
Semantyka i wery�kacja programów 2022/23.
Egzamin 6/02/2023, zadanie 1 (semantyka operacyjna)

Napisz semantyk¦ operacyjn¡ (maªych lub du»ych kroków � cho¢ zapewne wygodniejsza mo»e si¦
okaza¢ semantyka du»ych kroków') instrukcji j¦zyka o gramatyce:

Num 3 n ::= 0 | 1 | −1 | 2 | −2 | · · ·
V ar 3 x ::= x | y | · · ·

Expr 3 e ::= n | x | e1 + e2 | e1 ∗ e2 | e1 − e2

BExpr 3 b ::= true | false | e1 < e2 | e1 = e2 | b1 ∧ b2 | not b

Instr 3 I ::= x := e | I1; I2 | if b then I | while b do I |
attempt I end | protect | reject

Prog 3 P ::= prog {attempt I end}

Jest to j¦zyk z mechanizmem wycofywania skutków operacji przypisania.
Wykonanie programu prog {attempt I end} polega na wykonaniu bloku attempt I end. Z kolei

wykonanie bloku postaci attempt I end polega na wykonaniu instrukcji I, w której mog¡ si¦ pojawi¢
niestandardowe instrukcje reject i protect.

Instrukcja reject powoduje przerwanie wykonania najbli»szego otaczaj¡cego bloku attempt ... end

i wycofanie zmian wprowadzonych przez instrukcje w tym bloku (od jego pocz¡tku lub od ostatniego w
tym bloku wykonania instrukcji protect). Instrukcja protect powoduje �utrwalenie� stanu w miejscu jej
wyst¡pienia dla bie»¡cego bloku attempt ... end, tak »e je±li w dalszej cz¦±ci bie»¡cego bloku attempt

... end wyst¡pi instrukcja reject, nie spowoduje ona wycofania do pocz¡tku bloku, ale do stanu z chwili
ostatniego przed reject wykonania w tym bloku instrukcji protect.

Semantyka pozostaªych konstrukcji jest standardowa.
Na przykªad, po wykonaniu programu:

prog {attempt

x := 0;

attempt

x := 1;

protect;

x := 2;

reject

end

end}

zmienna x przyjmuje warto±¢ 1. Natomiast po wykonaniu programu:

prog {attempt

x := 0;

attempt

x := 1;

protect;

while x <= 10 do

(x := x + 1;

protect;

if x = 5 then reject

)

end

end}

zmienna x przyjmuje warto±¢ 5.

Bloki attempt ... end mog¡ by¢ zagnie»d»ane, a skutki instrukcji protect i reject dotycz¡ zawsze
nabli»szego otaczaj¡cego bloku, zatem po wykonaniu programu

prog {attempt

x := 3;

protect;

attempt

x := 1;

protect;

x := 2;

reject

end;

reject

end}

zmienna x przyjmuje warto±¢ 3.

W rozwi¡zaniu nale»y zde�niowa¢ zbiór kon�guracji oraz poda¢ reguªy przej±cia dla programów oraz
instrukcji.

Wszystkie wykorzystywane zmienne s¡ globalne. Przyjmujemy te», »e zawsze maj¡ zainicjalizowan¡
warto±¢. Mo»na wi¦c w rozwi¡zaniu wykorzysta¢ dziedzin¦ stanów State = Var → Int (nie ma koniecz-
no±ci podziaªu na ±rodowisko i skªad).

Mo»na te» przyj¡¢, »e dane s¡ pomocnicze funkcje semantyczne dla wyra»e«:
E : Expr → State→ Int
B : BExpr → State→ Bool

gdzie, jak zwykle, Int to zbiór liczb caªkowitych, a Bool = {tt, ff}.
Zbiór kon�guracji powinien zawiera¢ kon�guracje pocz¡tkowe dla programów, postaci 〈s, P 〉, oraz kon-

�guracje ko«cowe postaci s (gdzie s ∈ State, a P ∈ Prog), a tak»e � zapewne � dodatkowe kon�guracje
innych postaci.

UWAGA: w kon�guracjach nie nale»y dopuszcza¢ struktur danych zawieraj¡cych dowolnie du»¡
liczb¦ stanów � nale»y przyj¡¢, »e ka»da kon�guracja mo»e zawiera¢ co najwy»ej trzyna±cie stanów.

MO�LIWE ROZWI�ZANIE

Kon�guracje Γ � suma nast¦puj¡cych:

� STATE×Prog 3 〈s, P 〉 � kon�guracje pocz¡tkowe

� STATE 3 s � kon�guracje ko«cowe dla programów oraz dla instrukcji zako«czonych wykonaniem
reject

� STATE × STATE 3 〈s1, s2〉 � kon�guracje ko«cowe dla instrukcji bez reject, s1 to stan do
wycofania, s2 to stan bie»¡cy

� STATE×STATE×Instr 3 〈s1, s2, I〉� ko�guracje bie»¡ce dla instrukcji, s1 to stan do wycofania,
s2 to stan bie»¡cy

SEMANTYKA DU�YCH KROKÓW

〈s, s, I〉 s′

〈s, prog {attempt I end}〉 s′
program

〈s, s, I〉 〈s′1, s′2〉
〈s, prog {attempt I end}〉 s′2

program

〈s1, s2, x := e〉 〈s1, s2[EJeKs2/x]〉
przypisanie

〈s1, s2, I1〉 s′

〈s1, s2, I1; I2 〉 s′
zªo»enie

〈s1, s2, I1〉 〈s′1, s′2〉 〈s′1, s′2, I2〉 k

〈s1, s2, I1; I2 〉 k
zªo»enie

dla k = 〈s′′1, s′′2〉 lub k = s′′

〈s1, s2, protect〉 〈s2, s2〉
protect

〈s1, s2, reject〉 s1
reject

〈s2, s2, I〉 s′

〈s1, s2, attempt I end 〉 〈s1, s′〉
attempt

〈s2, s2, I〉 〈s′1, s′2〉
〈s1, s2, attempt I end 〉 〈s1, s′2〉

attempt

BJbKs2 = tt 〈s1, s2, I; while b do I end〉 k

〈s1, s2, while b do I end〉 k
while

dla k = 〈s′1, s′2〉 lub k = s′

BJbKs2 = ff

〈s1, s2, while b do I end〉 〈s1, s2〉
while

BJbKs2 = tt 〈s1, s2, I; if b then I〉 k

〈s1, s2, if b then I〉 k
if

dla k = 〈s′1, s′2〉 lub k = s′

BJbKs2 = ff

〈s1, s2, if b then I〉 〈s1, s2〉
if

