# Category Theory in Foundations of Computer Science Exam assignment 2023/24

### Concepts, terminology and notation:

We rely on the standard definitions of algebraic signature  $\Sigma$ ,  $\Sigma$ -algebra and  $\Sigma$ -homomorphism, the category  $\mathbf{Alg}(\Sigma)$  of  $\Sigma$ -algebras and their homomorphisms, and on the related notation, as introduced during the course.

A bin-signature  $\Delta = \langle \Sigma, \delta \rangle$  consists of an algebraic signature  $\Sigma = \langle S, \Omega \rangle$  and a family of functions  $\delta = \langle \delta_f \rangle_{f \in \Omega}$ , where for each  $f: s_1 \times \ldots \times s_n \to s$  in  $\Sigma$ ,  $\delta_f: \{0,1\}^n \to \{0,1\}$  (the same n). A bin-signature  $\Delta = \langle \Sigma, \delta \rangle$  is monotone if for each  $f: s_1 \times \ldots \times s_n \to s$ ,  $\delta_f: \{0,1\}^n \to \{0,1\}$  is monotone (w.r.t. the standard order on  $\{0,1\}$ , where  $0 \leq 1$ , and induced component-wise order on  $\{0,1\}^n$ ).

Let,  $\Delta = \langle \Sigma, \delta \rangle$ , with  $\Sigma = \langle S, \ldots \rangle$ , be a bin-signature.

A  $\Delta$ -bin-algebra  $\mathcal{A} = \langle A, \alpha \rangle$  consists of a  $\Sigma$ -algebra  $A \in |\mathbf{Alg}(\Sigma)|$  and a family of functions  $\alpha = \langle \alpha_s : |A|_s \to \{0,1\} \rangle_{s \in S}$  (called the bin-map of  $\mathcal{A}$ ) such that for all  $f : s_1 \times \ldots \times s_n \to s$  in  $\Sigma$  and  $a_1 \in |A|_{s_1}, \ldots, a_n \in |A|_{s_n}, \, \delta_f(\alpha_{s_1}(a_1), \ldots, \alpha_{s_n}(a_n)) \leq \alpha_s(f_A(a_1, \ldots, a_n))$ . Such a  $\Delta$ -bin-algebra  $\mathcal{A} = \langle A, \alpha \rangle$  is strict if for each  $f : s_1 \times \ldots \times s_n \to s$  in  $\Sigma$  and  $a_1 \in |A|_{s_1}, \ldots, a_n \in |A|_{s_n}, \, \delta_f(\alpha_{s_1}(a_1), \ldots, \alpha_{s_n}(a_n)) = \alpha_s(f_A(a_1, \ldots, a_n))$ .

Then, given  $\Delta$ -bin-algebras  $\mathcal{A} = \langle A, \alpha \rangle$  and  $\mathcal{B} = \langle B, \beta \rangle$ , a  $\Delta$ -bin-homomorphism  $h: \mathcal{A} \to \mathcal{B}$  is any  $\Sigma$ -homomorphism  $h: \mathcal{A} \to \mathcal{B}$  such that for each  $a \in |A|_s$ ,  $s \in S$ ,  $\alpha_s(a) \leq \beta_s(h_s(a))$ . Such a  $\Delta$ -bin-homomorphism  $h: \mathcal{A} \to \mathcal{B}$  is strict if for each  $a \in |A|_s$ ,  $s \in S$ ,  $\alpha_s(a) = \beta_s(h_s(a))$ .

A  $\Delta$ -inequality  $\forall X.t \leq t'$  consists of an S-sorted set X (of variables) and two terms  $t, t' \in |T_{\Sigma}(X)|_s$  of a common sort,  $s \in S$ . A  $\Delta$ -bin-algebra  $\mathcal{A} = \langle A, \alpha \rangle$  satisfies (or is a model of) such a  $\Delta$ -inequality, written  $\mathcal{A} \models \forall X.t \leq t'$ , if for all valuations  $v: X \to |A|, \ \alpha_s(t_A[v]) \leq \alpha_s(t'_A[v])$ , where as usual  $q_A[v] \in |A|_s$  is the value of term  $q \in |T_{\Sigma}(X)|_s$ ,  $s \in S$ , in  $\Sigma$ -algebra A under valuation v.

With the usual composition of homomorphisms, this defines the following categories, for any binsignature  $\Delta$  and set  $\Phi$  of  $\Delta$ -inequalities:

- $\mathbf{BAlg}(\Delta, \Phi)$ : the category of  $\Delta$ -binalgebras that satisfy all  $\Delta$ -inequalities in  $\Phi$ , with  $\Delta$ -bin-homomorphisms as morphisms
- $\mathbf{BAlg}^{st}(\Delta, \Phi)$ : the category of strict  $\Delta$ -bin-algebras that satisfy all  $\Delta$ -inequalities in  $\Phi$ , with strict  $\Delta$ -bin-homomorphisms as morphisms

Moreover, we have the following "forgetful" functors:

• 
$$\mathbf{G}_{\Delta,\Phi} : \mathbf{BAlg}(\Delta,\Phi) \to \mathbf{Set}^S$$

• 
$$\mathbf{G}^{st}_{\Delta,\Phi}$$
:  $\mathbf{BAlg}^{st}(\Delta,\Phi) \to \mathbf{Set}^S$ 

where  $\mathbf{Set}^S$  is the category of S-sorted sets, as usual, and for any  $\Delta$ -bin-algebra  $\mathcal{A} = \langle A, \alpha \rangle$ ,  $\mathbf{G}_{\Delta,\Phi}(\mathcal{A}) = |A|$ , for any  $\Delta$ -bin-homomorphism  $h: \mathcal{A} \to \mathcal{B}$ , where  $\mathcal{A} = \langle A, \alpha \rangle$  and  $\mathcal{B} = \langle B, \beta \rangle$ ,  $\mathbf{G}_{\Delta,\Phi}(h) = h: |A| \to |B|$ , and  $\mathbf{G}_{\Delta,\Phi}^{st}$  is the restriction of  $\mathbf{G}_{\Delta,\Phi}$  to the objects and morphisms in  $\mathbf{BAlg}^{st}(\Delta,\Phi)$ .

Finally, we put:

• 
$$BAlg(\Delta) = BAlg(\Delta, \emptyset)$$

• 
$$\mathbf{G}_{\Delta} = \mathbf{G}_{\Delta,\emptyset} : \mathbf{BAlg}(\Delta) \to \mathbf{Set}^S$$

• 
$$\mathbf{BAlg}^{st}(\Delta) = \mathbf{BAlg}^{st}(\Delta, \emptyset)$$

$$\bullet \ \mathbf{G}^{st}_{\Delta} = \mathbf{G}^{st}_{\Delta,\emptyset} \colon \mathbf{BAlg}^{st}(\Delta) \to \mathbf{Set}^{S}$$

#### To do:

Prove a positive answer or give a counterexample to the following questions:

- 1. Consider categories:
  - (a)  $\mathbf{BAlg}(\Delta, \Phi)$
  - (b)  $\mathbf{BAlg}^{st}(\Delta, \Phi)$
  - (c)  $\mathbf{BAlg}(\Delta)$
  - (d)  $\mathbf{BAlg}^{st}(\Delta)$

Which of the categories above is

C. complete

CC. cocomplete

for all bin-signatures  $\Delta$  and, where applicable, all sets  $\Phi$  of  $\Delta$ -inequalities?

- 2. Consider functors:
  - (a)  $\mathbf{G}_{\Delta,\Phi} : \mathbf{BAlg}(\Delta,\Phi) \to \mathbf{Set}^S$
  - (b)  $\mathbf{G}^{st}_{\Delta,\Phi} : \mathbf{BAlg}^{st}(\Delta,\Phi) \to \mathbf{Set}^S$
  - (c)  $\mathbf{G}_{\Delta} : \mathbf{BAlg}(\Delta) \to \mathbf{Set}^S$
  - (d)  $\mathbf{G}_{\Delta}^{st} : \mathbf{BAlg}^{st}(\Delta) \to \mathbf{Set}^{S}$

Which of the functors above has a left adjoint for all bin-signatures  $\Delta$  and, where applicable, all sets  $\Phi$  of  $\Delta$ -inequalities?

- 3. Again, consider categories:
  - (a)  $\mathbf{BAlg}(\Delta, \Phi)$
  - (b)  $\mathbf{BAlg}^{st}(\Delta, \Phi)$
  - (c)  $\mathbf{BAlg}(\Delta)$
  - (d)  $\mathbf{BAlg}^{st}(\Delta)$

Which of the categories above is

C. complete

CC. cocomplete

for all monotone bin-signatures  $\Delta$  and, where applicable, all sets  $\Phi$  of  $\Delta$ -inequalities?

- 4. Consider functors:
  - (a)  $\mathbf{G}_{\Delta,\Phi} : \mathbf{BAlg}(\Delta, \Phi) \to \mathbf{Set}^S$
  - (b)  $\mathbf{G}^{st}_{\Delta,\Phi} : \mathbf{BAlg}^{st}(\Delta,\Phi) \to \mathbf{Set}^S$
  - (c)  $\mathbf{G}_{\Delta} : \mathbf{BAlg}(\Delta) \to \mathbf{Set}^S$
  - (d)  $\mathbf{G}_{\Delta}^{st} : \mathbf{BAlg}^{st}(\Delta) \to \mathbf{Set}^{S}$

Which of the functors above has a left adjoint for all monotone bin-signatures  $\Delta$  and, where applicable, all sets  $\Phi$  of  $\Delta$ -inequalities?

#### Notes:

- All constructions and facts presented during the course may be used without proofs. This applies in particular to the existence and constructions of limits and colimits in  $\mathbf{Alg}(\Sigma)$ .
- The answers to the questions above are not independent. For instance, a proof of **2.a** implies the positive answer to **2.c** as well, a counterexample to **1.d.CC** is a counterexample to **1.b.CC**, a proof for any of **1.**{**a,b,c,d**}.{**C,CC**} proves the corresponding **3.**{**a,b,c,d**}.{**C,CC**}, and a counterexample for any of **3.**{**a,b,c,d**}.{**C,CC**} is a counterexample for the corresponding **1.**{**a,b,c,d**}.{**C,CC**}, etc. No need to repeat detailed arguments in such cases, indicating the dependency is enough.
- Still, there are quite a few questions: deal with as many of them as you can...

### Sketch of a solution:

### The "strict" case:

Consider a bin-signature  $\Delta = \langle \Sigma, \delta \rangle$ , with  $\Sigma = \langle S, \ldots \rangle$ .

Let  $\mathcal{BN} = \langle BN, id_{\{0,1\}} \rangle$  be a  $\Delta$ -bin-algebra, with  $|BN|_s = \{0,1\}$  for  $s \in S$ , and  $f_{BN} = \delta_f : \{0,1\}^n \to \{0,1\}$  for  $f: s_1 \times \ldots \times s_n \to s$  in  $\Sigma$ .

Then  $\mathbf{BAlg}^{st}(\Delta)$  is the same as the slice category  $\mathbf{Alg}(\Sigma) \downarrow BN$  (the category of  $\mathbf{Alg}(\Sigma)$ -objects over BN). The slice category is complete (a limit of a diagram D in  $\mathbf{BAlg}^{st}(\Delta)$  is the limit in  $\mathbf{Alg}(\Sigma)$  of the obvious projection of the diagram D with an additional new node carrying BN and new edges from the nodes of D to this node carrying the bin-maps) and cocomplete (a colimit of a diagram D in  $\mathbf{BAlg}^{st}(\Delta)$  is the colimit in  $\mathbf{Alg}(\Sigma)$  of the projection of D with the bin-map induced by the colimit property). This directly gives:

Moreover, since the terminal object in  $\mathbf{BAlg}^{st}(\Delta)$  (i.e., in  $\mathbf{Alg}(\Sigma) \downarrow BN$ ) is  $\mathcal{BN}$ , which shows that  $\mathbf{G}_{\Delta} : \mathbf{BAlg}^{st}(\Delta) \to \mathbf{Set}^{S}$  is not continuous, we have:

Consider a bin-signature  $\Delta_1 = \langle \Sigma_1, \delta_1 \rangle$ , where  $\Sigma_1$  has a single sort s and two constants a, b: s and  $(\delta_1)_a = 1$ ,  $(\delta_1)_b = 0$ . Now, the inequality  $a \le b$  has no strict  $\Delta_1$ -model, which shows:

Completeness (monotone  $\Delta$ ): Let  $\mathcal{A} = \langle A, \alpha \rangle$  and  $\mathcal{B} = \langle B, \beta \rangle$  be  $\Delta$ -bin-algebras that satisfy  $\Phi$ ,

#### The "lax" case:

Consider a bin-signature  $\Delta = \langle \Sigma, \delta \rangle$ , with  $\Sigma = \langle S, \ldots \rangle$ , and a set  $\Phi$  of  $\Delta$ -inequalities.

and let  $h, h': \mathcal{A} \to \mathcal{B}$  be bin-homomorphisms. Let then  $e: E \to A$  be an equaliser of  $h, h': A \to B$  in  $\mathbf{Alg}(\Sigma)$ , and  $\varepsilon = e; \alpha$ . Given the construction of equalisers in  $\mathbf{Alg}(\Sigma)$ , it follows now that  $e: \langle E, \varepsilon \rangle \to \mathcal{A}$  is an equaliser of  $h, h': \mathcal{A} \to \mathcal{B}$  in  $\mathbf{BAlg}(\Delta, \Phi)$ .

Let  $\mathcal{A}_i = \langle A_i, \alpha_i \rangle$ ,  $i \in \mathcal{J}$ , be a family of  $\Delta$ -bin-algebras that satisfy  $\Phi$ . Let A with projections  $\pi_i: A \to A_i, i \in \mathcal{J}$ , be a product of  $\langle A_i \rangle_{i \in \mathcal{J}}$  in  $\mathbf{Alg}(\Sigma)$ . For  $s \in S$ , define  $\alpha_s: |A|_s \to \{0, 1\}$  as follows: given  $a \in |A|, \alpha_s(a) = 1$  iff for all  $i \in \mathcal{J}$ ,  $(\alpha_i)_s(\pi_i(a)) = 1$  (and so  $\alpha_s(a) = 0$  iff for some  $i \in \mathcal{J}$ ,  $(\alpha_i)_s(\pi_i(a)) = 0$ ). This implies that  $\alpha_s(a) \leq (\alpha_i)_s((\pi_i)_s(a))$ . Then for  $f: s_1 \times \ldots \times s_n \to s$  and  $a_1 \in |A|_{s_1}, \ldots, a_n \in |A|_{s_n}$ , we show  $\delta_f(\alpha_{s_1}(a_1), \ldots, \alpha_{s_n}(a_n)) \leq \alpha_s(f_A(a_1, \ldots, a_n))$ , i.e., if  $\alpha_s(f_A(a_1, \ldots, a_n)) = 0$  then  $\delta_f(\alpha_{s_1}(a_1), \ldots, \alpha_{s_n}(a_n)) = 0$  as well. Namely,  $\alpha_s(f_A(a_1, \ldots, a_n)) = 0$  implies  $(\alpha_i)_s(f_{A_i}((\pi_i)_{s_1}(a_1), \ldots, (\pi_i)_{s_s}(a_n))) = 0$  for some  $i \in \mathcal{J}$ . Now, since  $\Delta$  is monotone, we get:  $\delta_f(\alpha_{s_1}(a_1), \ldots, \alpha_{s_n}(a_n)) \leq \delta_f((\alpha_i)_{s_1}((\pi_i)_{s_1}(a_1)), \ldots, (\alpha_i)_{s_1}((\pi_i)_{s_s}(a_n))) = 0$ . Consequently,  $A = \langle A, \alpha = \langle \alpha_s \rangle_{s \in S} \rangle$  is a  $\Delta$ -bin-algebra. It is easy to check now that A is a model of  $\Phi$ , and in fact is a product of  $A_i = \langle A_i, \alpha_i \rangle$ ,  $i \in \mathcal{J}$ , with projections  $\pi_i: A \to A_i$ ,  $i \in \mathcal{J}$ , in  $\mathbf{BAlg}(\Sigma, \Phi)$ . The above proves:

YES: 3.{a,c}.C

Counterexample (non-monotone  $\Delta$ ): Consider  $\Delta_2 = \langle \Sigma_2, \delta_2 \rangle$  where  $\Sigma_2$  has a single sort s, constant a: s and operation  $f: s \to s$ , with  $(\delta_2)_a = 0$  and  $(\delta_2)_f(0) = 1$ ,  $(\delta_2)_f(1) = 0$ . Consider now two  $\Delta_2$ -bin-algebras,  $\mathcal{A} = \langle T_{\Sigma_2}, \alpha \rangle$  and  $\mathcal{B} = \langle T_{\Sigma_2}, \beta \rangle$ , where  $T_{\Sigma_2}$  is the usual algebra of ground  $\Sigma_2$ -terms of the form  $f^n(a)$ ,  $n \geq 0$ , and:

$$\alpha_s(f^n(a)) = \begin{cases} 0 & \text{for even } n \\ 1 & \text{for odd } n \end{cases}$$
  $\beta_s(f^n(a)) = \begin{cases} 1 & \text{for even } n \\ 0 & \text{for odd } n \end{cases}$ 

Suppose now there is a  $\Delta_2$ -bin-algebra  $\mathcal{C} = \langle C, \gamma \rangle$  with  $\Delta_2$ -bin-homomorphisms  $h_A: \mathcal{C} \to \mathcal{A}$  and  $h_B: \mathcal{C} \to \mathcal{B}$ . Since  $(h_A)_s(a_C) = a$ ,  $\gamma_s(a_C) \leq \alpha_s(a) = 0$ . Then  $\gamma_s(f_C(a_c)) \geq (\delta_2)_f(0) = 1$ . But  $(h_B)_s(f_C(a_c)) = f(a)$ , with  $\beta_s(f(a)) = 0$ , and so  $h_B$  is not a bin-homomorphism. This contradiction shows that there is no product of  $\mathcal{A}$  and  $\mathcal{B}$  in  $\mathbf{BAlg}(\Delta)$ , and that there is no initial  $\Delta_2$ -bin-algebra, which proves

# NO: $1.\{a,c\}.\{C,CC\}$

Moreover, since left adjoints preserve initial objects, there is no free  $\Delta_2$ -bin-algebra w.r.t.  $\mathbf{G}_{\Delta_2}$  over the empty set, and so:

NO:  $2.\{a,c\}$ 

- Construction of the minimal bin-map: Consider a  $\Sigma$ -algebra  $A \in \mathbf{Alg}(\Sigma)$ . Given a family of  $\Delta$ -bin-algebras  $\mathcal{A}_i = \langle A_i, \alpha_i \rangle$  with  $\Sigma$ -homomorphisms  $h_i : A_i \to A$ ,  $i \in \mathcal{J}$ , there is the least (w.r.t. the order on bin-maps induced by the standard order on  $\{0,1\}$ ) bin-map  $\alpha = \langle \alpha_s : |A|_s \to \{0,1\}\rangle_{s \in S}$  such that
  - $\mathcal{A} = \langle A, \alpha \rangle$  is a  $\Delta$ -bin-algebra
  - $\mathcal{A} = \langle A, \alpha \rangle \models \Phi$
  - all  $h_i: A_i \to A$ ,  $i \in \mathcal{J}$ , are  $\Delta$ -bin-homomorphisms

More explicitly, for all  $s \in S$ ,  $a \in |A|_s$ , define  $\alpha_s(a) = \bigsqcup \{\alpha_s^k(a) \mid k \geq 0\}$  (the least upper bound w.r.t. the standard order on  $\{0,1\}$  of  $\alpha_s^k(a)$ ,  $k \geq 0$ ), where  $\alpha^k = \langle \alpha_s^k : |A| \to \{0,1\} \rangle_{s \in S}$ , are defined inductively:

- for  $s \in S$ ,  $a \in |A|_s$ ,  $\alpha_s^0(a) = \coprod \{(\alpha_i)_s(a_i) \mid i \in \mathcal{J}, (h_i)_s(a_i) = a\}.$
- for  $k \ge 0$ , for  $s \in S$ ,  $a \in |A|_s$ ,  $\alpha_s^{k+1}(a)$  is the least upper bound of the following elements:
  - $-\alpha_s^k(a)$
  - $-\delta_f(\alpha_{s_1}^k(a_1),\ldots,\alpha_{s_n}^k(a_n))$  for all  $f: s_1 \times \ldots \times s_n \to s$  in  $\Sigma$  and  $a_1 \in |A|_{s_1},\ldots,a_n \in |A|_{s_n}$  such that  $f_A(a_1,\ldots,a_n)=a$
  - $-\alpha_s^k(t_A[v])$  for all inequalities  $\forall X.t \leq t'$  in  $\Phi$  and valuations  $v: X \to |A|$  such that  $t_A'[v] = a$ .

As usual, the least upper bound of the empty set is 0. The required properties of the so defined bin-map  $\alpha$  are now easy to check, since for  $s \in S$ ,  $a \in |A|_s$ , for some  $m \ge 0$  we have  $\alpha_s(a) = \alpha_s^k(a)$  for all  $k \ge m$ .

Moreover, if  $\Delta$  is monotone, we get:

• given any  $\mathcal{B} = \langle B, \beta \rangle \in |\mathbf{BAlg}(\Delta, \Phi)|$  and  $\Sigma$ -homomorphism  $h: A \to B$ , if all  $h_i; h: \mathcal{A}_i \to \mathcal{B}$ ,  $i \in \mathcal{J}$ , are  $\Delta$ -bin-homomorphisms then so is  $h: \mathcal{A} \to \mathcal{B}$ .

To see this, it is enough to notice that for all  $s \in S$ ,  $a \in |A|_s$ ,  $\alpha_s^k(a) \le \beta(h_s(a))$  for all  $k \ge 0$ —easy proof by induction follows:

- $\alpha_s^0(a) = \coprod \{(\alpha_i)_s(a_i) \mid i \in \mathcal{J}, (h_i)_s(a_i) = a\} \leq \beta_s(h_s(a)), \text{ since for } i \in \mathcal{J}, a_i \in |A_i|_s, (\alpha_i)_s(a_i) \leq \beta_s(h_s((h_i)_s(a_i))).$
- for  $k \geq 0$ , if for all  $s \in S$ ,  $a \in |A|_s$ :
  - for  $f: s_1 \times \ldots \times s_n \to s$  in  $\Sigma$  and  $a_1 \in |A|_{s_1}, \ldots, a_n \in |A|_{s_n}$  with  $f_A(a_1, \ldots, a_n) = a$ , by the inductive hypothesis  $\alpha_{s_1}^k(a_1) \leq \beta_{s_1}(h_{s_1}(a_1)), \ldots, \alpha_{s_n}^k(a_n) \leq \beta_{s_n}(h_{s_n}(a_n))$ . Then, since  $\Delta$  is monotone:

$$\frac{\delta_f(\alpha_{s_1}^k(a_1), \dots, \alpha_{s_n}^k(a_n))}{\delta_f(\beta_{s_1}(h_{s_1}(a_1)), \dots, \beta_{s_n}(h_{s_n}(a_n)))} \leq \beta_s(f_B(h_{s_1}(a_1), \dots, h_{s_n}(a_n))) \\
\leq \beta_s(f_B(h_{s_1}(a_1), \dots, h_{s_n}(a_n))) \\
= \beta_s(h_s(a)).$$

- for all inequalities  $\forall X.t \leq t'$  in  $\Phi$  and valuations  $v: X \to |A|$  such that  $t'_A[v] = a$ , by the inductive hypothesis and since  $\mathcal{B} \models \Phi \colon \alpha_s^k(t_A[v]) \leq \beta_s(h_s(t_A[v])) = \beta_s(h_s(t_A[v])) = \beta_s(h_s(a))$ .

Hence,  $\alpha_s^{k+1}(a) \leq \beta_s(h_s(a))$ .

- Cocompleteness (monotone  $\Delta$ ): Consider now any diagram  $\mathcal{D}$  in  $\mathbf{BAlg}(\Delta, \Phi)$  with nodes  $n \in N$  and edges  $e \in E$ , i.e., for each node  $n \in N$  we have a  $\Delta$ -bin-algebra satisfying  $\Phi$ ,  $\mathcal{D}_n = \langle A_n, \alpha_n \rangle \in |\mathbf{BAlg}(\Delta, \Phi)|$ , and for each edge  $e: n \to m$  in E we have  $\Delta$ -bin-homomorphism  $\mathcal{D}_e: \mathcal{D}_n \to \mathcal{D}_m$ . Let now D be the projection of  $\mathcal{D}$  to  $\mathbf{Alg}(\Sigma)$ , i.e., D is the diagram of the same shape as  $\mathcal{D}$  and for all nodes  $n \in N$ ,  $D_n = A_n \in \mathbf{Alg}(\Sigma)$ , and for all edges  $e: n \to m$  in E,  $D_n = \mathcal{D}_n: A_n \to A_m$ . Let A with injections  $\iota_n: A_n \to A$  be a colimit of D in  $\mathbf{Alg}(\Sigma)$ . Given the construction above, we can now equip A with the least bin-map  $\alpha = \langle \alpha_s: |A|_s \to \{0,1] \rangle_{s \in S}$  such that
  - $\mathcal{A} = \langle A, \alpha \rangle$  is a  $\Delta$ -bin-algebra
  - $\mathcal{A} = \langle A, \alpha \rangle \models \Phi$
  - all  $\iota_i: A_i \to A$ ,  $i \in \mathcal{J}$ , are  $\Delta$ -bin-homomorphisms

and since  $\Delta$  is monotone

• given any  $\mathcal{B} = \langle B, \beta \rangle \in |\mathbf{BAlg}(\Delta, \Phi)|$  and  $\Sigma$ -homomorphism  $h: A \to B$ , if all  $\iota_i; h: \mathcal{A}_i \to \mathcal{B}$ ,  $i \in \mathcal{J}$ , are  $\Delta$ -bin-homomorphisms then so is  $h: \mathcal{A} \to \mathcal{B}$ .

It is easy to check now that  $\mathcal{A} = \langle A, \alpha \rangle$  with injections  $\iota_n : \mathcal{A}_n \to \mathcal{A}$  is a colimit of  $\mathcal{D}$  in  $\mathbf{BAlg}(\Delta, \Phi)$ . This proves:

YES: {3}.{a,c}.CC

**Left adjoints (monotone**  $\Delta$ ): Given an S-sorted set X, equip the usual  $\Sigma$ -algebra of terms,  $T_{\Sigma}(X)$ , with the least bin-map  $\alpha = \langle \alpha_s : |T_{\Sigma}(X)| \to \{0,1\}\rangle_{s \in S}$  induced by the empty family (of  $\Delta$ -bin-algebras with  $\Sigma$ -homomorphisms) and the set of  $\Delta$ -inequalities  $\Phi$ . Since  $\Delta$  is monotone, it follows now that  $\langle T_{\Sigma}(X), \alpha \rangle$  with the usual injection  $\eta_X : X \to |T_{\Sigma}(X)|$  is free over X w.r.t.  $\mathbf{G}_{\Delta,\Phi} : \mathbf{BAlg}(\Delta, \Phi) \to \mathbf{Set}^S$ , which proves:

YES:  $4.\{a,c\}$ 

## Summing up:

|                                                        | $\mathbf{BAlg}(\Delta, \Phi)$ | $\mathbf{BAlg}^{st}(\Delta,\Phi)$ | $\mathbf{BAlg}(\Delta)$ | $\mathbf{BAlg}^{st}(\Delta)$ |
|--------------------------------------------------------|-------------------------------|-----------------------------------|-------------------------|------------------------------|
|                                                        | a                             | b                                 | c                       | d                            |
| 1C                                                     | NO                            | NO                                | NO                      | YES                          |
| 1CC                                                    | NO                            | NO                                | NO                      | YES                          |
| monotone: <b>3C</b>                                    | YES                           | NO                                | YES                     | YES                          |
| monotone: 3CC                                          | YES                           | NO                                | YES                     | YES                          |
| left adjoint to $\mathbf{G}_{(-)}^{(-)}$ : 2           | NO                            | NO                                | NO                      | NO                           |
| monotone, left adjoint to $\mathbf{G}_{(-)}^{(-)}$ : 4 | YES                           | NO                                | YES                     | NO                           |