Semantyka i weryfikacja programéw 2022/23.
Egzamin 6/02/2023, zadanie 1 (semantyka operacyjna)

Napisz semantyke operacyjna (matych lub duzych krokéw — cho¢ zapewne wygodniejsza moze sie
okaza¢ semantyka duzych krokéw’) instrukeji jezyka o gramatyce:

Num>n ==0[1|-1|2]|-2]---
Varsz s=x|y]|---
Exproe m=n|x|e +ex|er*xex|er —ey
BExpr >b = true|false|e; <ez|e; =e2|by Aba|notbd
Instr 51 == ux:=e|I;;Iy|if b then [| while b do [|
attempt I end | protect | reject
Prog > P ::= prog {attempt [end}

Jest to jezyk z mechanizmem wycofywania skutkéw operacji przypisania.

Wykonanie programu prog {attempt I end} polega na wykonaniu bloku attempt I end. Z kolei
wykonanie bloku postaci attempt I end polega na wykonaniu instrukcji I, w ktérej moga sie pojawic
niestandardowe instrukcje reject i protect.

Instrukcja reject powoduje przerwanie wykonania najblizszego otaczajacego bloku attempt ... end
i wycofanie zmian wprowadzonych przez instrukcje w tym bloku (od jego poczatku lub od ostatniego w
tym bloku wykonania instrukcji protect). Instrukcja protect powoduje “utrwalenie” stanu w miejscu jej
wystapienia dla biezacego bloku attempt ... end, tak ze jesli w dalszej czesci biezacego bloku attempt

. end wystapi instrukcja reject, nie spowoduje ona wycofania do poczatku bloku, ale do stanu z chwili
ostatniego przed reject wykonania w tym bloku instrukcji protect.

Semantyka pozostatych konstrukeji jest standardowa.

Na przyktad, po wykonaniu programu:

prog {attempt
x := 0;
attempt
x :=1;
protect;
X = 2;
reject
end
end}

zmienna x przyjmuje warto$¢ 1. Natomiast po wykonaniu programu:

prog {attempt
x := 0;
attempt
x :=1;
protect;
while x <= 10 do
(x :=x+ 1;
protect;
if x = 5 then reject
)
end
end}

zmienna x przyjmuje wartosc 5.

Bloki attempt ... end moga by¢ zagniezdzane, a skutki instrukcji protect i reject dotycza zawsze
nablizszego otaczajacego bloku, zatem po wykonaniu programu

prog {attempt
x = 3
protect;
attempt
x :=1;
protect;
X = 2;
reject
end;
reject
end}

zmienna x przyjmuje wartosc 3.

W rozwiazaniu nalezy zdefiniowaé¢ zbiér konfiguracji oraz podaé¢ reguty przejscia dla programéw oraz
instrukcji.

Wszystkie wykorzystywane zmienne sg globalne. Przyjmujemy tez, ze zawsze maja zainicjalizowana
wartos¢. Mozna wiec w rozwiazaniu wykorzysta¢ dziedzine stanéw State = Var — Int (nie ma koniecz-
nosci podzialu na srodowisko i sktad).

Mozna tez przyjac, ze dane sa pomocnicze funkcje semantyczne dla wyrazen:

E: Fxpr — State — Int
B: BExpr — State — Bool
gdzie, jak zwykle, Int to zbior liczb catkowitych, a Bool = {tt, ff}.

Zbior konfiguracji powinien zawiera¢ konfiguracje poczatkowe dla programéw, postaci (s, P), oraz kon-
figuracje konicowe postaci s (gdzie s € State, a P € Prog), a takze — zapewne — dodatkowe konfiguracje
innych postaci.

UWAGA: w konfiguracjach nie nalezy dopuszczaé struktur danych zawierajacych dowolnie duza
liczbe standéw — nalezy przyjac¢, ze kazda konfiguracja moze zawiera¢ co najwyzej trzynascie stanéw.

MOZLIWE ROZWIAZANIE

Konfiguracje I' — suma nastepujacych:
e STATE x Prog > (s, P) — konfiguracje poczatkowe

e STATE > s — konfiguracje koricowe dla programéw oraz dla instrukeji zakoriczonych wykonaniem
reject

e STATE x STATE > (s1,s2) — konfiguracje koricowe dla instrukcji bez reject, s; to stan do
wycofania, s to stan biezacy

e STATE x STATE x Instr > (s1, s2,) — kofiguracje biezace dla instrukeji, s1 to stan do wycofania,
s2 to stan biezacy

SEMANTYKA DUZYCH KROKOW

<S, S, I> ~ 8! program <Sa S, I> ~ <8/17 S/2> program
s,prog {attempt I end}) ~~ s s,prog {attempt I end}) ~~ s
g g 2
rzypisanie
(51,52, 2 1= €) ~ (s1, sal€lelsa/al) ©"
<511827II> WS/ Tozeni
rosolily)~ & Zozenie
<817527-[1> 3 <S/175/2> <S/175/27-[2> ~ k tos .
(s1,80, 11,13) ~ k FOZEME Qla k = (s, s4) lub k = &
rotect reject
S1, S2,protect) ~~» (S92, S2 P S1,S2,reject) ~» s1 J
p J
(52,92, 1) > & attempt
(s1,82,attempt I end) ~ (s1,5) P
(52,2, 1) ~ {51, 8) attempt
(s1,82,attempt I end) ~ (s1,55)
B[b]s2 = tt (s1,s2,I;while bdo I end) ~ k nil
51,89,while bdo I end) ~ k VLS dla k= sh,sh) lub k=5
1,52
B[[b]]SQ = ff hil
(s1,52,while b do I end) ~> (s1,s2) e
B[b]se = tt (s1,s2,[;if bthen I) ~ k ¢
(s1,52,1if b then I) ~ k T dlak = (s}, sy lubk=s

B[[b]]SQ = ff

if
(s1,52,1f b then I) ~» (s1,s2) *

