Category Theory in Foundations of Computer Science Exam assignment 2023/24 ### Concepts, terminology and notation: We rely on the standard definitions of algebraic signature Σ , Σ -algebra and Σ -homomorphism, the category $\mathbf{Alg}(\Sigma)$ of Σ -algebras and their homomorphisms, and on the related notation, as introduced during the course. A bin-signature $\Delta = \langle \Sigma, \delta \rangle$ consists of an algebraic signature $\Sigma = \langle S, \Omega \rangle$ and a family of functions $\delta = \langle \delta_f \rangle_{f \in \Omega}$, where for each $f: s_1 \times \ldots \times s_n \to s$ in Σ , $\delta_f: \{0,1\}^n \to \{0,1\}$ (the same n). A bin-signature $\Delta = \langle \Sigma, \delta \rangle$ is monotone if for each $f: s_1 \times \ldots \times s_n \to s$, $\delta_f: \{0,1\}^n \to \{0,1\}$ is monotone (w.r.t. the standard order on $\{0,1\}$, where $0 \leq 1$, and induced component-wise order on $\{0,1\}^n$). Let, $\Delta = \langle \Sigma, \delta \rangle$, with $\Sigma = \langle S, \ldots \rangle$, be a bin-signature. A Δ -bin-algebra $\mathcal{A} = \langle A, \alpha \rangle$ consists of a Σ -algebra $A \in |\mathbf{Alg}(\Sigma)|$ and a family of functions $\alpha = \langle \alpha_s : |A|_s \to \{0,1\} \rangle_{s \in S}$ (called the bin-map of \mathcal{A}) such that for all $f : s_1 \times \ldots \times s_n \to s$ in Σ and $a_1 \in |A|_{s_1}, \ldots, a_n \in |A|_{s_n}, \, \delta_f(\alpha_{s_1}(a_1), \ldots, \alpha_{s_n}(a_n)) \leq \alpha_s(f_A(a_1, \ldots, a_n))$. Such a Δ -bin-algebra $\mathcal{A} = \langle A, \alpha \rangle$ is strict if for each $f : s_1 \times \ldots \times s_n \to s$ in Σ and $a_1 \in |A|_{s_1}, \ldots, a_n \in |A|_{s_n}, \, \delta_f(\alpha_{s_1}(a_1), \ldots, \alpha_{s_n}(a_n)) = \alpha_s(f_A(a_1, \ldots, a_n))$. Then, given Δ -bin-algebras $\mathcal{A} = \langle A, \alpha \rangle$ and $\mathcal{B} = \langle B, \beta \rangle$, a Δ -bin-homomorphism $h: \mathcal{A} \to \mathcal{B}$ is any Σ -homomorphism $h: \mathcal{A} \to \mathcal{B}$ such that for each $a \in |A|_s$, $s \in S$, $\alpha_s(a) \leq \beta_s(h_s(a))$. Such a Δ -bin-homomorphism $h: \mathcal{A} \to \mathcal{B}$ is strict if for each $a \in |A|_s$, $s \in S$, $\alpha_s(a) = \beta_s(h_s(a))$. A Δ -inequality $\forall X.t \leq t'$ consists of an S-sorted set X (of variables) and two terms $t, t' \in |T_{\Sigma}(X)|_s$ of a common sort, $s \in S$. A Δ -bin-algebra $\mathcal{A} = \langle A, \alpha \rangle$ satisfies (or is a model of) such a Δ -inequality, written $\mathcal{A} \models \forall X.t \leq t'$, if for all valuations $v: X \to |A|, \ \alpha_s(t_A[v]) \leq \alpha_s(t'_A[v])$, where as usual $q_A[v] \in |A|_s$ is the value of term $q \in |T_{\Sigma}(X)|_s$, $s \in S$, in Σ -algebra A under valuation v. With the usual composition of homomorphisms, this defines the following categories, for any binsignature Δ and set Φ of Δ -inequalities: - $\mathbf{BAlg}(\Delta, \Phi)$: the category of Δ -binalgebras that satisfy all Δ -inequalities in Φ , with Δ -bin-homomorphisms as morphisms - $\mathbf{BAlg}^{st}(\Delta, \Phi)$: the category of strict Δ -bin-algebras that satisfy all Δ -inequalities in Φ , with strict Δ -bin-homomorphisms as morphisms Moreover, we have the following "forgetful" functors: • $$\mathbf{G}_{\Delta,\Phi} : \mathbf{BAlg}(\Delta,\Phi) \to \mathbf{Set}^S$$ • $$\mathbf{G}^{st}_{\Delta,\Phi}$$: $\mathbf{BAlg}^{st}(\Delta,\Phi) \to \mathbf{Set}^S$ where \mathbf{Set}^S is the category of S-sorted sets, as usual, and for any Δ -bin-algebra $\mathcal{A} = \langle A, \alpha \rangle$, $\mathbf{G}_{\Delta,\Phi}(\mathcal{A}) = |A|$, for any Δ -bin-homomorphism $h: \mathcal{A} \to \mathcal{B}$, where $\mathcal{A} = \langle A, \alpha \rangle$ and $\mathcal{B} = \langle B, \beta \rangle$, $\mathbf{G}_{\Delta,\Phi}(h) = h: |A| \to |B|$, and $\mathbf{G}_{\Delta,\Phi}^{st}$ is the restriction of $\mathbf{G}_{\Delta,\Phi}$ to the objects and morphisms in $\mathbf{BAlg}^{st}(\Delta,\Phi)$. Finally, we put: • $$BAlg(\Delta) = BAlg(\Delta, \emptyset)$$ • $$\mathbf{G}_{\Delta} = \mathbf{G}_{\Delta,\emptyset} : \mathbf{BAlg}(\Delta) \to \mathbf{Set}^S$$ • $$\mathbf{BAlg}^{st}(\Delta) = \mathbf{BAlg}^{st}(\Delta, \emptyset)$$ $$\bullet \ \mathbf{G}^{st}_{\Delta} = \mathbf{G}^{st}_{\Delta,\emptyset} \colon \mathbf{BAlg}^{st}(\Delta) \to \mathbf{Set}^{S}$$ #### To do: Prove a positive answer or give a counterexample to the following questions: - 1. Consider categories: - (a) $\mathbf{BAlg}(\Delta, \Phi)$ - (b) $\mathbf{BAlg}^{st}(\Delta, \Phi)$ - (c) $\mathbf{BAlg}(\Delta)$ - (d) $\mathbf{BAlg}^{st}(\Delta)$ Which of the categories above is C. complete CC. cocomplete for all bin-signatures Δ and, where applicable, all sets Φ of Δ -inequalities? - 2. Consider functors: - (a) $\mathbf{G}_{\Delta,\Phi} : \mathbf{BAlg}(\Delta,\Phi) \to \mathbf{Set}^S$ - (b) $\mathbf{G}^{st}_{\Delta,\Phi} : \mathbf{BAlg}^{st}(\Delta,\Phi) \to \mathbf{Set}^S$ - (c) $\mathbf{G}_{\Delta} : \mathbf{BAlg}(\Delta) \to \mathbf{Set}^S$ - (d) $\mathbf{G}_{\Delta}^{st} : \mathbf{BAlg}^{st}(\Delta) \to \mathbf{Set}^{S}$ Which of the functors above has a left adjoint for all bin-signatures Δ and, where applicable, all sets Φ of Δ -inequalities? - 3. Again, consider categories: - (a) $\mathbf{BAlg}(\Delta, \Phi)$ - (b) $\mathbf{BAlg}^{st}(\Delta, \Phi)$ - (c) $\mathbf{BAlg}(\Delta)$ - (d) $\mathbf{BAlg}^{st}(\Delta)$ Which of the categories above is C. complete CC. cocomplete for all monotone bin-signatures Δ and, where applicable, all sets Φ of Δ -inequalities? - 4. Consider functors: - (a) $\mathbf{G}_{\Delta,\Phi} : \mathbf{BAlg}(\Delta, \Phi) \to \mathbf{Set}^S$ - (b) $\mathbf{G}^{st}_{\Delta,\Phi} : \mathbf{BAlg}^{st}(\Delta,\Phi) \to \mathbf{Set}^S$ - (c) $\mathbf{G}_{\Delta} : \mathbf{BAlg}(\Delta) \to \mathbf{Set}^S$ - (d) $\mathbf{G}_{\Delta}^{st} : \mathbf{BAlg}^{st}(\Delta) \to \mathbf{Set}^{S}$ Which of the functors above has a left adjoint for all monotone bin-signatures Δ and, where applicable, all sets Φ of Δ -inequalities? #### Notes: - All constructions and facts presented during the course may be used without proofs. This applies in particular to the existence and constructions of limits and colimits in $\mathbf{Alg}(\Sigma)$. - The answers to the questions above are not independent. For instance, a proof of **2.a** implies the positive answer to **2.c** as well, a counterexample to **1.d.CC** is a counterexample to **1.b.CC**, a proof for any of **1.**{**a,b,c,d**}.{**C,CC**} proves the corresponding **3.**{**a,b,c,d**}.{**C,CC**}, and a counterexample for any of **3.**{**a,b,c,d**}.{**C,CC**} is a counterexample for the corresponding **1.**{**a,b,c,d**}.{**C,CC**}, etc. No need to repeat detailed arguments in such cases, indicating the dependency is enough. - Still, there are quite a few questions: deal with as many of them as you can... ### Sketch of a solution: ### The "strict" case: Consider a bin-signature $\Delta = \langle \Sigma, \delta \rangle$, with $\Sigma = \langle S, \ldots \rangle$. Let $\mathcal{BN} = \langle BN, id_{\{0,1\}} \rangle$ be a Δ -bin-algebra, with $|BN|_s = \{0,1\}$ for $s \in S$, and $f_{BN} = \delta_f : \{0,1\}^n \to \{0,1\}$ for $f: s_1 \times \ldots \times s_n \to s$ in Σ . Then $\mathbf{BAlg}^{st}(\Delta)$ is the same as the slice category $\mathbf{Alg}(\Sigma) \downarrow BN$ (the category of $\mathbf{Alg}(\Sigma)$ -objects over BN). The slice category is complete (a limit of a diagram D in $\mathbf{BAlg}^{st}(\Delta)$ is the limit in $\mathbf{Alg}(\Sigma)$ of the obvious projection of the diagram D with an additional new node carrying BN and new edges from the nodes of D to this node carrying the bin-maps) and cocomplete (a colimit of a diagram D in $\mathbf{BAlg}^{st}(\Delta)$ is the colimit in $\mathbf{Alg}(\Sigma)$ of the projection of D with the bin-map induced by the colimit property). This directly gives: Moreover, since the terminal object in $\mathbf{BAlg}^{st}(\Delta)$ (i.e., in $\mathbf{Alg}(\Sigma) \downarrow BN$) is \mathcal{BN} , which shows that $\mathbf{G}_{\Delta} : \mathbf{BAlg}^{st}(\Delta) \to \mathbf{Set}^{S}$ is not continuous, we have: Consider a bin-signature $\Delta_1 = \langle \Sigma_1, \delta_1 \rangle$, where Σ_1 has a single sort s and two constants a, b: s and $(\delta_1)_a = 1$, $(\delta_1)_b = 0$. Now, the inequality $a \le b$ has no strict Δ_1 -model, which shows: Completeness (monotone Δ): Let $\mathcal{A} = \langle A, \alpha \rangle$ and $\mathcal{B} = \langle B, \beta \rangle$ be Δ -bin-algebras that satisfy Φ , #### The "lax" case: Consider a bin-signature $\Delta = \langle \Sigma, \delta \rangle$, with $\Sigma = \langle S, \ldots \rangle$, and a set Φ of Δ -inequalities. and let $h, h': \mathcal{A} \to \mathcal{B}$ be bin-homomorphisms. Let then $e: E \to A$ be an equaliser of $h, h': A \to B$ in $\mathbf{Alg}(\Sigma)$, and $\varepsilon = e; \alpha$. Given the construction of equalisers in $\mathbf{Alg}(\Sigma)$, it follows now that $e: \langle E, \varepsilon \rangle \to \mathcal{A}$ is an equaliser of $h, h': \mathcal{A} \to \mathcal{B}$ in $\mathbf{BAlg}(\Delta, \Phi)$. Let $\mathcal{A}_i = \langle A_i, \alpha_i \rangle$, $i \in \mathcal{J}$, be a family of Δ -bin-algebras that satisfy Φ . Let A with projections $\pi_i: A \to A_i, i \in \mathcal{J}$, be a product of $\langle A_i \rangle_{i \in \mathcal{J}}$ in $\mathbf{Alg}(\Sigma)$. For $s \in S$, define $\alpha_s: |A|_s \to \{0, 1\}$ as follows: given $a \in |A|, \alpha_s(a) = 1$ iff for all $i \in \mathcal{J}$, $(\alpha_i)_s(\pi_i(a)) = 1$ (and so $\alpha_s(a) = 0$ iff for some $i \in \mathcal{J}$, $(\alpha_i)_s(\pi_i(a)) = 0$). This implies that $\alpha_s(a) \leq (\alpha_i)_s((\pi_i)_s(a))$. Then for $f: s_1 \times \ldots \times s_n \to s$ and $a_1 \in |A|_{s_1}, \ldots, a_n \in |A|_{s_n}$, we show $\delta_f(\alpha_{s_1}(a_1), \ldots, \alpha_{s_n}(a_n)) \leq \alpha_s(f_A(a_1, \ldots, a_n))$, i.e., if $\alpha_s(f_A(a_1, \ldots, a_n)) = 0$ then $\delta_f(\alpha_{s_1}(a_1), \ldots, \alpha_{s_n}(a_n)) = 0$ as well. Namely, $\alpha_s(f_A(a_1, \ldots, a_n)) = 0$ implies $(\alpha_i)_s(f_{A_i}((\pi_i)_{s_1}(a_1), \ldots, (\pi_i)_{s_s}(a_n))) = 0$ for some $i \in \mathcal{J}$. Now, since Δ is monotone, we get: $\delta_f(\alpha_{s_1}(a_1), \ldots, \alpha_{s_n}(a_n)) \leq \delta_f((\alpha_i)_{s_1}((\pi_i)_{s_1}(a_1)), \ldots, (\alpha_i)_{s_1}((\pi_i)_{s_s}(a_n))) = 0$. Consequently, $A = \langle A, \alpha = \langle \alpha_s \rangle_{s \in S} \rangle$ is a Δ -bin-algebra. It is easy to check now that A is a model of Φ , and in fact is a product of $A_i = \langle A_i, \alpha_i \rangle$, $i \in \mathcal{J}$, with projections $\pi_i: A \to A_i$, $i \in \mathcal{J}$, in $\mathbf{BAlg}(\Sigma, \Phi)$. The above proves: YES: 3.{a,c}.C Counterexample (non-monotone Δ): Consider $\Delta_2 = \langle \Sigma_2, \delta_2 \rangle$ where Σ_2 has a single sort s, constant a: s and operation $f: s \to s$, with $(\delta_2)_a = 0$ and $(\delta_2)_f(0) = 1$, $(\delta_2)_f(1) = 0$. Consider now two Δ_2 -bin-algebras, $\mathcal{A} = \langle T_{\Sigma_2}, \alpha \rangle$ and $\mathcal{B} = \langle T_{\Sigma_2}, \beta \rangle$, where T_{Σ_2} is the usual algebra of ground Σ_2 -terms of the form $f^n(a)$, $n \geq 0$, and: $$\alpha_s(f^n(a)) = \begin{cases} 0 & \text{for even } n \\ 1 & \text{for odd } n \end{cases}$$ $\beta_s(f^n(a)) = \begin{cases} 1 & \text{for even } n \\ 0 & \text{for odd } n \end{cases}$ Suppose now there is a Δ_2 -bin-algebra $\mathcal{C} = \langle C, \gamma \rangle$ with Δ_2 -bin-homomorphisms $h_A: \mathcal{C} \to \mathcal{A}$ and $h_B: \mathcal{C} \to \mathcal{B}$. Since $(h_A)_s(a_C) = a$, $\gamma_s(a_C) \leq \alpha_s(a) = 0$. Then $\gamma_s(f_C(a_c)) \geq (\delta_2)_f(0) = 1$. But $(h_B)_s(f_C(a_c)) = f(a)$, with $\beta_s(f(a)) = 0$, and so h_B is not a bin-homomorphism. This contradiction shows that there is no product of \mathcal{A} and \mathcal{B} in $\mathbf{BAlg}(\Delta)$, and that there is no initial Δ_2 -bin-algebra, which proves # NO: $1.\{a,c\}.\{C,CC\}$ Moreover, since left adjoints preserve initial objects, there is no free Δ_2 -bin-algebra w.r.t. \mathbf{G}_{Δ_2} over the empty set, and so: NO: $2.\{a,c\}$ - Construction of the minimal bin-map: Consider a Σ -algebra $A \in \mathbf{Alg}(\Sigma)$. Given a family of Δ -bin-algebras $\mathcal{A}_i = \langle A_i, \alpha_i \rangle$ with Σ -homomorphisms $h_i : A_i \to A$, $i \in \mathcal{J}$, there is the least (w.r.t. the order on bin-maps induced by the standard order on $\{0,1\}$) bin-map $\alpha = \langle \alpha_s : |A|_s \to \{0,1\}\rangle_{s \in S}$ such that - $\mathcal{A} = \langle A, \alpha \rangle$ is a Δ -bin-algebra - $\mathcal{A} = \langle A, \alpha \rangle \models \Phi$ - all $h_i: A_i \to A$, $i \in \mathcal{J}$, are Δ -bin-homomorphisms More explicitly, for all $s \in S$, $a \in |A|_s$, define $\alpha_s(a) = \bigsqcup \{\alpha_s^k(a) \mid k \geq 0\}$ (the least upper bound w.r.t. the standard order on $\{0,1\}$ of $\alpha_s^k(a)$, $k \geq 0$), where $\alpha^k = \langle \alpha_s^k : |A| \to \{0,1\} \rangle_{s \in S}$, are defined inductively: - for $s \in S$, $a \in |A|_s$, $\alpha_s^0(a) = \coprod \{(\alpha_i)_s(a_i) \mid i \in \mathcal{J}, (h_i)_s(a_i) = a\}.$ - for $k \ge 0$, for $s \in S$, $a \in |A|_s$, $\alpha_s^{k+1}(a)$ is the least upper bound of the following elements: - $-\alpha_s^k(a)$ - $-\delta_f(\alpha_{s_1}^k(a_1),\ldots,\alpha_{s_n}^k(a_n))$ for all $f: s_1 \times \ldots \times s_n \to s$ in Σ and $a_1 \in |A|_{s_1},\ldots,a_n \in |A|_{s_n}$ such that $f_A(a_1,\ldots,a_n)=a$ - $-\alpha_s^k(t_A[v])$ for all inequalities $\forall X.t \leq t'$ in Φ and valuations $v: X \to |A|$ such that $t_A'[v] = a$. As usual, the least upper bound of the empty set is 0. The required properties of the so defined bin-map α are now easy to check, since for $s \in S$, $a \in |A|_s$, for some $m \ge 0$ we have $\alpha_s(a) = \alpha_s^k(a)$ for all $k \ge m$. Moreover, if Δ is monotone, we get: • given any $\mathcal{B} = \langle B, \beta \rangle \in |\mathbf{BAlg}(\Delta, \Phi)|$ and Σ -homomorphism $h: A \to B$, if all $h_i; h: \mathcal{A}_i \to \mathcal{B}$, $i \in \mathcal{J}$, are Δ -bin-homomorphisms then so is $h: \mathcal{A} \to \mathcal{B}$. To see this, it is enough to notice that for all $s \in S$, $a \in |A|_s$, $\alpha_s^k(a) \le \beta(h_s(a))$ for all $k \ge 0$ —easy proof by induction follows: - $\alpha_s^0(a) = \coprod \{(\alpha_i)_s(a_i) \mid i \in \mathcal{J}, (h_i)_s(a_i) = a\} \leq \beta_s(h_s(a)), \text{ since for } i \in \mathcal{J}, a_i \in |A_i|_s, (\alpha_i)_s(a_i) \leq \beta_s(h_s((h_i)_s(a_i))).$ - for $k \geq 0$, if for all $s \in S$, $a \in |A|_s$: - for $f: s_1 \times \ldots \times s_n \to s$ in Σ and $a_1 \in |A|_{s_1}, \ldots, a_n \in |A|_{s_n}$ with $f_A(a_1, \ldots, a_n) = a$, by the inductive hypothesis $\alpha_{s_1}^k(a_1) \leq \beta_{s_1}(h_{s_1}(a_1)), \ldots, \alpha_{s_n}^k(a_n) \leq \beta_{s_n}(h_{s_n}(a_n))$. Then, since Δ is monotone: $$\frac{\delta_f(\alpha_{s_1}^k(a_1), \dots, \alpha_{s_n}^k(a_n))}{\delta_f(\beta_{s_1}(h_{s_1}(a_1)), \dots, \beta_{s_n}(h_{s_n}(a_n)))} \leq \beta_s(f_B(h_{s_1}(a_1), \dots, h_{s_n}(a_n))) \\ \leq \beta_s(f_B(h_{s_1}(a_1), \dots, h_{s_n}(a_n))) \\ = \beta_s(h_s(a)).$$ - for all inequalities $\forall X.t \leq t'$ in Φ and valuations $v: X \to |A|$ such that $t'_A[v] = a$, by the inductive hypothesis and since $\mathcal{B} \models \Phi \colon \alpha_s^k(t_A[v]) \leq \beta_s(h_s(t_A[v])) = \beta_s(h_s(t_A[v])) = \beta_s(h_s(a))$. Hence, $\alpha_s^{k+1}(a) \leq \beta_s(h_s(a))$. - Cocompleteness (monotone Δ): Consider now any diagram \mathcal{D} in $\mathbf{BAlg}(\Delta, \Phi)$ with nodes $n \in N$ and edges $e \in E$, i.e., for each node $n \in N$ we have a Δ -bin-algebra satisfying Φ , $\mathcal{D}_n = \langle A_n, \alpha_n \rangle \in |\mathbf{BAlg}(\Delta, \Phi)|$, and for each edge $e: n \to m$ in E we have Δ -bin-homomorphism $\mathcal{D}_e: \mathcal{D}_n \to \mathcal{D}_m$. Let now D be the projection of \mathcal{D} to $\mathbf{Alg}(\Sigma)$, i.e., D is the diagram of the same shape as \mathcal{D} and for all nodes $n \in N$, $D_n = A_n \in \mathbf{Alg}(\Sigma)$, and for all edges $e: n \to m$ in E, $D_n = \mathcal{D}_n: A_n \to A_m$. Let A with injections $\iota_n: A_n \to A$ be a colimit of D in $\mathbf{Alg}(\Sigma)$. Given the construction above, we can now equip A with the least bin-map $\alpha = \langle \alpha_s: |A|_s \to \{0,1] \rangle_{s \in S}$ such that - $\mathcal{A} = \langle A, \alpha \rangle$ is a Δ -bin-algebra - $\mathcal{A} = \langle A, \alpha \rangle \models \Phi$ - all $\iota_i: A_i \to A$, $i \in \mathcal{J}$, are Δ -bin-homomorphisms and since Δ is monotone • given any $\mathcal{B} = \langle B, \beta \rangle \in |\mathbf{BAlg}(\Delta, \Phi)|$ and Σ -homomorphism $h: A \to B$, if all $\iota_i; h: \mathcal{A}_i \to \mathcal{B}$, $i \in \mathcal{J}$, are Δ -bin-homomorphisms then so is $h: \mathcal{A} \to \mathcal{B}$. It is easy to check now that $\mathcal{A} = \langle A, \alpha \rangle$ with injections $\iota_n : \mathcal{A}_n \to \mathcal{A}$ is a colimit of \mathcal{D} in $\mathbf{BAlg}(\Delta, \Phi)$. This proves: YES: {3}.{a,c}.CC **Left adjoints (monotone** Δ): Given an S-sorted set X, equip the usual Σ -algebra of terms, $T_{\Sigma}(X)$, with the least bin-map $\alpha = \langle \alpha_s : |T_{\Sigma}(X)| \to \{0,1\}\rangle_{s \in S}$ induced by the empty family (of Δ -bin-algebras with Σ -homomorphisms) and the set of Δ -inequalities Φ . Since Δ is monotone, it follows now that $\langle T_{\Sigma}(X), \alpha \rangle$ with the usual injection $\eta_X : X \to |T_{\Sigma}(X)|$ is free over X w.r.t. $\mathbf{G}_{\Delta,\Phi} : \mathbf{BAlg}(\Delta, \Phi) \to \mathbf{Set}^S$, which proves: YES: $4.\{a,c\}$ ## Summing up: | | $\mathbf{BAlg}(\Delta, \Phi)$ | $\mathbf{BAlg}^{st}(\Delta,\Phi)$ | $\mathbf{BAlg}(\Delta)$ | $\mathbf{BAlg}^{st}(\Delta)$ | |--|-------------------------------|-----------------------------------|-------------------------|------------------------------| | | a | b | c | d | | 1C | NO | NO | NO | YES | | 1CC | NO | NO | NO | YES | | monotone: 3C | YES | NO | YES | YES | | monotone: 3CC | YES | NO | YES | YES | | left adjoint to $\mathbf{G}_{(-)}^{(-)}$: 2 | NO | NO | NO | NO | | monotone, left adjoint to $\mathbf{G}_{(-)}^{(-)}$: 4 | YES | NO | YES | NO |