
Zadanie 2 Poniżej zaproponowana jest składnia pewnego języka programowania.

Var 3 x ::= x | y | . . .
PName 3 P ::= P1 | P2 | . . .

Num 3 n ::= . . . | − 1 | 0 | 1 | . . .
Expr 3 e ::= n | x | e1 + e2 | e1 − e2 | e1 · e2

Inst 3 I ::= skip | x := e | I1; I2 | if e ≥ 0 then I1 else I2 |
P := proc(x){I} | P := P1 then P2 | call P (e)

Wyrażenia i instrukcje oprócz wymienionych poniżej mają standardowe znaczenie. Można
założyć, że wszystkie zmienne indywiduowe x, y, . . .mają początkowo określone wartości (są
zainicjowane). Wiązanie zmiennych indywiduowych jest statyczne, dopuszczalne wartości tych
zmiennych są typu Num. Wyrażenia arytmetyczne wyliczają się do wartości liczbowych Num
bez efektów ubocznych. Można założyć, że dana jest semantyka dla wyrażeń w stylu deno-
tacyjnym, należy jedynie jawnie zadeklarować (sensowny) typ funkcji semantycznej. Po-
dobnie można przyjąć, że dostępny jest nieskończony zbiór lokacji Loc oraz funkcja mate-
matyczna newloc : (Loc ⇀fin Num) → Loc spełniająca newloc(s) /∈ dom(s) dla każdego
s : Loc ⇀fin Num (gdzie Loc ⇀fin Num to zbiór funkcji częściowych z Loc do Num, któ-
rych dziedzina jest skończona).

Język jest wzbogacony o jednoparametrowe procedury. Definicja procedury następuje z uży-
ciem instrukcji P := proc(x){I}, która przypisuje nazwie procedury P procedurę o ciele I z
parametrem formalnym x. Zmienne indywiduowe występujące w ciele I tak zdefiniowanej pro-
cedury powinny zostać w tym momencie związane statycznie, niezależnie od kontekstu, w jakim
procedura będzie później wywoływana. Zmienna x będąca parametrem formalnym procedury
staje się zmienną lokalną widoczną w ciele I (i w procedurach w nim wprowadzonych). Zmienna
ta przesłania wcześniej zdefiniowaną zmienną o tej samej nazwie.

Wywołanie tak zdefiniowanej procedury P instrukcją call P (e) powoduje obliczenie aktualnej
wartości wyrażenia e, a następnie przypisanie tej wartości zmiennej x wprowadzonej dla tego
wywołania procedury i wykonanie ciała I. Oznacza to, że przekazywanie parametrów odbywa
się przez wartość.

Instrukcja przypisania procedur P := P1 then P2 zmienia globalną wartość procedury P
w ten sposób, że staje się ona złożeniem procedur P1 i P2 (identyfikatory procedur P , P1 i
P2 nie muszą być wzajemnie różne). Wywołanie tak powstałej procedury instrukcją call P (e)
powoduje wywołanie po kolei procedur P1(e) i P2(e), zgodnie z ich wartościami sprzed przypisa-
nia. W szczególności wyrażenie e będzie obliczane (przynajmniej) dwukrotnie, raz na potrzeby
wykonania procedury P1, a następnie na potrzeby wykonania P2.

Wiązanie identyfikatorów procedur jest dynamiczne; w szczególności przy wykonaniu ciała
procedury może dojść do rekurencyjnego wywołania tejże procedury lub innej procedury, która
ją wywoła. Początkowo wszystkie nazwy procedur są zainicjowane na procedury, które nic nie
robią, czyli P := proc(x){skip}.

Zadanie
Zadanie polega na napisaniu semantyki denotacyjnej dla kategorii syntaktycznej Inst instrukcji
powyższego języka. W tym celu należy jednoznacznie zdefiniować typy funkcji semantycznych
dla Inst oraz Expr wraz ze wszystkimi używanymi typami pomocniczymi. Należy też podać
równania semantyczne dla wszystkich postaci instrukcji Inst w tym języku.

verte!

1



Uwaga
Przypisywanie identyfikatorów procedur w tym języku odbywa się w sposób dynamiczny. Po-
woduje to, że faktyczna wartość procedury zmienia się w dynamicznie, w trakcie wykonywania
programu. W szczególności, każde wywołanie procedury o nazwie P powoduje jej wywołanie
zgodnie z aktualną wartością tego identyfikatora. W odróżnieniu od zmiennych indywiduowych,
które mają zakresy widoczności i globalny, i lokalne, zmienne procedurowe mają zawsze zakres
widoczności globalny, co oznacza, że zmiana wartości identyfikatora procedury w ciele jakiejś
procedury ma efekt również po wyjściu z tej ostatniej. Jest to niestandardowa cecha tego języka
— w przypadku większości języków rozważanych na tym przedmiocie wiązanie procedur odbywa
się w sposób statyczny, a ich wartości są niezmienne w czasie.

Przykład
Rozważmy następującą instrukcję tego języka:

x := 14;
y := 8;
P := proc (x) {

R := proc (z) {
y := y + x;

};
call R(0);
if y >= 0 then

call P(x)
else

skip
};

P := P then P;
call P(y - x);
call R(0)

Wyliczenie tych instrukcji ustawi najpierw wartości zmiennych x na 14 i y na 8. Następnie
zdefiniowana jest procedura P o parametrze formalnym (zmiennej lokalnej) x. Kolejna instrukcja
P := P then P powoduje, że od teraz procedura P będzie dwukrotnym złożeniem oryginalnie
zdefiniowanej procedury. Wywołanie call P(y - x) spowoduje:

1) Wyliczenie aktualnej wartości y - x, równej −6, na potrzeby pierwszej kopii procedury P .

1) Wewnątrz ciała procedury P zmienna lokalna x przyjmie wartość −6, procedura R zostanie
zdefiniowana i nastąpi wywołanie procedury R z argumentem 0. Jej wewnętrzna instrukcja
y := y + x zmieni wartość zmiennej globalnej y na 2 (zmienna x w ciele procedury R jest
wiązana statycznie do parametru formalnego x ciała procedury P ).

1) Sprawdzony zostanie warunek y >= 0, który jest w tym momencie prawdziwy, co doprowadzi
do wywołania rekurencyjnego aktualnej wartości procedury P z argumentem x.

1.1) W tym celu zostanie obliczona wartość x równa −6 na potrzeby pierwszej kopii procedury
P .

1.1) W jej wnętrzu znów wywołana zostanie procedura R i dojdzie do zmniejszenia wartości
zmiennej globalnej y do −4.

1.1) Sprawdzony zostanie warunek y >= 0, który jest w tym momencie fałszywy, więc wylicza-
nie ciała procedury się zakończy.

2



1.2) Ponownie obliczymy wartość x, wciąż równą −6, na potrzeby drugiej kopii procedury P .

1.2) W jej wnętrzu znów wywołana zostanie procedura R i dojdzie do zmniejszenia wartości
zmiennej globalnej y do −10.

1.2) Sprawdzony zostanie warunek y >= 0, który jest w tym momencie fałszywy, więc wylicza-
nie ciała procedury się zakończy.

2) Wyliczenie aktualnej wartości y - x, równej −24, na potrzeby drugiej kopii procedury P .

2) Wewnątrz ciała procedury P zmienna lokalna x przyjmie wartość −24 i nastąpi wywoła-
nie procedury R, co doprowadzi do wykonania instrukcji y := y + x, co zmieni wartość
zmiennej globalnej y na −34.

2) Sprawdzony zostanie warunek y >= 0, który jest w tym momencie fałszywy, więc wyliczanie
ciała procedury się zakończy.

Po tym wszystkim wywołana zostanie procedura R utworzona w ostatnim wykonaniu ciała P .
W ciele procedury R zmienna y wskazuje na zmienną globalną o aktualnej wartości −34, zaś
zmienna x wskazuje na zmienną lokalną z ostatniego wykonania ciała procedury P (jej wartość
to −24). W związku z tym, po wykonaniu instrukcji y := y + x wartość y spadnie do −58.

Na koniec zmienna globalna x będzie miała wartość 14 zaś zmienna globalna y będzie miała
wartość −58.

3



Rozwiązanie
Rozważmy następujące typy pomocnicze:

Store = Vtore×Ptore

Vtore = Loc⇀fin Num

Ptore = PName⇀ Proc

Proc = (Vtore⇀ Num)→ Store⇀ Store

VEnv = Var⇀ Loc

Używać będziemy funkcji semantycznych:

E : Expr→ VEnv→ Vtore⇀ Num

I : Inst→ VEnv→ Store⇀ Store

oraz funkcji newloc : Vtore → Loc. Funkcja semantyczna E jest dana, natomiast funkcję I
zdefiniujemy następująco:

I[[skip]] ρV (sV , sP ) = (sV , sP )

I[[x := e]] ρV (sV , sP ) = let q = E [[e]] ρV sV in(
sV [(ρV x) 7→ q], sP

)
I[[I1; I2]] ρV (sV , sP ) =

(
I[[I1]] ρV

)
;
(
I[[I2]] ρV

)
(sV , sP )

I[[if e ≥ 0 then I1 else I2]] ρV (sV , sP ) = ifte
(
E [[e]] ρV sV ≥ 0,

I[[I1]] ρV (sV , sP ),

I[[I2]] ρV (sV , sP )
)

I[[P := proc{I}(x)]] ρV (sV , sP ) = let R E (s′V , s
′
P ) =

let q = E s′V in

let ` = newloc(s′V ) in

let ρ′V = ρV [x 7→ `] in

let s′′V = s′V [` 7→ q] in

I[[I]] ρ′V (s′′V , s
′
P )

in
(
sV , sP [P 7→ R]

)
I[[P := P1 then P2]] ρV (sV , sP ) = let R1 = sP P1 in

let R2 = sP P2 in

let R E = (R1 E); (R2 E) in(
sV , sP [P 7→ R]

)
I[[call P (e)]] ρV (sV , sP ) = let R = sP P in

R (E [[e]] ρV ) (sV , sP )

4


