Category Theory in Foundations of Computer Science
Exam assignment 2023/24

Concepts, terminology and notation:

We rely on the standard definitions of algebraic signature ¥, Y-algebra and X-homomorphism, the
category Alg(3l) of ¥-algebras and their homomorphisms, and on the related notation, as introduced
during the course.

A bin-signature A = (3,9) consists of an algebraic signature ¥ = (S,Q) and a family of functions
d = (0f) req, where for each f:sy x...x s, = sin X, 6;:{0,1}" — {0,1} (the same n). A bin-
signature A = (X,0) is monotone if for each f:s; x ... x s, — s, §;:{0,1}" — {0,1} is monotone
(w.r.t. the standard order on {0, 1}, where 0 < 1, and induced component-wise order on {0,1}").

Let, A = (X,4), with X = (S,...), be a bin-signature.

A A-bin-algebra A = (A, «a) consists of a Y-algebra A € |Alg(X)| and a family of functions o =
(st |Als = {0,1})ses (called the bin-map of A) such that for all f:s; X ... x s, = sin ¥ and a; €
|Alsy, .o an € A5, dp(as (a1),. .., a5, (a,)) < as(falar,...,a,)). Such a A-bin-algebra A = (A, a)
is strict if for each f:s1 X ... X s, = sin ¥ and a; € |Als,,...,a, € |Als,, 0f(as (a1), ..., as,(a,)) =

as(fA(aly cee ,Cln))-

Then, given A-bin-algebras A = (A, ) and B = (B, 8), a A-bin-homomorphism h: A — B is any
Y-homomorphism h: A — B such that for each a € |Als, s € S, as(a) < Bs(hs(a)). Such a A-bin-
homomorphism h: A — B is strict if for each a € |Als, s € S, as(a) = Bs(hs(a)).

A A-inequality YX.t < t' consists of an S-sorted set X (of variables) and two terms ¢,t" € |T5(X)|s of
a common sort, s € S. A A-bin-algebra A = (A, a) satisfies (or is a model of) such a A-inequality,
written A = VX.t < ¢/, if for all valuations v: X — |A], as(ta[v]) < as(t4[v]), where as usual
qa[v] € |Als is the value of term ¢ € |Tx(X)]s, s € S, in X-algebra A under valuation v.

With the usual composition of homomorphisms, this defines the following categories, for any bin-
signature A and set ® of A-inequalities:

e BAIg(A,®): the category of A-bin- e BAlg® (A, ®): the category of strict A-
algebras that satisfy all A-inequalities bin-algebras that satisfy all A-inequalities
in ®, with A-bin-homomorphisms as in ®, with strict A-bin-homomorphisms as
morphisms morphisms

Moreover, we have the following “forgetful” functors:
e Gag:BAlg(A, ) — Set® o G ;:BAlg®(A, @) — Set®

where Set® is the category of S-sorted sets, as usual, and for any A-bin-algebra A = (A, ),
Gao(A) = |A|, for any A-bin-homomorphism h: A — B, where A = (A,«) and B = (B, f),
Gaa(h) = h:|Al = |B|, and GXg is the restriction of Gag to the objects and morphisms in
BAlg® (A, @).

Finally, we put:

e BAlg(A) = BAlg(A, 1) e BAlg*(A) = BAlg® (A, ()
e Ga = Gag: BAlg(A) — Set® o Gi = G¥ ;: BAlg*(A) — Set”



To do:
Prove a positive answer or give a counterexample to the following questions:

1. Consider categories:
(a) BAlg(A, )
(b) BAIg® (A, @)
(c) BAIg(A)
(d) BAIg*(A)
Which of the categories above is
C. complete
CC. cocomplete
for all bin-signatures A and, where applicable, all sets ® of A-inequalities?
2. Consider functors:
(a) Gag: BAlg(A, ®) — Set”
(b) G¥ 4: BAlg*(A, ) — Set”
(c) Ga:BAlg(A) — Set”
(d) G%:BAlg*(A) — Set®
Which of the functors above has a left adjoint for all bin-signatures A and, where applicable,
all sets ® of A-inequalities?
3. Again, consider categories:
(a) BAlIg(A, )
(b) BAlg® (A, @)
(c) BAlIg(A)
(d) BAIg*(2)
Which of the categories above is
C. complete
CC. cocomplete
for all monotone bin-signatures A and, where applicable, all sets ® of A-inequalities?
4. Consider functors:
(a) Gag:BAlg(A, ®) — Set”
(b) G¥ 4: BAlg* (A, ) — Set”
(c) Ga:BAlg(A) — Set®
(d) G:BAlg*(A) — Set®
Which of the functors above has a left adjoint for all monotone bin-signatures A and, where
applicable, all sets ® of A-inequalities?

Notes:

e All constructions and facts presented during the course may be used without proofs. This
applies in particular to the existence and constructions of limits and colimits in Alg(3).

e The answers to the questions above are not independent. For instance, a proof of 2.a implies
the positive answer to 2.c as well, a counterexample to 1.d.CC is a counterexample to 1.b.CC,
a proof for any of 1.{a,b,c,d}.{C,CC} proves the corresponding 3.{a,b,c,d}.{C,CC}, and
a counterexample for any of 3.{a,b,c,d}.{C,CC} is a counterexample for the corresponding
1.{a,b,c,d}.{C,CC}, etc. No need to repeat detailed arguments in such cases, indicating the
dependency is enough.

e Still, there are quite a few questions: deal with as many of them as you can. ..



Sketch of a solution:
The “strict” case:
Consider a bin-signature A = (¥, ), with ¥ = (5,...).

Let BN = (BN, id{y1}) be a A-bin-algebra, with |BN|; = {0,1} for s € S, and fpy = 07:{0,1}" —
{0,1} for f:s1 X ... X s, = sin X.

Then BAIg(A) is the same as the slice category Alg(X)]BN (the category of Alg(X)-objects over
BN). The slice category is complete (a limit of a diagram D in BAlg®(A) is the limit in Alg(Y%) of
the obvious projection of the diagram D with an additional new node carrying BN and new edges
from the nodes of D to this node carrying the bin-maps) and cocomplete (a colimit of a diagram D in
BAIlg®(A) is the colimit in Alg(X) of the projection of D with the bin-map induced by the colimit
property). This directly gives:

YES: {1,3}.d.{C,CC}

Moreover, since the terminal object in BAlg®(A) (i.e., in Alg(X)|BN) is BN, which shows that
Ga:BAlg®(A) — Set” is not continuous, we have:

NO: {2,4}.{b,d}

Consider a bin-signature A; = (3, d;), where X; has a single sort s and two constants a, b: s and
(01)e = 1, (61)p = 0. Now, the inequality a < b has no strict Aj;-model, which shows:

NO: {1,3}.b.{C,CC} (and {2,4}.b)
The “lax” case:

Consider a bin-signature A = (3,0), with X = (S,...), and a set ® of A-inequalities.

Completeness (monotone A): Let A = (A, ) and B = (B, ) be A-bin-algebras that satisfy @,
and let h, h’: A — B be bin-homomorphisms. Let then e: E — A be an equaliser of h, h': A — B
in Alg(X), and € = e;a. Given the construction of equalisers in Alg(Y), it follows now that
e:(E,e) — Ais an equaliser of h,h: A — B in BAlg(A, ®).

Let A; = (A;, i), i € J, be a family of A-bin-algebras that satisfy ®. Let A with projections
i A — A; i € J, be a product of (A;);c7 in Alg(3). For s € S, define ay: |A|s — {0, 1} as
follows: given a € |A|, as(a) = 1 iff for all i € J, (c;)s(m;(a)) =1 (and so as(a) = 0 iff for some
i€ J, (ai)s(mi(a)) =0). This implies that ag(a) < (o;)s((m;)s(a)). Then for f:sy x ... x s, —

sand a; € |Als,,...,an € |A]s,, we show d¢(as, (a1), ..., as,(an)) < as(falar, ..., a,)), Le., if
as(fa(a,...,a,)) =0then d¢(as, (ar), ..., as,(a,)) = 0as well. Namely, as(fa(as,...,a,)) =0
implies ()s(fa,((7mi)s,(a1), - .., (m)s.(ay))) = 0 for some i € J. Now, since A is monotone, we

get: dp(a, (a1), ..., o, (an)) < 6p((ay)s, ()5, (a1))s - -+, (@), ((7)s, (@) = 0. Consequently,
A = (A, a = (a5)ses) is a A-bin-algebra. It is easy to check now that A is a model of @, and in
fact is a product of A; = (4;, o), i € J, with projections m;: A — A;, i € J, in BAlg(X, ).
The above proves:
YES: 3.{a,c}.C

Counterexample (non-monotone A): Consider Ay = (3, J2) where ¥ has a single sort s, con-
stant a: s and operation f:s — s, with (d2), = 0 and (d2)7(0) = 1, (d2)(1) = 0. Consider now
two Ag-bin-algebras, A = (T%,, ) and B = (T%,, 3), where Ty, is the usual algebra of ground
Yo-terms of the form f"(a), n > 0, and:



. 0 for even n . 1 for even n

a(f"(a)) = 1 for odd n Be(F"(a)) = 0 for odd n
Suppose now there is a As-bin-algebra C = (C,~) with As-bin-homomorphisms hs:C — A
and hp:C — B. Since (ha)s(ac) = a, vs(ac) < as(a) = 0. Then v,(fo(ac)) > (62)£(0) = 1.
But (hp)s(fe(ac)) = f(a), with Bs(f(a)) = 0, and so hp is not a bin-homomorphism. This
contradiction shows that there is no product of A and B in BAlg(A), and that there is no
initial As-bin-algebra, which proves

NO: 1.{a,c}.{C,CC}
Moreover, since left adjoints preserve initial objects, there is no free Ay-bin-algebra w.r.t. Ga,
over the empty set, and so:

NO: 2.{a,c}

Construction of the minimal bin-map: Consider a ¥-algebra A € Alg(>). Given a family of A-
bin-algebras A; = (A;, a;) with ¥-homomorphisms h;: A; — A, i € J, there is the least (w.r.t.
the order on bin-maps induced by the standard order on {0,1}) bin-map a = (as:|Als —
{0,1})ses such that

e A= (A «)is a A-bin-algebra
e A=(Aa) =D
o all hj: A, — A, i € J, are A-bin-homomorphisms
More explicitly, for all s € S, a € |A|,, define a,(a) = | [{a*(a) \ > O} (the least upper bound
= (ag

w.r.t. the standard order on {0,1} of a%(a), k > 0), where « Al = {0,1})ses, are
defined inductively:

e forse S, ac€lAl, )= {()s(a;) |1 €T, (hi)s(a;) = a}.
e for k >0, for s € S, a € |Al,, a*"!(a) is the least upper bound of the following elements:
- ag(a)
— r(af (ar),...,af (a,)) forall frsy x...xs, = sin¥and a; € |A],,...,a, €|A],
such that fa(aq,...,a,) =a
— af(ta[v]) for all inequalities VX.t < t' in ® and valuations v: X — |A| such that
t'y[v] = a.
As usual, the least upper bound of the empty set is 0. The required properties of the so
defined bin-map « are now easy to check, since for s € S, a € |A|s, for some m > 0 we have
as(a) = af(a) for all k > m.
Moreover, if A is monotone, we get:
e given any B = (B, 5) € |[BAlg(A, ®)| and X-homomorphism h: A — B, if all h;;h: A; — B,
i € J, are A-bin-homomorphisms then so is h: A — B.
To see this, it is enough to notice that for all s € S, a € |Al,, a¥(a) < B(hy(a)) for all k>0 —
easy proof by induction follows:

2(a) = | J{(aw)s(a;) | i € T, (hi)s(a;) = a} < Bs(hs(a)), since for i € J,a; € |Ayls,
(@i)s(ai) < Balhs((hi)s(as)))-
e for k>0, if for all s € S, a € |Als:

— for fisy x ... X s, > sinXand a; € |Als,,...,a, € |A|s, with fa(as,...,a,) = a, by
the inductive hypothesis o (a1) < B, (hs,(a1)), ..., &% (a,) < B, (hs,(an)). Then,
since A is monotone:

07(af,(ar),..,af, (an)) < 0(Ba(hs (a )) ﬁsn( sn(@n))
Bs(fB(hm( ) . sn (an>))
Bs(hs(a)).

I IAIA



— for all inequalities VX.t < ¢’ in ® and valuations v: X — |A| such that ¢4[v] = a, by
the inductive hypothesis and since B | ®: of(ta[v]) < Bs(hs(talv])) = Bs(talv;h])) <
Bs(talv;h])) = Bs(hs(talv]) = Bs(hs(a)).

Hence, a%+1(a) < f,(hy(a)).

Cocompleteness (monotone A): Consider now any diagram D in BAlg(A, ®) with nodes n € N
and edges e € FE, ie., for each node n € N we have a A-bin-algebra satisfying ®, D, =
(An, o) € |BAlg(A,®)|, and for each edge e:n — m in E we have A-bin-homomorphism
D.:D,, — D,,. Let now D be the projection of D to Alg(X), i.e., D is the diagram of the same
shape as D and for all nodes n € N, D,, = A, € Alg(X), and for all edges e:n — m in F,
D,, = D,: A, — A,,. Let A with injections ¢,: A, — A be a colimit of D in Alg(%). Given the
construction above, we can now equip A with the least bin-map a = (as: |A|s — {0, 1])ses such

that
e A= (A «a)is a A-bin-algebra
e A=(A )=

o all 1;: A; — A, i € J, are A-bin-homomorphisms
and since A is monotone

e given any B = (B, 3) € |BAlg(A, ®)| and X-homomorphism h: A — B, if all ¢;;h: A; — B,
i € J, are A-bin-homomorphisms then so is h: A — B.

It is easy to check now that A = (A, «) with injections ¢,: A, — A is a colimit of D in
BAIg(A, ®). This proves:
YES: {3}.{a,c}.CC

Left adjoints (monotone A): Given an S-sorted set X, equip the usual X-algebra of terms, T%(X),
with the least bin-map a = (s |T%(X)| — {0,1})ses induced by the empty family (of A-
bin-algebras with Y-homomorphisms) and the set of A-inequalities ®. Since A is mono-
tone, it follows now that (7%(X),«) with the usual injection nx: X — |Tx(X)| is free over
X wrt. Gag: BAIg(A, ©) — Set®, which proves:

YES: 4.{a,c}

Summing up:

BAlg(A, ®) | BAlg® (A, @) | BAlg(A) | BAlg®(A)
_.a. _.b._ _.C._ _.d._
1._..C NO NO NO YES
1._.CC NO NO NO YES
monotone: 3._.C YES NO YES YES
monotone: 3._.CC YES NO YES YES
left adjoint to G—): 2. NO NO NO NO
monotone, left adjoint to GE:;: 4. YES NO YES NO




