
Semantyka i wery�kacja programów 2021/22.
Egzamin 4/02/2022, zadanie 3 (wery�kacja)

Pracujemy w j¦zyku TinyA nad typem danych rozszerzonym o rodzaj Array i operacje:

newarr : Array
put : Array × Int × Int → Array
get : Array × Int → Int
swap : Array × Int × Int → Array

No±nik rodzaju Array to zbiór funkcji (caªkowitych) z liczb caªkowitych w liczby caªkowite,

|A|Array = Int→ Int,

a operacje interpretowane s¡ jako funkcje

newarrA : |A|Array

putA : |A|Array × |A|Int × |A|Int → |A|Array

getA : |A|Array × |A|Int → |A|Int
swapA : |A|Array × |A|Int × |A|Int → |A|Array

zde�niowane nast¦puj¡co:

newarrA(i) = 0
putA(A, i, n) = A[i 7→ n]
getA(A, i) = A(i)
swapA(A, i, j) = A[i 7→ A(j), j 7→ A(i)]

dla wszystkich i, j, n ∈ Int i A : Int→ Int. Wyra»enie get(A, e) b¦dziemy jak zwykle zapi-
sywa¢ jako A[e]. Ponadto, w asercjach wykorzystujemy �predykat� A:Array stwierdzajacy,
»e zmienna A jest rodzaju Array (pozostaªe zmienne s¡ rodzaju Int). Wyra»enia logiczne
j¦zyka rozszerzamy te» o oczywiste nierówno±ci e < e′ (wyra»alne jako e ≤ e′ ∧ ¬(e = e′))
oraz e > e′ (wyra»alne jako e′ < e). Dla czytelno±ci, w formuªach ci¡gi nierówno±ci b¦-
dziemy zapisywa¢ w skróconej postaci, np. j ≤ i ∧ i < k zapisuj¡c jako j ≤ i < k.

Dla wygody specy�kacji i dowodzenia poprawno±ci wprowadzamy nast¦puj¡ce schematy
formuª:

sorted(A, j, k) ≡ A:Array ∧ ∀i.(j ≤ i < k =⇒ A[i] ≤ A[i+ 1])

leq(A, j1, k1, j2, k2) ≡
A:Array ∧ ∀i1, i2.((j1 ≤ i1 ≤ k1 ∧ j2 ≤ i2 ≤ k2) =⇒ A[i1] ≤ A[i2])

minmax (d, g, A, j, k) ≡ A:Array ∧ j ≤ d ≤ k ∧ j ≤ g ≤ k ∧
∀i.(j ≤ i ≤ k =⇒ A[d] ≤ A[i] ≤ A[g])

1

Nale»y udowodni¢ caªkowit¡ poprawno±¢ nast¦puj¡cego programu wzgl¦dem podanych
warunków:

[A:Array ∧ n > 0]

l := 0; p := n;

while l < p

do (

d := p; g := p

i := p;

while l < i

do (

i := i-1;

if A[i] < A[d] then d := i

else if A[i] > A[g] then g := i else skip;

);

A := swap(A,l,d);

if g = l then g := d else skip;

A := swap(A,g,p);

l := l+1;

if l < p then p := p-1 else skip

)

[A:Array ∧ sorted(A, 0, n)]

Na nast¦pnej stronie podana jest wersja tego programu z miejscem na wpisanie od-
powiednich anotacji, któr¡ mo»na wykorzysta¢ dla przedstawienia rozwi¡zania (¹ródªo
LATEXowe podane jest w osobnym pliku).

Wymagane jest:

� podanie niezmienników γ1 i γ2 obu p¦tli programu oraz asercji α1, α2, α3, α4, które
�koduj¡� dowód poprawno±ci (podanie pozostaªych asercji jest opcjonalne, ale je±li
zostan¡ podane, to ewentualne bª¦dy mog¡ wpªyn¡¢ na ocen¦ rozwi¡zania), oraz

� podanie anotacji [decr . . . in . . . wrt . . .] tak, aby (w kontek±cie podanych nie-
zmienników) wynikaªa z nich wªasno±¢ stopu p¦tli.

2

[A:Array ∧ n > 0]

l := 0; p := n;

[]

while [γ1 :]

l < p

do [decr in wrt]

([]

d := p; g := p

[α1 :]

i := p;

[]

while [γ2 :]

l < i

do [decr in wrt]

([]

i := i-1;

[α2 :]

if A[i] < A[d] then d := i

else if A[i] > A[g] then g := i else skip

[]

);

[]

A := swap(A,l,d);

[α3 :]

if g = l then g := d else skip;

[]

A := swap(A,g,p);

[]

l := l+1;

[α4 :]

if l < p then p := p-1 else skip

[]

)

[A:Array ∧ sorted(A, 0, n)]

3

