Zadanie 2 Ponizej zaproponowana jest skladnia pewnego jezyka programowania.

Varszu=x |y ...
PName> P:=P | P ...
Numsn:u= ... | =1|0]1] ...
Exproe:=n|xz|e+ey| e —ex]e e
Inst 57 :=skip | z:=e¢ | I1;15 | if e > 0 then I; else I |
P :=proc(z){l} | P:= P, then P, | call P(e)

Wyrazenia i instrukcje oprécz wymienionych ponizej maja standardowe znaczenie. Mozna
zatozy¢, ze wszystkie zmienne indywiduowe z, y, ...maja poczatkowo okreslone wartosci (sa
zainicjowane). Wigzanie zmiennych indywiduowych jest statyczne, dopuszczalne wartosci tych
zmiennych sa typu Num. Wyrazenia arytmetyczne wyliczaja sie do wartosci liczbowych Num
bez efektéw ubocznych. Mozna zalozyé, ze dana jest semantyka dla wyrazen w stylu deno-
tacyjnym, nalezy jedynie jawnie zadeklarowaé (sensowny) typ funkcji semantycznej. Po-
dobnie mozna przyja¢, ze dostepny jest nieskoriczony zbior lokacji Loc oraz funkcja mate-
matyczna newloc: (Loc —g5, Num) — Loc speliajaca newloc(s) ¢ dom(s) dla kazdego
s: Loc —g, Num (gdzie Loc —g, Num to zbior funkcji czesciowych z Loc do Num, kto-
rych dziedzina jest skoriczona).

Jezyk jest wzbogacony o jednoparametrowe procedury. Definicja procedury nastepuje z uzy-
ciem instrukcji P := proc(x){I}, ktéra przypisuje nazwie procedury P procedure o ciele [z
parametrem formalnym x. Zmienne indywiduowe wystepujace w ciele I tak zdefiniowanej pro-
cedury powinny zosta¢ w tym momencie zwiazane statycznie, niezaleznie od kontekstu, w jakim
procedura bedzie p6zniej wywotywana. Zmienna x bedaca parametrem formalnym procedury
staje sie zmienng lokalna widoczna w ciele I (i w procedurach w nim wprowadzonych). Zmienna
ta przestania wcze$niej zdefiniowang zmienng o tej samej nazwie.

Wywotlanie tak zdefiniowanej procedury P instrukcja call P(e) powoduje obliczenie aktualnej
wartosci wyrazenia e, a nastepnie przypisanie tej wartosci zmiennej x wprowadzonej dla tego
wywolania procedury i wykonanie ciata I. Oznacza to, ze przekazywanie parametrow odbywa
sie przez wartosc.

Instrukcja przypisania procedur P := P; then P, zmienia globalng wartos¢ procedury P
w ten sposob, ze staje sie ona zlozeniem procedur P; i P, (identyfikatory procedur P, P; i
P, nie musza by¢ wzajemnie rozne). Wywolanie tak powstalej procedury instrukcja call P(e)
powoduje wywotanie po kolei procedur P;(e) i P(e), zgodnie z ich wartosciami sprzed przypisa-
nia. W szczegolnosci wyrazenie e bedzie obliczane (przynajmniej) dwukrotnie, raz na potrzeby
wykonania procedury P;, a nastepnie na potrzeby wykonania Ps.

Wiazanie identyfikatoréw procedur jest dynamiczne; w szczeg6lnosci przy wykonaniu ciata
procedury moze doj$¢ do rekurencyjnego wywotania tejze procedury lub innej procedury, ktora
ja wywota. Poczatkowo wszystkie nazwy procedur sg zainicjowane na procedury, ktore nic nie
robia, czyli P := proc(z){skip}.

Zadanie
Zadanie polega na napisaniu semantyki denotacyjnej dla kategorii syntaktycznej Inst instrukcji
powyzszego jezyka. W tym celu nalezy jednoznacznie zdefiniowaé¢ typy funkcji semantycznych
dla Inst oraz Expr wraz ze wszystkimi uzywanymi typami pomocniczymi. Nalezy tez podaé
rOwnania semantyczne dla wszystkich postaci instrukeji Inst w tym jezyku.

verte!

Uwaga

Przypisywanie identyfikatoréw procedur w tym jezyku odbywa sie w sposdéb dynamiczny. Po-
woduje to, ze faktyczna warto$¢ procedury zmienia sie w dynamicznie, w trakcie wykonywania
programu. W szczegolnosci, kazde wywotanie procedury o nazwie P powoduje jej wywotanie
zgodnie z aktualng wartoscia tego identyfikatora. W odréznieniu od zmiennych indywiduowych,
ktore maja zakresy widocznosci i globalny, i lokalne, zmienne procedurowe maja zawsze zakres
widocznosci globalny, co oznacza, ze zmiana wartosci identyfikatora procedury w ciele jakiejs
procedury ma efekt rowniez po wyjsciu z tej ostatniej. Jest to niestandardowa cecha tego jezyka
— w przypadku wiekszosci jezykow rozwazanych na tym przedmiocie wiazanie procedur odbywa
sie w sposob statyczny, a ich wartosci sa niezmienne w czasie.

Przyktad
Rozwazmy nastepujaca instrukcje tego jezyka:

x := 14;
y = 8;
P proc (x) {
R := proc (z) {
y o=y o+ ox;
s
call R(0);
if y >= 0 then
call P(x)
else
skip

+s
P := P then P;
call P(y - x);
call R(0)

Wyliczenie tych instrukeji ustawi najpierw wartosci zmiennych x na 14 i y na 8. Nastepnie
zdefiniowana jest procedura P o parametrze formalnym (zmiennej lokalnej) x. Kolejna instrukcja
P := P then P powoduje, ze od teraz procedura P bedzie dwukrotnym zlozeniem oryginalnie
zdefiniowanej procedury. Wywotanie call P(y - x) spowoduje:

1) Wyliczenie aktualnej wartosci y - x, rownej —6, na potrzeby pierwszej kopii procedury P.

1) Wewnatrz ciala procedury P zmienna lokalna = przyjmie warto$¢ —6, procedura R zostanie
zdefiniowana i nastapi wywotanie procedury R z argumentem 0. Jej wewnetrzna instrukcja
y := y + x zmieni warto$¢ zmiennej globalnej y na 2 (zmienna x w ciele procedury R jest
wiazana statycznie do parametru formalnego x ciata procedury P).

1) Sprawdzony zostanie warunek y >= 0, ktory jest w tym momencie prawdziwy, co doprowadzi
do wywotania rekurencyjnego aktualnej wartosci procedury P z argumentem x.

1.1) W tym celu zostanie obliczona warto$¢ x rowna —6 na potrzeby pierwszej kopii procedury

P.

1.1) W jej wnetrzu znéw wywolana zostanie procedura R i dojdzie do zmniejszenia wartosci
zmiennej globalnej y do —4.

1.1) Sprawdzony zostanie warunek y >= 0, ktory jest w tym momencie falszywy, wiec wylicza-
nie ciata procedury sie zakonczy.

1.2) Ponownie obliczymy warto$¢ x, wciaz rowna —6, na potrzeby drugiej kopii procedury P.

1.2) W jej wnetrzu znéw wywolana zostanie procedura R i dojdzie do zmniejszenia wartosci
zmiennej globalnej y do —10.

1.2) Sprawdzony zostanie warunek y >= 0, ktory jest w tym momencie fatszywy, wiec wylicza-
nie ciata procedury sie zakonczy.

2) Wyliczenie aktualnej wartosci y - x, rownej —24, na potrzeby drugiej kopii procedury P.

2) Wewnatrz ciala procedury P zmienna lokalna = przyjmie warto$¢ —24 i nastapi wywola-
nie procedury R, co doprowadzi do wykonania instrukcji y := y + x, co zmieni wartosé
zmiennej globalnej y na —34.

2) Sprawdzony zostanie warunek y >= 0, ktory jest w tym momencie falszywy, wiec wyliczanie
ciala procedury sie zakonczy.

Po tym wszystkim wywotana zostanie procedura R utworzona w ostatnim wykonaniu ciata P.
W ciele procedury R zmienna y wskazuje na zmienna globalng o aktualnej wartosci —34, zas
zmienna z wskazuje na zmienng lokalna z ostatniego wykonania ciata procedury P (jej wartosé
to —24). W zwigzku z tym, po wykonaniu instrukcji y := y + x warto$¢ y spadnie do —58.

Na koniec zmienna globalna = bedzie miata wartos¢ 14 zas zmienna globalna y bedzie miata
wartos¢ —58.

Rozwigzanie
Rozwazmy nastepujace typy pomocnicze:

Store = Vtore x Ptore
Vtore = Loc —4, Num
Ptore = PName — Proc
Proc = (Vtore - Num) — Store — Store
VEnv = Var — Loc

Uzywaé¢ bedziemy funkcji semantycznych:

£: Expr - VEnv — Vtore — Num
Z: Inst - VEnv — Store — Store

oraz funkcji newloc: Vtore — Loc. Funkcja semantyczna & jest dana, natomiast funkcje Z
zdefiniujemy nastepujaco:

I[skip] pv (sv,sp) = (sv,sp)

Iz :=¢] pv (sv,sp) =let ¢ = E[e] py sy in
(svi(pv =) = d],sp)

Il L] pv (sv,sp) = (Z[L] pv); (Z[E] pv) (sv,sp)

Z[if e > 0 then I, else L] py (sv,sp) = ifte(E[e] pv sy >0,
[[[1]] Pv (5V>3P)7
[[[2]] %% 5V>3P)

I[P := proc{I}(z)] pv (sy,sp) =let R E (s}, sp) =
let ¢ =E s}, in
let £ = newloc(s},) in
let pi, = pylx — (] in
let s, = s, [{ — ¢] in
T01] 6 (5, 5})
in (sv, sp[P — R])

I[P := P, then P] py (sv,sp) =let Ry = sp P, in
let Ry = sp P in
let R E= (R, E);(Ry F) in
(sv,sp[P — R])

Z[call P(e)] pv (sy,sp) =let R=sp P in
R (E]e] pv) (sv,sp)

