
1

Program semantics and verification 2021/22
Second exam 22/02/2022, assignment 1 (operational semantics)

Consider the extension of Tiny with the following forms of statements (E ranges
over arithmetic expressions, B over Boolean expressions, and x over variables):

S ::= skip | S1;S2 | if B then S1 else S2 endif | while B do S od |
{S1}{S2} | reject | return E

To determine the meaning of the new form of statement {S1}{S2}, S1 and S2

compete with one another. Each of them is executed separately in the initial
state, and may return a value via the return E statement. If both of them do
so, the one with a larger value “wins” and its final state is the final state of
{S1}{S2}. If one of them “gives up” via reject statement, and the other one
does not (ends with or without returning a value) then the other one “wins”. If
both “give up”, the whole construct is equivalent to skip. If both of them end
without returning a value and without giving up, the winner is S2.

More precisely, {S1}{S2} in a state s is executed as follows:

� S1 is executed in the state s, which may end in one of the following ways:

i) if return E1 is encountered within this execution of S1 then we keep
the current state s1, evaluate E1 in s1 obtaining a result r1, and the
rest of S1 is omitted;

ii) if reject is encountered, the rest of S1 is omitted;

iii) neither return nor reject statements are encountered, and the ex-
ecution of S1 ends in a state s1.

� S2 is executed in the state s, which may end in one of the following ways:

iv) if return E2 is encountered within this execution of S2 then we keep
the current state s2, evaluate E2 in s2 obtaining a result r2, and the
rest of S2 is omitted;

v) if reject is encountered, the rest of S2 is omitted;

vi) neither return nor reject statements are encountered, and the ex-
ecution of S2 ends in a state s2.

Clearly, since the executions of S1 and S2 proceed independently, the semantics
may (but do not have to) allow them to interleave. Once the executions of S1

and S2 end, the execution of {S1}{S2} ends as follows:

� if S1 ends with i) and S2 ends with iv) then the execution of {S1}{S2} in
s ends in the state s1 if r1 ≥ r2 and in the state s2 if r1 < r2;

� if S1 ends with i) and S2 ends with either v) or vi) then the execution of
{S1}{S2} in s ends in the state s1;

� if S2 ends with iv) and S1 ends with either ii) or iii) then the execution of
{S1}{S2} in s ends in the state s2;

2

� if S1 ends with ii) and S2 ends with v) then the execution of {S1}{S2} in
s ends in the state s;

� if S1 ends with ii) or with iii) and S2 ends with vi) then the execution of
{S1}{S2} in s ends in the state s2;

� if S2 ends with v) and S1 ends with iii) then the execution of {S1}{S2} in
s ends in the state s1.

The “competing” statements may be nested, and then return and reject

statements affect only the execution of the closest (most recent) instance of
{S1}{S2}. reject and return statements outside any {S1}{S2} block the ex-
ecution.

The statements of other forms work as usual.

Examples:

1. The execution of the following statement:

x := 1;
{x := x + 1;x := x + 1; return x}{x := x + 55; return x− 55};
{x := x + 2; return x}{x := x + 55; {return x}{return x + 10}};
{x := x + 55}{x := x + 2};
{x := x + 2}{x := x + 55; reject};
{x := x + 44; reject}{x := x + 55; reject}

ends in a state with x = 9.

2. The execution of the following statement:

x := 1;
{x := x + 2}{ while x < 3 do {x := x + 1; return x}{return 3} od}

does not terminate.

Define small-step operational semantics for this new language: de-
fine the set of configurations, the set of terminal configurations and inference
rules for the statements of the form {S1}{S2}, return E and reject. Indi-
cate if and how the standard rules for the statements of other forms have to
be modified (or write them out). The semantics of expressions (and Boolean
expressions) may be assumed to be given.

