of £-models.

Let 0:X' — X be a signature morphism. &-model M € |[Mod(X)| is o-
reachableif M has no proper submodel with an isomorpligeduct, that is, if
any factorisation monomorphismN — M in Mz such tha'm‘(y is an isomorphism

in Mod (X') is in fact an isomorphism iMod (X). O

Example 4.5.2.Recall that for any algebraic signatuXec AlgSig, the categories
Alg(Z), PAIg(Z) and CAIg(X) of total, partial and continuous algebras come
equipped with factorisation systems (Examgles 3/3.3, 3.3.13 and [3.3.14, respec-
tively). Hence, the above definition makes sense in the instituk@hsf equational

logic, PEQ of partial equational logic an@EQ of equational logic for continuous
algebras, yielding the expected notions. O

Exercise 4.5.3Recall that by Definitiofi 3.3]7 &-model is reachable if it has no
proper submodel. Show that liNS is finitely exact then reachability is a special
case ofo-reachability as defined above. I : Use the fact that there is an initial
signature with the singleton categdrpf models.) O

In Sectior] 3.B it was shown how the notion of reachability introduced there may
be related to an equivalent definition stated in terms of quotients of initial mod-
els (Theorenj 3.3]B[1)). In the standard algebraic case, an algebra is reachable if
and only if it is isomorphic to a quotient of the algebra of ground terms (Exer-
cise[1.4.T§). To give an analogous result foreachability we have to be able to
build terms over a specified reduct of the given algebra (cf. Exgrcise B.5.11). Given
such a construction, B-algebraA is reachable fronx’ C X if and only if evaluation
in A of X-terms over the’-reduct ofA is surjective, or equivalently, & is a natural
quotient of the algebra d-terms built overA|x,. We introduce a generalisation of
the construction of term algebras to an arbitrary institution by requiring that reduct
functors induced by signature morphisms have left adjoints. Notice that only sig-
natures are involved in this definition, no sentences, and so this requirement indeed
corresponds to the mild assumption that free models (term algebras) may be built
along arbitrary signature morphisms.

Page: 211 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

212 4 Working within an arbitrary logical system

Definition 4.5.4 (Institution with reachability structure). An institution with reach-
ability structureis an institution(Sign, SenMod, (=5) r¢|sign) together with:

e for each signatur& € |Sign|, a factorisation systerEy,My) for the category
Mod(X) of £-models; and

e for each signature morphisra:X’ — X, a o-free functor Fs:Mod(Z') —
Mod(X) which is left adjoint to thes-reduct functor_|;:Mod(X) — Mod (X’
with unit n°:1d yoq () — Fg(,)‘c.

(As usual, sub- and superscripts will be omitted when convenient.) a0

Example 4.5.5.The institutionEQ of equational logic equipped with factorisation
systems for categories of algebras (cf. Exariple B.3.3) has reachability structure —
the free functors are given by Exercjse 3.5.11. 0

Exercise 4.5.6 Show that the institutiofPEQ of partial equational logic with the
factorisation systems given by Example 3.3.13 for categories of partial algebras
forms an institution with reachability structure. It : Free functors are rather triv-

ial here.)

Similarly, show that the institutio€EQ of equational logic for continuous al-
gebras with the factorisation systems given by Exarfple 3.3.14 for categories of
continuous algebras forms an institution with reachability structurentHThe
construction of free functors is much more difficult here — follow the construction
for ordinary algebras in Exerci§e 3.5/11, but when defining the new operations in a
free way remember that you have to extend the complete partial order to cover the
new values as well, ensuring continuity of the operations.) O

Exercise 4.5.7Let INS be a finitely exact institution. Prove that if every reduct
functor inINS has a left adjoint, then for every signat@ehe categoryodns(X)
of X-models has an initial object. (NT: Use the fact that there is an initial signature
with the singleton category of models.) ad

The following theorem generalises well-known facts from the standard algebraic
setting. Just like its “predecessor” Theorem 3.3.8, it confirms our confidence in the
abstract definitions by showing how their different versions “click together” nicely.

Theorem 4.5.8.Let INS = (Sign,SenMod, (=x)xesign) be an institution with
reachability structure. Consider a signature morphient’ — X.

1. A Z-model M€ |[Mod(X)| is o-reachable if and only if it is a natural quo-
tient of the free object over its-reduct, that is, the counit morphisay =
(idM‘U)#: Fo(M|o) — M belongs tcEy (cf. Exercisg 3.5.24).

2. For anyo-reachable model Me [Mod(X)|, any model Ne |[Mod(X)| and X'-
model morphism ’fM‘(y — Nl|g, there exists at most onB-model morphism
f:M — N that extends ‘f(i.e., such that fo = .

3. EveryX-model has a unique (up to isomorphisoyeachable submodel with an
isomorphico-reduct.

Page: 212 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.5 Institutions with reachability structure 213

4. If M € [Mod(X)| is o-reachable then for ang-model morphism:IN — M such
that f‘c is an isomorphism, f is a factorisation epimorphism (i.es Ey).

Proof.
1.(=): LetFo(Mlo) -, N - M be a factorisation 0bm:Fo(M|o) — M. Ar-
guing dually to Exercisge 3.5.[L8 we can show :N‘(F — M‘G is an isomor-

phism. Hence, by the-reachability ofM, mis an isomorphism, which proves
thatey € Ey.

(«<):Letm:N— M, me Mgy, with m‘c being an isomorphism. Defirfe F5 (M ‘0) —
N by f = ((m|s)")*. Thenn,, OHWIEES idM‘G. By the freeness df¢(M|s),
this implies thatf;m = gy. Thus, by the assumption thay € Ex and by Exer-

cise[3.3.bmis an isomorphism.
2. Suppose thdt, f,:M — N are such thatl‘(y = fg‘g =f ThennM‘g;(s,\,.;fl)‘(y =

f'=mny,_i(emif2)
(1) aboveey is an epimorphism.

3. Consider an arbitrarg-modelM. Let F5(M|5) — N - M be a factorisa-
tion of ew:Fo(M|s) — M. Again, arguing dually to Exercis@lS we can
show thatm‘d: N‘G — M‘G is an isomorphism. Moreover, by the naturalityspf
Fc(m‘a);eM = gn;m, that isFG(m‘c);e;m: en;m, and so (sincenis a monomor-
p?:\jlm)gN = Fg(m‘g);ee Ey. Thus, by) again\ is ac-reachable submodel
of M.

To prove unigueness up to isomorphism, consider a subamed; — M with
ml‘(, being an isomorphism ars, : F(,(Nl‘(,) — Nz inEs. ThenFG(ml‘G);sM =
en,;my, and sinceF(,(ml‘G) is an isomorphism, we have two factorisations of
em:Fo(M|o) — M, (Fo(mi|o)~*en,, M) and (e,m), which by the uniqueness
of factorisations implies thatl andN; are isomorphic.

4. LetN —= . - M be a factorisation of :N — M. Then, by naturality of,
en;em=Fqs(f|s);em. Now, sincef‘c (and henceFG(f‘G)) is an isomorphism,
by o-reachability ofM and [1) abovegn;e;m e Ex. Thus, by Exercisg 3.3.5)
is an isomorphism, and sbe Ey. O

o, and scey ; f1 = em; f2. Thus, we also havg = f,, since by

4.5.1 The method of diagrams

In the standard algebraic framework, reachable algebras enjoy a number of use-
ful properties which make them especially easy to deal with. As a consequence
of the fact that we are able to “name” (using ground terms) all their elements,
reachable algebras are easy to describe using the most elementary logical sentences,
ground equations. To be more precise: for any algebraic sign&tarel reachable
X-algebraA, the class

Ext(A) = {B € |Alg(X)| | there exists &-homomorphisnh: A — B}

Page: 213 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

214 4 Working within an arbitrary logical system

is definable by the grount-equations that hold iA, that is,Ext(A) = Modgeg (Theeg ({A})),
and moreoverA is initial in Ext(A). (We will refer to classes of algebras of the

form Ext(A) for a reachable algebr asground varietieg This gives a one-to-

one correspondence between ground equational theories and isomorphism classes
of reachable algebras (and furthermore, congruences on ground term algebras by

Exercisd 1.4.14).

Unfortunately, not all algebras are reachable, and it is clear that this correspon-
dence does not carry over to arbitrary algebras: there are algebras that cannot be
characterised as initial models of equational theories. But there is a technical trick
that may help: if a¥-algebraA is not reachable, then consider the signaitifd)
obtained by adding t& the elements ofA| as constants of the appropriate sorts.
Now, the algebraA has an obvious expansion to a reachab{é)-algebrak(A),
where the new constants are interpreted as the elements they correspond to. This
expansion has a number of useful properties:

e Any X-homomorphismh: A — B determines unambiguously an expansiorBof
to a X (A)-algebraE(B) where each new constant B{A) is interpreted as the
value ofh on the corresponding element |@f. Moreover, this expansion is in-
dependent from any decompositiontoffor any X-homomorphism#$;: A — C
andh,:C — B such thah = hg;h,, the homomorphisrh, (or more precisely, its
underlying map) is & (A)-homomorphism fronty,, (C) to En(B).

¢ Intuitively, the expansion does not introduce more structure than necessary to
makeA reachable; in particular, no new elements are added.

Putting all these together, adralgebraA may be characterised by the set of ground
equations on the signatudA) that hold inE(A). This technique, known ahe
method of diagramsis one of the basic tools of classical model theory (cf. e.g.
[CK9Q]). We have already suggested its use in the construction of the free functor
corresponding to a signature morphism in Exergise 35.11.

In the following the method of diagrams is formulated in the context of an ar-
bitrary institution with reachability structure. We will assume that the institution
is finitely exact in order to be able to deal with reachability (not just reachability

relative to signature morphisms, cf. Exercises 4.5.3and|4.5.7).

Definition 4.5.9 (The method of diagrams)LetINS = (Sign, SenMod, (=x) z¢|sign)
be a finitely exact institution with reachability structuldS admits the method of
diagramsif:

o (Definability of ground varieties
for every signatur& € |Sign| and reachabl&-modelM € |Mod(X)|, the class

Ext(M) = {N € |Mod(X)| | there exists &-model morphisnh:M — N}

of extensions oM is definable, that isExt(M) = Modsx () for some setb C
Sen(X).

o (Existence of diagrams
for every signatur& € |Sign| andX-modelM € [Mod(X)|, there exists a signa-
tureX(M) € |Sign| and signature morphismX — X (M) such that:

Page: 214 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.5 Institutions with reachability structure 215

— M has a reachableexpansiorE(M): there exist€ (M) which is a reachable
X (M)-model such thaE(M)‘l =M;

— 1-reduct is an isomorphism of the slice categofiésd (Z(M))TE(M) and
Mod(X)TM (see Exercise 3.1.B0), that is, for afiymodel morphisnf:M —
N, there exists a unique-expansion ofN, E;(N), such thatf has ani-
expansiorE(f):E(M) — E¢(N) and such that an¥-model morphisni: N —
N; has a unique-expansiorE(h):E¢(N) — E;.n(Ny); and

— 1-reduct preserves the factorisation systenvimd (X(M))TE(M) as inherited
fromMod(Z(M)), thatis, for anyf: E(M) — N"andh:N" — N”, if h € Ex)
thenh‘l € Ex andifhe Mgy thenh‘t €My

Then, Z(M) is called thediagram signature for M(with signature inclusion),
E(M) is called thediagram expansion of Mand finally the theoryA™ (M) =
Thyw) (EX(E(M))) is called the |positivg diagram of M O

Example 4.5.10.The institution€EQ of equational logicPEQ of partial equational
logic, andCEQ of equational logic for continuous algebras admit the method of di-
agrams. Ground varieties BQ are definable by sets of ground equations; ground
varieties ofPEQ are definable by sets of ground equations and ground definedness
formulae; ground varieties IBEQ are definable by sets of ground infinitary equa-
tions. For any (total, partial, or continuous)algebraA, the diagram signature for

A'is formed by adding constants corresponding to all the elemen#y.ofhe dia-

gram expansion of a partial algebra is formed by requiring that the new constants
are defined and have the expected values. O

Exercise 4.5.11Show that in any institution that admits the method of diagrams,
and for any modeM, the class of models of the positive diagranibfs the class of
all extensions of the diagram expansiorMifMods) (4™ (M)) = Ex{(E(M)). O

4.5.2 Abstract algebraic institutions

In Exercisq 3.5.7]1 we suggested the use of the method of diagrams to prove that in
the standard algebraic framework, the reduct functor induced by a signature mor-
phism has a left adjoint. With some more effort, one can generalise this result and
prove that in the standard equational institution the reduct functor inducethigy a

ory morphism has a left adjoint:

Exercise 4.5.12Prove that in the equational institutidfQ, for any theory mor-
phismo:T — T', the reduct functor|s:Mod[T'] — Mod|[T] has a left adjoint.

HINT: Formalise and complete the following construction: Tet (X, ®) and
T = (X', ®’). For anyX-algebraA € Mod[T], let Z(A) be its diagram signature,
and let

Page: 215 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

216 4 Working within an arbitrary logical system

Z(A) (A
1 1
X X!

o

be a pushout in the category of signatures. Them fefA) C Sen:q(Z(A)) be the
positive diagram ofA. Consider the presentatid®’(A), o’ (A1 (A)) Ut (P')). By
Theorenj 2.5.14, this has an initial model. itseduct is a free object ove. (See
also Exercisg 3.5.]1 for a slightly different line of reasoning.) O

We will come back to a careful, more abstract analysis of this construction later (cf.
Theorenj 4.5.718 below). For now, just notice that the construction not only uses the
fact that the equational institution admits the method of diagrams, but also relies
(directly or indirectly) on a number of simple facts about the reachability structure

of the equational institution. We capture some of these additional properties in the
following abstract definition:

Definition 4.5.13 (Abstract algebraic institution). An abstract algebraic institu-
tion is a finitely exact institutionNS = (Sign, SenMod, (=x) r¢|sign) With reach-
ability structure that admits the method of diagrams, for which the following condi-
tions hold:

e For any signature& € |Sign|, the categorMod(X) has all products (of sets of
models) and i€z -co-well-powered (Definitiof 3.3.10).

e For any signature morphiso. X — X', the c-reduct functor preserves submod-
els (i.e., for allm’ e Mz, n"(‘g € Mx) and products.

e (Abstraction conditioh For any signatur& andX-modelsM,N € |Mod(Z)], if
M andN are isomorphic then they satisfy exactly the sa&rgentences. O

Example 4.5.14.The institution€£Q of equational logicPEQ of partial equational
logic, andCEQ of equational logic for continuous algebras are abstract algebraic
institutions. O

Exercise 4.5.15There is a certain asymmetry in the above definition: reduct func-
tors in abstract algebraic institutions are required to preserve submodels but are not
required to preserve quotients. Prove thaE@, reduct functors preserve quotients

as well: for allo:X — X' and€ € Ey, e"a € Ex. Show, however, that this is not

true in general IPEQ. O

4.5.3 Liberal abstract algebraic institutions

In Sectior] 4.B we have shown that it is possible to restrict attention to initial models
of specifications written in an arbitrary institution, even if theories in the institution

Page: 216 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.5 Institutions with reachability structure 217

are not guaranteed to have initial models in general. Similarly, data constraints make
sense in an arbitrary institution even if reduct functors induced by theory morphisms
are not guaranteed to have left adjoints. This flexibility is useful, but nevertheless it
may be important to know whether or not a theory used in an initiality constraint has
an initial model, or whether a theory morphism used in a data constraint has a cor-
responding free functor. In some institutions this is always the case: the equational
institution EQ is one example (cf. Theorgm 2.514 and Exercise 4,5.12). In the rest
of this section we present a characterisation of institutions that have this property.
Of course, very little can be done in the framework of an arbitrary institution: how-
ever, abstract algebraic institutions as introduced above provide a sufficiently rich
background.

Definition 4.5.16 (Liberal institution). An institutionINS admits initial modelsf
every theory iINS has an initial modelNS is liberal if for every theory morphism
0:T — T'inINS, thec-reduct functor |5:Mod[T’] — Mod([T] has a left adjoint.
Then, an abstract algebraic institutittidS admits reachable initial modelg
every theory irINS has an initial model which is reachabldS is strongly liberalif
for every theory morphisro: T — T’ in INS, the o-reduct functoqc: Mod[T’] —
Mod[T] has a left adjoinfs: Mod[T] — Mod[T’'] such that for anyM € Mod[T],
Fs(M) € Mod[T’] is o-reachable. O

In the last part of the definition we have slightly abused notation by usiag both

a theorymorphism and aignaturemorphism (which in fact it is). It is important
that the notion ofo-reachability used here is taken w.r.t. signature morphisms (cf.
Definition[4.5.]) without taking into account the theory context.

Exercise 4.5.17Find an institution that admits initial models but does not admit
reachable initial models. INT: Consider an algebraic signatuEewith a unary
operation symbof:s — s. Show that the class d&-algebras satisfying the axiom
Jlx:se f(X) =xhas an initial model which is not reachable, whéreeads “there ex-
ists a unique”, that isj!x:se f(x) = x stands foEx:Se f(X) = XAVXy, Xp:8e f(X1) =

X1 A F(X2) =X = X1 = Xo. O

For abstract algebraic institutions, the requirements introduced in Definition}4.5.16
are pairwise equivalent.

Theorem 4.5.18.LetINS be an abstract algebraic institutiotNS is liberal if and
only if it admits initial models.

Proof.

(=): Let T = (X,®) be a theory. Letz: X, — X be the only signature mor-
phism from the initial signatur&, to X. Theniz: Tz — T is a theory mor-
phism, wherdl; = (£4,Clx, (2)) is the initial theory, and so the reduct functor
7\1;3 Mod[T] — Mod[T] has aleft adjoinF,,: Mod [T;] — Mod[T]. Now, there
is exactly one&€x-model, sapMg € |[Mod[Tz]|, and moreovers,;. (My) is an ini-
tial model of T.

Page: 217 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

218 4 Working within an arbitrary logical system

(«<): We follow the proof for the equational institutioBQ sketched in Exer-
cise[4.5.1p. For any theory morphissaT — T, whereT = (X, ®) andT' =
(X', @), and modeM € Mod[T], we construct a modéi;(M) € Mod[T’] with
unitnu:M — Fs(M)]|o that is free oveM w.r.t. _|:Mod [T'] — Mod[T].

Let Z(M) be the diagram signature fivt with signature inclusion: X — X (M),

and let
/

Z(M) (M)
1 v
X X!

o

be a pushout in the category of signatures. Ther} f&€tM) C Sen(X(M)) be the
positive diagram oM. Consider the presentatig®’(M), s’ (AT (M))ut/(®’)).
By the assumption, it has an initial model, dayutFs(M) = 1|,,. Then, since
by the satisfaction conditioh‘a/ Erm) AT (M), I‘G/ € Ext(E(M)) (cf. Exer-
cisg4.5.1]1). Hence, there exists a (unique, sif®¢) is reachablef (M)-model
morphismny:E(M) — I‘G/. Putnu = ﬁ,\\/.‘L:M — FG(M)‘G.

First, notice that sincé =y t'(®’), Fs(M) € Mod[T’]. Then, consider an
arbitrary modeN € Mod[T’] and aX-model morphismf: M — N‘G.

By the definition of the diagram signature figr, N‘G has a unigue-expansion
to a X(M)-model Ef(N‘g) such that there exists &(M)-model morphism
E(f):E(M) — E; (N‘U) with E(f)‘l = f. Amalgamation yields a unique/(M)-
modelE? (N|s) € [Mod (X'(M))| with EZ (N|s)|o» = Ef (N|) andEF (N|s)
N. SinceN =5/ @/, E7(N|s) Fx/m) 1'(®'). Then, sincéEf (N|o) € Ext(E(M)),
Et(N|o) Fxqm) AT (M), and scE? (N|o) Fx/m) o’(A*(M)). Consequently, we
get a unique’ (M)-model morphismf’: | — EZ(N|o)- Putf’ = /| :Fg(M) —

N. Notice thatﬁ[ﬂ;fA"(,/:E(M) — Ef(N‘g). Hence, sinceE(M) is reachable,
ﬁ,\];fA’ o = E(f), and so we obtaim;M;f"(, = f. Moreover,f’ is the only mor-
phism with this property. To see this, suppose that for séth&s(M) — N,
TIM;f”‘(y = f. Then, by the amalgamation property (this time for model mor-
phisms) there exists® (M)-model morphisnf”:1 — E?(N‘G) such thalﬁ‘l/ =

£ (and 7|o) = E(f"|o):1|or — Ex(N|o)). By initiality of I, 7 = ', and so

f” = f/, which completes the proof. O

V=

Theorem 4.5.19L et INS be an abstract algebraic institutiohNS is strongly lib-
eral if and only if it admits reachable initial models.

Proof. We extend the proof of the previous theorem, relying on the notation intro-
duced there.

Page: 218 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.5 Institutions with reachability structure 219

(=): The only additional remark needed is tiiaf (M) is reachable if it isiy-

reachable (cf. Exercige 4.5.3).

(«<): We have to additionally prove th⁢ (M) = I‘l/ is o-reachable whenever
| is reachable. To see this, consider an arbitrary submodls#l/ot/ith an iso-
morphico-reduct, sayn:N — 1|,;, whereme My and m‘a: N‘G — I‘G;l/ is an
isomorphism. Puf = nM;(m‘G)*l:M — N‘G. Then f;m‘cy = 1w, and som‘g
has an expansion toX(M)-model morphisrrE(m‘c): Es (N‘G) — Epy(l|g:) =
I‘G/. Then, as in the corresponding part of the proof of The.5.18, we
get a uniqu@’(M)-modelE?(N‘a) € |Mod(X’(M))| such thatE? (N|o)6 =
Ef(N|o) andE?(N‘G)El =N, and a%’(M)-model morphisnf’:1 — EF (N|s).
On the other hand, by the amalgamation property again, there exists a unique
Z'(M)-model morphisnin: E (N|) — | such thatn|s = E(m

~

By the initiality of I, f:mis the identity, and so i@f’;rﬁ)‘l/ = fA"l/;m. Thus, by
Exercisg 3.3J5mis an isomorphism — which completes the proof. g

&) andm

v =m.

4.5.4 Characterising abstract algebraic institutions that admit
reachable initial models

From the very beginning of work on algebraic specifications it has been known that
the standard equational instituti@Q admits reachable initial models (cf. Theo-

rem[2.5.14). Moreover, the proof of this property generalises readily to the situation
where conditional equations (even with infinite sets of premises) are permitted as
axioms. On the other hand, Example 2.7.11 shows that if disjunction is permitted,
the property is lost. Indeed, in the standard algebraic framework the infinitary con-
ditional axioms, which define all non-empty quasi-varieties, form in some sense a
borderline beyond which one cannot be sure of the existence of reachable initial
models. We generalise this result to the framework of abstract algebraic institutions.

Theorem 4.5.20.Let INS be an abstract algebraic institutiodNS admits reach-
able initial models if and only if every class of models definabliNi is closed
under products (of sets of models) and under submodels.

Proof.

(«): This follows directly by Lemmé 3.3.]12; just notice that any class of models
closed under products and submodels ia-emptyquasi-variety (cf. Defini-
tion[3.3.11).

(=): Let(X,®) be a presentation iiNS. We show the required closure properties
of Modg (P).

(Submodels Consider a modeM € Mody () and its submodein:N — M,
me My. Let Z(N) be a diagram signature fod with signature inclusion
1:X — X(N), and letA™(N) C SenZ(N)) be the positive diagram ®. Re-
call thatMody) (A" (N)) = Ex{(E(N)), whereE(N) € Mod(Z(N)) is the

Page: 219 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

220 4 Working within an arbitrary logical system

diagram expansion d. The presentatiof™ (N),A™(N)U1(®)) has a reach-
able initial model, say. We show that‘l is isomorphic ta\, which in partic-
ular impliesN € Modx ().

Sincel sy AT(N), there exists & (N)-model morphismf:E(N) — 1.
Moreover, sincd is reachablef € Exy) (by Theore@ 4)) and hence
also f‘l € Ey. Then, letEn(M) be the unique expansion ™ to a X(N)-
model with E(m):E(N) — En(M) such thatE(m)|, = m. SinceM = &,
Em(M) Exn) 1(®), and, sinceEn(M) € EXY(E(N)), En(M) Exny AT (N).
Hence, there is a (unique) morphigm — E,(M). Now, sinceE(N) is reach-
able, there exists at most one morphism fia@) to En(M), and so we have
f;g= E(m), which impliesf l;g‘l =me My. Sincef \1 € Ey, it follows from
ExercisS that‘t: N— I ‘l is indeed an isomorphism.

(Product3: Consider any familyM; € Modg (®), i € J, whereJ is any set (of
indices). LetN with projectionsmi:N — M;, i € J, be the product ofM;)ic;.
We proceed similarly as in the previous caseX@N) be a diagram signature
for N with signature inclusion:X — X(N), and letA™(N) C Sen(X(N))
be the positive diagram dfi. The presentatiofX(N),A*(N)U1(®)) has a
reachable initial model, saly We show that ‘l is isomorphic toN, which
implies thatN € Mods (P).

Just as in the previous case, there exis&(N) — | with f|, € E.

Then, fori € J, letE (M;) be the unique (N)-model such that there is an ex-
pansion ofr; to a X(N)-model morphismE(m):E(N) — Eg (Mi). Eg (M)
satisfies bothA*(N) and 1(®), and so there exists a morphisht| —
Ex (Mi). Hence, by the definition of a product, there exists a (unigsgjodel
morphismg: | \1 — N such that foii € J, h; \1 = g;m. Moreover, fori € J, since
E(N) is reachable and so there is at most one morphismE@R) to Ex (M),
f;hi = E(m). Consequently(f|,;g);m = f l;hi‘l = (f;hi)‘l = E(m)‘l =m.

It follows that f|,;g is an isomorphism, and thug|, € Ex implies that
f‘l: N — I ‘L is an isomorphism as well. a0

Exercise 4.5.21As we have mentioned earlier, institutions of single-sorted logics,
like those in Exercisgs 4.410 ahd 4.4.16, are only semi-exact, rather than finitely
exact.

Call an institutionINS almost abstract algebraid it satisfies all the assump-
tions imposed on abstract algebraic institution except for the requirement of finite
exactness, instead of which we require that:

¢ INS is semi-exact; and
o for each signatur& < |Signys|, the categoriModys(X) of Z-models has an
initial object.

The above characterisation theorems nearly hold for almost abstract algebraic insti-
tutions:

Page: 220 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.6 Bibliographical remarks 221

e By direct inspection of their proofs, check that Theofem 4]5.20 as well as the
“if” parts of Theorem$ 4.5.78 arid 4.5]19 hold for almost abstract algebraic insti-
tutions.

e Prove that the “only if” part of Theorein 4.5]18 holds for almost abstract alge-
braic institutions. HNT: To show that &-theoryT has an initial model, consider
the identity signature morphism as a morphism from the emptiieory toT.
Then use Exercide 3.5117.

¢ Show that the “only if” part of Theorefn 4.5]19 does not hold for almost abstract
algebraic institutions. HNT: In SSEQ the requirement ofi-reachability is triv-
ial for any signature morphism. Consider the extension &SEQby sentences
involving the quantifier “there exists a unique”. O

4.6 Bibliographical remarks

This chapter has its origins in the seminal work of Goguen and Burstall on insti-
tutions. The reader may have noticed that the main paper on institutions [GB92]
appeared later than many of its applications. The first appearance of institutions was
in the semantics of Cledr [BGBO0], under the name “language”, and early versions of
[GB92] were widely circulated, with [GB84a] as an early published version. Most
of our terminology (signature, sentence, model, liberal institution, etc.) comes from
[GB92]. There is a minor technical difference with respect to the definition given in
[GB92]: we take the contravariant functitod;ys to be Mod ns: Signy;s — Cat
rather tharMod ns: Signyg — CatP. This is consistent with the further refinement

of this definition in Chaptdr 10 as well as with the notion of an indexed category (cf.
Sectior] 3.4 and [TBG91]).

A large number of variants, generalisations and extensions of the notion of in-
stitution have been considered. In some work where model morphisms are not im-
portant, institutions were considered with classes (rather than categories) of mod-
els, e.qg.[[BG8D]. Somewhat dually, one way to bring deduction into the realm of
institutions is by considering categories (rather than sets) of sentences, where mor-
phisms capture proofs. These variants were present in some unpublished versions of
[GB92]; see alsd [MGDTQ7] for some elaboration on these possibilities.

One line of generalisation is to allow a space of truth values other than just the
standard two-valued set, leading to proposals like galldries [May85] or generalised
institutions [GB86]. General logics [Mes89] add an explicit notion of entailment
and proof to institutions, see Chapftér 9 for developments in this direction. Founda-
tions [Poi88] include a similar idea, in addition imposing a rich indexed category
structure on sentences. Context institutions [Paw96] offer an explicit notion of con-
text and hence of open formulae and valuation as a part of the institution structure.
There have also been attempts to relax the satisfaction condition, with for instance
pre-institutions[[SS93][[SS96], where the equivalence in the satisfaction conditions
is split into two separately-imposed implications. This captures logical systems in
which one or both of the directions of the satisfaction condition fail, as discussed

Page: 221 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

222 4 Working within an arbitrary logical system

before Exercisg 4.11.2. This applies to the so-called ultra-loose approach to algebraic
specification [WB89], Extended ML._[KST97] and various notions of behavioural
satisfaction, see Chapfer 8. ([n [GogP1la], the satisfaction condition is satisfied for
behavioural satisfaction but at the cost of restricting the notion of signature mor-
phism.) Overall though, in spite of all these proposed variants and generalisations,
most research has been based on the original notion, as we present it here.

The theory of institutions adopts a primarily model-theoretic view of logical sys-
tems. This does not preclude proof-theoretic investigation, see Chapter 9, but it does
exclude logical systems that are inherently not based on the Tarskian notion of sat-
isfaction of a sentence in a model. Typically such systems are centred around a
notion of logical consequence that is defined via deduction, in contrast to our Def-
inition [4.2.5. One such example would be non-monotonic logics [MT93], where
increasing the set of premises can render consequences invalid. Other examples in-
clude substructural logics such as linear logic [Gir87], where changing the number
of occurrences of premises, or their order, may affect deduction and change the set
of valid consequences. Clearly, such logics cannot be directly represented as insti-
tutions, but see for instance [CM97] which indicates how an institution for linear
logic can be defined by taking linear logic sequents (statements about consequence)
as individual sentences. A view of logic based on proof rules and deduction under-
lies so-called “general logical frameworks”, with Edinburgh LE [HHP93] as a prime
example. For proposals in this direction related to institutions,ns@estitutions
[ES88] and also entailment systerns [Mes89], [HST94], which re-emerge in Defini-
tion[9.1.2 below.

Sectiong 4.1]1 gives only the beginning of the long list of examples of logical
systems that have been formalised as institutions. Standard examples of institutions
(EQ, FOP, Horn, Horn without equality EQ~) were in [GB92] with further stan-
dard algebraic variants ih [Mos96b], aG&EQ is from [Tar86b].

Dozens of other logical systems have been formalised as institutions. Some
examples: [[Bor00] defines an institution of higher-order logic based on HOL;
[SMLO5] defines an institution with type class polymorphism; [R0s94] defines an
institution of order-sorted equational logic; [ACEGG91] defines a family of insti-
tutions of multiple-valued logics, including logical systems arising from fuzzy set
theory; [Dia00] defines an institution of constraint logicif@@)] defines an insti-
tution with models that have both coalgebraic and algebraic components, and sen-
tences involving modal formulae; [FC96] defines an institution of temporal logic;
[LS0Q] defines an institution of hybrid systems based on the specification language
of HyTecH [HHWT97]; and [BHO64a] defines the @ constructor-based obser-
vational logic institution based on viewing reachability and observability as dual
concepts. The semantics of basic specificationsAsl(JST04] defines an institu-
tion, the rest of the semantics being defined in an institution-independent fashion.
Alternatives to the standardASL institution include: the institution underlyingaz
CasL, which includes cogeneration constraints, cofreeness constraints, and modal
formulae [MSRROB]; the institution underlyingA$CasL, with partial higher or-
der functions, higher-order subtyping, shallow polymorphism, and type classes, de-
signed for specifying functional programs [SMO09]; an institution of labelled tran-

Page: 222 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.6 Bibliographical remarks 223

sition logic for specifying dynamic reactive systerns [RAC99]; and the institution
underlying Gpr-CAsL for describing systems of processes [Rdg06]. The eight in-
stitutions involved inCafeOBJ [DE98] are defined in [DFEQ2], with their combina-
tion leading to an institution via a version of the Grothendieck construction (Defi-
nition) that is applicable helle [Dia02], and the Maude language {OPJE

is based on rewriting logid [Mes92] and on the institution of membership equa-
tional logic [Mes98] (with some technical nuances of their relationship pointed at
in [CMRM10Q]). Institutions for three different UML diagram types are defined in
[CK084d,[CK08h/ CKO8c], with the relationships between them given by institu-
tion comorphisms (see Sectipn 7]0.4 below). A spectrum of institutions capturing
some aspects of Semantic Web languages are defined and linked with each other in
[LLDO#6]. Different approaches to the specification of objects have led to the def-
inition of a number of institutions, includin@ [SC394] which defines an institution
of temporal logic for specifying object behaviour, [GD94b] which argues that an
institution based on hidden-sorted algebra is relevant, land [Zuc99] which shows
how to construct an institution with features for specifying dynamic aspects of sys-
tems using so-called “d-oids” from an institution for specifying static data. Finally,
some slightly non-standard examples include two institutions for graph colouring in
[Sco04], a way of viewing a database as an institution [Gpg10], and a framework
based on institutions for typed object-oriented, XML and other data madels [Ala02].

Some of the examples of constructions on institutions in Seftion|4.1.2 were in-
dependently introduced by others. For instance, [Mes89] constructs an institution
“out of thin air” starting with theories in an entailment system, the idea of which is
presented in Examplés 4.1]36 and 4.]1.40. Incidentally, a very interesting exercise is
to use the method of diagrams (Definitjon 4]5.9) to show how the construction of
models from theories recovers the institution for which the entailment system that
generates the theories was built.

Overall though, Section 4.1.2 only hints at the issue of how institutions should
be defined. In particular, we do not discuss here the notiorpefehmen{GB86§],
which offers one convenient way to present institutions in a concise and uniform
style, at the same time ensuring that the satisfaction condition holds. See also
[MTP97,IMTP98] for variants of this notion and its use for combining presenta-
tions of logical systems.

The idea of data constraints originates|in [BG80], but has been independently
introduced earlier by Reichel [Rei80], cf. [KR71]. Our treatment in Se¢tioh 4.3 fol-
lows [GB92]. Definition[4.3B is essentially equivalent to the definition there, al-
though the technicalities are somewhat different; in particular, as in [$ST88a], we do
not require the institution to be liberal. Hierarchy constraints [SW82], also known
as generating constrainis [EWT83], are like data constraints but require that some
carriers are generated from other carriers rather than freeness, see Hxercige 4.3.13.
Exercis¢ 4.3.74 introduces a way to specify so-called co-inductive data types involv-
ing infinitary data. This has been mixed with algebraic techniques both in specifi-
cation, see OCAsL [MSRRO06] and in experimental programming languages, see
[Hag87] and Charity [CS92, CFD2]. Sée [Rut00] for an introduction to a comprehen-

Page: 223 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

224 4 Working within an arbitrary logical system

sive coalgebraic approach to specification which provides an alternative perspective
to the material on behavioural specifications in Chggter 8 below.

Colimits of signatures and theories built over them have been used as a tool for
combining theories and specifications at least since [BG77, GB78]. This follows the
general ideas of [GogT3] and underlies for instance the semantics of Clear|[BG80]
and the commercial Specware systém [Stni06]; support for the use of colimits to
combine theories in a number of institutions is also offered by teg4tystem
[MMLOY]. A category-theoretic approach to software engineering which makes ex-
tensive use of these ideas/is [Fia05]. Theofem }.4.1 originates/with [GB92], gener-
alising a non-institutional version in [GB84b], and Corollary 4.4.2 is from [BG80].

The idea of amalgamation in model thedry [CK90] refers to a subtler and deeper
property of certain theories than does the notion defined here. The use of amalga-
mation in algebraic specification, in connection with pushout-style parameterisation
mechanisms, originates with_ [EM85], following its introduction in_[BPP85], see
also the Extension Lemma in [EKBQ,|[EKT"83]. In the context of an arbitrary
institution, it was first imposed as a requirement and linked with continuity of the
model functor in[[ST88a], cf[[EWT83].

Limiting the amalgamation property to pushouts along a chosen collection of sig-
nature morphisms, as in Definitipn 4.4.18, is important not only because of examples
like those in Exercise 4.4.119. The range of relevant cases includes systems emerging
in practice. For instance, the institution oA€L [Mos04] admits amalgamation for
pushouts along most, but not alla€L signature morphisms, due to problems with
the required unique interpretation of subsorting coercions, see [9EIT

There has been some confusion with the terminology surrounding exactness of
institutions in the literature. The term was first used in [M&s89], although for preser-
vation of signature pushouts (the amalgamation property) only. It became widely
used after[[DGS93], where it meant that the model functor maps finite colimits of
signatures to limits ifCat, so that neither infinite colimits nor existence of colimits
were covered (the latter also applies to semi-exactness as introduced there). This
was sometimes missed in the literature, leading to subtle mistakes in the presenta-
tion of some results. We decided to put all of these assumptions together under the
single requirement of “exactness”. The notion of an institution “with composable
signatures” was used in early versions of this chapter and in [[Tar99] to mean the
same thing as exactness, and this terminology was adopted by other authors in a
few papers. The notion of exactness as used in category theory is different, although
for functors between so-called Abelian categories it implies preservation of finite
colimits.

The consequences of semi-exactness for preservation of finite connected colimits
of signature diagrams stated in Proposifion 44.15 appear to be new in the literature
concerning institutions; they had not been clear to us until we were poinied td [CJ95]
and a result there which we give as Exer€ise 3]4.55.

Institutions with extra structure have been used as the basis for the definition of
the semantics of a number of specification languages, beginning withlASL [ST88a]
which required an exact institution. In [ST86], an institution-independent semantics
for the Extended ML specification language is sketched in terms of an “institution

Page: 224 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

4.6 Bibliographical remarks 225

with syntax”; this requires an additional functor which gives concrete syntactic rep-
resentations of sentences, together with a natural transformation which associates
these concrete objects with the “abstract” sentences they represeént. In [ST04], the
semantics of @sL is based on an “institution with qualified symbol§” [Mo$00]
which requires considerable additional structure in order to support the operations
on signatures used in the semantics; these include union of signatures and generation
of signature morphisms from maps between symbols. Similar constructions on sig-
natures are available when the category of signatures is equipped with a so-called
inclusion system, which leads to the concept of an inclusive institution [DIGS93],
[GRO4] (see also Exercie 5.P.1 below).

Although the theory of institutions emerged originally in the context of algebraic
specification theory, it shares ideas and broad goals with abstract model theory as
pursued within mathematical logic, seée [B&r74, BF85], which concentrates on the
study of definable classes of algebras (or rather first-order structures), abstracting
away from the structure of sentences and from proof-theoretic mechanisms. The
idea of developing an institutional version of abstract model theory, which also ab-
stracts away from the nature of models, was first put forward in [Tar86a], where
for instance the equivalence of the Craig interpolation and Robinson consistency
properties, mentioned in Sectipn 4]4.1, was shown.

The Craig interpolation property (Definitign 4.4]21) will be used frequently in
the sequel. In this formulation, it originates in [Tar86a]. Interpolation for first-order
logic is a standard result in model theory [CK90] but the delicacy of its status in
many-sorted first-order logic (see Exerdise 4.4.23) was first pointed dut in [Bor05].
There are several variants of the formulation of interpolation [DMOQ]. the general-
isation to arbitrary commuting squares of signature morphisms [Dia08] and sets of
interpolants (see the discussion|in [DGS93)) is especially important. In particular,
sets of interpolants may always be found in the case of equational logic under the as-
sumption that carriers are non-empty [Rod91], but the necessity of this assumption
has been widely disregarded, see Exelcise 4.4.25.

Our treatment of variables, open formulae and quantification in an arbitrary insti-
tution comes from [Tar86b, ST88a]; see the concept of syntactic operator in [Bar74]
for an earlier related idea. Sectjon}4.5 is based on [Tar85], following [MM84] which
is in an institutional style but based on the standard notion of logical structure. In
[Tar86Db], infinitary conditional “equations” were defined for an arbitrary abstract
algebraic institution and it was shown that sets of these sentences define quasi-
varieties, see [Mal71], thus obtaining a “syntactic” version of Thegrem 4.5.20. Fur-
ther developments in institutional abstract model theory, with results and ideas that
refine those in Sectioris 4.4 ahd]4.5 and reach much further into classical model
theory than we have done here, are in [Dia08].

Page: 225 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

Page: 532 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

References

AC89.

ACO1.

ACEGG91.

AF96.

AG97.

AHO5.

AHS90.
Ala02.
AM75.

Asp95.

Asp97.

Asp00.

Egidio Astesiano and Maura Cerioli. On the existence of initial models for partial
(higher-order) conditional specifications. In Josépdand Fernando Orejas, editors,
Proceedings of the International Joint Conference on Theory and Practice of Software
Development, TAPSOFT'8Barcelonal.ecture Notes in Computer Sciengelume

351, pages 74-88. Springer, 1989.

David Aspinall and Adriana B. Compagnoni. Subtyping dependent tfjpesretical
Computer Scien¢@66(1-2):273-309, 2001.

Jaume Aguis€Cullell, Francesc Esteva, Pere Garcia, and Lluis Godo. Formalizing
multiple-valued logics as institutions. In Bernadette Bouchon-Meunier, Ronald R.
Yager, and Lotfi A. Zadeh, editorBroceedings of the 3rd International Conference
on Information Processing and Management of Uncertainty in Knowledge-Based Sys-
tems, IPMU’90 Paris,Lecture Notes in Computer Scieneelume 521, pages 269—
278. Springer, 1991.

Mario Arrais and Jas Luiz Fiadeiro. Unifying theories in different institutions. In
Magne Haveraaen, Olaf Owe, and Ole-Johan Dahl, ediResent Trends in Data
Type Specification. Selected Papers from the 11th Workshop on Specification of Ab-
stract Data TypesOslo, Lecture Notes in Computer Sciena®lume 1130, pages
81-101. Springer, 1996.

Robert Allen and David Garlan. A formal basis for architectural connec#@i
Transactions on Software Engineering and Methodol6¢9):213-249, 1997.

David Aspinall and Martin Hofmann. Dependent types. In Benjamin Pierce, editor,
Advanced Topics in Types and Programming Languadespter 2, pages 45-86. MIT
Press, 2005.

Jii Adamek, Horst Herrlich, and George Streckiostract and Concrete Categories:
The Joy of CatsWiley, 1990.

Suad Alagic. Institutions: Integrating objects, XML and databalsgsrmation and
Software Technologyl4(4):207-216, 2002.

Michael A. Arbib and Ernest G. Maneérrows, Structures and Functors: The Cate-
gorical Imperative Academic Press, 1975.

David Aspinall. Subtyping with singleton types. In Leszek Pacholski and Jerzy
Tiuryn, editors Proceedings of the 8th International Workshop on Computer Science
Logic, CSL'94 Kazimierz,Lecture Notes in Computer Sciene®lume 933, pages
1-15. Springer, 1995.

David Aspinall. Type Systems for Modular Programming and SpecificatiBhD
thesis, University of Edinburgh, Department of Computer Science, 1997.

David Aspinall. Subtyping with power types. In Peter Clote and Helmut Schwichten-
berg, editorsProceedings of the 14th International Workshop on Computer Science

533

534

Avrol.

Awo006.
Bar74.

BBB*85.

BBC86.

BC88.

BCH99.

BD77.

BDP*79.

Bén85.

Ber87.

BF85.

BG77.

BG80.

BG81.

BGO1.

BH96.

BHO98.

Page: 534

References

Logic, Fischbachaul ecture Notes in Computer Sciene®lume 1862, pages 156—
171. Springer, 2000.

Arnon Avron. Simple consequence relatiolmormation and Computatiqr92:105—

139, 1991.

Steve AwodeyCategory TheoryOxford University Press, 2006.

Jon Barwise. Axioms for abstract model theoAnnals of Mathematical Logic
7:221-265, 1974.

Friedrich L. Bauer, Rudolf Berghammer, Manfred Broy, Walter Dosch, Franz Geisel-
brechtinger, Rupert Gnatz, E. Hangel, Wolfgang Hesse, Bernd KriggkBer, Al-

fred Laut, Thomas Matzner, Berndd\ler, Friederike Nickl, Helmut Partsch, Peter
Pepper, Klaus Samelson, Martin Wirsing, and Hangsgver. The Munich Project
CIP: Volume 1: The Wide Spectrum Language ClR-&cture Notes in Computer
Sciencevolume 183. Springer, 1985.

Gilles Bernot, Michel Bidoit, and Christine Choppy. Abstract data types with ex-
ception handling: An initial approach based on a distinction between exceptions and
errors. Theoretical Computer Scienc#6(1):13-45, 1986.

Val Breazu-Tannen and Thierry Coquand. Extensional models for polymorphism.
Theoretical Computer Scienc®d(1-2):85-114, 1988.

Michel Bidoit, Mafa Victoria Cengarle, and Rolf Hennicker. Proof systems for struc-
tured specifications and their refinements. In Egidio Astesiano, Hagskieowski,

and Bernd Krieg-Biickner, editorsAlgebraic Foundations of Systems Specification
chapter 11, pages 385—-433. Springer, 1999.

R.M. Burstall and J. Darlington. A transformational system for developing recursive
programs.Journal of the Association for Computing Maching2y(1):44-67, 1977.
Manfred Broy, Walter Dosch, Helmut Partsch, Peter Pepper, and Martin Wirsing. Ex-
istential quantifiers in abstract data types. In Hermann A. Maurer, e&itoceed-

ings of the 6th International Colloquium on Automata, Languages and Programming
Graz,Lecture Notes in Computer Sciengelume 71, pages 73-87. Springer, 1979.
Jean Bnabou. Fibred categories and the foundations iveneategory theorydour-

nal of Symbolic Logic50:10-37, 1985.

Gilles Bernot. Good functors ... are those preserving philosophy! In David H.
Pitt, Axel Poigreé, and David E. Rydeheard, editoBpceedings of the 2nd Summer
Conference on Category Theory and Computer Scigidmburgh Lecture Notes in
Computer Scien¢erolume 283, pages 182-195. Springer, 1987.

Jon Barwise and Solomon Feferman, editokéodel-Theoretic Logics Springer,
1985.

R.M. Burstall and J.A. Goguen. Putting theories together to make specifications.
In Fifth International Joint Conference on Artificial Intelligencgages 1045—-1058,
Boston, 1977.

R.M. Burstall and J.A. Goguen. The semantics of Clear, a specification language.
In Dines Bjgrner, editoiProceedings of the 1979 Copenhagen Winter School on Ab-
stract Software Specificatiphecture Notes in Computer Scieneelume 86, pages
292-332. Springer, 1980.

R.M. Burstall and J.A. Goguen. An informal introduction to specifications using
Clear. In R.S. Boyer and J.S. Moore, editdrhe Correctness Problem in Computer
Sciencepages 185-213. Academic Press, 1981. Als8aiftware Specification Tech-
nigues(eds. N. Gehani and A.D. McGettrick), Addison-Wesley, 1986.

Leo Bachmair and Harald Ganzinger. Resolution theorem proving. In John Alan
Robinson and Andrei Voronkov, editoidandbook of Automated Reasonjmpgges
19-99. Elsevier and MIT Press, 2001.

Michel Bidoit and Rolf Hennicker. Behavioural theories and the proof of behavioural
properties.Theoretical Computer Scienck65(1):3-55, 1996.

Michel Bidoit and Rolf Hennicker. Modular correctness proofs of behavioural imple-
mentations Acta Informatica 35(11):951-1005, 1998.

job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

References

BHO6a.

BHO6b.

BHK90.

BHW94.

BHW95.

Bir35.

BL69.

BMO04.

BN98.

Bor94.

Bor00.

Bor02.

Bor05.

BPP85.

BRJ98.

BS93.

BSTO2.

BSTO8.

BT87.

Page: 535

535

Michel Bidoit and Rolf Hennicker. Constructor-based observational Idgignal of
Logic and Algebraic Programming7(1-2):3-51, 2006.

Michel Bidoit and Rolf Hennicker. Proving behavioral refinements afL.-C
specifications. In Kokichi Futatsugi, Jean-Pierre Jouannaud, agdVeseguer, edi-
tors,Algebra, Meaning and Computation: Essays Dedicated to Joseph A. Goguen on
the Occasion of His 65th Birthdalecture Notes in Computer Sciengelume 4060,
pages 333-354. Springer, 2006.

Jan Bergstra, Jan Heering, and Paul Klint. Module algelmarnal of the Association
for Computing Machinery37(2):335-372, 1990.

Michel Bidoit, Rolf Hennicker, and Martin Wirsing. Characterizing behavioural se-
mantics and abstractor semantics. In Donald Sannella, e®itoceedings of the
5th European Symposium on Programmifglinburgh,Lecture Notes in Computer
Sciencevolume 788, pages 105-119. Springer, 1994.

Michel Bidoit, Rolf Hennicker, and Martin Wirsing. Behavioural and abstractor spec-
ifications. Science of Computer Programmirzh(2-3):149-186, 1995.

Garrett Birkhoff. On the structure of abstract algebRasceedings of the Cambridge
Philosophical Society31:433-454, 1935.

R.M. Burstall and P.J. Landin. Programs and their proofs: an algebraic approach. In
B. Meltzer and D. Michie, editordyiachine Intelligence 4pages 17—-43. Edinburgh
University Press, 1969.

Michel Bidoit and Peter D. Mosses, editorsA<L User Manual Number 2900 in
Lecture Notes in Computer Science. Springer, 2004.

Franz Baader and Tobias Nipkowerm Rewriting and All ThatCambridge Univer-
sity Press, 1998.

Francis Borceaux-andbook of Categorical AlgebraCambridge University Press,
1994.

Tomasz Borzyszkowski. Higher-order logic and theorem proving for structured spec-
ifications. In Didier Bert, Christine Choppy, and Peter D. Mosses, ediResent
Trends in Algebraic Development Techniques. Selected Papers from the 14th Interna-
tional Workshop on Algebraic Development Technig@steau de Bonad,ecture
Notes in Computer Scienceolume 1827, pages 401-418. Springer, 2000.

Tomasz Borzyszkowski. Logical systems for structured specificatibmsoretical
Computer Scien¢®86(2):197-245, 2002.

Tomasz Borzyszkowski. Generalized interpolation in first order Idgimdamenta
Informaticag 66(3):199-219, 2005.

Edward K. Blum and Francesco Parisi-Presicce. The semantics of shared submod-
ules specifications. In Hartmut Ehrig, Christiane Floyd, Maurice Nivat, and James W.
Thatcher, editordMathematical Foundations of Software Development. Proceedings
of the International Joint Conference on Theory and Practice of Software Develop-
ment. Volume 1: Colloquium on Trees in Algebra and Programpiiagture Notes in
Computer Scien¢e&olume 185, pages 359-373. Springer, 1985.

Grady Booch, James Rumbaugh, and Ivar Jacobserlnified Modeling Language
User Guide Addison-Wesley, 1998.

Rudolf Berghammer and Gunther Schmidt. Relational specifications. In C. Rauszer,
editor, Proc. XXXVIII Banach Center Semester on Algebraic Methods in Logic and
their Computer Science ApplicatiarBanach Center Publicationsolume 28, pages
167-190, Warszawa, 1993. Institute of Mathematics, Polish Academy of Sciences.
Michel Bidoit, Donald Sannella, and Andrzej Tarlecki. Architectural specifications
in CAsL. Formal Aspects of Computing3:252-273, 2002.

Michel Bidoit, Donald Sannella, and Andrzej Tarlecki. Observational interpretation
of CAsL specificationsMathematical Structures in Computer Scient®:325-371,
2008.

Jan Bergstra and John Tucker. Algebraic specifications of computable and semicom-
putable data typeslheoretical Computer Science0(2):137-181, 1987.

job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

536

BT96.

Bur86.

BW82a.

BW82b.

BWS8S5.

BWO5.

BWP84.

Car88.

CDE'02.

Cen94.

CF92.

CGRO3.

Chub56.

Cir02.

CJ95.

CK90.

CKO08a.

CKO8b.

CKO8c.

Page: 536

References

Michel Bidoit and Andrzej Tarlecki. Behavioural satisfaction and equivalence in con-
crete model categories. Indiéne Kirchner, editoProceedings of the 21st Interna-
tional Colloquium on Trees in Algebra and Programmihgnkoping, Lecture Notes

in Computer Sciencerolume 1059, pages 241-256. Springer, 1996.

Peter Burmeister. A Model Theoretic Oriented Approach to Partial Algehras
Akademie-Verlag, 1986.

Friedrich L. Bauer and HansdasnerAlgorithmic Language and Program Develop-
ment Springer, 1982,

Manfred Broy and Martin Wirsing. Partial abstract data typasta Informatica
18(1):47-64, 1982.

Michael Barr and Charles WellsToposes, Triples and TheoriedNumber 278 in
Grundlehren der mathematischen Wissenschaften. Springer, 1985.

Michael Barr and Charles Well€ategory Theory for Computing Scienderentice

Hall, second edition, 1995.

Manfred Broy, Martin Wirsing, and Claude Pair. A systematic study of models of
abstract data typeJ.heoretical Computer Sciencg3(2—3):139-174, 1984.

Luca Cardelli. Structural subtyping and the notion of power typeRrdoeedings

of the 15th ACM Symposium on Principles of Programming Langy&gs Diego,
pages 70-79, 1988.

Manuel Clavela, Francisco Cam, Steven Eker, Patrick Lincoln, Narciso Ma@iliet,
Jog Meseguer, and JesF. Quesada. Maude: Specification and programming in
rewriting logic. Theoretical Computer Scienc285(2):187—-243, 2002. See also
http://maude.cs.uiuc.edu/

Maia Victoria CengarleFormal Specifications with Higher-Order Parameterization
PhD thesis, Ludwig-Maximilians-Universit Minchen, Institutiir Informatik, 1994.
Robin Cockett and Tom Fukushima. About Charity. Technical Report No. 92/480/18,
Department of Computer Science, University of Calgary, 1992.

Carlos Caleiro, Paula Gouveia, and Jaime Ramos. Completeness results for fibred
parchments: Beyond the propositional base. In Martin Wirsing, Dirk Pattinson, and
Rolf Hennicker, editorsRecent Trends in Algebraic Development Techniques. Se-
lected Papers from the 16th International Workshop on Algebraic Development Tech-
niques Frauenchiemsee,ecture Notes in Computer Sciena®lume 2755, pages
185-200. Springer, 2003.

Alonzo Churchintroduction to Mathematical Logic, Volume Brinceton University
Press, 1956.

Corina Grstea. On specification logics for algebra-coalgebra structures: Reconciling
reachability and observability. IRroceedings of the 5th International Conference on
Foundations of Software Science and Computation Structures. European Joint Con-
ferences on Theory and Practice of Software (ETAPS 2@2noblelecture Notes

in Computer Sciengevolume 2303, pages 82-97. Springer, 2002.

Aurelio Carboni and Peter Johnstone. Connected limits, familial representability and
Artin glueing. Mathematical Structures in Computer Sciens@!):441-459, 1995.
Chen-Chung Chang and H. Jerome Keislstodel Theory North-Holland, third
edition, 1990.

Mara Victoria Cengarle and Alexander Knapp. An institution for OCL 2.0. Techni-
cal Report 10801, Institutifr Informatik, Ludwig-Maximilians-Universét Minchen,
2008.

Maia Victoria Cengarle and Alexander Knapp. An institution for UML 2.0 in-
teractions. Technical Report 10808, Institiir finformatik, Ludwig-Maximilians-
Universitt Munchen, 2008.

Maia Victoria Cengarle and Alexander Knapp. An institution for UML 2.0 static
structures. Technical Report 10807, Institiitr finformatik, Ludwig-Maximilians-
Universitat Munchen, 2008.

job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

http://maude.cs.uiuc.edu/

References 537

CKTWO08. Maria-Victoria Cengarle, Alexander Knapp, Andrzej Tarlecki, and Martin Wirsing. A
heterogeneous approach to UML semantics. In Pierpaolo Degano, Rocco de Nicola,
and Joé Meseguer, editor€oncurrency, Graphs and Models, Essays Dedicated to
Ugo Montanari on the Occasion of His 65th Birthddyecture Notes in Computer
Sciencevolume 5065, pages 383-402. Springer, 2008.

CM97. Maura Cerioli and Jé&sMeseguer. May | borrow your logic? (Transporting logical
structures along mapsJheoretical Computer SciencE73(2):311-347, 1997.

CMRM10. Mihai Codescu, Till Mossakowski, Adn Riesco, and Christian Maeder. Integrat-
ing Maude into Hets. In Mike Johnson and Dusko Pavlovic, editdk$AST 2010
Lecture Notes in Computer Science. Springer, 2010.

CMRSO01. Carlos Caleiro, Paulo Mateus, Jaime Ramos, arittAnSernadas. Combining log-
ics: Parchments revisited. In Maura Cerioli and Gianna Reggio, edRecgnt Trends
in Algebraic Development Techniques. Selected Papers from the 15th Workshop on Al-
gebraic Development Techniques joint with the CoFl WG Meg@enoval ecture
Notes in Computer Scienceolume 2267, pages 48-70. Springer, 2001.

Coh65. Paul M. CohnUniversal Algebra Harper and Row, 1965.

CS92. Robin Cockett and Dwight Spencer. Strong categorical datatypes I. In R.A.G. Seely,
editor, International Meeting on Category Theory 19%@lanadian Mathematical So-
ciety Proceedings. American Mathematical Society, 1992.

CSSO05. Carlos Caleiro, Alcar Sernadas, and Cristina Sernadas. Fibring logics: Past, present
and future. In Sergei N. Artemov, Howard Barringer, Artur S. d’Avila Garceis1Gi
Lamb, and John Woods, editok&/e Will Show Them! Essays in Honour of Dov Gab-
bay, Volume Ongpages 363—-388. College Publications, 2005.

DF98. Razvan Diaconescu and Kokichi Futatsu@iafeOBJ Report: The Language, Proof
Techniques, and Methodologies for Object-Oriented Algebraic SpecificAMAST
Series in Computing/olume 6. World Scientific, 1998.

DFO02. Razvan Diaconescu and Kokichi Futatsugi. Logical foundatiorGajféOBJ. Theo-
retical Computer Scien¢@85:289-318, 2002.

DGS93. Razvan Diaconescu, Joseph Goguen, and Petros Stefaneas. Logical support for mod-
ularisation. In @rard Huet and Gordon Plotkin, editoksgical Environmentpages
83-130. Cambridge University Press, 1993.

Dia00. Razvan Diaconescu. Category-based constraint lojlethematical Structures in
Computer Scien¢d 0(3):373-407, 2000.

Dia02. Razvan Diaconescu. Grothendieck institutions\pplied Categorical Structures
10(4):383-402, 2002.

Dia08. Razvan Diaconescunstitution-independent Model Theorgirkhauser, 2008.

DJ90. Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In Jan van

Leeuwen, editorHandbook of Theoretical Computer Science. Volume B (Formal
Models and Semanticg)ages 244-320. North-Holland and MIT Press, 1990.

DLL62. Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-provingCommunications of the ACN6(7):394-397, 1962.
DMOO. Theodosis Dimitrakos and Tom Maibaum. On a generalised modularisation theorem.

Information Processing Letterg4(1-2):65-71, 2000.

DMR76. Martin Davis, Yuri Matiyasevich, and Julia Robinson. Hilbert’s tenth problem. Dio-
phantine equations: Positive aspects of a negative solutidviathematical Develop-
ments Arising from Hilbert ProblemBroceedings of Symposia in Pure Mathematics
volume 28, pages 323-378, Providence, Rhode Island, 1976. American Mathematical

Society.

DP90. B.A. Davey and H.A. Priestleintroduction to Lattices and OrdeiCambridge Uni-
versity Press, 1990.

Ehr78. Hans-Dieter Ehrich. Extensions and implementations of abstract data type specifica-

tions. In bzef Winkowski, editorProceedings of the 7th Symposium on Mathemati-
cal Foundations of Computer Scien@akopanel.ecture Notes in Computer Science
volume 64, pages 155-164. Springer, 1978.

Page: 537 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

538 References

Ehr81. Hans-Dieter Ehrich. On realization and implementation. In Jozef Gruska and Michal
Chuytil, editors,Proceedings of the 10th Symposium on Mathematical Foundations of
Computer SciengeStrbsié Plesolecture Notes in Computer Scieneelume 118,
pages 271-280. Springer, 1981.

Ehr82. Hans-Dieter Ehrich. On the theory of specification, implementation and parametriza-
tion of abstract data typesJournal of the Association for Computing Machinery
29(1):206-227, 1982.

EKMP82. Hartmut Ehrig, Hansddg Kreowski, Bernd Mahr, and Peter Padawitz. Algebraic
implementation of abstract data typeBheoretical Computer Scienc20:209-263,
1982.

EKT*80. Hartmut Ehrig, Hansélg Kreowski, James Thatcher, Eric Wagner, and Jesse Wright.
Parameter passing in algebraic specification languages. Technical report, Technische
Universitt Berlin, 1980.

EKT*83. Hartmut Ehrig, Hansédg Kreowski, James Thatcher, Eric Wagner, and Jesse Wright.
Parameter passing in algebraic specification languagbsoretical Computer Sci-
ence 28(1-2):45-81, 1983.

EM85. Hartmut Ehrig and Bernd MahFundamentals of Algebraic SpecificationBIATCS
Monographs on Theoretical Computer Scienadume 6. Springer, 1985.
Eme90. E. Allen Emerson. Temporal and modal logic. In Jan van Leeuwen, étitotbook

of Theoretical Computer Science. Volume B (Formal Models and Semapscgs
995-1072. North-Holland and MIT Press, 1990.

End72. Herbert B. Enderto Mathematical Introduction to LogicAcademic Press, 1972.

EPO89. Hartmut Ehrig, Peter Pepper, and Fernando Orejas. On recent trends in algebraic
specification. In Giorgio Ausiello, Mariangiola Dezani-Ciancaglini, and Simona
Ronchi Della Rocca, editor®roceeding of the 16th International Colloquium on
Automata, Languages and Programmigresal ecture Notes in Computer Science
volume 372, pages 263-288. Springer, 1989.

EWT83. Hartmut Ehrig, Eric G. Wagner, and James W. Thatcher. Algebraic specifications
with generating constraints. Proceeding of the 10th International Colloquium on
Automata, Languages and ProgrammiBgrcelonal ecture Notes in Computer Sci-
ence volume 154, pages 188-202. Springer, 1983.

Far89. Jordi Fafs-Casals. Proving correctness of constructor implementations. In Antoni
Kreczmar and Grazyna Mirkowska, editoProceedings of the 14th Symposium on
Mathematical Foundations of Computer Scigneerabka-Kozubnikl.ecture Notes
in Computer Sciengerolume 379, pages 225-235. Springer, 1989.

Far90. Jordi Fafs-Casals. Proving correctness wrt specifications with hidden parts. In
Heélene Kirchner and Wolfgang Wechler, editdPsoceedings of the 2nd International
Conference on Algebraic and Logic Programmii@ncy,Lecture Notes in Computer
Sciencevolume 463, pages 25-39. Springer, 1990.

Far92. Jordi Fags-CasalsVerification in ASL and Related Specification LanguadesD
thesis, University of Edinburgh, Department of Computer Science, 1992.
FC96. Joé Luiz Fiadeiro and JésFelix Costa. Mirror, mirror in my hand: A duality be-

tween specifications and models of process behaviMathematical Structures in
Computer Scien¢é(4):353-373, 1996.

Fei89. Loe M. G. Feijs. The calculusz. In Martin Wirsing and Jan A. Bergstra, editors,
Proceedings of the Workshop on Algebraic Methods: Theory, Tools and Applications
Lecture Notes in Computer Sciengelume 394, pages 307—328. Springer, 1989.

FGT92. William M. Farmer, Joshua D. Guttman, and F. Javier Thayer. Little theories. In
Deepak Kapur, editoroceedings of the 11th International Conference on Auto-
mated DeductionLecture Notes in Artificial Intelligencesolume 607, pages 567—
581, Saratoga Springs, 1992. Springer.

Fia05. Joé Luiz Fiadeiro.Categories for Software Engineerin§pringer, 2005.

Fit08. John S. Fitzgerald. The typed logic of partial functions and the Vienna Develop-
ment Method. In Dines Bjgrner and Martin Henson, editbogics of Specification
Languagespages 453—-487. Springer, 2008.

Page: 538 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

References 539

FJ90. J. Fitzgerald and C.B. Jones. Modularizing the formal description of a database sys-
tem. InProceedings of the 3rd International Symposium of VDM Europe: VDM and
Z, Formal Methods in Software Developmekiel, Lecture Notes in Computer Sci-
ence volume 428, pages 189-210. Springer, 1990.

FS88. Jos Luiz Fiadeiro and Ariicar Sernadas. Structuring theories on consequence. In
Donald Sannella and Andrzej Tarlecki, editdRgcent Trends in Data Type Specifica-
tion. Selected Papers from the 5th Workshop on Specification of Abstract Data Types
Gullane,Lecture Notes in Computer Sciena®lume 332, pages 44-72. Springer,

1988.
Gab9s. Dov M. Gabbayibring Logics Oxford Logic Guidesvolume 38. Oxford University
Press, 1998.
Gan83. Harald Ganzinger. Parameterized specifications: Parameter passing and implemen-

tation with respect to observabilitACM Transactions on Programming Languages
and System$(3):318—-354, 1983.

GB78. J.A. Goguen and R.M. Burstall. Some fundamental properties of algebraic theories:
a tool for semantics of computation. Technical Report 53, Department of Atrtificial
Intelligence, University of Edinburgh, 1978. Revised version appeared as [GB84b]
and [GB84c].

GB80. J.A. Goguen and R.M. Burstall.AC, a system for the structured elaboration of cor-
rect programs from structured specifications. Technical Report CSL-118, Computer
Science Laboratory, SRI International, 1980.

GB84a. J.A. Goguen and R.M. Burstall. Introducing institutions. In Edmund Clarke and Dex-
ter Kozen, editorsProceedings of the Workshop on Logics of PrograRiisburgh,
Lecture Notes in Computer Sciengelume 164, pages 221-256. Springer, 1984.

GB84b. J.A. Goguen and R.M. Burstall. Some fundamental algebraic tools for the semantics
of computation. Part 1: Comma categories, colimits, signatures and thedhes-
retical Computer Scien¢@1:175-209, 1984.

GB84c. J.A. Goguen and R.M. Burstall. Some fundamental algebraic tools for the semantics
of computation. Part 2: Signed and abstract theoflésoretical Computer Science
31:263-295, 1984.

GB86. Joseph A. Goguen and Rod M. Burstall. A study in the functions of programming
methodology: Specifications, institutions, charters and parchments. In David H. Pitt,
Samson Abramsky, Axel Poig@nand David E. Rydeheard, editoPspceedings of the
Tutorial and Workshop on Category Theory and Computer Programn@ngdford,
Lecture Notes in Computer Sciengelume 240, pages 313-333. Springer, 1986.

GB92. J.A. Goguen and R.M. Burstall. Institutions: Abstract model theory for specification
and programmingJournal of the Association for Computing Machine®®(1):95—
146, 1992.

GD9%4a. Joseph Goguen and#¥an Diaconescu. An Oxford survey of order sorted algebra.
Mathematical Structures in Computer Sciend(3):363—-392, 1994.

GD94b. Joseph A. Goguen an@®/an Diaconescu. Towards an algebraic semantics for the

object paradigm. In Hartmut Ehrig and Fernando Orejas, ediResent Trends in
Data Type Specification. Selected Papers from the 9th Workshop on Specification of
Abstract Data Types joint with the 4BompPAss Workshop Caldes de Malavella,
Lecture Notes in Computer Scienpgelume 785, pages 1-29. Springer, 1994.

GDLE84. Martin Gogolla, Klaus Drosten, Udo Lipeck, and Hans-Dieter Ehrich. Algebraic and
operational semantics of specifications allowing exceptions and erfdrwsoretical
Computer Scien¢e84(3):289-313, 1984.

GG89. Stephen J. Garland and John V. Guttag. An overview of LP, the Larch Proveirdn
International Conference on Rewriting Techniques and Applicati@tspel Hill,
Lecture Notes in Computer Sciena®lume 355, pages 137-151. Springer, 1989.
See alsthttp://nms.lcs.mit.edu/larch/LP/all.html !

GGM76. V. Giarratana, F. Gimona, and Ugo Montanari. Observability concepts in abstract data
type specifications. In Antoni Mazurkiewicz, edit®toceedings of the 5th Sympo-

Page: 539 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

http://nms.lcs.mit.edu/larch/LP/all.html

540

GH78.
GH93.

Gin68.
Gir87.
Gir89.

GLROO.

GM82.

GM85.

GM92.

GMO00.

Gog73.

Gog74.

Gog7s.

Gog84.

Gog85.

Gog91la.

Gog91b.

Gog96.

Gog10.

Gol06.

Page: 540

References

sium on Mathematical Foundations of Computer Scie@mgsk, Lecture Notes in
Computer Science&olume 45, pages 567-578. Springer, 1976.

John Guttag and James Horning. The algebraic specification of abstract data types.
Acta Informatica 10:27-52, 1978.

John V. Guttag and James J. Hornibgrch: Languages and Tools for Formal Spec-
ification. Springer, 1993.

Abraham GinzburgAlgebraic Theory of AutomataAcademic Press, 1968.

Jean-Yves Girard. Linear logi€heoretical Computer Sciencg0:1-102, 1987.
Jean-Yves Girard?roofs and TypeCambridge Tracts in Theoretical Computer Sci-
ence volume 7. Cambridge University Press, 1989. Translated and with appendices
by Paul Taylor and Yves Lafont.

Joseph Goguen, Kai Lin, and Grigore Rosu. Circular coinductive rewritingroin
ceedings of the 15th International Conference on Automated Software Engineering
Grenoble. IEEE Computer Society, 2000.

Joseph A. Goguen and &ddleseguer. Universal realization, persistent interconnec-
tion and implementation of abstract modules. In Mogens Nielsen and Erik Meineche
Schmidt, editorsProceeding of the 9th International Colloquium on Automata, Lan-
guages and Programmindarhus,Lecture Notes in Computer Sciengelume 140,
pages 265-281. Springer, 1982.

Joseph Goguen and &ddeseguer. Completeness of many sorted equational deduc-
tion. Houston Journal of Mathematic$1(3):307-334, 1985.

Joseph Goguen and &okleseguer. Order-sorted algebra I: Equational deduction
for multiple inheritance, overloading, exceptions and partial operatidhsoretical
Computer Sciencd 05(2):217-273, 1992.

Joseph A. Goguen and Grant Malcolm. A hidden agerttaeoretical Computer
Science245(1):55-101, 2000.

Joseph Goguen. Categorical foundations for general systems theory. In F. Pichler and
R. Trappl, editorsAdvances in Cybernetics and Systems Resgamidon, pages
121-130. Transcripta Books, 1973.

J.A. Goguen. Semantics of computation. In Ernest G. Manes, &ibogedings
of the 1st International Symposium on Category Theory Applied to Computation and
Control, San Franciscd,ecture Notes in Computer Scieneelume 25, pages 151—
163. Springer, 1974.

Joseph Goguen. Abstract errors for abstract data types. In Erich Neuhold, editor,
Formal Description of Programming Concepggages 491-526. North-Holland, 1978.

Martin Gogolla. Partially ordered sorts in algebraic specification®rdeeedings
of the 9th Colloquium on Trees in Algebra and Programmipages 139-153. Cam-
bridge University Press, 1984.

Martin Gogolla. A final algebra semantics for errors and exceptions. In Hans-
Jorg Kreowski, editorRecent Trends in Data Type Specification. Selected Papers
from the 3rd Workshop on Theory and Applications of Abstract Data Tgresen,
Informatik-Fachberichtevolume 116, pages 89-103. Springer, 1985.

Joseph Goguen. Types as theories. In G.M. Reed, A.W. Roscoe, and R.F. Wachter,
editors,Topology and Category Theory in Computer Scie@dord, pages 357-390.
Oxford University Press, 1991.

Joseph A. Goguen. A categorical manifesfathematical Structures in Computer
Sciencel(1):49-67, 1991.

Joseph A. Goguen. Parameterized programming and software architecture. In Murali
Sitaraman, editorProceedings of the Fourth International Conference on Software
Reusepages 2—-11. IEEE Computer Society Press, 1996.

Joseph Goguen. Information integration in institutions. In Larry Moss, etiitior-
ing Logically: a Volume in Memory of Jon BarwiseSLlI, Stanford University, 2010.

To appear.

Robert GoldblattTopoi: The Categorial Analysis of Logidover, revised edition,

2006.

job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

References 541

Gor95. Andrew D. Gordon. Bisimilarity as a theory of functional programmingrbteed-
ings of the 11th Annual Conference on Mathematical Foundations of Programming
SemanticsElectronic Notes in Theoretical Computer Scient@32-252, 1995.

GRO2. Joseph A. Goguen and Grigore Rosu. Institution morphishesmal Aspects of
Computing 13(3-5):274-307, 2002.
GRO4. Joseph A. Goguen and Grigore Rosu. Composing hidden information modules over

inclusive institutions. InFrom Object-Orientation to Formal Methods. Essays in
Memory of Ole-Johan DahLecture Notes in Computer Sciengelume 2635, pages
96-123. Springer, 2004.

Grar9. George A. Gatzer.Universal Algebra Springer, second edition, 1979.

GS90. Carl Gunter and Dana Scott. Semantic domains. In Jan van Leeuwen Haifithr,
book of Theoretical Computer Science. Volume B (Formal Models and Semantics)
pages 633-674. North-Holland and MIT Press, 1990.

GTW76. Joseph Goguen, James Thatcher, and Eric Wagner. An initial algebra approach to
the specification, correctness and implementation of abstract data types. Technical
Report RC 6487, IBM Watson Research Center, Yorktown Heights NY, 1976. Also
in: Current Trends in Programming Methodology. Volume IV (Data Structuried)
R.T. Yeh), Prentice-Hall, 80-149, 1978.

GTWW?73. Joseph Goguen, James Thatcher, Eric Wagner, and Jesse Wright. A junction between
computer science and category theory, I: Basic concepts and examples (part 1). Tech-
nical Report RC 4526, IBM Watson Research Center, Yorktown Heights NY, 1973.

GTWW?75. Joseph Goguen, James Thatcher, Eric Wagner, and Jesse Wright. An introduction to
categories, algebraic theories and algebras. Technical Report RC 5369, IBM Watson
Research Center, Yorktown Heights NY, 1975.

GTWW?77. Joseph Goguen, James Thatcher, Eric Wagner, and Jesse Wright. Initial algebra se-
mantics and continuous algebrasurnal of the Association for Computing Machin-
ery, 24(1):68-95, 1977.

Gut75. John GuttagThe Specification and Application to Programming of Abstract Data
Types PhD thesis, University of Toronto, Department of Computer Science, 1975.

Hag87. Tatsuya HaginoA Categorical Programming Languagé>hD thesis, University of
Edinburgh, Department of Computer Science, 1987.

Haho1. Reiner Ehnle. Tableaux and related methods. In John Alan Robinson and Andrei
Voronkov, editorsHandbook of Automated Reasonipgges 100-178. Elsevier and
MIT Press, 2001.

Hal70. Paul R. HalmosNaive Set TheoryUndergraduate Texts in Mathematics. Springer,
1970.

Hat82. William HatcherThe Logical Foundations of Mathematidsoundations and Philos-
ophy of Science and Technology. Pergamon Press, 1982.

Hay94. Susumu Hayashi. Singleton, union and intersection types for program extraction.
Information and Computatiqri09(1/2):174-210, 1994.

Hee86. Jan Heering. Partial evaluation amdompleteness of algebraic specificatiombe-
oretical Computer Sciencd3:149-167, 1986.

Hen9l. Rolf Hennicker. Context induction: A proof principle for behavioural abstractions

and algebraic implementationSormal Aspects of Computing(4):326-345, 1991.

HHP93. Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
Journal of the Association for Computing Machine49(1):143-184, January 1993.

HHWT97. Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toiy THCH: A model
checker for hybrid systemsSoftware Tools for Technology Transféi(1-2):110-
122, 1997.

Hig63. Phillip J. Higgins. Algebras with a scheme of operatitathematische Nachrichten
27:115-132, 1963.

HLSTO00. Furio Honsell, John Longley, Donald Sannella, and Andrzej Tarlecki. Constructive
data refinement in typed lambda calculus. Proceedings of the 3rd International
Conference on Foundations of Software Science and Computation Structures. Euro-
pean Joint Conferences on Theory and Practice of Software (ETAPS, B&j,
Lecture Notes in Computer Sciengelume 1784, pages 161-176. Springer, 2000.

Page: 541 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

542

Hoa72.

HS73.

HS96.

HS02.

HST94.

Hus92.

HWB97.

Jac99.

JL87.

JNW96.

JOE9S.

Joh02.

Jon80.
Jon89.

JR97.

KB70.

Kir99.

KKM88.

Klo92.

KM87.

KR71.

Kre87.

Page: 542

References

C. A. R. Hoare. Proof of correctness of data representatiéiota Informatica
1:271-281, 1972.

Horst Herrlich and George E. Streckeategory Theory: An IntroductiorAllyn and
Bacon, 1973.

Martin Hofmann and Donald Sannella. On behavioural abstraction and behavioural
satisfaction in higher-order logi@-heoretical Computer Scienct67:3-45, 1996.

Furio Honsell and Donald Sannella. Prelogical relatiomfermation and Computa-
tion, 178:23-43, 2002.

Robert Harper, Donald Sannella, and Andrzej Tarlecki. Structured presentations and
logic representationgAnnals of Pure and Applied Logi67:113-160, 1994,

Heinrich Hussmann. Nondeterministic algebraic specifications and nonconfluent term
rewriting. Journal of Logic Programmingl2(1-4):237-255, 1992.

Rolf Hennicker, Martin Wirsing, and Michel Bidoit. Proof systems for struc-
tured specifications with observability operator3heoretical Computer Science
173(2):393-443, 1997.

Bart Jacob<Categorical Logic and Type ThearyNumber 141 in Studies in Logic
and the Foundations of Mathematics. Elsevier Science, 1999.

Joxan Jaffar and Jean-Louis Lassez. Constraint logic programmipgadeedings of
the 14th ACM Symposium on Principles of Programming Langyadesich, pages
111-119, 1987.

Andeé Joyal, Mogens Nielsen, and Glynn Winskel. Bisimulation from open maps.
Information and Computatiqri27(2):164—-185, 1996.

Rosa M. Jigmez, Fernando Orejas, and Hartmut Ehrig. Compositionality and com-
patibility of parameterization and parameter passing in specification langats.
ematical Structures in Computer Scien6€2):283-314, 1995.

Peter T. Johnston8ketches of an Elephant: A Topos Theory Compend@xfiord
Logic Guides Series. Clarendon Press, 2002.

Cliff B. JonesSoftware Development: A Rigorous ApproaEtmentice-Hall, 1980.

Hans B.M. Jonkers. An introduction t@KD-K. In Martin Wirsing and Jan A.
Bergstra, editorRroceedings of the Workshop on Algebraic Methods: Theory, Tools
and ApplicationsLecture Notes in Computer Sciene®lume 394, pages 139-205.
Springer, 1989.

Bart Jacobs and Jan Rutten. A tutorial on (co)algebras and (co)induBidetin of
the European Association for Theoretical Computer Scigd2e222—-259, 1997.

Donald E. Knuth and Peter B. Bendix. Simple word problems in universal algebras.
In J. Leech, editorComputational Problems in Abstract Algebreages 263-297.
Pergamon Press, 1970.

Hélene Kirchner. Term rewriting. In Egidio Astesiano, HatsglKreowski, and
Bernd Krieg-Biickner, editorsAlgebraic Foundations of Systems Specificatabap-

ter 9, pages 273-320. Springer, 1999.

Claude Kirchner, ilene Kirchner, and JésMeseguer. Operational semantics of
OBJ-3. In Timo Lepisht and Arto Salomaa, editorBroceedings of the 15th Inter-
national Colloquium on Automata, Languages and Programinliagnperel ecture
Notes in Computer Scienoceolume 317, pages 287-301. Springer, 1988.

Jan Klop. Term rewriting systems. In Samson Abramsky, Dov Gabbay, and Tom
Maibaum, editorsiHandbook of Logic in Computer Science. Volume 2 (Background:
Computational Structurespages 1-116. Oxford University Press, 1992.

Deepak Kapur and David R. Musser. Proof by consisterfayificial Intelligence
31(2):125-157, 1987.

Heinz Kaphengst and Horst Reichel. Algebraische Algorithmentheorie. Technical
Report WIB 1, VEB Robotron, Zentruniif Forschung und Technik, Dresden, 1971.
Hans-drg Kreowski. Partial algebras flow from algebraic specifications. In
T. Ottmann, editorProceedings of the 14th International Colloquium on Automata,
Languages and Programmingarlsruhe,Lecture Notes in Computer Scienc®l-
ume 267, pages 521-530. Springer, 1987.

job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

References

KST97.

KTB91.

Las98.

Law63.
LB88.
LEWO96.
Lin03.
Lip83.

LLDOG.

LS86.

LS00.

Luo93.

Mac71.
Mac84.

MAHO06.

Mai72.

Maj77.

Mal71.

Man76.
May85.

Mei92.

Page: 543

543

Stefan Kahrs, Donald Sannella, and Andrzej Tarlecki. The definition of Extended
ML: A gentle introduction.Theoretical Computer Scienck73:445-484, 1997.

Beata Konikowska, Andrzej Tarlecki, and Andrzej Blikle. A three-valued logic for
software specification and validationFundamenta Informaticael4(4):411-453,
1991.

Stawomir Lasota. Open maps as a bridge between algebraic observational equivalence
and bisimilarity. In Francesco Parisi-Presicce, ediRecent Trends in Data Type
Specification. Selected Papers from the 12th International Workshop on Specification
of Abstract Data Typedarquinia,Lecture Notes in Computer Sciengelume 1376,
pages 285-299. Springer, 1998.

F. William Lawvere. Functorial Semantics of Algebraic TheoriesPhD thesis,
Columbia University, 1963.

Butler Lampson and Rod Burstall. Pebble, a kernel language for modules and abstract
data typesinformation and Computatiqry6(2/3):278-346, 1988.

Jacques Loeckx, Hans-Dieter Ehrich, and Markus W&pecification of Abstract
Data Types John Wiley and Sons, 1996.

Kai Lin. Machine Support for Behavioral Algebraic Specification and Verification
PhD thesis, University of California, San Diego, 2003.

Udo Lipeck. Ein algebraischer Kaliél fur einen strukturierten Entwurf von Daten-
abstraktionen PhD thesis, Universit Dortmund, 1983.

Dorel Lucanu, Yuan-Fang Li, and Jin Song Dong. Semantic Web languages—towards
an institutional perspective. In Kokichi Futatsugi, Jean-Pierre Jouannaud, and Jos
Meseguer, editorsdlgebra, Meaning and Computation: Essays Dedicated to Joseph
A. Goguen on the Occasion of His 65th Birthdagcture Notes in Computer Science
volume 4060, pages 99-123. Springer, 2006.

Joachim Lambek and Philip J. Sctritroduction to Higher-Order Categorical Logic
Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1986.
Hugo Lourenco and Ailcar Sernadas. An institution of hybrid systems. In Didier
Bert, Christine Choppy, and Peter D. Mosses, editBesent Trends in Algebraic
Development Techniques. Selected Papers from the 14th International Workshop on
Algebraic Development Techniquéshateau de Bonad,ecture Notes in Computer
Sciencevolume 1827, pages 219-236. Springer, 2000.

Zhaohui Luo. Program specification and data refinement in type tivattyematical
Structures in Computer Scien&(3):333-363, 1993.

Saunders Mac Lan€ategories for the Working Mathematicia8pringer, 1971.

David B. MacQueen. Modules for Standard ML.Pimceedings of the 1984 ACM
Conference on LISP and Functional Programmipgges 198-207, 1984.

Till Mossakowski, Serge Autexier, and Dieter Hutter. Development graphs — proof
management for structured specificatiodsurnal of Logic and Algebraic Program-

ming 67(1-2):114-145, 2006.

Tom Maibaum. The characterization of the derivation trees of context free sets of
terms as regular sets. Rroceedings of the 13th Annual IEEE Symposium on Switch-
ing and Automata Theorpages 224-230, 1972.

Mila E. Majster. Limits of the “algebraic” specification of abstract data typ&M
SIGPLAN Noticesl2(10):37-42, 1977.

Anatoly Malcev. Quasiprimitive classes of abstract algebras in the metamathematics
of algebraic systems. IMathematics of Algebraic Systems: Collected Papers, 1936-
67, number 66 in Studies in Logic and Mathematics, pages 27-31. North-Holland,
1971.

Ernest G. Maneg\lgebraic TheoriesSpringer, 1976.

Brian Mayoh. Galleries and institutions. Technical Report DAIMI PB-191, Aarhus
University, 1985.

Karl Meinke. Universal algebra in higher type3heoretical Computer Science
100:385-417, 1992.

job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

544

Mes89.

Mes92.

Mes98.

Mes09.

MG85.

MGDTO7.

MHSTO08.

Mid93.

Mil71.

Mil77.
Mil89.
Mit96.
MM84.

MMLO7.

Mog91.

Moo056.

Mos89.

Mos93.

Mos96a.

Page: 544

References

Jos Meseguer. General logics. In H.-D. Ebbinghaus, editogic Colloquium '87
Granada, pages 275-329. North-Holland, 1989.

Jos Meseguer. Conditional rewriting logic as a unified model of concurrertugo-
retical Computer Scienc®6(1):73-155, 1992.

Jos Meseguer. Membership algebra as a logical framework for equational specifica-
tion. In Francesco Parisi-Presicce, edif®ecent Trends in Data Type Specification.
Selected Papers from the 12th International Workshop on Specification of Abstract
Data TypesTarquinia,Lecture Notes in Computer Scienpgelume 1376, pages 18—

61. Springer, 1998.

Jos Meseguer. Order-sorted parameterization and induction. In Jens Palsberg, editor,
Semantics and Algebraic Specification: Essays Dedicated to Peter D. Mosses on the
Occasion of His 60th Birthday_ecture Notes in Computer Sciena®lume 5700,
pages 43-80. Springer, 2009.

Jo& Meseguer and Joseph Goguen. Initiality, induction and computability. In Mau-
rice Nivat and John C. Reynolds, editogebraic Methods in Semantjcpages
459-541. Cambridge, 1985.

Till Mossakowski, Joseph Goguera®an Diaconescu, and Andrzej Tarlecki. What

is a logic? In Jean-Yves Beziau, editbggica Universalis: Towards a General The-

ory of Logic pages 111-135. Birktuser, 2007.

Till Mossakowski, Anne Haxthausen, Donald Sannella, and Andrzej Tarlecki. CASL
— the common algebraic specification language. In Dines Bjgrner and Martin Hen-
son, editorslogics of Specification Languaggmges 241-298. Springer, 2008.

Aart Middeldorp. Modular properties of conditional term rewriting systeimgor-
mation and Computatiqri04(1):110-158, 1993.

Robin Milner. An algebraic definition of simulation between programs. Pto-
ceedings of the 2nd International Joint Conference on Artificial Intelligepages
481-489, 1971.

Robin Milner. Fully abstract models of typedcalculi. Theoretical Computer Sci-
ence 4(1):1-22, 1977.

Robin Milner. Communication and Concurrencirentice-Hall, 1989.

John C. Mitchell.Foundations of Programming LanguagedIT Press, 1996.

Bernd Mahr and Johann Makowsky. Characterizing specification languages which
admit initial semanticsTheoretical Computer Scienc#l:49-60, 1984.

Till Mossakowski, Christian Maeder, and Klaugittich. The heterogeneous tool set,
HETSs. In Orna Grumberg and Michael Huth, editoPspceedings of the 13th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems. European Joint Conferences on Theory and Practice of Software (ETAPS 2007)
Braga,Lecture Notes in Computer Scienelume 4424, pages 519-522. Springer,
2007. See alsbttp://www.informatik.uni-bremen.de/cofi/hets/

Eugenio Moggi. Notions of computation and mondafrmation and Computatlon
93:55-92, 1991.

Edward F. Moore. Gedanken-experiments on sequential machines. In Claude E.
Shannon and John McCarthy, editafginals of Mathematics Studies 34, Automata
Studiespages 129-153. Princeton University Press, 1956.

Peter D. Mosses. Unified algebras and module?rdoeedings of the 16th ACM
Symposium on Principles of Programming Languadgesstin, pages 329-343, 1989.
Peter Mosses. The use of sorts in algebraic specifications. In Michel Bidoit and Chris-
tine Choppy, editorsRecent Trends in Data Type Specification. Selected Papers from
the 8th Workshop on Specification of Abstract Data Types joint with theC8nd-

PASs Workshop Dourdan,Lecture Notes in Computer Sciena®lume 655, pages
66-91. Springer, 1993.

Till Mossakowski. Different types of arrow between logical frameworks. In Fried-
helm Meyer auf der Heide and Burkhard Monien, editétsceedings of the 23rd
International Colloguium Automata, Languages and Programmiagerbornl.ec-

ture Notes in Computer Sciena®lume 1099, pages 158-169. Springer, 1996.

job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

http://www.informatik.uni-bremen.de/cofi/hets/

References 545

Mos96b. Till Mossakowski. Representations, Hierarchies and Graphs of InstitutiofhD
thesis, Universit Bremen, 1996.

Mos00. Till Mossakowski. Specification in an arbitrary institution with symbols. In Didier
Bert, Christine Choppy, and Peter D. Mosses, editBesent Trends in Algebraic
Development Techniques. Selected Papers from the 14th International Workshop on
Algebraic Development Techniqué3hateau de Bonad,ecture Notes in Computer
Sciencevolume 1827, pages 252-270. Springer, 2000.

Mos02. Till Mossakowski. Comorphism-based Grothendieck logics. In Krzysztof Diks and
Woijciech Rytter, editors?roceedings of the 27th Symposium on Mathematical Foun-
dations of Computer Scienc@/arsaw,Lecture Notes in Computer Sciene®lume
2420, pages 593-604. Springer, 2002.

Mos03. Till Mossakowski. Foundations of heterogeneous specification. In Martin Wirsing,
Dirk Pattinson, and Rolf Hennicker, editoRecent Trends in Algebraic Development
Techniques.. Selected Papers from the 16th International Workshop on Algebraic De-
velopment TechniqueBrauenchiemseg&gecture Notes in Computer Sciengelume
2755, pages 359-375. Springer, 2003.

Mos04. Peter D. Mosses, editora€L Reference ManuaNumber 2960 in Lecture Notes in
Computer Science. Springer, 2004.

Mos05. Till Mossakowski. Heterogeneous Specification and the Heterogeneous Tool Set.
Habilitation thesis, Universitt Bremen, 2005.

MS85. David MacQueen and Donald Sannella. Completeness of proof systems for equa-
tional specifications.IEEE Transactions on Software Engineerif®E-11(5):454—

461, 1985.

MSRRO06. Till Mossakowski, Lutz Scbder, Markus Roggenbach, and Horst Reichel.
Algebraic-coalgebraic specification iroCAsL. Journal of Logic and Algebraic Pro-
gramming 67(1-2):146-197, 2006.

MSS90. Vincenzo Manca, Antonino Salibra, and Giuseppe Scollo. Equational type logic.
Theoretical Computer Sciencé7(1-2):131-159, 1990.

MSTO04. Till Mossakowski, Donald Sannella, and Andrzej Tarlecki. A simple refinement lan-
guage for CASL. In JdsFiadeiro, editorRecent Trends in Algebraic Development
Techniques.. Selected Papers from the 17th International Workshop on Algebraic De-
velopment TechniqueBarcelonalecture Notes in Computer Sciengelume 3423,
pages 162-185. Springer, 2004.

MT92. Karl Meinke and John Tucker. Universal algebra. In Samson Abramsky, Dov Gab-
bay, and Tom Maibaum, editorklandbook of Logic in Computer Science. Volume
1 (Background: Mathematical Structureglages 189-409. Oxford University Press,

1992.

MT93. V. Wiktor Marek and Mirostaw Truszchgki. Nonmonotonic Logics: Context-
Dependent Reasoninpringer, 1993.

MT94. David B. MacQueen and Mads Tofte. A semantics for higher-order functors. In

Donald Sannella, editoRroceedings of the 5th European Symposium on Program-
ming Edinburgh Lecture Notes in Computer Sciene®lume 788, pages 409-423.
Springer, 1994.

MTO09. Till Mossakowski and Andrzej Tarlecki. Heterogeneous logical environments for
distributed specifications. In Andrea Corradini and Ugo Montanari, ediResent
Trends in Algebraic Development Techniques.. Selected Papers from the 19th Interna-
tional Workshop on Algebraic Development Technig&ésa,Lecture Notes in Com-
puter Sciencevolume 5486, pages 266—289. Springer, 2009.

MTDO09. Till Mossakowski, Andrzej Tarlecki, and&®van Diaconescu. What is a logic trans-
lation? Logica Universalis3(1):95-124, 2009.

MTHM97. Robin Milner, Mads Tofte, Robert Harper, and David MacQue€he Definition of
Standard ML (RevisedMIT Press, 1997.

MTP97. Till Mossakowski, Andrzej Tarlecki, and Wiestaw Pawtowski. Combining and repre-
senting logical systems. In Eugenio Moggi and Giuseppe Rosolini, edtooseed-
ings of the 7th International Conference on Category Theory and Computer Science

Page: 545 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

546

MTP98.

MTW88.

Mus80.

MW098.

Nel91.
Nip86.

NO88.

Nou81.

Oka98.

ONS93.

Ore83.

Pad85.

Pad99.

Pau87.
Pau96.

Paw96.

Page: 546

References

Santa Margherita Ligurd,ecture Notes in Computer Sciene®lume 1290, pages
177-196. Springer, 1997.

Till Mossakowski, Andrzej Tarlecki, and Wiestaw Pawtowski. Combining and rep-
resenting logical systems using model-theoretic parchments. In Francesco Parisi-
Presicce, editoiRecent Trends in Data Type Specification. Selected Papers from the
12th International Workshop on Specification of Abstract Data Typasjuinia,Lec-
ture Notes in Computer Scienamlume 1376, pages 349-364. Springer, 1998.
Bernhard Mller, Andrzej Tarlecki, and Martin Wirsing. Algebraic specifications of
reachable higher-order algebras. In Donald Sannella and Andrzej Tarlecki, editors,
Recent Trends in Data Type Specification. Selected Papers from the 5th Workshop on
Specification of Abstract Data TypeSullane,Lecture Notes in Computer Science
volume 332, pages 154-169. Springer, 1988.

David Musser. On proving inductive properties of abstract data typEsodeedings
of the 7th ACM Symposium on Principles of Programming Langydges Vegas,
pages 154-162, 1980.

Alfio Martini and Uwe Wolter. A single perspective on arrows between institutions.
In Armando Haeberer, editdProceedings of the 7th International Conference on Al-
gebraic Methodology and Software Technologhanaus]ecture Notes in Computer
Sciencevolume 1548, pages 486-501. Springer, 1998.

Greg Nelson, editoBystems Programming in Modula-Brentice-Hall, 1991.

Tobias Nipkow. Non-deterministic data types: Models and implementatidota
Informatica 22(6):629-661, 1986.

Pilar Nivela and Fernando Orejas. Initial behaviour semantics for algebraic speci-
fications. In Donald Sannella and Andrzej Tarlecki, edit®scent Trends in Data
Type Specification. Selected Papers from the 5th Workshop on Specification of Ab-
stract Data TypesGullane,Lecture Notes in Computer Sciene®lume 332, pages
184-207. Springer, 1988.

Farshid Nourani. On induction for programming logic: Syntax, semantics, and induc-
tive closure.Bulletin of the European Association for Theoretical Computer Science
13:51-64, 1981.

Chris Okasaki.Purely Functional Data Structures Cambridge University Press,
1998.

Fernando Orejas, Marisa Navarro, and AfmacBez. Implementation and behavioural
equivalence: A survey. In Michel Bidoit and Christine Choppy, editRexent Trends
in Data Type Specification. Selected Papers from the 8th Workshop on Specification of
Abstract Data Types joint with the 3@ompPAssWorkshopDourdan Lecture Notes
in Computer Sciencerolume 655, pages 93-125. Springer, 1993.

Fernando Orejas. Characterizing composability of abstract implementations. In
Marek Karpinski, editorProceedings of the 1983 International Conference on Foun-
dations of Computation Thearorgholm,Lecture Notes in Computer Scieneel-
ume 158, pages 335—-346. Springer, 1983.

Peter Padawitz. Parameter preserving data type specifications. In Hartmut Ehrig,
Christiane Floyd, Maurice Nivat, and James Thatcher, ediiA8®,SOFT'85: Pro-
ceedings of the International Joint Conference on Theory and Practice of Software
Development. Volume 2: Colloquium on Software Engineegeglin, Lecture Notes
in Computer Sciencerolume 186, pages 323-341. Springer, 1985.

Peter Padawitz. Proof in flat specifications. In Egidio Astesiano, iBegn&i&owski,
and Bernd Krieg-Biickner, editorsAlgebraic Foundations of Systems Specification
chapter 10, pages 321-384. Springer, 1999.

Laurence Paulsobogic and Computation: Interactive Proof with Cambridge LCF
Cambridge University Press, 1987.

Laurence PaulsoML for the Working ProgrammerCambridge University Press,
second edition, 1996.

Wiestaw Pawtowski. Context institutions. In Magne Haveraaen, Olaf Owe, and Ole-
Johan Dabhl, editorgRecent Trends in Data Type Specification. Selected Papers from

job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

References 547

the 11th Workshop on Specification of Abstract Data Tyfeso, Lecture Notes in
Computer Science&olume 1130, pages 436—457. Springer, 1996.

Pet10. Marius PetriaGeneric Refinements for Behavioural Specificatid?tsD thesis, Uni-
versity of Edinburgh, School of Informatics, 2010.

Pey03. Simon Peyton Jones, editdaskell 98 Language and Libraries: The Revised Report
Cambridge University Press, 2003.

Pho92. Wesley Phoa. An introduction to fibrations, topos theory, the effective topos and

modest sets. Technical Report ECS-LFCS-92-208, LFCS, Department of Computer
Science, University of Edinburgh, 1992.

Pie9l. Benjamin C. PierceBasic Category Theory for Computer ScientistdIT Press,
1991.

Plo77. Gordon D. Plotkin. LCF considered as a programming languBgeoretical Com-
puter Sciences(3):223-255, 1977.

P0i86. Axel Poigl. On specifications, theories, and models with higher tylpdsrmation
and Contro| 68(1-3):1-46, 1986.

Po0i88. Axel Poiglk. Foundations are rich institutions, but institutions are poor foundations.

In Hartmut Ehrig, Horst Herrlich, Hans3dy Kreowski, and Gerhard Preuf3, editors,
Proceedings of the International Workshop on Categorical Methods in Computer Sci-
ence with Aspects from Topoloderlin, Lecture Notes in Computer Sciengelume

393, pages 82-101. Springer, 1988.

P0i90. Axel Poige. Parametrization for order-sorted algebraic specificatidournal of
Computer and System Sciencé3:229-268, 1990.
P0i92. Axel Poige. Basic category theory. In Samson Abramsky, Dov Gabbay, and Tom

Maibaum, editorstHandbook of Logic in Computer Science. Volume 1 (Background:
Mathematical Structurespages 413-640. Oxford University Press, 1992.

Pos47. Emil Post. Recursive unsolvability of a problem of Thieeirnal of Symbolic Logic
12:1-11, 1947.
PS83. Helmuth Partsch and Ralf Steiidpgen. Program transformation system&CM

Computing Survey45(3):199-236, 1983.
PSRO09. Andrei Popescu, Traian Florin S&tbg, and Grigore Rosu. A semantic approach to
interpolation.Theoretical Computer Scienc$10(12-13):1109-1128, 2009.

QG93. Xiaolei Qian and Allen Goldberg. Referential opacity in nondeterministic data re-
finement. ACM Letters on Programming Languages and Syst&@tis-4):233-241,
1993.

Qia93. Zhenyu Qian. An algebraic semantics of higher-order types with subtyjets.

Informatica 30(6):569—-607, 1993.

RAC99. Gianna Reggio, Egidio Astesiano, and Christine ChoppysLELTL: a CASL ex-
tension for dynamic systems — summary. Technical Report DISI-TR-99-34, DISI,
Universit di Genova, 1999.

RB88. David Rydeheard and Rod Burstallomputational Category Thearyrentice Hall
International Series in Computer Science. Prentice Hall, 1988.
Rei80. Horst Reichel. Initially-restricting algebraic theories. In Piotr Déskii editor,

Proceedings of the 9th Symposium on Mathematical Foundations of Computer Sci-
ence Lecture Notes in Computer Sciengelume 88, pages 504-514, Rydzyna, 1980.
Springer.

Rei81. Horst Reichel. Behavioural equivalence — a unifying concept for initial and final
specification methods. IRroceedings of the 3rd Hungarian Computer Science Con-
ference pages 27-39, 1981.

Rei85. Horst Reichel. Behavioural validity of equations in abstract data typdoteed-
ings of the Vienna Conference on Contributions to General Alggiages 301-324.
Teubner-Verlag, 1985.

Rei87. Horst Reichellnitial Computability, Algebraic Specifications, and Partial Algehras
Oxford University Press, 1987.

Page: 547 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

548

RG98.

RGOO.

Rod91.
Rog06.
Ros94.
Ros00.

RRSO00.

RS63.

Rus98.

Rut00.

San82.

SB83.

Sch8é.

Sch87.

Sch9o.

Sch92.

Sco76.
Sco04.

SCS94.

Sel72.

Page: 548

References

Grigore Rosu and Joseph A. Goguen. Hidden congruent deduction. In Ricardo Ca-
ferra and Gernot Salzer, editoRroceedings of the 1998 Workshop on First-Order
Theorem Proving Vienna, Lecture Notes in Artificial Intelligencevolume 1761,
pages 251-266. Springer, 1998.

Grigore Rosu and Joseph A. Goguen. On equational Craig interpolddiomal of
Universal Computer Scienc(1):194-200, 2000.

Pieter Hendrik Rodenburg. A simple algebraic proof of the equational interpolation
theorem.Algebra Universalis28:48-51, 1991.

Markus Roggenbach.s€CAsL — a new integration of process algebra and alge-
braic specificationTheoretical Computer Sciencgs4(1):42-71, 2006.

Grigore Rosu. The institution of order-sorted equational Id&idetin of the Euro-
pean Association for Theoretical Computer Sciem@250-255, 1994.

Grigore RosuHidden Logic PhD thesis, University of California at San Diego,
2000.

Sergei Romanenko, Claudio Russo, and Peter Sestoft. Moscow ML owner’s manual.
Technical report, Royal Veterinary and Agricultural University, Copenhagen, 2000.
Available fromhttp://www.itu.dk/people/sestoft/mosmli/manual.
pdf |

Helena Rasiowa and Roman Sikorglie Mathematics of Metamathematidéum-
ber 41 in Monografie Matematyczne. Polish Scientific Publishers, 1963.

Claudio RussoTypes for Modules PhD thesis, University of Edinburgh, Depart-
ment of Computer Science, 1998. Also Electronic Notes in Theoretical Computer
Science60, 2003.

Jan J.M.M. Rutten. Universal coalgebra: A theory of systdimsoretical Computer
Science249(1):3-80, 2000.

Donald SannellaSemantics, Implementation and Pragmatics of Clear, a Program
Specification LanguagePhD thesis, University of Edinburgh, Department of Com-
puter Science, 1982.

Donald Sannella and Rod Burstall. Structured theories in LCF. In Giorgio Ausiello
and Marco Protasi, editor®roceedings of the 8th Colloquium on Trees in Algebra
and ProgrammingL’Aquila, Lecture Notes in Computer Sciengelume 159, pages
377-391. Springer, 1983.

David SchmidDenotational Semantics: A Methodology for Language Development
Allyn and Bacon, 1986.

Oliver SchoettData Abstraction and the Correctness of Modular Prograr®hD
thesis, University of Edinburgh, Department of Computer Science, 1987.

Oliver Schoett. Behavioural correctness of data represent&@mance of Computer
Programming 14(1):43-57, 1990.

Oliver Schoett. Two impossibility theorems on behaviour specification of abstract
data typesActa Informatica 29(6/7):595-621, 1992.

Dana Scott. Data types as lattic®®\M Journal of Computing(3):522-587, 1976.

Giuseppe Scollo. An institution isomorphism for planar graph colouring. In Rudolf
Berghammer, Bernhard ®er, and Georg Struth, editorRelational and Kleene-
Algebraic Methods in Computer Science. Selected Papers from the 7th International
Seminar on Relational Methods in Computer Science and 2nd International Workshop
on Applications of Kleene AlgebrBad Malentel ecture Notes in Computer Science
volume 3051, pages 252-264. Springer, 2004.

Anficar Sernadas, Jésrelix Costa, and Cristina Sernadas. An institution of ob-
ject behaviour. In Hartmut Ehrig and Fernando Orejas, edif®esent Trends in
Data Type Specification. Selected Papers from the 9th Workshop on Specification of
Abstract Data Types joint with the 4@ompPAss Workshop Caldes de Malavella,
Lecture Notes in Computer Sciengelume 785, pages 337—350. Springer, 1994.

Alan Selman. Completeness of calculi for axiomatically defined classes of algebras.
Algebra Universalis2:20-32, 1972.

job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

http://www.itu.dk/people/sestoft/mosml/manual.pdf
http://www.itu.dk/people/sestoft/mosml/manual.pdf

References 549

SHOO. Christopher A. Stone and Robert Harper. Deciding type equivalence in a language
with singleton kinds. IrProceedings of the 27th ACM Symposium on Principles of
Programming Language8oston, pages 214—-227, 2000.

Sha08. Stewart Shapiro. Classical logic. In Edward N. Zalta, edifbe Stan-
ford Encyclopedia of PhilosophyCSLI, Stanford University, fall 2008 edi-
tion, 2008. Available fromhttp://plato.stanford.edu/archives/
fall2008/entries/logic-classical/

SMO09. Lutz Schoder and Till Mossakowski. KWSCAsSL: Integrated higher-order specifica-
tion and program developmeniTheoretical Computer Sciencé10(12-13):1217—
1260, 2009.

Smig3. Douglas R. Smith. Constructing specification morphistosrnal of Symbolic Com-
putation 15(5/6):571-606, 1993.

Smi06. Douglas R. Smith. Composition by colimit and formal software development. In Ko-

kichi Futatsugi, Jean-Pierre Jouannaud, ané ddsseguer, editorglgebra, Mean-
ing, and Computation, Essays Dedicated to Joseph A. Goguen on the Occasion of His
65th Birthday Lecture Notes in Computer Sciena®lume 4060, pages 317-332.
Springer, 2006.

SMLO5. Lutz Schoder, Till Mossakowski, and Christophiith. Type class polymorphism
in an institutional framework. In JésFiadeiro, editorRecent Trends in Algebraic
Development Techniques.. Selected Papers from the 17th International Workshop on
Algebraic Development Technigué&arcelonalecture Notes in Computer Science
volume 3423, pages 234-248. Springer, 2005.

Smo86. Gert Smolka. Order-sorted Horn logic: Semantics and deduction. Technical Report
SR-86-17, Universit Kaiserslautern, Fachbereich Informatik, 1986.

SMT*05. Lutz Schéder, Till Mossakowski, Andrzej Tarlecki, Bartek Klin, and Piotr Hoffman.
Amalgamation in the semantics oAGL. Theoretical Computer Scienc231(1):215—

247, 2005.

Spi92. J. Michael SpiveyThe Z Notation: A Reference Manu#rentice Hall International
Series in Computer Science, second edition, 1992.

SS93. Antonino Salibra and Guiseppe Scollo. A soft stairway to institutions. In Michel

Bidoit and Christine Choppy, editorRecent Trends in Data Type Specification. Se-
lected Papers from the 8th Workshop on Specification of Abstract Data Types joint
with the 3rdCompAssWorkshopDourdan Lecture Notes in Computer Sciengel-

ume 655, pages 310-329. Springer, 1993.

SS96. Antonino Salibra and Giuseppe Scollo. Interpolation and compactness in categories
of pre-institutions. Mathematical Structures in Computer Scien6é¢€3):261-286,
1996.

SST92. Donald Sannella, Stefan Sokotowski, and Andrzej Tarlecki. Toward formal devel-

opment of programs from algebraic specifications: Parameterisation revigittd.
Informatica 29(8):689-736, 1992.

ST85. Donald Sannella and Andrzej Tarlecki. Program specification and development in
Standard ML. InProceedings of the 12th ACM Symposium on Principles of Pro-
gramming LanguageNew Orleans, pages 67-77, 1985.

ST86. Donald Sannella and Andrzej Tarlecki. Extended ML: An institution-independent
framework for formal program development. In David H. Pitt, Samson Abramsky,
Axel Poigre, and David E. Rydeheard, editoPspceedings of the Tutorial and Work-
shop on Category Theory and Computer Programm(Bgildford, Lecture Notes in
Computer Scienga&rolume 240, pages 364—389. Springer, 1986.

ST87. Donald Sannella and Andrzej Tarlecki. On observational equivalence and algebraic
specification.Journal of Computer and System Scien@&s150-178, 1987.

ST88a. Donald Sannella and Andrzej Tarlecki. Specifications in an arbitrary institirion.
formation and Computatiqry6(2/3):165-210, 1988.

ST88b. Donald Sannella and Andrzej Tarlecki. Toward formal development of programs from
algebraic specifications: Implementations revisitédta Informatica 25:233-281,
1988.

Page: 549 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

http://plato.stanford.edu/archives/fall2008/entries/logic-classical/
http://plato.stanford.edu/archives/fall2008/entries/logic-classical/

550

ST89.

ST97.

STOA4.
STO6.

STO8.

Str67.

SU06.

SW82.

SW83.

SW909.

Tar85.

Tar86a.

Tar86b.

Tar87.

Tar96.

Tar99.

Page: 550

References

Donald Sannella and Andrzej Tarlecki. Toward formal development of ML programs:

Foundations and methodology. In Jose@dDand Fernando Orejas, editof#P-
SOFT'89: Proceedings of the International Joint Conference on Theory and Practice
of Software Development. Volume 2: Advanced Seminar on Foundations of Innovative
Software Development Il and Colloquium on Current Issues in Programming Lan-
guagesBarcelonalecture Notes in Computer Sciengelume 352, pages 375-389.
Springer, 1989.

Donald Sannella and Andrzej Tarlecki. Essential concepts of algebraic specification
and program developmerftformal Aspects of Computing:229-269, 1997.

Donald Sannella and Andrzej Tarlecki, editora.sCsemantics. 1fiMos04]. 2004.

Donald Sannella and Andrzej Tarlecki. Horizontal composability revisited. In Ko-
kichi Futatsugi, Jean-Pierre Jouannaud, ané dsseguer, editorglgebra, Mean-
ing and Computation: Essays Dedicated to Joseph A. Goguen on the Occasion of His
65th Birthday Lecture Notes in Computer Sciena®lume 4060, pages 296—316.
Springer, 2006.

Donald Sannella and Andrzej Tarlecki. Observability concepts in abstract data
type specification, 30 years later. In Pierpaolo Degano, Rocco de Nicola, and Jos
Meseguer, editor€;oncurrency, Graphs and Models: Essays Dedicated to Ugo Mon-
tanari on the Occasion of his 65th Birthdalyecture Notes in Computer Science.
Springer, 2008.

Christopher Strachey. Fundamental concepts in programming languad¢sTOn
Summer School in Programming, Copenhage®67. Also in:Higher-Order and
Symbolic Computatioh3(1-2):11-49, 2000.

Morten H. Sgrensen and Pawet Urzyczyectures on the Curry-Howard Isomor-
phism Number 149 in Studies in Logic and the Foundations of Mathematics. Elsevier
Science, 2006.

Donald Sannella and Martin Wirsing. Implementation of parameterised specifica-
tions. In Mogens Nielsen and Erik Meineche Schmidt, editBrsceeding of the
9th International Colloguium on Automata, Languages and Programnfaghus,
Lecture Notes in Computer Sciengelume 140, pages 473-488. Springer, 1982.
Donald Sannella and Martin Wirsing. A kernel language for algebraic specification
and implementation. In Marek Karpinski, editéttoceedings of the 1983 Interna-
tional Conference on Foundations of Computation TheBgrgholm,Lecture Notes
in Computer Sciencevolume 158, pages 413-427. Springer, 1983.

Donald Sannella and Martin Wirsing. Specification languages. In Egidio Astesiano,
Hans-&rg Kreowski, and Bernd Krieg-Bickner, editorsAlgebraic Foundations of
Systems Specificatipchapter 8, pages 243-272. Springer, 1999.

Andrzej Tarlecki. On the existence of free models in abstract algebraic institutions.
Theoretical Computer Sciencg7(3):269-304, 1985.

Andrzej Tarlecki. Bits and pieces of the theory of institutions. In David H. Pitt,
Samson Abramsky, Axel Poig@nand David E. Rydeheard, editoPspceedings of the
Tutorial and Workshop on Category Theory and Computer Programn@addford,
Lecture Notes in Computer Sciengelume 240, pages 334—360. Springer, 1986.
Andrzej Tarlecki. Quasi-varieties in abstract algebraic institutidmstnal of Com-
puter and System Scien¢88(3):333-360, 1986.

Andrzej Tarlecki. Institution representation. Unpublished note, Dept. of Computer
Science, University of Edinburgh, 1987.

Andrzej Tarlecki. Moving between logical systems. In Magne Haveraaen, Olaf Owe,
and Ole-Johan Dahl, editorRecent Trends in Data Type Specification. Selected Pa-
pers from the 11th Workshop on Specification of Abstract Data T¥psde, Lecture
Notes in Computer Scienceolume 1130, pages 478-502. Springer, 1996.

Andrzej Tarlecki. Institutions: An abstract framework for formal specification. In
Egidio Astesiano, Hansadg Kreowski, and Bernd Krieg-Bickner, editorsAlgebraic
Foundations of Systems Specificatiohapter 4, pages 105-130. Springer, 1999.

job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

References 551

Tar00. Andrzej Tarlecki. Towards heterogeneous specifications. In Dov Gabbay and Maarten
de Rijke, editorsFrontiers of Combining Systems Qtudies in Logic and Computa-
tion, pages 337-360. Research Studies Press, 2000.

TBGI1. Andrzej Tarlecki, Rod M. Burstall, and Joseph A. Goguen. Some fundamental alge-
braic tools for the semantics of computation. Part 3: Indexed categditesretical
Computer Scien¢®1(2):239-264, 1991.

Ter03. TereseTerm Rewriting System@ambridge Tracts in Theoretical Computer Scignce
volume 55. Cambridge University Press, 2003.

Tho89. Simon Thompson. A logic for MirandBormal Aspects of Computing(4):339-365,

1989.

T™M87. Wiadystaw M. Turski and Thomas S.E. Maibau@pecification of Computer Pro-
grams Addison-Wesley, 1987.

Tra93. Will Tracz. Parametrized programming in LILEANNA. Rroceedings of the 1993

ACM/SIGAPP Symposium on Applied Computingianapolis, pages 77-86, 1993.

TWW82. James Thatcher, Eric Wagner, and Jesse Wright. Data type specification: Parameteri-
zation and the power of specification technigu&SM Transactions on Programming
Languages and Systena44):711-732, 1982.

Vra88. Jos L.M. Vrancken. The algebraic specification of semi-computable data types. In
Donald Sannella and Andrzej Tarlecki, editdRgcent Trends in Data Type Specifica-
tion. Selected Papers from the 5th Workshop on Specification of Abstract Data Types
Gullane,Lecture Notes in Computer Scieneelume 332, pages 249-259. Springer,
1988.

Wad89. Philip Wadler. Theorems for free! Rioceedings of the 4th International ACM Con-
ference on Functional Programming Languages and Computer Architettomelon,
pages 347-359, 1989.

Wan79. Mitchell Wand. Final algebra semantics and data type extenslonmal of Com-
puter and System Sciencé9:27-44, 1979.

Wan82. Mitchell Wand. Specifications, models, and implementations of data abstractions.
Theoretical Computer Scienc20(1):3-32, 1982.

WBS82. Martin Wirsing and Manfred Broy. An analysis of semantic models for algebraic

specifications. In Manfred Broy and Gunther Schmidt, editdteoretical Foun-
dations of Programming Methodology: Lecture Notes of an International Summer
School, Marktoberdorf 198 pages 351-416. Reidel, 1982.

WB89. Martin Wirsing and Manfred Broy. A modular framework for specification and imple-
mentation. In Josepi@z and Fernando Orejas, editof8PSOFT'89: Proceedings of
the International Joint Conference on Theory and Practice of Software Development.
Volume 1: Advanced Seminar on Foundations of Innovative Software Development |
and Colloquium on Trees in Algebra and ProgrammiBgrcelonal_ecture Notes in
Computer Science&olume 351, pages 42—-73. Springer, 1989.

WES8?7. Eric G. Wagner and Hartmut Ehrig. Canonical constraints for parameterized data
types. Theoretical Computer Science0:323-349, 1987.

Wec92. Wolfgang WechletJniversal Algebra for Computer ScientisBATCS Monographs
on Theoretical Computer Sciena®lume 25. Springer, 1992.

Wik. Wikipedia. Hash table. Available froihttp://en.wikipedia.org/wiki/
Hash table

Wir82. Martin Wirsing. Structured algebraic specifications.Phoceedings of the AFCET
Symposium on Mathematics for Computer ScigReeis, pages 93—-107, 1982.

Wir86. Martin Wirsing. Structured algebraic specifications: A kernel languageoretical
Computer Scien¢é?2(2):123-249, 1986.

Wir90. Martin Wirsing. Algebraic specification. In Jan van Leeuwen, ediandbook

of Theoretical Computer Science. Volume B (Formal Models and Semapscgs
675-788. North-Holland and MIT Press, 1990.

Wir93. Martin Wirsing. Structured specifications: Syntax, semantics and proof calculus. In
Friedrich L. Bauer, Wilfried Brauer, and Helmut Schwichtenberg, editargjc and

Page: 551 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

http://en.wikipedia.org/wiki/Hash_table
http://en.wikipedia.org/wiki/Hash_table

552 References

Algebra of Specification: Proceedings of the NATO Advanced Study Institute, Mark-
toberdorf 1991 pages 411-442. Springer, 1993.

WM97. Michal Walicki and Sigurd Meldal. Algebraic approches to nondeterminism: An
overview. ACM Computing Survey29(1):30-81, 1997.

Zil74. Steven Zilles. Abstract specification of data types. Technical Report 119, Computa-
tion Structures Group, Massachusetts Institute of Technology, 1974.
Zuc99. Elena Zucca. From static to dynamic abstract data-types: An institution transforma-

tion. Theoretical Computer Scienc216(1-2):109-157, 1999.

Page: 552 job: root macro: svmono.cls date/time: 29-Sep-2010/17:45

	Universal algebra
	Many-sorted sets
	Signatures and algebras
	Homomorphisms and congruences
	Term algebras
	Changing signatures
	Signature morphisms
	Derived signature morphisms

	Bibliographical remarks

	Simple equational specifications
	Equations
	Flat specifications
	Theories
	Equational calculus
	Initial models
	Term rewriting
	Fiddling with the definitions
	Conditional equations
	Reachable semantics
	Dealing with partial functions: error algebras
	Dealing with partial functions: partial algebras
	Partial functions: order-sorted algebras
	Other options

	Bibliographical remarks

	Category theory
	Introducing categories
	Categories
	Constructing categories
	Category-theoretic definitions

	Limits and colimits
	Initial and terminal objects
	Products and coproducts
	Equalisers and coequalisers
	Pullbacks and pushouts
	The general situation

	Factorisation systems
	Functors and natural transformations
	Functors
	Natural transformations
	Constructing categories, revisited

	Adjoints
	Free objects
	Left adjoints
	Adjunctions

	Bibliographical remarks

	Working within an arbitrary logical system
	Institutions
	Examples of institutions
	Constructing institutions

	Flat specifications in an arbitrary institution
	Constraints
	Exact institutions
	Abstract model theory
	Free variables and quantification

	Institutions with reachability structure
	The method of diagrams
	Abstract algebraic institutions
	Liberal abstract algebraic institutions
	Characterising abstract algebraic institutions that admit reachable initial models

	Bibliographical remarks

	References

