Program semantics and verification 2021 /22
Second exam 22/02/2022, assignment 1 (operational semantics)

Consider the extension of TINY with the following forms of statements (F ranges
over arithmetic expressions, B over Boolean expressions, and = over variables):

S u= skip| 51;92 | if B then S else Sy endif | while B do S od |
{S1}{S2} | reject | return E

To determine the meaning of the new form of statement {S;}{S2}, S1 and S
compete with one another. Each of them is executed separately in the initial
state, and may return a value via the return E statement. If both of them do
so, the one with a larger value “wins” and its final state is the final state of
{S1}{S2}. If one of them “gives up” via reject statement, and the other one
does not (ends with or without returning a value) then the other one “wins”. If
both “give up”, the whole construct is equivalent to skip. If both of them end
without returning a value and without giving up, the winner is Ss.
More precisely, {S1}{S2} in a state s is executed as follows:

e 5 is executed in the state s, which may end in one of the following ways:

i) if return E; is encountered within this execution of Sy then we keep
the current state s1, evaluate E; in s; obtaining a result 71, and the
rest of 57 is omitted;

ii) if reject is encountered, the rest of Sp is omitted,;
iii) neither return nor reject statements are encountered, and the ex-
ecution of S; ends in a state s;.

e S5 is executed in the state s, which may end in one of the following ways:

iv) if return Fj is encountered within this execution of S then we keep
the current state sy, evaluate E5 in so obtaining a result 75, and the
rest of Sy is omitted;

v) if reject is encountered, the rest of Sy is omitted;
vi) neither return nor reject statements are encountered, and the ex-
ecution of Sy ends in a state ss.

Clearly, since the executions of S7 and S; proceed independently, the semantics
may (but do not have to) allow them to interleave. Once the executions of Sy
and Sz end, the execution of {S7}{S2} ends as follows:

e if S; ends with i) and S5 ends with iv) then the execution of {S7}{S2} in
s ends in the state s; if 1 > ro and in the state so if 1y < ro;

e if Sy ends with i) and Sy ends with either v) or vi) then the execution of
{S1}{S2} in s ends in the state sq;

e if S5 ends with iv) and S; ends with either ii) or iii) then the execution of
{S1}{S2} in s ends in the state ss;

e if S ends with ii) and Sy ends with v) then the execution of {S7}{S2} in
s ends in the state s;

e if Sy ends with ii) or with iii) and Sy ends with vi) then the execution of
{S1}{S2} in s ends in the state so;

e if S5 ends with v) and S; ends with iii) then the execution of {S;}{S2} in
s ends in the state sq.

The “competing” statements may be nested, and then return and reject
statements affect only the execution of the closest (most recent) instance of
{S1}{S2}. reject and return statements outside any {S;}{S2} block the ex-
ecution.

The statements of other forms work as usual.

Examples:
1. The execution of the following statement:

r:=1;

{r: =2+ 1;2:=2+ 1;return 2}{x := x + 55;return x — 55};
{z := x4 2;return z}{x := x + 55; {return z}{return x + 10} };
{r =2 +55}{x:=x+2}

{z:=x 4+ 2}{z =z + 55;reject};

{z =2+ 44;reject}{x := = + 55;reject}

ends in a state with x = 9.
2. The execution of the following statement:

r:=1;
{z := 2+ 2}{ while x < 3 do {x := z + 1;return z}{return 3} od}

does not terminate.

Define small-step operational semantics for this new language: de-
fine the set of configurations, the set of terminal configurations and inference
rules for the statements of the form {S;}{S2}, return E and reject. Indi-
cate if and how the standard rules for the statements of other forms have to
be modified (or write them out). The semantics of expressions (and Boolean
expressions) may be assumed to be given.

